74dfe5f73330e45ea591b92425bc7e77b99def69
[deliverable/linux.git] / fs / ext2 / inode.c
1 /*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
35 #include "ext2.h"
36 #include "acl.h"
37 #include "xip.h"
38
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46 * Test whether an inode is a fast symlink.
47 */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55 }
56
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67 }
68
69 /*
70 * Called at the last iput() if i_nlink is zero.
71 */
72 void ext2_delete_inode (struct inode * inode)
73 {
74 if (!is_bad_inode(inode))
75 dquot_initialize(inode);
76 truncate_inode_pages(&inode->i_data, 0);
77
78 if (is_bad_inode(inode))
79 goto no_delete;
80 EXT2_I(inode)->i_dtime = get_seconds();
81 mark_inode_dirty(inode);
82 __ext2_write_inode(inode, inode_needs_sync(inode));
83
84 inode->i_size = 0;
85 if (inode->i_blocks)
86 ext2_truncate_blocks(inode, 0);
87 ext2_free_inode (inode);
88
89 return;
90 no_delete:
91 clear_inode(inode); /* We must guarantee clearing of inode... */
92 }
93
94 typedef struct {
95 __le32 *p;
96 __le32 key;
97 struct buffer_head *bh;
98 } Indirect;
99
100 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
101 {
102 p->key = *(p->p = v);
103 p->bh = bh;
104 }
105
106 static inline int verify_chain(Indirect *from, Indirect *to)
107 {
108 while (from <= to && from->key == *from->p)
109 from++;
110 return (from > to);
111 }
112
113 /**
114 * ext2_block_to_path - parse the block number into array of offsets
115 * @inode: inode in question (we are only interested in its superblock)
116 * @i_block: block number to be parsed
117 * @offsets: array to store the offsets in
118 * @boundary: set this non-zero if the referred-to block is likely to be
119 * followed (on disk) by an indirect block.
120 * To store the locations of file's data ext2 uses a data structure common
121 * for UNIX filesystems - tree of pointers anchored in the inode, with
122 * data blocks at leaves and indirect blocks in intermediate nodes.
123 * This function translates the block number into path in that tree -
124 * return value is the path length and @offsets[n] is the offset of
125 * pointer to (n+1)th node in the nth one. If @block is out of range
126 * (negative or too large) warning is printed and zero returned.
127 *
128 * Note: function doesn't find node addresses, so no IO is needed. All
129 * we need to know is the capacity of indirect blocks (taken from the
130 * inode->i_sb).
131 */
132
133 /*
134 * Portability note: the last comparison (check that we fit into triple
135 * indirect block) is spelled differently, because otherwise on an
136 * architecture with 32-bit longs and 8Kb pages we might get into trouble
137 * if our filesystem had 8Kb blocks. We might use long long, but that would
138 * kill us on x86. Oh, well, at least the sign propagation does not matter -
139 * i_block would have to be negative in the very beginning, so we would not
140 * get there at all.
141 */
142
143 static int ext2_block_to_path(struct inode *inode,
144 long i_block, int offsets[4], int *boundary)
145 {
146 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
147 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
148 const long direct_blocks = EXT2_NDIR_BLOCKS,
149 indirect_blocks = ptrs,
150 double_blocks = (1 << (ptrs_bits * 2));
151 int n = 0;
152 int final = 0;
153
154 if (i_block < 0) {
155 ext2_msg(inode->i_sb, KERN_WARNING,
156 "warning: %s: block < 0", __func__);
157 } else if (i_block < direct_blocks) {
158 offsets[n++] = i_block;
159 final = direct_blocks;
160 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
161 offsets[n++] = EXT2_IND_BLOCK;
162 offsets[n++] = i_block;
163 final = ptrs;
164 } else if ((i_block -= indirect_blocks) < double_blocks) {
165 offsets[n++] = EXT2_DIND_BLOCK;
166 offsets[n++] = i_block >> ptrs_bits;
167 offsets[n++] = i_block & (ptrs - 1);
168 final = ptrs;
169 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
170 offsets[n++] = EXT2_TIND_BLOCK;
171 offsets[n++] = i_block >> (ptrs_bits * 2);
172 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
173 offsets[n++] = i_block & (ptrs - 1);
174 final = ptrs;
175 } else {
176 ext2_msg(inode->i_sb, KERN_WARNING,
177 "warning: %s: block is too big", __func__);
178 }
179 if (boundary)
180 *boundary = final - 1 - (i_block & (ptrs - 1));
181
182 return n;
183 }
184
185 /**
186 * ext2_get_branch - read the chain of indirect blocks leading to data
187 * @inode: inode in question
188 * @depth: depth of the chain (1 - direct pointer, etc.)
189 * @offsets: offsets of pointers in inode/indirect blocks
190 * @chain: place to store the result
191 * @err: here we store the error value
192 *
193 * Function fills the array of triples <key, p, bh> and returns %NULL
194 * if everything went OK or the pointer to the last filled triple
195 * (incomplete one) otherwise. Upon the return chain[i].key contains
196 * the number of (i+1)-th block in the chain (as it is stored in memory,
197 * i.e. little-endian 32-bit), chain[i].p contains the address of that
198 * number (it points into struct inode for i==0 and into the bh->b_data
199 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
200 * block for i>0 and NULL for i==0. In other words, it holds the block
201 * numbers of the chain, addresses they were taken from (and where we can
202 * verify that chain did not change) and buffer_heads hosting these
203 * numbers.
204 *
205 * Function stops when it stumbles upon zero pointer (absent block)
206 * (pointer to last triple returned, *@err == 0)
207 * or when it gets an IO error reading an indirect block
208 * (ditto, *@err == -EIO)
209 * or when it notices that chain had been changed while it was reading
210 * (ditto, *@err == -EAGAIN)
211 * or when it reads all @depth-1 indirect blocks successfully and finds
212 * the whole chain, all way to the data (returns %NULL, *err == 0).
