do_coredump: fix the "ispipe" error check
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68
69 struct core_name {
70 char *corename;
71 int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 if (!fmt)
83 return -EINVAL;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 return 0;
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 module_put(fmt->module);
105 }
106
107 /*
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
110 *
111 * Also note that we take the address to load from from the file itself.
112 */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 struct file *file;
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
118 static const struct open_flags uselib_flags = {
119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 .intent = LOOKUP_OPEN
122 };
123
124 if (IS_ERR(tmp))
125 goto out;
126
127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 putname(tmp);
129 error = PTR_ERR(file);
130 if (IS_ERR(file))
131 goto out;
132
133 error = -EINVAL;
134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 goto exit;
136
137 error = -EACCES;
138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 goto exit;
140
141 fsnotify_open(file);
142
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
146
147 read_lock(&binfmt_lock);
148 list_for_each_entry(fmt, &formats, lh) {
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
159 }
160 read_unlock(&binfmt_lock);
161 }
162 exit:
163 fput(file);
164 out:
165 return error;
166 }
167
168 #ifdef CONFIG_MMU
169 /*
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
174 */
175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176 {
177 struct mm_struct *mm = current->mm;
178 long diff = (long)(pages - bprm->vma_pages);
179
180 if (!mm || !diff)
181 return;
182
183 bprm->vma_pages = pages;
184
185 #ifdef SPLIT_RSS_COUNTING
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 #else
188 spin_lock(&mm->page_table_lock);
189 add_mm_counter(mm, MM_ANONPAGES, diff);
190 spin_unlock(&mm->page_table_lock);
191 #endif
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196 {
197 struct page *page;
198 int ret;
199
200 #ifdef CONFIG_STACK_GROWSUP
201 if (write) {
202 ret = expand_downwards(bprm->vma, pos);
203 if (ret < 0)
204 return NULL;
205 }
206 #endif
207 ret = get_user_pages(current, bprm->mm, pos,
208 1, write, 1, &page, NULL);
209 if (ret <= 0)
210 return NULL;
211
212 if (write) {
213 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214 struct rlimit *rlim;
215
216 acct_arg_size(bprm, size / PAGE_SIZE);
217
218 /*
219 * We've historically supported up to 32 pages (ARG_MAX)
220 * of argument strings even with small stacks
221 */
222 if (size <= ARG_MAX)
223 return page;
224
225 /*
226 * Limit to 1/4-th the stack size for the argv+env strings.
227 * This ensures that:
228 * - the remaining binfmt code will not run out of stack space,
229 * - the program will have a reasonable amount of stack left
230 * to work from.
231 */
232 rlim = current->signal->rlim;
233 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
234 put_page(page);
235 return NULL;
236 }
237 }
238
239 return page;
240 }
241
242 static void put_arg_page(struct page *page)
243 {
244 put_page(page);
245 }
246
247 static void free_arg_page(struct linux_binprm *bprm, int i)
248 {
249 }
250
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 struct page *page)
257 {
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263 int err;
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
266
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 if (!vma)
269 return -ENOMEM;
270
271 down_write(&mm->mmap_sem);
272 vma->vm_mm = mm;
273
274 /*
275 * Place the stack at the largest stack address the architecture
276 * supports. Later, we'll move this to an appropriate place. We don't
277 * use STACK_TOP because that can depend on attributes which aren't
278 * configured yet.
279 */
280 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
281 vma->vm_end = STACK_TOP_MAX;
282 vma->vm_start = vma->vm_end - PAGE_SIZE;
283 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
284 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
285 INIT_LIST_HEAD(&vma->anon_vma_chain);
286
287 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
288 if (err)
289 goto err;
290
291 err = insert_vm_struct(mm, vma);
292 if (err)
293 goto err;
294
295 mm->stack_vm = mm->total_vm = 1;
296 up_write(&mm->mmap_sem);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299 err:
300 up_write(&mm->mmap_sem);
301 bprm->vma = NULL;
302 kmem_cache_free(vm_area_cachep, vma);
303 return err;
304 }
305
306 static bool valid_arg_len(struct linux_binprm *bprm, long len)
307 {
308 return len <= MAX_ARG_STRLEN;
309 }
310
311 #else
312
313 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
314 {
315 }
316
317 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
318 int write)
319 {
320 struct page *page;
321
322 page = bprm->page[pos / PAGE_SIZE];
323 if (!page && write) {
324 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
325 if (!page)
326 return NULL;
327 bprm->page[pos / PAGE_SIZE] = page;
328 }
329
330 return page;
331 }
332
333 static void put_arg_page(struct page *page)
334 {
335 }
336
337 static void free_arg_page(struct linux_binprm *bprm, int i)
338 {
339 if (bprm->page[i]) {
340 __free_page(bprm->page[i]);
341 bprm->page[i] = NULL;
342 }
343 }
344
345 static void free_arg_pages(struct linux_binprm *bprm)
346 {
347 int i;
348
349 for (i = 0; i < MAX_ARG_PAGES; i++)
350 free_arg_page(bprm, i);
351 }
352
353 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
354 struct page *page)
355 {
356 }
357
358 static int __bprm_mm_init(struct linux_binprm *bprm)
359 {
360 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
361 return 0;
362 }
363
364 static bool valid_arg_len(struct linux_binprm *bprm, long len)
365 {
366 return len <= bprm->p;
367 }
368
369 #endif /* CONFIG_MMU */
370
371 /*
372 * Create a new mm_struct and populate it with a temporary stack
373 * vm_area_struct. We don't have enough context at this point to set the stack
374 * flags, permissions, and offset, so we use temporary values. We'll update
375 * them later in setup_arg_pages().
376 */
377 int bprm_mm_init(struct linux_binprm *bprm)
378 {
379 int err;
380 struct mm_struct *mm = NULL;
381
382 bprm->mm = mm = mm_alloc();
383 err = -ENOMEM;
384 if (!mm)
385 goto err;
386
387 err = init_new_context(current, mm);
388 if (err)
389 goto err;
390
391 err = __bprm_mm_init(bprm);
392 if (err)
393 goto err;
394
395 return 0;
396
397 err:
398 if (mm) {
399 bprm->mm = NULL;
400 mmdrop(mm);
401 }
402
403 return err;
404 }
405
406 struct user_arg_ptr {
407 #ifdef CONFIG_COMPAT
408 bool is_compat;
409 #endif
410 union {
411 const char __user *const __user *native;
412 #ifdef CONFIG_COMPAT
413 compat_uptr_t __user *compat;
414 #endif
415 } ptr;
416 };
417
418 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
419 {
420 const char __user *native;
421
422 #ifdef CONFIG_COMPAT
423 if (unlikely(argv.is_compat)) {
424 compat_uptr_t compat;
425
426 if (get_user(compat, argv.ptr.compat + nr))
427 return ERR_PTR(-EFAULT);
428
429 return compat_ptr(compat);
430 }
431 #endif
432
433 if (get_user(native, argv.ptr.native + nr))
434 return ERR_PTR(-EFAULT);
435
436 return native;
437 }
438
439 /*
440 * count() counts the number of strings in array ARGV.
441 */
442 static int count(struct user_arg_ptr argv, int max)
443 {
444 int i = 0;
445
446 if (argv.ptr.native != NULL) {
447 for (;;) {
448 const char __user *p = get_user_arg_ptr(argv, i);
449
450 if (!p)
451 break;
452
453 if (IS_ERR(p))
454 return -EFAULT;
455
456 if (i++ >= max)
457 return -E2BIG;
458
459 if (fatal_signal_pending(current))
460 return -ERESTARTNOHAND;
461 cond_resched();
462 }
463 }
464 return i;
465 }
466
467 /*
468 * 'copy_strings()' copies argument/environment strings from the old
469 * processes's memory to the new process's stack. The call to get_user_pages()
470 * ensures the destination page is created and not swapped out.
