5949947b060a839327f9b7ff27a915d30e6e7894
[deliverable/linux.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39
40 /*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44 #define DIO_PAGES 64
45
46 /*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 */
57
58 struct dio {
59 /* BIO submission state */
60 struct bio *bio; /* bio under assembly */
61 struct inode *inode;
62 int rw;
63 loff_t i_size; /* i_size when submitted */
64 int flags; /* doesn't change */
65 unsigned blkbits; /* doesn't change */
66 unsigned blkfactor; /* When we're using an alignment which
67 is finer than the filesystem's soft
68 blocksize, this specifies how much
69 finer. blkfactor=2 means 1/4-block
70 alignment. Does not change */
71 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
72 been performed at the start of a
73 write */
74 int pages_in_io; /* approximate total IO pages */
75 size_t size; /* total request size (doesn't change)*/
76 sector_t block_in_file; /* Current offset into the underlying
77 file in dio_block units. */
78 unsigned blocks_available; /* At block_in_file. changes */
79 sector_t final_block_in_request;/* doesn't change */
80 unsigned first_block_in_page; /* doesn't change, Used only once */
81 int boundary; /* prev block is at a boundary */
82 int reap_counter; /* rate limit reaping */
83 get_block_t *get_block; /* block mapping function */
84 dio_iodone_t *end_io; /* IO completion function */
85 dio_submit_t *submit_io; /* IO submition function */
86 loff_t logical_offset_in_bio; /* current first logical block in bio */
87 sector_t final_block_in_bio; /* current final block in bio + 1 */
88 sector_t next_block_for_io; /* next block to be put under IO,
89 in dio_blocks units */
90 struct buffer_head map_bh; /* last get_block() result */
91
92 /*
93 * Deferred addition of a page to the dio. These variables are
94 * private to dio_send_cur_page(), submit_page_section() and
95 * dio_bio_add_page().
96 */
97 struct page *cur_page; /* The page */
98 unsigned cur_page_offset; /* Offset into it, in bytes */
99 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
100 sector_t cur_page_block; /* Where it starts */
101 loff_t cur_page_fs_offset; /* Offset in file */
102
103 /* BIO completion state */
104 spinlock_t bio_lock; /* protects BIO fields below */
105 unsigned long refcount; /* direct_io_worker() and bios */
106 struct bio *bio_list; /* singly linked via bi_private */
107 struct task_struct *waiter; /* waiting task (NULL if none) */
108
109 /* AIO related stuff */
110 struct kiocb *iocb; /* kiocb */
111 int is_async; /* is IO async ? */
112 int io_error; /* IO error in completion path */
113 ssize_t result; /* IO result */
114
115 /*
116 * Page fetching state. These variables belong to dio_refill_pages().
117 */
118 int curr_page; /* changes */
119 int total_pages; /* doesn't change */
120 unsigned long curr_user_address;/* changes */
121
122 /*
123 * Page queue. These variables belong to dio_refill_pages() and
124 * dio_get_page().
125 */
126 unsigned head; /* next page to process */
127 unsigned tail; /* last valid page + 1 */
128 int page_errors; /* errno from get_user_pages() */
129
130 /*
131 * pages[] (and any fields placed after it) are not zeroed out at
132 * allocation time. Don't add new fields after pages[] unless you
133 * wish that they not be zeroed.
134 */
135 struct page *pages[DIO_PAGES]; /* page buffer */
136 };
137
138 /*
139 * How many pages are in the queue?
140 */
141 static inline unsigned dio_pages_present(struct dio *dio)
142 {
143 return dio->tail - dio->head;
144 }
145
146 /*
147 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
148 */
149 static int dio_refill_pages(struct dio *dio)
150 {
151 int ret;
152 int nr_pages;
153
154 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155 ret = get_user_pages_fast(
156 dio->curr_user_address, /* Where from? */
157 nr_pages, /* How many pages? */
158 dio->rw == READ, /* Write to memory? */
159 &dio->pages[0]); /* Put results here */
160
161 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162 struct page *page = ZERO_PAGE(0);
163 /*
164 * A memory fault, but the filesystem has some outstanding
165 * mapped blocks. We need to use those blocks up to avoid
166 * leaking stale data in the file.
167 */
168 if (dio->page_errors == 0)
169 dio->page_errors = ret;
170 page_cache_get(page);
171 dio->pages[0] = page;
172 dio->head = 0;
173 dio->tail = 1;
174 ret = 0;
175 goto out;
176 }
177
178 if (ret >= 0) {
179 dio->curr_user_address += ret * PAGE_SIZE;
180 dio->curr_page += ret;
181 dio->head = 0;
182 dio->tail = ret;
183 ret = 0;
184 }
185 out:
186 return ret;
187 }
188
189 /*
190 * Get another userspace page. Returns an ERR_PTR on error. Pages are
191 * buffered inside the dio so that we can call get_user_pages() against a
192 * decent number of pages, less frequently. To provide nicer use of the
193 * L1 cache.
