hostfs: simplify locking
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43
44 EXPORT_SYMBOL(dcache_lock);
45
46 static struct kmem_cache *dentry_cache __read_mostly;
47
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50 /*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
60
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68 };
69
70 static DEFINE_PER_CPU(unsigned int, nr_dentry);
71
72 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
73 static int get_nr_dentry(void)
74 {
75 int i;
76 int sum = 0;
77 for_each_possible_cpu(i)
78 sum += per_cpu(nr_dentry, i);
79 return sum < 0 ? 0 : sum;
80 }
81
82 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
83 size_t *lenp, loff_t *ppos)
84 {
85 dentry_stat.nr_dentry = get_nr_dentry();
86 return proc_dointvec(table, write, buffer, lenp, ppos);
87 }
88 #endif
89
90 static void __d_free(struct rcu_head *head)
91 {
92 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
93
94 WARN_ON(!list_empty(&dentry->d_alias));
95 if (dname_external(dentry))
96 kfree(dentry->d_name.name);
97 kmem_cache_free(dentry_cache, dentry);
98 }
99
100 /*
101 * no dcache_lock, please.
102 */
103 static void d_free(struct dentry *dentry)
104 {
105 this_cpu_dec(nr_dentry);
106 if (dentry->d_op && dentry->d_op->d_release)
107 dentry->d_op->d_release(dentry);
108
109 /* if dentry was never inserted into hash, immediate free is OK */
110 if (hlist_unhashed(&dentry->d_hash))
111 __d_free(&dentry->d_u.d_rcu);
112 else
113 call_rcu(&dentry->d_u.d_rcu, __d_free);
114 }
115
116 /*
117 * Release the dentry's inode, using the filesystem
118 * d_iput() operation if defined.
119 */
120 static void dentry_iput(struct dentry * dentry)
121 __releases(dentry->d_lock)
122 __releases(dcache_lock)
123 {
124 struct inode *inode = dentry->d_inode;
125 if (inode) {
126 dentry->d_inode = NULL;
127 list_del_init(&dentry->d_alias);
128 spin_unlock(&dentry->d_lock);
129 spin_unlock(&dcache_lock);
130 if (!inode->i_nlink)
131 fsnotify_inoderemove(inode);
132 if (dentry->d_op && dentry->d_op->d_iput)
133 dentry->d_op->d_iput(dentry, inode);
134 else
135 iput(inode);
136 } else {
137 spin_unlock(&dentry->d_lock);
138 spin_unlock(&dcache_lock);
139 }
140 }
141
142 /*
143 * dentry_lru_(add|del|move_tail) must be called with dcache_lock held.
144 */
145 static void dentry_lru_add(struct dentry *dentry)
146 {
147 if (list_empty(&dentry->d_lru)) {
148 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
149 dentry->d_sb->s_nr_dentry_unused++;
150 dentry_stat.nr_unused++;
151 }
152 }
153
154 static void dentry_lru_del(struct dentry *dentry)
155 {
156 if (!list_empty(&dentry->d_lru)) {
157 list_del_init(&dentry->d_lru);
158 dentry->d_sb->s_nr_dentry_unused--;
159 dentry_stat.nr_unused--;
160 }
161 }
162
163 static void dentry_lru_move_tail(struct dentry *dentry)
164 {
165 if (list_empty(&dentry->d_lru)) {
166 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
167 dentry->d_sb->s_nr_dentry_unused++;
168 dentry_stat.nr_unused++;
169 } else {
170 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
171 }
172 }
173
174 /**
175 * d_kill - kill dentry and return parent
176 * @dentry: dentry to kill
177 *
178 * The dentry must already be unhashed and removed from the LRU.
179 *
180 * If this is the root of the dentry tree, return NULL.
181 */
182 static struct dentry *d_kill(struct dentry *dentry)
183 __releases(dentry->d_lock)
184 __releases(dcache_lock)
185 {
186 struct dentry *parent;
187
188 list_del(&dentry->d_u.d_child);
189 /*drops the locks, at that point nobody can reach this dentry */
190 dentry_iput(dentry);
191 if (IS_ROOT(dentry))
192 parent = NULL;
193 else
194 parent = dentry->d_parent;
195 d_free(dentry);
196 return parent;
197 }
198
199 /*
200 * This is dput
201 *
202 * This is complicated by the fact that we do not want to put
203 * dentries that are no longer on any hash chain on the unused
204 * list: we'd much rather just get rid of them immediately.
205 *
206 * However, that implies that we have to traverse the dentry
207 * tree upwards to the parents which might _also_ now be
208 * scheduled for deletion (it may have been only waiting for
209 * its last child to go away).
210 *
211 * This tail recursion is done by hand as we don't want to depend
212 * on the compiler to always get this right (gcc generally doesn't).
213 * Real recursion would eat up our stack space.
214 */
215
216 /*
217 * dput - release a dentry
218 * @dentry: dentry to release
219 *
220 * Release a dentry. This will drop the usage count and if appropriate
221 * call the dentry unlink method as well as removing it from the queues and
222 * releasing its resources. If the parent dentries were scheduled for release
223 * they too may now get deleted.
224 *
225 * no dcache lock, please.
226 */
227
228 void dput(struct dentry *dentry)
229 {
230 if (!dentry)
231 return;
232
233 repeat:
234 if (atomic_read(&dentry->d_count) == 1)
235 might_sleep();
236 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
237 return;
238
239 spin_lock(&dentry->d_lock);
240 if (atomic_read(&dentry->d_count)) {
241 spin_unlock(&dentry->d_lock);
242 spin_unlock(&dcache_lock);
243 return;
244 }
245
246 /*
247 * AV: ->d_delete() is _NOT_ allowed to block now.
248 */
249 if (dentry->d_op && dentry->d_op->d_delete) {
250 if (dentry->d_op->d_delete(dentry))
251 goto unhash_it;
252 }
253
254 /* Unreachable? Get rid of it */
255 if (d_unhashed(dentry))
256 goto kill_it;
257
258 /* Otherwise leave it cached and ensure it's on the LRU */
259 dentry->d_flags |= DCACHE_REFERENCED;
260 dentry_lru_add(dentry);
261
262 spin_unlock(&dentry->d_lock);
263 spin_unlock(&dcache_lock);
264 return;
265
266 unhash_it:
267 __d_drop(dentry);
268 kill_it:
269 /* if dentry was on the d_lru list delete it from there */
270 dentry_lru_del(dentry);
271 dentry = d_kill(dentry);
272 if (dentry)
273 goto repeat;
274 }
275 EXPORT_SYMBOL(dput);
276
277 /**
278 * d_invalidate - invalidate a dentry
279 * @dentry: dentry to invalidate
280 *
281 * Try to invalidate the dentry if it turns out to be
282 * possible. If there are other dentries that can be
283 * reached through this one we can't delete it and we
284 * return -EBUSY. On success we return 0.
285 *
286 * no dcache lock.
287 */
288
289 int d_invalidate(struct dentry * dentry)
290 {
291 /*
292 * If it's already been dropped, return OK.
293 */
294 spin_lock(&dcache_lock);
295 if (d_unhashed(dentry)) {
296 spin_unlock(&dcache_lock);
297 return 0;
298 }
299 /*
300 * Check whether to do a partial shrink_dcache
301 * to get rid of unused child entries.
302 */
303 if (!list_empty(&dentry->d_subdirs)) {
304 spin_unlock(&dcache_lock);
305 shrink_dcache_parent(dentry);
306 spin_lock(&dcache_lock);
307 }
308
309 /*
310 * Somebody else still using it?
311 *
312 * If it's a directory, we can't drop it
313 * for fear of somebody re-populating it
314 * with children (even though dropping it
315 * would make it unreachable from the root,
316 * we might still populate it if it was a
317 * working directory or similar).
318 */
319 spin_lock(&dentry->d_lock);
320 if (atomic_read(&dentry->d_count) > 1) {
321 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
322 spin_unlock(&dentry->d_lock);
323 spin_unlock(&dcache_lock);
324 return -EBUSY;
325 }
326 }
327
328 __d_drop(dentry);
329 spin_unlock(&dentry->d_lock);
330 spin_unlock(&dcache_lock);
331 return 0;
332 }
333 EXPORT_SYMBOL(d_invalidate);
334
335 /* This should be called _only_ with dcache_lock held */
336 static inline struct dentry * __dget_locked(struct dentry *dentry)
337 {
338 atomic_inc(&dentry->d_count);
339 dentry_lru_del(dentry);
340 return dentry;
341 }
342
343 struct dentry * dget_locked(struct dentry *dentry)
344 {
345 return __dget_locked(dentry);
346 }
347 EXPORT_SYMBOL(dget_locked);
348
349 /**
350 * d_find_alias - grab a hashed alias of inode
351 * @inode: inode in question
352 * @want_discon: flag, used by d_splice_alias, to request
353 * that only a DISCONNECTED alias be returned.
354 *
355 * If inode has a hashed alias, or is a directory and has any alias,
356 * acquire the reference to alias and return it. Otherwise return NULL.
357 * Notice that if inode is a directory there can be only one alias and
358 * it can be unhashed only if it has no children, or if it is the root
359 * of a filesystem.