471 */
472 static int copy_strings(int argc, struct user_arg_ptr argv,
473 struct linux_binprm *bprm)
474 {
475 struct page *kmapped_page = NULL;
476 char *kaddr = NULL;
477 unsigned long kpos = 0;
478 int ret;
479
480 while (argc-- > 0) {
481 const char __user *str;
482 int len;
483 unsigned long pos;
484
485 ret = -EFAULT;
486 str = get_user_arg_ptr(argv, argc);
487 if (IS_ERR(str))
488 goto out;
489
490 len = strnlen_user(str, MAX_ARG_STRLEN);
491 if (!len)
492 goto out;
493
494 ret = -E2BIG;
495 if (!valid_arg_len(bprm, len))
496 goto out;
497
498 /* We're going to work our way backwords. */
499 pos = bprm->p;
500 str += len;
501 bprm->p -= len;
502
503 while (len > 0) {
504 int offset, bytes_to_copy;
505
506 if (fatal_signal_pending(current)) {
507 ret = -ERESTARTNOHAND;
508 goto out;
509 }
510 cond_resched();
511
512 offset = pos % PAGE_SIZE;
513 if (offset == 0)
514 offset = PAGE_SIZE;
515
516 bytes_to_copy = offset;
517 if (bytes_to_copy > len)
518 bytes_to_copy = len;
519
520 offset -= bytes_to_copy;
521 pos -= bytes_to_copy;
522 str -= bytes_to_copy;
523 len -= bytes_to_copy;
524
525 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 struct page *page;
527
528 page = get_arg_page(bprm, pos, 1);
529 if (!page) {
530 ret = -E2BIG;
531 goto out;
532 }
533
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 kmapped_page = page;
540 kaddr = kmap(kmapped_page);
541 kpos = pos & PAGE_MASK;
542 flush_arg_page(bprm, kpos, kmapped_page);
543 }
544 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545 ret = -EFAULT;
546 goto out;
547 }
548 }
549 }
550 ret = 0;
551 out:
552 if (kmapped_page) {
553 flush_kernel_dcache_page(kmapped_page);
554 kunmap(kmapped_page);
555 put_arg_page(kmapped_page);
556 }
557 return ret;
558 }
559
560 /*
561 * Like copy_strings, but get argv and its values from kernel memory.
562 */
563 int copy_strings_kernel(int argc, const char *const *__argv,
564 struct linux_binprm *bprm)
565 {
566 int r;
567 mm_segment_t oldfs = get_fs();
568 struct user_arg_ptr argv = {
569 .ptr.native = (const char __user *const __user *)__argv,
570 };
571
572 set_fs(KERNEL_DS);
573 r = copy_strings(argc, argv, bprm);
574 set_fs(oldfs);
575
576 return r;
577 }
578 EXPORT_SYMBOL(copy_strings_kernel);
579
580 #ifdef CONFIG_MMU
581
582 /*
583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584 * the binfmt code determines where the new stack should reside, we shift it to
585 * its final location. The process proceeds as follows:
586 *
587 * 1) Use shift to calculate the new vma endpoints.
588 * 2) Extend vma to cover both the old and new ranges. This ensures the
589 * arguments passed to subsequent functions are consistent.
590 * 3) Move vma's page tables to the new range.
591 * 4) Free up any cleared pgd range.
592 * 5) Shrink the vma to cover only the new range.
593 */
594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595 {
596 struct mm_struct *mm = vma->vm_mm;
597 unsigned long old_start = vma->vm_start;
598 unsigned long old_end = vma->vm_end;
599 unsigned long length = old_end - old_start;
600 unsigned long new_start = old_start - shift;
601 unsigned long new_end = old_end - shift;
602 struct mmu_gather tlb;
603
604 BUG_ON(new_start > new_end);
605
606 /*
607 * ensure there are no vmas between where we want to go
608 * and where we are
609 */
610 if (vma != find_vma(mm, new_start))
611 return -EFAULT;
612
613 /*
614 * cover the whole range: [new_start, old_end)
615 */
616 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617 return -ENOMEM;
618
619 /*
620 * move the page tables downwards, on failure we rely on
621 * process cleanup to remove whatever mess we made.
622 */
623 if (length != move_page_tables(vma, old_start,
624 vma, new_start, length))
625 return -ENOMEM;
626
627 lru_add_drain();
628 tlb_gather_mmu(&tlb, mm, 0);
629 if (new_end > old_start) {
630 /*
631 * when the old and new regions overlap clear from new_end.
632 */
633 free_pgd_range(&tlb, new_end, old_end, new_end,
634 vma->vm_next ? vma->vm_next->vm_start : 0);
635 } else {
636 /*
637 * otherwise, clean from old_start; this is done to not touch
638 * the address space in [new_end, old_start) some architectures
639 * have constraints on va-space that make this illegal (IA64) -
640 * for the others its just a little faster.
641 */
642 free_pgd_range(&tlb, old_start, old_end, new_end,
643 vma->vm_next ? vma->vm_next->vm_start : 0);
644 }
645 tlb_finish_mmu(&tlb, new_end, old_end);
646
647 /*
648 * Shrink the vma to just the new range. Always succeeds.
649 */
650 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652 return 0;
653 }
654
655 /*
656 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657 * the stack is optionally relocated, and some extra space is added.
658 */
659 int setup_arg_pages(struct linux_binprm *bprm,
660 unsigned long stack_top,
661 int executable_stack)
662 {
663 unsigned long ret;
664 unsigned long stack_shift;
665 struct mm_struct *mm = current->mm;
666 struct vm_area_struct *vma = bprm->vma;
667 struct vm_area_struct *prev = NULL;
668 unsigned long vm_flags;
669 unsigned long stack_base;
670 unsigned long stack_size;
671 unsigned long stack_expand;
672 unsigned long rlim_stack;
673
674 #ifdef CONFIG_STACK_GROWSUP
675 /* Limit stack size to 1GB */
676 stack_base = rlimit_max(RLIMIT_STACK);
677 if (stack_base > (1 << 30))
678 stack_base = 1 << 30;
679
680 /* Make sure we didn't let the argument array grow too large. */
681 if (vma->vm_end - vma->vm_start > stack_base)
682 return -ENOMEM;
683
684 stack_base = PAGE_ALIGN(stack_top - stack_base);
685
686 stack_shift = vma->vm_start - stack_base;
687 mm->arg_start = bprm->p - stack_shift;
688 bprm->p = vma->vm_end - stack_shift;
689 #else
690 stack_top = arch_align_stack(stack_top);
691 stack_top = PAGE_ALIGN(stack_top);
692
693 if (unlikely(stack_top < mmap_min_addr) ||
694 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
695 return -ENOMEM;
696
697 stack_shift = vma->vm_end - stack_top;
698
699 bprm->p -= stack_shift;
700 mm->arg_start = bprm->p;
701 #endif
702
703 if (bprm->loader)
704 bprm->loader -= stack_shift;
705 bprm->exec -= stack_shift;
706
707 down_write(&mm->mmap_sem);
708 vm_flags = VM_STACK_FLAGS;
709
710 /*
711 * Adjust stack execute permissions; explicitly enable for
712 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713 * (arch default) otherwise.
714 */
715 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
716 vm_flags |= VM_EXEC;
717 else if (executable_stack == EXSTACK_DISABLE_X)
718 vm_flags &= ~VM_EXEC;
719 vm_flags |= mm->def_flags;
720 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
721
722 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723 vm_flags);
724 if (ret)
725 goto out_unlock;
726 BUG_ON(prev != vma);
727
728 /* Move stack pages down in memory. */
729 if (stack_shift) {
730 ret = shift_arg_pages(vma, stack_shift);
731 if (ret)
732 goto out_unlock;
733 }
734
735 /* mprotect_fixup is overkill to remove the temporary stack flags */
736 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
737
738 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
739 stack_size = vma->vm_end - vma->vm_start;
740 /*
741 * Align this down to a page boundary as expand_stack
742 * will align it up.
