direct-io: use a slab cache for struct dio
[deliverable/linux.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39
40 /*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure in the slab cache
43 */
44 #define DIO_PAGES 64
45
46 /*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 */
57
58 /* dio_state only used in the submission path */
59
60 struct dio_submit {
61 struct bio *bio; /* bio under assembly */
62 unsigned blkbits; /* doesn't change */
63 unsigned blkfactor; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
70 write */
71 int pages_in_io; /* approximate total IO pages */
72 size_t size; /* total request size (doesn't change)*/
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 unsigned first_block_in_page; /* doesn't change, Used only once */
79 int boundary; /* prev block is at a boundary */
80 get_block_t *get_block; /* block mapping function */
81 dio_submit_t *submit_io; /* IO submition function */
82
83 loff_t logical_offset_in_bio; /* current first logical block in bio */
84 sector_t final_block_in_bio; /* current final block in bio + 1 */
85 sector_t next_block_for_io; /* next block to be put under IO,
86 in dio_blocks units */
87
88 /*
89 * Deferred addition of a page to the dio. These variables are
90 * private to dio_send_cur_page(), submit_page_section() and
91 * dio_bio_add_page().
92 */
93 struct page *cur_page; /* The page */
94 unsigned cur_page_offset; /* Offset into it, in bytes */
95 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
96 sector_t cur_page_block; /* Where it starts */
97 loff_t cur_page_fs_offset; /* Offset in file */
98
99 /*
100 * Page fetching state. These variables belong to dio_refill_pages().
101 */
102 int curr_page; /* changes */
103 int total_pages; /* doesn't change */
104 unsigned long curr_user_address;/* changes */
105
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
112 };
113
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 int flags; /* doesn't change */
117 int rw;
118 struct inode *inode;
119 loff_t i_size; /* i_size when submitted */
120 dio_iodone_t *end_io; /* IO completion function */
121
122
123 /* BIO completion state */
124 spinlock_t bio_lock; /* protects BIO fields below */
125 int page_errors; /* errno from get_user_pages() */
126 int is_async; /* is IO async ? */
127 int io_error; /* IO error in completion path */
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
134 ssize_t result; /* IO result */
135
136 struct buffer_head map_bh; /* last get_block() result */
137 /*
138 * pages[] (and any fields placed after it) are not zeroed out at
139 * allocation time. Don't add new fields after pages[] unless you
140 * wish that they not be zeroed.
141 */
142 struct page *pages[DIO_PAGES]; /* page buffer */
143 } ____cacheline_aligned_in_smp;
144
145 static struct kmem_cache *dio_cache __read_mostly;
146
147 static void __inode_dio_wait(struct inode *inode)
148 {
149 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
150 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
151
152 do {
153 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
154 if (atomic_read(&inode->i_dio_count))
155 schedule();
156 } while (atomic_read(&inode->i_dio_count));
157 finish_wait(wq, &q.wait);
158 }
159
160 /**
161 * inode_dio_wait - wait for outstanding DIO requests to finish
162 * @inode: inode to wait for
163 *
164 * Waits for all pending direct I/O requests to finish so that we can
165 * proceed with a truncate or equivalent operation.
166 *
167 * Must be called under a lock that serializes taking new references
168 * to i_dio_count, usually by inode->i_mutex.
169 */
170 void inode_dio_wait(struct inode *inode)
171 {
172 if (atomic_read(&inode->i_dio_count))
173 __inode_dio_wait(inode);
174 }
175 EXPORT_SYMBOL_GPL(inode_dio_wait);
176
177 /*
178 * inode_dio_done - signal finish of a direct I/O requests
179 * @inode: inode the direct I/O happens on
180 *
181 * This is called once we've finished processing a direct I/O request,
182 * and is used to wake up callers waiting for direct I/O to be quiesced.
183 */
184 void inode_dio_done(struct inode *inode)
185 {
186 if (atomic_dec_and_test(&inode->i_dio_count))
187 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
188 }
189 EXPORT_SYMBOL_GPL(inode_dio_done);
190
191 /*
192 * How many pages are in the queue?
193 */
194 static inline unsigned dio_pages_present(struct dio_submit *sdio)
195 {
196 return sdio->tail - sdio->head;
197 }
198
199 /*
200 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
201 */
202 static int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
203 {
204 int ret;
205 int nr_pages;
206
207 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
208 ret = get_user_pages_fast(
209 sdio->curr_user_address, /* Where from? */
210 nr_pages, /* How many pages? */
211 dio->rw == READ, /* Write to memory? */
212 &dio->pages[0]); /* Put results here */
213
214 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
215 struct page *page = ZERO_PAGE(0);
216 /*
217 * A memory fault, but the filesystem has some outstanding
218 * mapped blocks. We need to use those blocks up to avoid
219 * leaking stale data in the file.
