epoll: lock ep->mtx in ep_free to silence lockdep
[deliverable/linux.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43
44 /*
45 * LOCKING:
46 * There are three level of locking required by epoll :
47 *
48 * 1) epmutex (mutex)
49 * 2) ep->mtx (mutex)
50 * 3) ep->lock (spinlock)
51 *
52 * The acquire order is the one listed above, from 1 to 3.
53 * We need a spinlock (ep->lock) because we manipulate objects
54 * from inside the poll callback, that might be triggered from
55 * a wake_up() that in turn might be called from IRQ context.
56 * So we can't sleep inside the poll callback and hence we need
57 * a spinlock. During the event transfer loop (from kernel to
58 * user space) we could end up sleeping due a copy_to_user(), so
59 * we need a lock that will allow us to sleep. This lock is a
60 * mutex (ep->mtx). It is acquired during the event transfer loop,
61 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62 * Then we also need a global mutex to serialize eventpoll_release_file()
63 * and ep_free().
64 * This mutex is acquired by ep_free() during the epoll file
65 * cleanup path and it is also acquired by eventpoll_release_file()
66 * if a file has been pushed inside an epoll set and it is then
67 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68 * It is also acquired when inserting an epoll fd onto another epoll
69 * fd. We do this so that we walk the epoll tree and ensure that this
70 * insertion does not create a cycle of epoll file descriptors, which
71 * could lead to deadlock. We need a global mutex to prevent two
72 * simultaneous inserts (A into B and B into A) from racing and
73 * constructing a cycle without either insert observing that it is
74 * going to.
75 * It is necessary to acquire multiple "ep->mtx"es at once in the
76 * case when one epoll fd is added to another. In this case, we
77 * always acquire the locks in the order of nesting (i.e. after
78 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79 * before e2->mtx). Since we disallow cycles of epoll file
80 * descriptors, this ensures that the mutexes are well-ordered. In
81 * order to communicate this nesting to lockdep, when walking a tree
82 * of epoll file descriptors, we use the current recursion depth as
83 * the lockdep subkey.
84 * It is possible to drop the "ep->mtx" and to use the global
85 * mutex "epmutex" (together with "ep->lock") to have it working,
86 * but having "ep->mtx" will make the interface more scalable.
87 * Events that require holding "epmutex" are very rare, while for
88 * normal operations the epoll private "ep->mtx" will guarantee
89 * a better scalability.
90 */
91
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
94
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
97
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
99
100 #define EP_UNACTIVE_PTR ((void *) -1L)
101
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
103
104 struct epoll_filefd {
105 struct file *file;
106 int fd;
107 } __packed;
108
109 /*
110 * Structure used to track possible nested calls, for too deep recursions
111 * and loop cycles.
112 */
113 struct nested_call_node {
114 struct list_head llink;
115 void *cookie;
116 void *ctx;
117 };
118
119 /*
120 * This structure is used as collector for nested calls, to check for
121 * maximum recursion dept and loop cycles.
122 */
123 struct nested_calls {
124 struct list_head tasks_call_list;
125 spinlock_t lock;
126 };
127
128 /*
129 * Each file descriptor added to the eventpoll interface will
130 * have an entry of this type linked to the "rbr" RB tree.
131 * Avoid increasing the size of this struct, there can be many thousands
132 * of these on a server and we do not want this to take another cache line.
133 */
134 struct epitem {
135 /* RB tree node used to link this structure to the eventpoll RB tree */
136 struct rb_node rbn;
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /* Number of active wait queue attached to poll operations */
151 int nwait;
152
153 /* List containing poll wait queues */
154 struct list_head pwqlist;
155
156 /* The "container" of this item */
157 struct eventpoll *ep;
158
159 /* List header used to link this item to the "struct file" items list */
160 struct list_head fllink;
161
162 /* wakeup_source used when EPOLLWAKEUP is set */
163 struct wakeup_source __rcu *ws;
164
165 /* The structure that describe the interested events and the source fd */
166 struct epoll_event event;
167 };
168
169 /*
170 * This structure is stored inside the "private_data" member of the file
171 * structure and represents the main data structure for the eventpoll
172 * interface.
173 */
174 struct eventpoll {
175 /* Protect the access to this structure */
176 spinlock_t lock;
177
178 /*
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
183 */
184 struct mutex mtx;
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
195 /* RB tree root used to store monitored fd structs */
196 struct rb_root rbr;
197
198 /*
199 * This is a single linked list that chains all the "struct epitem" that
200 * happened while transferring ready events to userspace w/out
201 * holding ->lock.
202 */
203 struct epitem *ovflist;
204
205 /* wakeup_source used when ep_scan_ready_list is running */
206 struct wakeup_source *ws;
207
208 /* The user that created the eventpoll descriptor */
209 struct user_struct *user;
210
211 struct file *file;
212
213 /* used to optimize loop detection check */
214 int visited;
215 struct list_head visited_list_link;
216 };
217
218 /* Wait structure used by the poll hooks */
219 struct eppoll_entry {
220 /* List header used to link this structure to the "struct epitem" */
221 struct list_head llink;
222
223 /* The "base" pointer is set to the container "struct epitem" */
224 struct epitem *base;
225
226 /*
227 * Wait queue item that will be linked to the target file wait
228 * queue head.
229 */
230 wait_queue_t wait;
231
232 /* The wait queue head that linked the "wait" wait queue item */
233 wait_queue_head_t *whead;
234 };
235
236 /* Wrapper struct used by poll queueing */
237 struct ep_pqueue {
238 poll_table pt;
239 struct epitem *epi;
240 };
241
242 /* Used by the ep_send_events() function as callback private data */
243 struct ep_send_events_data {
244 int maxevents;
245 struct epoll_event __user *events;
246 };
247
248 /*
249 * Configuration options available inside /proc/sys/fs/epoll/
250 */
251 /* Maximum number of epoll watched descriptors, per user */
252 static long max_user_watches __read_mostly;
253
254 /*
255 * This mutex is used to serialize ep_free() and eventpoll_release_file().
256 */
257 static DEFINE_MUTEX(epmutex);
258
259 /* Used to check for epoll file descriptor inclusion loops */
260 static struct nested_calls poll_loop_ncalls;
261
262 /* Used for safe wake up implementation */
263 static struct nested_calls poll_safewake_ncalls;
264
265 /* Used to call file's f_op->poll() under the nested calls boundaries */
266 static struct nested_calls poll_readywalk_ncalls;
267
268 /* Slab cache used to allocate "struct epitem" */
269 static struct kmem_cache *epi_cache __read_mostly;
270
271 /* Slab cache used to allocate "struct eppoll_entry" */
272 static struct kmem_cache *pwq_cache __read_mostly;
273
274 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
275 static LIST_HEAD(visited_list);
276
277 /*
278 * List of files with newly added links, where we may need to limit the number
279 * of emanating paths. Protected by the epmutex.