743 */
744 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
745 #ifdef CONFIG_STACK_GROWSUP
746 if (stack_size + stack_expand > rlim_stack)
747 stack_base = vma->vm_start + rlim_stack;
748 else
749 stack_base = vma->vm_end + stack_expand;
750 #else
751 if (stack_size + stack_expand > rlim_stack)
752 stack_base = vma->vm_end - rlim_stack;
753 else
754 stack_base = vma->vm_start - stack_expand;
755 #endif
756 current->mm->start_stack = bprm->p;
757 ret = expand_stack(vma, stack_base);
758 if (ret)
759 ret = -EFAULT;
760
761 out_unlock:
762 up_write(&mm->mmap_sem);
763 return ret;
764 }
765 EXPORT_SYMBOL(setup_arg_pages);
766
767 #endif /* CONFIG_MMU */
768
769 struct file *open_exec(const char *name)
770 {
771 struct file *file;
772 int err;
773 static const struct open_flags open_exec_flags = {
774 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
775 .acc_mode = MAY_EXEC | MAY_OPEN,
776 .intent = LOOKUP_OPEN
777 };
778
779 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
780 if (IS_ERR(file))
781 goto out;
782
783 err = -EACCES;
784 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
785 goto exit;
786
787 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
788 goto exit;
789
790 fsnotify_open(file);
791
792 err = deny_write_access(file);
793 if (err)
794 goto exit;
795
796 out:
797 return file;
798
799 exit:
800 fput(file);
801 return ERR_PTR(err);
802 }
803 EXPORT_SYMBOL(open_exec);
804
805 int kernel_read(struct file *file, loff_t offset,
806 char *addr, unsigned long count)
807 {
808 mm_segment_t old_fs;
809 loff_t pos = offset;
810 int result;
811
812 old_fs = get_fs();
813 set_fs(get_ds());
814 /* The cast to a user pointer is valid due to the set_fs() */
815 result = vfs_read(file, (void __user *)addr, count, &pos);
816 set_fs(old_fs);
817 return result;
818 }
819
820 EXPORT_SYMBOL(kernel_read);
821
822 static int exec_mmap(struct mm_struct *mm)
823 {
824 struct task_struct *tsk;
825 struct mm_struct * old_mm, *active_mm;
826
827 /* Notify parent that we're no longer interested in the old VM */
828 tsk = current;
829 old_mm = current->mm;
830 sync_mm_rss(tsk, old_mm);
831 mm_release(tsk, old_mm);
832
833 if (old_mm) {
834 /*
835 * Make sure that if there is a core dump in progress
836 * for the old mm, we get out and die instead of going
837 * through with the exec. We must hold mmap_sem around
838 * checking core_state and changing tsk->mm.
839 */
840 down_read(&old_mm->mmap_sem);
841 if (unlikely(old_mm->core_state)) {
842 up_read(&old_mm->mmap_sem);
843 return -EINTR;
844 }
845 }
846 task_lock(tsk);
847 active_mm = tsk->active_mm;
848 tsk->mm = mm;
849 tsk->active_mm = mm;
850 activate_mm(active_mm, mm);
851 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
852 atomic_dec(&old_mm->oom_disable_count);
853 atomic_inc(&tsk->mm->oom_disable_count);
854 }
855 task_unlock(tsk);
856 arch_pick_mmap_layout(mm);
857 if (old_mm) {
858 up_read(&old_mm->mmap_sem);
859 BUG_ON(active_mm != old_mm);
860 mm_update_next_owner(old_mm);
861 mmput(old_mm);
862 return 0;
863 }
864 mmdrop(active_mm);
865 return 0;
866 }
867
868 /*
869 * This function makes sure the current process has its own signal table,
870 * so that flush_signal_handlers can later reset the handlers without
871 * disturbing other processes. (Other processes might share the signal
872 * table via the CLONE_SIGHAND option to clone().)
873 */
874 static int de_thread(struct task_struct *tsk)
875 {
876 struct signal_struct *sig = tsk->signal;
877 struct sighand_struct *oldsighand = tsk->sighand;
878 spinlock_t *lock = &oldsighand->siglock;
879
880 if (thread_group_empty(tsk))
881 goto no_thread_group;
882
883 /*
884 * Kill all other threads in the thread group.
885 */
886 spin_lock_irq(lock);
887 if (signal_group_exit(sig)) {
888 /*
889 * Another group action in progress, just
890 * return so that the signal is processed.
891 */
892 spin_unlock_irq(lock);
893 return -EAGAIN;
894 }
895
896 sig->group_exit_task = tsk;
897 sig->notify_count = zap_other_threads(tsk);
898 if (!thread_group_leader(tsk))
899 sig->notify_count--;
900
901 while (sig->notify_count) {
902 __set_current_state(TASK_UNINTERRUPTIBLE);
903 spin_unlock_irq(lock);
904 schedule();
905 spin_lock_irq(lock);
906 }
907 spin_unlock_irq(lock);
908
909 /*
910 * At this point all other threads have exited, all we have to
911 * do is to wait for the thread group leader to become inactive,
912 * and to assume its PID:
913 */
914 if (!thread_group_leader(tsk)) {
915 struct task_struct *leader = tsk->group_leader;
916
917 sig->notify_count = -1; /* for exit_notify() */
918 for (;;) {
919 write_lock_irq(&tasklist_lock);
920 if (likely(leader->exit_state))
921 break;
922 __set_current_state(TASK_UNINTERRUPTIBLE);
923 write_unlock_irq(&tasklist_lock);
924 schedule();
925 }
926
927 /*
928 * The only record we have of the real-time age of a
929 * process, regardless of execs it's done, is start_time.
930 * All the past CPU time is accumulated in signal_struct
931 * from sister threads now dead. But in this non-leader
932 * exec, nothing survives from the original leader thread,
933 * whose birth marks the true age of this process now.
934 * When we take on its identity by switching to its PID, we
935 * also take its birthdate (always earlier than our own).
936 */
937 tsk->start_time = leader->start_time;
938
939 BUG_ON(!same_thread_group(leader, tsk));
940 BUG_ON(has_group_leader_pid(tsk));
941 /*
942 * An exec() starts a new thread group with the
943 * TGID of the previous thread group. Rehash the
944 * two threads with a switched PID, and release
945 * the former thread group leader:
946 */
947
948 /* Become a process group leader with the old leader's pid.
949 * The old leader becomes a thread of the this thread group.
950 * Note: The old leader also uses this pid until release_task
951 * is called. Odd but simple and correct.
952 */
953 detach_pid(tsk, PIDTYPE_PID);
954 tsk->pid = leader->pid;
955 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
956 transfer_pid(leader, tsk, PIDTYPE_PGID);
957 transfer_pid(leader, tsk, PIDTYPE_SID);
958
959 list_replace_rcu(&leader->tasks, &tsk->tasks);
960 list_replace_init(&leader->sibling, &tsk->sibling);
961
962 tsk->group_leader = tsk;
963 leader->group_leader = tsk;
964
965 tsk->exit_signal = SIGCHLD;
966 leader->exit_signal = -1;
967
968 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969 leader->exit_state = EXIT_DEAD;
970
971 /*
972 * We are going to release_task()->ptrace_unlink() silently,
973 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
974 * the tracer wont't block again waiting for this thread.
975 */
976 if (unlikely(leader->ptrace))
977 __wake_up_parent(leader, leader->parent);
978 write_unlock_irq(&tasklist_lock);
979
980 release_task(leader);
981 }
982
983 sig->group_exit_task = NULL;
984 sig->notify_count = 0;
985
986 no_thread_group:
987 if (current->mm)
988 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
989
990 exit_itimers(sig);
991 flush_itimer_signals();
992
993 if (atomic_read(&oldsighand->count) != 1) {
994 struct sighand_struct *newsighand;
995 /*
996 * This ->sighand is shared with the CLONE_SIGHAND
997 * but not CLONE_THREAD task, switch to the new one.
