drivers/w1/slaves/w1_bq27000.c: fix the error handling in w1_bq27000_add_slave()
[deliverable/linux.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43
44 /*
45 * LOCKING:
46 * There are three level of locking required by epoll :
47 *
48 * 1) epmutex (mutex)
49 * 2) ep->mtx (mutex)
50 * 3) ep->lock (spinlock)
51 *
52 * The acquire order is the one listed above, from 1 to 3.
53 * We need a spinlock (ep->lock) because we manipulate objects
54 * from inside the poll callback, that might be triggered from
55 * a wake_up() that in turn might be called from IRQ context.
56 * So we can't sleep inside the poll callback and hence we need
57 * a spinlock. During the event transfer loop (from kernel to
58 * user space) we could end up sleeping due a copy_to_user(), so
59 * we need a lock that will allow us to sleep. This lock is a
60 * mutex (ep->mtx). It is acquired during the event transfer loop,
61 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62 * Then we also need a global mutex to serialize eventpoll_release_file()
63 * and ep_free().
64 * This mutex is acquired by ep_free() during the epoll file
65 * cleanup path and it is also acquired by eventpoll_release_file()
66 * if a file has been pushed inside an epoll set and it is then
67 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68 * It is also acquired when inserting an epoll fd onto another epoll
69 * fd. We do this so that we walk the epoll tree and ensure that this
70 * insertion does not create a cycle of epoll file descriptors, which
71 * could lead to deadlock. We need a global mutex to prevent two
72 * simultaneous inserts (A into B and B into A) from racing and
73 * constructing a cycle without either insert observing that it is
74 * going to.
75 * It is necessary to acquire multiple "ep->mtx"es at once in the
76 * case when one epoll fd is added to another. In this case, we
77 * always acquire the locks in the order of nesting (i.e. after
78 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79 * before e2->mtx). Since we disallow cycles of epoll file
80 * descriptors, this ensures that the mutexes are well-ordered. In
81 * order to communicate this nesting to lockdep, when walking a tree
82 * of epoll file descriptors, we use the current recursion depth as
83 * the lockdep subkey.
84 * It is possible to drop the "ep->mtx" and to use the global
85 * mutex "epmutex" (together with "ep->lock") to have it working,
86 * but having "ep->mtx" will make the interface more scalable.
87 * Events that require holding "epmutex" are very rare, while for
88 * normal operations the epoll private "ep->mtx" will guarantee
89 * a better scalability.
90 */
91
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
94
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
97
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
99
100 #define EP_UNACTIVE_PTR ((void *) -1L)
101
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
103
104 struct epoll_filefd {
105 struct file *file;
106 int fd;
107 } __packed;
108
109 /*
110 * Structure used to track possible nested calls, for too deep recursions
111 * and loop cycles.
112 */
113 struct nested_call_node {
114 struct list_head llink;
115 void *cookie;
116 void *ctx;
117 };
118
119 /*
120 * This structure is used as collector for nested calls, to check for
121 * maximum recursion dept and loop cycles.
122 */
123 struct nested_calls {
124 struct list_head tasks_call_list;
125 spinlock_t lock;
126 };
127
128 /*
129 * Each file descriptor added to the eventpoll interface will
130 * have an entry of this type linked to the "rbr" RB tree.
131 * Avoid increasing the size of this struct, there can be many thousands
132 * of these on a server and we do not want this to take another cache line.
133 */
134 struct epitem {
135 /* RB tree node used to link this structure to the eventpoll RB tree */
136 struct rb_node rbn;
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /* Number of active wait queue attached to poll operations */
151 int nwait;
152
153 /* List containing poll wait queues */
154 struct list_head pwqlist;
155
156 /* The "container" of this item */
157 struct eventpoll *ep;
158
159 /* List header used to link this item to the "struct file" items list */
160 struct list_head fllink;
161
162 /* wakeup_source used when EPOLLWAKEUP is set */
163 struct wakeup_source __rcu *ws;
164
165 /* The structure that describe the interested events and the source fd */
166 struct epoll_event event;
167 };
168
169 /*
170 * This structure is stored inside the "private_data" member of the file
171 * structure and represents the main data structure for the eventpoll
172 * interface.
173 */
174 struct eventpoll {
175 /* Protect the access to this structure */
176 spinlock_t lock;
177
178 /*
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
183 */
184 struct mutex mtx;
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
195 /* RB tree root used to store monitored fd structs */
196 struct rb_root rbr;
197
198 /*
199 * This is a single linked list that chains all the "struct epitem" that
200 * happened while transferring ready events to userspace w/out
201 * holding ->lock.
202 */
203 struct epitem *ovflist;
204
205 /* wakeup_source used when ep_scan_ready_list is running */
206 struct wakeup_source *ws;
207
208 /* The user that created the eventpoll descriptor */
209 struct user_struct *user;
210
211 struct file *file;
212
213 /* used to optimize loop detection check */
214 int visited;
215 struct list_head visited_list_link;
216 };
217
218 /* Wait structure used by the poll hooks */
219 struct eppoll_entry {
220 /* List header used to link this structure to the "struct epitem" */
221 struct list_head llink;
222
223 /* The "base" pointer is set to the container "struct epitem" */
224 struct epitem *base;
225
226 /*
227 * Wait queue item that will be linked to the target file wait
228 * queue head.
229 */
230 wait_queue_t wait;
231
232 /* The wait queue head that linked the "wait" wait queue item */
233 wait_queue_head_t *whead;
234 };
235
236 /* Wrapper struct used by poll queueing */
237 struct ep_pqueue {
238 poll_table pt;
239 struct epitem *epi;
240 };
241
242 /* Used by the ep_send_events() function as callback private data */
243 struct ep_send_events_data {
244 int maxevents;
245 struct epoll_event __user *events;
246 };
247
248 /*
249 * Configuration options available inside /proc/sys/fs/epoll/
250 */
251 /* Maximum number of epoll watched descriptors, per user */
252 static long max_user_watches __read_mostly;
253
254 /*
255 * This mutex is used to serialize ep_free() and eventpoll_release_file().
256 */
257 static DEFINE_MUTEX(epmutex);
258
259 /* Used to check for epoll file descriptor inclusion loops */
260 static struct nested_calls poll_loop_ncalls;
261
262 /* Used for safe wake up implementation */
263 static struct nested_calls poll_safewake_ncalls;
264
265 /* Used to call file's f_op->poll() under the nested calls boundaries */
266 static struct nested_calls poll_readywalk_ncalls;
267
268 /* Slab cache used to allocate "struct epitem" */
269 static struct kmem_cache *epi_cache __read_mostly;
270
271 /* Slab cache used to allocate "struct eppoll_entry" */
272 static struct kmem_cache *pwq_cache __read_mostly;
273
274 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
275 static LIST_HEAD(visited_list);
276
277 /*
278 * List of files with newly added links, where we may need to limit the number
279 * of emanating paths. Protected by the epmutex.