280 */
281 static LIST_HEAD(tfile_check_list);
282
283 #ifdef CONFIG_SYSCTL
284
285 #include <linux/sysctl.h>
286
287 static long zero;
288 static long long_max = LONG_MAX;
289
290 ctl_table epoll_table[] = {
291 {
292 .procname = "max_user_watches",
293 .data = &max_user_watches,
294 .maxlen = sizeof(max_user_watches),
295 .mode = 0644,
296 .proc_handler = proc_doulongvec_minmax,
297 .extra1 = &zero,
298 .extra2 = &long_max,
299 },
300 { }
301 };
302 #endif /* CONFIG_SYSCTL */
303
304 static const struct file_operations eventpoll_fops;
305
306 static inline int is_file_epoll(struct file *f)
307 {
308 return f->f_op == &eventpoll_fops;
309 }
310
311 /* Setup the structure that is used as key for the RB tree */
312 static inline void ep_set_ffd(struct epoll_filefd *ffd,
313 struct file *file, int fd)
314 {
315 ffd->file = file;
316 ffd->fd = fd;
317 }
318
319 /* Compare RB tree keys */
320 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
321 struct epoll_filefd *p2)
322 {
323 return (p1->file > p2->file ? +1:
324 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
325 }
326
327 /* Tells us if the item is currently linked */
328 static inline int ep_is_linked(struct list_head *p)
329 {
330 return !list_empty(p);
331 }
332
333 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
334 {
335 return container_of(p, struct eppoll_entry, wait);
336 }
337
338 /* Get the "struct epitem" from a wait queue pointer */
339 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
340 {
341 return container_of(p, struct eppoll_entry, wait)->base;
342 }
343
344 /* Get the "struct epitem" from an epoll queue wrapper */
345 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
346 {
347 return container_of(p, struct ep_pqueue, pt)->epi;
348 }
349
350 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
351 static inline int ep_op_has_event(int op)
352 {
353 return op != EPOLL_CTL_DEL;
354 }
355
356 /* Initialize the poll safe wake up structure */
357 static void ep_nested_calls_init(struct nested_calls *ncalls)
358 {
359 INIT_LIST_HEAD(&ncalls->tasks_call_list);
360 spin_lock_init(&ncalls->lock);
361 }
362
363 /**
364 * ep_events_available - Checks if ready events might be available.
365 *
366 * @ep: Pointer to the eventpoll context.
367 *
368 * Returns: Returns a value different than zero if ready events are available,
369 * or zero otherwise.
370 */
371 static inline int ep_events_available(struct eventpoll *ep)
372 {
373 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
374 }
375
376 /**
377 * ep_call_nested - Perform a bound (possibly) nested call, by checking
378 * that the recursion limit is not exceeded, and that
379 * the same nested call (by the meaning of same cookie) is
380 * no re-entered.
381 *
382 * @ncalls: Pointer to the nested_calls structure to be used for this call.
383 * @max_nests: Maximum number of allowed nesting calls.
384 * @nproc: Nested call core function pointer.
385 * @priv: Opaque data to be passed to the @nproc callback.
386 * @cookie: Cookie to be used to identify this nested call.
387 * @ctx: This instance context.
388 *
389 * Returns: Returns the code returned by the @nproc callback, or -1 if
390 * the maximum recursion limit has been exceeded.
391 */
392 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
393 int (*nproc)(void *, void *, int), void *priv,
394 void *cookie, void *ctx)
395 {
396 int error, call_nests = 0;
397 unsigned long flags;
398 struct list_head *lsthead = &ncalls->tasks_call_list;
399 struct nested_call_node *tncur;
400 struct nested_call_node tnode;
401
402 spin_lock_irqsave(&ncalls->lock, flags);
403
404 /*
405 * Try to see if the current task is already inside this wakeup call.
406 * We use a list here, since the population inside this set is always
407 * very much limited.
408 */
409 list_for_each_entry(tncur, lsthead, llink) {
410 if (tncur->ctx == ctx &&
411 (tncur->cookie == cookie || ++call_nests > max_nests)) {
412 /*
413 * Ops ... loop detected or maximum nest level reached.
414 * We abort this wake by breaking the cycle itself.
415 */
416 error = -1;
417 goto out_unlock;
418 }
419 }
420
421 /* Add the current task and cookie to the list */
422 tnode.ctx = ctx;
423 tnode.cookie = cookie;
424 list_add(&tnode.llink, lsthead);
425
426 spin_unlock_irqrestore(&ncalls->lock, flags);
427
428 /* Call the nested function */
429 error = (*nproc)(priv, cookie, call_nests);
430
431 /* Remove the current task from the list */
432 spin_lock_irqsave(&ncalls->lock, flags);
433 list_del(&tnode.llink);
434 out_unlock:
435 spin_unlock_irqrestore(&ncalls->lock, flags);
436
437 return error;
438 }
439
440 /*
441 * As described in commit 0ccf831cb lockdep: annotate epoll
442 * the use of wait queues used by epoll is done in a very controlled
443 * manner. Wake ups can nest inside each other, but are never done
444 * with the same locking. For example:
445 *
446 * dfd = socket(...);
447 * efd1 = epoll_create();
448 * efd2 = epoll_create();
449 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
450 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
451 *
452 * When a packet arrives to the device underneath "dfd", the net code will
453 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
454 * callback wakeup entry on that queue, and the wake_up() performed by the
455 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
456 * (efd1) notices that it may have some event ready, so it needs to wake up
457 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
458 * that ends up in another wake_up(), after having checked about the
459 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
460 * avoid stack blasting.
461 *
462 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
463 * this special case of epoll.
464 */
465 #ifdef CONFIG_DEBUG_LOCK_ALLOC
466 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
467 unsigned long events, int subclass)
468 {
469 unsigned long flags;
470
471 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
472 wake_up_locked_poll(wqueue, events);
473 spin_unlock_irqrestore(&wqueue->lock, flags);
474 }
475 #else
476 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
477 unsigned long events, int subclass)
478 {
479 wake_up_poll(wqueue, events);
480 }
481 #endif
482
483 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
484 {
485 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
486 1 + call_nests);
487 return 0;
488 }
489
490 /*
491 * Perform a safe wake up of the poll wait list. The problem is that
492 * with the new callback'd wake up system, it is possible that the
493 * poll callback is reentered from inside the call to wake_up() done
494 * on the poll wait queue head. The rule is that we cannot reenter the
495 * wake up code from the same task more than EP_MAX_NESTS times,
496 * and we cannot reenter the same wait queue head at all. This will
497 * enable to have a hierarchy of epoll file descriptor of no more than
498 * EP_MAX_NESTS deep.
499 */
500 static void ep_poll_safewake(wait_queue_head_t *wq)
501 {
502 int this_cpu = get_cpu();
503
504 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
505 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
506
507 put_cpu();
508 }
509
510 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
511 {
512 wait_queue_head_t *whead;
513
514 rcu_read_lock();
515 /* If it is cleared by POLLFREE, it should be rcu-safe */
516 whead = rcu_dereference(pwq->whead);
517 if (whead)
518 remove_wait_queue(whead, &pwq->wait);
519 rcu_read_unlock();
520 }
521
522 /*
523 * This function unregisters poll callbacks from the associated file
524 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
525 * ep_free).
526 */
527 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
528 {
529 struct list_head *lsthead = &epi->pwqlist;
530 struct eppoll_entry *pwq;
531
532 while (!list_empty(lsthead)) {
533 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
534
535 list_del(&pwq->llink);
536 ep_remove_wait_queue(pwq);
537 kmem_cache_free(pwq_cache, pwq);
538 }
539 }
540
541 /* call only when ep->mtx is held */
542 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
543 {
544 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
545 }
546
547 /* call only when ep->mtx is held */
548 static inline void ep_pm_stay_awake(struct epitem *epi)
549 {
550 struct wakeup_source *ws = ep_wakeup_source(epi);
551
552 if (ws)
553 __pm_stay_awake(ws);
554 }
555
556 static inline bool ep_has_wakeup_source(struct epitem *epi)
557 {
558 return rcu_access_pointer(epi->ws) ? true : false;
559 }
560
561 /* call when ep->mtx cannot be held (ep_poll_callback) */
562 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
563 {
564 struct wakeup_source *ws;
565
566 rcu_read_lock();
567 ws = rcu_dereference(epi->ws);
568 if (ws)
569 __pm_stay_awake(ws);
570 rcu_read_unlock();
571 }
572
573 /**
574 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
575 * the scan code, to call f_op->poll(). Also allows for
576 * O(NumReady) performance.
577 *
578 * @ep: Pointer to the epoll private data structure.
