Merge tag 'v3.12'
[deliverable/linux.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44
45 /*
46 * LOCKING:
47 * There are three level of locking required by epoll :
48 *
49 * 1) epmutex (mutex)
50 * 2) ep->mtx (mutex)
51 * 3) ep->lock (spinlock)
52 *
53 * The acquire order is the one listed above, from 1 to 3.
54 * We need a spinlock (ep->lock) because we manipulate objects
55 * from inside the poll callback, that might be triggered from
56 * a wake_up() that in turn might be called from IRQ context.
57 * So we can't sleep inside the poll callback and hence we need
58 * a spinlock. During the event transfer loop (from kernel to
59 * user space) we could end up sleeping due a copy_to_user(), so
60 * we need a lock that will allow us to sleep. This lock is a
61 * mutex (ep->mtx). It is acquired during the event transfer loop,
62 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63 * Then we also need a global mutex to serialize eventpoll_release_file()
64 * and ep_free().
65 * This mutex is acquired by ep_free() during the epoll file
66 * cleanup path and it is also acquired by eventpoll_release_file()
67 * if a file has been pushed inside an epoll set and it is then
68 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69 * It is also acquired when inserting an epoll fd onto another epoll
70 * fd. We do this so that we walk the epoll tree and ensure that this
71 * insertion does not create a cycle of epoll file descriptors, which
72 * could lead to deadlock. We need a global mutex to prevent two
73 * simultaneous inserts (A into B and B into A) from racing and
74 * constructing a cycle without either insert observing that it is
75 * going to.
76 * It is necessary to acquire multiple "ep->mtx"es at once in the
77 * case when one epoll fd is added to another. In this case, we
78 * always acquire the locks in the order of nesting (i.e. after
79 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80 * before e2->mtx). Since we disallow cycles of epoll file
81 * descriptors, this ensures that the mutexes are well-ordered. In
82 * order to communicate this nesting to lockdep, when walking a tree
83 * of epoll file descriptors, we use the current recursion depth as
84 * the lockdep subkey.
85 * It is possible to drop the "ep->mtx" and to use the global
86 * mutex "epmutex" (together with "ep->lock") to have it working,
87 * but having "ep->mtx" will make the interface more scalable.
88 * Events that require holding "epmutex" are very rare, while for
89 * normal operations the epoll private "ep->mtx" will guarantee
90 * a better scalability.
91 */
92
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
95
96 /* Maximum number of nesting allowed inside epoll sets */
97 #define EP_MAX_NESTS 4
98
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
100
101 #define EP_UNACTIVE_PTR ((void *) -1L)
102
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
104
105 struct epoll_filefd {
106 struct file *file;
107 int fd;
108 } __packed;
109
110 /*
111 * Structure used to track possible nested calls, for too deep recursions
112 * and loop cycles.
113 */
114 struct nested_call_node {
115 struct list_head llink;
116 void *cookie;
117 void *ctx;
118 };
119
120 /*
121 * This structure is used as collector for nested calls, to check for
122 * maximum recursion dept and loop cycles.
123 */
124 struct nested_calls {
125 struct list_head tasks_call_list;
126 spinlock_t lock;
127 };
128
129 /*
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
132 * Avoid increasing the size of this struct, there can be many thousands
133 * of these on a server and we do not want this to take another cache line.
134 */
135 struct epitem {
136 /* RB tree node used to link this structure to the eventpoll RB tree */
137 struct rb_node rbn;
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
147
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
151 /* Number of active wait queue attached to poll operations */
152 int nwait;
153
154 /* List containing poll wait queues */
155 struct list_head pwqlist;
156
157 /* The "container" of this item */
158 struct eventpoll *ep;
159
160 /* List header used to link this item to the "struct file" items list */
161 struct list_head fllink;
162
163 /* wakeup_source used when EPOLLWAKEUP is set */
164 struct wakeup_source __rcu *ws;
165
166 /* The structure that describe the interested events and the source fd */
167 struct epoll_event event;
168 };
169
170 /*
171 * This structure is stored inside the "private_data" member of the file
172 * structure and represents the main data structure for the eventpoll
173 * interface.
174 */
175 struct eventpoll {
176 /* Protect the access to this structure */
177 spinlock_t lock;
178
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* RB tree root used to store monitored fd structs */
197 struct rb_root rbr;
198
199 /*
200 * This is a single linked list that chains all the "struct epitem" that
201 * happened while transferring ready events to userspace w/out
202 * holding ->lock.
203 */
204 struct epitem *ovflist;
205
206 /* wakeup_source used when ep_scan_ready_list is running */
207 struct wakeup_source *ws;
208
209 /* The user that created the eventpoll descriptor */
210 struct user_struct *user;
211
212 struct file *file;
213
214 /* used to optimize loop detection check */
215 int visited;
216 struct list_head visited_list_link;
217 };
218
219 /* Wait structure used by the poll hooks */
220 struct eppoll_entry {
221 /* List header used to link this structure to the "struct epitem" */
222 struct list_head llink;
223
224 /* The "base" pointer is set to the container "struct epitem" */
225 struct epitem *base;
226
227 /*
228 * Wait queue item that will be linked to the target file wait
229 * queue head.
230 */
231 wait_queue_t wait;
232
233 /* The wait queue head that linked the "wait" wait queue item */
234 wait_queue_head_t *whead;
235 };
236
237 /* Wrapper struct used by poll queueing */
238 struct ep_pqueue {
239 poll_table pt;
240 struct epitem *epi;
241 };
242
243 /* Used by the ep_send_events() function as callback private data */
244 struct ep_send_events_data {
245 int maxevents;
246 struct epoll_event __user *events;
247 };
248
249 /*
250 * Configuration options available inside /proc/sys/fs/epoll/
251 */
252 /* Maximum number of epoll watched descriptors, per user */
253 static long max_user_watches __read_mostly;
254
255 /*
256 * This mutex is used to serialize ep_free() and eventpoll_release_file().
257 */
258 static DEFINE_MUTEX(epmutex);
259
260 /* Used to check for epoll file descriptor inclusion loops */
261 static struct nested_calls poll_loop_ncalls;
262
263 /* Used for safe wake up implementation */
264 static struct nested_calls poll_safewake_ncalls;
265
266 /* Used to call file's f_op->poll() under the nested calls boundaries */
267 static struct nested_calls poll_readywalk_ncalls;
268
269 /* Slab cache used to allocate "struct epitem" */
270 static struct kmem_cache *epi_cache __read_mostly;
271
272 /* Slab cache used to allocate "struct eppoll_entry" */
273 static struct kmem_cache *pwq_cache __read_mostly;
274
275 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
276 static LIST_HEAD(visited_list);
277
278 /*
279 * List of files with newly added links, where we may need to limit the number
280 * of emanating paths. Protected by the epmutex.
281 */
282 static LIST_HEAD(tfile_check_list);
283
284 #ifdef CONFIG_SYSCTL
285
286 #include <linux/sysctl.h>
287
288 static long zero;
289 static long long_max = LONG_MAX;
290
291 ctl_table epoll_table[] = {
292 {
293 .procname = "max_user_watches",
294 .data = &max_user_watches,
295 .maxlen = sizeof(max_user_watches),
296 .mode = 0644,
297 .proc_handler = proc_doulongvec_minmax,
298 .extra1 = &zero,
299 .extra2 = &long_max,
300 },
301 { }
302 };
303 #endif /* CONFIG_SYSCTL */
304
305 static const struct file_operations eventpoll_fops;
306
307 static inline int is_file_epoll(struct file *f)
308 {
309 return f->f_op == &eventpoll_fops;
310 }
311
312 /* Setup the structure that is used as key for the RB tree */
313 static inline void ep_set_ffd(struct epoll_filefd *ffd,
314 struct file *file, int fd)
315 {
316 ffd->file = file;
317 ffd->fd = fd;
318 }
319
320 /* Compare RB tree keys */
321 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
322 struct epoll_filefd *p2)
323 {
324 return (p1->file > p2->file ? +1:
325 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
326 }
327
328 /* Tells us if the item is currently linked */
329 static inline int ep_is_linked(struct list_head *p)
330 {
331 return !list_empty(p);
332 }
333
334 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
335 {
336 return container_of(p, struct eppoll_entry, wait);
337 }
338
339 /* Get the "struct epitem" from a wait queue pointer */
340 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
341 {
342 return container_of(p, struct eppoll_entry, wait)->base;
343 }
344
345 /* Get the "struct epitem" from an epoll queue wrapper */
346 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
347 {
348 return container_of(p, struct ep_pqueue, pt)->epi;
349 }
350
351 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
352 static inline int ep_op_has_event(int op)
353 {
354 return op != EPOLL_CTL_DEL;
355 }
356
357 /* Initialize the poll safe wake up structure */
358 static void ep_nested_calls_init(struct nested_calls *ncalls)
359 {
360 INIT_LIST_HEAD(&ncalls->tasks_call_list);
361 spin_lock_init(&ncalls->lock);
362 }
363
364 /**
365 * ep_events_available - Checks if ready events might be available.
