ext4: add support for extent pre-caching
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
162 {
163 int err;
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
172 }
173 return err;
174 }
175
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
179 {
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
183
184 /*
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
200 */
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
210 }
211
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
216 }
217
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
220 }
221
222 /*
223 * Allocation for a meta data block
224 */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 ext4_fsblk_t goal, newblock;
231
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
236 }
237
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 int size;
241
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
249 }
250
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 int size;
254
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
262 }
263
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 int size;
267
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
276 }
277
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 int size;
281
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
290 }
291
292 /*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 struct ext4_inode_info *ei = EXT4_I(inode);
300 int idxs;
301
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
304
305 /*
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
312 */
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 int num = 0;
316
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
328 }
329
330 /*
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
333 */
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
337 }
338
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 int max;
343
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
354 }
355
356 return max;
357 }
358
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
363
364 if (len == 0)
365 return 0;
366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368
369 static int ext4_valid_extent_idx(struct inode *inode,
370 struct ext4_extent_idx *ext_idx)
371 {
372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376
377 static int ext4_valid_extent_entries(struct inode *inode,
378 struct ext4_extent_header *eh,
379 int depth)
380 {
381 unsigned short entries;
382 if (eh->eh_entries == 0)
383 return 1;
384
385 entries = le16_to_cpu(eh->eh_entries);
386
387 if (depth == 0) {
388 /* leaf entries */
389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 while (entries) {
391 if (!ext4_valid_extent(inode, ext))
392 return 0;
393 ext++;
394 entries--;
395 }
396 } else {
397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 while (entries) {
399 if (!ext4_valid_extent_idx(inode, ext_idx))
400 return 0;
401 ext_idx++;
402 entries--;
403 }
404 }
405 return 1;
406 }
407
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 struct inode *inode, struct ext4_extent_header *eh,
410 int depth, ext4_fsblk_t pblk)
411 {
412 const char *error_msg;
413 int max = 0;
414
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
417 goto corrupted;
418 }
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
421 goto corrupted;
422 }
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
425 goto corrupted;
426 }
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
430 goto corrupted;
431 }
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
434 goto corrupted;
435 }
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
438 goto corrupted;
439 }
440 /* Verify checksum on non-root extent tree nodes */
441 if (ext_depth(inode) != depth &&
442 !ext4_extent_block_csum_verify(inode, eh)) {
443 error_msg = "extent tree corrupted";
444 goto corrupted;
445 }
446 return 0;
447
448 corrupted:
449 ext4_error_inode(inode, function, line, 0,
450 "pblk %llu bad header/extent: %s - magic %x, "
451 "entries %u, max %u(%u), depth %u(%u)",
452 (unsigned long long) pblk, error_msg,
453 le16_to_cpu(eh->eh_magic),
454 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455 max, le16_to_cpu(eh->eh_depth), depth);
456 return -EIO;
457 }
458
459 #define ext4_ext_check(inode, eh, depth, pblk) \