360 *
361 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
362 * any other hashed alias over that one unless @want_discon is set,
363 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
364 */
365
366 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
367 {
368 struct list_head *head, *next, *tmp;
369 struct dentry *alias, *discon_alias=NULL;
370
371 head = &inode->i_dentry;
372 next = inode->i_dentry.next;
373 while (next != head) {
374 tmp = next;
375 next = tmp->next;
376 prefetch(next);
377 alias = list_entry(tmp, struct dentry, d_alias);
378 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
379 if (IS_ROOT(alias) &&
380 (alias->d_flags & DCACHE_DISCONNECTED))
381 discon_alias = alias;
382 else if (!want_discon) {
383 __dget_locked(alias);
384 return alias;
385 }
386 }
387 }
388 if (discon_alias)
389 __dget_locked(discon_alias);
390 return discon_alias;
391 }
392
393 struct dentry * d_find_alias(struct inode *inode)
394 {
395 struct dentry *de = NULL;
396
397 if (!list_empty(&inode->i_dentry)) {
398 spin_lock(&dcache_lock);
399 de = __d_find_alias(inode, 0);
400 spin_unlock(&dcache_lock);
401 }
402 return de;
403 }
404 EXPORT_SYMBOL(d_find_alias);
405
406 /*
407 * Try to kill dentries associated with this inode.
408 * WARNING: you must own a reference to inode.
409 */
410 void d_prune_aliases(struct inode *inode)
411 {
412 struct dentry *dentry;
413 restart:
414 spin_lock(&dcache_lock);
415 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
416 spin_lock(&dentry->d_lock);
417 if (!atomic_read(&dentry->d_count)) {
418 __dget_locked(dentry);
419 __d_drop(dentry);
420 spin_unlock(&dentry->d_lock);
421 spin_unlock(&dcache_lock);
422 dput(dentry);
423 goto restart;
424 }
425 spin_unlock(&dentry->d_lock);
426 }
427 spin_unlock(&dcache_lock);
428 }
429 EXPORT_SYMBOL(d_prune_aliases);
430
431 /*
432 * Throw away a dentry - free the inode, dput the parent. This requires that
433 * the LRU list has already been removed.
434 *
435 * Try to prune ancestors as well. This is necessary to prevent
436 * quadratic behavior of shrink_dcache_parent(), but is also expected
437 * to be beneficial in reducing dentry cache fragmentation.
438 */
439 static void prune_one_dentry(struct dentry * dentry)
440 __releases(dentry->d_lock)
441 __releases(dcache_lock)
442 __acquires(dcache_lock)
443 {
444 __d_drop(dentry);
445 dentry = d_kill(dentry);
446
447 /*
448 * Prune ancestors. Locking is simpler than in dput(),
449 * because dcache_lock needs to be taken anyway.
450 */
451 spin_lock(&dcache_lock);
452 while (dentry) {
453 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
454 return;
455
456 dentry_lru_del(dentry);
457 __d_drop(dentry);
458 dentry = d_kill(dentry);
459 spin_lock(&dcache_lock);
460 }
461 }
462
463 static void shrink_dentry_list(struct list_head *list)
464 {
465 struct dentry *dentry;
466
467 while (!list_empty(list)) {
468 dentry = list_entry(list->prev, struct dentry, d_lru);
469 dentry_lru_del(dentry);
470
471 /*
472 * We found an inuse dentry which was not removed from
473 * the LRU because of laziness during lookup. Do not free
474 * it - just keep it off the LRU list.
475 */
476 spin_lock(&dentry->d_lock);
477 if (atomic_read(&dentry->d_count)) {
478 spin_unlock(&dentry->d_lock);
479 continue;
480 }
481 prune_one_dentry(dentry);
482 /* dentry->d_lock was dropped in prune_one_dentry() */
483 cond_resched_lock(&dcache_lock);
484 }
485 }
486
487 /**
488 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
489 * @sb: superblock to shrink dentry LRU.
490 * @count: number of entries to prune
491 * @flags: flags to control the dentry processing
492 *
493 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
494 */
495 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
496 {
497 /* called from prune_dcache() and shrink_dcache_parent() */
498 struct dentry *dentry;
499 LIST_HEAD(referenced);
500 LIST_HEAD(tmp);
501 int cnt = *count;
502
503 spin_lock(&dcache_lock);
504 while (!list_empty(&sb->s_dentry_lru)) {
505 dentry = list_entry(sb->s_dentry_lru.prev,
506 struct dentry, d_lru);
507 BUG_ON(dentry->d_sb != sb);
508
509 /*
510 * If we are honouring the DCACHE_REFERENCED flag and the
511 * dentry has this flag set, don't free it. Clear the flag
512 * and put it back on the LRU.
513 */
514 if (flags & DCACHE_REFERENCED) {
515 spin_lock(&dentry->d_lock);
516 if (dentry->d_flags & DCACHE_REFERENCED) {
517 dentry->d_flags &= ~DCACHE_REFERENCED;
518 list_move(&dentry->d_lru, &referenced);
519 spin_unlock(&dentry->d_lock);
520 cond_resched_lock(&dcache_lock);
521 continue;
522 }
523 spin_unlock(&dentry->d_lock);
524 }
525
526 list_move_tail(&dentry->d_lru, &tmp);
527 if (!--cnt)
528 break;
529 cond_resched_lock(&dcache_lock);
530 }
531
532 *count = cnt;
533 shrink_dentry_list(&tmp);
534
535 if (!list_empty(&referenced))
536 list_splice(&referenced, &sb->s_dentry_lru);
537 spin_unlock(&dcache_lock);
538
539 }
540
541 /**
542 * prune_dcache - shrink the dcache
543 * @count: number of entries to try to free
544 *
545 * Shrink the dcache. This is done when we need more memory, or simply when we
546 * need to unmount something (at which point we need to unuse all dentries).
547 *
548 * This function may fail to free any resources if all the dentries are in use.
549 */
550 static void prune_dcache(int count)
551 {
552 struct super_block *sb, *p = NULL;
553 int w_count;
554 int unused = dentry_stat.nr_unused;
555 int prune_ratio;
556 int pruned;
557
558 if (unused == 0 || count == 0)
559 return;
560 spin_lock(&dcache_lock);
561 if (count >= unused)
562 prune_ratio = 1;
563 else
564 prune_ratio = unused / count;
565 spin_lock(&sb_lock);
566 list_for_each_entry(sb, &super_blocks, s_list) {
567 if (list_empty(&sb->s_instances))
568 continue;
569 if (sb->s_nr_dentry_unused == 0)
570 continue;
571 sb->s_count++;
572 /* Now, we reclaim unused dentrins with fairness.
573 * We reclaim them same percentage from each superblock.
574 * We calculate number of dentries to scan on this sb
575 * as follows, but the implementation is arranged to avoid
576 * overflows:
577 * number of dentries to scan on this sb =
578 * count * (number of dentries on this sb /
579 * number of dentries in the machine)
580 */
581 spin_unlock(&sb_lock);
582 if (prune_ratio != 1)
583 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
584 else
585 w_count = sb->s_nr_dentry_unused;
586 pruned = w_count;
587 /*
588 * We need to be sure this filesystem isn't being unmounted,
589 * otherwise we could race with generic_shutdown_super(), and
590 * end up holding a reference to an inode while the filesystem
591 * is unmounted. So we try to get s_umount, and make sure
592 * s_root isn't NULL.
593 */
594 if (down_read_trylock(&sb->s_umount)) {
595 if ((sb->s_root != NULL) &&
596 (!list_empty(&sb->s_dentry_lru))) {
597 spin_unlock(&dcache_lock);
598 __shrink_dcache_sb(sb, &w_count,
599 DCACHE_REFERENCED);
600 pruned -= w_count;
601 spin_lock(&dcache_lock);
602 }
603 up_read(&sb->s_umount);
604 }
605 spin_lock(&sb_lock);
606 if (p)
607 __put_super(p);
608 count -= pruned;
609 p = sb;
610 /* more work left to do? */
611 if (count <= 0)
612 break;
613 }
614 if (p)
615 __put_super(p);
616 spin_unlock(&sb_lock);
617 spin_unlock(&dcache_lock);
618 }
619
620 /**
621 * shrink_dcache_sb - shrink dcache for a superblock
622 * @sb: superblock
623 *
624 * Shrink the dcache for the specified super block. This is used to free
625 * the dcache before unmounting a file system.
626 */
627 void shrink_dcache_sb(struct super_block *sb)
628 {
629 LIST_HEAD(tmp);
630
631 spin_lock(&dcache_lock);
632 while (!list_empty(&sb->s_dentry_lru)) {
633 list_splice_init(&sb->s_dentry_lru, &tmp);
634 shrink_dentry_list(&tmp);
635 }
636 spin_unlock(&dcache_lock);
637 }
638 EXPORT_SYMBOL(shrink_dcache_sb);
639
640 /*
641 * destroy a single subtree of dentries for unmount
642 * - see the comments on shrink_dcache_for_umount() for a description of the
643 * locking
644 */
645 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
646 {
647 struct dentry *parent;
648 unsigned detached = 0;
649
650 BUG_ON(!IS_ROOT(dentry));
651
652 /* detach this root from the system */
653 spin_lock(&dcache_lock);
654 dentry_lru_del(dentry);
655 __d_drop(dentry);
656 spin_unlock(&dcache_lock);
657
658 for (;;) {
659 /* descend to the first leaf in the current subtree */
660 while (!list_empty(&dentry->d_subdirs)) {
661 struct dentry *loop;
662
663 /* this is a branch with children - detach all of them
664 * from the system in one go */
665 spin_lock(&dcache_lock);
666 list_for_each_entry(loop, &dentry->d_subdirs,
667 d_u.d_child) {
668 dentry_lru_del(loop);
669 __d_drop(loop);
670 cond_resched_lock(&dcache_lock);
671 }
672 spin_unlock(&dcache_lock);
673
674 /* move to the first child */
675 dentry = list_entry(dentry->d_subdirs.next,
676 struct dentry, d_u.d_child);
677 }
678
679 /* consume the dentries from this leaf up through its parents
680 * until we find one with children or run out altogether */
681 do {
682 struct inode *inode;
683
684 if (atomic_read(&dentry->d_count) != 0) {
685 printk(KERN_ERR
686 "BUG: Dentry %p{i=%lx,n=%s}"
687 " still in use (%d)"
688 " [unmount of %s %s]\n",
689 dentry,
690 dentry->d_inode ?