579 * @sproc: Pointer to the scan callback.
580 * @priv: Private opaque data passed to the @sproc callback.
581 * @depth: The current depth of recursive f_op->poll calls.
582 *
583 * Returns: The same integer error code returned by the @sproc callback.
584 */
585 static int ep_scan_ready_list(struct eventpoll *ep,
586 int (*sproc)(struct eventpoll *,
587 struct list_head *, void *),
588 void *priv,
589 int depth)
590 {
591 int error, pwake = 0;
592 unsigned long flags;
593 struct epitem *epi, *nepi;
594 LIST_HEAD(txlist);
595
596 /*
597 * We need to lock this because we could be hit by
598 * eventpoll_release_file() and epoll_ctl().
599 */
600 mutex_lock_nested(&ep->mtx, depth);
601
602 /*
603 * Steal the ready list, and re-init the original one to the
604 * empty list. Also, set ep->ovflist to NULL so that events
605 * happening while looping w/out locks, are not lost. We cannot
606 * have the poll callback to queue directly on ep->rdllist,
607 * because we want the "sproc" callback to be able to do it
608 * in a lockless way.
609 */
610 spin_lock_irqsave(&ep->lock, flags);
611 list_splice_init(&ep->rdllist, &txlist);
612 ep->ovflist = NULL;
613 spin_unlock_irqrestore(&ep->lock, flags);
614
615 /*
616 * Now call the callback function.
617 */
618 error = (*sproc)(ep, &txlist, priv);
619
620 spin_lock_irqsave(&ep->lock, flags);
621 /*
622 * During the time we spent inside the "sproc" callback, some
623 * other events might have been queued by the poll callback.
624 * We re-insert them inside the main ready-list here.
625 */
626 for (nepi = ep->ovflist; (epi = nepi) != NULL;
627 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
628 /*
629 * We need to check if the item is already in the list.
630 * During the "sproc" callback execution time, items are
631 * queued into ->ovflist but the "txlist" might already
632 * contain them, and the list_splice() below takes care of them.
633 */
634 if (!ep_is_linked(&epi->rdllink)) {
635 list_add_tail(&epi->rdllink, &ep->rdllist);
636 ep_pm_stay_awake(epi);
637 }
638 }
639 /*
640 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
641 * releasing the lock, events will be queued in the normal way inside
642 * ep->rdllist.
643 */
644 ep->ovflist = EP_UNACTIVE_PTR;
645
646 /*
647 * Quickly re-inject items left on "txlist".
648 */
649 list_splice(&txlist, &ep->rdllist);
650 __pm_relax(ep->ws);
651
652 if (!list_empty(&ep->rdllist)) {
653 /*
654 * Wake up (if active) both the eventpoll wait list and
655 * the ->poll() wait list (delayed after we release the lock).
656 */
657 if (waitqueue_active(&ep->wq))
658 wake_up_locked(&ep->wq);
659 if (waitqueue_active(&ep->poll_wait))
660 pwake++;
661 }
662 spin_unlock_irqrestore(&ep->lock, flags);
663
664 mutex_unlock(&ep->mtx);
665
666 /* We have to call this outside the lock */
667 if (pwake)
668 ep_poll_safewake(&ep->poll_wait);
669
670 return error;
671 }
672
673 /*
674 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
675 * all the associated resources. Must be called with "mtx" held.
676 */
677 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
678 {
679 unsigned long flags;
680 struct file *file = epi->ffd.file;
681
682 /*
683 * Removes poll wait queue hooks. We _have_ to do this without holding
684 * the "ep->lock" otherwise a deadlock might occur. This because of the
685 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
686 * queue head lock when unregistering the wait queue. The wakeup callback
687 * will run by holding the wait queue head lock and will call our callback
688 * that will try to get "ep->lock".
689 */
690 ep_unregister_pollwait(ep, epi);
691
692 /* Remove the current item from the list of epoll hooks */
693 spin_lock(&file->f_lock);
694 if (ep_is_linked(&epi->fllink))
695 list_del_init(&epi->fllink);
696 spin_unlock(&file->f_lock);
697
698 rb_erase(&epi->rbn, &ep->rbr);
699
700 spin_lock_irqsave(&ep->lock, flags);
701 if (ep_is_linked(&epi->rdllink))
702 list_del_init(&epi->rdllink);
703 spin_unlock_irqrestore(&ep->lock, flags);
704
705 wakeup_source_unregister(ep_wakeup_source(epi));
706
707 /* At this point it is safe to free the eventpoll item */
708 kmem_cache_free(epi_cache, epi);
709
710 atomic_long_dec(&ep->user->epoll_watches);
711
712 return 0;
713 }
714
715 static void ep_free(struct eventpoll *ep)
716 {
717 struct rb_node *rbp;
718 struct epitem *epi;
719
720 /* We need to release all tasks waiting for these file */
721 if (waitqueue_active(&ep->poll_wait))
722 ep_poll_safewake(&ep->poll_wait);
723
724 /*
725 * We need to lock this because we could be hit by
726 * eventpoll_release_file() while we're freeing the "struct eventpoll".
727 * We do not need to hold "ep->mtx" here because the epoll file
728 * is on the way to be removed and no one has references to it
729 * anymore. The only hit might come from eventpoll_release_file() but
730 * holding "epmutex" is sufficient here.
731 */
732 mutex_lock(&epmutex);
733
734 /*
735 * Walks through the whole tree by unregistering poll callbacks.
736 */
737 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
738 epi = rb_entry(rbp, struct epitem, rbn);
739
740 ep_unregister_pollwait(ep, epi);
741 }
742
743 /*
744 * Walks through the whole tree by freeing each "struct epitem". At this
745 * point we are sure no poll callbacks will be lingering around, and also by
746 * holding "epmutex" we can be sure that no file cleanup code will hit
747 * us during this operation. So we can avoid the lock on "ep->lock".
748 * We do not need to lock ep->mtx, either, we only do it to prevent
749 * a lockdep warning.
750 */
751 mutex_lock(&ep->mtx);
752 while ((rbp = rb_first(&ep->rbr)) != NULL) {
753 epi = rb_entry(rbp, struct epitem, rbn);
754 ep_remove(ep, epi);
755 }
756 mutex_unlock(&ep->mtx);
757
758 mutex_unlock(&epmutex);
759 mutex_destroy(&ep->mtx);
760 free_uid(ep->user);
761 wakeup_source_unregister(ep->ws);
762 kfree(ep);
763 }
764
765 static int ep_eventpoll_release(struct inode *inode, struct file *file)
766 {
767 struct eventpoll *ep = file->private_data;
768
769 if (ep)
770 ep_free(ep);
771
772 return 0;
773 }
774
775 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
776 void *priv)
777 {
778 struct epitem *epi, *tmp;
779 poll_table pt;
780
781 init_poll_funcptr(&pt, NULL);
782 list_for_each_entry_safe(epi, tmp, head, rdllink) {
783 pt._key = epi->event.events;
784 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
785 epi->event.events)
786 return POLLIN | POLLRDNORM;
787 else {
788 /*
789 * Item has been dropped into the ready list by the poll
790 * callback, but it's not actually ready, as far as
791 * caller requested events goes. We can remove it here.
792 */
793 __pm_relax(ep_wakeup_source(epi));
794 list_del_init(&epi->rdllink);
795 }
796 }
797
798 return 0;
799 }
800
801 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
802 {
803 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
804 }
805
806 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
807 {
808 int pollflags;
809 struct eventpoll *ep = file->private_data;
810
811 /* Insert inside our poll wait queue */
812 poll_wait(file, &ep->poll_wait, wait);
813
814 /*
815 * Proceed to find out if wanted events are really available inside
816 * the ready list. This need to be done under ep_call_nested()
817 * supervision, since the call to f_op->poll() done on listed files
818 * could re-enter here.