280 */
281 static LIST_HEAD(tfile_check_list);
282
283 #ifdef CONFIG_SYSCTL
284
285 #include <linux/sysctl.h>
286
287 static long zero;
288 static long long_max = LONG_MAX;
289
290 ctl_table epoll_table[] = {
291 {
292 .procname = "max_user_watches",
293 .data = &max_user_watches,
294 .maxlen = sizeof(max_user_watches),
295 .mode = 0644,
296 .proc_handler = proc_doulongvec_minmax,
297 .extra1 = &zero,
298 .extra2 = &long_max,
299 },
300 { }
301 };
302 #endif /* CONFIG_SYSCTL */
303
304 static const struct file_operations eventpoll_fops;
305
306 static inline int is_file_epoll(struct file *f)
307 {
308 return f->f_op == &eventpoll_fops;
309 }
310
311 /* Setup the structure that is used as key for the RB tree */
312 static inline void ep_set_ffd(struct epoll_filefd *ffd,
313 struct file *file, int fd)
314 {
315 ffd->file = file;
316 ffd->fd = fd;
317 }
318
319 /* Compare RB tree keys */
320 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
321 struct epoll_filefd *p2)
322 {
323 return (p1->file > p2->file ? +1:
324 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
325 }
326
327 /* Tells us if the item is currently linked */
328 static inline int ep_is_linked(struct list_head *p)
329 {
330 return !list_empty(p);
331 }
332
333 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
334 {
335 return container_of(p, struct eppoll_entry, wait);
336 }
337
338 /* Get the "struct epitem" from a wait queue pointer */
339 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
340 {
341 return container_of(p, struct eppoll_entry, wait)->base;
342 }
343
344 /* Get the "struct epitem" from an epoll queue wrapper */
345 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
346 {
347 return container_of(p, struct ep_pqueue, pt)->epi;
348 }
349
350 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
351 static inline int ep_op_has_event(int op)
352 {
353 return op != EPOLL_CTL_DEL;
354 }
355
356 /* Initialize the poll safe wake up structure */
357 static void ep_nested_calls_init(struct nested_calls *ncalls)
358 {
359 INIT_LIST_HEAD(&ncalls->tasks_call_list);
360 spin_lock_init(&ncalls->lock);
361 }
362
363 /**
364 * ep_events_available - Checks if ready events might be available.
365 *
366 * @ep: Pointer to the eventpoll context.
367 *
368 * Returns: Returns a value different than zero if ready events are available,
369 * or zero otherwise.
370 */
371 static inline int ep_events_available(struct eventpoll *ep)
372 {
373 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
374 }
375
376 /**
377 * ep_call_nested - Perform a bound (possibly) nested call, by checking
378 * that the recursion limit is not exceeded, and that
379 * the same nested call (by the meaning of same cookie) is
380 * no re-entered.
381 *
382 * @ncalls: Pointer to the nested_calls structure to be used for this call.
383 * @max_nests: Maximum number of allowed nesting calls.
384 * @nproc: Nested call core function pointer.
385 * @priv: Opaque data to be passed to the @nproc callback.
386 * @cookie: Cookie to be used to identify this nested call.
387 * @ctx: This instance context.
388 *
389 * Returns: Returns the code returned by the @nproc callback, or -1 if
390 * the maximum recursion limit has been exceeded.
391 */
392 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
393 int (*nproc)(void *, void *, int), void *priv,
394 void *cookie, void *ctx)
395 {
396 int error, call_nests = 0;
397 unsigned long flags;
398 struct list_head *lsthead = &ncalls->tasks_call_list;
399 struct nested_call_node *tncur;
400 struct nested_call_node tnode;
401
402 spin_lock_irqsave(&ncalls->lock, flags);
403
404 /*
405 * Try to see if the current task is already inside this wakeup call.
406 * We use a list here, since the population inside this set is always
407 * very much limited.
408 */
409 list_for_each_entry(tncur, lsthead, llink) {
410 if (tncur->ctx == ctx &&
411 (tncur->cookie == cookie || ++call_nests > max_nests)) {
412 /*
413 * Ops ... loop detected or maximum nest level reached.
414 * We abort this wake by breaking the cycle itself.
415 */
416 error = -1;
417 goto out_unlock;
418 }
419 }
420
421 /* Add the current task and cookie to the list */
422 tnode.ctx = ctx;
423 tnode.cookie = cookie;
424 list_add(&tnode.llink, lsthead);
425
426 spin_unlock_irqrestore(&ncalls->lock, flags);
427
428 /* Call the nested function */
429 error = (*nproc)(priv, cookie, call_nests);
430
431 /* Remove the current task from the list */
432 spin_lock_irqsave(&ncalls->lock, flags);
433 list_del(&tnode.llink);
434 out_unlock:
435 spin_unlock_irqrestore(&ncalls->lock, flags);
436
437 return error;
438 }
439
440 /*
441 * As described in commit 0ccf831cb lockdep: annotate epoll
442 * the use of wait queues used by epoll is done in a very controlled
443 * manner. Wake ups can nest inside each other, but are never done
444 * with the same locking. For example:
445 *
446 * dfd = socket(...);
447 * efd1 = epoll_create();
448 * efd2 = epoll_create();
449 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
450 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
451 *
452 * When a packet arrives to the device underneath "dfd", the net code will
453 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
454 * callback wakeup entry on that queue, and the wake_up() performed by the
455 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
456 * (efd1) notices that it may have some event ready, so it needs to wake up
457 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
458 * that ends up in another wake_up(), after having checked about the
459 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
460 * avoid stack blasting.
461 *
462 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
463 * this special case of epoll.
464 */
465 #ifdef CONFIG_DEBUG_LOCK_ALLOC
466 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
467 unsigned long events, int subclass)
468 {
469 unsigned long flags;
470
471 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
472 wake_up_locked_poll(wqueue, events);
473 spin_unlock_irqrestore(&wqueue->lock, flags);
474 }
475 #else
476 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
477 unsigned long events, int subclass)
478 {
479 wake_up_poll(wqueue, events);
480 }
481 #endif
482
483 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
484 {
485 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
486 1 + call_nests);
487 return 0;
488 }
489
490 /*
491 * Perform a safe wake up of the poll wait list. The problem is that
492 * with the new callback'd wake up system, it is possible that the
493 * poll callback is reentered from inside the call to wake_up() done
494 * on the poll wait queue head. The rule is that we cannot reenter the
495 * wake up code from the same task more than EP_MAX_NESTS times,
496 * and we cannot reenter the same wait queue head at all. This will
497 * enable to have a hierarchy of epoll file descriptor of no more than
498 * EP_MAX_NESTS deep.
499 */
500 static void ep_poll_safewake(wait_queue_head_t *wq)
501 {
502 int this_cpu = get_cpu();
503
504 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
505 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
506
507 put_cpu();
508 }
509
510 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
511 {
512 wait_queue_head_t *whead;
513
514 rcu_read_lock();
515 /* If it is cleared by POLLFREE, it should be rcu-safe */
516 whead = rcu_dereference(pwq->whead);
517 if (whead)
518 remove_wait_queue(whead, &pwq->wait);
519 rcu_read_unlock();
520 }
521
522 /*
523 * This function unregisters poll callbacks from the associated file
524 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
525 * ep_free).
526 */
527 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
528 {
529 struct list_head *lsthead = &epi->pwqlist;
530 struct eppoll_entry *pwq;
531
532 while (!list_empty(lsthead)) {
533 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
534
535 list_del(&pwq->llink);
536 ep_remove_wait_queue(pwq);
537 kmem_cache_free(pwq_cache, pwq);
538 }
539 }
540
541 /* call only when ep->mtx is held */
542 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
543 {
544 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
545 }
546
547 /* call only when ep->mtx is held */
548 static inline void ep_pm_stay_awake(struct epitem *epi)
549 {
550 struct wakeup_source *ws = ep_wakeup_source(epi);
551
552 if (ws)
553 __pm_stay_awake(ws);
554 }
555
556 static inline bool ep_has_wakeup_source(struct epitem *epi)
557 {
558 return rcu_access_pointer(epi->ws) ? true : false;
559 }
560
561 /* call when ep->mtx cannot be held (ep_poll_callback) */
562 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
563 {
564 struct wakeup_source *ws;
565
566 rcu_read_lock();
567 ws = rcu_dereference(epi->ws);
568 if (ws)
569 __pm_stay_awake(ws);
570 rcu_read_unlock();
571 }
572
573 /**
574 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
575 * the scan code, to call f_op->poll(). Also allows for
576 * O(NumReady) performance.
577 *
578 * @ep: Pointer to the epoll private data structure.