194 */
195 static struct page *dio_get_page(struct dio *dio)
196 {
197 if (dio_pages_present(dio) == 0) {
198 int ret;
199
200 ret = dio_refill_pages(dio);
201 if (ret)
202 return ERR_PTR(ret);
203 BUG_ON(dio_pages_present(dio) == 0);
204 }
205 return dio->pages[dio->head++];
206 }
207
208 /**
209 * dio_complete() - called when all DIO BIO I/O has been completed
210 * @offset: the byte offset in the file of the completed operation
211 *
212 * This releases locks as dictated by the locking type, lets interested parties
213 * know that a DIO operation has completed, and calculates the resulting return
214 * code for the operation.
215 *
216 * It lets the filesystem know if it registered an interest earlier via
217 * get_block. Pass the private field of the map buffer_head so that
218 * filesystems can use it to hold additional state between get_block calls and
219 * dio_complete.
220 */
221 static int dio_complete(struct dio *dio, loff_t offset, int ret)
222 {
223 ssize_t transferred = 0;
224
225 /*
226 * AIO submission can race with bio completion to get here while
227 * expecting to have the last io completed by bio completion.
228 * In that case -EIOCBQUEUED is in fact not an error we want
229 * to preserve through this call.
230 */
231 if (ret == -EIOCBQUEUED)
232 ret = 0;
233
234 if (dio->result) {
235 transferred = dio->result;
236
237 /* Check for short read case */
238 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239 transferred = dio->i_size - offset;
240 }
241
242 if (dio->end_io && dio->result)
243 dio->end_io(dio->iocb, offset, transferred,
244 dio->map_bh.b_private);
245
246 if (dio->flags & DIO_LOCKING)
247 /* lockdep: non-owner release */
248 up_read_non_owner(&dio->inode->i_alloc_sem);
249
250 if (ret == 0)
251 ret = dio->page_errors;
252 if (ret == 0)
253 ret = dio->io_error;
254 if (ret == 0)
255 ret = transferred;
256
257 return ret;
258 }
259
260 static int dio_bio_complete(struct dio *dio, struct bio *bio);
261 /*
262 * Asynchronous IO callback.
263 */
264 static void dio_bio_end_aio(struct bio *bio, int error)
265 {
266 struct dio *dio = bio->bi_private;
267 unsigned long remaining;
268 unsigned long flags;
269
270 /* cleanup the bio */
271 dio_bio_complete(dio, bio);
272
273 spin_lock_irqsave(&dio->bio_lock, flags);
274 remaining = --dio->refcount;
275 if (remaining == 1 && dio->waiter)
276 wake_up_process(dio->waiter);
277 spin_unlock_irqrestore(&dio->bio_lock, flags);
278
279 if (remaining == 0) {
280 int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
281 aio_complete(dio->iocb, ret, 0);
282 kfree(dio);
283 }
284 }
285
286 /*
287 * The BIO completion handler simply queues the BIO up for the process-context
288 * handler.
289 *
290 * During I/O bi_private points at the dio. After I/O, bi_private is used to
291 * implement a singly-linked list of completed BIOs, at dio->bio_list.
292 */
293 static void dio_bio_end_io(struct bio *bio, int error)
294 {
295 struct dio *dio = bio->bi_private;
296 unsigned long flags;
297
298 spin_lock_irqsave(&dio->bio_lock, flags);
299 bio->bi_private = dio->bio_list;
300 dio->bio_list = bio;
301 if (--dio->refcount == 1 && dio->waiter)
302 wake_up_process(dio->waiter);
303 spin_unlock_irqrestore(&dio->bio_lock, flags);
304 }
305
306 /**
307 * dio_end_io - handle the end io action for the given bio
308 * @bio: The direct io bio thats being completed
309 * @error: Error if there was one
310 *
311 * This is meant to be called by any filesystem that uses their own dio_submit_t
312 * so that the DIO specific endio actions are dealt with after the filesystem
313 * has done it's completion work.
314 */
315 void dio_end_io(struct bio *bio, int error)
316 {
317 struct dio *dio = bio->bi_private;
318
319 if (dio->is_async)
320 dio_bio_end_aio(bio, error);
321 else
322 dio_bio_end_io(bio, error);
323 }
324 EXPORT_SYMBOL_GPL(dio_end_io);
325
326 static int
327 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
328 sector_t first_sector, int nr_vecs)
329 {
330 struct bio *bio;
331
332 bio = bio_alloc(GFP_KERNEL, nr_vecs);
333
334 bio->bi_bdev = bdev;
335 bio->bi_sector = first_sector;
336 if (dio->is_async)
337 bio->bi_end_io = dio_bio_end_aio;
338 else
339 bio->bi_end_io = dio_bio_end_io;
340
341 dio->bio = bio;
342 dio->logical_offset_in_bio = dio->cur_page_fs_offset;
343 return 0;
344 }
345
346 /*
347 * In the AIO read case we speculatively dirty the pages before starting IO.