366 *
367 * @ep: Pointer to the eventpoll context.
368 *
369 * Returns: Returns a value different than zero if ready events are available,
370 * or zero otherwise.
371 */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
375 }
376
377 /**
378 * ep_call_nested - Perform a bound (possibly) nested call, by checking
379 * that the recursion limit is not exceeded, and that
380 * the same nested call (by the meaning of same cookie) is
381 * no re-entered.
382 *
383 * @ncalls: Pointer to the nested_calls structure to be used for this call.
384 * @max_nests: Maximum number of allowed nesting calls.
385 * @nproc: Nested call core function pointer.
386 * @priv: Opaque data to be passed to the @nproc callback.
387 * @cookie: Cookie to be used to identify this nested call.
388 * @ctx: This instance context.
389 *
390 * Returns: Returns the code returned by the @nproc callback, or -1 if
391 * the maximum recursion limit has been exceeded.
392 */
393 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
394 int (*nproc)(void *, void *, int), void *priv,
395 void *cookie, void *ctx)
396 {
397 int error, call_nests = 0;
398 unsigned long flags;
399 struct list_head *lsthead = &ncalls->tasks_call_list;
400 struct nested_call_node *tncur;
401 struct nested_call_node tnode;
402
403 spin_lock_irqsave(&ncalls->lock, flags);
404
405 /*
406 * Try to see if the current task is already inside this wakeup call.
407 * We use a list here, since the population inside this set is always
408 * very much limited.
409 */
410 list_for_each_entry(tncur, lsthead, llink) {
411 if (tncur->ctx == ctx &&
412 (tncur->cookie == cookie || ++call_nests > max_nests)) {
413 /*
414 * Ops ... loop detected or maximum nest level reached.
415 * We abort this wake by breaking the cycle itself.
416 */
417 error = -1;
418 goto out_unlock;
419 }
420 }
421
422 /* Add the current task and cookie to the list */
423 tnode.ctx = ctx;
424 tnode.cookie = cookie;
425 list_add(&tnode.llink, lsthead);
426
427 spin_unlock_irqrestore(&ncalls->lock, flags);
428
429 /* Call the nested function */
430 error = (*nproc)(priv, cookie, call_nests);
431
432 /* Remove the current task from the list */
433 spin_lock_irqsave(&ncalls->lock, flags);
434 list_del(&tnode.llink);
435 out_unlock:
436 spin_unlock_irqrestore(&ncalls->lock, flags);
437
438 return error;
439 }
440
441 /*
442 * As described in commit 0ccf831cb lockdep: annotate epoll
443 * the use of wait queues used by epoll is done in a very controlled
444 * manner. Wake ups can nest inside each other, but are never done
445 * with the same locking. For example:
446 *
447 * dfd = socket(...);
448 * efd1 = epoll_create();
449 * efd2 = epoll_create();
450 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
451 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
452 *
453 * When a packet arrives to the device underneath "dfd", the net code will
454 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
455 * callback wakeup entry on that queue, and the wake_up() performed by the
456 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
457 * (efd1) notices that it may have some event ready, so it needs to wake up
458 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
459 * that ends up in another wake_up(), after having checked about the
460 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
461 * avoid stack blasting.
462 *
463 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
464 * this special case of epoll.
465 */
466 #ifdef CONFIG_DEBUG_LOCK_ALLOC
467 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
468 unsigned long events, int subclass)
469 {
470 unsigned long flags;
471
472 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
473 wake_up_locked_poll(wqueue, events);
474 spin_unlock_irqrestore(&wqueue->lock, flags);
475 }
476 #else
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 unsigned long events, int subclass)
479 {
480 wake_up_poll(wqueue, events);
481 }
482 #endif
483
484 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
485 {
486 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
487 1 + call_nests);
488 return 0;
489 }
490
491 /*
492 * Perform a safe wake up of the poll wait list. The problem is that
493 * with the new callback'd wake up system, it is possible that the
494 * poll callback is reentered from inside the call to wake_up() done
495 * on the poll wait queue head. The rule is that we cannot reenter the
496 * wake up code from the same task more than EP_MAX_NESTS times,
497 * and we cannot reenter the same wait queue head at all. This will
498 * enable to have a hierarchy of epoll file descriptor of no more than
499 * EP_MAX_NESTS deep.
500 */
501 static void ep_poll_safewake(wait_queue_head_t *wq)
502 {
503 int this_cpu = get_cpu();
504
505 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
506 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
507
508 put_cpu();
509 }
510
511 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
512 {
513 wait_queue_head_t *whead;
514
515 rcu_read_lock();
516 /* If it is cleared by POLLFREE, it should be rcu-safe */
517 whead = rcu_dereference(pwq->whead);
518 if (whead)
519 remove_wait_queue(whead, &pwq->wait);
520 rcu_read_unlock();
521 }
522
523 /*
524 * This function unregisters poll callbacks from the associated file
525 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
526 * ep_free).
527 */
528 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
529 {
530 struct list_head *lsthead = &epi->pwqlist;
531 struct eppoll_entry *pwq;
532
533 while (!list_empty(lsthead)) {
534 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
535
536 list_del(&pwq->llink);
537 ep_remove_wait_queue(pwq);
538 kmem_cache_free(pwq_cache, pwq);
539 }
540 }
541
542 /* call only when ep->mtx is held */
543 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
544 {
545 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
546 }
547
548 /* call only when ep->mtx is held */
549 static inline void ep_pm_stay_awake(struct epitem *epi)
550 {
551 struct wakeup_source *ws = ep_wakeup_source(epi);
552
553 if (ws)
554 __pm_stay_awake(ws);
555 }
556
557 static inline bool ep_has_wakeup_source(struct epitem *epi)
558 {
559 return rcu_access_pointer(epi->ws) ? true : false;
560 }
561
562 /* call when ep->mtx cannot be held (ep_poll_callback) */
563 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
564 {
565 struct wakeup_source *ws;
566
567 rcu_read_lock();
568 ws = rcu_dereference(epi->ws);
569 if (ws)
570 __pm_stay_awake(ws);
571 rcu_read_unlock();
572 }
573
574 /**
575 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
576 * the scan code, to call f_op->poll(). Also allows for
577 * O(NumReady) performance.
578 *
579 * @ep: Pointer to the epoll private data structure.
580 * @sproc: Pointer to the scan callback.
581 * @priv: Private opaque data passed to the @sproc callback.
582 * @depth: The current depth of recursive f_op->poll calls.
583 *
584 * Returns: The same integer error code returned by the @sproc callback.
585 */
586 static int ep_scan_ready_list(struct eventpoll *ep,
587 int (*sproc)(struct eventpoll *,
588 struct list_head *, void *),
589 void *priv,
590 int depth)
591 {
592 int error, pwake = 0;
593 unsigned long flags;
594 struct epitem *epi, *nepi;
595 LIST_HEAD(txlist);
596
597 /*
598 * We need to lock this because we could be hit by
599 * eventpoll_release_file() and epoll_ctl().