579 * @sproc: Pointer to the scan callback.
580 * @priv: Private opaque data passed to the @sproc callback.
581 * @depth: The current depth of recursive f_op->poll calls.
582 *
583 * Returns: The same integer error code returned by the @sproc callback.
584 */
585 static int ep_scan_ready_list(struct eventpoll *ep,
586 int (*sproc)(struct eventpoll *,
587 struct list_head *, void *),
588 void *priv,
589 int depth)
590 {
591 int error, pwake = 0;
592 unsigned long flags;
593 struct epitem *epi, *nepi;
594 LIST_HEAD(txlist);
595
596 /*
597 * We need to lock this because we could be hit by
598 * eventpoll_release_file() and epoll_ctl().
599 */
600 mutex_lock_nested(&ep->mtx, depth);
601
602 /*
603 * Steal the ready list, and re-init the original one to the
604 * empty list. Also, set ep->ovflist to NULL so that events
605 * happening while looping w/out locks, are not lost. We cannot
606 * have the poll callback to queue directly on ep->rdllist,
607 * because we want the "sproc" callback to be able to do it
608 * in a lockless way.
609 */
610 spin_lock_irqsave(&ep->lock, flags);
611 list_splice_init(&ep->rdllist, &txlist);
612 ep->ovflist = NULL;
613 spin_unlock_irqrestore(&ep->lock, flags);
614
615 /*
616 * Now call the callback function.
617 */
618 error = (*sproc)(ep, &txlist, priv);
619
620 spin_lock_irqsave(&ep->lock, flags);
621 /*
622 * During the time we spent inside the "sproc" callback, some
623 * other events might have been queued by the poll callback.
624 * We re-insert them inside the main ready-list here.
625 */
626 for (nepi = ep->ovflist; (epi = nepi) != NULL;
627 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
628 /*
629 * We need to check if the item is already in the list.
630 * During the "sproc" callback execution time, items are
631 * queued into ->ovflist but the "txlist" might already
632 * contain them, and the list_splice() below takes care of them.
633 */
634 if (!ep_is_linked(&epi->rdllink)) {
635 list_add_tail(&epi->rdllink, &ep->rdllist);
636 ep_pm_stay_awake(epi);
637 }
638 }
639 /*
640 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
641 * releasing the lock, events will be queued in the normal way inside
642 * ep->rdllist.
643 */
644 ep->ovflist = EP_UNACTIVE_PTR;
645
646 /*
647 * Quickly re-inject items left on "txlist".
648 */
649 list_splice(&txlist, &ep->rdllist);
650 __pm_relax(ep->ws);
651
652 if (!list_empty(&ep->rdllist)) {
653 /*
654 * Wake up (if active) both the eventpoll wait list and
655 * the ->poll() wait list (delayed after we release the lock).
656 */
657 if (waitqueue_active(&ep->wq))
658 wake_up_locked(&ep->wq);
659 if (waitqueue_active(&ep->poll_wait))
660 pwake++;
661 }
662 spin_unlock_irqrestore(&ep->lock, flags);
663
664 mutex_unlock(&ep->mtx);
665
666 /* We have to call this outside the lock */
667 if (pwake)
668 ep_poll_safewake(&ep->poll_wait);
669
670 return error;
671 }
672
673 /*
674 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
675 * all the associated resources. Must be called with "mtx" held.
676 */
677 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
678 {
679 unsigned long flags;
680 struct file *file = epi->ffd.file;
681
682 /*
683 * Removes poll wait queue hooks. We _have_ to do this without holding
684 * the "ep->lock" otherwise a deadlock might occur. This because of the
685 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
686 * queue head lock when unregistering the wait queue. The wakeup callback
687 * will run by holding the wait queue head lock and will call our callback
688 * that will try to get "ep->lock".
689 */
690 ep_unregister_pollwait(ep, epi);
691
692 /* Remove the current item from the list of epoll hooks */
693 spin_lock(&file->f_lock);
694 if (ep_is_linked(&epi->fllink))
695 list_del_init(&epi->fllink);
696 spin_unlock(&file->f_lock);
697
698 rb_erase(&epi->rbn, &ep->rbr);
699
700 spin_lock_irqsave(&ep->lock, flags);
701 if (ep_is_linked(&epi->rdllink))
702 list_del_init(&epi->rdllink);
703 spin_unlock_irqrestore(&ep->lock, flags);
704
705 wakeup_source_unregister(ep_wakeup_source(epi));
706
707 /* At this point it is safe to free the eventpoll item */
708 kmem_cache_free(epi_cache, epi);
709
710 atomic_long_dec(&ep->user->epoll_watches);
711
712 return 0;
713 }
714
715 static void ep_free(struct eventpoll *ep)
716 {
717 struct rb_node *rbp;
718 struct epitem *epi;
719
720 /* We need to release all tasks waiting for these file */
721 if (waitqueue_active(&ep->poll_wait))
722 ep_poll_safewake(&ep->poll_wait);
723
724 /*
725 * We need to lock this because we could be hit by
726 * eventpoll_release_file() while we're freeing the "struct eventpoll".
727 * We do not need to hold "ep->mtx" here because the epoll file
728 * is on the way to be removed and no one has references to it
729 * anymore. The only hit might come from eventpoll_release_file() but
730 * holding "epmutex" is sufficient here.
731 */
732 mutex_lock(&epmutex);
733
734 /*
735 * Walks through the whole tree by unregistering poll callbacks.
736 */
737 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
738 epi = rb_entry(rbp, struct epitem, rbn);
739
740 ep_unregister_pollwait(ep, epi);
741 }
742
743 /*
744 * Walks through the whole tree by freeing each "struct epitem". At this
745 * point we are sure no poll callbacks will be lingering around, and also by
746 * holding "epmutex" we can be sure that no file cleanup code will hit
747 * us during this operation. So we can avoid the lock on "ep->lock".
748 * We do not need to lock ep->mtx, either, we only do it to prevent
749 * a lockdep warning.
750 */
751 mutex_lock(&ep->mtx);
752 while ((rbp = rb_first(&ep->rbr)) != NULL) {
753 epi = rb_entry(rbp, struct epitem, rbn);
754 ep_remove(ep, epi);
755 }
756 mutex_unlock(&ep->mtx);
757
758 mutex_unlock(&epmutex);
759 mutex_destroy(&ep->mtx);
760 free_uid(ep->user);
761 wakeup_source_unregister(ep->ws);
762 kfree(ep);
763 }
764
765 static int ep_eventpoll_release(struct inode *inode, struct file *file)
766 {
767 struct eventpoll *ep = file->private_data;
768
769 if (ep)
770 ep_free(ep);
771
772 return 0;
773 }
774
775 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
776 {
777 pt->_key = epi->event.events;
778
779 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
780 }
781
782 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
783 void *priv)
784 {
785 struct epitem *epi, *tmp;
786 poll_table pt;
787
788 init_poll_funcptr(&pt, NULL);
789
790 list_for_each_entry_safe(epi, tmp, head, rdllink) {
791 if (ep_item_poll(epi, &pt))
792 return POLLIN | POLLRDNORM;
793 else {
794 /*
795 * Item has been dropped into the ready list by the poll
796 * callback, but it's not actually ready, as far as
797 * caller requested events goes. We can remove it here.
798 */
799 __pm_relax(ep_wakeup_source(epi));
800 list_del_init(&epi->rdllink);
801 }
802 }
803
804 return 0;
805 }
806
807 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
808 {
809 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
810 }
811
812 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
813 {
814 int pollflags;
815 struct eventpoll *ep = file->private_data;
816
817 /* Insert inside our poll wait queue */
818 poll_wait(file, &ep->poll_wait, wait);
819
820 /*
821 * Proceed to find out if wanted events are really available inside
822 * the ready list. This need to be done under ep_call_nested()
823 * supervision, since the call to f_op->poll() done on listed files
824 * could re-enter here.