691 dentry->d_inode->i_ino : 0UL,
692 dentry->d_name.name,
693 atomic_read(&dentry->d_count),
694 dentry->d_sb->s_type->name,
695 dentry->d_sb->s_id);
696 BUG();
697 }
698
699 if (IS_ROOT(dentry))
700 parent = NULL;
701 else {
702 parent = dentry->d_parent;
703 atomic_dec(&parent->d_count);
704 }
705
706 list_del(&dentry->d_u.d_child);
707 detached++;
708
709 inode = dentry->d_inode;
710 if (inode) {
711 dentry->d_inode = NULL;
712 list_del_init(&dentry->d_alias);
713 if (dentry->d_op && dentry->d_op->d_iput)
714 dentry->d_op->d_iput(dentry, inode);
715 else
716 iput(inode);
717 }
718
719 d_free(dentry);
720
721 /* finished when we fall off the top of the tree,
722 * otherwise we ascend to the parent and move to the
723 * next sibling if there is one */
724 if (!parent)
725 return;
726 dentry = parent;
727 } while (list_empty(&dentry->d_subdirs));
728
729 dentry = list_entry(dentry->d_subdirs.next,
730 struct dentry, d_u.d_child);
731 }
732 }
733
734 /*
735 * destroy the dentries attached to a superblock on unmounting
736 * - we don't need to use dentry->d_lock, and only need dcache_lock when
737 * removing the dentry from the system lists and hashes because:
738 * - the superblock is detached from all mountings and open files, so the
739 * dentry trees will not be rearranged by the VFS
740 * - s_umount is write-locked, so the memory pressure shrinker will ignore
741 * any dentries belonging to this superblock that it comes across
742 * - the filesystem itself is no longer permitted to rearrange the dentries
743 * in this superblock
744 */
745 void shrink_dcache_for_umount(struct super_block *sb)
746 {
747 struct dentry *dentry;
748
749 if (down_read_trylock(&sb->s_umount))
750 BUG();
751
752 dentry = sb->s_root;
753 sb->s_root = NULL;
754 atomic_dec(&dentry->d_count);
755 shrink_dcache_for_umount_subtree(dentry);
756
757 while (!hlist_empty(&sb->s_anon)) {
758 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
759 shrink_dcache_for_umount_subtree(dentry);
760 }
761 }
762
763 /*
764 * Search for at least 1 mount point in the dentry's subdirs.
765 * We descend to the next level whenever the d_subdirs
766 * list is non-empty and continue searching.
767 */
768
769 /**
770 * have_submounts - check for mounts over a dentry
771 * @parent: dentry to check.
772 *
773 * Return true if the parent or its subdirectories contain
774 * a mount point
775 */
776
777 int have_submounts(struct dentry *parent)
778 {
779 struct dentry *this_parent = parent;
780 struct list_head *next;
781
782 spin_lock(&dcache_lock);
783 if (d_mountpoint(parent))
784 goto positive;
785 repeat:
786 next = this_parent->d_subdirs.next;
787 resume:
788 while (next != &this_parent->d_subdirs) {
789 struct list_head *tmp = next;
790 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
791 next = tmp->next;
792 /* Have we found a mount point ? */
793 if (d_mountpoint(dentry))
794 goto positive;
795 if (!list_empty(&dentry->d_subdirs)) {
796 this_parent = dentry;
797 goto repeat;
798 }
799 }
800 /*
801 * All done at this level ... ascend and resume the search.
802 */
803 if (this_parent != parent) {
804 next = this_parent->d_u.d_child.next;
805 this_parent = this_parent->d_parent;
806 goto resume;
807 }
808 spin_unlock(&dcache_lock);
809 return 0; /* No mount points found in tree */
810 positive:
811 spin_unlock(&dcache_lock);
812 return 1;
813 }
814 EXPORT_SYMBOL(have_submounts);
815
816 /*
817 * Search the dentry child list for the specified parent,
818 * and move any unused dentries to the end of the unused
819 * list for prune_dcache(). We descend to the next level
820 * whenever the d_subdirs list is non-empty and continue
821 * searching.
822 *
823 * It returns zero iff there are no unused children,
824 * otherwise it returns the number of children moved to
825 * the end of the unused list. This may not be the total
826 * number of unused children, because select_parent can
827 * drop the lock and return early due to latency
828 * constraints.
829 */
830 static int select_parent(struct dentry * parent)
831 {
832 struct dentry *this_parent = parent;
833 struct list_head *next;
834 int found = 0;
835
836 spin_lock(&dcache_lock);
837 repeat:
838 next = this_parent->d_subdirs.next;
839 resume:
840 while (next != &this_parent->d_subdirs) {
841 struct list_head *tmp = next;
842 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
843 next = tmp->next;
844
845 /*
846 * move only zero ref count dentries to the end
847 * of the unused list for prune_dcache
848 */
849 if (!atomic_read(&dentry->d_count)) {
850 dentry_lru_move_tail(dentry);
851 found++;
852 } else {
853 dentry_lru_del(dentry);
854 }
855
856 /*
857 * We can return to the caller if we have found some (this
858 * ensures forward progress). We'll be coming back to find
859 * the rest.
860 */
861 if (found && need_resched())
862 goto out;
863
864 /*
865 * Descend a level if the d_subdirs list is non-empty.
866 */
867 if (!list_empty(&dentry->d_subdirs)) {
868 this_parent = dentry;
869 goto repeat;
870 }
871 }
872 /*
873 * All done at this level ... ascend and resume the search.
874 */
875 if (this_parent != parent) {
876 next = this_parent->d_u.d_child.next;
877 this_parent = this_parent->d_parent;
878 goto resume;
879 }
880 out:
881 spin_unlock(&dcache_lock);
882 return found;
883 }
884
885 /**
886 * shrink_dcache_parent - prune dcache
887 * @parent: parent of entries to prune
888 *
889 * Prune the dcache to remove unused children of the parent dentry.
890 */
891
892 void shrink_dcache_parent(struct dentry * parent)
893 {
894 struct super_block *sb = parent->d_sb;
895 int found;
896
897 while ((found = select_parent(parent)) != 0)
898 __shrink_dcache_sb(sb, &found, 0);
899 }
900 EXPORT_SYMBOL(shrink_dcache_parent);
901
902 /*
903 * Scan `nr' dentries and return the number which remain.
904 *
905 * We need to avoid reentering the filesystem if the caller is performing a
906 * GFP_NOFS allocation attempt. One example deadlock is:
907 *
908 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
909 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
910 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
911 *
912 * In this case we return -1 to tell the caller that we baled.
913 */
914 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
915 {
916 if (nr) {
917 if (!(gfp_mask & __GFP_FS))
918 return -1;
919 prune_dcache(nr);
920 }
921
922 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
923 }
924
925 static struct shrinker dcache_shrinker = {
926 .shrink = shrink_dcache_memory,
927 .seeks = DEFAULT_SEEKS,
928 };
929
930 /**
931 * d_alloc - allocate a dcache entry
932 * @parent: parent of entry to allocate
933 * @name: qstr of the name
934 *
935 * Allocates a dentry. It returns %NULL if there is insufficient memory
936 * available. On a success the dentry is returned. The name passed in is
937 * copied and the copy passed in may be reused after this call.
938 */
939
940 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
941 {
942 struct dentry *dentry;
943 char *dname;
944
945 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
946 if (!dentry)
947 return NULL;
948
949 if (name->len > DNAME_INLINE_LEN-1) {
950 dname = kmalloc(name->len + 1, GFP_KERNEL);
951 if (!dname) {
952 kmem_cache_free(dentry_cache, dentry);
953 return NULL;
954 }
955 } else {
956 dname = dentry->d_iname;
957 }
958 dentry->d_name.name = dname;
959
960 dentry->d_name.len = name->len;
961 dentry->d_name.hash = name->hash;
962 memcpy(dname, name->name, name->len);
963 dname[name->len] = 0;
964
965 atomic_set(&dentry->d_count, 1);
966 dentry->d_flags = DCACHE_UNHASHED;
967 spin_lock_init(&dentry->d_lock);
968 dentry->d_inode = NULL;
969 dentry->d_parent = NULL;
970 dentry->d_sb = NULL;
971 dentry->d_op = NULL;
972 dentry->d_fsdata = NULL;
973 dentry->d_mounted = 0;
974 INIT_HLIST_NODE(&dentry->d_hash);
975 INIT_LIST_HEAD(&dentry->d_lru);
976 INIT_LIST_HEAD(&dentry->d_subdirs);
977 INIT_LIST_HEAD(&dentry->d_alias);
978
979 if (parent) {
980 dentry->d_parent = dget(parent);
981 dentry->d_sb = parent->d_sb;
982 } else {
983 INIT_LIST_HEAD(&dentry->d_u.d_child);
984 }
985
986 spin_lock(&dcache_lock);
987 if (parent)
988 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
989 spin_unlock(&dcache_lock);
990
991 this_cpu_inc(nr_dentry);
992
993 return dentry;
994 }
995 EXPORT_SYMBOL(d_alloc);
996
997 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
998 {
999 struct qstr q;
1000
1001 q.name = name;
1002 q.len = strlen(name);
1003 q.hash = full_name_hash(q.name, q.len);
1004 return d_alloc(parent, &q);
1005 }
1006 EXPORT_SYMBOL(d_alloc_name);
1007
1008 /* the caller must hold dcache_lock */
1009 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1010 {
1011 if (inode)
1012 list_add(&dentry->d_alias, &inode->i_dentry);
1013 dentry->d_inode = inode;
1014 fsnotify_d_instantiate(dentry, inode);
1015 }
1016
1017 /**
1018 * d_instantiate - fill in inode information for a dentry
1019 * @entry: dentry to complete
1020 * @inode: inode to attach to this dentry
1021 *
1022 * Fill in inode information in the entry.