998 */
999 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1000 if (!newsighand)
1001 return -ENOMEM;
1002
1003 atomic_set(&newsighand->count, 1);
1004 memcpy(newsighand->action, oldsighand->action,
1005 sizeof(newsighand->action));
1006
1007 write_lock_irq(&tasklist_lock);
1008 spin_lock(&oldsighand->siglock);
1009 rcu_assign_pointer(tsk->sighand, newsighand);
1010 spin_unlock(&oldsighand->siglock);
1011 write_unlock_irq(&tasklist_lock);
1012
1013 __cleanup_sighand(oldsighand);
1014 }
1015
1016 BUG_ON(!thread_group_leader(tsk));
1017 return 0;
1018 }
1019
1020 /*
1021 * These functions flushes out all traces of the currently running executable
1022 * so that a new one can be started
1023 */
1024 static void flush_old_files(struct files_struct * files)
1025 {
1026 long j = -1;
1027 struct fdtable *fdt;
1028
1029 spin_lock(&files->file_lock);
1030 for (;;) {
1031 unsigned long set, i;
1032
1033 j++;
1034 i = j * __NFDBITS;
1035 fdt = files_fdtable(files);
1036 if (i >= fdt->max_fds)
1037 break;
1038 set = fdt->close_on_exec->fds_bits[j];
1039 if (!set)
1040 continue;
1041 fdt->close_on_exec->fds_bits[j] = 0;
1042 spin_unlock(&files->file_lock);
1043 for ( ; set ; i++,set >>= 1) {
1044 if (set & 1) {
1045 sys_close(i);
1046 }
1047 }
1048 spin_lock(&files->file_lock);
1049
1050 }
1051 spin_unlock(&files->file_lock);
1052 }
1053
1054 char *get_task_comm(char *buf, struct task_struct *tsk)
1055 {
1056 /* buf must be at least sizeof(tsk->comm) in size */
1057 task_lock(tsk);
1058 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1059 task_unlock(tsk);
1060 return buf;
1061 }
1062 EXPORT_SYMBOL_GPL(get_task_comm);
1063
1064 void set_task_comm(struct task_struct *tsk, char *buf)
1065 {
1066 task_lock(tsk);
1067
1068 /*
1069 * Threads may access current->comm without holding
1070 * the task lock, so write the string carefully.
1071 * Readers without a lock may see incomplete new
1072 * names but are safe from non-terminating string reads.
1073 */
1074 memset(tsk->comm, 0, TASK_COMM_LEN);
1075 wmb();
1076 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1077 task_unlock(tsk);
1078 perf_event_comm(tsk);
1079 }
1080
1081 int flush_old_exec(struct linux_binprm * bprm)
1082 {
1083 int retval;
1084
1085 /*
1086 * Make sure we have a private signal table and that
1087 * we are unassociated from the previous thread group.
1088 */
1089 retval = de_thread(current);
1090 if (retval)
1091 goto out;
1092
1093 set_mm_exe_file(bprm->mm, bprm->file);
1094
1095 /*
1096 * Release all of the old mmap stuff
1097 */
1098 acct_arg_size(bprm, 0);
1099 retval = exec_mmap(bprm->mm);
1100 if (retval)
1101 goto out;
1102
1103 bprm->mm = NULL; /* We're using it now */
1104
1105 set_fs(USER_DS);
1106 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1107 flush_thread();
1108 current->personality &= ~bprm->per_clear;
1109
1110 return 0;
1111
1112 out:
1113 return retval;
1114 }
1115 EXPORT_SYMBOL(flush_old_exec);
1116
1117 void would_dump(struct linux_binprm *bprm, struct file *file)
1118 {
1119 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1120 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1121 }
1122 EXPORT_SYMBOL(would_dump);
1123
1124 void setup_new_exec(struct linux_binprm * bprm)
1125 {
1126 int i, ch;
1127 const char *name;
1128 char tcomm[sizeof(current->comm)];
1129
1130 arch_pick_mmap_layout(current->mm);
1131
1132 /* This is the point of no return */
1133 current->sas_ss_sp = current->sas_ss_size = 0;
1134
1135 if (current_euid() == current_uid() && current_egid() == current_gid())
1136 set_dumpable(current->mm, 1);
1137 else
1138 set_dumpable(current->mm, suid_dumpable);
1139
1140 name = bprm->filename;
1141
1142 /* Copies the binary name from after last slash */
1143 for (i=0; (ch = *(name++)) != '\0';) {
1144 if (ch == '/')
1145 i = 0; /* overwrite what we wrote */
1146 else
1147 if (i < (sizeof(tcomm) - 1))
1148 tcomm[i++] = ch;
1149 }
1150 tcomm[i] = '\0';
1151 set_task_comm(current, tcomm);
1152
1153 /* Set the new mm task size. We have to do that late because it may
1154 * depend on TIF_32BIT which is only updated in flush_thread() on
1155 * some architectures like powerpc
1156 */
1157 current->mm->task_size = TASK_SIZE;
1158
1159 /* install the new credentials */
1160 if (bprm->cred->uid != current_euid() ||
1161 bprm->cred->gid != current_egid()) {
1162 current->pdeath_signal = 0;
1163 } else {
1164 would_dump(bprm, bprm->file);
1165 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1166 set_dumpable(current->mm, suid_dumpable);
1167 }
1168
1169 /*
1170 * Flush performance counters when crossing a
1171 * security domain:
1172 */
1173 if (!get_dumpable(current->mm))
1174 perf_event_exit_task(current);
1175
1176 /* An exec changes our domain. We are no longer part of the thread
1177 group */
1178
1179 current->self_exec_id++;
1180
1181 flush_signal_handlers(current, 0);
1182 flush_old_files(current->files);
1183 }
1184 EXPORT_SYMBOL(setup_new_exec);
1185
1186 /*
1187 * Prepare credentials and lock ->cred_guard_mutex.
1188 * install_exec_creds() commits the new creds and drops the lock.
1189 * Or, if exec fails before, free_bprm() should release ->cred and
1190 * and unlock.
1191 */
1192 int prepare_bprm_creds(struct linux_binprm *bprm)
1193 {
1194 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1195 return -ERESTARTNOINTR;
1196
1197 bprm->cred = prepare_exec_creds();
1198 if (likely(bprm->cred))
1199 return 0;
1200
1201 mutex_unlock(&current->signal->cred_guard_mutex);
1202 return -ENOMEM;
1203 }
1204
1205 void free_bprm(struct linux_binprm *bprm)
1206 {
1207 free_arg_pages(bprm);
1208 if (bprm->cred) {
1209 mutex_unlock(&current->signal->cred_guard_mutex);
1210 abort_creds(bprm->cred);
1211 }
1212 kfree(bprm);
1213 }
1214
1215 /*
1216 * install the new credentials for this executable
1217 */
1218 void install_exec_creds(struct linux_binprm *bprm)
1219 {
1220 security_bprm_committing_creds(bprm);
1221
1222 commit_creds(bprm->cred);
1223 bprm->cred = NULL;
1224 /*
1225 * cred_guard_mutex must be held at least to this point to prevent
1226 * ptrace_attach() from altering our determination of the task's
1227 * credentials; any time after this it may be unlocked.