348 * During IO completion, any of these pages which happen to have been written
349 * back will be redirtied by bio_check_pages_dirty().
350 *
351 * bios hold a dio reference between submit_bio and ->end_io.
352 */
353 static void dio_bio_submit(struct dio *dio)
354 {
355 struct bio *bio = dio->bio;
356 unsigned long flags;
357
358 bio->bi_private = dio;
359
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 dio->refcount++;
362 spin_unlock_irqrestore(&dio->bio_lock, flags);
363
364 if (dio->is_async && dio->rw == READ)
365 bio_set_pages_dirty(bio);
366
367 if (dio->submit_io)
368 dio->submit_io(dio->rw, bio, dio->inode,
369 dio->logical_offset_in_bio);
370 else
371 submit_bio(dio->rw, bio);
372
373 dio->bio = NULL;
374 dio->boundary = 0;
375 dio->logical_offset_in_bio = 0;
376 }
377
378 /*
379 * Release any resources in case of a failure
380 */
381 static void dio_cleanup(struct dio *dio)
382 {
383 while (dio_pages_present(dio))
384 page_cache_release(dio_get_page(dio));
385 }
386
387 /*
388 * Wait for the next BIO to complete. Remove it and return it. NULL is
389 * returned once all BIOs have been completed. This must only be called once
390 * all bios have been issued so that dio->refcount can only decrease. This
391 * requires that that the caller hold a reference on the dio.
392 */
393 static struct bio *dio_await_one(struct dio *dio)
394 {
395 unsigned long flags;
396 struct bio *bio = NULL;
397
398 spin_lock_irqsave(&dio->bio_lock, flags);
399
400 /*
401 * Wait as long as the list is empty and there are bios in flight. bio
402 * completion drops the count, maybe adds to the list, and wakes while
403 * holding the bio_lock so we don't need set_current_state()'s barrier
404 * and can call it after testing our condition.
405 */
406 while (dio->refcount > 1 && dio->bio_list == NULL) {
407 __set_current_state(TASK_UNINTERRUPTIBLE);
408 dio->waiter = current;
409 spin_unlock_irqrestore(&dio->bio_lock, flags);
410 io_schedule();
411 /* wake up sets us TASK_RUNNING */
412 spin_lock_irqsave(&dio->bio_lock, flags);
413 dio->waiter = NULL;
414 }
415 if (dio->bio_list) {
416 bio = dio->bio_list;
417 dio->bio_list = bio->bi_private;
418 }
419 spin_unlock_irqrestore(&dio->bio_lock, flags);
420 return bio;
421 }
422
423 /*
424 * Process one completed BIO. No locks are held.
425 */
426 static int dio_bio_complete(struct dio *dio, struct bio *bio)
427 {
428 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
429 struct bio_vec *bvec = bio->bi_io_vec;
430 int page_no;
431
432 if (!uptodate)
433 dio->io_error = -EIO;
434
435 if (dio->is_async && dio->rw == READ) {
436 bio_check_pages_dirty(bio); /* transfers ownership */
437 } else {
438 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
439 struct page *page = bvec[page_no].bv_page;
440
441 if (dio->rw == READ && !PageCompound(page))
442 set_page_dirty_lock(page);
443 page_cache_release(page);
444 }
445 bio_put(bio);
446 }
447 return uptodate ? 0 : -EIO;
448 }
449
450 /*
451 * Wait on and process all in-flight BIOs. This must only be called once
452 * all bios have been issued so that the refcount can only decrease.
453 * This just waits for all bios to make it through dio_bio_complete. IO
454 * errors are propagated through dio->io_error and should be propagated via
455 * dio_complete().
456 */
457 static void dio_await_completion(struct dio *dio)
458 {
459 struct bio *bio;
460 do {
461 bio = dio_await_one(dio);
462 if (bio)
463 dio_bio_complete(dio, bio);
464 } while (bio);
465 }
466
467 /*
468 * A really large O_DIRECT read or write can generate a lot of BIOs. So
469 * to keep the memory consumption sane we periodically reap any completed BIOs
470 * during the BIO generation phase.
471 *
472 * This also helps to limit the peak amount of pinned userspace memory.
473 */
474 static int dio_bio_reap(struct dio *dio)
475 {
476 int ret = 0;
477
478 if (dio->reap_counter++ >= 64) {
479 while (dio->bio_list) {
480 unsigned long flags;
481 struct bio *bio;
482 int ret2;
483
484 spin_lock_irqsave(&dio->bio_lock, flags);
485 bio = dio->bio_list;
486 dio->bio_list = bio->bi_private;
487 spin_unlock_irqrestore(&dio->bio_lock, flags);
488 ret2 = dio_bio_complete(dio, bio);
489 if (ret == 0)
490 ret = ret2;
491 }
492 dio->reap_counter = 0;
493 }
494 return ret;
495 }
496
497 /*
498 * Call into the fs to map some more disk blocks. We record the current number
499 * of available blocks at dio->blocks_available. These are in units of the
500 * fs blocksize, (1 << inode->i_blkbits).