1023 *
1024 * This turns negative dentries into productive full members
1025 * of society.
1026 *
1027 * NOTE! This assumes that the inode count has been incremented
1028 * (or otherwise set) by the caller to indicate that it is now
1029 * in use by the dcache.
1030 */
1031
1032 void d_instantiate(struct dentry *entry, struct inode * inode)
1033 {
1034 BUG_ON(!list_empty(&entry->d_alias));
1035 spin_lock(&dcache_lock);
1036 __d_instantiate(entry, inode);
1037 spin_unlock(&dcache_lock);
1038 security_d_instantiate(entry, inode);
1039 }
1040 EXPORT_SYMBOL(d_instantiate);
1041
1042 /**
1043 * d_instantiate_unique - instantiate a non-aliased dentry
1044 * @entry: dentry to instantiate
1045 * @inode: inode to attach to this dentry
1046 *
1047 * Fill in inode information in the entry. On success, it returns NULL.
1048 * If an unhashed alias of "entry" already exists, then we return the
1049 * aliased dentry instead and drop one reference to inode.
1050 *
1051 * Note that in order to avoid conflicts with rename() etc, the caller
1052 * had better be holding the parent directory semaphore.
1053 *
1054 * This also assumes that the inode count has been incremented
1055 * (or otherwise set) by the caller to indicate that it is now
1056 * in use by the dcache.
1057 */
1058 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1059 struct inode *inode)
1060 {
1061 struct dentry *alias;
1062 int len = entry->d_name.len;
1063 const char *name = entry->d_name.name;
1064 unsigned int hash = entry->d_name.hash;
1065
1066 if (!inode) {
1067 __d_instantiate(entry, NULL);
1068 return NULL;
1069 }
1070
1071 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1072 struct qstr *qstr = &alias->d_name;
1073
1074 if (qstr->hash != hash)
1075 continue;
1076 if (alias->d_parent != entry->d_parent)
1077 continue;
1078 if (qstr->len != len)
1079 continue;
1080 if (memcmp(qstr->name, name, len))
1081 continue;
1082 dget_locked(alias);
1083 return alias;
1084 }
1085
1086 __d_instantiate(entry, inode);
1087 return NULL;
1088 }
1089
1090 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1091 {
1092 struct dentry *result;
1093
1094 BUG_ON(!list_empty(&entry->d_alias));
1095
1096 spin_lock(&dcache_lock);
1097 result = __d_instantiate_unique(entry, inode);
1098 spin_unlock(&dcache_lock);
1099
1100 if (!result) {
1101 security_d_instantiate(entry, inode);
1102 return NULL;
1103 }
1104
1105 BUG_ON(!d_unhashed(result));
1106 iput(inode);
1107 return result;
1108 }
1109
1110 EXPORT_SYMBOL(d_instantiate_unique);
1111
1112 /**
1113 * d_alloc_root - allocate root dentry
1114 * @root_inode: inode to allocate the root for
1115 *
1116 * Allocate a root ("/") dentry for the inode given. The inode is
1117 * instantiated and returned. %NULL is returned if there is insufficient
1118 * memory or the inode passed is %NULL.
1119 */
1120
1121 struct dentry * d_alloc_root(struct inode * root_inode)
1122 {
1123 struct dentry *res = NULL;
1124
1125 if (root_inode) {
1126 static const struct qstr name = { .name = "/", .len = 1 };
1127
1128 res = d_alloc(NULL, &name);
1129 if (res) {
1130 res->d_sb = root_inode->i_sb;
1131 res->d_parent = res;
1132 d_instantiate(res, root_inode);
1133 }
1134 }
1135 return res;
1136 }
1137 EXPORT_SYMBOL(d_alloc_root);
1138
1139 static inline struct hlist_head *d_hash(struct dentry *parent,
1140 unsigned long hash)
1141 {
1142 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1143 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1144 return dentry_hashtable + (hash & D_HASHMASK);
1145 }
1146
1147 /**
1148 * d_obtain_alias - find or allocate a dentry for a given inode
1149 * @inode: inode to allocate the dentry for
1150 *
1151 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1152 * similar open by handle operations. The returned dentry may be anonymous,
1153 * or may have a full name (if the inode was already in the cache).
1154 *
1155 * When called on a directory inode, we must ensure that the inode only ever
1156 * has one dentry. If a dentry is found, that is returned instead of
1157 * allocating a new one.
1158 *
1159 * On successful return, the reference to the inode has been transferred
1160 * to the dentry. In case of an error the reference on the inode is released.
1161 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1162 * be passed in and will be the error will be propagate to the return value,
1163 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1164 */
1165 struct dentry *d_obtain_alias(struct inode *inode)
1166 {
1167 static const struct qstr anonstring = { .name = "" };
1168 struct dentry *tmp;
1169 struct dentry *res;
1170
1171 if (!inode)
1172 return ERR_PTR(-ESTALE);
1173 if (IS_ERR(inode))
1174 return ERR_CAST(inode);
1175
1176 res = d_find_alias(inode);
1177 if (res)
1178 goto out_iput;
1179
1180 tmp = d_alloc(NULL, &anonstring);
1181 if (!tmp) {
1182 res = ERR_PTR(-ENOMEM);
1183 goto out_iput;
1184 }
1185 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1186
1187 spin_lock(&dcache_lock);
1188 res = __d_find_alias(inode, 0);
1189 if (res) {
1190 spin_unlock(&dcache_lock);
1191 dput(tmp);
1192 goto out_iput;
1193 }
1194
1195 /* attach a disconnected dentry */
1196 spin_lock(&tmp->d_lock);
1197 tmp->d_sb = inode->i_sb;
1198 tmp->d_inode = inode;
1199 tmp->d_flags |= DCACHE_DISCONNECTED;
1200 tmp->d_flags &= ~DCACHE_UNHASHED;
1201 list_add(&tmp->d_alias, &inode->i_dentry);
1202 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1203 spin_unlock(&tmp->d_lock);
1204
1205 spin_unlock(&dcache_lock);
1206 return tmp;
1207
1208 out_iput:
1209 iput(inode);
1210 return res;
1211 }
1212 EXPORT_SYMBOL(d_obtain_alias);
1213
1214 /**
1215 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1216 * @inode: the inode which may have a disconnected dentry
1217 * @dentry: a negative dentry which we want to point to the inode.
1218 *
1219 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1220 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1221 * and return it, else simply d_add the inode to the dentry and return NULL.
1222 *
1223 * This is needed in the lookup routine of any filesystem that is exportable
1224 * (via knfsd) so that we can build dcache paths to directories effectively.
1225 *
1226 * If a dentry was found and moved, then it is returned. Otherwise NULL
1227 * is returned. This matches the expected return value of ->lookup.
1228 *
1229 */
1230 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1231 {
1232 struct dentry *new = NULL;
1233
1234 if (inode && S_ISDIR(inode->i_mode)) {
1235 spin_lock(&dcache_lock);
1236 new = __d_find_alias(inode, 1);
1237 if (new) {
1238 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1239 spin_unlock(&dcache_lock);
1240 security_d_instantiate(new, inode);
1241 d_move(new, dentry);
1242 iput(inode);
1243 } else {
1244 /* already taking dcache_lock, so d_add() by hand */
1245 __d_instantiate(dentry, inode);
1246 spin_unlock(&dcache_lock);
1247 security_d_instantiate(dentry, inode);
1248 d_rehash(dentry);
1249 }
1250 } else
1251 d_add(dentry, inode);
1252 return new;
1253 }
1254 EXPORT_SYMBOL(d_splice_alias);
1255
1256 /**
1257 * d_add_ci - lookup or allocate new dentry with case-exact name
1258 * @inode: the inode case-insensitive lookup has found
1259 * @dentry: the negative dentry that was passed to the parent's lookup func
1260 * @name: the case-exact name to be associated with the returned dentry
1261 *
1262 * This is to avoid filling the dcache with case-insensitive names to the
1263 * same inode, only the actual correct case is stored in the dcache for
1264 * case-insensitive filesystems.
1265 *
1266 * For a case-insensitive lookup match and if the the case-exact dentry
1267 * already exists in in the dcache, use it and return it.
1268 *
1269 * If no entry exists with the exact case name, allocate new dentry with
1270 * the exact case, and return the spliced entry.
1271 */
1272 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1273 struct qstr *name)
1274 {
1275 int error;
1276 struct dentry *found;
1277 struct dentry *new;
1278
1279 /*
1280 * First check if a dentry matching the name already exists,
1281 * if not go ahead and create it now.