213 */
214 static Indirect *ext2_get_branch(struct inode *inode,
215 int depth,
216 int *offsets,
217 Indirect chain[4],
218 int *err)
219 {
220 struct super_block *sb = inode->i_sb;
221 Indirect *p = chain;
222 struct buffer_head *bh;
223
224 *err = 0;
225 /* i_data is not going away, no lock needed */
226 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
227 if (!p->key)
228 goto no_block;
229 while (--depth) {
230 bh = sb_bread(sb, le32_to_cpu(p->key));
231 if (!bh)
232 goto failure;
233 read_lock(&EXT2_I(inode)->i_meta_lock);
234 if (!verify_chain(chain, p))
235 goto changed;
236 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
237 read_unlock(&EXT2_I(inode)->i_meta_lock);
238 if (!p->key)
239 goto no_block;
240 }
241 return NULL;
242
243 changed:
244 read_unlock(&EXT2_I(inode)->i_meta_lock);
245 brelse(bh);
246 *err = -EAGAIN;
247 goto no_block;
248 failure:
249 *err = -EIO;
250 no_block:
251 return p;
252 }
253
254 /**
255 * ext2_find_near - find a place for allocation with sufficient locality
256 * @inode: owner
257 * @ind: descriptor of indirect block.
258 *
259 * This function returns the preferred place for block allocation.
260 * It is used when heuristic for sequential allocation fails.
261 * Rules are:
262 * + if there is a block to the left of our position - allocate near it.
263 * + if pointer will live in indirect block - allocate near that block.
264 * + if pointer will live in inode - allocate in the same cylinder group.
265 *
266 * In the latter case we colour the starting block by the callers PID to
267 * prevent it from clashing with concurrent allocations for a different inode
268 * in the same block group. The PID is used here so that functionally related
269 * files will be close-by on-disk.
270 *
271 * Caller must make sure that @ind is valid and will stay that way.
272 */
273
274 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
275 {
276 struct ext2_inode_info *ei = EXT2_I(inode);
277 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
278 __le32 *p;
279 ext2_fsblk_t bg_start;
280 ext2_fsblk_t colour;
281
282 /* Try to find previous block */
283 for (p = ind->p - 1; p >= start; p--)
284 if (*p)
285 return le32_to_cpu(*p);
286
287 /* No such thing, so let's try location of indirect block */
288 if (ind->bh)
289 return ind->bh->b_blocknr;
290
291 /*
292 * It is going to be refered from inode itself? OK, just put it into
293 * the same cylinder group then.
294 */
295 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
296 colour = (current->pid % 16) *
297 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
298 return bg_start + colour;
299 }
300
301 /**
302 * ext2_find_goal - find a preferred place for allocation.
303 * @inode: owner
304 * @block: block we want
305 * @partial: pointer to the last triple within a chain
306 *
307 * Returns preferred place for a block (the goal).
308 */
309
310 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
311 Indirect *partial)
312 {
313 struct ext2_block_alloc_info *block_i;
314
315 block_i = EXT2_I(inode)->i_block_alloc_info;
316
317 /*
318 * try the heuristic for sequential allocation,
319 * failing that at least try to get decent locality.
320 */
321 if (block_i && (block == block_i->last_alloc_logical_block + 1)
322 && (block_i->last_alloc_physical_block != 0)) {
323 return block_i->last_alloc_physical_block + 1;
324 }
325
326 return ext2_find_near(inode, partial);
327 }
328
329 /**
330 * ext2_blks_to_allocate: Look up the block map and count the number
331 * of direct blocks need to be allocated for the given branch.
332 *
333 * @branch: chain of indirect blocks
334 * @k: number of blocks need for indirect blocks
335 * @blks: number of data blocks to be mapped.
336 * @blocks_to_boundary: the offset in the indirect block
337 *
338 * return the total number of blocks to be allocate, including the
339 * direct and indirect blocks.
340 */
341 static int
342 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
343 int blocks_to_boundary)
344 {
345 unsigned long count = 0;
346
347 /*
348 * Simple case, [t,d]Indirect block(s) has not allocated yet
349 * then it's clear blocks on that path have not allocated
350 */
351 if (k > 0) {
352 /* right now don't hanel cross boundary allocation */
353 if (blks < blocks_to_boundary + 1)
354 count += blks;
355 else
356 count += blocks_to_boundary + 1;
357 return count;
358 }
359
360 count++;
361 while (count < blks && count <= blocks_to_boundary
362 && le32_to_cpu(*(branch[0].p + count)) == 0) {
363 count++;
364 }
365 return count;
366 }
367
368 /**
369 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
370 * @indirect_blks: the number of blocks need to allocate for indirect
371 * blocks
372 *
373 * @new_blocks: on return it will store the new block numbers for
374 * the indirect blocks(if needed) and the first direct block,
375 * @blks: on return it will store the total number of allocated
376 * direct blocks
377 */
378 static int ext2_alloc_blocks(struct inode *inode,
379 ext2_fsblk_t goal, int indirect_blks, int blks,
380 ext2_fsblk_t new_blocks[4], int *err)
381 {
382 int target, i;
383 unsigned long count = 0;
384 int index = 0;
385 ext2_fsblk_t current_block = 0;
386 int ret = 0;
387
388 /*
389 * Here we try to allocate the requested multiple blocks at once,
390 * on a best-effort basis.
391 * To build a branch, we should allocate blocks for
392 * the indirect blocks(if not allocated yet), and at least
393 * the first direct block of this branch. That's the
394 * minimum number of blocks need to allocate(required)
395 */
396 target = blks + indirect_blks;
397
398 while (1) {
399 count = target;
400 /* allocating blocks for indirect blocks and direct blocks */
401 current_block = ext2_new_blocks(inode,goal,&count,err);
402 if (*err)
403 goto failed_out;
404
405 target -= count;
406 /* allocate blocks for indirect blocks */
407 while (index < indirect_blks && count) {
408 new_blocks[index++] = current_block++;
409 count--;
410 }
411
412 if (count > 0)
413 break;
414 }
415
416 /* save the new block number for the first direct block */
417 new_blocks[index] = current_block;
418
419 /* total number of blocks allocated for direct blocks */
420 ret = count;
421 *err = 0;
422 return ret;
423 failed_out:
424 for (i = 0; i <index; i++)
425 ext2_free_blocks(inode, new_blocks[i], 1);
426 return ret;
427 }
428
429 /**
430 * ext2_alloc_branch - allocate and set up a chain of blocks.