501 *
502 * The fs is allowed to map lots of blocks at once. If it wants to do that,
503 * it uses the passed inode-relative block number as the file offset, as usual.
504 *
505 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
506 * has remaining to do. The fs should not map more than this number of blocks.
507 *
508 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
509 * indicate how much contiguous disk space has been made available at
510 * bh->b_blocknr.
511 *
512 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
513 * This isn't very efficient...
514 *
515 * In the case of filesystem holes: the fs may return an arbitrarily-large
516 * hole by returning an appropriate value in b_size and by clearing
517 * buffer_mapped(). However the direct-io code will only process holes one
518 * block at a time - it will repeatedly call get_block() as it walks the hole.
519 */
520 static int get_more_blocks(struct dio *dio)
521 {
522 int ret;
523 struct buffer_head *map_bh = &dio->map_bh;
524 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
525 unsigned long fs_count; /* Number of filesystem-sized blocks */
526 unsigned long dio_count;/* Number of dio_block-sized blocks */
527 unsigned long blkmask;
528 int create;
529
530 /*
531 * If there was a memory error and we've overwritten all the
532 * mapped blocks then we can now return that memory error
533 */
534 ret = dio->page_errors;
535 if (ret == 0) {
536 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
537 fs_startblk = dio->block_in_file >> dio->blkfactor;
538 dio_count = dio->final_block_in_request - dio->block_in_file;
539 fs_count = dio_count >> dio->blkfactor;
540 blkmask = (1 << dio->blkfactor) - 1;
541 if (dio_count & blkmask)
542 fs_count++;
543
544 map_bh->b_state = 0;
545 map_bh->b_size = fs_count << dio->inode->i_blkbits;
546
547 /*
548 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
549 * forbid block creations: only overwrites are permitted.
550 * We will return early to the caller once we see an
551 * unmapped buffer head returned, and the caller will fall
552 * back to buffered I/O.
553 *
554 * Otherwise the decision is left to the get_blocks method,
555 * which may decide to handle it or also return an unmapped
556 * buffer head.
557 */
558 create = dio->rw & WRITE;
559 if (dio->flags & DIO_SKIP_HOLES) {
560 if (dio->block_in_file < (i_size_read(dio->inode) >>
561 dio->blkbits))
562 create = 0;
563 }
564
565 ret = (*dio->get_block)(dio->inode, fs_startblk,
566 map_bh, create);
567 }
568 return ret;
569 }
570
571 /*
572 * There is no bio. Make one now.
573 */
574 static int dio_new_bio(struct dio *dio, sector_t start_sector)
575 {
576 sector_t sector;
577 int ret, nr_pages;
578
579 ret = dio_bio_reap(dio);
580 if (ret)
581 goto out;
582 sector = start_sector << (dio->blkbits - 9);
583 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
584 BUG_ON(nr_pages <= 0);
585 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
586 dio->boundary = 0;
587 out:
588 return ret;
589 }
590
591 /*
592 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
593 * that was successful then update final_block_in_bio and take a ref against
594 * the just-added page.
595 *
596 * Return zero on success. Non-zero means the caller needs to start a new BIO.
597 */
598 static int dio_bio_add_page(struct dio *dio)
599 {
600 int ret;
601
602 ret = bio_add_page(dio->bio, dio->cur_page,
603 dio->cur_page_len, dio->cur_page_offset);
604 if (ret == dio->cur_page_len) {
605 /*
606 * Decrement count only, if we are done with this page
607 */
608 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
609 dio->pages_in_io--;
610 page_cache_get(dio->cur_page);
611 dio->final_block_in_bio = dio->cur_page_block +
612 (dio->cur_page_len >> dio->blkbits);
613 ret = 0;
614 } else {
615 ret = 1;
616 }
617 return ret;
618 }
619
620 /*
621 * Put cur_page under IO. The section of cur_page which is described by
622 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
623 * starts on-disk at cur_page_block.
624 *
625 * We take a ref against the page here (on behalf of its presence in the bio).
626 *
627 * The caller of this function is responsible for removing cur_page from the
628 * dio, and for dropping the refcount which came from that presence.
629 */
630 static int dio_send_cur_page(struct dio *dio)
631 {
632 int ret = 0;
633
634 if (dio->bio) {
635 /*
636 * See whether this new request is contiguous with the old
637 */
638 if (dio->final_block_in_bio != dio->cur_page_block)
639 dio_bio_submit(dio);
640 /*
641 * Submit now if the underlying fs is about to perform a
642 * metadata read
643 */
644 if (dio->boundary)
645 dio_bio_submit(dio);
646 }
647
648 if (dio->bio == NULL) {
649 ret = dio_new_bio(dio, dio->cur_page_block);
650 if (ret)
651 goto out;
652 }
653
654 if (dio_bio_add_page(dio) != 0) {
655 dio_bio_submit(dio);
656 ret = dio_new_bio(dio, dio->cur_page_block);
657 if (ret == 0) {
658 ret = dio_bio_add_page(dio);
659 BUG_ON(ret != 0);
660 }
661 }
662 out:
663 return ret;
664 }
665
666 /*
667 * An autonomous function to put a chunk of a page under deferred IO.