1282 */
1283 found = d_hash_and_lookup(dentry->d_parent, name);
1284 if (!found) {
1285 new = d_alloc(dentry->d_parent, name);
1286 if (!new) {
1287 error = -ENOMEM;
1288 goto err_out;
1289 }
1290
1291 found = d_splice_alias(inode, new);
1292 if (found) {
1293 dput(new);
1294 return found;
1295 }
1296 return new;
1297 }
1298
1299 /*
1300 * If a matching dentry exists, and it's not negative use it.
1301 *
1302 * Decrement the reference count to balance the iget() done
1303 * earlier on.
1304 */
1305 if (found->d_inode) {
1306 if (unlikely(found->d_inode != inode)) {
1307 /* This can't happen because bad inodes are unhashed. */
1308 BUG_ON(!is_bad_inode(inode));
1309 BUG_ON(!is_bad_inode(found->d_inode));
1310 }
1311 iput(inode);
1312 return found;
1313 }
1314
1315 /*
1316 * Negative dentry: instantiate it unless the inode is a directory and
1317 * already has a dentry.
1318 */
1319 spin_lock(&dcache_lock);
1320 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1321 __d_instantiate(found, inode);
1322 spin_unlock(&dcache_lock);
1323 security_d_instantiate(found, inode);
1324 return found;
1325 }
1326
1327 /*
1328 * In case a directory already has a (disconnected) entry grab a
1329 * reference to it, move it in place and use it.
1330 */
1331 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1332 dget_locked(new);
1333 spin_unlock(&dcache_lock);
1334 security_d_instantiate(found, inode);
1335 d_move(new, found);
1336 iput(inode);
1337 dput(found);
1338 return new;
1339
1340 err_out:
1341 iput(inode);
1342 return ERR_PTR(error);
1343 }
1344 EXPORT_SYMBOL(d_add_ci);
1345
1346 /**
1347 * d_lookup - search for a dentry
1348 * @parent: parent dentry
1349 * @name: qstr of name we wish to find
1350 * Returns: dentry, or NULL
1351 *
1352 * d_lookup searches the children of the parent dentry for the name in
1353 * question. If the dentry is found its reference count is incremented and the
1354 * dentry is returned. The caller must use dput to free the entry when it has
1355 * finished using it. %NULL is returned if the dentry does not exist.
1356 */
1357 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1358 {
1359 struct dentry * dentry = NULL;
1360 unsigned long seq;
1361
1362 do {
1363 seq = read_seqbegin(&rename_lock);
1364 dentry = __d_lookup(parent, name);
1365 if (dentry)
1366 break;
1367 } while (read_seqretry(&rename_lock, seq));
1368 return dentry;
1369 }
1370 EXPORT_SYMBOL(d_lookup);
1371
1372 /*
1373 * __d_lookup - search for a dentry (racy)
1374 * @parent: parent dentry
1375 * @name: qstr of name we wish to find
1376 * Returns: dentry, or NULL
1377 *
1378 * __d_lookup is like d_lookup, however it may (rarely) return a
1379 * false-negative result due to unrelated rename activity.
1380 *
1381 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1382 * however it must be used carefully, eg. with a following d_lookup in
1383 * the case of failure.
1384 *
1385 * __d_lookup callers must be commented.
1386 */
1387 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1388 {
1389 unsigned int len = name->len;
1390 unsigned int hash = name->hash;
1391 const unsigned char *str = name->name;
1392 struct hlist_head *head = d_hash(parent,hash);
1393 struct dentry *found = NULL;
1394 struct hlist_node *node;
1395 struct dentry *dentry;
1396
1397 /*
1398 * The hash list is protected using RCU.
1399 *
1400 * Take d_lock when comparing a candidate dentry, to avoid races
1401 * with d_move().
1402 *
1403 * It is possible that concurrent renames can mess up our list
1404 * walk here and result in missing our dentry, resulting in the
1405 * false-negative result. d_lookup() protects against concurrent
1406 * renames using rename_lock seqlock.
1407 *
1408 * See Documentation/vfs/dcache-locking.txt for more details.
1409 */
1410 rcu_read_lock();
1411
1412 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1413 struct qstr *qstr;
1414
1415 if (dentry->d_name.hash != hash)
1416 continue;
1417 if (dentry->d_parent != parent)
1418 continue;
1419
1420 spin_lock(&dentry->d_lock);
1421
1422 /*
1423 * Recheck the dentry after taking the lock - d_move may have
1424 * changed things. Don't bother checking the hash because
1425 * we're about to compare the whole name anyway.
1426 */
1427 if (dentry->d_parent != parent)
1428 goto next;
1429
1430 /* non-existing due to RCU? */
1431 if (d_unhashed(dentry))
1432 goto next;
1433
1434 /*
1435 * It is safe to compare names since d_move() cannot
1436 * change the qstr (protected by d_lock).
1437 */
1438 qstr = &dentry->d_name;
1439 if (parent->d_op && parent->d_op->d_compare) {
1440 if (parent->d_op->d_compare(parent, parent->d_inode,
1441 dentry, dentry->d_inode,
1442 qstr->len, qstr->name, name))
1443 goto next;
1444 } else {
1445 if (qstr->len != len)
1446 goto next;
1447 if (memcmp(qstr->name, str, len))
1448 goto next;
1449 }
1450
1451 atomic_inc(&dentry->d_count);
1452 found = dentry;
1453 spin_unlock(&dentry->d_lock);
1454 break;
1455 next:
1456 spin_unlock(&dentry->d_lock);
1457 }
1458 rcu_read_unlock();
1459
1460 return found;
1461 }
1462
1463 /**
1464 * d_hash_and_lookup - hash the qstr then search for a dentry
1465 * @dir: Directory to search in
1466 * @name: qstr of name we wish to find
1467 *
1468 * On hash failure or on lookup failure NULL is returned.
1469 */
1470 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1471 {
1472 struct dentry *dentry = NULL;
1473
1474 /*
1475 * Check for a fs-specific hash function. Note that we must
1476 * calculate the standard hash first, as the d_op->d_hash()
1477 * routine may choose to leave the hash value unchanged.
1478 */
1479 name->hash = full_name_hash(name->name, name->len);
1480 if (dir->d_op && dir->d_op->d_hash) {
1481 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1482 goto out;
1483 }
1484 dentry = d_lookup(dir, name);
1485 out:
1486 return dentry;
1487 }
1488
1489 /**
1490 * d_validate - verify dentry provided from insecure source (deprecated)
1491 * @dentry: The dentry alleged to be valid child of @dparent
1492 * @dparent: The parent dentry (known to be valid)
1493 *
1494 * An insecure source has sent us a dentry, here we verify it and dget() it.
1495 * This is used by ncpfs in its readdir implementation.
1496 * Zero is returned in the dentry is invalid.
1497 *
1498 * This function is slow for big directories, and deprecated, do not use it.
1499 */
1500 int d_validate(struct dentry *dentry, struct dentry *dparent)
1501 {
1502 struct dentry *child;
1503
1504 spin_lock(&dcache_lock);
1505 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1506 if (dentry == child) {
1507 __dget_locked(dentry);
1508 spin_unlock(&dcache_lock);
1509 return 1;
1510 }
1511 }
1512 spin_unlock(&dcache_lock);
1513
1514 return 0;
1515 }
1516 EXPORT_SYMBOL(d_validate);
1517
1518 /*
1519 * When a file is deleted, we have two options:
1520 * - turn this dentry into a negative dentry
1521 * - unhash this dentry and free it.
1522 *
1523 * Usually, we want to just turn this into
1524 * a negative dentry, but if anybody else is
1525 * currently using the dentry or the inode
1526 * we can't do that and we fall back on removing
1527 * it from the hash queues and waiting for
1528 * it to be deleted later when it has no users
1529 */
1530
1531 /**
1532 * d_delete - delete a dentry
1533 * @dentry: The dentry to delete
1534 *
1535 * Turn the dentry into a negative dentry if possible, otherwise
1536 * remove it from the hash queues so it can be deleted later
1537 */
1538
1539 void d_delete(struct dentry * dentry)
1540 {
1541 int isdir = 0;
1542 /*
1543 * Are we the only user?
1544 */
1545 spin_lock(&dcache_lock);
1546 spin_lock(&dentry->d_lock);
1547 isdir = S_ISDIR(dentry->d_inode->i_mode);
1548 if (atomic_read(&dentry->d_count) == 1) {
1549 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1550 dentry_iput(dentry);
1551 fsnotify_nameremove(dentry, isdir);
1552 return;
1553 }
1554
1555 if (!d_unhashed(dentry))
1556 __d_drop(dentry);
1557
1558 spin_unlock(&dentry->d_lock);
1559 spin_unlock(&dcache_lock);
1560
1561 fsnotify_nameremove(dentry, isdir);
1562 }
1563 EXPORT_SYMBOL(d_delete);
1564
1565 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1566 {
1567
1568 entry->d_flags &= ~DCACHE_UNHASHED;
1569 hlist_add_head_rcu(&entry->d_hash, list);
1570 }
1571
1572 static void _d_rehash(struct dentry * entry)
1573 {
1574 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1575 }
1576
1577 /**
1578 * d_rehash - add an entry back to the hash
1579 * @entry: dentry to add to the hash
1580 *
1581 * Adds a dentry to the hash according to its name.
