b57b671e1106844ed5e16921a84859ffc08912dc
[deliverable/linux.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39
40 /*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44 #define DIO_PAGES 64
45
46 /*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65 struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
70 loff_t i_size; /* i_size when submitted */
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
90 get_block_t *get_block; /* block mapping function */
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95 struct buffer_head map_bh; /* last get_block() result */
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
107 /*
108 * Page fetching state. These variables belong to dio_refill_pages().
109 */
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
113
114 /*
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
117 */
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
122
123 /* BIO completion state */
124 spinlock_t bio_lock; /* protects BIO fields below */
125 int bio_count; /* nr bios to be completed */
126 int bios_in_flight; /* nr bios in flight */
127 struct bio *bio_list; /* singly linked via bi_private */
128 struct task_struct *waiter; /* waiting task (NULL if none) */
129
130 /* AIO related stuff */
131 struct kiocb *iocb; /* kiocb */
132 int is_async; /* is IO async ? */
133 int io_error; /* IO error in completion path */
134 ssize_t result; /* IO result */
135 };
136
137 /*
138 * How many pages are in the queue?
139 */
140 static inline unsigned dio_pages_present(struct dio *dio)
141 {
142 return dio->tail - dio->head;
143 }
144
145 /*
146 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
147 */
148 static int dio_refill_pages(struct dio *dio)
149 {
150 int ret;
151 int nr_pages;
152
153 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
154 down_read(&current->mm->mmap_sem);
155 ret = get_user_pages(
156 current, /* Task for fault acounting */
157 current->mm, /* whose pages? */
158 dio->curr_user_address, /* Where from? */
159 nr_pages, /* How many pages? */
160 dio->rw == READ, /* Write to memory? */
161 0, /* force (?) */
162 &dio->pages[0],
163 NULL); /* vmas */
164 up_read(&current->mm->mmap_sem);
165
166 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
167 struct page *page = ZERO_PAGE(dio->curr_user_address);
168 /*
169 * A memory fault, but the filesystem has some outstanding
170 * mapped blocks. We need to use those blocks up to avoid
171 * leaking stale data in the file.
172 */
173 if (dio->page_errors == 0)
174 dio->page_errors = ret;
175 page_cache_get(page);
176 dio->pages[0] = page;
177 dio->head = 0;
178 dio->tail = 1;
179 ret = 0;
180 goto out;
181 }
182
183 if (ret >= 0) {
184 dio->curr_user_address += ret * PAGE_SIZE;
185 dio->curr_page += ret;
186 dio->head = 0;
187 dio->tail = ret;
188 ret = 0;
189 }
190 out:
191 return ret;
192 }
193
194 /*
195 * Get another userspace page. Returns an ERR_PTR on error. Pages are
196 * buffered inside the dio so that we can call get_user_pages() against a
197 * decent number of pages, less frequently. To provide nicer use of the
198 * L1 cache.
199 */
200 static struct page *dio_get_page(struct dio *dio)
201 {
202 if (dio_pages_present(dio) == 0) {
203 int ret;
204
205 ret = dio_refill_pages(dio);
206 if (ret)
207 return ERR_PTR(ret);
208 BUG_ON(dio_pages_present(dio) == 0);
209 }
210 return dio->pages[dio->head++];
211 }
212
213 /**
214 * dio_complete() - called when all DIO BIO I/O has been completed
215 * @offset: the byte offset in the file of the completed operation
216 *
217 * This releases locks as dictated by the locking type, lets interested parties
218 * know that a DIO operation has completed, and calculates the resulting return
219 * code for the operation.
220 *
221 * It lets the filesystem know if it registered an interest earlier via
222 * get_block. Pass the private field of the map buffer_head so that
223 * filesystems can use it to hold additional state between get_block calls and
224 * dio_complete.
225 */
226 static int dio_complete(struct dio *dio, loff_t offset, int ret)
227 {
228 ssize_t transferred = 0;
229
230 if (dio->result) {
231 transferred = dio->result;
232
233 /* Check for short read case */
234 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
235 transferred = dio->i_size - offset;
236 }
237
238 if (dio->end_io && dio->result)
239 dio->end_io(dio->iocb, offset, transferred,
240 dio->map_bh.b_private);
241 if (dio->lock_type == DIO_LOCKING)
242 /* lockdep: non-owner release */
243 up_read_non_owner(&dio->inode->i_alloc_sem);
244
245 if (ret == 0)
246 ret = dio->page_errors;
247 if (ret == 0)
248 ret = dio->io_error;
249 if (ret == 0)
250 ret = transferred;
251
252 return ret;
253 }
254
255 /*
256 * Called when a BIO has been processed. If the count goes to zero then IO is
257 * complete and we can signal this to the AIO layer.