819 */
820 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
821 ep_poll_readyevents_proc, ep, ep, current);
822
823 return pollflags != -1 ? pollflags : 0;
824 }
825
826 #ifdef CONFIG_PROC_FS
827 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
828 {
829 struct eventpoll *ep = f->private_data;
830 struct rb_node *rbp;
831 int ret = 0;
832
833 mutex_lock(&ep->mtx);
834 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
835 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
836
837 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
838 epi->ffd.fd, epi->event.events,
839 (long long)epi->event.data);
840 if (ret)
841 break;
842 }
843 mutex_unlock(&ep->mtx);
844
845 return ret;
846 }
847 #endif
848
849 /* File callbacks that implement the eventpoll file behaviour */
850 static const struct file_operations eventpoll_fops = {
851 #ifdef CONFIG_PROC_FS
852 .show_fdinfo = ep_show_fdinfo,
853 #endif
854 .release = ep_eventpoll_release,
855 .poll = ep_eventpoll_poll,
856 .llseek = noop_llseek,
857 };
858
859 /*
860 * This is called from eventpoll_release() to unlink files from the eventpoll
861 * interface. We need to have this facility to cleanup correctly files that are
862 * closed without being removed from the eventpoll interface.
863 */
864 void eventpoll_release_file(struct file *file)
865 {
866 struct list_head *lsthead = &file->f_ep_links;
867 struct eventpoll *ep;
868 struct epitem *epi;
869
870 /*
871 * We don't want to get "file->f_lock" because it is not
872 * necessary. It is not necessary because we're in the "struct file"
873 * cleanup path, and this means that no one is using this file anymore.
874 * So, for example, epoll_ctl() cannot hit here since if we reach this
875 * point, the file counter already went to zero and fget() would fail.
876 * The only hit might come from ep_free() but by holding the mutex
877 * will correctly serialize the operation. We do need to acquire
878 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
879 * from anywhere but ep_free().
880 *
881 * Besides, ep_remove() acquires the lock, so we can't hold it here.
882 */
883 mutex_lock(&epmutex);
884
885 while (!list_empty(lsthead)) {
886 epi = list_first_entry(lsthead, struct epitem, fllink);
887
888 ep = epi->ep;
889 list_del_init(&epi->fllink);
890 mutex_lock_nested(&ep->mtx, 0);
891 ep_remove(ep, epi);
892 mutex_unlock(&ep->mtx);
893 }
894
895 mutex_unlock(&epmutex);
896 }
897
898 static int ep_alloc(struct eventpoll **pep)
899 {
900 int error;
901 struct user_struct *user;
902 struct eventpoll *ep;
903
904 user = get_current_user();
905 error = -ENOMEM;
906 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
907 if (unlikely(!ep))
908 goto free_uid;
909
910 spin_lock_init(&ep->lock);
911 mutex_init(&ep->mtx);
912 init_waitqueue_head(&ep->wq);
913 init_waitqueue_head(&ep->poll_wait);
914 INIT_LIST_HEAD(&ep->rdllist);
915 ep->rbr = RB_ROOT;
916 ep->ovflist = EP_UNACTIVE_PTR;
917 ep->user = user;
918
919 *pep = ep;
920
921 return 0;
922
923 free_uid:
924 free_uid(user);
925 return error;
926 }
927
928 /*
929 * Search the file inside the eventpoll tree. The RB tree operations
930 * are protected by the "mtx" mutex, and ep_find() must be called with
931 * "mtx" held.
932 */
933 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
934 {
935 int kcmp;
936 struct rb_node *rbp;
937 struct epitem *epi, *epir = NULL;
938 struct epoll_filefd ffd;
939
940 ep_set_ffd(&ffd, file, fd);
941 for (rbp = ep->rbr.rb_node; rbp; ) {
942 epi = rb_entry(rbp, struct epitem, rbn);
943 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
944 if (kcmp > 0)
945 rbp = rbp->rb_right;
946 else if (kcmp < 0)
947 rbp = rbp->rb_left;
948 else {
949 epir = epi;
950 break;
951 }
952 }
953
954 return epir;
955 }
956
957 /*
958 * This is the callback that is passed to the wait queue wakeup
959 * mechanism. It is called by the stored file descriptors when they
960 * have events to report.
961 */
962 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
963 {
964 int pwake = 0;
965 unsigned long flags;
966 struct epitem *epi = ep_item_from_wait(wait);
967 struct eventpoll *ep = epi->ep;
968
969 if ((unsigned long)key & POLLFREE) {
970 ep_pwq_from_wait(wait)->whead = NULL;
971 /*
972 * whead = NULL above can race with ep_remove_wait_queue()
973 * which can do another remove_wait_queue() after us, so we
974 * can't use __remove_wait_queue(). whead->lock is held by
975 * the caller.
976 */
977 list_del_init(&wait->task_list);
978 }
979
980 spin_lock_irqsave(&ep->lock, flags);
981
982 /*
983 * If the event mask does not contain any poll(2) event, we consider the
984 * descriptor to be disabled. This condition is likely the effect of the
985 * EPOLLONESHOT bit that disables the descriptor when an event is received,
986 * until the next EPOLL_CTL_MOD will be issued.
987 */
988 if (!(epi->event.events & ~EP_PRIVATE_BITS))
989 goto out_unlock;
990
991 /*
992 * Check the events coming with the callback. At this stage, not
993 * every device reports the events in the "key" parameter of the
994 * callback. We need to be able to handle both cases here, hence the
995 * test for "key" != NULL before the event match test.
996 */
997 if (key && !((unsigned long) key & epi->event.events))
998 goto out_unlock;
999
1000 /*
1001 * If we are transferring events to userspace, we can hold no locks
1002 * (because we're accessing user memory, and because of linux f_op->poll()
1003 * semantics). All the events that happen during that period of time are
1004 * chained in ep->ovflist and requeued later on.
1005 */
1006 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1007 if (epi->next == EP_UNACTIVE_PTR) {
1008 epi->next = ep->ovflist;
1009 ep->ovflist = epi;
1010 if (epi->ws) {
1011 /*
1012 * Activate ep->ws since epi->ws may get
1013 * deactivated at any time.
1014 */
1015 __pm_stay_awake(ep->ws);
1016 }
1017
1018 }
1019 goto out_unlock;
1020 }
1021
1022 /* If this file is already in the ready list we exit soon */
1023 if (!ep_is_linked(&epi->rdllink)) {
1024 list_add_tail(&epi->rdllink, &ep->rdllist);
1025 ep_pm_stay_awake_rcu(epi);
1026 }
1027
1028 /*
1029 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1030 * wait list.
1031 */
1032 if (waitqueue_active(&ep->wq))
1033 wake_up_locked(&ep->wq);
1034 if (waitqueue_active(&ep->poll_wait))
1035 pwake++;
1036
1037 out_unlock:
1038 spin_unlock_irqrestore(&ep->lock, flags);
1039
1040 /* We have to call this outside the lock */
1041 if (pwake)
1042 ep_poll_safewake(&ep->poll_wait);
1043
1044 return 1;
1045 }
1046
1047 /*
1048 * This is the callback that is used to add our wait queue to the
1049 * target file wakeup lists.