1582 */
1583
1584 void d_rehash(struct dentry * entry)
1585 {
1586 spin_lock(&dcache_lock);
1587 spin_lock(&entry->d_lock);
1588 _d_rehash(entry);
1589 spin_unlock(&entry->d_lock);
1590 spin_unlock(&dcache_lock);
1591 }
1592 EXPORT_SYMBOL(d_rehash);
1593
1594 /**
1595 * dentry_update_name_case - update case insensitive dentry with a new name
1596 * @dentry: dentry to be updated
1597 * @name: new name
1598 *
1599 * Update a case insensitive dentry with new case of name.
1600 *
1601 * dentry must have been returned by d_lookup with name @name. Old and new
1602 * name lengths must match (ie. no d_compare which allows mismatched name
1603 * lengths).
1604 *
1605 * Parent inode i_mutex must be held over d_lookup and into this call (to
1606 * keep renames and concurrent inserts, and readdir(2) away).
1607 */
1608 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1609 {
1610 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1611 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1612
1613 spin_lock(&dcache_lock);
1614 spin_lock(&dentry->d_lock);
1615 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1616 spin_unlock(&dentry->d_lock);
1617 spin_unlock(&dcache_lock);
1618 }
1619 EXPORT_SYMBOL(dentry_update_name_case);
1620
1621 /*
1622 * When switching names, the actual string doesn't strictly have to
1623 * be preserved in the target - because we're dropping the target
1624 * anyway. As such, we can just do a simple memcpy() to copy over
1625 * the new name before we switch.
1626 *
1627 * Note that we have to be a lot more careful about getting the hash
1628 * switched - we have to switch the hash value properly even if it
1629 * then no longer matches the actual (corrupted) string of the target.
1630 * The hash value has to match the hash queue that the dentry is on..
1631 */
1632 static void switch_names(struct dentry *dentry, struct dentry *target)
1633 {
1634 if (dname_external(target)) {
1635 if (dname_external(dentry)) {
1636 /*
1637 * Both external: swap the pointers
1638 */
1639 swap(target->d_name.name, dentry->d_name.name);
1640 } else {
1641 /*
1642 * dentry:internal, target:external. Steal target's
1643 * storage and make target internal.
1644 */
1645 memcpy(target->d_iname, dentry->d_name.name,
1646 dentry->d_name.len + 1);
1647 dentry->d_name.name = target->d_name.name;
1648 target->d_name.name = target->d_iname;
1649 }
1650 } else {
1651 if (dname_external(dentry)) {
1652 /*
1653 * dentry:external, target:internal. Give dentry's
1654 * storage to target and make dentry internal
1655 */
1656 memcpy(dentry->d_iname, target->d_name.name,
1657 target->d_name.len + 1);
1658 target->d_name.name = dentry->d_name.name;
1659 dentry->d_name.name = dentry->d_iname;
1660 } else {
1661 /*
1662 * Both are internal. Just copy target to dentry
1663 */
1664 memcpy(dentry->d_iname, target->d_name.name,
1665 target->d_name.len + 1);
1666 dentry->d_name.len = target->d_name.len;
1667 return;
1668 }
1669 }
1670 swap(dentry->d_name.len, target->d_name.len);
1671 }
1672
1673 /*
1674 * We cannibalize "target" when moving dentry on top of it,
1675 * because it's going to be thrown away anyway. We could be more
1676 * polite about it, though.
1677 *
1678 * This forceful removal will result in ugly /proc output if
1679 * somebody holds a file open that got deleted due to a rename.
1680 * We could be nicer about the deleted file, and let it show
1681 * up under the name it had before it was deleted rather than
1682 * under the original name of the file that was moved on top of it.
1683 */
1684
1685 /*
1686 * d_move_locked - move a dentry
1687 * @dentry: entry to move
1688 * @target: new dentry
1689 *
1690 * Update the dcache to reflect the move of a file name. Negative
1691 * dcache entries should not be moved in this way.
1692 */
1693 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1694 {
1695 struct hlist_head *list;
1696
1697 if (!dentry->d_inode)
1698 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1699
1700 write_seqlock(&rename_lock);
1701 /*
1702 * XXXX: do we really need to take target->d_lock?
1703 */
1704 if (target < dentry) {
1705 spin_lock(&target->d_lock);
1706 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1707 } else {
1708 spin_lock(&dentry->d_lock);
1709 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1710 }
1711
1712 /* Move the dentry to the target hash queue, if on different bucket */
1713 if (d_unhashed(dentry))
1714 goto already_unhashed;
1715
1716 hlist_del_rcu(&dentry->d_hash);
1717
1718 already_unhashed:
1719 list = d_hash(target->d_parent, target->d_name.hash);
1720 __d_rehash(dentry, list);
1721
1722 /* Unhash the target: dput() will then get rid of it */
1723 __d_drop(target);
1724
1725 list_del(&dentry->d_u.d_child);
1726 list_del(&target->d_u.d_child);
1727
1728 /* Switch the names.. */
1729 switch_names(dentry, target);
1730 swap(dentry->d_name.hash, target->d_name.hash);
1731
1732 /* ... and switch the parents */
1733 if (IS_ROOT(dentry)) {
1734 dentry->d_parent = target->d_parent;
1735 target->d_parent = target;
1736 INIT_LIST_HEAD(&target->d_u.d_child);
1737 } else {
1738 swap(dentry->d_parent, target->d_parent);
1739
1740 /* And add them back to the (new) parent lists */
1741 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1742 }
1743
1744 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1745 spin_unlock(&target->d_lock);
1746 fsnotify_d_move(dentry);
1747 spin_unlock(&dentry->d_lock);
1748 write_sequnlock(&rename_lock);
1749 }
1750
1751 /**
1752 * d_move - move a dentry
1753 * @dentry: entry to move
1754 * @target: new dentry
1755 *
1756 * Update the dcache to reflect the move of a file name. Negative
1757 * dcache entries should not be moved in this way.
1758 */
1759
1760 void d_move(struct dentry * dentry, struct dentry * target)
1761 {
1762 spin_lock(&dcache_lock);
1763 d_move_locked(dentry, target);
1764 spin_unlock(&dcache_lock);
1765 }
1766 EXPORT_SYMBOL(d_move);
1767
1768 /**
1769 * d_ancestor - search for an ancestor
1770 * @p1: ancestor dentry
1771 * @p2: child dentry
1772 *
1773 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1774 * an ancestor of p2, else NULL.
1775 */
1776 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1777 {
1778 struct dentry *p;
1779
1780 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1781 if (p->d_parent == p1)
1782 return p;
1783 }
1784 return NULL;
1785 }
1786
1787 /*
1788 * This helper attempts to cope with remotely renamed directories
1789 *
1790 * It assumes that the caller is already holding
1791 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1792 *
1793 * Note: If ever the locking in lock_rename() changes, then please
1794 * remember to update this too...
1795 */
1796 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1797 __releases(dcache_lock)
1798 {
1799 struct mutex *m1 = NULL, *m2 = NULL;
1800 struct dentry *ret;
1801
1802 /* If alias and dentry share a parent, then no extra locks required */
1803 if (alias->d_parent == dentry->d_parent)
1804 goto out_unalias;
1805
1806 /* Check for loops */
1807 ret = ERR_PTR(-ELOOP);
1808 if (d_ancestor(alias, dentry))
1809 goto out_err;
1810
1811 /* See lock_rename() */
1812 ret = ERR_PTR(-EBUSY);
1813 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1814 goto out_err;
1815 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1816 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1817 goto out_err;
1818 m2 = &alias->d_parent->d_inode->i_mutex;
1819 out_unalias:
1820 d_move_locked(alias, dentry);
1821 ret = alias;
1822 out_err:
1823 spin_unlock(&dcache_lock);
1824 if (m2)
1825 mutex_unlock(m2);
1826 if (m1)
1827 mutex_unlock(m1);
1828 return ret;
1829 }
1830
1831 /*
1832 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1833 * named dentry in place of the dentry to be replaced.