600 */
601 mutex_lock_nested(&ep->mtx, depth);
602
603 /*
604 * Steal the ready list, and re-init the original one to the
605 * empty list. Also, set ep->ovflist to NULL so that events
606 * happening while looping w/out locks, are not lost. We cannot
607 * have the poll callback to queue directly on ep->rdllist,
608 * because we want the "sproc" callback to be able to do it
609 * in a lockless way.
610 */
611 spin_lock_irqsave(&ep->lock, flags);
612 list_splice_init(&ep->rdllist, &txlist);
613 ep->ovflist = NULL;
614 spin_unlock_irqrestore(&ep->lock, flags);
615
616 /*
617 * Now call the callback function.
618 */
619 error = (*sproc)(ep, &txlist, priv);
620
621 spin_lock_irqsave(&ep->lock, flags);
622 /*
623 * During the time we spent inside the "sproc" callback, some
624 * other events might have been queued by the poll callback.
625 * We re-insert them inside the main ready-list here.
626 */
627 for (nepi = ep->ovflist; (epi = nepi) != NULL;
628 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
629 /*
630 * We need to check if the item is already in the list.
631 * During the "sproc" callback execution time, items are
632 * queued into ->ovflist but the "txlist" might already
633 * contain them, and the list_splice() below takes care of them.
634 */
635 if (!ep_is_linked(&epi->rdllink)) {
636 list_add_tail(&epi->rdllink, &ep->rdllist);
637 ep_pm_stay_awake(epi);
638 }
639 }
640 /*
641 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
642 * releasing the lock, events will be queued in the normal way inside
643 * ep->rdllist.
644 */
645 ep->ovflist = EP_UNACTIVE_PTR;
646
647 /*
648 * Quickly re-inject items left on "txlist".
649 */
650 list_splice(&txlist, &ep->rdllist);
651 __pm_relax(ep->ws);
652
653 if (!list_empty(&ep->rdllist)) {
654 /*
655 * Wake up (if active) both the eventpoll wait list and
656 * the ->poll() wait list (delayed after we release the lock).
657 */
658 if (waitqueue_active(&ep->wq))
659 wake_up_locked(&ep->wq);
660 if (waitqueue_active(&ep->poll_wait))
661 pwake++;
662 }
663 spin_unlock_irqrestore(&ep->lock, flags);
664
665 mutex_unlock(&ep->mtx);
666
667 /* We have to call this outside the lock */
668 if (pwake)
669 ep_poll_safewake(&ep->poll_wait);
670
671 return error;
672 }
673
674 /*
675 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
676 * all the associated resources. Must be called with "mtx" held.
677 */
678 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
679 {
680 unsigned long flags;
681 struct file *file = epi->ffd.file;
682
683 /*
684 * Removes poll wait queue hooks. We _have_ to do this without holding
685 * the "ep->lock" otherwise a deadlock might occur. This because of the
686 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
687 * queue head lock when unregistering the wait queue. The wakeup callback
688 * will run by holding the wait queue head lock and will call our callback
689 * that will try to get "ep->lock".
690 */
691 ep_unregister_pollwait(ep, epi);
692
693 /* Remove the current item from the list of epoll hooks */
694 spin_lock(&file->f_lock);
695 if (ep_is_linked(&epi->fllink))
696 list_del_init(&epi->fllink);
697 spin_unlock(&file->f_lock);
698
699 rb_erase(&epi->rbn, &ep->rbr);
700
701 spin_lock_irqsave(&ep->lock, flags);
702 if (ep_is_linked(&epi->rdllink))
703 list_del_init(&epi->rdllink);
704 spin_unlock_irqrestore(&ep->lock, flags);
705
706 wakeup_source_unregister(ep_wakeup_source(epi));
707
708 /* At this point it is safe to free the eventpoll item */
709 kmem_cache_free(epi_cache, epi);
710
711 atomic_long_dec(&ep->user->epoll_watches);
712
713 return 0;
714 }
715
716 static void ep_free(struct eventpoll *ep)
717 {
718 struct rb_node *rbp;
719 struct epitem *epi;
720
721 /* We need to release all tasks waiting for these file */
722 if (waitqueue_active(&ep->poll_wait))
723 ep_poll_safewake(&ep->poll_wait);
724
725 /*
726 * We need to lock this because we could be hit by
727 * eventpoll_release_file() while we're freeing the "struct eventpoll".
728 * We do not need to hold "ep->mtx" here because the epoll file
729 * is on the way to be removed and no one has references to it
730 * anymore. The only hit might come from eventpoll_release_file() but
731 * holding "epmutex" is sufficient here.
732 */
733 mutex_lock(&epmutex);
734
735 /*
736 * Walks through the whole tree by unregistering poll callbacks.
737 */
738 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
739 epi = rb_entry(rbp, struct epitem, rbn);
740
741 ep_unregister_pollwait(ep, epi);
742 cond_resched();
743 }
744
745 /*
746 * Walks through the whole tree by freeing each "struct epitem". At this
747 * point we are sure no poll callbacks will be lingering around, and also by
748 * holding "epmutex" we can be sure that no file cleanup code will hit
749 * us during this operation. So we can avoid the lock on "ep->lock".
750 * We do not need to lock ep->mtx, either, we only do it to prevent
751 * a lockdep warning.
752 */
753 mutex_lock(&ep->mtx);
754 while ((rbp = rb_first(&ep->rbr)) != NULL) {
755 epi = rb_entry(rbp, struct epitem, rbn);
756 ep_remove(ep, epi);
757 cond_resched();
758 }
759 mutex_unlock(&ep->mtx);
760
761 mutex_unlock(&epmutex);
762 mutex_destroy(&ep->mtx);
763 free_uid(ep->user);
764 wakeup_source_unregister(ep->ws);
765 kfree(ep);
766 }
767
768 static int ep_eventpoll_release(struct inode *inode, struct file *file)
769 {
770 struct eventpoll *ep = file->private_data;
771
772 if (ep)
773 ep_free(ep);
774
775 return 0;
776 }
777
778 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
779 {
780 pt->_key = epi->event.events;
781
782 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
783 }
784
785 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
786 void *priv)
787 {
788 struct epitem *epi, *tmp;
789 poll_table pt;
790
791 init_poll_funcptr(&pt, NULL);
792
793 list_for_each_entry_safe(epi, tmp, head, rdllink) {
794 if (ep_item_poll(epi, &pt))
795 return POLLIN | POLLRDNORM;
796 else {
797 /*
798 * Item has been dropped into the ready list by the poll
799 * callback, but it's not actually ready, as far as
800 * caller requested events goes. We can remove it here.
801 */
802 __pm_relax(ep_wakeup_source(epi));
803 list_del_init(&epi->rdllink);
804 }
805 }
806
807 return 0;
808 }
809
810 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
811 {
812 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
813 }
814
815 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
816 {
817 int pollflags;
818 struct eventpoll *ep = file->private_data;
819
820 /* Insert inside our poll wait queue */
821 poll_wait(file, &ep->poll_wait, wait);
822
823 /*
824 * Proceed to find out if wanted events are really available inside
825 * the ready list. This need to be done under ep_call_nested()
826 * supervision, since the call to f_op->poll() done on listed files
827 * could re-enter here.
828 */
829 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
830 ep_poll_readyevents_proc, ep, ep, current);
831
832 return pollflags != -1 ? pollflags : 0;
833 }
834
835 #ifdef CONFIG_PROC_FS
836 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
837 {
838 struct eventpoll *ep = f->private_data;
839 struct rb_node *rbp;
840 int ret = 0;
841
842 mutex_lock(&ep->mtx);
843 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
844 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
845
846 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
847 epi->ffd.fd, epi->event.events,
848 (long long)epi->event.data);
849 if (ret)
850 break;
851 }
852 mutex_unlock(&ep->mtx);
853
854 return ret;
855 }
856 #endif
857
858 /* File callbacks that implement the eventpoll file behaviour */
859 static const struct file_operations eventpoll_fops = {
860 #ifdef CONFIG_PROC_FS
861 .show_fdinfo = ep_show_fdinfo,
862 #endif
863 .release = ep_eventpoll_release,
864 .poll = ep_eventpoll_poll,
865 .llseek = noop_llseek,
866 };
867
868 /*
869 * This is called from eventpoll_release() to unlink files from the eventpoll
870 * interface. We need to have this facility to cleanup correctly files that are
871 * closed without being removed from the eventpoll interface.