220 */
221 if (dio->page_errors == 0)
222 dio->page_errors = ret;
223 page_cache_get(page);
224 dio->pages[0] = page;
225 sdio->head = 0;
226 sdio->tail = 1;
227 ret = 0;
228 goto out;
229 }
230
231 if (ret >= 0) {
232 sdio->curr_user_address += ret * PAGE_SIZE;
233 sdio->curr_page += ret;
234 sdio->head = 0;
235 sdio->tail = ret;
236 ret = 0;
237 }
238 out:
239 return ret;
240 }
241
242 /*
243 * Get another userspace page. Returns an ERR_PTR on error. Pages are
244 * buffered inside the dio so that we can call get_user_pages() against a
245 * decent number of pages, less frequently. To provide nicer use of the
246 * L1 cache.
247 */
248 static struct page *dio_get_page(struct dio *dio, struct dio_submit *sdio)
249 {
250 if (dio_pages_present(sdio) == 0) {
251 int ret;
252
253 ret = dio_refill_pages(dio, sdio);
254 if (ret)
255 return ERR_PTR(ret);
256 BUG_ON(dio_pages_present(sdio) == 0);
257 }
258 return dio->pages[sdio->head++];
259 }
260
261 /**
262 * dio_complete() - called when all DIO BIO I/O has been completed
263 * @offset: the byte offset in the file of the completed operation
264 *
265 * This releases locks as dictated by the locking type, lets interested parties
266 * know that a DIO operation has completed, and calculates the resulting return
267 * code for the operation.
268 *
269 * It lets the filesystem know if it registered an interest earlier via
270 * get_block. Pass the private field of the map buffer_head so that
271 * filesystems can use it to hold additional state between get_block calls and
272 * dio_complete.
273 */
274 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
275 {
276 ssize_t transferred = 0;
277
278 /*
279 * AIO submission can race with bio completion to get here while
280 * expecting to have the last io completed by bio completion.
281 * In that case -EIOCBQUEUED is in fact not an error we want
282 * to preserve through this call.
283 */
284 if (ret == -EIOCBQUEUED)
285 ret = 0;
286
287 if (dio->result) {
288 transferred = dio->result;
289
290 /* Check for short read case */
291 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
292 transferred = dio->i_size - offset;
293 }
294
295 if (ret == 0)
296 ret = dio->page_errors;
297 if (ret == 0)
298 ret = dio->io_error;
299 if (ret == 0)
300 ret = transferred;
301
302 if (dio->end_io && dio->result) {
303 dio->end_io(dio->iocb, offset, transferred,
304 dio->map_bh.b_private, ret, is_async);
305 } else {
306 if (is_async)
307 aio_complete(dio->iocb, ret, 0);
308 inode_dio_done(dio->inode);
309 }
310
311 return ret;
312 }
313
314 static int dio_bio_complete(struct dio *dio, struct bio *bio);
315 /*
316 * Asynchronous IO callback.
317 */
318 static void dio_bio_end_aio(struct bio *bio, int error)
319 {
320 struct dio *dio = bio->bi_private;
321 unsigned long remaining;
322 unsigned long flags;
323
324 /* cleanup the bio */
325 dio_bio_complete(dio, bio);
326
327 spin_lock_irqsave(&dio->bio_lock, flags);
328 remaining = --dio->refcount;
329 if (remaining == 1 && dio->waiter)
330 wake_up_process(dio->waiter);
331 spin_unlock_irqrestore(&dio->bio_lock, flags);
332
333 if (remaining == 0) {
334 dio_complete(dio, dio->iocb->ki_pos, 0, true);
335 kmem_cache_free(dio_cache, dio);
336 }
337 }
338
339 /*
340 * The BIO completion handler simply queues the BIO up for the process-context
341 * handler.
342 *
343 * During I/O bi_private points at the dio. After I/O, bi_private is used to
344 * implement a singly-linked list of completed BIOs, at dio->bio_list.
345 */
346 static void dio_bio_end_io(struct bio *bio, int error)
347 {
348 struct dio *dio = bio->bi_private;
349 unsigned long flags;
350
351 spin_lock_irqsave(&dio->bio_lock, flags);
352 bio->bi_private = dio->bio_list;
353 dio->bio_list = bio;
354 if (--dio->refcount == 1 && dio->waiter)
355 wake_up_process(dio->waiter);
356 spin_unlock_irqrestore(&dio->bio_lock, flags);
357 }
358
359 /**
360 * dio_end_io - handle the end io action for the given bio
361 * @bio: The direct io bio thats being completed
362 * @error: Error if there was one
363 *
364 * This is meant to be called by any filesystem that uses their own dio_submit_t
365 * so that the DIO specific endio actions are dealt with after the filesystem
366 * has done it's completion work.
367 */
368 void dio_end_io(struct bio *bio, int error)
369 {
370 struct dio *dio = bio->bi_private;
371
372 if (dio->is_async)
373 dio_bio_end_aio(bio, error);
374 else
375 dio_bio_end_io(bio, error);
376 }
377 EXPORT_SYMBOL_GPL(dio_end_io);
378
379 static void
380 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
381 struct block_device *bdev,
382 sector_t first_sector, int nr_vecs)
383 {
384 struct bio *bio;
385
386 /*
387 * bio_alloc() is guaranteed to return a bio when called with
388 * __GFP_WAIT and we request a valid number of vectors.
