epoll: use real type instead of void *
[deliverable/linux.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is possible to drop the "ep->mtx" and to use the global
67 * mutex "epmutex" (together with "ep->lock") to have it working,
68 * but having "ep->mtx" will make the interface more scalable.
69 * Events that require holding "epmutex" are very rare, while for
70 * normal operations the epoll private "ep->mtx" will guarantee
71 * a better scalability.
72 */
73
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79
80 /* Maximum msec timeout value storeable in a long int */
81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82
83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84
85 #define EP_UNACTIVE_PTR ((void *) -1L)
86
87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88
89 struct epoll_filefd {
90 struct file *file;
91 int fd;
92 };
93
94 /*
95 * Structure used to track possible nested calls, for too deep recursions
96 * and loop cycles.
97 */
98 struct nested_call_node {
99 struct list_head llink;
100 void *cookie;
101 int cpu;
102 };
103
104 /*
105 * This structure is used as collector for nested calls, to check for
106 * maximum recursion dept and loop cycles.
107 */
108 struct nested_calls {
109 struct list_head tasks_call_list;
110 spinlock_t lock;
111 };
112
113 /*
114 * Each file descriptor added to the eventpoll interface will
115 * have an entry of this type linked to the "rbr" RB tree.
116 */
117 struct epitem {
118 /* RB tree node used to link this structure to the eventpoll RB tree */
119 struct rb_node rbn;
120
121 /* List header used to link this structure to the eventpoll ready list */
122 struct list_head rdllink;
123
124 /*
125 * Works together "struct eventpoll"->ovflist in keeping the
126 * single linked chain of items.
127 */
128 struct epitem *next;
129
130 /* The file descriptor information this item refers to */
131 struct epoll_filefd ffd;
132
133 /* Number of active wait queue attached to poll operations */
134 int nwait;
135
136 /* List containing poll wait queues */
137 struct list_head pwqlist;
138
139 /* The "container" of this item */
140 struct eventpoll *ep;
141
142 /* List header used to link this item to the "struct file" items list */
143 struct list_head fllink;
144
145 /* The structure that describe the interested events and the source fd */
146 struct epoll_event event;
147 };
148
149 /*
150 * This structure is stored inside the "private_data" member of the file
151 * structure and rapresent the main data sructure for the eventpoll
152 * interface.
153 */
154 struct eventpoll {
155 /* Protect the this structure access */
156 spinlock_t lock;
157
158 /*
159 * This mutex is used to ensure that files are not removed
160 * while epoll is using them. This is held during the event
161 * collection loop, the file cleanup path, the epoll file exit
162 * code and the ctl operations.
163 */
164 struct mutex mtx;
165
166 /* Wait queue used by sys_epoll_wait() */
167 wait_queue_head_t wq;
168
169 /* Wait queue used by file->poll() */
170 wait_queue_head_t poll_wait;
171
172 /* List of ready file descriptors */
173 struct list_head rdllist;
174
175 /* RB tree root used to store monitored fd structs */
176 struct rb_root rbr;
177
178 /*
179 * This is a single linked list that chains all the "struct epitem" that
180 * happened while transfering ready events to userspace w/out
181 * holding ->lock.
182 */
183 struct epitem *ovflist;
184
185 /* The user that created the eventpoll descriptor */
186 struct user_struct *user;
187 };
188
189 /* Wait structure used by the poll hooks */
190 struct eppoll_entry {
191 /* List header used to link this structure to the "struct epitem" */
192 struct list_head llink;
193
194 /* The "base" pointer is set to the container "struct epitem" */
195 struct epitem *base;
196
197 /*
198 * Wait queue item that will be linked to the target file wait
199 * queue head.
200 */
201 wait_queue_t wait;
202
203 /* The wait queue head that linked the "wait" wait queue item */
204 wait_queue_head_t *whead;
205 };
206
207 /* Wrapper struct used by poll queueing */
208 struct ep_pqueue {
209 poll_table pt;
210 struct epitem *epi;
211 };
212
213 /* Used by the ep_send_events() function as callback private data */
214 struct ep_send_events_data {
215 int maxevents;
216 struct epoll_event __user *events;
217 };
218
219 /*
220 * Configuration options available inside /proc/sys/fs/epoll/
221 */
222 /* Maximum number of epoll watched descriptors, per user */
223 static int max_user_watches __read_mostly;
224
225 /*
226 * This mutex is used to serialize ep_free() and eventpoll_release_file().