872 */
873 void eventpoll_release_file(struct file *file)
874 {
875 struct list_head *lsthead = &file->f_ep_links;
876 struct eventpoll *ep;
877 struct epitem *epi;
878
879 /*
880 * We don't want to get "file->f_lock" because it is not
881 * necessary. It is not necessary because we're in the "struct file"
882 * cleanup path, and this means that no one is using this file anymore.
883 * So, for example, epoll_ctl() cannot hit here since if we reach this
884 * point, the file counter already went to zero and fget() would fail.
885 * The only hit might come from ep_free() but by holding the mutex
886 * will correctly serialize the operation. We do need to acquire
887 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
888 * from anywhere but ep_free().
889 *
890 * Besides, ep_remove() acquires the lock, so we can't hold it here.
891 */
892 mutex_lock(&epmutex);
893
894 while (!list_empty(lsthead)) {
895 epi = list_first_entry(lsthead, struct epitem, fllink);
896
897 ep = epi->ep;
898 list_del_init(&epi->fllink);
899 mutex_lock_nested(&ep->mtx, 0);
900 ep_remove(ep, epi);
901 mutex_unlock(&ep->mtx);
902 }
903
904 mutex_unlock(&epmutex);
905 }
906
907 static int ep_alloc(struct eventpoll **pep)
908 {
909 int error;
910 struct user_struct *user;
911 struct eventpoll *ep;
912
913 user = get_current_user();
914 error = -ENOMEM;
915 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
916 if (unlikely(!ep))
917 goto free_uid;
918
919 spin_lock_init(&ep->lock);
920 mutex_init(&ep->mtx);
921 init_waitqueue_head(&ep->wq);
922 init_waitqueue_head(&ep->poll_wait);
923 INIT_LIST_HEAD(&ep->rdllist);
924 ep->rbr = RB_ROOT;
925 ep->ovflist = EP_UNACTIVE_PTR;
926 ep->user = user;
927
928 *pep = ep;
929
930 return 0;
931
932 free_uid:
933 free_uid(user);
934 return error;
935 }
936
937 /*
938 * Search the file inside the eventpoll tree. The RB tree operations
939 * are protected by the "mtx" mutex, and ep_find() must be called with
940 * "mtx" held.
941 */
942 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
943 {
944 int kcmp;
945 struct rb_node *rbp;
946 struct epitem *epi, *epir = NULL;
947 struct epoll_filefd ffd;
948
949 ep_set_ffd(&ffd, file, fd);
950 for (rbp = ep->rbr.rb_node; rbp; ) {
951 epi = rb_entry(rbp, struct epitem, rbn);
952 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
953 if (kcmp > 0)
954 rbp = rbp->rb_right;
955 else if (kcmp < 0)
956 rbp = rbp->rb_left;
957 else {
958 epir = epi;
959 break;
960 }
961 }
962
963 return epir;
964 }
965
966 /*
967 * This is the callback that is passed to the wait queue wakeup
968 * mechanism. It is called by the stored file descriptors when they
969 * have events to report.
970 */
971 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
972 {
973 int pwake = 0;
974 unsigned long flags;
975 struct epitem *epi = ep_item_from_wait(wait);
976 struct eventpoll *ep = epi->ep;
977
978 if ((unsigned long)key & POLLFREE) {
979 ep_pwq_from_wait(wait)->whead = NULL;
980 /*
981 * whead = NULL above can race with ep_remove_wait_queue()
982 * which can do another remove_wait_queue() after us, so we
983 * can't use __remove_wait_queue(). whead->lock is held by
984 * the caller.
985 */
986 list_del_init(&wait->task_list);
987 }
988
989 spin_lock_irqsave(&ep->lock, flags);
990
991 /*
992 * If the event mask does not contain any poll(2) event, we consider the
993 * descriptor to be disabled. This condition is likely the effect of the
994 * EPOLLONESHOT bit that disables the descriptor when an event is received,
995 * until the next EPOLL_CTL_MOD will be issued.
996 */
997 if (!(epi->event.events & ~EP_PRIVATE_BITS))
998 goto out_unlock;
999
1000 /*
1001 * Check the events coming with the callback. At this stage, not
1002 * every device reports the events in the "key" parameter of the
1003 * callback. We need to be able to handle both cases here, hence the
1004 * test for "key" != NULL before the event match test.
1005 */
1006 if (key && !((unsigned long) key & epi->event.events))
1007 goto out_unlock;
1008
1009 /*
1010 * If we are transferring events to userspace, we can hold no locks
1011 * (because we're accessing user memory, and because of linux f_op->poll()
1012 * semantics). All the events that happen during that period of time are
1013 * chained in ep->ovflist and requeued later on.
1014 */
1015 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1016 if (epi->next == EP_UNACTIVE_PTR) {
1017 epi->next = ep->ovflist;
1018 ep->ovflist = epi;
1019 if (epi->ws) {
1020 /*
1021 * Activate ep->ws since epi->ws may get
1022 * deactivated at any time.
1023 */
1024 __pm_stay_awake(ep->ws);
1025 }
1026
1027 }
1028 goto out_unlock;
1029 }
1030
1031 /* If this file is already in the ready list we exit soon */
1032 if (!ep_is_linked(&epi->rdllink)) {
1033 list_add_tail(&epi->rdllink, &ep->rdllist);
1034 ep_pm_stay_awake_rcu(epi);
1035 }
1036
1037 /*
1038 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1039 * wait list.
1040 */
1041 if (waitqueue_active(&ep->wq))
1042 wake_up_locked(&ep->wq);
1043 if (waitqueue_active(&ep->poll_wait))
1044 pwake++;
1045
1046 out_unlock:
1047 spin_unlock_irqrestore(&ep->lock, flags);
1048
1049 /* We have to call this outside the lock */
1050 if (pwake)
1051 ep_poll_safewake(&ep->poll_wait);
1052
1053 return 1;
1054 }
1055
1056 /*
1057 * This is the callback that is used to add our wait queue to the
1058 * target file wakeup lists.
1059 */
1060 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1061 poll_table *pt)
1062 {
1063 struct epitem *epi = ep_item_from_epqueue(pt);
1064 struct eppoll_entry *pwq;
1065
1066 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1067 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1068 pwq->whead = whead;
1069 pwq->base = epi;
1070 add_wait_queue(whead, &pwq->wait);
1071 list_add_tail(&pwq->llink, &epi->pwqlist);
1072 epi->nwait++;
1073 } else {
1074 /* We have to signal that an error occurred */
1075 epi->nwait = -1;
1076 }
1077 }
1078
1079 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1080 {
1081 int kcmp;
1082 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1083 struct epitem *epic;
1084
1085 while (*p) {
1086 parent = *p;
1087 epic = rb_entry(parent, struct epitem, rbn);
1088 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1089 if (kcmp > 0)
1090 p = &parent->rb_right;
1091 else
1092 p = &parent->rb_left;
1093 }
1094 rb_link_node(&epi->rbn, parent, p);
1095 rb_insert_color(&epi->rbn, &ep->rbr);
1096 }
1097
1098
1099
1100 #define PATH_ARR_SIZE 5
1101 /*
1102 * These are the number paths of length 1 to 5, that we are allowing to emanate
1103 * from a single file of interest. For example, we allow 1000 paths of length
1104 * 1, to emanate from each file of interest. This essentially represents the
1105 * potential wakeup paths, which need to be limited in order to avoid massive
1106 * uncontrolled wakeup storms. The common use case should be a single ep which
1107 * is connected to n file sources. In this case each file source has 1 path
1108 * of length 1. Thus, the numbers below should be more than sufficient. These
1109 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1110 * and delete can't add additional paths. Protected by the epmutex.