258 */
259 static void finished_one_bio(struct dio *dio)
260 {
261 unsigned long flags;
262
263 spin_lock_irqsave(&dio->bio_lock, flags);
264 if (dio->bio_count == 1) {
265 if (dio->is_async) {
266 int ret;
267
268 /*
269 * Last reference to the dio is going away.
270 * Drop spinlock and complete the DIO.
271 */
272 spin_unlock_irqrestore(&dio->bio_lock, flags);
273
274 ret = dio_complete(dio, dio->iocb->ki_pos, 0);
275
276 /* Complete AIO later if falling back to buffered i/o */
277 if (dio->result == dio->size ||
278 ((dio->rw == READ) && dio->result)) {
279 aio_complete(dio->iocb, ret, 0);
280 kfree(dio);
281 return;
282 } else {
283 /*
284 * Falling back to buffered
285 */
286 spin_lock_irqsave(&dio->bio_lock, flags);
287 dio->bio_count--;
288 if (dio->waiter)
289 wake_up_process(dio->waiter);
290 spin_unlock_irqrestore(&dio->bio_lock, flags);
291 return;
292 }
293 }
294 }
295 dio->bio_count--;
296 spin_unlock_irqrestore(&dio->bio_lock, flags);
297 }
298
299 static int dio_bio_complete(struct dio *dio, struct bio *bio);
300 /*
301 * Asynchronous IO callback.
302 */
303 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
304 {
305 struct dio *dio = bio->bi_private;
306
307 if (bio->bi_size)
308 return 1;
309
310 /* cleanup the bio */
311 dio_bio_complete(dio, bio);
312 return 0;
313 }
314
315 /*
316 * The BIO completion handler simply queues the BIO up for the process-context
317 * handler.
318 *
319 * During I/O bi_private points at the dio. After I/O, bi_private is used to
320 * implement a singly-linked list of completed BIOs, at dio->bio_list.
321 */
322 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
323 {
324 struct dio *dio = bio->bi_private;
325 unsigned long flags;
326
327 if (bio->bi_size)
328 return 1;
329
330 spin_lock_irqsave(&dio->bio_lock, flags);
331 bio->bi_private = dio->bio_list;
332 dio->bio_list = bio;
333 dio->bios_in_flight--;
334 if (dio->waiter && dio->bios_in_flight == 0)
335 wake_up_process(dio->waiter);
336 spin_unlock_irqrestore(&dio->bio_lock, flags);
337 return 0;
338 }
339
340 static int
341 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
342 sector_t first_sector, int nr_vecs)
343 {
344 struct bio *bio;
345
346 bio = bio_alloc(GFP_KERNEL, nr_vecs);
347 if (bio == NULL)
348 return -ENOMEM;
349
350 bio->bi_bdev = bdev;
351 bio->bi_sector = first_sector;
352 if (dio->is_async)
353 bio->bi_end_io = dio_bio_end_aio;
354 else
355 bio->bi_end_io = dio_bio_end_io;
356
357 dio->bio = bio;
358 return 0;
359 }
360
361 /*
362 * In the AIO read case we speculatively dirty the pages before starting IO.
363 * During IO completion, any of these pages which happen to have been written
364 * back will be redirtied by bio_check_pages_dirty().
365 */
366 static void dio_bio_submit(struct dio *dio)
367 {
368 struct bio *bio = dio->bio;
369 unsigned long flags;
370
371 bio->bi_private = dio;
372 spin_lock_irqsave(&dio->bio_lock, flags);
373 dio->bio_count++;
374 dio->bios_in_flight++;
375 spin_unlock_irqrestore(&dio->bio_lock, flags);
376 if (dio->is_async && dio->rw == READ)
377 bio_set_pages_dirty(bio);
378 submit_bio(dio->rw, bio);
379
380 dio->bio = NULL;
381 dio->boundary = 0;
382 }
383
384 /*
385 * Release any resources in case of a failure
386 */
387 static void dio_cleanup(struct dio *dio)
388 {
389 while (dio_pages_present(dio))
390 page_cache_release(dio_get_page(dio));
391 }
392
393 /*
394 * Wait for the next BIO to complete. Remove it and return it.
395 */
396 static struct bio *dio_await_one(struct dio *dio)
397 {
398 unsigned long flags;
399 struct bio *bio;
400
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 while (dio->bio_list == NULL) {
403 set_current_state(TASK_UNINTERRUPTIBLE);
404 if (dio->bio_list == NULL) {
405 dio->waiter = current;
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
407 blk_run_address_space(dio->inode->i_mapping);
408 io_schedule();
409 spin_lock_irqsave(&dio->bio_lock, flags);
410 dio->waiter = NULL;
411 }
412 set_current_state(TASK_RUNNING);
413 }
414 bio = dio->bio_list;
415 dio->bio_list = bio->bi_private;
416 spin_unlock_irqrestore(&dio->bio_lock, flags);
417 return bio;
418 }
419
420 /*
421 * Process one completed BIO. No locks are held.