825 */
826 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
827 ep_poll_readyevents_proc, ep, ep, current);
828
829 return pollflags != -1 ? pollflags : 0;
830 }
831
832 #ifdef CONFIG_PROC_FS
833 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
834 {
835 struct eventpoll *ep = f->private_data;
836 struct rb_node *rbp;
837 int ret = 0;
838
839 mutex_lock(&ep->mtx);
840 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
841 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
842
843 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
844 epi->ffd.fd, epi->event.events,
845 (long long)epi->event.data);
846 if (ret)
847 break;
848 }
849 mutex_unlock(&ep->mtx);
850
851 return ret;
852 }
853 #endif
854
855 /* File callbacks that implement the eventpoll file behaviour */
856 static const struct file_operations eventpoll_fops = {
857 #ifdef CONFIG_PROC_FS
858 .show_fdinfo = ep_show_fdinfo,
859 #endif
860 .release = ep_eventpoll_release,
861 .poll = ep_eventpoll_poll,
862 .llseek = noop_llseek,
863 };
864
865 /*
866 * This is called from eventpoll_release() to unlink files from the eventpoll
867 * interface. We need to have this facility to cleanup correctly files that are
868 * closed without being removed from the eventpoll interface.
869 */
870 void eventpoll_release_file(struct file *file)
871 {
872 struct list_head *lsthead = &file->f_ep_links;
873 struct eventpoll *ep;
874 struct epitem *epi;
875
876 /*
877 * We don't want to get "file->f_lock" because it is not
878 * necessary. It is not necessary because we're in the "struct file"
879 * cleanup path, and this means that no one is using this file anymore.
880 * So, for example, epoll_ctl() cannot hit here since if we reach this
881 * point, the file counter already went to zero and fget() would fail.
882 * The only hit might come from ep_free() but by holding the mutex
883 * will correctly serialize the operation. We do need to acquire
884 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
885 * from anywhere but ep_free().
886 *
887 * Besides, ep_remove() acquires the lock, so we can't hold it here.
888 */
889 mutex_lock(&epmutex);
890
891 while (!list_empty(lsthead)) {
892 epi = list_first_entry(lsthead, struct epitem, fllink);
893
894 ep = epi->ep;
895 list_del_init(&epi->fllink);
896 mutex_lock_nested(&ep->mtx, 0);
897 ep_remove(ep, epi);
898 mutex_unlock(&ep->mtx);
899 }
900
901 mutex_unlock(&epmutex);
902 }
903
904 static int ep_alloc(struct eventpoll **pep)
905 {
906 int error;
907 struct user_struct *user;
908 struct eventpoll *ep;
909
910 user = get_current_user();
911 error = -ENOMEM;
912 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
913 if (unlikely(!ep))
914 goto free_uid;
915
916 spin_lock_init(&ep->lock);
917 mutex_init(&ep->mtx);
918 init_waitqueue_head(&ep->wq);
919 init_waitqueue_head(&ep->poll_wait);
920 INIT_LIST_HEAD(&ep->rdllist);
921 ep->rbr = RB_ROOT;
922 ep->ovflist = EP_UNACTIVE_PTR;
923 ep->user = user;
924
925 *pep = ep;
926
927 return 0;
928
929 free_uid:
930 free_uid(user);
931 return error;
932 }
933
934 /*
935 * Search the file inside the eventpoll tree. The RB tree operations
936 * are protected by the "mtx" mutex, and ep_find() must be called with
937 * "mtx" held.
938 */
939 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
940 {
941 int kcmp;
942 struct rb_node *rbp;
943 struct epitem *epi, *epir = NULL;
944 struct epoll_filefd ffd;
945
946 ep_set_ffd(&ffd, file, fd);
947 for (rbp = ep->rbr.rb_node; rbp; ) {
948 epi = rb_entry(rbp, struct epitem, rbn);
949 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
950 if (kcmp > 0)
951 rbp = rbp->rb_right;
952 else if (kcmp < 0)
953 rbp = rbp->rb_left;
954 else {
955 epir = epi;
956 break;
957 }
958 }
959
960 return epir;
961 }
962
963 /*
964 * This is the callback that is passed to the wait queue wakeup
965 * mechanism. It is called by the stored file descriptors when they
966 * have events to report.
967 */
968 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
969 {
970 int pwake = 0;
971 unsigned long flags;
972 struct epitem *epi = ep_item_from_wait(wait);
973 struct eventpoll *ep = epi->ep;
974
975 if ((unsigned long)key & POLLFREE) {
976 ep_pwq_from_wait(wait)->whead = NULL;
977 /*
978 * whead = NULL above can race with ep_remove_wait_queue()
979 * which can do another remove_wait_queue() after us, so we
980 * can't use __remove_wait_queue(). whead->lock is held by
981 * the caller.
982 */
983 list_del_init(&wait->task_list);
984 }
985
986 spin_lock_irqsave(&ep->lock, flags);
987
988 /*
989 * If the event mask does not contain any poll(2) event, we consider the
990 * descriptor to be disabled. This condition is likely the effect of the
991 * EPOLLONESHOT bit that disables the descriptor when an event is received,
992 * until the next EPOLL_CTL_MOD will be issued.
993 */
994 if (!(epi->event.events & ~EP_PRIVATE_BITS))
995 goto out_unlock;
996
997 /*
998 * Check the events coming with the callback. At this stage, not
999 * every device reports the events in the "key" parameter of the
1000 * callback. We need to be able to handle both cases here, hence the
1001 * test for "key" != NULL before the event match test.
1002 */
1003 if (key && !((unsigned long) key & epi->event.events))
1004 goto out_unlock;
1005
1006 /*
1007 * If we are transferring events to userspace, we can hold no locks
1008 * (because we're accessing user memory, and because of linux f_op->poll()
1009 * semantics). All the events that happen during that period of time are
1010 * chained in ep->ovflist and requeued later on.
1011 */
1012 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1013 if (epi->next == EP_UNACTIVE_PTR) {
1014 epi->next = ep->ovflist;
1015 ep->ovflist = epi;
1016 if (epi->ws) {
1017 /*
1018 * Activate ep->ws since epi->ws may get
1019 * deactivated at any time.
1020 */
1021 __pm_stay_awake(ep->ws);
1022 }
1023
1024 }
1025 goto out_unlock;
1026 }
1027
1028 /* If this file is already in the ready list we exit soon */
1029 if (!ep_is_linked(&epi->rdllink)) {
1030 list_add_tail(&epi->rdllink, &ep->rdllist);
1031 ep_pm_stay_awake_rcu(epi);
1032 }
1033
1034 /*
1035 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1036 * wait list.
1037 */
1038 if (waitqueue_active(&ep->wq))
1039 wake_up_locked(&ep->wq);
1040 if (waitqueue_active(&ep->poll_wait))
1041 pwake++;
1042
1043 out_unlock:
1044 spin_unlock_irqrestore(&ep->lock, flags);
1045
1046 /* We have to call this outside the lock */
1047 if (pwake)
1048 ep_poll_safewake(&ep->poll_wait);
1049
1050 return 1;
1051 }
1052
1053 /*
1054 * This is the callback that is used to add our wait queue to the
1055 * target file wakeup lists.