1111 */
1112 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1113 static int path_count[PATH_ARR_SIZE];
1114
1115 static int path_count_inc(int nests)
1116 {
1117 /* Allow an arbitrary number of depth 1 paths */
1118 if (nests == 0)
1119 return 0;
1120
1121 if (++path_count[nests] > path_limits[nests])
1122 return -1;
1123 return 0;
1124 }
1125
1126 static void path_count_init(void)
1127 {
1128 int i;
1129
1130 for (i = 0; i < PATH_ARR_SIZE; i++)
1131 path_count[i] = 0;
1132 }
1133
1134 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1135 {
1136 int error = 0;
1137 struct file *file = priv;
1138 struct file *child_file;
1139 struct epitem *epi;
1140
1141 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1142 child_file = epi->ep->file;
1143 if (is_file_epoll(child_file)) {
1144 if (list_empty(&child_file->f_ep_links)) {
1145 if (path_count_inc(call_nests)) {
1146 error = -1;
1147 break;
1148 }
1149 } else {
1150 error = ep_call_nested(&poll_loop_ncalls,
1151 EP_MAX_NESTS,
1152 reverse_path_check_proc,
1153 child_file, child_file,
1154 current);
1155 }
1156 if (error != 0)
1157 break;
1158 } else {
1159 printk(KERN_ERR "reverse_path_check_proc: "
1160 "file is not an ep!\n");
1161 }
1162 }
1163 return error;
1164 }
1165
1166 /**
1167 * reverse_path_check - The tfile_check_list is list of file *, which have
1168 * links that are proposed to be newly added. We need to
1169 * make sure that those added links don't add too many
1170 * paths such that we will spend all our time waking up
1171 * eventpoll objects.
1172 *
1173 * Returns: Returns zero if the proposed links don't create too many paths,
1174 * -1 otherwise.
1175 */
1176 static int reverse_path_check(void)
1177 {
1178 int error = 0;
1179 struct file *current_file;
1180
1181 /* let's call this for all tfiles */
1182 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1183 path_count_init();
1184 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1185 reverse_path_check_proc, current_file,
1186 current_file, current);
1187 if (error)
1188 break;
1189 }
1190 return error;
1191 }
1192
1193 static int ep_create_wakeup_source(struct epitem *epi)
1194 {
1195 const char *name;
1196 struct wakeup_source *ws;
1197
1198 if (!epi->ep->ws) {
1199 epi->ep->ws = wakeup_source_register("eventpoll");
1200 if (!epi->ep->ws)
1201 return -ENOMEM;
1202 }
1203
1204 name = epi->ffd.file->f_path.dentry->d_name.name;
1205 ws = wakeup_source_register(name);
1206
1207 if (!ws)
1208 return -ENOMEM;
1209 rcu_assign_pointer(epi->ws, ws);
1210
1211 return 0;
1212 }
1213
1214 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1215 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1216 {
1217 struct wakeup_source *ws = ep_wakeup_source(epi);
1218
1219 RCU_INIT_POINTER(epi->ws, NULL);
1220
1221 /*
1222 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1223 * used internally by wakeup_source_remove, too (called by
1224 * wakeup_source_unregister), so we cannot use call_rcu
1225 */
1226 synchronize_rcu();
1227 wakeup_source_unregister(ws);
1228 }
1229
1230 /*
1231 * Must be called with "mtx" held.
1232 */
1233 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1234 struct file *tfile, int fd)
1235 {
1236 int error, revents, pwake = 0;
1237 unsigned long flags;
1238 long user_watches;
1239 struct epitem *epi;
1240 struct ep_pqueue epq;
1241
1242 user_watches = atomic_long_read(&ep->user->epoll_watches);
1243 if (unlikely(user_watches >= max_user_watches))
1244 return -ENOSPC;
1245 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1246 return -ENOMEM;
1247
1248 /* Item initialization follow here ... */
1249 INIT_LIST_HEAD(&epi->rdllink);
1250 INIT_LIST_HEAD(&epi->fllink);
1251 INIT_LIST_HEAD(&epi->pwqlist);
1252 epi->ep = ep;
1253 ep_set_ffd(&epi->ffd, tfile, fd);
1254 epi->event = *event;
1255 epi->nwait = 0;
1256 epi->next = EP_UNACTIVE_PTR;
1257 if (epi->event.events & EPOLLWAKEUP) {
1258 error = ep_create_wakeup_source(epi);
1259 if (error)
1260 goto error_create_wakeup_source;
1261 } else {
1262 RCU_INIT_POINTER(epi->ws, NULL);
1263 }
1264
1265 /* Initialize the poll table using the queue callback */
1266 epq.epi = epi;
1267 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1268
1269 /*
1270 * Attach the item to the poll hooks and get current event bits.
1271 * We can safely use the file* here because its usage count has
1272 * been increased by the caller of this function. Note that after
1273 * this operation completes, the poll callback can start hitting
1274 * the new item.
1275 */
1276 revents = ep_item_poll(epi, &epq.pt);
1277
1278 /*
1279 * We have to check if something went wrong during the poll wait queue
1280 * install process. Namely an allocation for a wait queue failed due
1281 * high memory pressure.
1282 */
1283 error = -ENOMEM;
1284 if (epi->nwait < 0)
1285 goto error_unregister;
1286
1287 /* Add the current item to the list of active epoll hook for this file */
1288 spin_lock(&tfile->f_lock);
1289 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1290 spin_unlock(&tfile->f_lock);
1291
1292 /*
1293 * Add the current item to the RB tree. All RB tree operations are
1294 * protected by "mtx", and ep_insert() is called with "mtx" held.
1295 */
1296 ep_rbtree_insert(ep, epi);
1297
1298 /* now check if we've created too many backpaths */
1299 error = -EINVAL;
1300 if (reverse_path_check())
1301 goto error_remove_epi;
1302
1303 /* We have to drop the new item inside our item list to keep track of it */
1304 spin_lock_irqsave(&ep->lock, flags);
1305
1306 /* If the file is already "ready" we drop it inside the ready list */
1307 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1308 list_add_tail(&epi->rdllink, &ep->rdllist);
1309 ep_pm_stay_awake(epi);
1310
1311 /* Notify waiting tasks that events are available */
1312 if (waitqueue_active(&ep->wq))
1313 wake_up_locked(&ep->wq);
1314 if (waitqueue_active(&ep->poll_wait))
1315 pwake++;
1316 }
1317
1318 spin_unlock_irqrestore(&ep->lock, flags);
1319
1320 atomic_long_inc(&ep->user->epoll_watches);
1321
1322 /* We have to call this outside the lock */
1323 if (pwake)
1324 ep_poll_safewake(&ep->poll_wait);
1325
1326 return 0;
1327
1328 error_remove_epi:
1329 spin_lock(&tfile->f_lock);
1330 if (ep_is_linked(&epi->fllink))
1331 list_del_init(&epi->fllink);
1332 spin_unlock(&tfile->f_lock);
1333
1334 rb_erase(&epi->rbn, &ep->rbr);
1335
1336 error_unregister:
1337 ep_unregister_pollwait(ep, epi);
1338
1339 /*
1340 * We need to do this because an event could have been arrived on some
1341 * allocated wait queue. Note that we don't care about the ep->ovflist
1342 * list, since that is used/cleaned only inside a section bound by "mtx".
1343 * And ep_insert() is called with "mtx" held.