422 */
423 static int dio_bio_complete(struct dio *dio, struct bio *bio)
424 {
425 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
426 struct bio_vec *bvec = bio->bi_io_vec;
427 int page_no;
428
429 if (!uptodate)
430 dio->io_error = -EIO;
431
432 if (dio->is_async && dio->rw == READ) {
433 bio_check_pages_dirty(bio); /* transfers ownership */
434 } else {
435 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
436 struct page *page = bvec[page_no].bv_page;
437
438 if (dio->rw == READ && !PageCompound(page))
439 set_page_dirty_lock(page);
440 page_cache_release(page);
441 }
442 bio_put(bio);
443 }
444 finished_one_bio(dio);
445 return uptodate ? 0 : -EIO;
446 }
447
448 /*
449 * Wait on and process all in-flight BIOs.
450 */
451 static void dio_await_completion(struct dio *dio)
452 {
453 if (dio->bio)
454 dio_bio_submit(dio);
455
456 /*
457 * The bio_lock is not held for the read of bio_count.
458 * This is ok since it is the dio_bio_complete() that changes
459 * bio_count.
460 */
461 while (dio->bio_count) {
462 struct bio *bio = dio_await_one(dio);
463 /* io errors are propogated through dio->io_error */
464 dio_bio_complete(dio, bio);
465 }
466 }
467
468 /*
469 * A really large O_DIRECT read or write can generate a lot of BIOs. So
470 * to keep the memory consumption sane we periodically reap any completed BIOs
471 * during the BIO generation phase.
472 *
473 * This also helps to limit the peak amount of pinned userspace memory.
474 */
475 static int dio_bio_reap(struct dio *dio)
476 {
477 int ret = 0;
478
479 if (dio->reap_counter++ >= 64) {
480 while (dio->bio_list) {
481 unsigned long flags;
482 struct bio *bio;
483 int ret2;
484
485 spin_lock_irqsave(&dio->bio_lock, flags);
486 bio = dio->bio_list;
487 dio->bio_list = bio->bi_private;
488 spin_unlock_irqrestore(&dio->bio_lock, flags);
489 ret2 = dio_bio_complete(dio, bio);
490 if (ret == 0)
491 ret = ret2;
492 }
493 dio->reap_counter = 0;
494 }
495 return ret;
496 }
497
498 /*
499 * Call into the fs to map some more disk blocks. We record the current number
500 * of available blocks at dio->blocks_available. These are in units of the
501 * fs blocksize, (1 << inode->i_blkbits).
502 *
503 * The fs is allowed to map lots of blocks at once. If it wants to do that,
504 * it uses the passed inode-relative block number as the file offset, as usual.
505 *
506 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
507 * has remaining to do. The fs should not map more than this number of blocks.
508 *
509 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
510 * indicate how much contiguous disk space has been made available at
511 * bh->b_blocknr.
512 *
513 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
514 * This isn't very efficient...
515 *
516 * In the case of filesystem holes: the fs may return an arbitrarily-large
517 * hole by returning an appropriate value in b_size and by clearing
518 * buffer_mapped(). However the direct-io code will only process holes one
519 * block at a time - it will repeatedly call get_block() as it walks the hole.
520 */
521 static int get_more_blocks(struct dio *dio)
522 {
523 int ret;
524 struct buffer_head *map_bh = &dio->map_bh;
525 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
526 unsigned long fs_count; /* Number of filesystem-sized blocks */
527 unsigned long dio_count;/* Number of dio_block-sized blocks */
528 unsigned long blkmask;
529 int create;
530
531 /*
532 * If there was a memory error and we've overwritten all the
533 * mapped blocks then we can now return that memory error
534 */
535 ret = dio->page_errors;
536 if (ret == 0) {
537 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
538 fs_startblk = dio->block_in_file >> dio->blkfactor;
539 dio_count = dio->final_block_in_request - dio->block_in_file;
540 fs_count = dio_count >> dio->blkfactor;
541 blkmask = (1 << dio->blkfactor) - 1;
542 if (dio_count & blkmask)
543 fs_count++;
544
545 map_bh->b_state = 0;
546 map_bh->b_size = fs_count << dio->inode->i_blkbits;
547
548 create = dio->rw & WRITE;
549 if (dio->lock_type == DIO_LOCKING) {
550 if (dio->block_in_file < (i_size_read(dio->inode) >>
551 dio->blkbits))
552 create = 0;
553 } else if (dio->lock_type == DIO_NO_LOCKING) {
554 create = 0;
555 }
556
557 /*
558 * For writes inside i_size we forbid block creations: only
559 * overwrites are permitted. We fall back to buffered writes
560 * at a higher level for inside-i_size block-instantiating
561 * writes.