460 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
461
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
465 }
466
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 struct inode *inode, ext4_fsblk_t pblk, int depth,
470 int flags)
471 {
472 struct buffer_head *bh;
473 int err;
474
475 bh = sb_getblk(inode->i_sb, pblk);
476 if (unlikely(!bh))
477 return ERR_PTR(-ENOMEM);
478
479 if (!bh_uptodate_or_lock(bh)) {
480 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481 err = bh_submit_read(bh);
482 if (err < 0)
483 goto errout;
484 }
485 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
486 return bh;
487 err = __ext4_ext_check(function, line, inode,
488 ext_block_hdr(bh), depth, pblk);
489 if (err)
490 goto errout;
491 set_buffer_verified(bh);
492 /*
493 * If this is a leaf block, cache all of its entries
494 */
495 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496 struct ext4_extent_header *eh = ext_block_hdr(bh);
497 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498 ext4_lblk_t prev = 0;
499 int i;
500
501 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502 unsigned int status = EXTENT_STATUS_WRITTEN;
503 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504 int len = ext4_ext_get_actual_len(ex);
505
506 if (prev && (prev != lblk))
507 ext4_es_cache_extent(inode, prev,
508 lblk - prev, ~0,
509 EXTENT_STATUS_HOLE);
510
511 if (ext4_ext_is_uninitialized(ex))
512 status = EXTENT_STATUS_UNWRITTEN;
513 ext4_es_cache_extent(inode, lblk, len,
514 ext4_ext_pblock(ex), status);
515 prev = lblk + len;
516 }
517 }
518 return bh;
519 errout:
520 put_bh(bh);
521 return ERR_PTR(err);
522
523 }
524
525 #define read_extent_tree_block(inode, pblk, depth, flags) \
526 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
527 (depth), (flags))
528
529 /*
530 * This function is called to cache a file's extent information in the
531 * extent status tree
532 */
533 int ext4_ext_precache(struct inode *inode)
534 {
535 struct ext4_inode_info *ei = EXT4_I(inode);
536 struct ext4_ext_path *path = NULL;
537 struct buffer_head *bh;
538 int i = 0, depth, ret = 0;
539
540 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
541 return 0; /* not an extent-mapped inode */
542
543 down_read(&ei->i_data_sem);
544 depth = ext_depth(inode);
545
546 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
547 GFP_NOFS);
548 if (path == NULL) {
549 up_read(&ei->i_data_sem);
550 return -ENOMEM;
551 }
552
553 /* Don't cache anything if there are no external extent blocks */
554 if (depth == 0)
555 goto out;
556 path[0].p_hdr = ext_inode_hdr(inode);
557 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
558 if (ret)
559 goto out;
560 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
561 while (i >= 0) {
562 /*
563 * If this is a leaf block or we've reached the end of
564 * the index block, go up
565 */
566 if ((i == depth) ||
567 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
568 brelse(path[i].p_bh);
569 path[i].p_bh = NULL;
570 i--;
571 continue;
572 }
573 bh = read_extent_tree_block(inode,
574 ext4_idx_pblock(path[i].p_idx++),
575 depth - i - 1,
576 EXT4_EX_FORCE_CACHE);
577 if (IS_ERR(bh)) {
578 ret = PTR_ERR(bh);
579 break;
580 }
581 i++;
582 path[i].p_bh = bh;
583 path[i].p_hdr = ext_block_hdr(bh);
584 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
585 }
586 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
587 out:
588 up_read(&ei->i_data_sem);
589 ext4_ext_drop_refs(path);
590 kfree(path);
591 return ret;
592 }
593
594 #ifdef EXT_DEBUG
595 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
596 {
597 int k, l = path->p_depth;
598
599 ext_debug("path:");
600 for (k = 0; k <= l; k++, path++) {
601 if (path->p_idx) {
602 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
603 ext4_idx_pblock(path->p_idx));
604 } else if (path->p_ext) {
605 ext_debug(" %d:[%d]%d:%llu ",
606 le32_to_cpu(path->p_ext->ee_block),
607 ext4_ext_is_uninitialized(path->p_ext),
608 ext4_ext_get_actual_len(path->p_ext),
609 ext4_ext_pblock(path->p_ext));
610 } else
611 ext_debug(" []");
612 }
613 ext_debug("\n");
614 }
615
616 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
617 {
618 int depth = ext_depth(inode);
619 struct ext4_extent_header *eh;
620 struct ext4_extent *ex;
621 int i;