1056 */
1057 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1058 poll_table *pt)
1059 {
1060 struct epitem *epi = ep_item_from_epqueue(pt);
1061 struct eppoll_entry *pwq;
1062
1063 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1064 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1065 pwq->whead = whead;
1066 pwq->base = epi;
1067 add_wait_queue(whead, &pwq->wait);
1068 list_add_tail(&pwq->llink, &epi->pwqlist);
1069 epi->nwait++;
1070 } else {
1071 /* We have to signal that an error occurred */
1072 epi->nwait = -1;
1073 }
1074 }
1075
1076 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1077 {
1078 int kcmp;
1079 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1080 struct epitem *epic;
1081
1082 while (*p) {
1083 parent = *p;
1084 epic = rb_entry(parent, struct epitem, rbn);
1085 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1086 if (kcmp > 0)
1087 p = &parent->rb_right;
1088 else
1089 p = &parent->rb_left;
1090 }
1091 rb_link_node(&epi->rbn, parent, p);
1092 rb_insert_color(&epi->rbn, &ep->rbr);
1093 }
1094
1095
1096
1097 #define PATH_ARR_SIZE 5
1098 /*
1099 * These are the number paths of length 1 to 5, that we are allowing to emanate
1100 * from a single file of interest. For example, we allow 1000 paths of length
1101 * 1, to emanate from each file of interest. This essentially represents the
1102 * potential wakeup paths, which need to be limited in order to avoid massive
1103 * uncontrolled wakeup storms. The common use case should be a single ep which
1104 * is connected to n file sources. In this case each file source has 1 path
1105 * of length 1. Thus, the numbers below should be more than sufficient. These
1106 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1107 * and delete can't add additional paths. Protected by the epmutex.
1108 */
1109 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1110 static int path_count[PATH_ARR_SIZE];
1111
1112 static int path_count_inc(int nests)
1113 {
1114 /* Allow an arbitrary number of depth 1 paths */
1115 if (nests == 0)
1116 return 0;
1117
1118 if (++path_count[nests] > path_limits[nests])
1119 return -1;
1120 return 0;
1121 }
1122
1123 static void path_count_init(void)
1124 {
1125 int i;
1126
1127 for (i = 0; i < PATH_ARR_SIZE; i++)
1128 path_count[i] = 0;
1129 }
1130
1131 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1132 {
1133 int error = 0;
1134 struct file *file = priv;
1135 struct file *child_file;
1136 struct epitem *epi;
1137
1138 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1139 child_file = epi->ep->file;
1140 if (is_file_epoll(child_file)) {
1141 if (list_empty(&child_file->f_ep_links)) {
1142 if (path_count_inc(call_nests)) {
1143 error = -1;
1144 break;
1145 }
1146 } else {
1147 error = ep_call_nested(&poll_loop_ncalls,
1148 EP_MAX_NESTS,
1149 reverse_path_check_proc,
1150 child_file, child_file,
1151 current);
1152 }
1153 if (error != 0)
1154 break;
1155 } else {
1156 printk(KERN_ERR "reverse_path_check_proc: "
1157 "file is not an ep!\n");
1158 }
1159 }
1160 return error;
1161 }
1162
1163 /**
1164 * reverse_path_check - The tfile_check_list is list of file *, which have
1165 * links that are proposed to be newly added. We need to
1166 * make sure that those added links don't add too many
1167 * paths such that we will spend all our time waking up
1168 * eventpoll objects.
1169 *
1170 * Returns: Returns zero if the proposed links don't create too many paths,
1171 * -1 otherwise.
1172 */
1173 static int reverse_path_check(void)
1174 {
1175 int error = 0;
1176 struct file *current_file;
1177
1178 /* let's call this for all tfiles */
1179 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1180 path_count_init();
1181 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1182 reverse_path_check_proc, current_file,
1183 current_file, current);
1184 if (error)
1185 break;
1186 }
1187 return error;
1188 }
1189
1190 static int ep_create_wakeup_source(struct epitem *epi)
1191 {
1192 const char *name;
1193 struct wakeup_source *ws;
1194
1195 if (!epi->ep->ws) {
1196 epi->ep->ws = wakeup_source_register("eventpoll");
1197 if (!epi->ep->ws)
1198 return -ENOMEM;
1199 }
1200
1201 name = epi->ffd.file->f_path.dentry->d_name.name;
1202 ws = wakeup_source_register(name);
1203
1204 if (!ws)
1205 return -ENOMEM;
1206 rcu_assign_pointer(epi->ws, ws);
1207
1208 return 0;
1209 }
1210
1211 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1212 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1213 {
1214 struct wakeup_source *ws = ep_wakeup_source(epi);
1215
1216 RCU_INIT_POINTER(epi->ws, NULL);
1217
1218 /*
1219 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1220 * used internally by wakeup_source_remove, too (called by
1221 * wakeup_source_unregister), so we cannot use call_rcu
1222 */
1223 synchronize_rcu();
1224 wakeup_source_unregister(ws);
1225 }
1226
1227 /*
1228 * Must be called with "mtx" held.
1229 */
1230 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1231 struct file *tfile, int fd)
1232 {
1233 int error, revents, pwake = 0;
1234 unsigned long flags;
1235 long user_watches;
1236 struct epitem *epi;
1237 struct ep_pqueue epq;
1238
1239 user_watches = atomic_long_read(&ep->user->epoll_watches);
1240 if (unlikely(user_watches >= max_user_watches))
1241 return -ENOSPC;
1242 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1243 return -ENOMEM;
1244
1245 /* Item initialization follow here ... */
1246 INIT_LIST_HEAD(&epi->rdllink);
1247 INIT_LIST_HEAD(&epi->fllink);
1248 INIT_LIST_HEAD(&epi->pwqlist);
1249 epi->ep = ep;
1250 ep_set_ffd(&epi->ffd, tfile, fd);
1251 epi->event = *event;
1252 epi->nwait = 0;
1253 epi->next = EP_UNACTIVE_PTR;
1254 if (epi->event.events & EPOLLWAKEUP) {
1255 error = ep_create_wakeup_source(epi);
1256 if (error)
1257 goto error_create_wakeup_source;
1258 } else {
1259 RCU_INIT_POINTER(epi->ws, NULL);
1260 }
1261
1262 /* Initialize the poll table using the queue callback */
1263 epq.epi = epi;
1264 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1265
1266 /*
1267 * Attach the item to the poll hooks and get current event bits.
1268 * We can safely use the file* here because its usage count has
1269 * been increased by the caller of this function. Note that after
1270 * this operation completes, the poll callback can start hitting
1271 * the new item.
1272 */
1273 revents = ep_item_poll(epi, &epq.pt);
1274
1275 /*
1276 * We have to check if something went wrong during the poll wait queue
1277 * install process. Namely an allocation for a wait queue failed due
1278 * high memory pressure.
1279 */
1280 error = -ENOMEM;
1281 if (epi->nwait < 0)
1282 goto error_unregister;
1283
1284 /* Add the current item to the list of active epoll hook for this file */
1285 spin_lock(&tfile->f_lock);
1286 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1287 spin_unlock(&tfile->f_lock);
1288
1289 /*
1290 * Add the current item to the RB tree. All RB tree operations are
1291 * protected by "mtx", and ep_insert() is called with "mtx" held.
1292 */
1293 ep_rbtree_insert(ep, epi);
1294
1295 /* now check if we've created too many backpaths */
1296 error = -EINVAL;
1297 if (reverse_path_check())
1298 goto error_remove_epi;
1299
1300 /* We have to drop the new item inside our item list to keep track of it */
1301 spin_lock_irqsave(&ep->lock, flags);
1302
1303 /* If the file is already "ready" we drop it inside the ready list */
1304 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1305 list_add_tail(&epi->rdllink, &ep->rdllist);
1306 ep_pm_stay_awake(epi);
1307
1308 /* Notify waiting tasks that events are available */
1309 if (waitqueue_active(&ep->wq))
1310 wake_up_locked(&ep->wq);
1311 if (waitqueue_active(&ep->poll_wait))
1312 pwake++;
1313 }
1314
1315 spin_unlock_irqrestore(&ep->lock, flags);
1316
1317 atomic_long_inc(&ep->user->epoll_watches);
1318
1319 /* We have to call this outside the lock */
1320 if (pwake)
1321 ep_poll_safewake(&ep->poll_wait);
1322
1323 return 0;
1324
1325 error_remove_epi:
1326 spin_lock(&tfile->f_lock);
1327 if (ep_is_linked(&epi->fllink))
1328 list_del_init(&epi->fllink);
1329 spin_unlock(&tfile->f_lock);
1330
1331 rb_erase(&epi->rbn, &ep->rbr);
1332
1333 error_unregister:
1334 ep_unregister_pollwait(ep, epi);
1335
1336 /*
1337 * We need to do this because an event could have been arrived on some
1338 * allocated wait queue. Note that we don't care about the ep->ovflist
1339 * list, since that is used/cleaned only inside a section bound by "mtx".