389 */
390 bio = bio_alloc(GFP_KERNEL, nr_vecs);
391
392 bio->bi_bdev = bdev;
393 bio->bi_sector = first_sector;
394 if (dio->is_async)
395 bio->bi_end_io = dio_bio_end_aio;
396 else
397 bio->bi_end_io = dio_bio_end_io;
398
399 sdio->bio = bio;
400 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
401 }
402
403 /*
404 * In the AIO read case we speculatively dirty the pages before starting IO.
405 * During IO completion, any of these pages which happen to have been written
406 * back will be redirtied by bio_check_pages_dirty().
407 *
408 * bios hold a dio reference between submit_bio and ->end_io.
409 */
410 static void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
411 {
412 struct bio *bio = sdio->bio;
413 unsigned long flags;
414
415 bio->bi_private = dio;
416
417 spin_lock_irqsave(&dio->bio_lock, flags);
418 dio->refcount++;
419 spin_unlock_irqrestore(&dio->bio_lock, flags);
420
421 if (dio->is_async && dio->rw == READ)
422 bio_set_pages_dirty(bio);
423
424 if (sdio->submit_io)
425 sdio->submit_io(dio->rw, bio, dio->inode,
426 sdio->logical_offset_in_bio);
427 else
428 submit_bio(dio->rw, bio);
429
430 sdio->bio = NULL;
431 sdio->boundary = 0;
432 sdio->logical_offset_in_bio = 0;
433 }
434
435 /*
436 * Release any resources in case of a failure
437 */
438 static void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
439 {
440 while (dio_pages_present(sdio))
441 page_cache_release(dio_get_page(dio, sdio));
442 }
443
444 /*
445 * Wait for the next BIO to complete. Remove it and return it. NULL is
446 * returned once all BIOs have been completed. This must only be called once
447 * all bios have been issued so that dio->refcount can only decrease. This
448 * requires that that the caller hold a reference on the dio.
449 */
450 static struct bio *dio_await_one(struct dio *dio)
451 {
452 unsigned long flags;
453 struct bio *bio = NULL;
454
455 spin_lock_irqsave(&dio->bio_lock, flags);
456
457 /*
458 * Wait as long as the list is empty and there are bios in flight. bio
459 * completion drops the count, maybe adds to the list, and wakes while
460 * holding the bio_lock so we don't need set_current_state()'s barrier
461 * and can call it after testing our condition.
462 */
463 while (dio->refcount > 1 && dio->bio_list == NULL) {
464 __set_current_state(TASK_UNINTERRUPTIBLE);
465 dio->waiter = current;
466 spin_unlock_irqrestore(&dio->bio_lock, flags);
467 io_schedule();
468 /* wake up sets us TASK_RUNNING */
469 spin_lock_irqsave(&dio->bio_lock, flags);
470 dio->waiter = NULL;
471 }
472 if (dio->bio_list) {
473 bio = dio->bio_list;
474 dio->bio_list = bio->bi_private;
475 }
476 spin_unlock_irqrestore(&dio->bio_lock, flags);
477 return bio;
478 }
479
480 /*
481 * Process one completed BIO. No locks are held.
482 */
483 static int dio_bio_complete(struct dio *dio, struct bio *bio)
484 {
485 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
486 struct bio_vec *bvec = bio->bi_io_vec;
487 int page_no;
488
489 if (!uptodate)
490 dio->io_error = -EIO;
491
492 if (dio->is_async && dio->rw == READ) {
493 bio_check_pages_dirty(bio); /* transfers ownership */
494 } else {
495 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
496 struct page *page = bvec[page_no].bv_page;
497
498 if (dio->rw == READ && !PageCompound(page))
499 set_page_dirty_lock(page);
500 page_cache_release(page);
501 }
502 bio_put(bio);
503 }
504 return uptodate ? 0 : -EIO;
505 }
506
507 /*
508 * Wait on and process all in-flight BIOs. This must only be called once
509 * all bios have been issued so that the refcount can only decrease.
510 * This just waits for all bios to make it through dio_bio_complete. IO
511 * errors are propagated through dio->io_error and should be propagated via
512 * dio_complete().
513 */
514 static void dio_await_completion(struct dio *dio)
515 {
516 struct bio *bio;
517 do {
518 bio = dio_await_one(dio);
519 if (bio)
520 dio_bio_complete(dio, bio);
521 } while (bio);
522 }
523
524 /*
525 * A really large O_DIRECT read or write can generate a lot of BIOs. So
526 * to keep the memory consumption sane we periodically reap any completed BIOs
527 * during the BIO generation phase.
528 *
529 * This also helps to limit the peak amount of pinned userspace memory.
530 */
531 static int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
532 {
533 int ret = 0;
534
535 if (sdio->reap_counter++ >= 64) {
536 while (dio->bio_list) {
537 unsigned long flags;
538 struct bio *bio;
539 int ret2;
540
541 spin_lock_irqsave(&dio->bio_lock, flags);
542 bio = dio->bio_list;
543 dio->bio_list = bio->bi_private;
544 spin_unlock_irqrestore(&dio->bio_lock, flags);
545 ret2 = dio_bio_complete(dio, bio);
546 if (ret == 0)
547 ret = ret2;
548 }
549 sdio->reap_counter = 0;
550 }
551 return ret;
552 }
553
554 /*
555 * Call into the fs to map some more disk blocks. We record the current number
556 * of available blocks at sdio->blocks_available. These are in units of the
557 * fs blocksize, (1 << inode->i_blkbits).