227 */
228 static DEFINE_MUTEX(epmutex);
229
230 /* Used for safe wake up implementation */
231 static struct nested_calls poll_safewake_ncalls;
232
233 /* Used to call file's f_op->poll() under the nested calls boundaries */
234 static struct nested_calls poll_readywalk_ncalls;
235
236 /* Slab cache used to allocate "struct epitem" */
237 static struct kmem_cache *epi_cache __read_mostly;
238
239 /* Slab cache used to allocate "struct eppoll_entry" */
240 static struct kmem_cache *pwq_cache __read_mostly;
241
242 #ifdef CONFIG_SYSCTL
243
244 #include <linux/sysctl.h>
245
246 static int zero;
247
248 ctl_table epoll_table[] = {
249 {
250 .procname = "max_user_watches",
251 .data = &max_user_watches,
252 .maxlen = sizeof(int),
253 .mode = 0644,
254 .proc_handler = &proc_dointvec_minmax,
255 .extra1 = &zero,
256 },
257 { .ctl_name = 0 }
258 };
259 #endif /* CONFIG_SYSCTL */
260
261
262 /* Setup the structure that is used as key for the RB tree */
263 static inline void ep_set_ffd(struct epoll_filefd *ffd,
264 struct file *file, int fd)
265 {
266 ffd->file = file;
267 ffd->fd = fd;
268 }
269
270 /* Compare RB tree keys */
271 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272 struct epoll_filefd *p2)
273 {
274 return (p1->file > p2->file ? +1:
275 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276 }
277
278 /* Tells us if the item is currently linked */
279 static inline int ep_is_linked(struct list_head *p)
280 {
281 return !list_empty(p);
282 }
283
284 /* Get the "struct epitem" from a wait queue pointer */
285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286 {
287 return container_of(p, struct eppoll_entry, wait)->base;
288 }
289
290 /* Get the "struct epitem" from an epoll queue wrapper */
291 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292 {
293 return container_of(p, struct ep_pqueue, pt)->epi;
294 }
295
296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297 static inline int ep_op_has_event(int op)
298 {
299 return op != EPOLL_CTL_DEL;
300 }
301
302 /* Initialize the poll safe wake up structure */
303 static void ep_nested_calls_init(struct nested_calls *ncalls)
304 {
305 INIT_LIST_HEAD(&ncalls->tasks_call_list);
306 spin_lock_init(&ncalls->lock);
307 }
308
309 /**
310 * ep_call_nested - Perform a bound (possibly) nested call, by checking
311 * that the recursion limit is not exceeded, and that
312 * the same nested call (by the meaning of same cookie) is
313 * no re-entered.
314 *
315 * @ncalls: Pointer to the nested_calls structure to be used for this call.
316 * @max_nests: Maximum number of allowed nesting calls.
317 * @nproc: Nested call core function pointer.
318 * @priv: Opaque data to be passed to the @nproc callback.
319 * @cookie: Cookie to be used to identify this nested call.
320 *
321 * Returns: Returns the code returned by the @nproc callback, or -1 if
322 * the maximum recursion limit has been exceeded.
323 */
324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 int (*nproc)(void *, void *, int), void *priv,
326 void *cookie)
327 {
328 int error, call_nests = 0;
329 unsigned long flags;
330 int this_cpu = get_cpu();
331 struct list_head *lsthead = &ncalls->tasks_call_list;
332 struct nested_call_node *tncur;
333 struct nested_call_node tnode;
334
335 spin_lock_irqsave(&ncalls->lock, flags);
336
337 /*
338 * Try to see if the current task is already inside this wakeup call.
339 * We use a list here, since the population inside this set is always
340 * very much limited.
341 */
342 list_for_each_entry(tncur, lsthead, llink) {
343 if (tncur->cpu == this_cpu &&
344 (tncur->cookie == cookie || ++call_nests > max_nests)) {
345 /*
346 * Ops ... loop detected or maximum nest level reached.
347 * We abort this wake by breaking the cycle itself.
348 */
349 error = -1;
350 goto out_unlock;
351 }
352 }
353
354 /* Add the current task and cookie to the list */
355 tnode.cpu = this_cpu;
356 tnode.cookie = cookie;
357 list_add(&tnode.llink, lsthead);
358
359 spin_unlock_irqrestore(&ncalls->lock, flags);
360
361 /* Call the nested function */
362 error = (*nproc)(priv, cookie, call_nests);
363
364 /* Remove the current task from the list */
365 spin_lock_irqsave(&ncalls->lock, flags);
366 list_del(&tnode.llink);
367 out_unlock:
368 spin_unlock_irqrestore(&ncalls->lock, flags);
369
370 put_cpu();
371 return error;
372 }
373
374 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
375 {
376 wake_up_nested((wait_queue_head_t *) cookie, 1 + call_nests);
377 return 0;
378 }
379
380 /*
381 * Perform a safe wake up of the poll wait list. The problem is that
382 * with the new callback'd wake up system, it is possible that the
383 * poll callback is reentered from inside the call to wake_up() done
384 * on the poll wait queue head. The rule is that we cannot reenter the
385 * wake up code from the same task more than EP_MAX_NESTS times,
386 * and we cannot reenter the same wait queue head at all. This will
387 * enable to have a hierarchy of epoll file descriptor of no more than
388 * EP_MAX_NESTS deep.
389 */
390 static void ep_poll_safewake(wait_queue_head_t *wq)
391 {
392 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
393 ep_poll_wakeup_proc, NULL, wq);
394 }
395
396 /*
397 * This function unregisters poll callbacks from the associated file
398 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
399 * ep_free).
400 */
401 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
402 {
403 struct list_head *lsthead = &epi->pwqlist;
404 struct eppoll_entry *pwq;
405
406 while (!list_empty(lsthead)) {
407 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
408
409 list_del(&pwq->llink);
410 remove_wait_queue(pwq->whead, &pwq->wait);
411 kmem_cache_free(pwq_cache, pwq);
412 }
413 }
414
415 /**
416 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
417 * the scan code, to call f_op->poll(). Also allows for
418 * O(NumReady) performance.