562 */
563 ret = (*dio->get_block)(dio->inode, fs_startblk,
564 map_bh, create);
565 }
566 return ret;
567 }
568
569 /*
570 * There is no bio. Make one now.
571 */
572 static int dio_new_bio(struct dio *dio, sector_t start_sector)
573 {
574 sector_t sector;
575 int ret, nr_pages;
576
577 ret = dio_bio_reap(dio);
578 if (ret)
579 goto out;
580 sector = start_sector << (dio->blkbits - 9);
581 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
582 BUG_ON(nr_pages <= 0);
583 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
584 dio->boundary = 0;
585 out:
586 return ret;
587 }
588
589 /*
590 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
591 * that was successful then update final_block_in_bio and take a ref against
592 * the just-added page.
593 *
594 * Return zero on success. Non-zero means the caller needs to start a new BIO.
595 */
596 static int dio_bio_add_page(struct dio *dio)
597 {
598 int ret;
599
600 ret = bio_add_page(dio->bio, dio->cur_page,
601 dio->cur_page_len, dio->cur_page_offset);
602 if (ret == dio->cur_page_len) {
603 /*
604 * Decrement count only, if we are done with this page
605 */
606 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
607 dio->pages_in_io--;
608 page_cache_get(dio->cur_page);
609 dio->final_block_in_bio = dio->cur_page_block +
610 (dio->cur_page_len >> dio->blkbits);
611 ret = 0;
612 } else {
613 ret = 1;
614 }
615 return ret;
616 }
617
618 /*
619 * Put cur_page under IO. The section of cur_page which is described by
620 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
621 * starts on-disk at cur_page_block.
622 *
623 * We take a ref against the page here (on behalf of its presence in the bio).
624 *
625 * The caller of this function is responsible for removing cur_page from the
626 * dio, and for dropping the refcount which came from that presence.
627 */
628 static int dio_send_cur_page(struct dio *dio)
629 {
630 int ret = 0;
631
632 if (dio->bio) {
633 /*
634 * See whether this new request is contiguous with the old
635 */
636 if (dio->final_block_in_bio != dio->cur_page_block)
637 dio_bio_submit(dio);
638 /*
639 * Submit now if the underlying fs is about to perform a
640 * metadata read
641 */
642 if (dio->boundary)
643 dio_bio_submit(dio);
644 }
645
646 if (dio->bio == NULL) {
647 ret = dio_new_bio(dio, dio->cur_page_block);
648 if (ret)
649 goto out;
650 }
651
652 if (dio_bio_add_page(dio) != 0) {
653 dio_bio_submit(dio);
654 ret = dio_new_bio(dio, dio->cur_page_block);
655 if (ret == 0) {
656 ret = dio_bio_add_page(dio);
657 BUG_ON(ret != 0);
658 }
659 }
660 out:
661 return ret;
662 }
663
664 /*
665 * An autonomous function to put a chunk of a page under deferred IO.
666 *
667 * The caller doesn't actually know (or care) whether this piece of page is in
668 * a BIO, or is under IO or whatever. We just take care of all possible
669 * situations here. The separation between the logic of do_direct_IO() and
670 * that of submit_page_section() is important for clarity. Please don't break.
671 *
672 * The chunk of page starts on-disk at blocknr.
673 *
674 * We perform deferred IO, by recording the last-submitted page inside our
675 * private part of the dio structure. If possible, we just expand the IO
676 * across that page here.
677 *
678 * If that doesn't work out then we put the old page into the bio and add this
679 * page to the dio instead.
680 */
681 static int
682 submit_page_section(struct dio *dio, struct page *page,
683 unsigned offset, unsigned len, sector_t blocknr)
684 {
685 int ret = 0;
686
687 if (dio->rw & WRITE) {
688 /*
689 * Read accounting is performed in submit_bio()
690 */
691 task_io_account_write(len);
692 }
693
694 /*
695 * Can we just grow the current page's presence in the dio?
696 */
697 if ( (dio->cur_page == page) &&
698 (dio->cur_page_offset + dio->cur_page_len == offset) &&
699 (dio->cur_page_block +
700 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
701 dio->cur_page_len += len;
702
703 /*
704 * If dio->boundary then we want to schedule the IO now to
705 * avoid metadata seeks.
706 */
707 if (dio->boundary) {
708 ret = dio_send_cur_page(dio);
709 page_cache_release(dio->cur_page);
710 dio->cur_page = NULL;
711 }
712 goto out;
713 }
714
715 /*
716 * If there's a deferred page already there then send it.
