Merge tag 'clk-for-linus-3.15' of git://git.linaro.org/people/mike.turquette/linux
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65
66 #include <trace/events/sched.h>
67
68 int suid_dumpable = 0;
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 BUG_ON(!fmt);
76 if (WARN_ON(!fmt->load_binary))
77 return;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 module_put(fmt->module);
98 }
99
100 #ifdef CONFIG_USELIB
101 /*
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
104 *
105 * Also note that we take the address to load from from the file itself.
106 */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 struct linux_binfmt *fmt;
110 struct file *file;
111 struct filename *tmp = getname(library);
112 int error = PTR_ERR(tmp);
113 static const struct open_flags uselib_flags = {
114 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
115 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
116 .intent = LOOKUP_OPEN,
117 .lookup_flags = LOOKUP_FOLLOW,
118 };
119
120 if (IS_ERR(tmp))
121 goto out;
122
123 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
124 putname(tmp);
125 error = PTR_ERR(file);
126 if (IS_ERR(file))
127 goto out;
128
129 error = -EINVAL;
130 if (!S_ISREG(file_inode(file)->i_mode))
131 goto exit;
132
133 error = -EACCES;
134 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
135 goto exit;
136
137 fsnotify_open(file);
138
139 error = -ENOEXEC;
140
141 read_lock(&binfmt_lock);
142 list_for_each_entry(fmt, &formats, lh) {
143 if (!fmt->load_shlib)
144 continue;
145 if (!try_module_get(fmt->module))
146 continue;
147 read_unlock(&binfmt_lock);
148 error = fmt->load_shlib(file);
149 read_lock(&binfmt_lock);
150 put_binfmt(fmt);
151 if (error != -ENOEXEC)
152 break;
153 }
154 read_unlock(&binfmt_lock);
155 exit:
156 fput(file);
157 out:
158 return error;
159 }
160 #endif /* #ifdef CONFIG_USELIB */
161
162 #ifdef CONFIG_MMU
163 /*
164 * The nascent bprm->mm is not visible until exec_mmap() but it can
165 * use a lot of memory, account these pages in current->mm temporary
166 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
167 * change the counter back via acct_arg_size(0).
168 */
169 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 {
171 struct mm_struct *mm = current->mm;
172 long diff = (long)(pages - bprm->vma_pages);
173
174 if (!mm || !diff)
175 return;
176
177 bprm->vma_pages = pages;
178 add_mm_counter(mm, MM_ANONPAGES, diff);
179 }
180
181 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
182 int write)
183 {
184 struct page *page;
185 int ret;
186
187 #ifdef CONFIG_STACK_GROWSUP
188 if (write) {
189 ret = expand_downwards(bprm->vma, pos);
190 if (ret < 0)
191 return NULL;
192 }
193 #endif
194 ret = get_user_pages(current, bprm->mm, pos,
195 1, write, 1, &page, NULL);
196 if (ret <= 0)
197 return NULL;
198
199 if (write) {
200 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
201 struct rlimit *rlim;
202
203 acct_arg_size(bprm, size / PAGE_SIZE);
204
205 /*
206 * We've historically supported up to 32 pages (ARG_MAX)
207 * of argument strings even with small stacks
208 */
209 if (size <= ARG_MAX)
210 return page;
211
212 /*
213 * Limit to 1/4-th the stack size for the argv+env strings.
214 * This ensures that:
215 * - the remaining binfmt code will not run out of stack space,
216 * - the program will have a reasonable amount of stack left
217 * to work from.
218 */
219 rlim = current->signal->rlim;
220 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
221 put_page(page);
222 return NULL;
223 }
224 }
225
226 return page;
227 }
228
229 static void put_arg_page(struct page *page)
230 {
231 put_page(page);
232 }
233
234 static void free_arg_page(struct linux_binprm *bprm, int i)
235 {
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 struct page *page)
244 {
245 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 int err;
251 struct vm_area_struct *vma = NULL;
252 struct mm_struct *mm = bprm->mm;
253
254 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
255 if (!vma)
256 return -ENOMEM;
257
258 down_write(&mm->mmap_sem);
259 vma->vm_mm = mm;
260
261 /*
262 * Place the stack at the largest stack address the architecture
263 * supports. Later, we'll move this to an appropriate place. We don't
264 * use STACK_TOP because that can depend on attributes which aren't
265 * configured yet.