558 *
559 * The fs is allowed to map lots of blocks at once. If it wants to do that,
560 * it uses the passed inode-relative block number as the file offset, as usual.
561 *
562 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
563 * has remaining to do. The fs should not map more than this number of blocks.
564 *
565 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
566 * indicate how much contiguous disk space has been made available at
567 * bh->b_blocknr.
568 *
569 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
570 * This isn't very efficient...
571 *
572 * In the case of filesystem holes: the fs may return an arbitrarily-large
573 * hole by returning an appropriate value in b_size and by clearing
574 * buffer_mapped(). However the direct-io code will only process holes one
575 * block at a time - it will repeatedly call get_block() as it walks the hole.
576 */
577 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio)
578 {
579 int ret;
580 struct buffer_head *map_bh = &dio->map_bh;
581 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
582 unsigned long fs_count; /* Number of filesystem-sized blocks */
583 unsigned long dio_count;/* Number of dio_block-sized blocks */
584 unsigned long blkmask;
585 int create;
586
587 /*
588 * If there was a memory error and we've overwritten all the
589 * mapped blocks then we can now return that memory error
590 */
591 ret = dio->page_errors;
592 if (ret == 0) {
593 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
594 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
595 dio_count = sdio->final_block_in_request - sdio->block_in_file;
596 fs_count = dio_count >> sdio->blkfactor;
597 blkmask = (1 << sdio->blkfactor) - 1;
598 if (dio_count & blkmask)
599 fs_count++;
600
601 map_bh->b_state = 0;
602 map_bh->b_size = fs_count << dio->inode->i_blkbits;
603
604 /*
605 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
606 * forbid block creations: only overwrites are permitted.
607 * We will return early to the caller once we see an
608 * unmapped buffer head returned, and the caller will fall
609 * back to buffered I/O.
610 *
611 * Otherwise the decision is left to the get_blocks method,
612 * which may decide to handle it or also return an unmapped
613 * buffer head.
614 */
615 create = dio->rw & WRITE;
616 if (dio->flags & DIO_SKIP_HOLES) {
617 if (sdio->block_in_file < (i_size_read(dio->inode) >>
618 sdio->blkbits))
619 create = 0;
620 }
621
622 ret = (*sdio->get_block)(dio->inode, fs_startblk,
623 map_bh, create);
624 }
625 return ret;
626 }
627
628 /*
629 * There is no bio. Make one now.
630 */
631 static int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
632 sector_t start_sector)
633 {
634 sector_t sector;
635 int ret, nr_pages;
636
637 ret = dio_bio_reap(dio, sdio);
638 if (ret)
639 goto out;
640 sector = start_sector << (sdio->blkbits - 9);
641 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
642 nr_pages = min(nr_pages, BIO_MAX_PAGES);
643 BUG_ON(nr_pages <= 0);
644 dio_bio_alloc(dio, sdio, dio->map_bh.b_bdev, sector, nr_pages);
645 sdio->boundary = 0;
646 out:
647 return ret;
648 }
649
650 /*
651 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
652 * that was successful then update final_block_in_bio and take a ref against
653 * the just-added page.
654 *
655 * Return zero on success. Non-zero means the caller needs to start a new BIO.
656 */
657 static int dio_bio_add_page(struct dio_submit *sdio)
658 {
659 int ret;
660
661 ret = bio_add_page(sdio->bio, sdio->cur_page,
662 sdio->cur_page_len, sdio->cur_page_offset);
663 if (ret == sdio->cur_page_len) {
664 /*
665 * Decrement count only, if we are done with this page
666 */
667 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
668 sdio->pages_in_io--;
669 page_cache_get(sdio->cur_page);
670 sdio->final_block_in_bio = sdio->cur_page_block +
671 (sdio->cur_page_len >> sdio->blkbits);
672 ret = 0;
673 } else {
674 ret = 1;
675 }
676 return ret;
677 }
678
679 /*
680 * Put cur_page under IO. The section of cur_page which is described by
681 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
682 * starts on-disk at cur_page_block.
683 *
684 * We take a ref against the page here (on behalf of its presence in the bio).
685 *
686 * The caller of this function is responsible for removing cur_page from the
687 * dio, and for dropping the refcount which came from that presence.
688 */
689 static int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio)
690 {
691 int ret = 0;
692
693 if (sdio->bio) {
694 loff_t cur_offset = sdio->cur_page_fs_offset;
695 loff_t bio_next_offset = sdio->logical_offset_in_bio +
696 sdio->bio->bi_size;
697
698 /*
699 * See whether this new request is contiguous with the old.