419 *
420 * @ep: Pointer to the epoll private data structure.
421 * @sproc: Pointer to the scan callback.
422 * @priv: Private opaque data passed to the @sproc callback.
423 *
424 * Returns: The same integer error code returned by the @sproc callback.
425 */
426 static int ep_scan_ready_list(struct eventpoll *ep,
427 int (*sproc)(struct eventpoll *,
428 struct list_head *, void *),
429 void *priv)
430 {
431 int error, pwake = 0;
432 unsigned long flags;
433 struct epitem *epi, *nepi;
434 LIST_HEAD(txlist);
435
436 /*
437 * We need to lock this because we could be hit by
438 * eventpoll_release_file() and epoll_ctl().
439 */
440 mutex_lock(&ep->mtx);
441
442 /*
443 * Steal the ready list, and re-init the original one to the
444 * empty list. Also, set ep->ovflist to NULL so that events
445 * happening while looping w/out locks, are not lost. We cannot
446 * have the poll callback to queue directly on ep->rdllist,
447 * because we want the "sproc" callback to be able to do it
448 * in a lockless way.
449 */
450 spin_lock_irqsave(&ep->lock, flags);
451 list_splice_init(&ep->rdllist, &txlist);
452 ep->ovflist = NULL;
453 spin_unlock_irqrestore(&ep->lock, flags);
454
455 /*
456 * Now call the callback function.
457 */
458 error = (*sproc)(ep, &txlist, priv);
459
460 spin_lock_irqsave(&ep->lock, flags);
461 /*
462 * During the time we spent inside the "sproc" callback, some
463 * other events might have been queued by the poll callback.
464 * We re-insert them inside the main ready-list here.
465 */
466 for (nepi = ep->ovflist; (epi = nepi) != NULL;
467 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
468 /*
469 * We need to check if the item is already in the list.
470 * During the "sproc" callback execution time, items are
471 * queued into ->ovflist but the "txlist" might already
472 * contain them, and the list_splice() below takes care of them.
473 */
474 if (!ep_is_linked(&epi->rdllink))
475 list_add_tail(&epi->rdllink, &ep->rdllist);
476 }
477 /*
478 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
479 * releasing the lock, events will be queued in the normal way inside
480 * ep->rdllist.
481 */
482 ep->ovflist = EP_UNACTIVE_PTR;
483
484 /*
485 * Quickly re-inject items left on "txlist".
486 */
487 list_splice(&txlist, &ep->rdllist);
488
489 if (!list_empty(&ep->rdllist)) {
490 /*
491 * Wake up (if active) both the eventpoll wait list and
492 * the ->poll() wait list (delayed after we release the lock).
493 */
494 if (waitqueue_active(&ep->wq))
495 wake_up_locked(&ep->wq);
496 if (waitqueue_active(&ep->poll_wait))
497 pwake++;
498 }
499 spin_unlock_irqrestore(&ep->lock, flags);
500
501 mutex_unlock(&ep->mtx);
502
503 /* We have to call this outside the lock */
504 if (pwake)
505 ep_poll_safewake(&ep->poll_wait);
506
507 return error;
508 }
509
510 /*
511 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
512 * all the associated resources. Must be called with "mtx" held.
513 */
514 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
515 {
516 unsigned long flags;
517 struct file *file = epi->ffd.file;
518
519 /*
520 * Removes poll wait queue hooks. We _have_ to do this without holding
521 * the "ep->lock" otherwise a deadlock might occur. This because of the
522 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
523 * queue head lock when unregistering the wait queue. The wakeup callback
524 * will run by holding the wait queue head lock and will call our callback
525 * that will try to get "ep->lock".
526 */
527 ep_unregister_pollwait(ep, epi);
528
529 /* Remove the current item from the list of epoll hooks */
530 spin_lock(&file->f_lock);
531 if (ep_is_linked(&epi->fllink))
532 list_del_init(&epi->fllink);
533 spin_unlock(&file->f_lock);
534
535 rb_erase(&epi->rbn, &ep->rbr);
536
537 spin_lock_irqsave(&ep->lock, flags);
538 if (ep_is_linked(&epi->rdllink))
539 list_del_init(&epi->rdllink);
540 spin_unlock_irqrestore(&ep->lock, flags);
541
542 /* At this point it is safe to free the eventpoll item */
543 kmem_cache_free(epi_cache, epi);
544
545 atomic_dec(&ep->user->epoll_watches);
546
547 return 0;
548 }
549
550 static void ep_free(struct eventpoll *ep)
551 {
552 struct rb_node *rbp;
553 struct epitem *epi;
554
555 /* We need to release all tasks waiting for these file */
556 if (waitqueue_active(&ep->poll_wait))
557 ep_poll_safewake(&ep->poll_wait);
558
559 /*
560 * We need to lock this because we could be hit by
561 * eventpoll_release_file() while we're freeing the "struct eventpoll".