266 */
267 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
268 vma->vm_end = STACK_TOP_MAX;
269 vma->vm_start = vma->vm_end - PAGE_SIZE;
270 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
271 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
272 INIT_LIST_HEAD(&vma->anon_vma_chain);
273
274 err = insert_vm_struct(mm, vma);
275 if (err)
276 goto err;
277
278 mm->stack_vm = mm->total_vm = 1;
279 up_write(&mm->mmap_sem);
280 bprm->p = vma->vm_end - sizeof(void *);
281 return 0;
282 err:
283 up_write(&mm->mmap_sem);
284 bprm->vma = NULL;
285 kmem_cache_free(vm_area_cachep, vma);
286 return err;
287 }
288
289 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 {
291 return len <= MAX_ARG_STRLEN;
292 }
293
294 #else
295
296 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
297 {
298 }
299
300 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
301 int write)
302 {
303 struct page *page;
304
305 page = bprm->page[pos / PAGE_SIZE];
306 if (!page && write) {
307 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
308 if (!page)
309 return NULL;
310 bprm->page[pos / PAGE_SIZE] = page;
311 }
312
313 return page;
314 }
315
316 static void put_arg_page(struct page *page)
317 {
318 }
319
320 static void free_arg_page(struct linux_binprm *bprm, int i)
321 {
322 if (bprm->page[i]) {
323 __free_page(bprm->page[i]);
324 bprm->page[i] = NULL;
325 }
326 }
327
328 static void free_arg_pages(struct linux_binprm *bprm)
329 {
330 int i;
331
332 for (i = 0; i < MAX_ARG_PAGES; i++)
333 free_arg_page(bprm, i);
334 }
335
336 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
337 struct page *page)
338 {
339 }
340
341 static int __bprm_mm_init(struct linux_binprm *bprm)
342 {
343 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
344 return 0;
345 }
346
347 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 {
349 return len <= bprm->p;
350 }
351
352 #endif /* CONFIG_MMU */
353
354 /*
355 * Create a new mm_struct and populate it with a temporary stack
356 * vm_area_struct. We don't have enough context at this point to set the stack
357 * flags, permissions, and offset, so we use temporary values. We'll update
358 * them later in setup_arg_pages().
359 */
360 static int bprm_mm_init(struct linux_binprm *bprm)
361 {
362 int err;
363 struct mm_struct *mm = NULL;
364
365 bprm->mm = mm = mm_alloc();
366 err = -ENOMEM;
367 if (!mm)
368 goto err;
369
370 err = init_new_context(current, mm);
371 if (err)
372 goto err;
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380 err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387 }
388
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 bool is_compat;
392 #endif
393 union {
394 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397 #endif
398 } ptr;
399 };
400
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 const char __user *native;
404
405 #ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414 #endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420 }
421
422 /*
423 * count() counts the number of strings in array ARGV.
424 */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449 }
450
451 /*
452 * 'copy_strings()' copies argument/environment strings from the old
453 * processes's memory to the new process's stack. The call to get_user_pages()
454 * ensures the destination page is created and not swapped out.
455 */
456 static int copy_strings(int argc, struct user_arg_ptr argv,
457 struct linux_binprm *bprm)
458 {
459 struct page *kmapped_page = NULL;
460 char *kaddr = NULL;
461 unsigned long kpos = 0;
462 int ret;
463
464 while (argc-- > 0) {
465 const char __user *str;
466 int len;
467 unsigned long pos;
468
469 ret = -EFAULT;
470 str = get_user_arg_ptr(argv, argc);
471 if (IS_ERR(str))
472 goto out;
473
474 len = strnlen_user(str, MAX_ARG_STRLEN);
475 if (!len)
476 goto out;
477
478 ret = -E2BIG;
479 if (!valid_arg_len(bprm, len))
480 goto out;
481
482 /* We're going to work our way backwords. */
483 pos = bprm->p;
484 str += len;
485 bprm->p -= len;
486
487 while (len > 0) {
488 int offset, bytes_to_copy;
489
490 if (fatal_signal_pending(current)) {
491 ret = -ERESTARTNOHAND;
492 goto out;
493 }
494 cond_resched();
495
496 offset = pos % PAGE_SIZE;
497 if (offset == 0)
498 offset = PAGE_SIZE;
499
500 bytes_to_copy = offset;
501 if (bytes_to_copy > len)
502 bytes_to_copy = len;
503
504 offset -= bytes_to_copy;
505 pos -= bytes_to_copy;
506 str -= bytes_to_copy;
507 len -= bytes_to_copy;
508
509 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
510 struct page *page;
511
512 page = get_arg_page(bprm, pos, 1);
513 if (!page) {
514 ret = -E2BIG;
515 goto out;
516 }
517
518 if (kmapped_page) {
519 flush_kernel_dcache_page(kmapped_page);
520 kunmap(kmapped_page);
521 put_arg_page(kmapped_page);
522 }
523 kmapped_page = page;
524 kaddr = kmap(kmapped_page);
525 kpos = pos & PAGE_MASK;
526 flush_arg_page(bprm, kpos, kmapped_page);
527 }
528 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
529 ret = -EFAULT;
530 goto out;
531 }
532 }
533 }
534 ret = 0;
535 out:
536 if (kmapped_page) {
537 flush_kernel_dcache_page(kmapped_page);
538 kunmap(kmapped_page);
539 put_arg_page(kmapped_page);
540 }
541 return ret;
542 }
543
544 /*
545 * Like copy_strings, but get argv and its values from kernel memory.
546 */
547 int copy_strings_kernel(int argc, const char *const *__argv,
548 struct linux_binprm *bprm)
549 {
550 int r;
551 mm_segment_t oldfs = get_fs();
552 struct user_arg_ptr argv = {
553 .ptr.native = (const char __user *const __user *)__argv,
554 };
555
556 set_fs(KERNEL_DS);
557 r = copy_strings(argc, argv, bprm);
558 set_fs(oldfs);
559
560 return r;
561 }
562 EXPORT_SYMBOL(copy_strings_kernel);
563
564 #ifdef CONFIG_MMU
565
566 /*
567 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
568 * the binfmt code determines where the new stack should reside, we shift it to
569 * its final location. The process proceeds as follows:
570 *
571 * 1) Use shift to calculate the new vma endpoints.
572 * 2) Extend vma to cover both the old and new ranges. This ensures the
573 * arguments passed to subsequent functions are consistent.
574 * 3) Move vma's page tables to the new range.
575 * 4) Free up any cleared pgd range.