700 *
701 * Btrfs cannot handle having logically non-contiguous requests
702 * submitted. For example if you have
703 *
704 * Logical: [0-4095][HOLE][8192-12287]
705 * Physical: [0-4095] [4096-8191]
706 *
707 * We cannot submit those pages together as one BIO. So if our
708 * current logical offset in the file does not equal what would
709 * be the next logical offset in the bio, submit the bio we
710 * have.
711 */
712 if (sdio->final_block_in_bio != sdio->cur_page_block ||
713 cur_offset != bio_next_offset)
714 dio_bio_submit(dio, sdio);
715 /*
716 * Submit now if the underlying fs is about to perform a
717 * metadata read
718 */
719 else if (sdio->boundary)
720 dio_bio_submit(dio, sdio);
721 }
722
723 if (sdio->bio == NULL) {
724 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
725 if (ret)
726 goto out;
727 }
728
729 if (dio_bio_add_page(sdio) != 0) {
730 dio_bio_submit(dio, sdio);
731 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
732 if (ret == 0) {
733 ret = dio_bio_add_page(sdio);
734 BUG_ON(ret != 0);
735 }
736 }
737 out:
738 return ret;
739 }
740
741 /*
742 * An autonomous function to put a chunk of a page under deferred IO.
743 *
744 * The caller doesn't actually know (or care) whether this piece of page is in
745 * a BIO, or is under IO or whatever. We just take care of all possible
746 * situations here. The separation between the logic of do_direct_IO() and
747 * that of submit_page_section() is important for clarity. Please don't break.
748 *
749 * The chunk of page starts on-disk at blocknr.
750 *
751 * We perform deferred IO, by recording the last-submitted page inside our
752 * private part of the dio structure. If possible, we just expand the IO
753 * across that page here.
754 *
755 * If that doesn't work out then we put the old page into the bio and add this
756 * page to the dio instead.
757 */
758 static int
759 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
760 unsigned offset, unsigned len, sector_t blocknr)
761 {
762 int ret = 0;
763
764 if (dio->rw & WRITE) {
765 /*
766 * Read accounting is performed in submit_bio()
767 */
768 task_io_account_write(len);
769 }
770
771 /*
772 * Can we just grow the current page's presence in the dio?
773 */
774 if (sdio->cur_page == page &&
775 sdio->cur_page_offset + sdio->cur_page_len == offset &&
776 sdio->cur_page_block +
777 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
778 sdio->cur_page_len += len;
779
780 /*
781 * If sdio->boundary then we want to schedule the IO now to
782 * avoid metadata seeks.
783 */
784 if (sdio->boundary) {
785 ret = dio_send_cur_page(dio, sdio);
786 page_cache_release(sdio->cur_page);
787 sdio->cur_page = NULL;
788 }
789 goto out;
790 }
791
792 /*
793 * If there's a deferred page already there then send it.
794 */
795 if (sdio->cur_page) {
796 ret = dio_send_cur_page(dio, sdio);
797 page_cache_release(sdio->cur_page);
798 sdio->cur_page = NULL;
799 if (ret)
800 goto out;
801 }
802
803 page_cache_get(page); /* It is in dio */
804 sdio->cur_page = page;
805 sdio->cur_page_offset = offset;
806 sdio->cur_page_len = len;
807 sdio->cur_page_block = blocknr;
808 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809 out:
810 return ret;
811 }
812
813 /*
814 * Clean any dirty buffers in the blockdev mapping which alias newly-created
815 * file blocks. Only called for S_ISREG files - blockdevs do not set
816 * buffer_new
817 */
818 static void clean_blockdev_aliases(struct dio *dio)
819 {
820 unsigned i;
821 unsigned nblocks;
822
823 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
824
825 for (i = 0; i < nblocks; i++) {
826 unmap_underlying_metadata(dio->map_bh.b_bdev,
827 dio->map_bh.b_blocknr + i);
828 }
829 }
830
831 /*
832 * If we are not writing the entire block and get_block() allocated
833 * the block for us, we need to fill-in the unused portion of the
834 * block with zeros. This happens only if user-buffer, fileoffset or
835 * io length is not filesystem block-size multiple.
836 *
837 * `end' is zero if we're doing the start of the IO, 1 at the end of the
838 * IO.
839 */
840 static void dio_zero_block(struct dio *dio, struct dio_submit *sdio, int end)
841 {
842 unsigned dio_blocks_per_fs_block;
843 unsigned this_chunk_blocks; /* In dio_blocks */
844 unsigned this_chunk_bytes;
845 struct page *page;
846
847 sdio->start_zero_done = 1;
848 if (!sdio->blkfactor || !buffer_new(&dio->map_bh))
849 return;
850
851 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
852 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
853
854 if (!this_chunk_blocks)
855 return;
856
857 /*
858 * We need to zero out part of an fs block. It is either at the
859 * beginning or the end of the fs block.