431 * @inode: owner
432 * @num: depth of the chain (number of blocks to allocate)
433 * @offsets: offsets (in the blocks) to store the pointers to next.
434 * @branch: place to store the chain in.
435 *
436 * This function allocates @num blocks, zeroes out all but the last one,
437 * links them into chain and (if we are synchronous) writes them to disk.
438 * In other words, it prepares a branch that can be spliced onto the
439 * inode. It stores the information about that chain in the branch[], in
440 * the same format as ext2_get_branch() would do. We are calling it after
441 * we had read the existing part of chain and partial points to the last
442 * triple of that (one with zero ->key). Upon the exit we have the same
443 * picture as after the successful ext2_get_block(), excpet that in one
444 * place chain is disconnected - *branch->p is still zero (we did not
445 * set the last link), but branch->key contains the number that should
446 * be placed into *branch->p to fill that gap.
447 *
448 * If allocation fails we free all blocks we've allocated (and forget
449 * their buffer_heads) and return the error value the from failed
450 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
451 * as described above and return 0.
452 */
453
454 static int ext2_alloc_branch(struct inode *inode,
455 int indirect_blks, int *blks, ext2_fsblk_t goal,
456 int *offsets, Indirect *branch)
457 {
458 int blocksize = inode->i_sb->s_blocksize;
459 int i, n = 0;
460 int err = 0;
461 struct buffer_head *bh;
462 int num;
463 ext2_fsblk_t new_blocks[4];
464 ext2_fsblk_t current_block;
465
466 num = ext2_alloc_blocks(inode, goal, indirect_blks,
467 *blks, new_blocks, &err);
468 if (err)
469 return err;
470
471 branch[0].key = cpu_to_le32(new_blocks[0]);
472 /*
473 * metadata blocks and data blocks are allocated.
474 */
475 for (n = 1; n <= indirect_blks; n++) {
476 /*
477 * Get buffer_head for parent block, zero it out
478 * and set the pointer to new one, then send
479 * parent to disk.
480 */
481 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
482 branch[n].bh = bh;
483 lock_buffer(bh);
484 memset(bh->b_data, 0, blocksize);
485 branch[n].p = (__le32 *) bh->b_data + offsets[n];
486 branch[n].key = cpu_to_le32(new_blocks[n]);
487 *branch[n].p = branch[n].key;
488 if ( n == indirect_blks) {
489 current_block = new_blocks[n];
490 /*
491 * End of chain, update the last new metablock of
492 * the chain to point to the new allocated
493 * data blocks numbers
494 */
495 for (i=1; i < num; i++)
496 *(branch[n].p + i) = cpu_to_le32(++current_block);
497 }
498 set_buffer_uptodate(bh);
499 unlock_buffer(bh);
500 mark_buffer_dirty_inode(bh, inode);
501 /* We used to sync bh here if IS_SYNC(inode).
502 * But we now rely upon generic_write_sync()
503 * and b_inode_buffers. But not for directories.
504 */
505 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
506 sync_dirty_buffer(bh);
507 }
508 *blks = num;
509 return err;
510 }
511
512 /**
513 * ext2_splice_branch - splice the allocated branch onto inode.
514 * @inode: owner
515 * @block: (logical) number of block we are adding
516 * @where: location of missing link
517 * @num: number of indirect blocks we are adding
518 * @blks: number of direct blocks we are adding
519 *
520 * This function fills the missing link and does all housekeeping needed in
521 * inode (->i_blocks, etc.). In case of success we end up with the full
522 * chain to new block and return 0.
523 */
524 static void ext2_splice_branch(struct inode *inode,
525 long block, Indirect *where, int num, int blks)
526 {
527 int i;
528 struct ext2_block_alloc_info *block_i;
529 ext2_fsblk_t current_block;
530
531 block_i = EXT2_I(inode)->i_block_alloc_info;
532
533 /* XXX LOCKING probably should have i_meta_lock ?*/
534 /* That's it */
535
536 *where->p = where->key;
537
538 /*
539 * Update the host buffer_head or inode to point to more just allocated
540 * direct blocks blocks
541 */
542 if (num == 0 && blks > 1) {
543 current_block = le32_to_cpu(where->key) + 1;
544 for (i = 1; i < blks; i++)
545 *(where->p + i ) = cpu_to_le32(current_block++);
546 }
547
548 /*
549 * update the most recently allocated logical & physical block
550 * in i_block_alloc_info, to assist find the proper goal block for next
551 * allocation
552 */
553 if (block_i) {
554 block_i->last_alloc_logical_block = block + blks - 1;
555 block_i->last_alloc_physical_block =
556 le32_to_cpu(where[num].key) + blks - 1;
557 }
558
559 /* We are done with atomic stuff, now do the rest of housekeeping */
560
561 /* had we spliced it onto indirect block? */
562 if (where->bh)
563 mark_buffer_dirty_inode(where->bh, inode);
564
565 inode->i_ctime = CURRENT_TIME_SEC;
566 mark_inode_dirty(inode);
567 }
568
569 /*
570 * Allocation strategy is simple: if we have to allocate something, we will
571 * have to go the whole way to leaf. So let's do it before attaching anything
572 * to tree, set linkage between the newborn blocks, write them if sync is
573 * required, recheck the path, free and repeat if check fails, otherwise
574 * set the last missing link (that will protect us from any truncate-generated
575 * removals - all blocks on the path are immune now) and possibly force the
576 * write on the parent block.
577 * That has a nice additional property: no special recovery from the failed
578 * allocations is needed - we simply release blocks and do not touch anything
579 * reachable from inode.
580 *
581 * `handle' can be NULL if create == 0.
582 *
583 * return > 0, # of blocks mapped or allocated.
584 * return = 0, if plain lookup failed.
585 * return < 0, error case.