1340 * And ep_insert() is called with "mtx" held.
1341 */
1342 spin_lock_irqsave(&ep->lock, flags);
1343 if (ep_is_linked(&epi->rdllink))
1344 list_del_init(&epi->rdllink);
1345 spin_unlock_irqrestore(&ep->lock, flags);
1346
1347 wakeup_source_unregister(ep_wakeup_source(epi));
1348
1349 error_create_wakeup_source:
1350 kmem_cache_free(epi_cache, epi);
1351
1352 return error;
1353 }
1354
1355 /*
1356 * Modify the interest event mask by dropping an event if the new mask
1357 * has a match in the current file status. Must be called with "mtx" held.
1358 */
1359 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1360 {
1361 int pwake = 0;
1362 unsigned int revents;
1363 poll_table pt;
1364
1365 init_poll_funcptr(&pt, NULL);
1366
1367 /*
1368 * Set the new event interest mask before calling f_op->poll();
1369 * otherwise we might miss an event that happens between the
1370 * f_op->poll() call and the new event set registering.
1371 */
1372 epi->event.events = event->events; /* need barrier below */
1373 epi->event.data = event->data; /* protected by mtx */
1374 if (epi->event.events & EPOLLWAKEUP) {
1375 if (!ep_has_wakeup_source(epi))
1376 ep_create_wakeup_source(epi);
1377 } else if (ep_has_wakeup_source(epi)) {
1378 ep_destroy_wakeup_source(epi);
1379 }
1380
1381 /*
1382 * The following barrier has two effects:
1383 *
1384 * 1) Flush epi changes above to other CPUs. This ensures
1385 * we do not miss events from ep_poll_callback if an
1386 * event occurs immediately after we call f_op->poll().
1387 * We need this because we did not take ep->lock while
1388 * changing epi above (but ep_poll_callback does take
1389 * ep->lock).
1390 *
1391 * 2) We also need to ensure we do not miss _past_ events
1392 * when calling f_op->poll(). This barrier also
1393 * pairs with the barrier in wq_has_sleeper (see
1394 * comments for wq_has_sleeper).
1395 *
1396 * This barrier will now guarantee ep_poll_callback or f_op->poll
1397 * (or both) will notice the readiness of an item.
1398 */
1399 smp_mb();
1400
1401 /*
1402 * Get current event bits. We can safely use the file* here because
1403 * its usage count has been increased by the caller of this function.
1404 */
1405 revents = ep_item_poll(epi, &pt);
1406
1407 /*
1408 * If the item is "hot" and it is not registered inside the ready
1409 * list, push it inside.
1410 */
1411 if (revents & event->events) {
1412 spin_lock_irq(&ep->lock);
1413 if (!ep_is_linked(&epi->rdllink)) {
1414 list_add_tail(&epi->rdllink, &ep->rdllist);
1415 ep_pm_stay_awake(epi);
1416
1417 /* Notify waiting tasks that events are available */
1418 if (waitqueue_active(&ep->wq))
1419 wake_up_locked(&ep->wq);
1420 if (waitqueue_active(&ep->poll_wait))
1421 pwake++;
1422 }
1423 spin_unlock_irq(&ep->lock);
1424 }
1425
1426 /* We have to call this outside the lock */
1427 if (pwake)
1428 ep_poll_safewake(&ep->poll_wait);
1429
1430 return 0;
1431 }
1432
1433 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1434 void *priv)
1435 {
1436 struct ep_send_events_data *esed = priv;
1437 int eventcnt;
1438 unsigned int revents;
1439 struct epitem *epi;
1440 struct epoll_event __user *uevent;
1441 struct wakeup_source *ws;
1442 poll_table pt;
1443
1444 init_poll_funcptr(&pt, NULL);
1445
1446 /*
1447 * We can loop without lock because we are passed a task private list.
1448 * Items cannot vanish during the loop because ep_scan_ready_list() is
1449 * holding "mtx" during this call.
1450 */
1451 for (eventcnt = 0, uevent = esed->events;
1452 !list_empty(head) && eventcnt < esed->maxevents;) {
1453 epi = list_first_entry(head, struct epitem, rdllink);
1454
1455 /*
1456 * Activate ep->ws before deactivating epi->ws to prevent
1457 * triggering auto-suspend here (in case we reactive epi->ws
1458 * below).
1459 *
1460 * This could be rearranged to delay the deactivation of epi->ws
1461 * instead, but then epi->ws would temporarily be out of sync
1462 * with ep_is_linked().
1463 */
1464 ws = ep_wakeup_source(epi);
1465 if (ws) {
1466 if (ws->active)
1467 __pm_stay_awake(ep->ws);
1468 __pm_relax(ws);
1469 }
1470
1471 list_del_init(&epi->rdllink);
1472
1473 revents = ep_item_poll(epi, &pt);
1474
1475 /*
1476 * If the event mask intersect the caller-requested one,
1477 * deliver the event to userspace. Again, ep_scan_ready_list()
1478 * is holding "mtx", so no operations coming from userspace
1479 * can change the item.
1480 */
1481 if (revents) {
1482 if (__put_user(revents, &uevent->events) ||
1483 __put_user(epi->event.data, &uevent->data)) {
1484 list_add(&epi->rdllink, head);
1485 ep_pm_stay_awake(epi);
1486 return eventcnt ? eventcnt : -EFAULT;
1487 }
1488 eventcnt++;
1489 uevent++;
1490 if (epi->event.events & EPOLLONESHOT)
1491 epi->event.events &= EP_PRIVATE_BITS;
1492 else if (!(epi->event.events & EPOLLET)) {
1493 /*
1494 * If this file has been added with Level
1495 * Trigger mode, we need to insert back inside
1496 * the ready list, so that the next call to
1497 * epoll_wait() will check again the events
1498 * availability. At this point, no one can insert
1499 * into ep->rdllist besides us. The epoll_ctl()
1500 * callers are locked out by
1501 * ep_scan_ready_list() holding "mtx" and the
1502 * poll callback will queue them in ep->ovflist.
1503 */
1504 list_add_tail(&epi->rdllink, &ep->rdllist);
1505 ep_pm_stay_awake(epi);
1506 }
1507 }
1508 }
1509
1510 return eventcnt;
1511 }
1512
1513 static int ep_send_events(struct eventpoll *ep,
1514 struct epoll_event __user *events, int maxevents)
1515 {
1516 struct ep_send_events_data esed;
1517
1518 esed.maxevents = maxevents;
1519 esed.events = events;
1520
1521 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1522 }
1523
1524 static inline struct timespec ep_set_mstimeout(long ms)
1525 {
1526 struct timespec now, ts = {
1527 .tv_sec = ms / MSEC_PER_SEC,
1528 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1529 };
1530
1531 ktime_get_ts(&now);
1532 return timespec_add_safe(now, ts);
1533 }
1534
1535 /**
1536 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1537 * event buffer.
1538 *
1539 * @ep: Pointer to the eventpoll context.
1540 * @events: Pointer to the userspace buffer where the ready events should be
1541 * stored.