576 * 5) Shrink the vma to cover only the new range.
577 */
578 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
579 {
580 struct mm_struct *mm = vma->vm_mm;
581 unsigned long old_start = vma->vm_start;
582 unsigned long old_end = vma->vm_end;
583 unsigned long length = old_end - old_start;
584 unsigned long new_start = old_start - shift;
585 unsigned long new_end = old_end - shift;
586 struct mmu_gather tlb;
587
588 BUG_ON(new_start > new_end);
589
590 /*
591 * ensure there are no vmas between where we want to go
592 * and where we are
593 */
594 if (vma != find_vma(mm, new_start))
595 return -EFAULT;
596
597 /*
598 * cover the whole range: [new_start, old_end)
599 */
600 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
601 return -ENOMEM;
602
603 /*
604 * move the page tables downwards, on failure we rely on
605 * process cleanup to remove whatever mess we made.
606 */
607 if (length != move_page_tables(vma, old_start,
608 vma, new_start, length, false))
609 return -ENOMEM;
610
611 lru_add_drain();
612 tlb_gather_mmu(&tlb, mm, old_start, old_end);
613 if (new_end > old_start) {
614 /*
615 * when the old and new regions overlap clear from new_end.
616 */
617 free_pgd_range(&tlb, new_end, old_end, new_end,
618 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
619 } else {
620 /*
621 * otherwise, clean from old_start; this is done to not touch
622 * the address space in [new_end, old_start) some architectures
623 * have constraints on va-space that make this illegal (IA64) -
624 * for the others its just a little faster.
625 */
626 free_pgd_range(&tlb, old_start, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 }
629 tlb_finish_mmu(&tlb, old_start, old_end);
630
631 /*
632 * Shrink the vma to just the new range. Always succeeds.
633 */
634 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
635
636 return 0;
637 }
638
639 /*
640 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
641 * the stack is optionally relocated, and some extra space is added.
642 */
643 int setup_arg_pages(struct linux_binprm *bprm,
644 unsigned long stack_top,
645 int executable_stack)
646 {
647 unsigned long ret;
648 unsigned long stack_shift;
649 struct mm_struct *mm = current->mm;
650 struct vm_area_struct *vma = bprm->vma;
651 struct vm_area_struct *prev = NULL;
652 unsigned long vm_flags;
653 unsigned long stack_base;
654 unsigned long stack_size;
655 unsigned long stack_expand;
656 unsigned long rlim_stack;
657
658 #ifdef CONFIG_STACK_GROWSUP
659 /* Limit stack size to 1GB */
660 stack_base = rlimit_max(RLIMIT_STACK);
661 if (stack_base > (1 << 30))
662 stack_base = 1 << 30;
663
664 /* Make sure we didn't let the argument array grow too large. */
665 if (vma->vm_end - vma->vm_start > stack_base)
666 return -ENOMEM;
667
668 stack_base = PAGE_ALIGN(stack_top - stack_base);
669
670 stack_shift = vma->vm_start - stack_base;
671 mm->arg_start = bprm->p - stack_shift;
672 bprm->p = vma->vm_end - stack_shift;
673 #else
674 stack_top = arch_align_stack(stack_top);
675 stack_top = PAGE_ALIGN(stack_top);
676
677 if (unlikely(stack_top < mmap_min_addr) ||
678 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
679 return -ENOMEM;
680
681 stack_shift = vma->vm_end - stack_top;
682
683 bprm->p -= stack_shift;
684 mm->arg_start = bprm->p;
685 #endif
686
687 if (bprm->loader)
688 bprm->loader -= stack_shift;
689 bprm->exec -= stack_shift;
690
691 down_write(&mm->mmap_sem);
692 vm_flags = VM_STACK_FLAGS;
693
694 /*
695 * Adjust stack execute permissions; explicitly enable for
696 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
697 * (arch default) otherwise.
698 */
699 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
700 vm_flags |= VM_EXEC;
701 else if (executable_stack == EXSTACK_DISABLE_X)
702 vm_flags &= ~VM_EXEC;
703 vm_flags |= mm->def_flags;
704 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
705
706 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
707 vm_flags);
708 if (ret)
709 goto out_unlock;
710 BUG_ON(prev != vma);
711
712 /* Move stack pages down in memory. */
713 if (stack_shift) {
714 ret = shift_arg_pages(vma, stack_shift);
715 if (ret)
716 goto out_unlock;
717 }
718
719 /* mprotect_fixup is overkill to remove the temporary stack flags */
720 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
721
722 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
723 stack_size = vma->vm_end - vma->vm_start;
724 /*
725 * Align this down to a page boundary as expand_stack
726 * will align it up.