668 *
669 * The caller doesn't actually know (or care) whether this piece of page is in
670 * a BIO, or is under IO or whatever. We just take care of all possible
671 * situations here. The separation between the logic of do_direct_IO() and
672 * that of submit_page_section() is important for clarity. Please don't break.
673 *
674 * The chunk of page starts on-disk at blocknr.
675 *
676 * We perform deferred IO, by recording the last-submitted page inside our
677 * private part of the dio structure. If possible, we just expand the IO
678 * across that page here.
679 *
680 * If that doesn't work out then we put the old page into the bio and add this
681 * page to the dio instead.
682 */
683 static int
684 submit_page_section(struct dio *dio, struct page *page,
685 unsigned offset, unsigned len, sector_t blocknr)
686 {
687 int ret = 0;
688
689 if (dio->rw & WRITE) {
690 /*
691 * Read accounting is performed in submit_bio()
692 */
693 task_io_account_write(len);
694 }
695
696 /*
697 * Can we just grow the current page's presence in the dio?
698 */
699 if ( (dio->cur_page == page) &&
700 (dio->cur_page_offset + dio->cur_page_len == offset) &&
701 (dio->cur_page_block +
702 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
703 dio->cur_page_len += len;
704
705 /*
706 * If dio->boundary then we want to schedule the IO now to
707 * avoid metadata seeks.
708 */
709 if (dio->boundary) {
710 ret = dio_send_cur_page(dio);
711 page_cache_release(dio->cur_page);
712 dio->cur_page = NULL;
713 }
714 goto out;
715 }
716
717 /*
718 * If there's a deferred page already there then send it.
719 */
720 if (dio->cur_page) {
721 ret = dio_send_cur_page(dio);
722 page_cache_release(dio->cur_page);
723 dio->cur_page = NULL;
724 if (ret)
725 goto out;
726 }
727
728 page_cache_get(page); /* It is in dio */
729 dio->cur_page = page;
730 dio->cur_page_offset = offset;
731 dio->cur_page_len = len;
732 dio->cur_page_block = blocknr;
733 dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
734 out:
735 return ret;
736 }
737
738 /*
739 * Clean any dirty buffers in the blockdev mapping which alias newly-created
740 * file blocks. Only called for S_ISREG files - blockdevs do not set
741 * buffer_new
742 */
743 static void clean_blockdev_aliases(struct dio *dio)
744 {
745 unsigned i;
746 unsigned nblocks;
747
748 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
749
750 for (i = 0; i < nblocks; i++) {
751 unmap_underlying_metadata(dio->map_bh.b_bdev,
752 dio->map_bh.b_blocknr + i);
753 }
754 }
755
756 /*
757 * If we are not writing the entire block and get_block() allocated
758 * the block for us, we need to fill-in the unused portion of the
759 * block with zeros. This happens only if user-buffer, fileoffset or
760 * io length is not filesystem block-size multiple.
761 *
762 * `end' is zero if we're doing the start of the IO, 1 at the end of the
763 * IO.
764 */
765 static void dio_zero_block(struct dio *dio, int end)
766 {
767 unsigned dio_blocks_per_fs_block;
768 unsigned this_chunk_blocks; /* In dio_blocks */
769 unsigned this_chunk_bytes;
770 struct page *page;
771
772 dio->start_zero_done = 1;
773 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
774 return;
775
776 dio_blocks_per_fs_block = 1 << dio->blkfactor;
777 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
778
779 if (!this_chunk_blocks)
780 return;
781
782 /*
783 * We need to zero out part of an fs block. It is either at the
784 * beginning or the end of the fs block.
785 */
786 if (end)
787 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
788
789 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
790
791 page = ZERO_PAGE(0);
792 if (submit_page_section(dio, page, 0, this_chunk_bytes,
793 dio->next_block_for_io))
794 return;
795
796 dio->next_block_for_io += this_chunk_blocks;
797 }
798
799 /*
800 * Walk the user pages, and the file, mapping blocks to disk and generating
801 * a sequence of (page,offset,len,block) mappings. These mappings are injected
802 * into submit_page_section(), which takes care of the next stage of submission
803 *
804 * Direct IO against a blockdev is different from a file. Because we can
805 * happily perform page-sized but 512-byte aligned IOs. It is important that
806 * blockdev IO be able to have fine alignment and large sizes.
807 *
808 * So what we do is to permit the ->get_block function to populate bh.b_size
809 * with the size of IO which is permitted at this offset and this i_blkbits.
810 *
811 * For best results, the blockdev should be set up with 512-byte i_blkbits and
812 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
813 * fine alignment but still allows this function to work in PAGE_SIZE units.