586 */
587 static int ext2_get_blocks(struct inode *inode,
588 sector_t iblock, unsigned long maxblocks,
589 struct buffer_head *bh_result,
590 int create)
591 {
592 int err = -EIO;
593 int offsets[4];
594 Indirect chain[4];
595 Indirect *partial;
596 ext2_fsblk_t goal;
597 int indirect_blks;
598 int blocks_to_boundary = 0;
599 int depth;
600 struct ext2_inode_info *ei = EXT2_I(inode);
601 int count = 0;
602 ext2_fsblk_t first_block = 0;
603
604 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
605
606 if (depth == 0)
607 return (err);
608
609 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
610 /* Simplest case - block found, no allocation needed */
611 if (!partial) {
612 first_block = le32_to_cpu(chain[depth - 1].key);
613 clear_buffer_new(bh_result); /* What's this do? */
614 count++;
615 /*map more blocks*/
616 while (count < maxblocks && count <= blocks_to_boundary) {
617 ext2_fsblk_t blk;
618
619 if (!verify_chain(chain, chain + depth - 1)) {
620 /*
621 * Indirect block might be removed by
622 * truncate while we were reading it.
623 * Handling of that case: forget what we've
624 * got now, go to reread.
625 */
626 err = -EAGAIN;
627 count = 0;
628 break;
629 }
630 blk = le32_to_cpu(*(chain[depth-1].p + count));
631 if (blk == first_block + count)
632 count++;
633 else
634 break;
635 }
636 if (err != -EAGAIN)
637 goto got_it;
638 }
639
640 /* Next simple case - plain lookup or failed read of indirect block */
641 if (!create || err == -EIO)
642 goto cleanup;
643
644 mutex_lock(&ei->truncate_mutex);
645 /*
646 * If the indirect block is missing while we are reading
647 * the chain(ext3_get_branch() returns -EAGAIN err), or
648 * if the chain has been changed after we grab the semaphore,
649 * (either because another process truncated this branch, or
650 * another get_block allocated this branch) re-grab the chain to see if
651 * the request block has been allocated or not.
652 *
653 * Since we already block the truncate/other get_block
654 * at this point, we will have the current copy of the chain when we
655 * splice the branch into the tree.
656 */
657 if (err == -EAGAIN || !verify_chain(chain, partial)) {
658 while (partial > chain) {
659 brelse(partial->bh);
660 partial--;
661 }
662 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
663 if (!partial) {
664 count++;
665 mutex_unlock(&ei->truncate_mutex);
666 if (err)
667 goto cleanup;
668 clear_buffer_new(bh_result);
669 goto got_it;
670 }
671 }
672
673 /*
674 * Okay, we need to do block allocation. Lazily initialize the block
675 * allocation info here if necessary
676 */
677 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
678 ext2_init_block_alloc_info(inode);
679
680 goal = ext2_find_goal(inode, iblock, partial);
681
682 /* the number of blocks need to allocate for [d,t]indirect blocks */
683 indirect_blks = (chain + depth) - partial - 1;
684 /*
685 * Next look up the indirect map to count the totoal number of
686 * direct blocks to allocate for this branch.
687 */
688 count = ext2_blks_to_allocate(partial, indirect_blks,
689 maxblocks, blocks_to_boundary);
690 /*
691 * XXX ???? Block out ext2_truncate while we alter the tree
692 */
693 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
694 offsets + (partial - chain), partial);
695
696 if (err) {
697 mutex_unlock(&ei->truncate_mutex);
698 goto cleanup;
699 }
700
701 if (ext2_use_xip(inode->i_sb)) {
702 /*
703 * we need to clear the block
704 */
705 err = ext2_clear_xip_target (inode,
706 le32_to_cpu(chain[depth-1].key));
707 if (err) {
708 mutex_unlock(&ei->truncate_mutex);
709 goto cleanup;
710 }
711 }
712
713 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
714 mutex_unlock(&ei->truncate_mutex);
715 set_buffer_new(bh_result);
716 got_it:
717 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
718 if (count > blocks_to_boundary)
719 set_buffer_boundary(bh_result);
720 err = count;
721 /* Clean up and exit */
722 partial = chain + depth - 1; /* the whole chain */
723 cleanup:
724 while (partial > chain) {
725 brelse(partial->bh);
726 partial--;
727 }
728 return err;
729 }
730
731 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
732 {
733 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
734 int ret = ext2_get_blocks(inode, iblock, max_blocks,
735 bh_result, create);
736 if (ret > 0) {
737 bh_result->b_size = (ret << inode->i_blkbits);
738 ret = 0;
739 }
740 return ret;
741
742 }
743
744 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
745 u64 start, u64 len)
746 {
747 return generic_block_fiemap(inode, fieinfo, start, len,
748 ext2_get_block);
749 }
750
751 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
752 {
753 return block_write_full_page(page, ext2_get_block, wbc);
754 }
755
756 static int ext2_readpage(struct file *file, struct page *page)
757 {
758 return mpage_readpage(page, ext2_get_block);
759 }
760
761 static int
762 ext2_readpages(struct file *file, struct address_space *mapping,
763 struct list_head *pages, unsigned nr_pages)
764 {
765 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
766 }
767
768 static int
769 ext2_write_begin(struct file *file, struct address_space *mapping,
770 loff_t pos, unsigned len, unsigned flags,
771 struct page **pagep, void **fsdata)
772 {
773 int ret;
774
775 ret = block_write_begin(mapping, pos, len, flags, pagep,
776 ext2_get_block);
777 if (ret < 0)
778 ext2_write_failed(mapping, pos + len);
779 return ret;
780 }
781
782 static int ext2_write_end(struct file *file, struct address_space *mapping,
783 loff_t pos, unsigned len, unsigned copied,
784 struct page *page, void *fsdata)
785 {
786 int ret;
787
788 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
789 if (ret < len)
790 ext2_write_failed(mapping, pos + len);
791 return ret;
792 }
793
794 static int
795 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
796 loff_t pos, unsigned len, unsigned flags,
797 struct page **pagep, void **fsdata)
798 {
799 int ret;