1050 */
1051 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1052 poll_table *pt)
1053 {
1054 struct epitem *epi = ep_item_from_epqueue(pt);
1055 struct eppoll_entry *pwq;
1056
1057 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1058 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1059 pwq->whead = whead;
1060 pwq->base = epi;
1061 add_wait_queue(whead, &pwq->wait);
1062 list_add_tail(&pwq->llink, &epi->pwqlist);
1063 epi->nwait++;
1064 } else {
1065 /* We have to signal that an error occurred */
1066 epi->nwait = -1;
1067 }
1068 }
1069
1070 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1071 {
1072 int kcmp;
1073 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1074 struct epitem *epic;
1075
1076 while (*p) {
1077 parent = *p;
1078 epic = rb_entry(parent, struct epitem, rbn);
1079 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1080 if (kcmp > 0)
1081 p = &parent->rb_right;
1082 else
1083 p = &parent->rb_left;
1084 }
1085 rb_link_node(&epi->rbn, parent, p);
1086 rb_insert_color(&epi->rbn, &ep->rbr);
1087 }
1088
1089
1090
1091 #define PATH_ARR_SIZE 5
1092 /*
1093 * These are the number paths of length 1 to 5, that we are allowing to emanate
1094 * from a single file of interest. For example, we allow 1000 paths of length
1095 * 1, to emanate from each file of interest. This essentially represents the
1096 * potential wakeup paths, which need to be limited in order to avoid massive
1097 * uncontrolled wakeup storms. The common use case should be a single ep which
1098 * is connected to n file sources. In this case each file source has 1 path
1099 * of length 1. Thus, the numbers below should be more than sufficient. These
1100 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1101 * and delete can't add additional paths. Protected by the epmutex.
1102 */
1103 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1104 static int path_count[PATH_ARR_SIZE];
1105
1106 static int path_count_inc(int nests)
1107 {
1108 /* Allow an arbitrary number of depth 1 paths */
1109 if (nests == 0)
1110 return 0;
1111
1112 if (++path_count[nests] > path_limits[nests])
1113 return -1;
1114 return 0;
1115 }
1116
1117 static void path_count_init(void)
1118 {
1119 int i;
1120
1121 for (i = 0; i < PATH_ARR_SIZE; i++)
1122 path_count[i] = 0;
1123 }
1124
1125 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1126 {
1127 int error = 0;
1128 struct file *file = priv;
1129 struct file *child_file;
1130 struct epitem *epi;
1131
1132 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1133 child_file = epi->ep->file;
1134 if (is_file_epoll(child_file)) {
1135 if (list_empty(&child_file->f_ep_links)) {
1136 if (path_count_inc(call_nests)) {
1137 error = -1;
1138 break;
1139 }
1140 } else {
1141 error = ep_call_nested(&poll_loop_ncalls,
1142 EP_MAX_NESTS,
1143 reverse_path_check_proc,
1144 child_file, child_file,
1145 current);
1146 }
1147 if (error != 0)
1148 break;
1149 } else {
1150 printk(KERN_ERR "reverse_path_check_proc: "
1151 "file is not an ep!\n");
1152 }
1153 }
1154 return error;
1155 }
1156
1157 /**
1158 * reverse_path_check - The tfile_check_list is list of file *, which have
1159 * links that are proposed to be newly added. We need to
1160 * make sure that those added links don't add too many
1161 * paths such that we will spend all our time waking up
1162 * eventpoll objects.
1163 *
1164 * Returns: Returns zero if the proposed links don't create too many paths,
1165 * -1 otherwise.
1166 */
1167 static int reverse_path_check(void)
1168 {
1169 int error = 0;
1170 struct file *current_file;
1171
1172 /* let's call this for all tfiles */
1173 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1174 path_count_init();
1175 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1176 reverse_path_check_proc, current_file,
1177 current_file, current);
1178 if (error)
1179 break;
1180 }
1181 return error;
1182 }
1183
1184 static int ep_create_wakeup_source(struct epitem *epi)
1185 {
1186 const char *name;
1187 struct wakeup_source *ws;
1188
1189 if (!epi->ep->ws) {
1190 epi->ep->ws = wakeup_source_register("eventpoll");
1191 if (!epi->ep->ws)
1192 return -ENOMEM;
1193 }
1194
1195 name = epi->ffd.file->f_path.dentry->d_name.name;
1196 ws = wakeup_source_register(name);
1197
1198 if (!ws)
1199 return -ENOMEM;
1200 rcu_assign_pointer(epi->ws, ws);
1201
1202 return 0;
1203 }
1204
1205 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1206 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1207 {
1208 struct wakeup_source *ws = ep_wakeup_source(epi);
1209
1210 rcu_assign_pointer(epi->ws, NULL);
1211
1212 /*
1213 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1214 * used internally by wakeup_source_remove, too (called by
1215 * wakeup_source_unregister), so we cannot use call_rcu
1216 */
1217 synchronize_rcu();
1218 wakeup_source_unregister(ws);
1219 }
1220
1221 /*
1222 * Must be called with "mtx" held.
1223 */
1224 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1225 struct file *tfile, int fd)
1226 {
1227 int error, revents, pwake = 0;
1228 unsigned long flags;
1229 long user_watches;
1230 struct epitem *epi;
1231 struct ep_pqueue epq;
1232
1233 user_watches = atomic_long_read(&ep->user->epoll_watches);
1234 if (unlikely(user_watches >= max_user_watches))
1235 return -ENOSPC;
1236 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1237 return -ENOMEM;
1238
1239 /* Item initialization follow here ... */
1240 INIT_LIST_HEAD(&epi->rdllink);
1241 INIT_LIST_HEAD(&epi->fllink);
1242 INIT_LIST_HEAD(&epi->pwqlist);
1243 epi->ep = ep;
1244 ep_set_ffd(&epi->ffd, tfile, fd);
1245 epi->event = *event;
1246 epi->nwait = 0;
1247 epi->next = EP_UNACTIVE_PTR;
1248 if (epi->event.events & EPOLLWAKEUP) {
1249 error = ep_create_wakeup_source(epi);
1250 if (error)
1251 goto error_create_wakeup_source;
1252 } else {
1253 RCU_INIT_POINTER(epi->ws, NULL);
1254 }
1255
1256 /* Initialize the poll table using the queue callback */
1257 epq.epi = epi;
1258 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1259 epq.pt._key = event->events;
1260
1261 /*
1262 * Attach the item to the poll hooks and get current event bits.
1263 * We can safely use the file* here because its usage count has
1264 * been increased by the caller of this function. Note that after
1265 * this operation completes, the poll callback can start hitting
1266 * the new item.
1267 */
1268 revents = tfile->f_op->poll(tfile, &epq.pt);
1269
1270 /*
1271 * We have to check if something went wrong during the poll wait queue
1272 * install process. Namely an allocation for a wait queue failed due
1273 * high memory pressure.
1274 */
1275 error = -ENOMEM;
1276 if (epi->nwait < 0)
1277 goto error_unregister;
1278
1279 /* Add the current item to the list of active epoll hook for this file */
1280 spin_lock(&tfile->f_lock);
1281 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1282 spin_unlock(&tfile->f_lock);
1283
1284 /*
1285 * Add the current item to the RB tree. All RB tree operations are
1286 * protected by "mtx", and ep_insert() is called with "mtx" held.
1287 */
1288 ep_rbtree_insert(ep, epi);
1289
1290 /* now check if we've created too many backpaths */
1291 error = -EINVAL;
1292 if (reverse_path_check())
1293 goto error_remove_epi;
1294
1295 /* We have to drop the new item inside our item list to keep track of it */
1296 spin_lock_irqsave(&ep->lock, flags);
1297
1298 /* If the file is already "ready" we drop it inside the ready list */
1299 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1300 list_add_tail(&epi->rdllink, &ep->rdllist);
1301 ep_pm_stay_awake(epi);
1302
1303 /* Notify waiting tasks that events are available */
1304 if (waitqueue_active(&ep->wq))
1305 wake_up_locked(&ep->wq);
1306 if (waitqueue_active(&ep->poll_wait))
1307 pwake++;
1308 }
1309
1310 spin_unlock_irqrestore(&ep->lock, flags);
1311
1312 atomic_long_inc(&ep->user->epoll_watches);
1313
1314 /* We have to call this outside the lock */
1315 if (pwake)
1316 ep_poll_safewake(&ep->poll_wait);
1317
1318 return 0;
1319
1320 error_remove_epi:
1321 spin_lock(&tfile->f_lock);
1322 if (ep_is_linked(&epi->fllink))
1323 list_del_init(&epi->fllink);
1324 spin_unlock(&tfile->f_lock);
1325
1326 rb_erase(&epi->rbn, &ep->rbr);
1327
1328 error_unregister:
1329 ep_unregister_pollwait(ep, epi);
1330
1331 /*
1332 * We need to do this because an event could have been arrived on some
1333 * allocated wait queue. Note that we don't care about the ep->ovflist
1334 * list, since that is used/cleaned only inside a section bound by "mtx".