562 * We do not need to hold "ep->mtx" here because the epoll file
563 * is on the way to be removed and no one has references to it
564 * anymore. The only hit might come from eventpoll_release_file() but
565 * holding "epmutex" is sufficent here.
566 */
567 mutex_lock(&epmutex);
568
569 /*
570 * Walks through the whole tree by unregistering poll callbacks.
571 */
572 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
573 epi = rb_entry(rbp, struct epitem, rbn);
574
575 ep_unregister_pollwait(ep, epi);
576 }
577
578 /*
579 * Walks through the whole tree by freeing each "struct epitem". At this
580 * point we are sure no poll callbacks will be lingering around, and also by
581 * holding "epmutex" we can be sure that no file cleanup code will hit
582 * us during this operation. So we can avoid the lock on "ep->lock".
583 */
584 while ((rbp = rb_first(&ep->rbr)) != NULL) {
585 epi = rb_entry(rbp, struct epitem, rbn);
586 ep_remove(ep, epi);
587 }
588
589 mutex_unlock(&epmutex);
590 mutex_destroy(&ep->mtx);
591 free_uid(ep->user);
592 kfree(ep);
593 }
594
595 static int ep_eventpoll_release(struct inode *inode, struct file *file)
596 {
597 struct eventpoll *ep = file->private_data;
598
599 if (ep)
600 ep_free(ep);
601
602 return 0;
603 }
604
605 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
606 void *priv)
607 {
608 struct epitem *epi, *tmp;
609
610 list_for_each_entry_safe(epi, tmp, head, rdllink) {
611 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
612 epi->event.events)
613 return POLLIN | POLLRDNORM;
614 else {
615 /*
616 * Item has been dropped into the ready list by the poll
617 * callback, but it's not actually ready, as far as
618 * caller requested events goes. We can remove it here.
619 */
620 list_del_init(&epi->rdllink);
621 }
622 }
623
624 return 0;
625 }
626
627 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
628 {
629 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
630 }
631
632 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
633 {
634 int pollflags;
635 struct eventpoll *ep = file->private_data;
636
637 /* Insert inside our poll wait queue */
638 poll_wait(file, &ep->poll_wait, wait);
639
640 /*
641 * Proceed to find out if wanted events are really available inside
642 * the ready list. This need to be done under ep_call_nested()
643 * supervision, since the call to f_op->poll() done on listed files
644 * could re-enter here.
645 */
646 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
647 ep_poll_readyevents_proc, ep, ep);
648
649 return pollflags != -1 ? pollflags : 0;
650 }
651
652 /* File callbacks that implement the eventpoll file behaviour */
653 static const struct file_operations eventpoll_fops = {
654 .release = ep_eventpoll_release,
655 .poll = ep_eventpoll_poll
656 };
657
658 /* Fast test to see if the file is an evenpoll file */
659 static inline int is_file_epoll(struct file *f)
660 {
661 return f->f_op == &eventpoll_fops;
662 }
663
664 /*
665 * This is called from eventpoll_release() to unlink files from the eventpoll
666 * interface. We need to have this facility to cleanup correctly files that are
667 * closed without being removed from the eventpoll interface.
668 */
669 void eventpoll_release_file(struct file *file)
670 {
671 struct list_head *lsthead = &file->f_ep_links;
672 struct eventpoll *ep;
673 struct epitem *epi;
674
675 /*
676 * We don't want to get "file->f_lock" because it is not
677 * necessary. It is not necessary because we're in the "struct file"
678 * cleanup path, and this means that noone is using this file anymore.
679 * So, for example, epoll_ctl() cannot hit here since if we reach this
680 * point, the file counter already went to zero and fget() would fail.
681 * The only hit might come from ep_free() but by holding the mutex
682 * will correctly serialize the operation. We do need to acquire
683 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
684 * from anywhere but ep_free().
685 *
686 * Besides, ep_remove() acquires the lock, so we can't hold it here.
687 */
688 mutex_lock(&epmutex);
689
690 while (!list_empty(lsthead)) {
691 epi = list_first_entry(lsthead, struct epitem, fllink);
692
693 ep = epi->ep;
694 list_del_init(&epi->fllink);
695 mutex_lock(&ep->mtx);
696 ep_remove(ep, epi);
697 mutex_unlock(&ep->mtx);
698 }
699
700 mutex_unlock(&epmutex);
701 }
702
703 static int ep_alloc(struct eventpoll **pep)
704 {
705 int error;
706 struct user_struct *user;
707 struct eventpoll *ep;
708
709 user = get_current_user();
710 error = -ENOMEM;
711 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
712 if (unlikely(!ep))
713 goto free_uid;
714
715 spin_lock_init(&ep->lock);
716 mutex_init(&ep->mtx);
717 init_waitqueue_head(&ep->wq);
718 init_waitqueue_head(&ep->poll_wait);
719 INIT_LIST_HEAD(&ep->rdllist);
720 ep->rbr = RB_ROOT;
721 ep->ovflist = EP_UNACTIVE_PTR;
722 ep->user = user;
723
724 *pep = ep;
725
726 return 0;
727
728 free_uid:
729 free_uid(user);
730 return error;
731 }
732
733 /*
734 * Search the file inside the eventpoll tree. The RB tree operations
735 * are protected by the "mtx" mutex, and ep_find() must be called with
736 * "mtx" held.