717 */
718 if (dio->cur_page) {
719 ret = dio_send_cur_page(dio);
720 page_cache_release(dio->cur_page);
721 dio->cur_page = NULL;
722 if (ret)
723 goto out;
724 }
725
726 page_cache_get(page); /* It is in dio */
727 dio->cur_page = page;
728 dio->cur_page_offset = offset;
729 dio->cur_page_len = len;
730 dio->cur_page_block = blocknr;
731 out:
732 return ret;
733 }
734
735 /*
736 * Clean any dirty buffers in the blockdev mapping which alias newly-created
737 * file blocks. Only called for S_ISREG files - blockdevs do not set
738 * buffer_new
739 */
740 static void clean_blockdev_aliases(struct dio *dio)
741 {
742 unsigned i;
743 unsigned nblocks;
744
745 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
746
747 for (i = 0; i < nblocks; i++) {
748 unmap_underlying_metadata(dio->map_bh.b_bdev,
749 dio->map_bh.b_blocknr + i);
750 }
751 }
752
753 /*
754 * If we are not writing the entire block and get_block() allocated
755 * the block for us, we need to fill-in the unused portion of the
756 * block with zeros. This happens only if user-buffer, fileoffset or
757 * io length is not filesystem block-size multiple.
758 *
759 * `end' is zero if we're doing the start of the IO, 1 at the end of the
760 * IO.
761 */
762 static void dio_zero_block(struct dio *dio, int end)
763 {
764 unsigned dio_blocks_per_fs_block;
765 unsigned this_chunk_blocks; /* In dio_blocks */
766 unsigned this_chunk_bytes;
767 struct page *page;
768
769 dio->start_zero_done = 1;
770 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
771 return;
772
773 dio_blocks_per_fs_block = 1 << dio->blkfactor;
774 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
775
776 if (!this_chunk_blocks)
777 return;
778
779 /*
780 * We need to zero out part of an fs block. It is either at the
781 * beginning or the end of the fs block.
782 */
783 if (end)
784 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
785
786 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
787
788 page = ZERO_PAGE(dio->curr_user_address);
789 if (submit_page_section(dio, page, 0, this_chunk_bytes,
790 dio->next_block_for_io))
791 return;
792
793 dio->next_block_for_io += this_chunk_blocks;
794 }
795
796 /*
797 * Walk the user pages, and the file, mapping blocks to disk and generating
798 * a sequence of (page,offset,len,block) mappings. These mappings are injected
799 * into submit_page_section(), which takes care of the next stage of submission
800 *
801 * Direct IO against a blockdev is different from a file. Because we can
802 * happily perform page-sized but 512-byte aligned IOs. It is important that
803 * blockdev IO be able to have fine alignment and large sizes.
804 *
805 * So what we do is to permit the ->get_block function to populate bh.b_size
806 * with the size of IO which is permitted at this offset and this i_blkbits.
807 *
808 * For best results, the blockdev should be set up with 512-byte i_blkbits and
809 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
810 * fine alignment but still allows this function to work in PAGE_SIZE units.
811 */
812 static int do_direct_IO(struct dio *dio)
813 {
814 const unsigned blkbits = dio->blkbits;
815 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
816 struct page *page;
817 unsigned block_in_page;
818 struct buffer_head *map_bh = &dio->map_bh;
819 int ret = 0;
820
821 /* The I/O can start at any block offset within the first page */
822 block_in_page = dio->first_block_in_page;
823
824 while (dio->block_in_file < dio->final_block_in_request) {
825 page = dio_get_page(dio);
826 if (IS_ERR(page)) {
827 ret = PTR_ERR(page);
828 goto out;
829 }
830
831 while (block_in_page < blocks_per_page) {
832 unsigned offset_in_page = block_in_page << blkbits;
833 unsigned this_chunk_bytes; /* # of bytes mapped */
834 unsigned this_chunk_blocks; /* # of blocks */
835 unsigned u;
836
837 if (dio->blocks_available == 0) {
838 /*
839 * Need to go and map some more disk
840 */
841 unsigned long blkmask;
842 unsigned long dio_remainder;
843
844 ret = get_more_blocks(dio);
845 if (ret) {
846 page_cache_release(page);
847 goto out;
848 }
849 if (!buffer_mapped(map_bh))
850 goto do_holes;
851
852 dio->blocks_available =
853 map_bh->b_size >> dio->blkbits;
854 dio->next_block_for_io =
855 map_bh->b_blocknr << dio->blkfactor;
856 if (buffer_new(map_bh))
857 clean_blockdev_aliases(dio);
858
859 if (!dio->blkfactor)
860 goto do_holes;
861
862 blkmask = (1 << dio->blkfactor) - 1;