1335 * And ep_insert() is called with "mtx" held.
1336 */
1337 spin_lock_irqsave(&ep->lock, flags);
1338 if (ep_is_linked(&epi->rdllink))
1339 list_del_init(&epi->rdllink);
1340 spin_unlock_irqrestore(&ep->lock, flags);
1341
1342 wakeup_source_unregister(ep_wakeup_source(epi));
1343
1344 error_create_wakeup_source:
1345 kmem_cache_free(epi_cache, epi);
1346
1347 return error;
1348 }
1349
1350 /*
1351 * Modify the interest event mask by dropping an event if the new mask
1352 * has a match in the current file status. Must be called with "mtx" held.
1353 */
1354 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1355 {
1356 int pwake = 0;
1357 unsigned int revents;
1358 poll_table pt;
1359
1360 init_poll_funcptr(&pt, NULL);
1361
1362 /*
1363 * Set the new event interest mask before calling f_op->poll();
1364 * otherwise we might miss an event that happens between the
1365 * f_op->poll() call and the new event set registering.
1366 */
1367 epi->event.events = event->events; /* need barrier below */
1368 pt._key = event->events;
1369 epi->event.data = event->data; /* protected by mtx */
1370 if (epi->event.events & EPOLLWAKEUP) {
1371 if (!ep_has_wakeup_source(epi))
1372 ep_create_wakeup_source(epi);
1373 } else if (ep_has_wakeup_source(epi)) {
1374 ep_destroy_wakeup_source(epi);
1375 }
1376
1377 /*
1378 * The following barrier has two effects:
1379 *
1380 * 1) Flush epi changes above to other CPUs. This ensures
1381 * we do not miss events from ep_poll_callback if an
1382 * event occurs immediately after we call f_op->poll().
1383 * We need this because we did not take ep->lock while
1384 * changing epi above (but ep_poll_callback does take
1385 * ep->lock).
1386 *
1387 * 2) We also need to ensure we do not miss _past_ events
1388 * when calling f_op->poll(). This barrier also
1389 * pairs with the barrier in wq_has_sleeper (see
1390 * comments for wq_has_sleeper).
1391 *
1392 * This barrier will now guarantee ep_poll_callback or f_op->poll
1393 * (or both) will notice the readiness of an item.
1394 */
1395 smp_mb();
1396
1397 /*
1398 * Get current event bits. We can safely use the file* here because
1399 * its usage count has been increased by the caller of this function.
1400 */
1401 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1402
1403 /*
1404 * If the item is "hot" and it is not registered inside the ready
1405 * list, push it inside.
1406 */
1407 if (revents & event->events) {
1408 spin_lock_irq(&ep->lock);
1409 if (!ep_is_linked(&epi->rdllink)) {
1410 list_add_tail(&epi->rdllink, &ep->rdllist);
1411 ep_pm_stay_awake(epi);
1412
1413 /* Notify waiting tasks that events are available */
1414 if (waitqueue_active(&ep->wq))
1415 wake_up_locked(&ep->wq);
1416 if (waitqueue_active(&ep->poll_wait))
1417 pwake++;
1418 }
1419 spin_unlock_irq(&ep->lock);
1420 }
1421
1422 /* We have to call this outside the lock */
1423 if (pwake)
1424 ep_poll_safewake(&ep->poll_wait);
1425
1426 return 0;
1427 }
1428
1429 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1430 void *priv)
1431 {
1432 struct ep_send_events_data *esed = priv;
1433 int eventcnt;
1434 unsigned int revents;
1435 struct epitem *epi;
1436 struct epoll_event __user *uevent;
1437 struct wakeup_source *ws;
1438 poll_table pt;
1439
1440 init_poll_funcptr(&pt, NULL);
1441
1442 /*
1443 * We can loop without lock because we are passed a task private list.
1444 * Items cannot vanish during the loop because ep_scan_ready_list() is
1445 * holding "mtx" during this call.
1446 */
1447 for (eventcnt = 0, uevent = esed->events;
1448 !list_empty(head) && eventcnt < esed->maxevents;) {
1449 epi = list_first_entry(head, struct epitem, rdllink);
1450
1451 /*
1452 * Activate ep->ws before deactivating epi->ws to prevent
1453 * triggering auto-suspend here (in case we reactive epi->ws
1454 * below).
1455 *
1456 * This could be rearranged to delay the deactivation of epi->ws
1457 * instead, but then epi->ws would temporarily be out of sync
1458 * with ep_is_linked().
1459 */
1460 ws = ep_wakeup_source(epi);
1461 if (ws) {
1462 if (ws->active)
1463 __pm_stay_awake(ep->ws);
1464 __pm_relax(ws);
1465 }
1466
1467 list_del_init(&epi->rdllink);
1468
1469 pt._key = epi->event.events;
1470 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1471 epi->event.events;
1472
1473 /*
1474 * If the event mask intersect the caller-requested one,
1475 * deliver the event to userspace. Again, ep_scan_ready_list()
1476 * is holding "mtx", so no operations coming from userspace
1477 * can change the item.
1478 */
1479 if (revents) {
1480 if (__put_user(revents, &uevent->events) ||
1481 __put_user(epi->event.data, &uevent->data)) {
1482 list_add(&epi->rdllink, head);
1483 ep_pm_stay_awake(epi);
1484 return eventcnt ? eventcnt : -EFAULT;
1485 }
1486 eventcnt++;
1487 uevent++;
1488 if (epi->event.events & EPOLLONESHOT)
1489 epi->event.events &= EP_PRIVATE_BITS;
1490 else if (!(epi->event.events & EPOLLET)) {
1491 /*
1492 * If this file has been added with Level
1493 * Trigger mode, we need to insert back inside
1494 * the ready list, so that the next call to
1495 * epoll_wait() will check again the events
1496 * availability. At this point, no one can insert
1497 * into ep->rdllist besides us. The epoll_ctl()
1498 * callers are locked out by
1499 * ep_scan_ready_list() holding "mtx" and the
1500 * poll callback will queue them in ep->ovflist.
1501 */
1502 list_add_tail(&epi->rdllink, &ep->rdllist);
1503 ep_pm_stay_awake(epi);
1504 }
1505 }
1506 }
1507
1508 return eventcnt;
1509 }
1510
1511 static int ep_send_events(struct eventpoll *ep,
1512 struct epoll_event __user *events, int maxevents)
1513 {
1514 struct ep_send_events_data esed;
1515
1516 esed.maxevents = maxevents;
1517 esed.events = events;
1518
1519 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1520 }
1521
1522 static inline struct timespec ep_set_mstimeout(long ms)
1523 {
1524 struct timespec now, ts = {
1525 .tv_sec = ms / MSEC_PER_SEC,
1526 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1527 };
1528
1529 ktime_get_ts(&now);
1530 return timespec_add_safe(now, ts);
1531 }
1532
1533 /**
1534 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1535 * event buffer.
1536 *
1537 * @ep: Pointer to the eventpoll context.
1538 * @events: Pointer to the userspace buffer where the ready events should be
1539 * stored.