860 */
861 if (end)
862 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
863
864 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
865
866 page = ZERO_PAGE(0);
867 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
868 sdio->next_block_for_io))
869 return;
870
871 sdio->next_block_for_io += this_chunk_blocks;
872 }
873
874 /*
875 * Walk the user pages, and the file, mapping blocks to disk and generating
876 * a sequence of (page,offset,len,block) mappings. These mappings are injected
877 * into submit_page_section(), which takes care of the next stage of submission
878 *
879 * Direct IO against a blockdev is different from a file. Because we can
880 * happily perform page-sized but 512-byte aligned IOs. It is important that
881 * blockdev IO be able to have fine alignment and large sizes.
882 *
883 * So what we do is to permit the ->get_block function to populate bh.b_size
884 * with the size of IO which is permitted at this offset and this i_blkbits.
885 *
886 * For best results, the blockdev should be set up with 512-byte i_blkbits and
887 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
888 * fine alignment but still allows this function to work in PAGE_SIZE units.
889 */
890 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio)
891 {
892 const unsigned blkbits = sdio->blkbits;
893 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
894 struct page *page;
895 unsigned block_in_page;
896 struct buffer_head *map_bh = &dio->map_bh;
897 int ret = 0;
898
899 /* The I/O can start at any block offset within the first page */
900 block_in_page = sdio->first_block_in_page;
901
902 while (sdio->block_in_file < sdio->final_block_in_request) {
903 page = dio_get_page(dio, sdio);
904 if (IS_ERR(page)) {
905 ret = PTR_ERR(page);
906 goto out;
907 }
908
909 while (block_in_page < blocks_per_page) {
910 unsigned offset_in_page = block_in_page << blkbits;
911 unsigned this_chunk_bytes; /* # of bytes mapped */
912 unsigned this_chunk_blocks; /* # of blocks */
913 unsigned u;
914
915 if (sdio->blocks_available == 0) {
916 /*
917 * Need to go and map some more disk
918 */
919 unsigned long blkmask;
920 unsigned long dio_remainder;
921
922 ret = get_more_blocks(dio, sdio);
923 if (ret) {
924 page_cache_release(page);
925 goto out;
926 }
927 if (!buffer_mapped(map_bh))
928 goto do_holes;
929
930 sdio->blocks_available =
931 map_bh->b_size >> sdio->blkbits;
932 sdio->next_block_for_io =
933 map_bh->b_blocknr << sdio->blkfactor;
934 if (buffer_new(map_bh))
935 clean_blockdev_aliases(dio);
936
937 if (!sdio->blkfactor)
938 goto do_holes;
939
940 blkmask = (1 << sdio->blkfactor) - 1;
941 dio_remainder = (sdio->block_in_file & blkmask);
942
943 /*
944 * If we are at the start of IO and that IO
945 * starts partway into a fs-block,
946 * dio_remainder will be non-zero. If the IO
947 * is a read then we can simply advance the IO
948 * cursor to the first block which is to be
949 * read. But if the IO is a write and the
950 * block was newly allocated we cannot do that;
951 * the start of the fs block must be zeroed out
952 * on-disk
953 */
954 if (!buffer_new(map_bh))
955 sdio->next_block_for_io += dio_remainder;
956 sdio->blocks_available -= dio_remainder;
957 }
958 do_holes:
959 /* Handle holes */
960 if (!buffer_mapped(map_bh)) {
961 loff_t i_size_aligned;
962
963 /* AKPM: eargh, -ENOTBLK is a hack */
964 if (dio->rw & WRITE) {
965 page_cache_release(page);
966 return -ENOTBLK;
967 }
968
969 /*
970 * Be sure to account for a partial block as the
971 * last block in the file
972 */
973 i_size_aligned = ALIGN(i_size_read(dio->inode),
974 1 << blkbits);
975 if (sdio->block_in_file >=
976 i_size_aligned >> blkbits) {
977 /* We hit eof */
978 page_cache_release(page);
979 goto out;
980 }
981 zero_user(page, block_in_page << blkbits,
982 1 << blkbits);
983 sdio->block_in_file++;
984 block_in_page++;
985 goto next_block;
986 }
987
988 /*
989 * If we're performing IO which has an alignment which
990 * is finer than the underlying fs, go check to see if
991 * we must zero out the start of this block.