1542 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1543 * @timeout: Maximum timeout for the ready events fetch operation, in
1544 * milliseconds. If the @timeout is zero, the function will not block,
1545 * while if the @timeout is less than zero, the function will block
1546 * until at least one event has been retrieved (or an error
1547 * occurred).
1548 *
1549 * Returns: Returns the number of ready events which have been fetched, or an
1550 * error code, in case of error.
1551 */
1552 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1553 int maxevents, long timeout)
1554 {
1555 int res = 0, eavail, timed_out = 0;
1556 unsigned long flags;
1557 long slack = 0;
1558 wait_queue_t wait;
1559 ktime_t expires, *to = NULL;
1560
1561 if (timeout > 0) {
1562 struct timespec end_time = ep_set_mstimeout(timeout);
1563
1564 slack = select_estimate_accuracy(&end_time);
1565 to = &expires;
1566 *to = timespec_to_ktime(end_time);
1567 } else if (timeout == 0) {
1568 /*
1569 * Avoid the unnecessary trip to the wait queue loop, if the
1570 * caller specified a non blocking operation.
1571 */
1572 timed_out = 1;
1573 spin_lock_irqsave(&ep->lock, flags);
1574 goto check_events;
1575 }
1576
1577 fetch_events:
1578 spin_lock_irqsave(&ep->lock, flags);
1579
1580 if (!ep_events_available(ep)) {
1581 /*
1582 * We don't have any available event to return to the caller.
1583 * We need to sleep here, and we will be wake up by
1584 * ep_poll_callback() when events will become available.
1585 */
1586 init_waitqueue_entry(&wait, current);
1587 __add_wait_queue_exclusive(&ep->wq, &wait);
1588
1589 for (;;) {
1590 /*
1591 * We don't want to sleep if the ep_poll_callback() sends us
1592 * a wakeup in between. That's why we set the task state
1593 * to TASK_INTERRUPTIBLE before doing the checks.
1594 */
1595 set_current_state(TASK_INTERRUPTIBLE);
1596 if (ep_events_available(ep) || timed_out)
1597 break;
1598 if (signal_pending(current)) {
1599 res = -EINTR;
1600 break;
1601 }
1602
1603 spin_unlock_irqrestore(&ep->lock, flags);
1604 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1605 timed_out = 1;
1606
1607 spin_lock_irqsave(&ep->lock, flags);
1608 }
1609 __remove_wait_queue(&ep->wq, &wait);
1610
1611 set_current_state(TASK_RUNNING);
1612 }
1613 check_events:
1614 /* Is it worth to try to dig for events ? */
1615 eavail = ep_events_available(ep);
1616
1617 spin_unlock_irqrestore(&ep->lock, flags);
1618
1619 /*
1620 * Try to transfer events to user space. In case we get 0 events and
1621 * there's still timeout left over, we go trying again in search of
1622 * more luck.
1623 */
1624 if (!res && eavail &&
1625 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1626 goto fetch_events;
1627
1628 return res;
1629 }
1630
1631 /**
1632 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1633 * API, to verify that adding an epoll file inside another
1634 * epoll structure, does not violate the constraints, in
1635 * terms of closed loops, or too deep chains (which can
1636 * result in excessive stack usage).
1637 *
1638 * @priv: Pointer to the epoll file to be currently checked.
1639 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1640 * data structure pointer.
1641 * @call_nests: Current dept of the @ep_call_nested() call stack.
1642 *
1643 * Returns: Returns zero if adding the epoll @file inside current epoll
1644 * structure @ep does not violate the constraints, or -1 otherwise.
1645 */
1646 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1647 {
1648 int error = 0;
1649 struct file *file = priv;
1650 struct eventpoll *ep = file->private_data;
1651 struct eventpoll *ep_tovisit;
1652 struct rb_node *rbp;
1653 struct epitem *epi;
1654
1655 mutex_lock_nested(&ep->mtx, call_nests + 1);
1656 ep->visited = 1;
1657 list_add(&ep->visited_list_link, &visited_list);
1658 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1659 epi = rb_entry(rbp, struct epitem, rbn);
1660 if (unlikely(is_file_epoll(epi->ffd.file))) {
1661 ep_tovisit = epi->ffd.file->private_data;
1662 if (ep_tovisit->visited)
1663 continue;
1664 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1665 ep_loop_check_proc, epi->ffd.file,
1666 ep_tovisit, current);
1667 if (error != 0)
1668 break;
1669 } else {
1670 /*
1671 * If we've reached a file that is not associated with
1672 * an ep, then we need to check if the newly added
1673 * links are going to add too many wakeup paths. We do
1674 * this by adding it to the tfile_check_list, if it's
1675 * not already there, and calling reverse_path_check()
1676 * during ep_insert().
1677 */
1678 if (list_empty(&epi->ffd.file->f_tfile_llink))
1679 list_add(&epi->ffd.file->f_tfile_llink,
1680 &tfile_check_list);
1681 }
1682 }
1683 mutex_unlock(&ep->mtx);
1684
1685 return error;
1686 }
1687
1688 /**
1689 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1690 * another epoll file (represented by @ep) does not create
1691 * closed loops or too deep chains.
1692 *
1693 * @ep: Pointer to the epoll private data structure.
1694 * @file: Pointer to the epoll file to be checked.
1695 *
1696 * Returns: Returns zero if adding the epoll @file inside current epoll
1697 * structure @ep does not violate the constraints, or -1 otherwise.
1698 */
1699 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1700 {
1701 int ret;
1702 struct eventpoll *ep_cur, *ep_next;
1703
1704 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1705 ep_loop_check_proc, file, ep, current);
1706 /* clear visited list */
1707 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1708 visited_list_link) {
1709 ep_cur->visited = 0;
1710 list_del(&ep_cur->visited_list_link);
1711 }
1712 return ret;
1713 }
1714
1715 static void clear_tfile_check_list(void)
1716 {
1717 struct file *file;
1718
1719 /* first clear the tfile_check_list */
1720 while (!list_empty(&tfile_check_list)) {
1721 file = list_first_entry(&tfile_check_list, struct file,
1722 f_tfile_llink);
1723 list_del_init(&file->f_tfile_llink);
1724 }
1725 INIT_LIST_HEAD(&tfile_check_list);
1726 }
1727
1728 /*
1729 * Open an eventpoll file descriptor.
1730 */
1731 SYSCALL_DEFINE1(epoll_create1, int, flags)
1732 {
1733 int error, fd;
1734 struct eventpoll *ep = NULL;
1735 struct file *file;
1736
1737 /* Check the EPOLL_* constant for consistency. */
1738 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1739
1740 if (flags & ~EPOLL_CLOEXEC)
1741 return -EINVAL;
1742 /*
1743 * Create the internal data structure ("struct eventpoll").
1744 */
1745 error = ep_alloc(&ep);
1746 if (error < 0)
1747 return error;
1748 /*
1749 * Creates all the items needed to setup an eventpoll file. That is,
1750 * a file structure and a free file descriptor.
1751 */
1752 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1753 if (fd < 0) {
1754 error = fd;
1755 goto out_free_ep;
1756 }
1757 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1758 O_RDWR | (flags & O_CLOEXEC));
1759 if (IS_ERR(file)) {
1760 error = PTR_ERR(file);
1761 goto out_free_fd;
1762 }
1763 ep->file = file;
1764 fd_install(fd, file);
1765 return fd;
1766
1767 out_free_fd:
1768 put_unused_fd(fd);
1769 out_free_ep:
1770 ep_free(ep);
1771 return error;
1772 }
1773
1774 SYSCALL_DEFINE1(epoll_create, int, size)
1775 {
1776 if (size <= 0)
1777 return -EINVAL;
1778
1779 return sys_epoll_create1(0);
1780 }
1781
1782 /*
1783 * The following function implements the controller interface for
1784 * the eventpoll file that enables the insertion/removal/change of
1785 * file descriptors inside the interest set.