863 dio_remainder = (dio->block_in_file & blkmask);
864
865 /*
866 * If we are at the start of IO and that IO
867 * starts partway into a fs-block,
868 * dio_remainder will be non-zero. If the IO
869 * is a read then we can simply advance the IO
870 * cursor to the first block which is to be
871 * read. But if the IO is a write and the
872 * block was newly allocated we cannot do that;
873 * the start of the fs block must be zeroed out
874 * on-disk
875 */
876 if (!buffer_new(map_bh))
877 dio->next_block_for_io += dio_remainder;
878 dio->blocks_available -= dio_remainder;
879 }
880 do_holes:
881 /* Handle holes */
882 if (!buffer_mapped(map_bh)) {
883 char *kaddr;
884 loff_t i_size_aligned;
885
886 /* AKPM: eargh, -ENOTBLK is a hack */
887 if (dio->rw & WRITE) {
888 page_cache_release(page);
889 return -ENOTBLK;
890 }
891
892 /*
893 * Be sure to account for a partial block as the
894 * last block in the file
895 */
896 i_size_aligned = ALIGN(i_size_read(dio->inode),
897 1 << blkbits);
898 if (dio->block_in_file >=
899 i_size_aligned >> blkbits) {
900 /* We hit eof */
901 page_cache_release(page);
902 goto out;
903 }
904 kaddr = kmap_atomic(page, KM_USER0);
905 memset(kaddr + (block_in_page << blkbits),
906 0, 1 << blkbits);
907 flush_dcache_page(page);
908 kunmap_atomic(kaddr, KM_USER0);
909 dio->block_in_file++;
910 block_in_page++;
911 goto next_block;
912 }
913
914 /*
915 * If we're performing IO which has an alignment which
916 * is finer than the underlying fs, go check to see if
917 * we must zero out the start of this block.
918 */
919 if (unlikely(dio->blkfactor && !dio->start_zero_done))
920 dio_zero_block(dio, 0);
921
922 /*
923 * Work out, in this_chunk_blocks, how much disk we
924 * can add to this page
925 */
926 this_chunk_blocks = dio->blocks_available;
927 u = (PAGE_SIZE - offset_in_page) >> blkbits;
928 if (this_chunk_blocks > u)
929 this_chunk_blocks = u;
930 u = dio->final_block_in_request - dio->block_in_file;
931 if (this_chunk_blocks > u)
932 this_chunk_blocks = u;
933 this_chunk_bytes = this_chunk_blocks << blkbits;
934 BUG_ON(this_chunk_bytes == 0);
935
936 dio->boundary = buffer_boundary(map_bh);
937 ret = submit_page_section(dio, page, offset_in_page,
938 this_chunk_bytes, dio->next_block_for_io);
939 if (ret) {
940 page_cache_release(page);
941 goto out;
942 }
943 dio->next_block_for_io += this_chunk_blocks;
944
945 dio->block_in_file += this_chunk_blocks;
946 block_in_page += this_chunk_blocks;
947 dio->blocks_available -= this_chunk_blocks;
948 next_block:
949 BUG_ON(dio->block_in_file > dio->final_block_in_request);
950 if (dio->block_in_file == dio->final_block_in_request)
951 break;
952 }
953
954 /* Drop the ref which was taken in get_user_pages() */
955 page_cache_release(page);
956 block_in_page = 0;
957 }
958 out:
959 return ret;
960 }
961
962 /*
963 * Releases both i_mutex and i_alloc_sem
964 */
965 static ssize_t
966 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
967 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
968 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
969 struct dio *dio)
970 {
971 unsigned long user_addr;
972 int seg;
973 ssize_t ret = 0;
974 ssize_t ret2;
975 size_t bytes;
976
977 dio->bio = NULL;
978 dio->inode = inode;
979 dio->rw = rw;
980 dio->blkbits = blkbits;
981 dio->blkfactor = inode->i_blkbits - blkbits;
982 dio->start_zero_done = 0;
983 dio->size = 0;
984 dio->block_in_file = offset >> blkbits;
985 dio->blocks_available = 0;
986 dio->cur_page = NULL;
987
988 dio->boundary = 0;
989 dio->reap_counter = 0;
990 dio->get_block = get_block;
991 dio->end_io = end_io;
992 dio->map_bh.b_private = NULL;
993 dio->final_block_in_bio = -1;
994 dio->next_block_for_io = -1;
995
996 dio->page_errors = 0;
997 dio->io_error = 0;
998 dio->result = 0;
999 dio->iocb = iocb;
1000 dio->i_size = i_size_read(inode);
1001
1002 /*
1003 * BIO completion state.
1004 *
1005 * ->bio_count starts out at one, and we decrement it to zero after all
1006 * BIOs are submitted. This to avoid the situation where a really fast
1007 * (or synchronous) device could take the count to zero while we're
1008 * still submitting BIOs.
1009 */
1010 dio->bio_count = 1;
1011 dio->bios_in_flight = 0;
1012 spin_lock_init(&dio->bio_lock);
1013 dio->bio_list = NULL;
1014 dio->waiter = NULL;
1015
1016 /*
1017 * In case of non-aligned buffers, we may need 2 more
1018 * pages since we need to zero out first and last block.