992 */
993 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
994 dio_zero_block(dio, sdio, 0);
995
996 /*
997 * Work out, in this_chunk_blocks, how much disk we
998 * can add to this page
999 */
1000 this_chunk_blocks = sdio->blocks_available;
1001 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1002 if (this_chunk_blocks > u)
1003 this_chunk_blocks = u;
1004 u = sdio->final_block_in_request - sdio->block_in_file;
1005 if (this_chunk_blocks > u)
1006 this_chunk_blocks = u;
1007 this_chunk_bytes = this_chunk_blocks << blkbits;
1008 BUG_ON(this_chunk_bytes == 0);
1009
1010 sdio->boundary = buffer_boundary(map_bh);
1011 ret = submit_page_section(dio, sdio, page,
1012 offset_in_page,
1013 this_chunk_bytes,
1014 sdio->next_block_for_io);
1015 if (ret) {
1016 page_cache_release(page);
1017 goto out;
1018 }
1019 sdio->next_block_for_io += this_chunk_blocks;
1020
1021 sdio->block_in_file += this_chunk_blocks;
1022 block_in_page += this_chunk_blocks;
1023 sdio->blocks_available -= this_chunk_blocks;
1024 next_block:
1025 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1026 if (sdio->block_in_file == sdio->final_block_in_request)
1027 break;
1028 }
1029
1030 /* Drop the ref which was taken in get_user_pages() */
1031 page_cache_release(page);
1032 block_in_page = 0;
1033 }
1034 out:
1035 return ret;
1036 }
1037
1038 static ssize_t
1039 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
1040 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1041 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1042 dio_submit_t submit_io, struct dio *dio, struct dio_submit *sdio)
1043 {
1044 unsigned long user_addr;
1045 unsigned long flags;
1046 int seg;
1047 ssize_t ret = 0;
1048 ssize_t ret2;
1049 size_t bytes;
1050
1051 dio->inode = inode;
1052 dio->rw = rw;
1053 sdio->blkbits = blkbits;
1054 sdio->blkfactor = inode->i_blkbits - blkbits;
1055 sdio->block_in_file = offset >> blkbits;
1056
1057 sdio->get_block = get_block;
1058 dio->end_io = end_io;
1059 sdio->submit_io = submit_io;
1060 sdio->final_block_in_bio = -1;
1061 sdio->next_block_for_io = -1;
1062
1063 dio->iocb = iocb;
1064 dio->i_size = i_size_read(inode);
1065
1066 spin_lock_init(&dio->bio_lock);
1067 dio->refcount = 1;
1068
1069 /*
1070 * In case of non-aligned buffers, we may need 2 more
1071 * pages since we need to zero out first and last block.
1072 */
1073 if (unlikely(sdio->blkfactor))
1074 sdio->pages_in_io = 2;
1075
1076 for (seg = 0; seg < nr_segs; seg++) {
1077 user_addr = (unsigned long)iov[seg].iov_base;
1078 sdio->pages_in_io +=
1079 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1080 - user_addr/PAGE_SIZE);
1081 }
1082
1083 for (seg = 0; seg < nr_segs; seg++) {
1084 user_addr = (unsigned long)iov[seg].iov_base;
1085 sdio->size += bytes = iov[seg].iov_len;
1086
1087 /* Index into the first page of the first block */
1088 sdio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1089 sdio->final_block_in_request = sdio->block_in_file +
1090 (bytes >> blkbits);
1091 /* Page fetching state */
1092 sdio->head = 0;
1093 sdio->tail = 0;
1094 sdio->curr_page = 0;
1095
1096 sdio->total_pages = 0;
1097 if (user_addr & (PAGE_SIZE-1)) {
1098 sdio->total_pages++;
1099 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1100 }
1101 sdio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1102 sdio->curr_user_address = user_addr;
1103
1104 ret = do_direct_IO(dio, sdio);
1105
1106 dio->result += iov[seg].iov_len -
1107 ((sdio->final_block_in_request - sdio->block_in_file) <<
1108 blkbits);
1109
1110 if (ret) {
1111 dio_cleanup(dio, sdio);
1112 break;
1113 }
1114 } /* end iovec loop */
1115
1116 if (ret == -ENOTBLK) {
1117 /*
1118 * The remaining part of the request will be
1119 * be handled by buffered I/O when we return
1120 */
1121 ret = 0;
1122 }
1123 /*
1124 * There may be some unwritten disk at the end of a part-written
1125 * fs-block-sized block. Go zero that now.
1126 */
1127 dio_zero_block(dio, sdio, 1);
1128
1129 if (sdio->cur_page) {
1130 ret2 = dio_send_cur_page(dio, sdio);
1131 if (ret == 0)
1132 ret = ret2;
1133 page_cache_release(sdio->cur_page);
1134 sdio->cur_page = NULL;
1135 }
1136 if (sdio->bio)
1137 dio_bio_submit(dio, sdio);
1138
1139 /*
1140 * It is possible that, we return short IO due to end of file.
1141 * In that case, we need to release all the pages we got hold on.
1142 */
1143 dio_cleanup(dio, sdio);
1144
1145 /*
1146 * All block lookups have been performed. For READ requests
1147 * we can let i_mutex go now that its achieved its purpose
1148 * of protecting us from looking up uninitialized blocks.
1149 */
1150 if (rw == READ && (dio->flags & DIO_LOCKING))
1151 mutex_unlock(&dio->inode->i_mutex);
1152
1153 /*
1154 * The only time we want to leave bios in flight is when a successful
1155 * partial aio read or full aio write have been setup. In that case
1156 * bio completion will call aio_complete. The only time it's safe to
1157 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1158 * This had *better* be the only place that raises -EIOCBQUEUED.
1159 */
1160 BUG_ON(ret == -EIOCBQUEUED);
1161 if (dio->is_async && ret == 0 && dio->result &&
1162 ((rw & READ) || (dio->result == sdio->size)))
1163 ret = -EIOCBQUEUED;
1164
1165 if (ret != -EIOCBQUEUED)
1166 dio_await_completion(dio);
1167
1168 /*
1169 * Sync will always be dropping the final ref and completing the
1170 * operation. AIO can if it was a broken operation described above or
1171 * in fact if all the bios race to complete before we get here. In
1172 * that case dio_complete() translates the EIOCBQUEUED into the proper
1173 * return code that the caller will hand to aio_complete().