737 */
738 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
739 {
740 int kcmp;
741 struct rb_node *rbp;
742 struct epitem *epi, *epir = NULL;
743 struct epoll_filefd ffd;
744
745 ep_set_ffd(&ffd, file, fd);
746 for (rbp = ep->rbr.rb_node; rbp; ) {
747 epi = rb_entry(rbp, struct epitem, rbn);
748 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
749 if (kcmp > 0)
750 rbp = rbp->rb_right;
751 else if (kcmp < 0)
752 rbp = rbp->rb_left;
753 else {
754 epir = epi;
755 break;
756 }
757 }
758
759 return epir;
760 }
761
762 /*
763 * This is the callback that is passed to the wait queue wakeup
764 * machanism. It is called by the stored file descriptors when they
765 * have events to report.
766 */
767 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
768 {
769 int pwake = 0;
770 unsigned long flags;
771 struct epitem *epi = ep_item_from_wait(wait);
772 struct eventpoll *ep = epi->ep;
773
774 spin_lock_irqsave(&ep->lock, flags);
775
776 /*
777 * If the event mask does not contain any poll(2) event, we consider the
778 * descriptor to be disabled. This condition is likely the effect of the
779 * EPOLLONESHOT bit that disables the descriptor when an event is received,
780 * until the next EPOLL_CTL_MOD will be issued.
781 */
782 if (!(epi->event.events & ~EP_PRIVATE_BITS))
783 goto out_unlock;
784
785 /*
786 * If we are trasfering events to userspace, we can hold no locks
787 * (because we're accessing user memory, and because of linux f_op->poll()
788 * semantics). All the events that happens during that period of time are
789 * chained in ep->ovflist and requeued later on.
790 */
791 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
792 if (epi->next == EP_UNACTIVE_PTR) {
793 epi->next = ep->ovflist;
794 ep->ovflist = epi;
795 }
796 goto out_unlock;
797 }
798
799 /* If this file is already in the ready list we exit soon */
800 if (!ep_is_linked(&epi->rdllink))
801 list_add_tail(&epi->rdllink, &ep->rdllist);
802
803 /*
804 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
805 * wait list.
806 */
807 if (waitqueue_active(&ep->wq))
808 wake_up_locked(&ep->wq);
809 if (waitqueue_active(&ep->poll_wait))
810 pwake++;
811
812 out_unlock:
813 spin_unlock_irqrestore(&ep->lock, flags);
814
815 /* We have to call this outside the lock */
816 if (pwake)
817 ep_poll_safewake(&ep->poll_wait);
818
819 return 1;
820 }
821
822 /*
823 * This is the callback that is used to add our wait queue to the
824 * target file wakeup lists.
825 */
826 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
827 poll_table *pt)
828 {
829 struct epitem *epi = ep_item_from_epqueue(pt);
830 struct eppoll_entry *pwq;
831
832 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
833 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
834 pwq->whead = whead;
835 pwq->base = epi;
836 add_wait_queue(whead, &pwq->wait);
837 list_add_tail(&pwq->llink, &epi->pwqlist);
838 epi->nwait++;
839 } else {
840 /* We have to signal that an error occurred */
841 epi->nwait = -1;
842 }
843 }
844
845 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
846 {
847 int kcmp;
848 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
849 struct epitem *epic;
850
851 while (*p) {
852 parent = *p;
853 epic = rb_entry(parent, struct epitem, rbn);
854 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
855 if (kcmp > 0)
856 p = &parent->rb_right;
857 else
858 p = &parent->rb_left;
859 }
860 rb_link_node(&epi->rbn, parent, p);
861 rb_insert_color(&epi->rbn, &ep->rbr);
862 }
863
864 /*
865 * Must be called with "mtx" held.
866 */
867 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
868 struct file *tfile, int fd)
869 {
870 int error, revents, pwake = 0;
871 unsigned long flags;
872 struct epitem *epi;
873 struct ep_pqueue epq;
874
875 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
876 max_user_watches))
877 return -ENOSPC;
878 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
879 return -ENOMEM;
880
881 /* Item initialization follow here ... */
882 INIT_LIST_HEAD(&epi->rdllink);
883 INIT_LIST_HEAD(&epi->fllink);
884 INIT_LIST_HEAD(&epi->pwqlist);
885 epi->ep = ep;
886 ep_set_ffd(&epi->ffd, tfile, fd);
887 epi->event = *event;
888 epi->nwait = 0;
889 epi->next = EP_UNACTIVE_PTR;
890
891 /* Initialize the poll table using the queue callback */
892 epq.epi = epi;
893 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
894
895 /*
896 * Attach the item to the poll hooks and get current event bits.
897 * We can safely use the file* here because its usage count has
898 * been increased by the caller of this function. Note that after
899 * this operation completes, the poll callback can start hitting
900 * the new item.
901 */
902 revents = tfile->f_op->poll(tfile, &epq.pt);
903
904 /*
905 * We have to check if something went wrong during the poll wait queue
906 * install process. Namely an allocation for a wait queue failed due
907 * high memory pressure.