1786 */
1787 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1788 struct epoll_event __user *, event)
1789 {
1790 int error;
1791 int did_lock_epmutex = 0;
1792 struct file *file, *tfile;
1793 struct eventpoll *ep;
1794 struct epitem *epi;
1795 struct epoll_event epds;
1796
1797 error = -EFAULT;
1798 if (ep_op_has_event(op) &&
1799 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1800 goto error_return;
1801
1802 /* Get the "struct file *" for the eventpoll file */
1803 error = -EBADF;
1804 file = fget(epfd);
1805 if (!file)
1806 goto error_return;
1807
1808 /* Get the "struct file *" for the target file */
1809 tfile = fget(fd);
1810 if (!tfile)
1811 goto error_fput;
1812
1813 /* The target file descriptor must support poll */
1814 error = -EPERM;
1815 if (!tfile->f_op || !tfile->f_op->poll)
1816 goto error_tgt_fput;
1817
1818 /* Check if EPOLLWAKEUP is allowed */
1819 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1820 epds.events &= ~EPOLLWAKEUP;
1821
1822 /*
1823 * We have to check that the file structure underneath the file descriptor
1824 * the user passed to us _is_ an eventpoll file. And also we do not permit
1825 * adding an epoll file descriptor inside itself.
1826 */
1827 error = -EINVAL;
1828 if (file == tfile || !is_file_epoll(file))
1829 goto error_tgt_fput;
1830
1831 /*
1832 * At this point it is safe to assume that the "private_data" contains
1833 * our own data structure.
1834 */
1835 ep = file->private_data;
1836
1837 /*
1838 * When we insert an epoll file descriptor, inside another epoll file
1839 * descriptor, there is the change of creating closed loops, which are
1840 * better be handled here, than in more critical paths. While we are
1841 * checking for loops we also determine the list of files reachable
1842 * and hang them on the tfile_check_list, so we can check that we
1843 * haven't created too many possible wakeup paths.
1844 *
1845 * We need to hold the epmutex across both ep_insert and ep_remove
1846 * b/c we want to make sure we are looking at a coherent view of
1847 * epoll network.
1848 */
1849 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1850 mutex_lock(&epmutex);
1851 did_lock_epmutex = 1;
1852 }
1853 if (op == EPOLL_CTL_ADD) {
1854 if (is_file_epoll(tfile)) {
1855 error = -ELOOP;
1856 if (ep_loop_check(ep, tfile) != 0) {
1857 clear_tfile_check_list();
1858 goto error_tgt_fput;
1859 }
1860 } else
1861 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1862 }
1863
1864 mutex_lock_nested(&ep->mtx, 0);
1865
1866 /*
1867 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1868 * above, we can be sure to be able to use the item looked up by
1869 * ep_find() till we release the mutex.
1870 */
1871 epi = ep_find(ep, tfile, fd);
1872
1873 error = -EINVAL;
1874 switch (op) {
1875 case EPOLL_CTL_ADD:
1876 if (!epi) {
1877 epds.events |= POLLERR | POLLHUP;
1878 error = ep_insert(ep, &epds, tfile, fd);
1879 } else
1880 error = -EEXIST;
1881 clear_tfile_check_list();
1882 break;
1883 case EPOLL_CTL_DEL:
1884 if (epi)
1885 error = ep_remove(ep, epi);
1886 else
1887 error = -ENOENT;
1888 break;
1889 case EPOLL_CTL_MOD:
1890 if (epi) {
1891 epds.events |= POLLERR | POLLHUP;
1892 error = ep_modify(ep, epi, &epds);
1893 } else
1894 error = -ENOENT;
1895 break;
1896 }
1897 mutex_unlock(&ep->mtx);
1898
1899 error_tgt_fput:
1900 if (did_lock_epmutex)
1901 mutex_unlock(&epmutex);
1902
1903 fput(tfile);
1904 error_fput:
1905 fput(file);
1906 error_return:
1907
1908 return error;
1909 }
1910
1911 /*
1912 * Implement the event wait interface for the eventpoll file. It is the kernel
1913 * part of the user space epoll_wait(2).
1914 */
1915 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1916 int, maxevents, int, timeout)
1917 {
1918 int error;
1919 struct fd f;
1920 struct eventpoll *ep;
1921
1922 /* The maximum number of event must be greater than zero */
1923 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1924 return -EINVAL;
1925
1926 /* Verify that the area passed by the user is writeable */
1927 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1928 return -EFAULT;
1929
1930 /* Get the "struct file *" for the eventpoll file */
1931 f = fdget(epfd);
1932 if (!f.file)
1933 return -EBADF;
1934
1935 /*
1936 * We have to check that the file structure underneath the fd
1937 * the user passed to us _is_ an eventpoll file.
1938 */
1939 error = -EINVAL;
1940 if (!is_file_epoll(f.file))
1941 goto error_fput;
1942
1943 /*
1944 * At this point it is safe to assume that the "private_data" contains
1945 * our own data structure.
1946 */
1947 ep = f.file->private_data;
1948
1949 /* Time to fish for events ... */
1950 error = ep_poll(ep, events, maxevents, timeout);
1951
1952 error_fput:
1953 fdput(f);
1954 return error;
1955 }
1956
1957 /*
1958 * Implement the event wait interface for the eventpoll file. It is the kernel
1959 * part of the user space epoll_pwait(2).
1960 */
1961 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1962 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1963 size_t, sigsetsize)
1964 {
1965 int error;
1966 sigset_t ksigmask, sigsaved;
1967
1968 /*
1969 * If the caller wants a certain signal mask to be set during the wait,
1970 * we apply it here.
1971 */
1972 if (sigmask) {
1973 if (sigsetsize != sizeof(sigset_t))
1974 return -EINVAL;
1975 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1976 return -EFAULT;
1977 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1978 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1979 }
1980
1981 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1982
1983 /*
1984 * If we changed the signal mask, we need to restore the original one.
1985 * In case we've got a signal while waiting, we do not restore the
1986 * signal mask yet, and we allow do_signal() to deliver the signal on
1987 * the way back to userspace, before the signal mask is restored.
1988 */
1989 if (sigmask) {
1990 if (error == -EINTR) {
1991 memcpy(&current->saved_sigmask, &sigsaved,
1992 sizeof(sigsaved));
1993 set_restore_sigmask();
1994 } else
1995 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1996 }
1997
1998 return error;
1999 }
2000
2001 static int __init eventpoll_init(void)
2002 {
2003 struct sysinfo si;
2004
2005 si_meminfo(&si);
2006 /*
2007 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2008 */
2009 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2010 EP_ITEM_COST;
2011 BUG_ON(max_user_watches < 0);
2012
2013 /*
2014 * Initialize the structure used to perform epoll file descriptor
2015 * inclusion loops checks.
2016 */
2017 ep_nested_calls_init(&poll_loop_ncalls);
2018
2019 /* Initialize the structure used to perform safe poll wait head wake ups */
2020 ep_nested_calls_init(&poll_safewake_ncalls);
2021
2022 /* Initialize the structure used to perform file's f_op->poll() calls */
2023 ep_nested_calls_init(&poll_readywalk_ncalls);
2024
2025 /*
2026 * We can have many thousands of epitems, so prevent this from
2027 * using an extra cache line on 64-bit (and smaller) CPUs
2028 */
2029 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2030
2031 /* Allocates slab cache used to allocate "struct epitem" items */
2032 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2033 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2034
2035 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2036 pwq_cache = kmem_cache_create("eventpoll_pwq",
2037 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2038
2039 return 0;
2040 }
2041 fs_initcall(eventpoll_init);
This page took 0.076024 seconds and 5 git commands to generate.