1019 */
1020 if (unlikely(dio->blkfactor))
1021 dio->pages_in_io = 2;
1022 else
1023 dio->pages_in_io = 0;
1024
1025 for (seg = 0; seg < nr_segs; seg++) {
1026 user_addr = (unsigned long)iov[seg].iov_base;
1027 dio->pages_in_io +=
1028 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1029 - user_addr/PAGE_SIZE);
1030 }
1031
1032 for (seg = 0; seg < nr_segs; seg++) {
1033 user_addr = (unsigned long)iov[seg].iov_base;
1034 dio->size += bytes = iov[seg].iov_len;
1035
1036 /* Index into the first page of the first block */
1037 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1038 dio->final_block_in_request = dio->block_in_file +
1039 (bytes >> blkbits);
1040 /* Page fetching state */
1041 dio->head = 0;
1042 dio->tail = 0;
1043 dio->curr_page = 0;
1044
1045 dio->total_pages = 0;
1046 if (user_addr & (PAGE_SIZE-1)) {
1047 dio->total_pages++;
1048 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1049 }
1050 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1051 dio->curr_user_address = user_addr;
1052
1053 ret = do_direct_IO(dio);
1054
1055 dio->result += iov[seg].iov_len -
1056 ((dio->final_block_in_request - dio->block_in_file) <<
1057 blkbits);
1058
1059 if (ret) {
1060 dio_cleanup(dio);
1061 break;
1062 }
1063 } /* end iovec loop */
1064
1065 if (ret == -ENOTBLK && (rw & WRITE)) {
1066 /*
1067 * The remaining part of the request will be
1068 * be handled by buffered I/O when we return
1069 */
1070 ret = 0;
1071 }
1072 /*
1073 * There may be some unwritten disk at the end of a part-written
1074 * fs-block-sized block. Go zero that now.
1075 */
1076 dio_zero_block(dio, 1);
1077
1078 if (dio->cur_page) {
1079 ret2 = dio_send_cur_page(dio);
1080 if (ret == 0)
1081 ret = ret2;
1082 page_cache_release(dio->cur_page);
1083 dio->cur_page = NULL;
1084 }
1085 if (dio->bio)
1086 dio_bio_submit(dio);
1087
1088 /*
1089 * It is possible that, we return short IO due to end of file.
1090 * In that case, we need to release all the pages we got hold on.
1091 */
1092 dio_cleanup(dio);
1093
1094 /*
1095 * All block lookups have been performed. For READ requests
1096 * we can let i_mutex go now that its achieved its purpose
1097 * of protecting us from looking up uninitialized blocks.
1098 */
1099 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1100 mutex_unlock(&dio->inode->i_mutex);
1101
1102 /*
1103 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1104 * reflect the number of to-be-processed BIOs.
1105 */
1106 if (dio->is_async) {
1107 int should_wait = 0;
1108
1109 if (dio->result < dio->size && (rw & WRITE)) {
1110 dio->waiter = current;
1111 should_wait = 1;
1112 }
1113 if (ret == 0)
1114 ret = dio->result;
1115 finished_one_bio(dio); /* This can free the dio */
1116 blk_run_address_space(inode->i_mapping);
1117 if (should_wait) {
1118 unsigned long flags;
1119 /*
1120 * Wait for already issued I/O to drain out and
1121 * release its references to user-space pages
1122 * before returning to fallback on buffered I/O
1123 */
1124
1125 spin_lock_irqsave(&dio->bio_lock, flags);
1126 set_current_state(TASK_UNINTERRUPTIBLE);
1127 while (dio->bio_count) {
1128 spin_unlock_irqrestore(&dio->bio_lock, flags);
1129 io_schedule();
1130 spin_lock_irqsave(&dio->bio_lock, flags);
1131 set_current_state(TASK_UNINTERRUPTIBLE);
1132 }
1133 spin_unlock_irqrestore(&dio->bio_lock, flags);
1134 set_current_state(TASK_RUNNING);
1135 kfree(dio);
1136 }
1137 } else {
1138 finished_one_bio(dio);
1139 dio_await_completion(dio);
1140
1141 ret = dio_complete(dio, offset, ret);
1142
1143 /* We could have also come here on an AIO file extend */
1144 if (!is_sync_kiocb(iocb) && (rw & WRITE) &&
1145 ret >= 0 && dio->result == dio->size)
1146 /*
1147 * For AIO writes where we have completed the
1148 * i/o, we have to mark the the aio complete.
1149 */
1150 aio_complete(iocb, ret, 0);
1151 kfree(dio);
1152 }
1153 return ret;
1154 }
1155
1156 /*
1157 * This is a library function for use by filesystem drivers.