727 */
728 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
729 #ifdef CONFIG_STACK_GROWSUP
730 if (stack_size + stack_expand > rlim_stack)
731 stack_base = vma->vm_start + rlim_stack;
732 else
733 stack_base = vma->vm_end + stack_expand;
734 #else
735 if (stack_size + stack_expand > rlim_stack)
736 stack_base = vma->vm_end - rlim_stack;
737 else
738 stack_base = vma->vm_start - stack_expand;
739 #endif
740 current->mm->start_stack = bprm->p;
741 ret = expand_stack(vma, stack_base);
742 if (ret)
743 ret = -EFAULT;
744
745 out_unlock:
746 up_write(&mm->mmap_sem);
747 return ret;
748 }
749 EXPORT_SYMBOL(setup_arg_pages);
750
751 #endif /* CONFIG_MMU */
752
753 static struct file *do_open_exec(struct filename *name)
754 {
755 struct file *file;
756 int err;
757 static const struct open_flags open_exec_flags = {
758 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
759 .acc_mode = MAY_EXEC | MAY_OPEN,
760 .intent = LOOKUP_OPEN,
761 .lookup_flags = LOOKUP_FOLLOW,
762 };
763
764 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
765 if (IS_ERR(file))
766 goto out;
767
768 err = -EACCES;
769 if (!S_ISREG(file_inode(file)->i_mode))
770 goto exit;
771
772 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
773 goto exit;
774
775 fsnotify_open(file);
776
777 err = deny_write_access(file);
778 if (err)
779 goto exit;
780
781 out:
782 return file;
783
784 exit:
785 fput(file);
786 return ERR_PTR(err);
787 }
788
789 struct file *open_exec(const char *name)
790 {
791 struct filename tmp = { .name = name };
792 return do_open_exec(&tmp);
793 }
794 EXPORT_SYMBOL(open_exec);
795
796 int kernel_read(struct file *file, loff_t offset,
797 char *addr, unsigned long count)
798 {
799 mm_segment_t old_fs;
800 loff_t pos = offset;
801 int result;
802
803 old_fs = get_fs();
804 set_fs(get_ds());
805 /* The cast to a user pointer is valid due to the set_fs() */
806 result = vfs_read(file, (void __user *)addr, count, &pos);
807 set_fs(old_fs);
808 return result;
809 }
810
811 EXPORT_SYMBOL(kernel_read);
812
813 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
814 {
815 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
816 if (res > 0)
817 flush_icache_range(addr, addr + len);
818 return res;
819 }
820 EXPORT_SYMBOL(read_code);
821
822 static int exec_mmap(struct mm_struct *mm)
823 {
824 struct task_struct *tsk;
825 struct mm_struct * old_mm, *active_mm;
826
827 /* Notify parent that we're no longer interested in the old VM */
828 tsk = current;
829 old_mm = current->mm;
830 mm_release(tsk, old_mm);
831
832 if (old_mm) {
833 sync_mm_rss(old_mm);
834 /*
835 * Make sure that if there is a core dump in progress
836 * for the old mm, we get out and die instead of going
837 * through with the exec. We must hold mmap_sem around
838 * checking core_state and changing tsk->mm.
839 */
840 down_read(&old_mm->mmap_sem);
841 if (unlikely(old_mm->core_state)) {
842 up_read(&old_mm->mmap_sem);
843 return -EINTR;
844 }
845 }
846 task_lock(tsk);
847 active_mm = tsk->active_mm;
848 tsk->mm = mm;
849 tsk->active_mm = mm;
850 activate_mm(active_mm, mm);
851 task_unlock(tsk);
852 if (old_mm) {
853 up_read(&old_mm->mmap_sem);
854 BUG_ON(active_mm != old_mm);
855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
856 mm_update_next_owner(old_mm);
857 mmput(old_mm);
858 return 0;
859 }
860 mmdrop(active_mm);
861 return 0;
862 }
863
864 /*
865 * This function makes sure the current process has its own signal table,
866 * so that flush_signal_handlers can later reset the handlers without
867 * disturbing other processes. (Other processes might share the signal
868 * table via the CLONE_SIGHAND option to clone().)
869 */
870 static int de_thread(struct task_struct *tsk)
871 {
872 struct signal_struct *sig = tsk->signal;
873 struct sighand_struct *oldsighand = tsk->sighand;
874 spinlock_t *lock = &oldsighand->siglock;
875
876 if (thread_group_empty(tsk))
877 goto no_thread_group;
878
879 /*
880 * Kill all other threads in the thread group.
881 */
882 spin_lock_irq(lock);
883 if (signal_group_exit(sig)) {
884 /*
885 * Another group action in progress, just
886 * return so that the signal is processed.
887 */
888 spin_unlock_irq(lock);
889 return -EAGAIN;
890 }
891
892 sig->group_exit_task = tsk;
893 sig->notify_count = zap_other_threads(tsk);
894 if (!thread_group_leader(tsk))
895 sig->notify_count--;
896
897 while (sig->notify_count) {
898 __set_current_state(TASK_KILLABLE);
899 spin_unlock_irq(lock);
900 schedule();
901 if (unlikely(__fatal_signal_pending(tsk)))
902 goto killed;
903 spin_lock_irq(lock);
904 }
905 spin_unlock_irq(lock);
906
907 /*
908 * At this point all other threads have exited, all we have to
909 * do is to wait for the thread group leader to become inactive,
910 * and to assume its PID:
911 */
912 if (!thread_group_leader(tsk)) {
913 struct task_struct *leader = tsk->group_leader;
914
915 sig->notify_count = -1; /* for exit_notify() */
916 for (;;) {
917 threadgroup_change_begin(tsk);
918 write_lock_irq(&tasklist_lock);
919 if (likely(leader->exit_state))
920 break;
921 __set_current_state(TASK_KILLABLE);
922 write_unlock_irq(&tasklist_lock);
923 threadgroup_change_end(tsk);
924 schedule();
925 if (unlikely(__fatal_signal_pending(tsk)))
926 goto killed;
927 }
928
929 /*
930 * The only record we have of the real-time age of a
931 * process, regardless of execs it's done, is start_time.