908 */
909 error = -ENOMEM;
910 if (epi->nwait < 0)
911 goto error_unregister;
912
913 /* Add the current item to the list of active epoll hook for this file */
914 spin_lock(&tfile->f_lock);
915 list_add_tail(&epi->fllink, &tfile->f_ep_links);
916 spin_unlock(&tfile->f_lock);
917
918 /*
919 * Add the current item to the RB tree. All RB tree operations are
920 * protected by "mtx", and ep_insert() is called with "mtx" held.
921 */
922 ep_rbtree_insert(ep, epi);
923
924 /* We have to drop the new item inside our item list to keep track of it */
925 spin_lock_irqsave(&ep->lock, flags);
926
927 /* If the file is already "ready" we drop it inside the ready list */
928 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
929 list_add_tail(&epi->rdllink, &ep->rdllist);
930
931 /* Notify waiting tasks that events are available */
932 if (waitqueue_active(&ep->wq))
933 wake_up_locked(&ep->wq);
934 if (waitqueue_active(&ep->poll_wait))
935 pwake++;
936 }
937
938 spin_unlock_irqrestore(&ep->lock, flags);
939
940 atomic_inc(&ep->user->epoll_watches);
941
942 /* We have to call this outside the lock */
943 if (pwake)
944 ep_poll_safewake(&ep->poll_wait);
945
946 return 0;
947
948 error_unregister:
949 ep_unregister_pollwait(ep, epi);
950
951 /*
952 * We need to do this because an event could have been arrived on some
953 * allocated wait queue. Note that we don't care about the ep->ovflist
954 * list, since that is used/cleaned only inside a section bound by "mtx".
955 * And ep_insert() is called with "mtx" held.
956 */
957 spin_lock_irqsave(&ep->lock, flags);
958 if (ep_is_linked(&epi->rdllink))
959 list_del_init(&epi->rdllink);
960 spin_unlock_irqrestore(&ep->lock, flags);
961
962 kmem_cache_free(epi_cache, epi);
963
964 return error;
965 }
966
967 /*
968 * Modify the interest event mask by dropping an event if the new mask
969 * has a match in the current file status. Must be called with "mtx" held.
970 */
971 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
972 {
973 int pwake = 0;
974 unsigned int revents;
975
976 /*
977 * Set the new event interest mask before calling f_op->poll();
978 * otherwise we might miss an event that happens between the
979 * f_op->poll() call and the new event set registering.
980 */
981 epi->event.events = event->events;
982 epi->event.data = event->data; /* protected by mtx */
983
984 /*
985 * Get current event bits. We can safely use the file* here because
986 * its usage count has been increased by the caller of this function.
987 */
988 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
989
990 /*
991 * If the item is "hot" and it is not registered inside the ready
992 * list, push it inside.
993 */
994 if (revents & event->events) {
995 spin_lock_irq(&ep->lock);
996 if (!ep_is_linked(&epi->rdllink)) {
997 list_add_tail(&epi->rdllink, &ep->rdllist);
998
999 /* Notify waiting tasks that events are available */
1000 if (waitqueue_active(&ep->wq))
1001 wake_up_locked(&ep->wq);
1002 if (waitqueue_active(&ep->poll_wait))
1003 pwake++;
1004 }
1005 spin_unlock_irq(&ep->lock);
1006 }
1007
1008 /* We have to call this outside the lock */
1009 if (pwake)
1010 ep_poll_safewake(&ep->poll_wait);
1011
1012 return 0;
1013 }
1014
1015 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1016 void *priv)
1017 {
1018 struct ep_send_events_data *esed = priv;
1019 int eventcnt;
1020 unsigned int revents;
1021 struct epitem *epi;
1022 struct epoll_event __user *uevent;
1023
1024 /*
1025 * We can loop without lock because we are passed a task private list.
1026 * Items cannot vanish during the loop because ep_scan_ready_list() is
1027 * holding "mtx" during this call.
1028 */
1029 for (eventcnt = 0, uevent = esed->events;
1030 !list_empty(head) && eventcnt < esed->maxevents;) {
1031 epi = list_first_entry(head, struct epitem, rdllink);
1032
1033 list_del_init(&epi->rdllink);
1034
1035 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1036 epi->event.events;
1037
1038 /*
1039 * If the event mask intersect the caller-requested one,
1040 * deliver the event to userspace. Again, ep_scan_ready_list()
1041 * is holding "mtx", so no operations coming from userspace
1042 * can change the item.
1043 */
1044 if (revents) {
1045 if (__put_user(revents, &uevent->events) ||
1046 __put_user(epi->event.data, &uevent->data)) {
1047 list_add(&epi->rdllink, head);
1048 return eventcnt ? eventcnt : -EFAULT;
1049 }
1050 eventcnt++;
1051 uevent++;
1052 if (epi->event.events & EPOLLONESHOT)
1053 epi->event.events &= EP_PRIVATE_BITS;
1054 else if (!(epi->event.events & EPOLLET)) {
1055 /*
1056 * If this file has been added with Level
1057 * Trigger mode, we need to insert back inside
1058 * the ready list, so that the next call to
1059 * epoll_wait() will check again the events
1060 * availability. At this point, noone can insert
1061 * into ep->rdllist besides us. The epoll_ctl()
1062 * callers are locked out by
1063 * ep_scan_ready_list() holding "mtx" and the
1064 * poll callback will queue them in ep->ovflist.