1228 */
1229 security_bprm_committed_creds(bprm);
1230 mutex_unlock(&current->signal->cred_guard_mutex);
1231 }
1232 EXPORT_SYMBOL(install_exec_creds);
1233
1234 /*
1235 * determine how safe it is to execute the proposed program
1236 * - the caller must hold ->cred_guard_mutex to protect against
1237 * PTRACE_ATTACH
1238 */
1239 int check_unsafe_exec(struct linux_binprm *bprm)
1240 {
1241 struct task_struct *p = current, *t;
1242 unsigned n_fs;
1243 int res = 0;
1244
1245 if (p->ptrace) {
1246 if (p->ptrace & PT_PTRACE_CAP)
1247 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1248 else
1249 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1250 }
1251
1252 n_fs = 1;
1253 spin_lock(&p->fs->lock);
1254 rcu_read_lock();
1255 for (t = next_thread(p); t != p; t = next_thread(t)) {
1256 if (t->fs == p->fs)
1257 n_fs++;
1258 }
1259 rcu_read_unlock();
1260
1261 if (p->fs->users > n_fs) {
1262 bprm->unsafe |= LSM_UNSAFE_SHARE;
1263 } else {
1264 res = -EAGAIN;
1265 if (!p->fs->in_exec) {
1266 p->fs->in_exec = 1;
1267 res = 1;
1268 }
1269 }
1270 spin_unlock(&p->fs->lock);
1271
1272 return res;
1273 }
1274
1275 /*
1276 * Fill the binprm structure from the inode.
1277 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1278 *
1279 * This may be called multiple times for binary chains (scripts for example).
1280 */
1281 int prepare_binprm(struct linux_binprm *bprm)
1282 {
1283 umode_t mode;
1284 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1285 int retval;
1286
1287 mode = inode->i_mode;
1288 if (bprm->file->f_op == NULL)
1289 return -EACCES;
1290
1291 /* clear any previous set[ug]id data from a previous binary */
1292 bprm->cred->euid = current_euid();
1293 bprm->cred->egid = current_egid();
1294
1295 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1296 /* Set-uid? */
1297 if (mode & S_ISUID) {
1298 bprm->per_clear |= PER_CLEAR_ON_SETID;
1299 bprm->cred->euid = inode->i_uid;
1300 }
1301
1302 /* Set-gid? */
1303 /*
1304 * If setgid is set but no group execute bit then this
1305 * is a candidate for mandatory locking, not a setgid
1306 * executable.
1307 */
1308 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1309 bprm->per_clear |= PER_CLEAR_ON_SETID;
1310 bprm->cred->egid = inode->i_gid;
1311 }
1312 }
1313
1314 /* fill in binprm security blob */
1315 retval = security_bprm_set_creds(bprm);
1316 if (retval)
1317 return retval;
1318 bprm->cred_prepared = 1;
1319
1320 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1321 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1322 }
1323
1324 EXPORT_SYMBOL(prepare_binprm);
1325
1326 /*
1327 * Arguments are '\0' separated strings found at the location bprm->p
1328 * points to; chop off the first by relocating brpm->p to right after
1329 * the first '\0' encountered.
1330 */
1331 int remove_arg_zero(struct linux_binprm *bprm)
1332 {
1333 int ret = 0;
1334 unsigned long offset;
1335 char *kaddr;
1336 struct page *page;
1337
1338 if (!bprm->argc)
1339 return 0;
1340
1341 do {
1342 offset = bprm->p & ~PAGE_MASK;
1343 page = get_arg_page(bprm, bprm->p, 0);
1344 if (!page) {
1345 ret = -EFAULT;
1346 goto out;
1347 }
1348 kaddr = kmap_atomic(page, KM_USER0);
1349
1350 for (; offset < PAGE_SIZE && kaddr[offset];
1351 offset++, bprm->p++)
1352 ;
1353
1354 kunmap_atomic(kaddr, KM_USER0);
1355 put_arg_page(page);
1356
1357 if (offset == PAGE_SIZE)
1358 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1359 } while (offset == PAGE_SIZE);
1360
1361 bprm->p++;
1362 bprm->argc--;
1363 ret = 0;
1364
1365 out:
1366 return ret;
1367 }
1368 EXPORT_SYMBOL(remove_arg_zero);
1369
1370 /*
1371 * cycle the list of binary formats handler, until one recognizes the image
1372 */
1373 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1374 {
1375 unsigned int depth = bprm->recursion_depth;
1376 int try,retval;
1377 struct linux_binfmt *fmt;
1378 pid_t old_pid;
1379
1380 retval = security_bprm_check(bprm);
1381 if (retval)
1382 return retval;
1383
1384 retval = audit_bprm(bprm);
1385 if (retval)
1386 return retval;
1387
1388 /* Need to fetch pid before load_binary changes it */
1389 rcu_read_lock();
1390 old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1391 rcu_read_unlock();
1392
1393 retval = -ENOENT;
1394 for (try=0; try<2; try++) {
1395 read_lock(&binfmt_lock);
1396 list_for_each_entry(fmt, &formats, lh) {
1397 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1398 if (!fn)
1399 continue;
1400 if (!try_module_get(fmt->module))
1401 continue;
1402 read_unlock(&binfmt_lock);
1403 retval = fn(bprm, regs);
1404 /*
1405 * Restore the depth counter to its starting value
1406 * in this call, so we don't have to rely on every
1407 * load_binary function to restore it on return.
1408 */
1409 bprm->recursion_depth = depth;
1410 if (retval >= 0) {
1411 if (depth == 0)
1412 ptrace_event(PTRACE_EVENT_EXEC,
1413 old_pid);
1414 put_binfmt(fmt);
1415 allow_write_access(bprm->file);
1416 if (bprm->file)
1417 fput(bprm->file);
1418 bprm->file = NULL;
1419 current->did_exec = 1;
1420 proc_exec_connector(current);
1421 return retval;
1422 }
1423 read_lock(&binfmt_lock);
1424 put_binfmt(fmt);
1425 if (retval != -ENOEXEC || bprm->mm == NULL)
1426 break;
1427 if (!bprm->file) {
1428 read_unlock(&binfmt_lock);
1429 return retval;
1430 }
1431 }
1432 read_unlock(&binfmt_lock);
1433 if (retval != -ENOEXEC || bprm->mm == NULL) {
1434 break;
1435 #ifdef CONFIG_MODULES
1436 } else {
1437 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1438 if (printable(bprm->buf[0]) &&
1439 printable(bprm->buf[1]) &&
1440 printable(bprm->buf[2]) &&
1441 printable(bprm->buf[3]))
1442 break; /* -ENOEXEC */
1443 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1444 #endif
1445 }
1446 }
1447 return retval;
1448 }
1449
1450 EXPORT_SYMBOL(search_binary_handler);
1451
1452 /*
1453 * sys_execve() executes a new program.