800
801 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
802 ext2_get_block);
803 if (ret < 0)
804 ext2_write_failed(mapping, pos + len);
805 return ret;
806 }
807
808 static int ext2_nobh_writepage(struct page *page,
809 struct writeback_control *wbc)
810 {
811 return nobh_writepage(page, ext2_get_block, wbc);
812 }
813
814 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
815 {
816 return generic_block_bmap(mapping,block,ext2_get_block);
817 }
818
819 static ssize_t
820 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
821 loff_t offset, unsigned long nr_segs)
822 {
823 struct file *file = iocb->ki_filp;
824 struct address_space *mapping = file->f_mapping;
825 struct inode *inode = mapping->host;
826 ssize_t ret;
827
828 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
829 iov, offset, nr_segs, ext2_get_block, NULL);
830 if (ret < 0 && (rw & WRITE))
831 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
832 return ret;
833 }
834
835 static int
836 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
837 {
838 return mpage_writepages(mapping, wbc, ext2_get_block);
839 }
840
841 const struct address_space_operations ext2_aops = {
842 .readpage = ext2_readpage,
843 .readpages = ext2_readpages,
844 .writepage = ext2_writepage,
845 .sync_page = block_sync_page,
846 .write_begin = ext2_write_begin,
847 .write_end = ext2_write_end,
848 .bmap = ext2_bmap,
849 .direct_IO = ext2_direct_IO,
850 .writepages = ext2_writepages,
851 .migratepage = buffer_migrate_page,
852 .is_partially_uptodate = block_is_partially_uptodate,
853 .error_remove_page = generic_error_remove_page,
854 };
855
856 const struct address_space_operations ext2_aops_xip = {
857 .bmap = ext2_bmap,
858 .get_xip_mem = ext2_get_xip_mem,
859 };
860
861 const struct address_space_operations ext2_nobh_aops = {
862 .readpage = ext2_readpage,
863 .readpages = ext2_readpages,
864 .writepage = ext2_nobh_writepage,
865 .sync_page = block_sync_page,
866 .write_begin = ext2_nobh_write_begin,
867 .write_end = nobh_write_end,
868 .bmap = ext2_bmap,
869 .direct_IO = ext2_direct_IO,
870 .writepages = ext2_writepages,
871 .migratepage = buffer_migrate_page,
872 .error_remove_page = generic_error_remove_page,
873 };
874
875 /*
876 * Probably it should be a library function... search for first non-zero word
877 * or memcmp with zero_page, whatever is better for particular architecture.
878 * Linus?
879 */
880 static inline int all_zeroes(__le32 *p, __le32 *q)
881 {
882 while (p < q)
883 if (*p++)
884 return 0;
885 return 1;
886 }
887
888 /**
889 * ext2_find_shared - find the indirect blocks for partial truncation.
890 * @inode: inode in question
891 * @depth: depth of the affected branch
892 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
893 * @chain: place to store the pointers to partial indirect blocks
894 * @top: place to the (detached) top of branch
895 *
896 * This is a helper function used by ext2_truncate().
897 *
898 * When we do truncate() we may have to clean the ends of several indirect
899 * blocks but leave the blocks themselves alive. Block is partially
900 * truncated if some data below the new i_size is refered from it (and
901 * it is on the path to the first completely truncated data block, indeed).
902 * We have to free the top of that path along with everything to the right
903 * of the path. Since no allocation past the truncation point is possible
904 * until ext2_truncate() finishes, we may safely do the latter, but top
905 * of branch may require special attention - pageout below the truncation
906 * point might try to populate it.
907 *
908 * We atomically detach the top of branch from the tree, store the block
909 * number of its root in *@top, pointers to buffer_heads of partially
910 * truncated blocks - in @chain[].bh and pointers to their last elements
911 * that should not be removed - in @chain[].p. Return value is the pointer
912 * to last filled element of @chain.
913 *
914 * The work left to caller to do the actual freeing of subtrees:
915 * a) free the subtree starting from *@top
916 * b) free the subtrees whose roots are stored in
917 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
918 * c) free the subtrees growing from the inode past the @chain[0].p
919 * (no partially truncated stuff there).
920 */
921
922 static Indirect *ext2_find_shared(struct inode *inode,
923 int depth,
924 int offsets[4],
925 Indirect chain[4],
926 __le32 *top)
927 {
928 Indirect *partial, *p;
929 int k, err;
930
931 *top = 0;
932 for (k = depth; k > 1 && !offsets[k-1]; k--)
933 ;
934 partial = ext2_get_branch(inode, k, offsets, chain, &err);
935 if (!partial)
936 partial = chain + k-1;
937 /*
938 * If the branch acquired continuation since we've looked at it -
939 * fine, it should all survive and (new) top doesn't belong to us.
940 */
941 write_lock(&EXT2_I(inode)->i_meta_lock);
942 if (!partial->key && *partial->p) {
943 write_unlock(&EXT2_I(inode)->i_meta_lock);
944 goto no_top;
945 }
946 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
947 ;
948 /*
949 * OK, we've found the last block that must survive. The rest of our
950 * branch should be detached before unlocking. However, if that rest
951 * of branch is all ours and does not grow immediately from the inode
952 * it's easier to cheat and just decrement partial->p.
953 */
954 if (p == chain + k - 1 && p > chain) {
955 p->p--;
956 } else {
957 *top = *p->p;
958 *p->p = 0;
959 }
960 write_unlock(&EXT2_I(inode)->i_meta_lock);
961
962 while(partial > p)
963 {
964 brelse(partial->bh);
965 partial--;
966 }
967 no_top:
968 return partial;
969 }
970
971 /**
972 * ext2_free_data - free a list of data blocks
973 * @inode: inode we are dealing with
974 * @p: array of block numbers
975 * @q: points immediately past the end of array
976 *
977 * We are freeing all blocks refered from that array (numbers are
978 * stored as little-endian 32-bit) and updating @inode->i_blocks
979 * appropriately.