814 */
815 static int do_direct_IO(struct dio *dio)
816 {
817 const unsigned blkbits = dio->blkbits;
818 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
819 struct page *page;
820 unsigned block_in_page;
821 struct buffer_head *map_bh = &dio->map_bh;
822 int ret = 0;
823
824 /* The I/O can start at any block offset within the first page */
825 block_in_page = dio->first_block_in_page;
826
827 while (dio->block_in_file < dio->final_block_in_request) {
828 page = dio_get_page(dio);
829 if (IS_ERR(page)) {
830 ret = PTR_ERR(page);
831 goto out;
832 }
833
834 while (block_in_page < blocks_per_page) {
835 unsigned offset_in_page = block_in_page << blkbits;
836 unsigned this_chunk_bytes; /* # of bytes mapped */
837 unsigned this_chunk_blocks; /* # of blocks */
838 unsigned u;
839
840 if (dio->blocks_available == 0) {
841 /*
842 * Need to go and map some more disk
843 */
844 unsigned long blkmask;
845 unsigned long dio_remainder;
846
847 ret = get_more_blocks(dio);
848 if (ret) {
849 page_cache_release(page);
850 goto out;
851 }
852 if (!buffer_mapped(map_bh))
853 goto do_holes;
854
855 dio->blocks_available =
856 map_bh->b_size >> dio->blkbits;
857 dio->next_block_for_io =
858 map_bh->b_blocknr << dio->blkfactor;
859 if (buffer_new(map_bh))
860 clean_blockdev_aliases(dio);
861
862 if (!dio->blkfactor)
863 goto do_holes;
864
865 blkmask = (1 << dio->blkfactor) - 1;
866 dio_remainder = (dio->block_in_file & blkmask);
867
868 /*
869 * If we are at the start of IO and that IO
870 * starts partway into a fs-block,
871 * dio_remainder will be non-zero. If the IO
872 * is a read then we can simply advance the IO
873 * cursor to the first block which is to be
874 * read. But if the IO is a write and the
875 * block was newly allocated we cannot do that;
876 * the start of the fs block must be zeroed out
877 * on-disk
878 */
879 if (!buffer_new(map_bh))
880 dio->next_block_for_io += dio_remainder;
881 dio->blocks_available -= dio_remainder;
882 }
883 do_holes:
884 /* Handle holes */
885 if (!buffer_mapped(map_bh)) {
886 loff_t i_size_aligned;
887
888 /* AKPM: eargh, -ENOTBLK is a hack */
889 if (dio->rw & WRITE) {
890 page_cache_release(page);
891 return -ENOTBLK;
892 }
893
894 /*
895 * Be sure to account for a partial block as the
896 * last block in the file
897 */
898 i_size_aligned = ALIGN(i_size_read(dio->inode),
899 1 << blkbits);
900 if (dio->block_in_file >=
901 i_size_aligned >> blkbits) {
902 /* We hit eof */
903 page_cache_release(page);
904 goto out;
905 }
906 zero_user(page, block_in_page << blkbits,
907 1 << blkbits);
908 dio->block_in_file++;
909 block_in_page++;
910 goto next_block;
911 }
912
913 /*
914 * If we're performing IO which has an alignment which
915 * is finer than the underlying fs, go check to see if
916 * we must zero out the start of this block.
917 */
918 if (unlikely(dio->blkfactor && !dio->start_zero_done))
919 dio_zero_block(dio, 0);
920
921 /*
922 * Work out, in this_chunk_blocks, how much disk we
923 * can add to this page
924 */
925 this_chunk_blocks = dio->blocks_available;
926 u = (PAGE_SIZE - offset_in_page) >> blkbits;
927 if (this_chunk_blocks > u)
928 this_chunk_blocks = u;
929 u = dio->final_block_in_request - dio->block_in_file;
930 if (this_chunk_blocks > u)
931 this_chunk_blocks = u;
932 this_chunk_bytes = this_chunk_blocks << blkbits;
933 BUG_ON(this_chunk_bytes == 0);
934
935 dio->boundary = buffer_boundary(map_bh);
936 ret = submit_page_section(dio, page, offset_in_page,
937 this_chunk_bytes, dio->next_block_for_io);
938 if (ret) {
939 page_cache_release(page);
940 goto out;
941 }
942 dio->next_block_for_io += this_chunk_blocks;
943
944 dio->block_in_file += this_chunk_blocks;
945 block_in_page += this_chunk_blocks;
946 dio->blocks_available -= this_chunk_blocks;
947 next_block:
948 BUG_ON(dio->block_in_file > dio->final_block_in_request);
949 if (dio->block_in_file == dio->final_block_in_request)
950 break;
951 }
952
953 /* Drop the ref which was taken in get_user_pages() */
954 page_cache_release(page);
955 block_in_page = 0;
956 }
957 out:
958 return ret;
959 }
960
961 /*
962 * Releases both i_mutex and i_alloc_sem
963 */
964 static ssize_t
965 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
966 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
967 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
968 dio_submit_t submit_io, struct dio *dio)
969 {
970 unsigned long user_addr;
971 unsigned long flags;
972 int seg;
973 ssize_t ret = 0;
974 ssize_t ret2;
975 size_t bytes;
976
977 dio->inode = inode;
978 dio->rw = rw;
979 dio->blkbits = blkbits;
980 dio->blkfactor = inode->i_blkbits - blkbits;
981 dio->block_in_file = offset >> blkbits;
982
983 dio->get_block = get_block;
984 dio->end_io = end_io;
985 dio->submit_io = submit_io;
986 dio->final_block_in_bio = -1;
987 dio->next_block_for_io = -1;
988
989 dio->iocb = iocb;
990 dio->i_size = i_size_read(inode);
991
992 spin_lock_init(&dio->bio_lock);
993 dio->refcount = 1;
994
995 /*
996 * In case of non-aligned buffers, we may need 2 more
997 * pages since we need to zero out first and last block.