1454 */
1455 static int do_execve_common(const char *filename,
1456 struct user_arg_ptr argv,
1457 struct user_arg_ptr envp,
1458 struct pt_regs *regs)
1459 {
1460 struct linux_binprm *bprm;
1461 struct file *file;
1462 struct files_struct *displaced;
1463 bool clear_in_exec;
1464 int retval;
1465
1466 retval = unshare_files(&displaced);
1467 if (retval)
1468 goto out_ret;
1469
1470 retval = -ENOMEM;
1471 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1472 if (!bprm)
1473 goto out_files;
1474
1475 retval = prepare_bprm_creds(bprm);
1476 if (retval)
1477 goto out_free;
1478
1479 retval = check_unsafe_exec(bprm);
1480 if (retval < 0)
1481 goto out_free;
1482 clear_in_exec = retval;
1483 current->in_execve = 1;
1484
1485 file = open_exec(filename);
1486 retval = PTR_ERR(file);
1487 if (IS_ERR(file))
1488 goto out_unmark;
1489
1490 sched_exec();
1491
1492 bprm->file = file;
1493 bprm->filename = filename;
1494 bprm->interp = filename;
1495
1496 retval = bprm_mm_init(bprm);
1497 if (retval)
1498 goto out_file;
1499
1500 bprm->argc = count(argv, MAX_ARG_STRINGS);
1501 if ((retval = bprm->argc) < 0)
1502 goto out;
1503
1504 bprm->envc = count(envp, MAX_ARG_STRINGS);
1505 if ((retval = bprm->envc) < 0)
1506 goto out;
1507
1508 retval = prepare_binprm(bprm);
1509 if (retval < 0)
1510 goto out;
1511
1512 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1513 if (retval < 0)
1514 goto out;
1515
1516 bprm->exec = bprm->p;
1517 retval = copy_strings(bprm->envc, envp, bprm);
1518 if (retval < 0)
1519 goto out;
1520
1521 retval = copy_strings(bprm->argc, argv, bprm);
1522 if (retval < 0)
1523 goto out;
1524
1525 retval = search_binary_handler(bprm,regs);
1526 if (retval < 0)
1527 goto out;
1528
1529 /* execve succeeded */
1530 current->fs->in_exec = 0;
1531 current->in_execve = 0;
1532 acct_update_integrals(current);
1533 free_bprm(bprm);
1534 if (displaced)
1535 put_files_struct(displaced);
1536 return retval;
1537
1538 out:
1539 if (bprm->mm) {
1540 acct_arg_size(bprm, 0);
1541 mmput(bprm->mm);
1542 }
1543
1544 out_file:
1545 if (bprm->file) {
1546 allow_write_access(bprm->file);
1547 fput(bprm->file);
1548 }
1549
1550 out_unmark:
1551 if (clear_in_exec)
1552 current->fs->in_exec = 0;
1553 current->in_execve = 0;
1554
1555 out_free:
1556 free_bprm(bprm);
1557
1558 out_files:
1559 if (displaced)
1560 reset_files_struct(displaced);
1561 out_ret:
1562 return retval;
1563 }
1564
1565 int do_execve(const char *filename,
1566 const char __user *const __user *__argv,
1567 const char __user *const __user *__envp,
1568 struct pt_regs *regs)
1569 {
1570 struct user_arg_ptr argv = { .ptr.native = __argv };
1571 struct user_arg_ptr envp = { .ptr.native = __envp };
1572 return do_execve_common(filename, argv, envp, regs);
1573 }
1574
1575 #ifdef CONFIG_COMPAT
1576 int compat_do_execve(char *filename,
1577 compat_uptr_t __user *__argv,
1578 compat_uptr_t __user *__envp,
1579 struct pt_regs *regs)
1580 {
1581 struct user_arg_ptr argv = {
1582 .is_compat = true,
1583 .ptr.compat = __argv,
1584 };
1585 struct user_arg_ptr envp = {
1586 .is_compat = true,
1587 .ptr.compat = __envp,
1588 };
1589 return do_execve_common(filename, argv, envp, regs);
1590 }
1591 #endif
1592
1593 void set_binfmt(struct linux_binfmt *new)
1594 {
1595 struct mm_struct *mm = current->mm;
1596
1597 if (mm->binfmt)
1598 module_put(mm->binfmt->module);
1599
1600 mm->binfmt = new;
1601 if (new)
1602 __module_get(new->module);
1603 }
1604
1605 EXPORT_SYMBOL(set_binfmt);
1606
1607 static int expand_corename(struct core_name *cn)
1608 {
1609 char *old_corename = cn->corename;
1610
1611 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1612 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1613
1614 if (!cn->corename) {
1615 kfree(old_corename);
1616 return -ENOMEM;
1617 }
1618
1619 return 0;
1620 }
1621
1622 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1623 {
1624 char *cur;
1625 int need;
1626 int ret;
1627 va_list arg;
1628
1629 va_start(arg, fmt);
1630 need = vsnprintf(NULL, 0, fmt, arg);
1631 va_end(arg);
1632
1633 if (likely(need < cn->size - cn->used - 1))
1634 goto out_printf;
1635
1636 ret = expand_corename(cn);
1637 if (ret)
1638 goto expand_fail;
1639
1640 out_printf:
1641 cur = cn->corename + cn->used;
1642 va_start(arg, fmt);
1643 vsnprintf(cur, need + 1, fmt, arg);
1644 va_end(arg);
1645 cn->used += need;
1646 return 0;
1647
1648 expand_fail:
1649 return ret;
1650 }
1651
1652 static void cn_escape(char *str)
1653 {
1654 for (; *str; str++)
1655 if (*str == '/')
1656 *str = '!';
1657 }
1658
1659 static int cn_print_exe_file(struct core_name *cn)
1660 {
1661 struct file *exe_file;
1662 char *pathbuf, *path;
1663 int ret;
1664
1665 exe_file = get_mm_exe_file(current->mm);
1666 if (!exe_file) {
1667 char *commstart = cn->corename + cn->used;
1668 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1669 cn_escape(commstart);
1670 return ret;
1671 }
1672
1673 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1674 if (!pathbuf) {
1675 ret = -ENOMEM;
1676 goto put_exe_file;
1677 }
1678
1679 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1680 if (IS_ERR(path)) {
1681 ret = PTR_ERR(path);
1682 goto free_buf;
1683 }
1684
1685 cn_escape(path);
1686
1687 ret = cn_printf(cn, "%s", path);
1688
1689 free_buf:
1690 kfree(pathbuf);
1691 put_exe_file:
1692 fput(exe_file);
1693 return ret;
1694 }
1695
1696 /* format_corename will inspect the pattern parameter, and output a
1697 * name into corename, which must have space for at least
1698 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1699 */
1700 static int format_corename(struct core_name *cn, long signr)
1701 {
1702 const struct cred *cred = current_cred();
1703 const char *pat_ptr = core_pattern;
1704 int ispipe = (*pat_ptr == '|');
1705 int pid_in_pattern = 0;
1706 int err = 0;
1707
1708 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1709 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1710 cn->used = 0;
1711
1712 if (!cn->corename)
1713 return -ENOMEM;
1714
1715 /* Repeat as long as we have more pattern to process and more output
1716 space */
1717 while (*pat_ptr) {
1718 if (*pat_ptr != '%') {
1719 if (*pat_ptr == 0)
1720 goto out;
1721 err = cn_printf(cn, "%c", *pat_ptr++);
1722 } else {
1723 switch (*++pat_ptr) {
1724 /* single % at the end, drop that */
1725 case 0:
1726 goto out;
1727 /* Double percent, output one percent */
1728 case '%':
1729 err = cn_printf(cn, "%c", '%');
1730 break;
1731 /* pid */
1732 case 'p':
1733 pid_in_pattern = 1;
1734 err = cn_printf(cn, "%d",
1735 task_tgid_vnr(current));
1736 break;
1737 /* uid */
1738 case 'u':
1739 err = cn_printf(cn, "%d", cred->uid);
1740 break;
1741 /* gid */
1742 case 'g':
1743 err = cn_printf(cn, "%d", cred->gid);
1744 break;
1745 /* signal that caused the coredump */
1746 case 's':
1747 err = cn_printf(cn, "%ld", signr);
1748 break;
1749 /* UNIX time of coredump */
1750 case 't': {
1751 struct timeval tv;
1752 do_gettimeofday(&tv);
1753 err = cn_printf(cn, "%lu", tv.tv_sec);
1754 break;
1755 }
1756 /* hostname */
1757 case 'h': {
1758 char *namestart = cn->corename + cn->used;
1759 down_read(&uts_sem);
1760 err = cn_printf(cn, "%s",
1761 utsname()->nodename);
1762 up_read(&uts_sem);
1763 cn_escape(namestart);
1764 break;
1765 }
1766 /* executable */
1767 case 'e': {
1768 char *commstart = cn->corename + cn->used;
1769 err = cn_printf(cn, "%s", current->comm);
1770 cn_escape(commstart);
1771 break;
1772 }
1773 case 'E':
1774 err = cn_print_exe_file(cn);
1775 break;
1776 /* core limit size */
1777 case 'c':
1778 err = cn_printf(cn, "%lu",
1779 rlimit(RLIMIT_CORE));
1780 break;
1781 default:
1782 break;
1783 }
1784 ++pat_ptr;
1785 }
1786
1787 if (err)
1788 return err;
1789 }
1790
1791 /* Backward compatibility with core_uses_pid:
1792 *
1793 * If core_pattern does not include a %p (as is the default)
1794 * and core_uses_pid is set, then .%pid will be appended to
1795 * the filename. Do not do this for piped commands. */
1796 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1797 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1798 if (err)
1799 return err;
1800 }
1801 out:
1802 return ispipe;
1803 }
1804
1805 static int zap_process(struct task_struct *start, int exit_code)
1806 {
1807 struct task_struct *t;
1808 int nr = 0;
1809
1810 start->signal->flags = SIGNAL_GROUP_EXIT;
1811 start->signal->group_exit_code = exit_code;
1812 start->signal->group_stop_count = 0;
1813
1814 t = start;
1815 do {
1816 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1817 if (t != current && t->mm) {
1818 sigaddset(&t->pending.signal, SIGKILL);
1819 signal_wake_up(t, 1);
1820 nr++;
1821 }
1822 } while_each_thread(start, t);
1823
1824 return nr;
1825 }
1826
1827 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1828 struct core_state *core_state, int exit_code)
1829 {
1830 struct task_struct *g, *p;
1831 unsigned long flags;
1832 int nr = -EAGAIN;
1833
1834 spin_lock_irq(&tsk->sighand->siglock);
1835 if (!signal_group_exit(tsk->signal)) {
1836 mm->core_state = core_state;
1837 nr = zap_process(tsk, exit_code);
1838 }
1839 spin_unlock_irq(&tsk->sighand->siglock);
1840 if (unlikely(nr < 0))
1841 return nr;
1842
1843 if (atomic_read(&mm->mm_users) == nr + 1)
1844 goto done;
1845 /*
1846 * We should find and kill all tasks which use this mm, and we should
1847 * count them correctly into ->nr_threads. We don't take tasklist
1848 * lock, but this is safe wrt:
1849 *
1850 * fork:
1851 * None of sub-threads can fork after zap_process(leader). All
1852 * processes which were created before this point should be
1853 * visible to zap_threads() because copy_process() adds the new
1854 * process to the tail of init_task.tasks list, and lock/unlock
1855 * of ->siglock provides a memory barrier.