932 * All the past CPU time is accumulated in signal_struct
933 * from sister threads now dead. But in this non-leader
934 * exec, nothing survives from the original leader thread,
935 * whose birth marks the true age of this process now.
936 * When we take on its identity by switching to its PID, we
937 * also take its birthdate (always earlier than our own).
938 */
939 tsk->start_time = leader->start_time;
940 tsk->real_start_time = leader->real_start_time;
941
942 BUG_ON(!same_thread_group(leader, tsk));
943 BUG_ON(has_group_leader_pid(tsk));
944 /*
945 * An exec() starts a new thread group with the
946 * TGID of the previous thread group. Rehash the
947 * two threads with a switched PID, and release
948 * the former thread group leader:
949 */
950
951 /* Become a process group leader with the old leader's pid.
952 * The old leader becomes a thread of the this thread group.
953 * Note: The old leader also uses this pid until release_task
954 * is called. Odd but simple and correct.
955 */
956 tsk->pid = leader->pid;
957 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
958 transfer_pid(leader, tsk, PIDTYPE_PGID);
959 transfer_pid(leader, tsk, PIDTYPE_SID);
960
961 list_replace_rcu(&leader->tasks, &tsk->tasks);
962 list_replace_init(&leader->sibling, &tsk->sibling);
963
964 tsk->group_leader = tsk;
965 leader->group_leader = tsk;
966
967 tsk->exit_signal = SIGCHLD;
968 leader->exit_signal = -1;
969
970 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
971 leader->exit_state = EXIT_DEAD;
972
973 /*
974 * We are going to release_task()->ptrace_unlink() silently,
975 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
976 * the tracer wont't block again waiting for this thread.
977 */
978 if (unlikely(leader->ptrace))
979 __wake_up_parent(leader, leader->parent);
980 write_unlock_irq(&tasklist_lock);
981 threadgroup_change_end(tsk);
982
983 release_task(leader);
984 }
985
986 sig->group_exit_task = NULL;
987 sig->notify_count = 0;
988
989 no_thread_group:
990 /* we have changed execution domain */
991 tsk->exit_signal = SIGCHLD;
992
993 exit_itimers(sig);
994 flush_itimer_signals();
995
996 if (atomic_read(&oldsighand->count) != 1) {
997 struct sighand_struct *newsighand;
998 /*
999 * This ->sighand is shared with the CLONE_SIGHAND
1000 * but not CLONE_THREAD task, switch to the new one.
1001 */
1002 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 if (!newsighand)
1004 return -ENOMEM;
1005
1006 atomic_set(&newsighand->count, 1);
1007 memcpy(newsighand->action, oldsighand->action,
1008 sizeof(newsighand->action));
1009
1010 write_lock_irq(&tasklist_lock);
1011 spin_lock(&oldsighand->siglock);
1012 rcu_assign_pointer(tsk->sighand, newsighand);
1013 spin_unlock(&oldsighand->siglock);
1014 write_unlock_irq(&tasklist_lock);
1015
1016 __cleanup_sighand(oldsighand);
1017 }
1018
1019 BUG_ON(!thread_group_leader(tsk));
1020 return 0;
1021
1022 killed:
1023 /* protects against exit_notify() and __exit_signal() */
1024 read_lock(&tasklist_lock);
1025 sig->group_exit_task = NULL;
1026 sig->notify_count = 0;
1027 read_unlock(&tasklist_lock);
1028 return -EAGAIN;
1029 }
1030
1031 char *get_task_comm(char *buf, struct task_struct *tsk)
1032 {
1033 /* buf must be at least sizeof(tsk->comm) in size */
1034 task_lock(tsk);
1035 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1036 task_unlock(tsk);
1037 return buf;
1038 }
1039 EXPORT_SYMBOL_GPL(get_task_comm);
1040
1041 /*
1042 * These functions flushes out all traces of the currently running executable
1043 * so that a new one can be started
1044 */
1045
1046 void set_task_comm(struct task_struct *tsk, char *buf)
1047 {
1048 task_lock(tsk);
1049 trace_task_rename(tsk, buf);
1050 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1051 task_unlock(tsk);
1052 perf_event_comm(tsk);
1053 }
1054
1055 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1056 {
1057 int i, ch;
1058
1059 /* Copies the binary name from after last slash */
1060 for (i = 0; (ch = *(fn++)) != '\0';) {
1061 if (ch == '/')
1062 i = 0; /* overwrite what we wrote */
1063 else
1064 if (i < len - 1)
1065 tcomm[i++] = ch;
1066 }
1067 tcomm[i] = '\0';
1068 }
1069
1070 int flush_old_exec(struct linux_binprm * bprm)
1071 {
1072 int retval;
1073
1074 /*
1075 * Make sure we have a private signal table and that
1076 * we are unassociated from the previous thread group.