980 */
981 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
982 {
983 unsigned long block_to_free = 0, count = 0;
984 unsigned long nr;
985
986 for ( ; p < q ; p++) {
987 nr = le32_to_cpu(*p);
988 if (nr) {
989 *p = 0;
990 /* accumulate blocks to free if they're contiguous */
991 if (count == 0)
992 goto free_this;
993 else if (block_to_free == nr - count)
994 count++;
995 else {
996 mark_inode_dirty(inode);
997 ext2_free_blocks (inode, block_to_free, count);
998 free_this:
999 block_to_free = nr;
1000 count = 1;
1001 }
1002 }
1003 }
1004 if (count > 0) {
1005 mark_inode_dirty(inode);
1006 ext2_free_blocks (inode, block_to_free, count);
1007 }
1008 }
1009
1010 /**
1011 * ext2_free_branches - free an array of branches
1012 * @inode: inode we are dealing with
1013 * @p: array of block numbers
1014 * @q: pointer immediately past the end of array
1015 * @depth: depth of the branches to free
1016 *
1017 * We are freeing all blocks refered from these branches (numbers are
1018 * stored as little-endian 32-bit) and updating @inode->i_blocks
1019 * appropriately.
1020 */
1021 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1022 {
1023 struct buffer_head * bh;
1024 unsigned long nr;
1025
1026 if (depth--) {
1027 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1028 for ( ; p < q ; p++) {
1029 nr = le32_to_cpu(*p);
1030 if (!nr)
1031 continue;
1032 *p = 0;
1033 bh = sb_bread(inode->i_sb, nr);
1034 /*
1035 * A read failure? Report error and clear slot
1036 * (should be rare).
1037 */
1038 if (!bh) {
1039 ext2_error(inode->i_sb, "ext2_free_branches",
1040 "Read failure, inode=%ld, block=%ld",
1041 inode->i_ino, nr);
1042 continue;
1043 }
1044 ext2_free_branches(inode,
1045 (__le32*)bh->b_data,
1046 (__le32*)bh->b_data + addr_per_block,
1047 depth);
1048 bforget(bh);
1049 ext2_free_blocks(inode, nr, 1);
1050 mark_inode_dirty(inode);
1051 }
1052 } else
1053 ext2_free_data(inode, p, q);
1054 }
1055
1056 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1057 {
1058 __le32 *i_data = EXT2_I(inode)->i_data;
1059 struct ext2_inode_info *ei = EXT2_I(inode);
1060 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1061 int offsets[4];
1062 Indirect chain[4];
1063 Indirect *partial;
1064 __le32 nr = 0;
1065 int n;
1066 long iblock;
1067 unsigned blocksize;
1068 blocksize = inode->i_sb->s_blocksize;
1069 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1070
1071 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1072 if (n == 0)
1073 return;
1074
1075 /*
1076 * From here we block out all ext2_get_block() callers who want to
1077 * modify the block allocation tree.
1078 */
1079 mutex_lock(&ei->truncate_mutex);
1080
1081 if (n == 1) {
1082 ext2_free_data(inode, i_data+offsets[0],
1083 i_data + EXT2_NDIR_BLOCKS);
1084 goto do_indirects;
1085 }
1086
1087 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1088 /* Kill the top of shared branch (already detached) */
1089 if (nr) {
1090 if (partial == chain)
1091 mark_inode_dirty(inode);
1092 else
1093 mark_buffer_dirty_inode(partial->bh, inode);
1094 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1095 }
1096 /* Clear the ends of indirect blocks on the shared branch */
1097 while (partial > chain) {
1098 ext2_free_branches(inode,
1099 partial->p + 1,
1100 (__le32*)partial->bh->b_data+addr_per_block,
1101 (chain+n-1) - partial);
1102 mark_buffer_dirty_inode(partial->bh, inode);
1103 brelse (partial->bh);
1104 partial--;
1105 }
1106 do_indirects:
1107 /* Kill the remaining (whole) subtrees */
1108 switch (offsets[0]) {
1109 default:
1110 nr = i_data[EXT2_IND_BLOCK];
1111 if (nr) {
1112 i_data[EXT2_IND_BLOCK] = 0;
1113 mark_inode_dirty(inode);
1114 ext2_free_branches(inode, &nr, &nr+1, 1);
1115 }
1116 case EXT2_IND_BLOCK:
1117 nr = i_data[EXT2_DIND_BLOCK];
1118 if (nr) {
1119 i_data[EXT2_DIND_BLOCK] = 0;
1120 mark_inode_dirty(inode);
1121 ext2_free_branches(inode, &nr, &nr+1, 2);
1122 }
1123 case EXT2_DIND_BLOCK:
1124 nr = i_data[EXT2_TIND_BLOCK];
1125 if (nr) {
1126 i_data[EXT2_TIND_BLOCK] = 0;
1127 mark_inode_dirty(inode);
1128 ext2_free_branches(inode, &nr, &nr+1, 3);
1129 }
1130 case EXT2_TIND_BLOCK:
1131 ;
1132 }
1133
1134 ext2_discard_reservation(inode);
1135
1136 mutex_unlock(&ei->truncate_mutex);
1137 }
1138
1139 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1140 {
1141 /*
1142 * XXX: it seems like a bug here that we don't allow
1143 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1144 * review and fix this.
1145 *
1146 * Also would be nice to be able to handle IO errors and such,
1147 * but that's probably too much to ask.