1856 *
1857 * do_exit:
1858 * The caller holds mm->mmap_sem. This means that the task which
1859 * uses this mm can't pass exit_mm(), so it can't exit or clear
1860 * its ->mm.
1861 *
1862 * de_thread:
1863 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1864 * we must see either old or new leader, this does not matter.
1865 * However, it can change p->sighand, so lock_task_sighand(p)
1866 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1867 * it can't fail.
1868 *
1869 * Note also that "g" can be the old leader with ->mm == NULL
1870 * and already unhashed and thus removed from ->thread_group.
1871 * This is OK, __unhash_process()->list_del_rcu() does not
1872 * clear the ->next pointer, we will find the new leader via
1873 * next_thread().
1874 */
1875 rcu_read_lock();
1876 for_each_process(g) {
1877 if (g == tsk->group_leader)
1878 continue;
1879 if (g->flags & PF_KTHREAD)
1880 continue;
1881 p = g;
1882 do {
1883 if (p->mm) {
1884 if (unlikely(p->mm == mm)) {
1885 lock_task_sighand(p, &flags);
1886 nr += zap_process(p, exit_code);
1887 unlock_task_sighand(p, &flags);
1888 }
1889 break;
1890 }
1891 } while_each_thread(g, p);
1892 }
1893 rcu_read_unlock();
1894 done:
1895 atomic_set(&core_state->nr_threads, nr);
1896 return nr;
1897 }
1898
1899 static int coredump_wait(int exit_code, struct core_state *core_state)
1900 {
1901 struct task_struct *tsk = current;
1902 struct mm_struct *mm = tsk->mm;
1903 struct completion *vfork_done;
1904 int core_waiters = -EBUSY;
1905
1906 init_completion(&core_state->startup);
1907 core_state->dumper.task = tsk;
1908 core_state->dumper.next = NULL;
1909
1910 down_write(&mm->mmap_sem);
1911 if (!mm->core_state)
1912 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1913 up_write(&mm->mmap_sem);
1914
1915 if (unlikely(core_waiters < 0))
1916 goto fail;
1917
1918 /*
1919 * Make sure nobody is waiting for us to release the VM,
1920 * otherwise we can deadlock when we wait on each other
1921 */
1922 vfork_done = tsk->vfork_done;
1923 if (vfork_done) {
1924 tsk->vfork_done = NULL;
1925 complete(vfork_done);
1926 }
1927
1928 if (core_waiters)
1929 wait_for_completion(&core_state->startup);
1930 fail:
1931 return core_waiters;
1932 }
1933
1934 static void coredump_finish(struct mm_struct *mm)
1935 {
1936 struct core_thread *curr, *next;
1937 struct task_struct *task;
1938
1939 next = mm->core_state->dumper.next;
1940 while ((curr = next) != NULL) {
1941 next = curr->next;
1942 task = curr->task;
1943 /*
1944 * see exit_mm(), curr->task must not see
1945 * ->task == NULL before we read ->next.
1946 */
1947 smp_mb();
1948 curr->task = NULL;
1949 wake_up_process(task);
1950 }
1951
1952 mm->core_state = NULL;
1953 }
1954
1955 /*
1956 * set_dumpable converts traditional three-value dumpable to two flags and
1957 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1958 * these bits are not changed atomically. So get_dumpable can observe the
1959 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1960 * return either old dumpable or new one by paying attention to the order of
1961 * modifying the bits.
1962 *
1963 * dumpable | mm->flags (binary)
1964 * old new | initial interim final
1965 * ---------+-----------------------
1966 * 0 1 | 00 01 01
1967 * 0 2 | 00 10(*) 11
1968 * 1 0 | 01 00 00
1969 * 1 2 | 01 11 11
1970 * 2 0 | 11 10(*) 00
1971 * 2 1 | 11 11 01
1972 *
1973 * (*) get_dumpable regards interim value of 10 as 11.
1974 */
1975 void set_dumpable(struct mm_struct *mm, int value)
1976 {
1977 switch (value) {
1978 case 0:
1979 clear_bit(MMF_DUMPABLE, &mm->flags);
1980 smp_wmb();
1981 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1982 break;
1983 case 1:
1984 set_bit(MMF_DUMPABLE, &mm->flags);
1985 smp_wmb();
1986 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1987 break;
1988 case 2:
1989 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1990 smp_wmb();
1991 set_bit(MMF_DUMPABLE, &mm->flags);
1992 break;
1993 }
1994 }
1995
1996 static int __get_dumpable(unsigned long mm_flags)
1997 {
1998 int ret;
1999
2000 ret = mm_flags & MMF_DUMPABLE_MASK;
2001 return (ret >= 2) ? 2 : ret;
2002 }
2003
2004 int get_dumpable(struct mm_struct *mm)
2005 {
2006 return __get_dumpable(mm->flags);
2007 }
2008
2009 static void wait_for_dump_helpers(struct file *file)
2010 {
2011 struct pipe_inode_info *pipe;
2012
2013 pipe = file->f_path.dentry->d_inode->i_pipe;
2014
2015 pipe_lock(pipe);
2016 pipe->readers++;
2017 pipe->writers--;
2018
2019 while ((pipe->readers > 1) && (!signal_pending(current))) {
2020 wake_up_interruptible_sync(&pipe->wait);
2021 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2022 pipe_wait(pipe);
2023 }
2024
2025 pipe->readers--;
2026 pipe->writers++;
2027 pipe_unlock(pipe);
2028
2029 }
2030
2031
2032 /*
2033 * umh_pipe_setup
2034 * helper function to customize the process used
2035 * to collect the core in userspace. Specifically
2036 * it sets up a pipe and installs it as fd 0 (stdin)
2037 * for the process. Returns 0 on success, or
2038 * PTR_ERR on failure.