1077 */
1078 retval = de_thread(current);
1079 if (retval)
1080 goto out;
1081
1082 set_mm_exe_file(bprm->mm, bprm->file);
1083
1084 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1085 /*
1086 * Release all of the old mmap stuff
1087 */
1088 acct_arg_size(bprm, 0);
1089 retval = exec_mmap(bprm->mm);
1090 if (retval)
1091 goto out;
1092
1093 bprm->mm = NULL; /* We're using it now */
1094
1095 set_fs(USER_DS);
1096 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1097 PF_NOFREEZE | PF_NO_SETAFFINITY);
1098 flush_thread();
1099 current->personality &= ~bprm->per_clear;
1100
1101 return 0;
1102
1103 out:
1104 return retval;
1105 }
1106 EXPORT_SYMBOL(flush_old_exec);
1107
1108 void would_dump(struct linux_binprm *bprm, struct file *file)
1109 {
1110 if (inode_permission(file_inode(file), MAY_READ) < 0)
1111 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1112 }
1113 EXPORT_SYMBOL(would_dump);
1114
1115 void setup_new_exec(struct linux_binprm * bprm)
1116 {
1117 arch_pick_mmap_layout(current->mm);
1118
1119 /* This is the point of no return */
1120 current->sas_ss_sp = current->sas_ss_size = 0;
1121
1122 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1123 set_dumpable(current->mm, SUID_DUMP_USER);
1124 else
1125 set_dumpable(current->mm, suid_dumpable);
1126
1127 set_task_comm(current, bprm->tcomm);
1128
1129 /* Set the new mm task size. We have to do that late because it may
1130 * depend on TIF_32BIT which is only updated in flush_thread() on
1131 * some architectures like powerpc
1132 */
1133 current->mm->task_size = TASK_SIZE;
1134
1135 /* install the new credentials */
1136 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1137 !gid_eq(bprm->cred->gid, current_egid())) {
1138 current->pdeath_signal = 0;
1139 } else {
1140 would_dump(bprm, bprm->file);
1141 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1142 set_dumpable(current->mm, suid_dumpable);
1143 }
1144
1145 /* An exec changes our domain. We are no longer part of the thread
1146 group */
1147 current->self_exec_id++;
1148 flush_signal_handlers(current, 0);
1149 do_close_on_exec(current->files);
1150 }
1151 EXPORT_SYMBOL(setup_new_exec);
1152
1153 /*
1154 * Prepare credentials and lock ->cred_guard_mutex.
1155 * install_exec_creds() commits the new creds and drops the lock.
1156 * Or, if exec fails before, free_bprm() should release ->cred and
1157 * and unlock.
1158 */
1159 int prepare_bprm_creds(struct linux_binprm *bprm)
1160 {
1161 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1162 return -ERESTARTNOINTR;
1163
1164 bprm->cred = prepare_exec_creds();
1165 if (likely(bprm->cred))
1166 return 0;
1167
1168 mutex_unlock(&current->signal->cred_guard_mutex);
1169 return -ENOMEM;
1170 }
1171
1172 static void free_bprm(struct linux_binprm *bprm)
1173 {
1174 free_arg_pages(bprm);
1175 if (bprm->cred) {
1176 mutex_unlock(&current->signal->cred_guard_mutex);
1177 abort_creds(bprm->cred);
1178 }
1179 if (bprm->file) {
1180 allow_write_access(bprm->file);
1181 fput(bprm->file);
1182 }
1183 /* If a binfmt changed the interp, free it. */
1184 if (bprm->interp != bprm->filename)
1185 kfree(bprm->interp);
1186 kfree(bprm);
1187 }
1188
1189 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1190 {
1191 /* If a binfmt changed the interp, free it first. */
1192 if (bprm->interp != bprm->filename)
1193 kfree(bprm->interp);
1194 bprm->interp = kstrdup(interp, GFP_KERNEL);
1195 if (!bprm->interp)
1196 return -ENOMEM;
1197 return 0;
1198 }
1199 EXPORT_SYMBOL(bprm_change_interp);
1200
1201 /*
1202 * install the new credentials for this executable
1203 */
1204 void install_exec_creds(struct linux_binprm *bprm)
1205 {
1206 security_bprm_committing_creds(bprm);
1207
1208 commit_creds(bprm->cred);
1209 bprm->cred = NULL;
1210
1211 /*
1212 * Disable monitoring for regular users
1213 * when executing setuid binaries. Must
1214 * wait until new credentials are committed
1215 * by commit_creds() above
1216 */
1217 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1218 perf_event_exit_task(current);
1219 /*
1220 * cred_guard_mutex must be held at least to this point to prevent
1221 * ptrace_attach() from altering our determination of the task's
1222 * credentials; any time after this it may be unlocked.
1223 */
1224 security_bprm_committed_creds(bprm);
1225 mutex_unlock(&current->signal->cred_guard_mutex);
1226 }
1227 EXPORT_SYMBOL(install_exec_creds);
1228
1229 /*
1230 * determine how safe it is to execute the proposed program
1231 * - the caller must hold ->cred_guard_mutex to protect against
1232 * PTRACE_ATTACH
1233 */
1234 static void check_unsafe_exec(struct linux_binprm *bprm)
1235 {
1236 struct task_struct *p = current, *t;
1237 unsigned n_fs;
1238
1239 if (p->ptrace) {
1240 if (p->ptrace & PT_PTRACE_CAP)
1241 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1242 else
1243 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1244 }
1245
1246 /*
1247 * This isn't strictly necessary, but it makes it harder for LSMs to
1248 * mess up.
1249 */
1250 if (current->no_new_privs)
1251 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1252
1253 t = p;
1254 n_fs = 1;
1255 spin_lock(&p->fs->lock);
1256 rcu_read_lock();
1257 while_each_thread(p, t) {
1258 if (t->fs == p->fs)
1259 n_fs++;
1260 }
1261 rcu_read_unlock();
1262
1263 if (p->fs->users > n_fs)
1264 bprm->unsafe |= LSM_UNSAFE_SHARE;
1265 else
1266 p->fs->in_exec = 1;
1267 spin_unlock(&p->fs->lock);
1268 }
1269
1270 /*
1271 * Fill the binprm structure from the inode.