998 */
999 if (unlikely(dio->blkfactor))
1000 dio->pages_in_io = 2;
1001
1002 for (seg = 0; seg < nr_segs; seg++) {
1003 user_addr = (unsigned long)iov[seg].iov_base;
1004 dio->pages_in_io +=
1005 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1006 - user_addr/PAGE_SIZE);
1007 }
1008
1009 for (seg = 0; seg < nr_segs; seg++) {
1010 user_addr = (unsigned long)iov[seg].iov_base;
1011 dio->size += bytes = iov[seg].iov_len;
1012
1013 /* Index into the first page of the first block */
1014 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1015 dio->final_block_in_request = dio->block_in_file +
1016 (bytes >> blkbits);
1017 /* Page fetching state */
1018 dio->head = 0;
1019 dio->tail = 0;
1020 dio->curr_page = 0;
1021
1022 dio->total_pages = 0;
1023 if (user_addr & (PAGE_SIZE-1)) {
1024 dio->total_pages++;
1025 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1026 }
1027 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1028 dio->curr_user_address = user_addr;
1029
1030 ret = do_direct_IO(dio);
1031
1032 dio->result += iov[seg].iov_len -
1033 ((dio->final_block_in_request - dio->block_in_file) <<
1034 blkbits);
1035
1036 if (ret) {
1037 dio_cleanup(dio);
1038 break;
1039 }
1040 } /* end iovec loop */
1041
1042 if (ret == -ENOTBLK) {
1043 /*
1044 * The remaining part of the request will be
1045 * be handled by buffered I/O when we return
1046 */
1047 ret = 0;
1048 }
1049 /*
1050 * There may be some unwritten disk at the end of a part-written
1051 * fs-block-sized block. Go zero that now.
1052 */
1053 dio_zero_block(dio, 1);
1054
1055 if (dio->cur_page) {
1056 ret2 = dio_send_cur_page(dio);
1057 if (ret == 0)
1058 ret = ret2;
1059 page_cache_release(dio->cur_page);
1060 dio->cur_page = NULL;
1061 }
1062 if (dio->bio)
1063 dio_bio_submit(dio);
1064
1065 /*
1066 * It is possible that, we return short IO due to end of file.
1067 * In that case, we need to release all the pages we got hold on.
1068 */
1069 dio_cleanup(dio);
1070
1071 /*
1072 * All block lookups have been performed. For READ requests
1073 * we can let i_mutex go now that its achieved its purpose
1074 * of protecting us from looking up uninitialized blocks.
1075 */
1076 if (rw == READ && (dio->flags & DIO_LOCKING))
1077 mutex_unlock(&dio->inode->i_mutex);
1078
1079 /*
1080 * The only time we want to leave bios in flight is when a successful
1081 * partial aio read or full aio write have been setup. In that case
1082 * bio completion will call aio_complete. The only time it's safe to
1083 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1084 * This had *better* be the only place that raises -EIOCBQUEUED.
1085 */
1086 BUG_ON(ret == -EIOCBQUEUED);
1087 if (dio->is_async && ret == 0 && dio->result &&
1088 ((rw & READ) || (dio->result == dio->size)))
1089 ret = -EIOCBQUEUED;
1090
1091 if (ret != -EIOCBQUEUED) {
1092 /* All IO is now issued, send it on its way */
1093 blk_run_address_space(inode->i_mapping);
1094 dio_await_completion(dio);
1095 }
1096
1097 /*
1098 * Sync will always be dropping the final ref and completing the
1099 * operation. AIO can if it was a broken operation described above or
1100 * in fact if all the bios race to complete before we get here. In
1101 * that case dio_complete() translates the EIOCBQUEUED into the proper
1102 * return code that the caller will hand to aio_complete().
1103 *
1104 * This is managed by the bio_lock instead of being an atomic_t so that
1105 * completion paths can drop their ref and use the remaining count to
1106 * decide to wake the submission path atomically.