1834 */
1835 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1836 {
1837 struct dentry *dparent, *aparent;
1838
1839 switch_names(dentry, anon);
1840 swap(dentry->d_name.hash, anon->d_name.hash);
1841
1842 dparent = dentry->d_parent;
1843 aparent = anon->d_parent;
1844
1845 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1846 list_del(&dentry->d_u.d_child);
1847 if (!IS_ROOT(dentry))
1848 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1849 else
1850 INIT_LIST_HEAD(&dentry->d_u.d_child);
1851
1852 anon->d_parent = (dparent == dentry) ? anon : dparent;
1853 list_del(&anon->d_u.d_child);
1854 if (!IS_ROOT(anon))
1855 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1856 else
1857 INIT_LIST_HEAD(&anon->d_u.d_child);
1858
1859 anon->d_flags &= ~DCACHE_DISCONNECTED;
1860 }
1861
1862 /**
1863 * d_materialise_unique - introduce an inode into the tree
1864 * @dentry: candidate dentry
1865 * @inode: inode to bind to the dentry, to which aliases may be attached
1866 *
1867 * Introduces an dentry into the tree, substituting an extant disconnected
1868 * root directory alias in its place if there is one
1869 */
1870 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1871 {
1872 struct dentry *actual;
1873
1874 BUG_ON(!d_unhashed(dentry));
1875
1876 spin_lock(&dcache_lock);
1877
1878 if (!inode) {
1879 actual = dentry;
1880 __d_instantiate(dentry, NULL);
1881 goto found_lock;
1882 }
1883
1884 if (S_ISDIR(inode->i_mode)) {
1885 struct dentry *alias;
1886
1887 /* Does an aliased dentry already exist? */
1888 alias = __d_find_alias(inode, 0);
1889 if (alias) {
1890 actual = alias;
1891 /* Is this an anonymous mountpoint that we could splice
1892 * into our tree? */
1893 if (IS_ROOT(alias)) {
1894 spin_lock(&alias->d_lock);
1895 __d_materialise_dentry(dentry, alias);
1896 __d_drop(alias);
1897 goto found;
1898 }
1899 /* Nope, but we must(!) avoid directory aliasing */
1900 actual = __d_unalias(dentry, alias);
1901 if (IS_ERR(actual))
1902 dput(alias);
1903 goto out_nolock;
1904 }
1905 }
1906
1907 /* Add a unique reference */
1908 actual = __d_instantiate_unique(dentry, inode);
1909 if (!actual)
1910 actual = dentry;
1911 else if (unlikely(!d_unhashed(actual)))
1912 goto shouldnt_be_hashed;
1913
1914 found_lock:
1915 spin_lock(&actual->d_lock);
1916 found:
1917 _d_rehash(actual);
1918 spin_unlock(&actual->d_lock);
1919 spin_unlock(&dcache_lock);
1920 out_nolock:
1921 if (actual == dentry) {
1922 security_d_instantiate(dentry, inode);
1923 return NULL;
1924 }
1925
1926 iput(inode);
1927 return actual;
1928
1929 shouldnt_be_hashed:
1930 spin_unlock(&dcache_lock);
1931 BUG();
1932 }
1933 EXPORT_SYMBOL_GPL(d_materialise_unique);
1934
1935 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1936 {
1937 *buflen -= namelen;
1938 if (*buflen < 0)
1939 return -ENAMETOOLONG;
1940 *buffer -= namelen;
1941 memcpy(*buffer, str, namelen);
1942 return 0;
1943 }
1944
1945 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1946 {
1947 return prepend(buffer, buflen, name->name, name->len);
1948 }
1949
1950 /**
1951 * Prepend path string to a buffer
1952 *
1953 * @path: the dentry/vfsmount to report
1954 * @root: root vfsmnt/dentry (may be modified by this function)
1955 * @buffer: pointer to the end of the buffer
1956 * @buflen: pointer to buffer length
1957 *
1958 * Caller holds the dcache_lock.
1959 *
1960 * If path is not reachable from the supplied root, then the value of
1961 * root is changed (without modifying refcounts).
1962 */
1963 static int prepend_path(const struct path *path, struct path *root,
1964 char **buffer, int *buflen)
1965 {
1966 struct dentry *dentry = path->dentry;
1967 struct vfsmount *vfsmnt = path->mnt;
1968 bool slash = false;
1969 int error = 0;
1970
1971 br_read_lock(vfsmount_lock);
1972 while (dentry != root->dentry || vfsmnt != root->mnt) {
1973 struct dentry * parent;
1974
1975 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1976 /* Global root? */
1977 if (vfsmnt->mnt_parent == vfsmnt) {
1978 goto global_root;
1979 }
1980 dentry = vfsmnt->mnt_mountpoint;
1981 vfsmnt = vfsmnt->mnt_parent;
1982 continue;
1983 }
1984 parent = dentry->d_parent;
1985 prefetch(parent);
1986 error = prepend_name(buffer, buflen, &dentry->d_name);
1987 if (!error)
1988 error = prepend(buffer, buflen, "/", 1);
1989 if (error)
1990 break;
1991
1992 slash = true;
1993 dentry = parent;
1994 }
1995
1996 out:
1997 if (!error && !slash)
1998 error = prepend(buffer, buflen, "/", 1);
1999
2000 br_read_unlock(vfsmount_lock);
2001 return error;
2002
2003 global_root:
2004 /*
2005 * Filesystems needing to implement special "root names"
2006 * should do so with ->d_dname()
2007 */
2008 if (IS_ROOT(dentry) &&
2009 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2010 WARN(1, "Root dentry has weird name <%.*s>\n",
2011 (int) dentry->d_name.len, dentry->d_name.name);
2012 }
2013 root->mnt = vfsmnt;
2014 root->dentry = dentry;
2015 goto out;
2016 }
2017
2018 /**
2019 * __d_path - return the path of a dentry
2020 * @path: the dentry/vfsmount to report
2021 * @root: root vfsmnt/dentry (may be modified by this function)
2022 * @buf: buffer to return value in
2023 * @buflen: buffer length
2024 *
2025 * Convert a dentry into an ASCII path name.
2026 *
2027 * Returns a pointer into the buffer or an error code if the
2028 * path was too long.
2029 *
2030 * "buflen" should be positive.
2031 *
2032 * If path is not reachable from the supplied root, then the value of
2033 * root is changed (without modifying refcounts).
2034 */
2035 char *__d_path(const struct path *path, struct path *root,
2036 char *buf, int buflen)
2037 {
2038 char *res = buf + buflen;
2039 int error;
2040
2041 prepend(&res, &buflen, "\0", 1);
2042 spin_lock(&dcache_lock);
2043 error = prepend_path(path, root, &res, &buflen);
2044 spin_unlock(&dcache_lock);
2045
2046 if (error)
2047 return ERR_PTR(error);
2048 return res;
2049 }
2050
2051 /*
2052 * same as __d_path but appends "(deleted)" for unlinked files.
2053 */
2054 static int path_with_deleted(const struct path *path, struct path *root,
2055 char **buf, int *buflen)
2056 {
2057 prepend(buf, buflen, "\0", 1);
2058 if (d_unlinked(path->dentry)) {
2059 int error = prepend(buf, buflen, " (deleted)", 10);
2060 if (error)
2061 return error;
2062 }
2063
2064 return prepend_path(path, root, buf, buflen);
2065 }
2066
2067 static int prepend_unreachable(char **buffer, int *buflen)
2068 {
2069 return prepend(buffer, buflen, "(unreachable)", 13);
2070 }
2071
2072 /**
2073 * d_path - return the path of a dentry
2074 * @path: path to report
2075 * @buf: buffer to return value in
2076 * @buflen: buffer length
2077 *
2078 * Convert a dentry into an ASCII path name. If the entry has been deleted
2079 * the string " (deleted)" is appended. Note that this is ambiguous.
2080 *
2081 * Returns a pointer into the buffer or an error code if the path was
2082 * too long. Note: Callers should use the returned pointer, not the passed
2083 * in buffer, to use the name! The implementation often starts at an offset
2084 * into the buffer, and may leave 0 bytes at the start.
2085 *
2086 * "buflen" should be positive.
2087 */
2088 char *d_path(const struct path *path, char *buf, int buflen)
2089 {
2090 char *res = buf + buflen;
2091 struct path root;
2092 struct path tmp;
2093 int error;
2094
2095 /*
2096 * We have various synthetic filesystems that never get mounted. On
2097 * these filesystems dentries are never used for lookup purposes, and
2098 * thus don't need to be hashed. They also don't need a name until a
2099 * user wants to identify the object in /proc/pid/fd/. The little hack
2100 * below allows us to generate a name for these objects on demand:
2101 */
2102 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2103 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2104
2105 get_fs_root(current->fs, &root);
2106 spin_lock(&dcache_lock);
2107 tmp = root;
2108 error = path_with_deleted(path, &tmp, &res, &buflen);
2109 if (error)
2110 res = ERR_PTR(error);
2111 spin_unlock(&dcache_lock);
2112 path_put(&root);
2113 return res;
2114 }
2115 EXPORT_SYMBOL(d_path);
2116
2117 /**
2118 * d_path_with_unreachable - return the path of a dentry
2119 * @path: path to report
2120 * @buf: buffer to return value in
2121 * @buflen: buffer length
2122 *
2123 * The difference from d_path() is that this prepends "(unreachable)"
2124 * to paths which are unreachable from the current process' root.
2125 */
2126 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2127 {
2128 char *res = buf + buflen;
2129 struct path root;
2130 struct path tmp;
2131 int error;
2132
2133 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2134 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2135
2136 get_fs_root(current->fs, &root);
2137 spin_lock(&dcache_lock);
2138 tmp = root;
2139 error = path_with_deleted(path, &tmp, &res, &buflen);
2140 if (!error && !path_equal(&tmp, &root))
2141 error = prepend_unreachable(&res, &buflen);
2142 spin_unlock(&dcache_lock);
2143 path_put(&root);
2144 if (error)
2145 res = ERR_PTR(error);
2146
2147 return res;
2148 }
2149
2150 /*
2151 * Helper function for dentry_operations.d_dname() members
2152 */
2153 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2154 const char *fmt, ...)
2155 {
2156 va_list args;
2157 char temp[64];
2158 int sz;
2159
2160 va_start(args, fmt);
2161 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2162 va_end(args);
2163
2164 if (sz > sizeof(temp) || sz > buflen)
2165 return ERR_PTR(-ENAMETOOLONG);
2166
2167 buffer += buflen - sz;
2168 return memcpy(buffer, temp, sz);
2169 }
2170
2171 /*
2172 * Write full pathname from the root of the filesystem into the buffer.