1272 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1273 *
1274 * This may be called multiple times for binary chains (scripts for example).
1275 */
1276 int prepare_binprm(struct linux_binprm *bprm)
1277 {
1278 struct inode *inode = file_inode(bprm->file);
1279 umode_t mode = inode->i_mode;
1280 int retval;
1281
1282
1283 /* clear any previous set[ug]id data from a previous binary */
1284 bprm->cred->euid = current_euid();
1285 bprm->cred->egid = current_egid();
1286
1287 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1288 !current->no_new_privs &&
1289 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1290 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1291 /* Set-uid? */
1292 if (mode & S_ISUID) {
1293 bprm->per_clear |= PER_CLEAR_ON_SETID;
1294 bprm->cred->euid = inode->i_uid;
1295 }
1296
1297 /* Set-gid? */
1298 /*
1299 * If setgid is set but no group execute bit then this
1300 * is a candidate for mandatory locking, not a setgid
1301 * executable.
1302 */
1303 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1304 bprm->per_clear |= PER_CLEAR_ON_SETID;
1305 bprm->cred->egid = inode->i_gid;
1306 }
1307 }
1308
1309 /* fill in binprm security blob */
1310 retval = security_bprm_set_creds(bprm);
1311 if (retval)
1312 return retval;
1313 bprm->cred_prepared = 1;
1314
1315 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1316 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1317 }
1318
1319 EXPORT_SYMBOL(prepare_binprm);
1320
1321 /*
1322 * Arguments are '\0' separated strings found at the location bprm->p
1323 * points to; chop off the first by relocating brpm->p to right after
1324 * the first '\0' encountered.
1325 */
1326 int remove_arg_zero(struct linux_binprm *bprm)
1327 {
1328 int ret = 0;
1329 unsigned long offset;
1330 char *kaddr;
1331 struct page *page;
1332
1333 if (!bprm->argc)
1334 return 0;
1335
1336 do {
1337 offset = bprm->p & ~PAGE_MASK;
1338 page = get_arg_page(bprm, bprm->p, 0);
1339 if (!page) {
1340 ret = -EFAULT;
1341 goto out;
1342 }
1343 kaddr = kmap_atomic(page);
1344
1345 for (; offset < PAGE_SIZE && kaddr[offset];
1346 offset++, bprm->p++)
1347 ;
1348
1349 kunmap_atomic(kaddr);
1350 put_arg_page(page);
1351
1352 if (offset == PAGE_SIZE)
1353 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1354 } while (offset == PAGE_SIZE);
1355
1356 bprm->p++;
1357 bprm->argc--;
1358 ret = 0;
1359
1360 out:
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(remove_arg_zero);
1364
1365 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1366 /*
1367 * cycle the list of binary formats handler, until one recognizes the image
1368 */
1369 int search_binary_handler(struct linux_binprm *bprm)
1370 {
1371 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1372 struct linux_binfmt *fmt;
1373 int retval;
1374
1375 /* This allows 4 levels of binfmt rewrites before failing hard. */
1376 if (bprm->recursion_depth > 5)
1377 return -ELOOP;
1378
1379 retval = security_bprm_check(bprm);
1380 if (retval)
1381 return retval;
1382
1383 retval = -ENOENT;
1384 retry:
1385 read_lock(&binfmt_lock);
1386 list_for_each_entry(fmt, &formats, lh) {
1387 if (!try_module_get(fmt->module))
1388 continue;
1389 read_unlock(&binfmt_lock);
1390 bprm->recursion_depth++;
1391 retval = fmt->load_binary(bprm);
1392 bprm->recursion_depth--;
1393 if (retval >= 0 || retval != -ENOEXEC ||
1394 bprm->mm == NULL || bprm->file == NULL) {
1395 put_binfmt(fmt);
1396 return retval;
1397 }
1398 read_lock(&binfmt_lock);
1399 put_binfmt(fmt);
1400 }
1401 read_unlock(&binfmt_lock);
1402
1403 if (need_retry && retval == -ENOEXEC) {
1404 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1405 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1406 return retval;
1407 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1408 return retval;
1409 need_retry = false;
1410 goto retry;
1411 }
1412
1413 return retval;
1414 }
1415 EXPORT_SYMBOL(search_binary_handler);
1416
1417 static int exec_binprm(struct linux_binprm *bprm)
1418 {
1419 pid_t old_pid, old_vpid;
1420 int ret;
1421
1422 /* Need to fetch pid before load_binary changes it */
1423 old_pid = current->pid;
1424 rcu_read_lock();
1425 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1426 rcu_read_unlock();
1427
1428 ret = search_binary_handler(bprm);
1429 if (ret >= 0) {
1430 audit_bprm(bprm);
1431 trace_sched_process_exec(current, old_pid, bprm);
1432 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1433 proc_exec_connector(current);
1434 }
1435
1436 return ret;
1437 }
1438
1439 /*
1440 * sys_execve() executes a new program.
1441 */
1442 static int do_execve_common(struct filename *filename,
1443 struct user_arg_ptr argv,
1444 struct user_arg_ptr envp)
1445 {
1446 struct linux_binprm *bprm;
1447 struct file *file;
1448 struct files_struct *displaced;
1449 int retval;
1450
1451 if (IS_ERR(filename))
1452 return PTR_ERR(filename);
1453
1454 /*
1455 * We move the actual failure in case of RLIMIT_NPROC excess from
1456 * set*uid() to execve() because too many poorly written programs
1457 * don't check setuid() return code. Here we additionally recheck
1458 * whether NPROC limit is still exceeded.