1107 */
1108 spin_lock_irqsave(&dio->bio_lock, flags);
1109 ret2 = --dio->refcount;
1110 spin_unlock_irqrestore(&dio->bio_lock, flags);
1111
1112 if (ret2 == 0) {
1113 ret = dio_complete(dio, offset, ret);
1114 kfree(dio);
1115 } else
1116 BUG_ON(ret != -EIOCBQUEUED);
1117
1118 return ret;
1119 }
1120
1121 /*
1122 * This is a library function for use by filesystem drivers.
1123 *
1124 * The locking rules are governed by the flags parameter:
1125 * - if the flags value contains DIO_LOCKING we use a fancy locking
1126 * scheme for dumb filesystems.
1127 * For writes this function is called under i_mutex and returns with
1128 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1129 * taken and dropped again before returning.
1130 * For reads and writes i_alloc_sem is taken in shared mode and released
1131 * on I/O completion (which may happen asynchronously after returning to
1132 * the caller).
1133 *
1134 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1135 * internal locking but rather rely on the filesystem to synchronize
1136 * direct I/O reads/writes versus each other and truncate.
1137 * For reads and writes both i_mutex and i_alloc_sem are not held on
1138 * entry and are never taken.
1139 */
1140 ssize_t
1141 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1142 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1143 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1144 dio_submit_t submit_io, int flags)
1145 {
1146 int seg;
1147 size_t size;
1148 unsigned long addr;
1149 unsigned blkbits = inode->i_blkbits;
1150 unsigned bdev_blkbits = 0;
1151 unsigned blocksize_mask = (1 << blkbits) - 1;
1152 ssize_t retval = -EINVAL;
1153 loff_t end = offset;
1154 struct dio *dio;
1155
1156 if (rw & WRITE)
1157 rw = WRITE_ODIRECT_PLUG;
1158
1159 if (bdev)
1160 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1161
1162 if (offset & blocksize_mask) {
1163 if (bdev)
1164 blkbits = bdev_blkbits;
1165 blocksize_mask = (1 << blkbits) - 1;
1166 if (offset & blocksize_mask)
1167 goto out;
1168 }
1169
1170 /* Check the memory alignment. Blocks cannot straddle pages */
1171 for (seg = 0; seg < nr_segs; seg++) {
1172 addr = (unsigned long)iov[seg].iov_base;
1173 size = iov[seg].iov_len;
1174 end += size;
1175 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1176 if (bdev)
1177 blkbits = bdev_blkbits;
1178 blocksize_mask = (1 << blkbits) - 1;
1179 if ((addr & blocksize_mask) || (size & blocksize_mask))
1180 goto out;
1181 }
1182 }
1183
1184 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1185 retval = -ENOMEM;
1186 if (!dio)
1187 goto out;
1188 /*
1189 * Believe it or not, zeroing out the page array caused a .5%
1190 * performance regression in a database benchmark. So, we take
1191 * care to only zero out what's needed.
1192 */
1193 memset(dio, 0, offsetof(struct dio, pages));
1194
1195 dio->flags = flags;
1196 if (dio->flags & DIO_LOCKING) {
1197 /* watch out for a 0 len io from a tricksy fs */
1198 if (rw == READ && end > offset) {
1199 struct address_space *mapping =
1200 iocb->ki_filp->f_mapping;
1201
1202 /* will be released by direct_io_worker */
1203 mutex_lock(&inode->i_mutex);
1204
1205 retval = filemap_write_and_wait_range(mapping, offset,
1206 end - 1);
1207 if (retval) {
1208 mutex_unlock(&inode->i_mutex);
1209 kfree(dio);
1210 goto out;
1211 }
1212 }
1213
1214 /*
1215 * Will be released at I/O completion, possibly in a
1216 * different thread.
1217 */
1218 down_read_non_owner(&inode->i_alloc_sem);
1219 }
1220
1221 /*
1222 * For file extending writes updating i_size before data
1223 * writeouts complete can expose uninitialized blocks. So
1224 * even for AIO, we need to wait for i/o to complete before
1225 * returning in this case.
1226 */
1227 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1228 (end > i_size_read(inode)));
1229
1230 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1231 nr_segs, blkbits, get_block, end_io,
1232 submit_io, dio);
1233
1234 /*
1235 * In case of error extending write may have instantiated a few
1236 * blocks outside i_size. Trim these off again for DIO_LOCKING.
1237 *
1238 * NOTE: filesystems with their own locking have to handle this
1239 * on their own.
1240 */
1241 if (flags & DIO_LOCKING) {
1242 if (unlikely((rw & WRITE) && retval < 0)) {
1243 loff_t isize = i_size_read(inode);
1244 if (end > isize)
1245 vmtruncate(inode, isize);
1246 }
1247 }
1248
1249 out:
1250 return retval;
1251 }
1252 EXPORT_SYMBOL(__blockdev_direct_IO);
This page took 0.055937 seconds and 4 git commands to generate.