1158 * The locking rules are governed by the dio_lock_type parameter.
1159 *
1160 * DIO_NO_LOCKING (no locking, for raw block device access)
1161 * For writes, i_mutex is not held on entry; it is never taken.
1162 *
1163 * DIO_LOCKING (simple locking for regular files)
1164 * For writes we are called under i_mutex and return with i_mutex held, even
1165 * though it is internally dropped.
1166 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1167 * returning.
1168 *
1169 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1170 * uninitialised data, allowing parallel direct readers and writers)
1171 * For writes we are called without i_mutex, return without it, never touch it.
1172 * For reads we are called under i_mutex and return with i_mutex held, even
1173 * though it may be internally dropped.
1174 *
1175 * Additional i_alloc_sem locking requirements described inline below.
1176 */
1177 ssize_t
1178 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1179 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1180 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1181 int dio_lock_type)
1182 {
1183 int seg;
1184 size_t size;
1185 unsigned long addr;
1186 unsigned blkbits = inode->i_blkbits;
1187 unsigned bdev_blkbits = 0;
1188 unsigned blocksize_mask = (1 << blkbits) - 1;
1189 ssize_t retval = -EINVAL;
1190 loff_t end = offset;
1191 struct dio *dio;
1192 int release_i_mutex = 0;
1193 int acquire_i_mutex = 0;
1194
1195 if (rw & WRITE)
1196 rw = WRITE_SYNC;
1197
1198 if (bdev)
1199 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1200
1201 if (offset & blocksize_mask) {
1202 if (bdev)
1203 blkbits = bdev_blkbits;
1204 blocksize_mask = (1 << blkbits) - 1;
1205 if (offset & blocksize_mask)
1206 goto out;
1207 }
1208
1209 /* Check the memory alignment. Blocks cannot straddle pages */
1210 for (seg = 0; seg < nr_segs; seg++) {
1211 addr = (unsigned long)iov[seg].iov_base;
1212 size = iov[seg].iov_len;
1213 end += size;
1214 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1215 if (bdev)
1216 blkbits = bdev_blkbits;
1217 blocksize_mask = (1 << blkbits) - 1;
1218 if ((addr & blocksize_mask) || (size & blocksize_mask))
1219 goto out;
1220 }
1221 }
1222
1223 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1224 retval = -ENOMEM;
1225 if (!dio)
1226 goto out;
1227
1228 /*
1229 * For block device access DIO_NO_LOCKING is used,
1230 * neither readers nor writers do any locking at all
1231 * For regular files using DIO_LOCKING,
1232 * readers need to grab i_mutex and i_alloc_sem
1233 * writers need to grab i_alloc_sem only (i_mutex is already held)
1234 * For regular files using DIO_OWN_LOCKING,
1235 * neither readers nor writers take any locks here
1236 */
1237 dio->lock_type = dio_lock_type;
1238 if (dio_lock_type != DIO_NO_LOCKING) {
1239 /* watch out for a 0 len io from a tricksy fs */
1240 if (rw == READ && end > offset) {
1241 struct address_space *mapping;
1242
1243 mapping = iocb->ki_filp->f_mapping;
1244 if (dio_lock_type != DIO_OWN_LOCKING) {
1245 mutex_lock(&inode->i_mutex);
1246 release_i_mutex = 1;
1247 }
1248
1249 retval = filemap_write_and_wait_range(mapping, offset,
1250 end - 1);
1251 if (retval) {
1252 kfree(dio);
1253 goto out;
1254 }
1255
1256 if (dio_lock_type == DIO_OWN_LOCKING) {
1257 mutex_unlock(&inode->i_mutex);
1258 acquire_i_mutex = 1;
1259 }
1260 }
1261
1262 if (dio_lock_type == DIO_LOCKING)
1263 /* lockdep: not the owner will release it */
1264 down_read_non_owner(&inode->i_alloc_sem);
1265 }
1266
1267 /*
1268 * For file extending writes updating i_size before data
1269 * writeouts complete can expose uninitialized blocks. So
1270 * even for AIO, we need to wait for i/o to complete before
1271 * returning in this case.
1272 */
1273 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1274 (end > i_size_read(inode)));
1275
1276 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1277 nr_segs, blkbits, get_block, end_io, dio);
1278
1279 if (rw == READ && dio_lock_type == DIO_LOCKING)
1280 release_i_mutex = 0;
1281
1282 out:
1283 if (release_i_mutex)
1284 mutex_unlock(&inode->i_mutex);
1285 else if (acquire_i_mutex)
1286 mutex_lock(&inode->i_mutex);
1287 return retval;
1288 }
1289 EXPORT_SYMBOL(__blockdev_direct_IO);
This page took 0.054664 seconds and 4 git commands to generate.