1065 */
1066 list_add_tail(&epi->rdllink, &ep->rdllist);
1067 }
1068 }
1069 }
1070
1071 return eventcnt;
1072 }
1073
1074 static int ep_send_events(struct eventpoll *ep,
1075 struct epoll_event __user *events, int maxevents)
1076 {
1077 struct ep_send_events_data esed;
1078
1079 esed.maxevents = maxevents;
1080 esed.events = events;
1081
1082 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1083 }
1084
1085 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1086 int maxevents, long timeout)
1087 {
1088 int res, eavail;
1089 unsigned long flags;
1090 long jtimeout;
1091 wait_queue_t wait;
1092
1093 /*
1094 * Calculate the timeout by checking for the "infinite" value (-1)
1095 * and the overflow condition. The passed timeout is in milliseconds,
1096 * that why (t * HZ) / 1000.
1097 */
1098 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1099 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1100
1101 retry:
1102 spin_lock_irqsave(&ep->lock, flags);
1103
1104 res = 0;
1105 if (list_empty(&ep->rdllist)) {
1106 /*
1107 * We don't have any available event to return to the caller.
1108 * We need to sleep here, and we will be wake up by
1109 * ep_poll_callback() when events will become available.
1110 */
1111 init_waitqueue_entry(&wait, current);
1112 wait.flags |= WQ_FLAG_EXCLUSIVE;
1113 __add_wait_queue(&ep->wq, &wait);
1114
1115 for (;;) {
1116 /*
1117 * We don't want to sleep if the ep_poll_callback() sends us
1118 * a wakeup in between. That's why we set the task state
1119 * to TASK_INTERRUPTIBLE before doing the checks.
1120 */
1121 set_current_state(TASK_INTERRUPTIBLE);
1122 if (!list_empty(&ep->rdllist) || !jtimeout)
1123 break;
1124 if (signal_pending(current)) {
1125 res = -EINTR;
1126 break;
1127 }
1128
1129 spin_unlock_irqrestore(&ep->lock, flags);
1130 jtimeout = schedule_timeout(jtimeout);
1131 spin_lock_irqsave(&ep->lock, flags);
1132 }
1133 __remove_wait_queue(&ep->wq, &wait);
1134
1135 set_current_state(TASK_RUNNING);
1136 }
1137 /* Is it worth to try to dig for events ? */
1138 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1139
1140 spin_unlock_irqrestore(&ep->lock, flags);
1141
1142 /*
1143 * Try to transfer events to user space. In case we get 0 events and
1144 * there's still timeout left over, we go trying again in search of
1145 * more luck.
1146 */
1147 if (!res && eavail &&
1148 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1149 goto retry;
1150
1151 return res;
1152 }
1153
1154 /*
1155 * Open an eventpoll file descriptor.
1156 */
1157 SYSCALL_DEFINE1(epoll_create1, int, flags)
1158 {
1159 int error;
1160 struct eventpoll *ep = NULL;
1161
1162 /* Check the EPOLL_* constant for consistency. */
1163 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1164
1165 if (flags & ~EPOLL_CLOEXEC)
1166 return -EINVAL;
1167 /*
1168 * Create the internal data structure ("struct eventpoll").
1169 */
1170 error = ep_alloc(&ep);
1171 if (error < 0)
1172 return error;
1173 /*
1174 * Creates all the items needed to setup an eventpoll file. That is,
1175 * a file structure and a free file descriptor.
1176 */
1177 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1178 flags & O_CLOEXEC);
1179 if (error < 0)
1180 ep_free(ep);
1181
1182 return error;
1183 }
1184
1185 SYSCALL_DEFINE1(epoll_create, int, size)
1186 {
1187 if (size < 0)
1188 return -EINVAL;
1189
1190 return sys_epoll_create1(0);
1191 }
1192
1193 /*
1194 * The following function implements the controller interface for
1195 * the eventpoll file that enables the insertion/removal/change of
1196 * file descriptors inside the interest set.
1197 */
1198 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1199 struct epoll_event __user *, event)
1200 {
1201 int error;
1202 struct file *file, *tfile;
1203 struct eventpoll *ep;
1204 struct epitem *epi;
1205 struct epoll_event epds;
1206
1207 error = -EFAULT;
1208 if (ep_op_has_event(op) &&
1209 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1210 goto error_return;
1211
1212 /* Get the "struct file *" for the eventpoll file */
1213 error = -EBADF;
1214 file = fget(epfd);
1215 if (!file)
1216 goto error_return;
1217
1218 /* Get the "struct file *" for the target file */
1219 tfile = fget(fd);
1220 if (!tfile)
1221 goto error_fput;
1222
1223 /* The target file descriptor must support poll */
1224 error = -EPERM;
1225 if (!tfile->f_op || !tfile->f_op->poll)
1226 goto error_tgt_fput;
1227
1228 /*
1229 * We have to check that the file structure underneath the file descriptor
1230 * the user passed to us _is_ an eventpoll file. And also we do not permit
1231 * adding an epoll file descriptor inside itself.