2039 * Note that it also sets the core limit to 1. This
2040 * is a special value that we use to trap recursive
2041 * core dumps
2042 */
2043 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2044 {
2045 struct file *rp, *wp;
2046 struct fdtable *fdt;
2047 struct coredump_params *cp = (struct coredump_params *)info->data;
2048 struct files_struct *cf = current->files;
2049
2050 wp = create_write_pipe(0);
2051 if (IS_ERR(wp))
2052 return PTR_ERR(wp);
2053
2054 rp = create_read_pipe(wp, 0);
2055 if (IS_ERR(rp)) {
2056 free_write_pipe(wp);
2057 return PTR_ERR(rp);
2058 }
2059
2060 cp->file = wp;
2061
2062 sys_close(0);
2063 fd_install(0, rp);
2064 spin_lock(&cf->file_lock);
2065 fdt = files_fdtable(cf);
2066 FD_SET(0, fdt->open_fds);
2067 FD_CLR(0, fdt->close_on_exec);
2068 spin_unlock(&cf->file_lock);
2069
2070 /* and disallow core files too */
2071 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2072
2073 return 0;
2074 }
2075
2076 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2077 {
2078 struct core_state core_state;
2079 struct core_name cn;
2080 struct mm_struct *mm = current->mm;
2081 struct linux_binfmt * binfmt;
2082 const struct cred *old_cred;
2083 struct cred *cred;
2084 int retval = 0;
2085 int flag = 0;
2086 int ispipe;
2087 static atomic_t core_dump_count = ATOMIC_INIT(0);
2088 struct coredump_params cprm = {
2089 .signr = signr,
2090 .regs = regs,
2091 .limit = rlimit(RLIMIT_CORE),
2092 /*
2093 * We must use the same mm->flags while dumping core to avoid
2094 * inconsistency of bit flags, since this flag is not protected
2095 * by any locks.
2096 */
2097 .mm_flags = mm->flags,
2098 };
2099
2100 audit_core_dumps(signr);
2101
2102 binfmt = mm->binfmt;
2103 if (!binfmt || !binfmt->core_dump)
2104 goto fail;
2105 if (!__get_dumpable(cprm.mm_flags))
2106 goto fail;
2107
2108 cred = prepare_creds();
2109 if (!cred)
2110 goto fail;
2111 /*
2112 * We cannot trust fsuid as being the "true" uid of the
2113 * process nor do we know its entire history. We only know it
2114 * was tainted so we dump it as root in mode 2.
2115 */
2116 if (__get_dumpable(cprm.mm_flags) == 2) {
2117 /* Setuid core dump mode */
2118 flag = O_EXCL; /* Stop rewrite attacks */
2119 cred->fsuid = 0; /* Dump root private */
2120 }
2121
2122 retval = coredump_wait(exit_code, &core_state);
2123 if (retval < 0)
2124 goto fail_creds;
2125
2126 old_cred = override_creds(cred);
2127
2128 /*
2129 * Clear any false indication of pending signals that might
2130 * be seen by the filesystem code called to write the core file.
2131 */
2132 clear_thread_flag(TIF_SIGPENDING);
2133
2134 ispipe = format_corename(&cn, signr);
2135
2136 if (ispipe) {
2137 int dump_count;
2138 char **helper_argv;
2139
2140 if (ispipe < 0) {
2141 printk(KERN_WARNING "format_corename failed\n");
2142 printk(KERN_WARNING "Aborting core\n");
2143 goto fail_corename;
2144 }
2145
2146 if (cprm.limit == 1) {
2147 /*
2148 * Normally core limits are irrelevant to pipes, since
2149 * we're not writing to the file system, but we use
2150 * cprm.limit of 1 here as a speacial value. Any
2151 * non-1 limit gets set to RLIM_INFINITY below, but
2152 * a limit of 0 skips the dump. This is a consistent
2153 * way to catch recursive crashes. We can still crash
2154 * if the core_pattern binary sets RLIM_CORE = !1
2155 * but it runs as root, and can do lots of stupid things
2156 * Note that we use task_tgid_vnr here to grab the pid
2157 * of the process group leader. That way we get the
2158 * right pid if a thread in a multi-threaded
2159 * core_pattern process dies.
2160 */
2161 printk(KERN_WARNING
2162 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2163 task_tgid_vnr(current), current->comm);
2164 printk(KERN_WARNING "Aborting core\n");
2165 goto fail_unlock;
2166 }
2167 cprm.limit = RLIM_INFINITY;
2168
2169 dump_count = atomic_inc_return(&core_dump_count);
2170 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2171 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2172 task_tgid_vnr(current), current->comm);
2173 printk(KERN_WARNING "Skipping core dump\n");
2174 goto fail_dropcount;
2175 }
2176
2177 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2178 if (!helper_argv) {
2179 printk(KERN_WARNING "%s failed to allocate memory\n",
2180 __func__);
2181 goto fail_dropcount;
2182 }
2183
2184 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2185 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2186 NULL, &cprm);
2187 argv_free(helper_argv);
2188 if (retval) {
2189 printk(KERN_INFO "Core dump to %s pipe failed\n",
2190 cn.corename);
2191 goto close_fail;
2192 }
2193 } else {
2194 struct inode *inode;
2195
2196 if (cprm.limit < binfmt->min_coredump)
2197 goto fail_unlock;
2198
2199 cprm.file = filp_open(cn.corename,
2200 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2201 0600);
2202 if (IS_ERR(cprm.file))
2203 goto fail_unlock;
2204
2205 inode = cprm.file->f_path.dentry->d_inode;
2206 if (inode->i_nlink > 1)
2207 goto close_fail;
2208 if (d_unhashed(cprm.file->f_path.dentry))
2209 goto close_fail;
2210 /*
2211 * AK: actually i see no reason to not allow this for named
2212 * pipes etc, but keep the previous behaviour for now.
2213 */
2214 if (!S_ISREG(inode->i_mode))
2215 goto close_fail;
2216 /*
2217 * Dont allow local users get cute and trick others to coredump
2218 * into their pre-created files.
2219 */
2220 if (inode->i_uid != current_fsuid())
2221 goto close_fail;
2222 if (!cprm.file->f_op || !cprm.file->f_op->write)
2223 goto close_fail;
2224 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2225 goto close_fail;
2226 }
2227
2228 retval = binfmt->core_dump(&cprm);
2229 if (retval)
2230 current->signal->group_exit_code |= 0x80;
2231
2232 if (ispipe && core_pipe_limit)
2233 wait_for_dump_helpers(cprm.file);
2234 close_fail:
2235 if (cprm.file)
2236 filp_close(cprm.file, NULL);
2237 fail_dropcount:
2238 if (ispipe)
2239 atomic_dec(&core_dump_count);
2240 fail_unlock:
2241 kfree(cn.corename);
2242 fail_corename:
2243 coredump_finish(mm);
2244 revert_creds(old_cred);
2245 fail_creds:
2246 put_cred(cred);
2247 fail:
2248 return;
2249 }
2250
2251 /*
2252 * Core dumping helper functions. These are the only things you should
2253 * do on a core-file: use only these functions to write out all the
2254 * necessary info.
2255 */
2256 int dump_write(struct file *file, const void *addr, int nr)
2257 {
2258 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2259 }
2260 EXPORT_SYMBOL(dump_write);
2261
2262 int dump_seek(struct file *file, loff_t off)
2263 {
2264 int ret = 1;
2265
2266 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2267 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2268 return 0;
2269 } else {
2270 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2271
2272 if (!buf)
2273 return 0;
2274 while (off > 0) {
2275 unsigned long n = off;
2276
2277 if (n > PAGE_SIZE)
2278 n = PAGE_SIZE;
2279 if (!dump_write(file, buf, n)) {
2280 ret = 0;
2281 break;
2282 }
2283 off -= n;
2284 }
2285 free_page((unsigned long)buf);
2286 }
2287 return ret;
2288 }
2289 EXPORT_SYMBOL(dump_seek);
This page took 0.078954 seconds and 5 git commands to generate.