1148 */
1149 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1150 S_ISLNK(inode->i_mode)))
1151 return;
1152 if (ext2_inode_is_fast_symlink(inode))
1153 return;
1154 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1155 return;
1156 __ext2_truncate_blocks(inode, offset);
1157 }
1158
1159 int ext2_setsize(struct inode *inode, loff_t newsize)
1160 {
1161 loff_t oldsize;
1162 int error;
1163
1164 error = inode_newsize_ok(inode, newsize);
1165 if (error)
1166 return error;
1167
1168 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1169 S_ISLNK(inode->i_mode)))
1170 return -EINVAL;
1171 if (ext2_inode_is_fast_symlink(inode))
1172 return -EINVAL;
1173 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1174 return -EPERM;
1175
1176 if (mapping_is_xip(inode->i_mapping))
1177 error = xip_truncate_page(inode->i_mapping, newsize);
1178 else if (test_opt(inode->i_sb, NOBH))
1179 error = nobh_truncate_page(inode->i_mapping,
1180 newsize, ext2_get_block);
1181 else
1182 error = block_truncate_page(inode->i_mapping,
1183 newsize, ext2_get_block);
1184 if (error)
1185 return error;
1186
1187 oldsize = inode->i_size;
1188 i_size_write(inode, newsize);
1189 truncate_pagecache(inode, oldsize, newsize);
1190
1191 __ext2_truncate_blocks(inode, newsize);
1192
1193 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1194 if (inode_needs_sync(inode)) {
1195 sync_mapping_buffers(inode->i_mapping);
1196 ext2_sync_inode (inode);
1197 } else {
1198 mark_inode_dirty(inode);
1199 }
1200
1201 return 0;
1202 }
1203
1204 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1205 struct buffer_head **p)
1206 {
1207 struct buffer_head * bh;
1208 unsigned long block_group;
1209 unsigned long block;
1210 unsigned long offset;
1211 struct ext2_group_desc * gdp;
1212
1213 *p = NULL;
1214 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1215 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1216 goto Einval;
1217
1218 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1219 gdp = ext2_get_group_desc(sb, block_group, NULL);
1220 if (!gdp)
1221 goto Egdp;
1222 /*
1223 * Figure out the offset within the block group inode table
1224 */
1225 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1226 block = le32_to_cpu(gdp->bg_inode_table) +
1227 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1228 if (!(bh = sb_bread(sb, block)))
1229 goto Eio;
1230
1231 *p = bh;
1232 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1233 return (struct ext2_inode *) (bh->b_data + offset);
1234
1235 Einval:
1236 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1237 (unsigned long) ino);
1238 return ERR_PTR(-EINVAL);
1239 Eio:
1240 ext2_error(sb, "ext2_get_inode",
1241 "unable to read inode block - inode=%lu, block=%lu",
1242 (unsigned long) ino, block);
1243 Egdp:
1244 return ERR_PTR(-EIO);
1245 }
1246
1247 void ext2_set_inode_flags(struct inode *inode)
1248 {
1249 unsigned int flags = EXT2_I(inode)->i_flags;
1250
1251 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1252 if (flags & EXT2_SYNC_FL)
1253 inode->i_flags |= S_SYNC;
1254 if (flags & EXT2_APPEND_FL)
1255 inode->i_flags |= S_APPEND;
1256 if (flags & EXT2_IMMUTABLE_FL)
1257 inode->i_flags |= S_IMMUTABLE;
1258 if (flags & EXT2_NOATIME_FL)
1259 inode->i_flags |= S_NOATIME;
1260 if (flags & EXT2_DIRSYNC_FL)
1261 inode->i_flags |= S_DIRSYNC;
1262 }
1263
1264 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1265 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1266 {
1267 unsigned int flags = ei->vfs_inode.i_flags;
1268
1269 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1270 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1271 if (flags & S_SYNC)
1272 ei->i_flags |= EXT2_SYNC_FL;
1273 if (flags & S_APPEND)
1274 ei->i_flags |= EXT2_APPEND_FL;
1275 if (flags & S_IMMUTABLE)
1276 ei->i_flags |= EXT2_IMMUTABLE_FL;
1277 if (flags & S_NOATIME)
1278 ei->i_flags |= EXT2_NOATIME_FL;
1279 if (flags & S_DIRSYNC)
1280 ei->i_flags |= EXT2_DIRSYNC_FL;
1281 }
1282
1283 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1284 {
1285 struct ext2_inode_info *ei;
1286 struct buffer_head * bh;
1287 struct ext2_inode *raw_inode;
1288 struct inode *inode;
1289 long ret = -EIO;
1290 int n;
1291
1292 inode = iget_locked(sb, ino);
1293 if (!inode)
1294 return ERR_PTR(-ENOMEM);
1295 if (!(inode->i_state & I_NEW))
1296 return inode;
1297
1298 ei = EXT2_I(inode);
1299 ei->i_block_alloc_info = NULL;
1300
1301 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1302 if (IS_ERR(raw_inode)) {
1303 ret = PTR_ERR(raw_inode);
1304 goto bad_inode;
1305 }
1306
1307 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1308 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1309 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1310 if (!(test_opt (inode->i_sb, NO_UID32))) {
1311 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1312 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1313 }
1314 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1315 inode->i_size = le32_to_cpu(raw_inode->i_size);
1316 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1317 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1318 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1319 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1320 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1321 /* We now have enough fields to check if the inode was active or not.
1322 * This is needed because nfsd might try to access dead inodes
1323 * the test is that same one that e2fsck uses
1324 * NeilBrown 1999oct15
1325 */
1326 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1327 /* this inode is deleted */
1328 brelse (bh);
1329 ret = -ESTALE;
1330 goto bad_inode;
1331 }
1332 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1333 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1334 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1335 ei->i_frag_no = raw_inode->i_frag;
1336 ei->i_frag_size = raw_inode->i_fsize;
1337 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1338 ei->i_dir_acl = 0;
1339 if (S_ISREG(inode->i_mode))
1340 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1341 else
1342 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1343 ei->i_dtime = 0;
1344 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1345 ei->i_state = 0;
1346 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1347 ei->i_dir_start_lookup = 0;
1348
1349 /*
1350 * NOTE! The in-memory inode i_data array is in little-endian order
1351 * even on big-endian machines: we do NOT byteswap the block numbers!