1232 */
1233 error = -EINVAL;
1234 if (file == tfile || !is_file_epoll(file))
1235 goto error_tgt_fput;
1236
1237 /*
1238 * At this point it is safe to assume that the "private_data" contains
1239 * our own data structure.
1240 */
1241 ep = file->private_data;
1242
1243 mutex_lock(&ep->mtx);
1244
1245 /*
1246 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1247 * above, we can be sure to be able to use the item looked up by
1248 * ep_find() till we release the mutex.
1249 */
1250 epi = ep_find(ep, tfile, fd);
1251
1252 error = -EINVAL;
1253 switch (op) {
1254 case EPOLL_CTL_ADD:
1255 if (!epi) {
1256 epds.events |= POLLERR | POLLHUP;
1257
1258 error = ep_insert(ep, &epds, tfile, fd);
1259 } else
1260 error = -EEXIST;
1261 break;
1262 case EPOLL_CTL_DEL:
1263 if (epi)
1264 error = ep_remove(ep, epi);
1265 else
1266 error = -ENOENT;
1267 break;
1268 case EPOLL_CTL_MOD:
1269 if (epi) {
1270 epds.events |= POLLERR | POLLHUP;
1271 error = ep_modify(ep, epi, &epds);
1272 } else
1273 error = -ENOENT;
1274 break;
1275 }
1276 mutex_unlock(&ep->mtx);
1277
1278 error_tgt_fput:
1279 fput(tfile);
1280 error_fput:
1281 fput(file);
1282 error_return:
1283
1284 return error;
1285 }
1286
1287 /*
1288 * Implement the event wait interface for the eventpoll file. It is the kernel
1289 * part of the user space epoll_wait(2).
1290 */
1291 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1292 int, maxevents, int, timeout)
1293 {
1294 int error;
1295 struct file *file;
1296 struct eventpoll *ep;
1297
1298 /* The maximum number of event must be greater than zero */
1299 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1300 return -EINVAL;
1301
1302 /* Verify that the area passed by the user is writeable */
1303 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1304 error = -EFAULT;
1305 goto error_return;
1306 }
1307
1308 /* Get the "struct file *" for the eventpoll file */
1309 error = -EBADF;
1310 file = fget(epfd);
1311 if (!file)
1312 goto error_return;
1313
1314 /*
1315 * We have to check that the file structure underneath the fd
1316 * the user passed to us _is_ an eventpoll file.
1317 */
1318 error = -EINVAL;
1319 if (!is_file_epoll(file))
1320 goto error_fput;
1321
1322 /*
1323 * At this point it is safe to assume that the "private_data" contains
1324 * our own data structure.
1325 */
1326 ep = file->private_data;
1327
1328 /* Time to fish for events ... */
1329 error = ep_poll(ep, events, maxevents, timeout);
1330
1331 error_fput:
1332 fput(file);
1333 error_return:
1334
1335 return error;
1336 }
1337
1338 #ifdef HAVE_SET_RESTORE_SIGMASK
1339
1340 /*
1341 * Implement the event wait interface for the eventpoll file. It is the kernel
1342 * part of the user space epoll_pwait(2).
1343 */
1344 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1345 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1346 size_t, sigsetsize)
1347 {
1348 int error;
1349 sigset_t ksigmask, sigsaved;
1350
1351 /*
1352 * If the caller wants a certain signal mask to be set during the wait,
1353 * we apply it here.
1354 */
1355 if (sigmask) {
1356 if (sigsetsize != sizeof(sigset_t))
1357 return -EINVAL;
1358 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1359 return -EFAULT;
1360 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1361 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1362 }
1363
1364 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1365
1366 /*
1367 * If we changed the signal mask, we need to restore the original one.
1368 * In case we've got a signal while waiting, we do not restore the
1369 * signal mask yet, and we allow do_signal() to deliver the signal on
1370 * the way back to userspace, before the signal mask is restored.
1371 */
1372 if (sigmask) {
1373 if (error == -EINTR) {
1374 memcpy(&current->saved_sigmask, &sigsaved,
1375 sizeof(sigsaved));
1376 set_restore_sigmask();
1377 } else
1378 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1379 }
1380
1381 return error;
1382 }
1383
1384 #endif /* HAVE_SET_RESTORE_SIGMASK */
1385
1386 static int __init eventpoll_init(void)
1387 {
1388 struct sysinfo si;
1389
1390 si_meminfo(&si);
1391 /*
1392 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1393 */
1394 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1395 EP_ITEM_COST;
1396
1397 /* Initialize the structure used to perform safe poll wait head wake ups */
1398 ep_nested_calls_init(&poll_safewake_ncalls);
1399
1400 /* Initialize the structure used to perform file's f_op->poll() calls */
1401 ep_nested_calls_init(&poll_readywalk_ncalls);
1402
1403 /* Allocates slab cache used to allocate "struct epitem" items */
1404 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1405 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1406
1407 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1408 pwq_cache = kmem_cache_create("eventpoll_pwq",
1409 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1410
1411 return 0;
1412 }
1413 fs_initcall(eventpoll_init);
This page took 0.147176 seconds and 6 git commands to generate.