1344 */
1345 spin_lock_irqsave(&ep->lock, flags);
1346 if (ep_is_linked(&epi->rdllink))
1347 list_del_init(&epi->rdllink);
1348 spin_unlock_irqrestore(&ep->lock, flags);
1349
1350 wakeup_source_unregister(ep_wakeup_source(epi));
1351
1352 error_create_wakeup_source:
1353 kmem_cache_free(epi_cache, epi);
1354
1355 return error;
1356 }
1357
1358 /*
1359 * Modify the interest event mask by dropping an event if the new mask
1360 * has a match in the current file status. Must be called with "mtx" held.
1361 */
1362 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1363 {
1364 int pwake = 0;
1365 unsigned int revents;
1366 poll_table pt;
1367
1368 init_poll_funcptr(&pt, NULL);
1369
1370 /*
1371 * Set the new event interest mask before calling f_op->poll();
1372 * otherwise we might miss an event that happens between the
1373 * f_op->poll() call and the new event set registering.
1374 */
1375 epi->event.events = event->events; /* need barrier below */
1376 epi->event.data = event->data; /* protected by mtx */
1377 if (epi->event.events & EPOLLWAKEUP) {
1378 if (!ep_has_wakeup_source(epi))
1379 ep_create_wakeup_source(epi);
1380 } else if (ep_has_wakeup_source(epi)) {
1381 ep_destroy_wakeup_source(epi);
1382 }
1383
1384 /*
1385 * The following barrier has two effects:
1386 *
1387 * 1) Flush epi changes above to other CPUs. This ensures
1388 * we do not miss events from ep_poll_callback if an
1389 * event occurs immediately after we call f_op->poll().
1390 * We need this because we did not take ep->lock while
1391 * changing epi above (but ep_poll_callback does take
1392 * ep->lock).
1393 *
1394 * 2) We also need to ensure we do not miss _past_ events
1395 * when calling f_op->poll(). This barrier also
1396 * pairs with the barrier in wq_has_sleeper (see
1397 * comments for wq_has_sleeper).
1398 *
1399 * This barrier will now guarantee ep_poll_callback or f_op->poll
1400 * (or both) will notice the readiness of an item.
1401 */
1402 smp_mb();
1403
1404 /*
1405 * Get current event bits. We can safely use the file* here because
1406 * its usage count has been increased by the caller of this function.
1407 */
1408 revents = ep_item_poll(epi, &pt);
1409
1410 /*
1411 * If the item is "hot" and it is not registered inside the ready
1412 * list, push it inside.
1413 */
1414 if (revents & event->events) {
1415 spin_lock_irq(&ep->lock);
1416 if (!ep_is_linked(&epi->rdllink)) {
1417 list_add_tail(&epi->rdllink, &ep->rdllist);
1418 ep_pm_stay_awake(epi);
1419
1420 /* Notify waiting tasks that events are available */
1421 if (waitqueue_active(&ep->wq))
1422 wake_up_locked(&ep->wq);
1423 if (waitqueue_active(&ep->poll_wait))
1424 pwake++;
1425 }
1426 spin_unlock_irq(&ep->lock);
1427 }
1428
1429 /* We have to call this outside the lock */
1430 if (pwake)
1431 ep_poll_safewake(&ep->poll_wait);
1432
1433 return 0;
1434 }
1435
1436 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1437 void *priv)
1438 {
1439 struct ep_send_events_data *esed = priv;
1440 int eventcnt;
1441 unsigned int revents;
1442 struct epitem *epi;
1443 struct epoll_event __user *uevent;
1444 struct wakeup_source *ws;
1445 poll_table pt;
1446
1447 init_poll_funcptr(&pt, NULL);
1448
1449 /*
1450 * We can loop without lock because we are passed a task private list.
1451 * Items cannot vanish during the loop because ep_scan_ready_list() is
1452 * holding "mtx" during this call.
1453 */
1454 for (eventcnt = 0, uevent = esed->events;
1455 !list_empty(head) && eventcnt < esed->maxevents;) {
1456 epi = list_first_entry(head, struct epitem, rdllink);
1457
1458 /*
1459 * Activate ep->ws before deactivating epi->ws to prevent
1460 * triggering auto-suspend here (in case we reactive epi->ws
1461 * below).
1462 *
1463 * This could be rearranged to delay the deactivation of epi->ws
1464 * instead, but then epi->ws would temporarily be out of sync
1465 * with ep_is_linked().
1466 */
1467 ws = ep_wakeup_source(epi);
1468 if (ws) {
1469 if (ws->active)
1470 __pm_stay_awake(ep->ws);
1471 __pm_relax(ws);
1472 }
1473
1474 list_del_init(&epi->rdllink);
1475
1476 revents = ep_item_poll(epi, &pt);
1477
1478 /*
1479 * If the event mask intersect the caller-requested one,
1480 * deliver the event to userspace. Again, ep_scan_ready_list()
1481 * is holding "mtx", so no operations coming from userspace
1482 * can change the item.
1483 */
1484 if (revents) {
1485 if (__put_user(revents, &uevent->events) ||
1486 __put_user(epi->event.data, &uevent->data)) {
1487 list_add(&epi->rdllink, head);
1488 ep_pm_stay_awake(epi);
1489 return eventcnt ? eventcnt : -EFAULT;
1490 }
1491 eventcnt++;
1492 uevent++;
1493 if (epi->event.events & EPOLLONESHOT)
1494 epi->event.events &= EP_PRIVATE_BITS;
1495 else if (!(epi->event.events & EPOLLET)) {
1496 /*
1497 * If this file has been added with Level
1498 * Trigger mode, we need to insert back inside
1499 * the ready list, so that the next call to
1500 * epoll_wait() will check again the events
1501 * availability. At this point, no one can insert
1502 * into ep->rdllist besides us. The epoll_ctl()
1503 * callers are locked out by
1504 * ep_scan_ready_list() holding "mtx" and the
1505 * poll callback will queue them in ep->ovflist.
1506 */
1507 list_add_tail(&epi->rdllink, &ep->rdllist);
1508 ep_pm_stay_awake(epi);
1509 }
1510 }
1511 }
1512
1513 return eventcnt;
1514 }
1515
1516 static int ep_send_events(struct eventpoll *ep,
1517 struct epoll_event __user *events, int maxevents)
1518 {
1519 struct ep_send_events_data esed;
1520
1521 esed.maxevents = maxevents;
1522 esed.events = events;
1523
1524 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1525 }
1526
1527 static inline struct timespec ep_set_mstimeout(long ms)
1528 {
1529 struct timespec now, ts = {
1530 .tv_sec = ms / MSEC_PER_SEC,
1531 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1532 };
1533
1534 ktime_get_ts(&now);
1535 return timespec_add_safe(now, ts);
1536 }
1537
1538 /**
1539 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1540 * event buffer.
1541 *
1542 * @ep: Pointer to the eventpoll context.
1543 * @events: Pointer to the userspace buffer where the ready events should be
1544 * stored.
1545 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1546 * @timeout: Maximum timeout for the ready events fetch operation, in
1547 * milliseconds. If the @timeout is zero, the function will not block,
1548 * while if the @timeout is less than zero, the function will block
1549 * until at least one event has been retrieved (or an error
1550 * occurred).
1551 *
1552 * Returns: Returns the number of ready events which have been fetched, or an
1553 * error code, in case of error.
1554 */
1555 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1556 int maxevents, long timeout)
1557 {
1558 int res = 0, eavail, timed_out = 0;
1559 unsigned long flags;
1560 long slack = 0;
1561 wait_queue_t wait;
1562 ktime_t expires, *to = NULL;
1563
1564 if (timeout > 0) {
1565 struct timespec end_time = ep_set_mstimeout(timeout);
1566
1567 slack = select_estimate_accuracy(&end_time);
1568 to = &expires;
1569 *to = timespec_to_ktime(end_time);
1570 } else if (timeout == 0) {
1571 /*
1572 * Avoid the unnecessary trip to the wait queue loop, if the
1573 * caller specified a non blocking operation.
1574 */
1575 timed_out = 1;
1576 spin_lock_irqsave(&ep->lock, flags);
1577 goto check_events;
1578 }
1579
1580 fetch_events:
1581 spin_lock_irqsave(&ep->lock, flags);
1582
1583 if (!ep_events_available(ep)) {
1584 /*
1585 * We don't have any available event to return to the caller.