1352 */
1353 for (n = 0; n < EXT2_N_BLOCKS; n++)
1354 ei->i_data[n] = raw_inode->i_block[n];
1355
1356 if (S_ISREG(inode->i_mode)) {
1357 inode->i_op = &ext2_file_inode_operations;
1358 if (ext2_use_xip(inode->i_sb)) {
1359 inode->i_mapping->a_ops = &ext2_aops_xip;
1360 inode->i_fop = &ext2_xip_file_operations;
1361 } else if (test_opt(inode->i_sb, NOBH)) {
1362 inode->i_mapping->a_ops = &ext2_nobh_aops;
1363 inode->i_fop = &ext2_file_operations;
1364 } else {
1365 inode->i_mapping->a_ops = &ext2_aops;
1366 inode->i_fop = &ext2_file_operations;
1367 }
1368 } else if (S_ISDIR(inode->i_mode)) {
1369 inode->i_op = &ext2_dir_inode_operations;
1370 inode->i_fop = &ext2_dir_operations;
1371 if (test_opt(inode->i_sb, NOBH))
1372 inode->i_mapping->a_ops = &ext2_nobh_aops;
1373 else
1374 inode->i_mapping->a_ops = &ext2_aops;
1375 } else if (S_ISLNK(inode->i_mode)) {
1376 if (ext2_inode_is_fast_symlink(inode)) {
1377 inode->i_op = &ext2_fast_symlink_inode_operations;
1378 nd_terminate_link(ei->i_data, inode->i_size,
1379 sizeof(ei->i_data) - 1);
1380 } else {
1381 inode->i_op = &ext2_symlink_inode_operations;
1382 if (test_opt(inode->i_sb, NOBH))
1383 inode->i_mapping->a_ops = &ext2_nobh_aops;
1384 else
1385 inode->i_mapping->a_ops = &ext2_aops;
1386 }
1387 } else {
1388 inode->i_op = &ext2_special_inode_operations;
1389 if (raw_inode->i_block[0])
1390 init_special_inode(inode, inode->i_mode,
1391 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1392 else
1393 init_special_inode(inode, inode->i_mode,
1394 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1395 }
1396 brelse (bh);
1397 ext2_set_inode_flags(inode);
1398 unlock_new_inode(inode);
1399 return inode;
1400
1401 bad_inode:
1402 iget_failed(inode);
1403 return ERR_PTR(ret);
1404 }
1405
1406 static int __ext2_write_inode(struct inode *inode, int do_sync)
1407 {
1408 struct ext2_inode_info *ei = EXT2_I(inode);
1409 struct super_block *sb = inode->i_sb;
1410 ino_t ino = inode->i_ino;
1411 uid_t uid = inode->i_uid;
1412 gid_t gid = inode->i_gid;
1413 struct buffer_head * bh;
1414 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1415 int n;
1416 int err = 0;
1417
1418 if (IS_ERR(raw_inode))
1419 return -EIO;
1420
1421 /* For fields not not tracking in the in-memory inode,
1422 * initialise them to zero for new inodes. */
1423 if (ei->i_state & EXT2_STATE_NEW)
1424 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1425
1426 ext2_get_inode_flags(ei);
1427 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1428 if (!(test_opt(sb, NO_UID32))) {
1429 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1430 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1431 /*
1432 * Fix up interoperability with old kernels. Otherwise, old inodes get
1433 * re-used with the upper 16 bits of the uid/gid intact
1434 */
1435 if (!ei->i_dtime) {
1436 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1437 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1438 } else {
1439 raw_inode->i_uid_high = 0;
1440 raw_inode->i_gid_high = 0;
1441 }
1442 } else {
1443 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1444 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1445 raw_inode->i_uid_high = 0;
1446 raw_inode->i_gid_high = 0;
1447 }
1448 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1449 raw_inode->i_size = cpu_to_le32(inode->i_size);
1450 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1451 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1452 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1453
1454 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1455 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1456 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1457 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1458 raw_inode->i_frag = ei->i_frag_no;
1459 raw_inode->i_fsize = ei->i_frag_size;
1460 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1461 if (!S_ISREG(inode->i_mode))
1462 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1463 else {
1464 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1465 if (inode->i_size > 0x7fffffffULL) {
1466 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1467 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1468 EXT2_SB(sb)->s_es->s_rev_level ==
1469 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1470 /* If this is the first large file
1471 * created, add a flag to the superblock.
1472 */
1473 spin_lock(&EXT2_SB(sb)->s_lock);
1474 ext2_update_dynamic_rev(sb);
1475 EXT2_SET_RO_COMPAT_FEATURE(sb,
1476 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1477 spin_unlock(&EXT2_SB(sb)->s_lock);
1478 ext2_write_super(sb);
1479 }
1480 }
1481 }
1482
1483 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1484 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1485 if (old_valid_dev(inode->i_rdev)) {
1486 raw_inode->i_block[0] =
1487 cpu_to_le32(old_encode_dev(inode->i_rdev));
1488 raw_inode->i_block[1] = 0;
1489 } else {
1490 raw_inode->i_block[0] = 0;
1491 raw_inode->i_block[1] =
1492 cpu_to_le32(new_encode_dev(inode->i_rdev));
1493 raw_inode->i_block[2] = 0;
1494 }
1495 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1496 raw_inode->i_block[n] = ei->i_data[n];
1497 mark_buffer_dirty(bh);
1498 if (do_sync) {
1499 sync_dirty_buffer(bh);
1500 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1501 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1502 sb->s_id, (unsigned long) ino);
1503 err = -EIO;
1504 }
1505 }
1506 ei->i_state &= ~EXT2_STATE_NEW;
1507 brelse (bh);
1508 return err;
1509 }
1510
1511 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1512 {
1513 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1514 }
1515
1516 int ext2_sync_inode(struct inode *inode)
1517 {
1518 struct writeback_control wbc = {
1519 .sync_mode = WB_SYNC_ALL,
1520 .nr_to_write = 0, /* sys_fsync did this */
1521 };
1522 return sync_inode(inode, &wbc);
1523 }
1524
1525 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1526 {
1527 struct inode *inode = dentry->d_inode;
1528 int error;
1529
1530 error = inode_change_ok(inode, iattr);
1531 if (error)
1532 return error;
1533
1534 if (is_quota_modification(inode, iattr))
1535 dquot_initialize(inode);
1536 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1537 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1538 error = dquot_transfer(inode, iattr);
1539 if (error)
1540 return error;
1541 }
1542 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1543 error = ext2_setsize(inode, iattr->ia_size);
1544 if (error)
1545 return error;
1546 }
1547 generic_setattr(inode, iattr);
1548 if (iattr->ia_valid & ATTR_MODE)
1549 error = ext2_acl_chmod(inode);
1550 mark_inode_dirty(inode);
1551
1552 return error;
1553 }
This page took 0.062211 seconds and 4 git commands to generate.