1459 */
1460 if ((current->flags & PF_NPROC_EXCEEDED) &&
1461 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1462 retval = -EAGAIN;
1463 goto out_ret;
1464 }
1465
1466 /* We're below the limit (still or again), so we don't want to make
1467 * further execve() calls fail. */
1468 current->flags &= ~PF_NPROC_EXCEEDED;
1469
1470 retval = unshare_files(&displaced);
1471 if (retval)
1472 goto out_ret;
1473
1474 retval = -ENOMEM;
1475 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1476 if (!bprm)
1477 goto out_files;
1478
1479 retval = prepare_bprm_creds(bprm);
1480 if (retval)
1481 goto out_free;
1482
1483 check_unsafe_exec(bprm);
1484 current->in_execve = 1;
1485
1486 file = do_open_exec(filename);
1487 retval = PTR_ERR(file);
1488 if (IS_ERR(file))
1489 goto out_unmark;
1490
1491 sched_exec();
1492
1493 bprm->file = file;
1494 bprm->filename = bprm->interp = filename->name;
1495
1496 retval = bprm_mm_init(bprm);
1497 if (retval)
1498 goto out_unmark;
1499
1500 bprm->argc = count(argv, MAX_ARG_STRINGS);
1501 if ((retval = bprm->argc) < 0)
1502 goto out;
1503
1504 bprm->envc = count(envp, MAX_ARG_STRINGS);
1505 if ((retval = bprm->envc) < 0)
1506 goto out;
1507
1508 retval = prepare_binprm(bprm);
1509 if (retval < 0)
1510 goto out;
1511
1512 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1513 if (retval < 0)
1514 goto out;
1515
1516 bprm->exec = bprm->p;
1517 retval = copy_strings(bprm->envc, envp, bprm);
1518 if (retval < 0)
1519 goto out;
1520
1521 retval = copy_strings(bprm->argc, argv, bprm);
1522 if (retval < 0)
1523 goto out;
1524
1525 retval = exec_binprm(bprm);
1526 if (retval < 0)
1527 goto out;
1528
1529 /* execve succeeded */
1530 current->fs->in_exec = 0;
1531 current->in_execve = 0;
1532 acct_update_integrals(current);
1533 task_numa_free(current);
1534 free_bprm(bprm);
1535 putname(filename);
1536 if (displaced)
1537 put_files_struct(displaced);
1538 return retval;
1539
1540 out:
1541 if (bprm->mm) {
1542 acct_arg_size(bprm, 0);
1543 mmput(bprm->mm);
1544 }
1545
1546 out_unmark:
1547 current->fs->in_exec = 0;
1548 current->in_execve = 0;
1549
1550 out_free:
1551 free_bprm(bprm);
1552
1553 out_files:
1554 if (displaced)
1555 reset_files_struct(displaced);
1556 out_ret:
1557 putname(filename);
1558 return retval;
1559 }
1560
1561 int do_execve(struct filename *filename,
1562 const char __user *const __user *__argv,
1563 const char __user *const __user *__envp)
1564 {
1565 struct user_arg_ptr argv = { .ptr.native = __argv };
1566 struct user_arg_ptr envp = { .ptr.native = __envp };
1567 return do_execve_common(filename, argv, envp);
1568 }
1569
1570 #ifdef CONFIG_COMPAT
1571 static int compat_do_execve(struct filename *filename,
1572 const compat_uptr_t __user *__argv,
1573 const compat_uptr_t __user *__envp)
1574 {
1575 struct user_arg_ptr argv = {
1576 .is_compat = true,
1577 .ptr.compat = __argv,
1578 };
1579 struct user_arg_ptr envp = {
1580 .is_compat = true,
1581 .ptr.compat = __envp,
1582 };
1583 return do_execve_common(filename, argv, envp);
1584 }
1585 #endif
1586
1587 void set_binfmt(struct linux_binfmt *new)
1588 {
1589 struct mm_struct *mm = current->mm;
1590
1591 if (mm->binfmt)
1592 module_put(mm->binfmt->module);
1593
1594 mm->binfmt = new;
1595 if (new)
1596 __module_get(new->module);
1597 }
1598 EXPORT_SYMBOL(set_binfmt);
1599
1600 /*
1601 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1602 */
1603 void set_dumpable(struct mm_struct *mm, int value)
1604 {
1605 unsigned long old, new;
1606
1607 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1608 return;
1609
1610 do {
1611 old = ACCESS_ONCE(mm->flags);
1612 new = (old & ~MMF_DUMPABLE_MASK) | value;
1613 } while (cmpxchg(&mm->flags, old, new) != old);
1614 }
1615
1616 SYSCALL_DEFINE3(execve,
1617 const char __user *, filename,
1618 const char __user *const __user *, argv,
1619 const char __user *const __user *, envp)
1620 {
1621 return do_execve(getname(filename), argv, envp);
1622 }
1623 #ifdef CONFIG_COMPAT
1624 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1625 const compat_uptr_t __user *, argv,
1626 const compat_uptr_t __user *, envp)
1627 {
1628 return compat_do_execve(getname(filename), argv, envp);
1629 }
1630 #endif
This page took 0.193492 seconds and 6 git commands to generate.