1540 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1541 * @timeout: Maximum timeout for the ready events fetch operation, in
1542 * milliseconds. If the @timeout is zero, the function will not block,
1543 * while if the @timeout is less than zero, the function will block
1544 * until at least one event has been retrieved (or an error
1545 * occurred).
1546 *
1547 * Returns: Returns the number of ready events which have been fetched, or an
1548 * error code, in case of error.
1549 */
1550 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1551 int maxevents, long timeout)
1552 {
1553 int res = 0, eavail, timed_out = 0;
1554 unsigned long flags;
1555 long slack = 0;
1556 wait_queue_t wait;
1557 ktime_t expires, *to = NULL;
1558
1559 if (timeout > 0) {
1560 struct timespec end_time = ep_set_mstimeout(timeout);
1561
1562 slack = select_estimate_accuracy(&end_time);
1563 to = &expires;
1564 *to = timespec_to_ktime(end_time);
1565 } else if (timeout == 0) {
1566 /*
1567 * Avoid the unnecessary trip to the wait queue loop, if the
1568 * caller specified a non blocking operation.
1569 */
1570 timed_out = 1;
1571 spin_lock_irqsave(&ep->lock, flags);
1572 goto check_events;
1573 }
1574
1575 fetch_events:
1576 spin_lock_irqsave(&ep->lock, flags);
1577
1578 if (!ep_events_available(ep)) {
1579 /*
1580 * We don't have any available event to return to the caller.
1581 * We need to sleep here, and we will be wake up by
1582 * ep_poll_callback() when events will become available.
1583 */
1584 init_waitqueue_entry(&wait, current);
1585 __add_wait_queue_exclusive(&ep->wq, &wait);
1586
1587 for (;;) {
1588 /*
1589 * We don't want to sleep if the ep_poll_callback() sends us
1590 * a wakeup in between. That's why we set the task state
1591 * to TASK_INTERRUPTIBLE before doing the checks.
1592 */
1593 set_current_state(TASK_INTERRUPTIBLE);
1594 if (ep_events_available(ep) || timed_out)
1595 break;
1596 if (signal_pending(current)) {
1597 res = -EINTR;
1598 break;
1599 }
1600
1601 spin_unlock_irqrestore(&ep->lock, flags);
1602 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1603 timed_out = 1;
1604
1605 spin_lock_irqsave(&ep->lock, flags);
1606 }
1607 __remove_wait_queue(&ep->wq, &wait);
1608
1609 set_current_state(TASK_RUNNING);
1610 }
1611 check_events:
1612 /* Is it worth to try to dig for events ? */
1613 eavail = ep_events_available(ep);
1614
1615 spin_unlock_irqrestore(&ep->lock, flags);
1616
1617 /*
1618 * Try to transfer events to user space. In case we get 0 events and
1619 * there's still timeout left over, we go trying again in search of
1620 * more luck.
1621 */
1622 if (!res && eavail &&
1623 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1624 goto fetch_events;
1625
1626 return res;
1627 }
1628
1629 /**
1630 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1631 * API, to verify that adding an epoll file inside another
1632 * epoll structure, does not violate the constraints, in
1633 * terms of closed loops, or too deep chains (which can
1634 * result in excessive stack usage).
1635 *
1636 * @priv: Pointer to the epoll file to be currently checked.
1637 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1638 * data structure pointer.
1639 * @call_nests: Current dept of the @ep_call_nested() call stack.
1640 *
1641 * Returns: Returns zero if adding the epoll @file inside current epoll
1642 * structure @ep does not violate the constraints, or -1 otherwise.
1643 */
1644 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1645 {
1646 int error = 0;
1647 struct file *file = priv;
1648 struct eventpoll *ep = file->private_data;
1649 struct eventpoll *ep_tovisit;
1650 struct rb_node *rbp;
1651 struct epitem *epi;
1652
1653 mutex_lock_nested(&ep->mtx, call_nests + 1);
1654 ep->visited = 1;
1655 list_add(&ep->visited_list_link, &visited_list);
1656 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1657 epi = rb_entry(rbp, struct epitem, rbn);
1658 if (unlikely(is_file_epoll(epi->ffd.file))) {
1659 ep_tovisit = epi->ffd.file->private_data;
1660 if (ep_tovisit->visited)
1661 continue;
1662 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1663 ep_loop_check_proc, epi->ffd.file,
1664 ep_tovisit, current);
1665 if (error != 0)
1666 break;
1667 } else {
1668 /*
1669 * If we've reached a file that is not associated with
1670 * an ep, then we need to check if the newly added
1671 * links are going to add too many wakeup paths. We do
1672 * this by adding it to the tfile_check_list, if it's
1673 * not already there, and calling reverse_path_check()
1674 * during ep_insert().
1675 */
1676 if (list_empty(&epi->ffd.file->f_tfile_llink))
1677 list_add(&epi->ffd.file->f_tfile_llink,
1678 &tfile_check_list);
1679 }
1680 }
1681 mutex_unlock(&ep->mtx);
1682
1683 return error;
1684 }
1685
1686 /**
1687 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1688 * another epoll file (represented by @ep) does not create
1689 * closed loops or too deep chains.
1690 *
1691 * @ep: Pointer to the epoll private data structure.
1692 * @file: Pointer to the epoll file to be checked.
1693 *
1694 * Returns: Returns zero if adding the epoll @file inside current epoll
1695 * structure @ep does not violate the constraints, or -1 otherwise.
1696 */
1697 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1698 {
1699 int ret;
1700 struct eventpoll *ep_cur, *ep_next;
1701
1702 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1703 ep_loop_check_proc, file, ep, current);
1704 /* clear visited list */
1705 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1706 visited_list_link) {
1707 ep_cur->visited = 0;
1708 list_del(&ep_cur->visited_list_link);
1709 }
1710 return ret;
1711 }
1712
1713 static void clear_tfile_check_list(void)
1714 {
1715 struct file *file;
1716
1717 /* first clear the tfile_check_list */
1718 while (!list_empty(&tfile_check_list)) {
1719 file = list_first_entry(&tfile_check_list, struct file,
1720 f_tfile_llink);
1721 list_del_init(&file->f_tfile_llink);
1722 }
1723 INIT_LIST_HEAD(&tfile_check_list);
1724 }
1725
1726 /*
1727 * Open an eventpoll file descriptor.
1728 */
1729 SYSCALL_DEFINE1(epoll_create1, int, flags)
1730 {
1731 int error, fd;
1732 struct eventpoll *ep = NULL;
1733 struct file *file;
1734
1735 /* Check the EPOLL_* constant for consistency. */
1736 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1737
1738 if (flags & ~EPOLL_CLOEXEC)
1739 return -EINVAL;
1740 /*
1741 * Create the internal data structure ("struct eventpoll").
1742 */
1743 error = ep_alloc(&ep);
1744 if (error < 0)
1745 return error;
1746 /*
1747 * Creates all the items needed to setup an eventpoll file. That is,
1748 * a file structure and a free file descriptor.
1749 */
1750 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1751 if (fd < 0) {
1752 error = fd;
1753 goto out_free_ep;
1754 }
1755 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1756 O_RDWR | (flags & O_CLOEXEC));
1757 if (IS_ERR(file)) {
1758 error = PTR_ERR(file);
1759 goto out_free_fd;
1760 }
1761 ep->file = file;
1762 fd_install(fd, file);
1763 return fd;
1764
1765 out_free_fd:
1766 put_unused_fd(fd);
1767 out_free_ep:
1768 ep_free(ep);
1769 return error;
1770 }
1771
1772 SYSCALL_DEFINE1(epoll_create, int, size)
1773 {
1774 if (size <= 0)
1775 return -EINVAL;
1776
1777 return sys_epoll_create1(0);
1778 }
1779
1780 /*
1781 * The following function implements the controller interface for
1782 * the eventpoll file that enables the insertion/removal/change of
1783 * file descriptors inside the interest set.