1174 *
1175 * This is managed by the bio_lock instead of being an atomic_t so that
1176 * completion paths can drop their ref and use the remaining count to
1177 * decide to wake the submission path atomically.
1178 */
1179 spin_lock_irqsave(&dio->bio_lock, flags);
1180 ret2 = --dio->refcount;
1181 spin_unlock_irqrestore(&dio->bio_lock, flags);
1182
1183 if (ret2 == 0) {
1184 ret = dio_complete(dio, offset, ret, false);
1185 kmem_cache_free(dio_cache, dio);
1186 } else
1187 BUG_ON(ret != -EIOCBQUEUED);
1188
1189 return ret;
1190 }
1191
1192 /*
1193 * This is a library function for use by filesystem drivers.
1194 *
1195 * The locking rules are governed by the flags parameter:
1196 * - if the flags value contains DIO_LOCKING we use a fancy locking
1197 * scheme for dumb filesystems.
1198 * For writes this function is called under i_mutex and returns with
1199 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1200 * taken and dropped again before returning.
1201 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1202 * internal locking but rather rely on the filesystem to synchronize
1203 * direct I/O reads/writes versus each other and truncate.
1204 *
1205 * To help with locking against truncate we incremented the i_dio_count
1206 * counter before starting direct I/O, and decrement it once we are done.
1207 * Truncate can wait for it to reach zero to provide exclusion. It is
1208 * expected that filesystem provide exclusion between new direct I/O
1209 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1210 * but other filesystems need to take care of this on their own.
1211 */
1212 ssize_t
1213 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1214 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1215 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1216 dio_submit_t submit_io, int flags)
1217 {
1218 int seg;
1219 size_t size;
1220 unsigned long addr;
1221 unsigned blkbits = inode->i_blkbits;
1222 unsigned bdev_blkbits = 0;
1223 unsigned blocksize_mask = (1 << blkbits) - 1;
1224 ssize_t retval = -EINVAL;
1225 loff_t end = offset;
1226 struct dio *dio;
1227 struct dio_submit sdio = { 0, };
1228
1229 if (rw & WRITE)
1230 rw = WRITE_ODIRECT;
1231
1232 if (bdev)
1233 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1234
1235 if (offset & blocksize_mask) {
1236 if (bdev)
1237 blkbits = bdev_blkbits;
1238 blocksize_mask = (1 << blkbits) - 1;
1239 if (offset & blocksize_mask)
1240 goto out;
1241 }
1242
1243 /* Check the memory alignment. Blocks cannot straddle pages */
1244 for (seg = 0; seg < nr_segs; seg++) {
1245 addr = (unsigned long)iov[seg].iov_base;
1246 size = iov[seg].iov_len;
1247 end += size;
1248 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1249 if (bdev)
1250 blkbits = bdev_blkbits;
1251 blocksize_mask = (1 << blkbits) - 1;
1252 if ((addr & blocksize_mask) || (size & blocksize_mask))
1253 goto out;
1254 }
1255 }
1256
1257 /* watch out for a 0 len io from a tricksy fs */
1258 if (rw == READ && end == offset)
1259 return 0;
1260
1261 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1262 retval = -ENOMEM;
1263 if (!dio)
1264 goto out;
1265 /*
1266 * Believe it or not, zeroing out the page array caused a .5%
1267 * performance regression in a database benchmark. So, we take
1268 * care to only zero out what's needed.
1269 */
1270 memset(dio, 0, offsetof(struct dio, pages));
1271
1272 dio->flags = flags;
1273 if (dio->flags & DIO_LOCKING) {
1274 if (rw == READ) {
1275 struct address_space *mapping =
1276 iocb->ki_filp->f_mapping;
1277
1278 /* will be released by direct_io_worker */
1279 mutex_lock(&inode->i_mutex);
1280
1281 retval = filemap_write_and_wait_range(mapping, offset,
1282 end - 1);
1283 if (retval) {
1284 mutex_unlock(&inode->i_mutex);
1285 kmem_cache_free(dio_cache, dio);
1286 goto out;
1287 }
1288 }
1289 }
1290
1291 /*
1292 * Will be decremented at I/O completion time.
1293 */
1294 atomic_inc(&inode->i_dio_count);
1295
1296 /*
1297 * For file extending writes updating i_size before data
1298 * writeouts complete can expose uninitialized blocks. So
1299 * even for AIO, we need to wait for i/o to complete before
1300 * returning in this case.
1301 */
1302 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1303 (end > i_size_read(inode)));
1304
1305 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1306 nr_segs, blkbits, get_block, end_io,
1307 submit_io, dio, &sdio);
1308
1309 out:
1310 return retval;
1311 }
1312 EXPORT_SYMBOL(__blockdev_direct_IO);
1313
1314 static __init int dio_init(void)
1315 {
1316 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1317 return 0;
1318 }
1319 module_init(dio_init)
This page took 0.058793 seconds and 6 git commands to generate.