2173 */
2174 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2175 {
2176 char *end = buf + buflen;
2177 char *retval;
2178
2179 prepend(&end, &buflen, "\0", 1);
2180 if (buflen < 1)
2181 goto Elong;
2182 /* Get '/' right */
2183 retval = end-1;
2184 *retval = '/';
2185
2186 while (!IS_ROOT(dentry)) {
2187 struct dentry *parent = dentry->d_parent;
2188
2189 prefetch(parent);
2190 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2191 (prepend(&end, &buflen, "/", 1) != 0))
2192 goto Elong;
2193
2194 retval = end;
2195 dentry = parent;
2196 }
2197 return retval;
2198 Elong:
2199 return ERR_PTR(-ENAMETOOLONG);
2200 }
2201
2202 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2203 {
2204 char *retval;
2205
2206 spin_lock(&dcache_lock);
2207 retval = __dentry_path(dentry, buf, buflen);
2208 spin_unlock(&dcache_lock);
2209
2210 return retval;
2211 }
2212 EXPORT_SYMBOL(dentry_path_raw);
2213
2214 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2215 {
2216 char *p = NULL;
2217 char *retval;
2218
2219 spin_lock(&dcache_lock);
2220 if (d_unlinked(dentry)) {
2221 p = buf + buflen;
2222 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2223 goto Elong;
2224 buflen++;
2225 }
2226 retval = __dentry_path(dentry, buf, buflen);
2227 spin_unlock(&dcache_lock);
2228 if (!IS_ERR(retval) && p)
2229 *p = '/'; /* restore '/' overriden with '\0' */
2230 return retval;
2231 Elong:
2232 spin_unlock(&dcache_lock);
2233 return ERR_PTR(-ENAMETOOLONG);
2234 }
2235
2236 /*
2237 * NOTE! The user-level library version returns a
2238 * character pointer. The kernel system call just
2239 * returns the length of the buffer filled (which
2240 * includes the ending '\0' character), or a negative
2241 * error value. So libc would do something like
2242 *
2243 * char *getcwd(char * buf, size_t size)
2244 * {
2245 * int retval;
2246 *
2247 * retval = sys_getcwd(buf, size);
2248 * if (retval >= 0)
2249 * return buf;
2250 * errno = -retval;
2251 * return NULL;
2252 * }
2253 */
2254 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2255 {
2256 int error;
2257 struct path pwd, root;
2258 char *page = (char *) __get_free_page(GFP_USER);
2259
2260 if (!page)
2261 return -ENOMEM;
2262
2263 get_fs_root_and_pwd(current->fs, &root, &pwd);
2264
2265 error = -ENOENT;
2266 spin_lock(&dcache_lock);
2267 if (!d_unlinked(pwd.dentry)) {
2268 unsigned long len;
2269 struct path tmp = root;
2270 char *cwd = page + PAGE_SIZE;
2271 int buflen = PAGE_SIZE;
2272
2273 prepend(&cwd, &buflen, "\0", 1);
2274 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2275 spin_unlock(&dcache_lock);
2276
2277 if (error)
2278 goto out;
2279
2280 /* Unreachable from current root */
2281 if (!path_equal(&tmp, &root)) {
2282 error = prepend_unreachable(&cwd, &buflen);
2283 if (error)
2284 goto out;
2285 }
2286
2287 error = -ERANGE;
2288 len = PAGE_SIZE + page - cwd;
2289 if (len <= size) {
2290 error = len;
2291 if (copy_to_user(buf, cwd, len))
2292 error = -EFAULT;
2293 }
2294 } else
2295 spin_unlock(&dcache_lock);
2296
2297 out:
2298 path_put(&pwd);
2299 path_put(&root);
2300 free_page((unsigned long) page);
2301 return error;
2302 }
2303
2304 /*
2305 * Test whether new_dentry is a subdirectory of old_dentry.
2306 *
2307 * Trivially implemented using the dcache structure
2308 */
2309
2310 /**
2311 * is_subdir - is new dentry a subdirectory of old_dentry
2312 * @new_dentry: new dentry
2313 * @old_dentry: old dentry
2314 *
2315 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2316 * Returns 0 otherwise.
2317 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2318 */
2319
2320 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2321 {
2322 int result;
2323 unsigned long seq;
2324
2325 if (new_dentry == old_dentry)
2326 return 1;
2327
2328 /*
2329 * Need rcu_readlock to protect against the d_parent trashing
2330 * due to d_move
2331 */
2332 rcu_read_lock();
2333 do {
2334 /* for restarting inner loop in case of seq retry */
2335 seq = read_seqbegin(&rename_lock);
2336 if (d_ancestor(old_dentry, new_dentry))
2337 result = 1;
2338 else
2339 result = 0;
2340 } while (read_seqretry(&rename_lock, seq));
2341 rcu_read_unlock();
2342
2343 return result;
2344 }
2345
2346 int path_is_under(struct path *path1, struct path *path2)
2347 {
2348 struct vfsmount *mnt = path1->mnt;
2349 struct dentry *dentry = path1->dentry;
2350 int res;
2351
2352 br_read_lock(vfsmount_lock);
2353 if (mnt != path2->mnt) {
2354 for (;;) {
2355 if (mnt->mnt_parent == mnt) {
2356 br_read_unlock(vfsmount_lock);
2357 return 0;
2358 }
2359 if (mnt->mnt_parent == path2->mnt)
2360 break;
2361 mnt = mnt->mnt_parent;
2362 }
2363 dentry = mnt->mnt_mountpoint;
2364 }
2365 res = is_subdir(dentry, path2->dentry);
2366 br_read_unlock(vfsmount_lock);
2367 return res;
2368 }
2369 EXPORT_SYMBOL(path_is_under);
2370
2371 void d_genocide(struct dentry *root)
2372 {
2373 struct dentry *this_parent = root;
2374 struct list_head *next;
2375
2376 spin_lock(&dcache_lock);
2377 repeat:
2378 next = this_parent->d_subdirs.next;
2379 resume:
2380 while (next != &this_parent->d_subdirs) {
2381 struct list_head *tmp = next;
2382 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2383 next = tmp->next;
2384 if (d_unhashed(dentry)||!dentry->d_inode)
2385 continue;
2386 if (!list_empty(&dentry->d_subdirs)) {
2387 this_parent = dentry;
2388 goto repeat;
2389 }
2390 atomic_dec(&dentry->d_count);
2391 }
2392 if (this_parent != root) {
2393 next = this_parent->d_u.d_child.next;
2394 atomic_dec(&this_parent->d_count);
2395 this_parent = this_parent->d_parent;
2396 goto resume;
2397 }
2398 spin_unlock(&dcache_lock);
2399 }
2400
2401 /**
2402 * find_inode_number - check for dentry with name
2403 * @dir: directory to check
2404 * @name: Name to find.
2405 *
2406 * Check whether a dentry already exists for the given name,
2407 * and return the inode number if it has an inode. Otherwise
2408 * 0 is returned.
2409 *
2410 * This routine is used to post-process directory listings for
2411 * filesystems using synthetic inode numbers, and is necessary
2412 * to keep getcwd() working.
2413 */
2414
2415 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2416 {
2417 struct dentry * dentry;
2418 ino_t ino = 0;
2419
2420 dentry = d_hash_and_lookup(dir, name);
2421 if (dentry) {
2422 if (dentry->d_inode)
2423 ino = dentry->d_inode->i_ino;
2424 dput(dentry);
2425 }
2426 return ino;
2427 }
2428 EXPORT_SYMBOL(find_inode_number);
2429
2430 static __initdata unsigned long dhash_entries;
2431 static int __init set_dhash_entries(char *str)
2432 {
2433 if (!str)
2434 return 0;
2435 dhash_entries = simple_strtoul(str, &str, 0);
2436 return 1;
2437 }
2438 __setup("dhash_entries=", set_dhash_entries);
2439
2440 static void __init dcache_init_early(void)
2441 {
2442 int loop;
2443
2444 /* If hashes are distributed across NUMA nodes, defer
2445 * hash allocation until vmalloc space is available.
2446 */
2447 if (hashdist)
2448 return;
2449
2450 dentry_hashtable =
2451 alloc_large_system_hash("Dentry cache",
2452 sizeof(struct hlist_head),
2453 dhash_entries,
2454 13,
2455 HASH_EARLY,
2456 &d_hash_shift,
2457 &d_hash_mask,
2458 0);
2459
2460 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2461 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2462 }
2463
2464 static void __init dcache_init(void)
2465 {
2466 int loop;
2467
2468 /*
2469 * A constructor could be added for stable state like the lists,
2470 * but it is probably not worth it because of the cache nature
2471 * of the dcache.
2472 */
2473 dentry_cache = KMEM_CACHE(dentry,
2474 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2475
2476 register_shrinker(&dcache_shrinker);
2477
2478 /* Hash may have been set up in dcache_init_early */
2479 if (!hashdist)
2480 return;
2481
2482 dentry_hashtable =
2483 alloc_large_system_hash("Dentry cache",
2484 sizeof(struct hlist_head),
2485 dhash_entries,
2486 13,
2487 0,
2488 &d_hash_shift,
2489 &d_hash_mask,
2490 0);
2491
2492 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2493 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2494 }
2495
2496 /* SLAB cache for __getname() consumers */
2497 struct kmem_cache *names_cachep __read_mostly;
2498 EXPORT_SYMBOL(names_cachep);
2499
2500 EXPORT_SYMBOL(d_genocide);
2501
2502 void __init vfs_caches_init_early(void)
2503 {
2504 dcache_init_early();
2505 inode_init_early();
2506 }
2507
2508 void __init vfs_caches_init(unsigned long mempages)
2509 {
2510 unsigned long reserve;
2511
2512 /* Base hash sizes on available memory, with a reserve equal to
2513 150% of current kernel size */
2514
2515 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2516 mempages -= reserve;
2517
2518 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2519 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2520
2521 dcache_init();
2522 inode_init();
2523 files_init(mempages);
2524 mnt_init();
2525 bdev_cache_init();
2526 chrdev_init();
2527 }
This page took 0.143105 seconds and 6 git commands to generate.