1784 */
1785 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1786 struct epoll_event __user *, event)
1787 {
1788 int error;
1789 int did_lock_epmutex = 0;
1790 struct file *file, *tfile;
1791 struct eventpoll *ep;
1792 struct epitem *epi;
1793 struct epoll_event epds;
1794
1795 error = -EFAULT;
1796 if (ep_op_has_event(op) &&
1797 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1798 goto error_return;
1799
1800 /* Get the "struct file *" for the eventpoll file */
1801 error = -EBADF;
1802 file = fget(epfd);
1803 if (!file)
1804 goto error_return;
1805
1806 /* Get the "struct file *" for the target file */
1807 tfile = fget(fd);
1808 if (!tfile)
1809 goto error_fput;
1810
1811 /* The target file descriptor must support poll */
1812 error = -EPERM;
1813 if (!tfile->f_op || !tfile->f_op->poll)
1814 goto error_tgt_fput;
1815
1816 /* Check if EPOLLWAKEUP is allowed */
1817 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1818 epds.events &= ~EPOLLWAKEUP;
1819
1820 /*
1821 * We have to check that the file structure underneath the file descriptor
1822 * the user passed to us _is_ an eventpoll file. And also we do not permit
1823 * adding an epoll file descriptor inside itself.
1824 */
1825 error = -EINVAL;
1826 if (file == tfile || !is_file_epoll(file))
1827 goto error_tgt_fput;
1828
1829 /*
1830 * At this point it is safe to assume that the "private_data" contains
1831 * our own data structure.
1832 */
1833 ep = file->private_data;
1834
1835 /*
1836 * When we insert an epoll file descriptor, inside another epoll file
1837 * descriptor, there is the change of creating closed loops, which are
1838 * better be handled here, than in more critical paths. While we are
1839 * checking for loops we also determine the list of files reachable
1840 * and hang them on the tfile_check_list, so we can check that we
1841 * haven't created too many possible wakeup paths.
1842 *
1843 * We need to hold the epmutex across both ep_insert and ep_remove
1844 * b/c we want to make sure we are looking at a coherent view of
1845 * epoll network.
1846 */
1847 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1848 mutex_lock(&epmutex);
1849 did_lock_epmutex = 1;
1850 }
1851 if (op == EPOLL_CTL_ADD) {
1852 if (is_file_epoll(tfile)) {
1853 error = -ELOOP;
1854 if (ep_loop_check(ep, tfile) != 0) {
1855 clear_tfile_check_list();
1856 goto error_tgt_fput;
1857 }
1858 } else
1859 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1860 }
1861
1862 mutex_lock_nested(&ep->mtx, 0);
1863
1864 /*
1865 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1866 * above, we can be sure to be able to use the item looked up by
1867 * ep_find() till we release the mutex.
1868 */
1869 epi = ep_find(ep, tfile, fd);
1870
1871 error = -EINVAL;
1872 switch (op) {
1873 case EPOLL_CTL_ADD:
1874 if (!epi) {
1875 epds.events |= POLLERR | POLLHUP;
1876 error = ep_insert(ep, &epds, tfile, fd);
1877 } else
1878 error = -EEXIST;
1879 clear_tfile_check_list();
1880 break;
1881 case EPOLL_CTL_DEL:
1882 if (epi)
1883 error = ep_remove(ep, epi);
1884 else
1885 error = -ENOENT;
1886 break;
1887 case EPOLL_CTL_MOD:
1888 if (epi) {
1889 epds.events |= POLLERR | POLLHUP;
1890 error = ep_modify(ep, epi, &epds);
1891 } else
1892 error = -ENOENT;
1893 break;
1894 }
1895 mutex_unlock(&ep->mtx);
1896
1897 error_tgt_fput:
1898 if (did_lock_epmutex)
1899 mutex_unlock(&epmutex);
1900
1901 fput(tfile);
1902 error_fput:
1903 fput(file);
1904 error_return:
1905
1906 return error;
1907 }
1908
1909 /*
1910 * Implement the event wait interface for the eventpoll file. It is the kernel
1911 * part of the user space epoll_wait(2).
1912 */
1913 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1914 int, maxevents, int, timeout)
1915 {
1916 int error;
1917 struct fd f;
1918 struct eventpoll *ep;
1919
1920 /* The maximum number of event must be greater than zero */
1921 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1922 return -EINVAL;
1923
1924 /* Verify that the area passed by the user is writeable */
1925 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1926 return -EFAULT;
1927
1928 /* Get the "struct file *" for the eventpoll file */
1929 f = fdget(epfd);
1930 if (!f.file)
1931 return -EBADF;
1932
1933 /*
1934 * We have to check that the file structure underneath the fd
1935 * the user passed to us _is_ an eventpoll file.
1936 */
1937 error = -EINVAL;
1938 if (!is_file_epoll(f.file))
1939 goto error_fput;
1940
1941 /*
1942 * At this point it is safe to assume that the "private_data" contains
1943 * our own data structure.
1944 */
1945 ep = f.file->private_data;
1946
1947 /* Time to fish for events ... */
1948 error = ep_poll(ep, events, maxevents, timeout);
1949
1950 error_fput:
1951 fdput(f);
1952 return error;
1953 }
1954
1955 /*
1956 * Implement the event wait interface for the eventpoll file. It is the kernel
1957 * part of the user space epoll_pwait(2).
1958 */
1959 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1960 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1961 size_t, sigsetsize)
1962 {
1963 int error;
1964 sigset_t ksigmask, sigsaved;
1965
1966 /*
1967 * If the caller wants a certain signal mask to be set during the wait,
1968 * we apply it here.
1969 */
1970 if (sigmask) {
1971 if (sigsetsize != sizeof(sigset_t))
1972 return -EINVAL;
1973 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1974 return -EFAULT;
1975 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1976 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1977 }
1978
1979 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1980
1981 /*
1982 * If we changed the signal mask, we need to restore the original one.
1983 * In case we've got a signal while waiting, we do not restore the
1984 * signal mask yet, and we allow do_signal() to deliver the signal on
1985 * the way back to userspace, before the signal mask is restored.
1986 */
1987 if (sigmask) {
1988 if (error == -EINTR) {
1989 memcpy(&current->saved_sigmask, &sigsaved,
1990 sizeof(sigsaved));
1991 set_restore_sigmask();
1992 } else
1993 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1994 }
1995
1996 return error;
1997 }
1998
1999 static int __init eventpoll_init(void)
2000 {
2001 struct sysinfo si;
2002
2003 si_meminfo(&si);
2004 /*
2005 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2006 */
2007 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2008 EP_ITEM_COST;
2009 BUG_ON(max_user_watches < 0);
2010
2011 /*
2012 * Initialize the structure used to perform epoll file descriptor
2013 * inclusion loops checks.
2014 */
2015 ep_nested_calls_init(&poll_loop_ncalls);
2016
2017 /* Initialize the structure used to perform safe poll wait head wake ups */
2018 ep_nested_calls_init(&poll_safewake_ncalls);
2019
2020 /* Initialize the structure used to perform file's f_op->poll() calls */
2021 ep_nested_calls_init(&poll_readywalk_ncalls);
2022
2023 /*
2024 * We can have many thousands of epitems, so prevent this from
2025 * using an extra cache line on 64-bit (and smaller) CPUs
2026 */
2027 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2028
2029 /* Allocates slab cache used to allocate "struct epitem" items */
2030 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2031 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2032
2033 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2034 pwq_cache = kmem_cache_create("eventpoll_pwq",
2035 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2036
2037 return 0;
2038 }
2039 fs_initcall(eventpoll_init);
This page took 0.078933 seconds and 6 git commands to generate.