1586 * We need to sleep here, and we will be wake up by
1587 * ep_poll_callback() when events will become available.
1588 */
1589 init_waitqueue_entry(&wait, current);
1590 __add_wait_queue_exclusive(&ep->wq, &wait);
1591
1592 for (;;) {
1593 /*
1594 * We don't want to sleep if the ep_poll_callback() sends us
1595 * a wakeup in between. That's why we set the task state
1596 * to TASK_INTERRUPTIBLE before doing the checks.
1597 */
1598 set_current_state(TASK_INTERRUPTIBLE);
1599 if (ep_events_available(ep) || timed_out)
1600 break;
1601 if (signal_pending(current)) {
1602 res = -EINTR;
1603 break;
1604 }
1605
1606 spin_unlock_irqrestore(&ep->lock, flags);
1607 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1608 timed_out = 1;
1609
1610 spin_lock_irqsave(&ep->lock, flags);
1611 }
1612 __remove_wait_queue(&ep->wq, &wait);
1613
1614 set_current_state(TASK_RUNNING);
1615 }
1616 check_events:
1617 /* Is it worth to try to dig for events ? */
1618 eavail = ep_events_available(ep);
1619
1620 spin_unlock_irqrestore(&ep->lock, flags);
1621
1622 /*
1623 * Try to transfer events to user space. In case we get 0 events and
1624 * there's still timeout left over, we go trying again in search of
1625 * more luck.
1626 */
1627 if (!res && eavail &&
1628 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1629 goto fetch_events;
1630
1631 return res;
1632 }
1633
1634 /**
1635 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1636 * API, to verify that adding an epoll file inside another
1637 * epoll structure, does not violate the constraints, in
1638 * terms of closed loops, or too deep chains (which can
1639 * result in excessive stack usage).
1640 *
1641 * @priv: Pointer to the epoll file to be currently checked.
1642 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1643 * data structure pointer.
1644 * @call_nests: Current dept of the @ep_call_nested() call stack.
1645 *
1646 * Returns: Returns zero if adding the epoll @file inside current epoll
1647 * structure @ep does not violate the constraints, or -1 otherwise.
1648 */
1649 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1650 {
1651 int error = 0;
1652 struct file *file = priv;
1653 struct eventpoll *ep = file->private_data;
1654 struct eventpoll *ep_tovisit;
1655 struct rb_node *rbp;
1656 struct epitem *epi;
1657
1658 mutex_lock_nested(&ep->mtx, call_nests + 1);
1659 ep->visited = 1;
1660 list_add(&ep->visited_list_link, &visited_list);
1661 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1662 epi = rb_entry(rbp, struct epitem, rbn);
1663 if (unlikely(is_file_epoll(epi->ffd.file))) {
1664 ep_tovisit = epi->ffd.file->private_data;
1665 if (ep_tovisit->visited)
1666 continue;
1667 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1668 ep_loop_check_proc, epi->ffd.file,
1669 ep_tovisit, current);
1670 if (error != 0)
1671 break;
1672 } else {
1673 /*
1674 * If we've reached a file that is not associated with
1675 * an ep, then we need to check if the newly added
1676 * links are going to add too many wakeup paths. We do
1677 * this by adding it to the tfile_check_list, if it's
1678 * not already there, and calling reverse_path_check()
1679 * during ep_insert().
1680 */
1681 if (list_empty(&epi->ffd.file->f_tfile_llink))
1682 list_add(&epi->ffd.file->f_tfile_llink,
1683 &tfile_check_list);
1684 }
1685 }
1686 mutex_unlock(&ep->mtx);
1687
1688 return error;
1689 }
1690
1691 /**
1692 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1693 * another epoll file (represented by @ep) does not create
1694 * closed loops or too deep chains.
1695 *
1696 * @ep: Pointer to the epoll private data structure.
1697 * @file: Pointer to the epoll file to be checked.
1698 *
1699 * Returns: Returns zero if adding the epoll @file inside current epoll
1700 * structure @ep does not violate the constraints, or -1 otherwise.
1701 */
1702 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1703 {
1704 int ret;
1705 struct eventpoll *ep_cur, *ep_next;
1706
1707 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1708 ep_loop_check_proc, file, ep, current);
1709 /* clear visited list */
1710 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1711 visited_list_link) {
1712 ep_cur->visited = 0;
1713 list_del(&ep_cur->visited_list_link);
1714 }
1715 return ret;
1716 }
1717
1718 static void clear_tfile_check_list(void)
1719 {
1720 struct file *file;
1721
1722 /* first clear the tfile_check_list */
1723 while (!list_empty(&tfile_check_list)) {
1724 file = list_first_entry(&tfile_check_list, struct file,
1725 f_tfile_llink);
1726 list_del_init(&file->f_tfile_llink);
1727 }
1728 INIT_LIST_HEAD(&tfile_check_list);
1729 }
1730
1731 /*
1732 * Open an eventpoll file descriptor.
1733 */
1734 SYSCALL_DEFINE1(epoll_create1, int, flags)
1735 {
1736 int error, fd;
1737 struct eventpoll *ep = NULL;
1738 struct file *file;
1739
1740 /* Check the EPOLL_* constant for consistency. */
1741 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1742
1743 if (flags & ~EPOLL_CLOEXEC)
1744 return -EINVAL;
1745 /*
1746 * Create the internal data structure ("struct eventpoll").
1747 */
1748 error = ep_alloc(&ep);
1749 if (error < 0)
1750 return error;
1751 /*
1752 * Creates all the items needed to setup an eventpoll file. That is,
1753 * a file structure and a free file descriptor.
1754 */
1755 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1756 if (fd < 0) {
1757 error = fd;
1758 goto out_free_ep;
1759 }
1760 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1761 O_RDWR | (flags & O_CLOEXEC));
1762 if (IS_ERR(file)) {
1763 error = PTR_ERR(file);
1764 goto out_free_fd;
1765 }
1766 ep->file = file;
1767 fd_install(fd, file);
1768 return fd;
1769
1770 out_free_fd:
1771 put_unused_fd(fd);
1772 out_free_ep:
1773 ep_free(ep);
1774 return error;
1775 }
1776
1777 SYSCALL_DEFINE1(epoll_create, int, size)
1778 {
1779 if (size <= 0)
1780 return -EINVAL;
1781
1782 return sys_epoll_create1(0);
1783 }
1784
1785 /*
1786 * The following function implements the controller interface for
1787 * the eventpoll file that enables the insertion/removal/change of
1788 * file descriptors inside the interest set.
1789 */
1790 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1791 struct epoll_event __user *, event)
1792 {
1793 int error;
1794 int did_lock_epmutex = 0;
1795 struct fd f, tf;
1796 struct eventpoll *ep;
1797 struct epitem *epi;
1798 struct epoll_event epds;
1799
1800 error = -EFAULT;
1801 if (ep_op_has_event(op) &&
1802 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1803 goto error_return;
1804
1805 error = -EBADF;
1806 f = fdget(epfd);
1807 if (!f.file)
1808 goto error_return;
1809
1810 /* Get the "struct file *" for the target file */
1811 tf = fdget(fd);
1812 if (!tf.file)
1813 goto error_fput;
1814
1815 /* The target file descriptor must support poll */
1816 error = -EPERM;
1817 if (!tf.file->f_op || !tf.file->f_op->poll)
1818 goto error_tgt_fput;
1819
1820 /* Check if EPOLLWAKEUP is allowed */
1821 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1822 epds.events &= ~EPOLLWAKEUP;
1823
1824 /*
1825 * We have to check that the file structure underneath the file descriptor
1826 * the user passed to us _is_ an eventpoll file. And also we do not permit
1827 * adding an epoll file descriptor inside itself.
1828 */
1829 error = -EINVAL;
1830 if (f.file == tf.file || !is_file_epoll(f.file))
1831 goto error_tgt_fput;
1832
1833 /*
1834 * At this point it is safe to assume that the "private_data" contains
1835 * our own data structure.
1836 */
1837 ep = f.file->private_data;
1838
1839 /*
1840 * When we insert an epoll file descriptor, inside another epoll file
1841 * descriptor, there is the change of creating closed loops, which are
1842 * better be handled here, than in more critical paths. While we are
1843 * checking for loops we also determine the list of files reachable
1844 * and hang them on the tfile_check_list, so we can check that we
1845 * haven't created too many possible wakeup paths.
1846 *
1847 * We need to hold the epmutex across both ep_insert and ep_remove
1848 * b/c we want to make sure we are looking at a coherent view of
1849 * epoll network.
1850 */
1851 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1852 mutex_lock(&epmutex);
1853 did_lock_epmutex = 1;
1854 }
1855 if (op == EPOLL_CTL_ADD) {
1856 if (is_file_epoll(tf.file)) {
1857 error = -ELOOP;
1858 if (ep_loop_check(ep, tf.file) != 0) {
1859 clear_tfile_check_list();
1860 goto error_tgt_fput;
1861 }
1862 } else
1863 list_add(&tf.file->f_tfile_llink, &tfile_check_list);
1864 }
1865
1866 mutex_lock_nested(&ep->mtx, 0);
1867
1868 /*
1869 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1870 * above, we can be sure to be able to use the item looked up by
1871 * ep_find() till we release the mutex.
1872 */
1873 epi = ep_find(ep, tf.file, fd);
1874
1875 error = -EINVAL;
1876 switch (op) {
1877 case EPOLL_CTL_ADD:
1878 if (!epi) {
1879 epds.events |= POLLERR | POLLHUP;
1880 error = ep_insert(ep, &epds, tf.file, fd);
1881 } else
1882 error = -EEXIST;
1883 clear_tfile_check_list();
1884 break;
1885 case EPOLL_CTL_DEL:
1886 if (epi)
1887 error = ep_remove(ep, epi);
1888 else
1889 error = -ENOENT;
1890 break;
1891 case EPOLL_CTL_MOD:
1892 if (epi) {
1893 epds.events |= POLLERR | POLLHUP;
1894 error = ep_modify(ep, epi, &epds);
1895 } else
1896 error = -ENOENT;
1897 break;
1898 }
1899 mutex_unlock(&ep->mtx);
1900
1901 error_tgt_fput:
1902 if (did_lock_epmutex)
1903 mutex_unlock(&epmutex);
1904
1905 fdput(tf);
1906 error_fput:
1907 fdput(f);
1908 error_return:
1909
1910 return error;
1911 }
1912
1913 /*
1914 * Implement the event wait interface for the eventpoll file. It is the kernel
1915 * part of the user space epoll_wait(2).
1916 */
1917 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1918 int, maxevents, int, timeout)
1919 {
1920 int error;
1921 struct fd f;
1922 struct eventpoll *ep;
1923
1924 /* The maximum number of event must be greater than zero */
1925 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1926 return -EINVAL;
1927
1928 /* Verify that the area passed by the user is writeable */
1929 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1930 return -EFAULT;
1931
1932 /* Get the "struct file *" for the eventpoll file */
1933 f = fdget(epfd);
1934 if (!f.file)
1935 return -EBADF;
1936
1937 /*
1938 * We have to check that the file structure underneath the fd
1939 * the user passed to us _is_ an eventpoll file.
1940 */
1941 error = -EINVAL;
1942 if (!is_file_epoll(f.file))
1943 goto error_fput;
1944
1945 /*
1946 * At this point it is safe to assume that the "private_data" contains
1947 * our own data structure.
1948 */
1949 ep = f.file->private_data;
1950
1951 /* Time to fish for events ... */
1952 error = ep_poll(ep, events, maxevents, timeout);
1953
1954 error_fput:
1955 fdput(f);
1956 return error;
1957 }
1958
1959 /*
1960 * Implement the event wait interface for the eventpoll file. It is the kernel
1961 * part of the user space epoll_pwait(2).
1962 */
1963 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1964 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1965 size_t, sigsetsize)
1966 {
1967 int error;
1968 sigset_t ksigmask, sigsaved;
1969
1970 /*
1971 * If the caller wants a certain signal mask to be set during the wait,
1972 * we apply it here.
1973 */
1974 if (sigmask) {
1975 if (sigsetsize != sizeof(sigset_t))
1976 return -EINVAL;
1977 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1978 return -EFAULT;
1979 sigsaved = current->blocked;
1980 set_current_blocked(&ksigmask);
1981 }
1982
1983 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1984
1985 /*
1986 * If we changed the signal mask, we need to restore the original one.
1987 * In case we've got a signal while waiting, we do not restore the
1988 * signal mask yet, and we allow do_signal() to deliver the signal on
1989 * the way back to userspace, before the signal mask is restored.
1990 */
1991 if (sigmask) {
1992 if (error == -EINTR) {
1993 memcpy(&current->saved_sigmask, &sigsaved,
1994 sizeof(sigsaved));
1995 set_restore_sigmask();
1996 } else
1997 set_current_blocked(&sigsaved);
1998 }
1999
2000 return error;
2001 }
2002
2003 #ifdef CONFIG_COMPAT
2004 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2005 struct epoll_event __user *, events,
2006 int, maxevents, int, timeout,
2007 const compat_sigset_t __user *, sigmask,
2008 compat_size_t, sigsetsize)
2009 {
2010 long err;
2011 compat_sigset_t csigmask;
2012 sigset_t ksigmask, sigsaved;
2013
2014 /*
2015 * If the caller wants a certain signal mask to be set during the wait,
2016 * we apply it here.
2017 */
2018 if (sigmask) {
2019 if (sigsetsize != sizeof(compat_sigset_t))
2020 return -EINVAL;
2021 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2022 return -EFAULT;
2023 sigset_from_compat(&ksigmask, &csigmask);
2024 sigsaved = current->blocked;
2025 set_current_blocked(&ksigmask);
2026 }
2027
2028 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2029
2030 /*
2031 * If we changed the signal mask, we need to restore the original one.
2032 * In case we've got a signal while waiting, we do not restore the
2033 * signal mask yet, and we allow do_signal() to deliver the signal on
2034 * the way back to userspace, before the signal mask is restored.
2035 */
2036 if (sigmask) {
2037 if (err == -EINTR) {
2038 memcpy(&current->saved_sigmask, &sigsaved,
2039 sizeof(sigsaved));
2040 set_restore_sigmask();
2041 } else
2042 set_current_blocked(&sigsaved);
2043 }
2044
2045 return err;
2046 }
2047 #endif
2048
2049 static int __init eventpoll_init(void)
2050 {
2051 struct sysinfo si;
2052
2053 si_meminfo(&si);
2054 /*
2055 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2056 */
2057 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2058 EP_ITEM_COST;
2059 BUG_ON(max_user_watches < 0);
2060
2061 /*
2062 * Initialize the structure used to perform epoll file descriptor
2063 * inclusion loops checks.
2064 */
2065 ep_nested_calls_init(&poll_loop_ncalls);
2066
2067 /* Initialize the structure used to perform safe poll wait head wake ups */
2068 ep_nested_calls_init(&poll_safewake_ncalls);
2069
2070 /* Initialize the structure used to perform file's f_op->poll() calls */
2071 ep_nested_calls_init(&poll_readywalk_ncalls);
2072
2073 /*
2074 * We can have many thousands of epitems, so prevent this from
2075 * using an extra cache line on 64-bit (and smaller) CPUs
2076 */
2077 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2078
2079 /* Allocates slab cache used to allocate "struct epitem" items */
2080 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2081 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2082
2083 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2084 pwq_cache = kmem_cache_create("eventpoll_pwq",
2085 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2086
2087 return 0;
2088 }
2089 fs_initcall(eventpoll_init);
This page took 0.107498 seconds and 6 git commands to generate.