622
623 if (!path)
624 return;
625
626 eh = path[depth].p_hdr;
627 ex = EXT_FIRST_EXTENT(eh);
628
629 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
630
631 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
632 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
633 ext4_ext_is_uninitialized(ex),
634 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
635 }
636 ext_debug("\n");
637 }
638
639 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
640 ext4_fsblk_t newblock, int level)
641 {
642 int depth = ext_depth(inode);
643 struct ext4_extent *ex;
644
645 if (depth != level) {
646 struct ext4_extent_idx *idx;
647 idx = path[level].p_idx;
648 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
649 ext_debug("%d: move %d:%llu in new index %llu\n", level,
650 le32_to_cpu(idx->ei_block),
651 ext4_idx_pblock(idx),
652 newblock);
653 idx++;
654 }
655
656 return;
657 }
658
659 ex = path[depth].p_ext;
660 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
661 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
662 le32_to_cpu(ex->ee_block),
663 ext4_ext_pblock(ex),
664 ext4_ext_is_uninitialized(ex),
665 ext4_ext_get_actual_len(ex),
666 newblock);
667 ex++;
668 }
669 }
670
671 #else
672 #define ext4_ext_show_path(inode, path)
673 #define ext4_ext_show_leaf(inode, path)
674 #define ext4_ext_show_move(inode, path, newblock, level)
675 #endif
676
677 void ext4_ext_drop_refs(struct ext4_ext_path *path)
678 {
679 int depth = path->p_depth;
680 int i;
681
682 for (i = 0; i <= depth; i++, path++)
683 if (path->p_bh) {
684 brelse(path->p_bh);
685 path->p_bh = NULL;
686 }
687 }
688
689 /*
690 * ext4_ext_binsearch_idx:
691 * binary search for the closest index of the given block
692 * the header must be checked before calling this
693 */
694 static void
695 ext4_ext_binsearch_idx(struct inode *inode,
696 struct ext4_ext_path *path, ext4_lblk_t block)
697 {
698 struct ext4_extent_header *eh = path->p_hdr;
699 struct ext4_extent_idx *r, *l, *m;
700
701
702 ext_debug("binsearch for %u(idx): ", block);
703
704 l = EXT_FIRST_INDEX(eh) + 1;
705 r = EXT_LAST_INDEX(eh);
706 while (l <= r) {
707 m = l + (r - l) / 2;
708 if (block < le32_to_cpu(m->ei_block))
709 r = m - 1;
710 else
711 l = m + 1;
712 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
713 m, le32_to_cpu(m->ei_block),
714 r, le32_to_cpu(r->ei_block));
715 }
716
717 path->p_idx = l - 1;
718 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
719 ext4_idx_pblock(path->p_idx));
720
721 #ifdef CHECK_BINSEARCH
722 {
723 struct ext4_extent_idx *chix, *ix;
724 int k;
725
726 chix = ix = EXT_FIRST_INDEX(eh);
727 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
728 if (k != 0 &&
729 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
730 printk(KERN_DEBUG "k=%d, ix=0x%p, "
731 "first=0x%p\n", k,
732 ix, EXT_FIRST_INDEX(eh));
733 printk(KERN_DEBUG "%u <= %u\n",
734 le32_to_cpu(ix->ei_block),
735 le32_to_cpu(ix[-1].ei_block));
736 }
737 BUG_ON(k && le32_to_cpu(ix->ei_block)
738 <= le32_to_cpu(ix[-1].ei_block));
739 if (block < le32_to_cpu(ix->ei_block))
740 break;
741 chix = ix;
742 }
743 BUG_ON(chix != path->p_idx);
744 }
745 #endif
746
747 }
748
749 /*
750 * ext4_ext_binsearch:
751 * binary search for closest extent of the given block
752 * the header must be checked before calling this
753 */
754 static void
755 ext4_ext_binsearch(struct inode *inode,
756 struct ext4_ext_path *path, ext4_lblk_t block)
757 {
758 struct ext4_extent_header *eh = path->p_hdr;
759 struct ext4_extent *r, *l, *m;
760
761 if (eh->eh_entries == 0) {
762 /*
763 * this leaf is empty:
764 * we get such a leaf in split/add case
765 */
766 return;
767 }
768
769 ext_debug("binsearch for %u: ", block);
770
771 l = EXT_FIRST_EXTENT(eh) + 1;
772 r = EXT_LAST_EXTENT(eh);
773
774 while (l <= r) {
775 m = l + (r - l) / 2;
776 if (block < le32_to_cpu(m->ee_block))
777 r = m - 1;
778 else
779 l = m + 1;
780 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
781 m, le32_to_cpu(m->ee_block),
782 r, le32_to_cpu(r->ee_block));
783 }
784
785 path->p_ext = l - 1;
786 ext_debug(" -> %d:%llu:[%d]%d ",
787 le32_to_cpu(path->p_ext->ee_block),
788 ext4_ext_pblock(path->p_ext),
789 ext4_ext_is_uninitialized(path->p_ext),
790 ext4_ext_get_actual_len(path->p_ext));
791
792 #ifdef CHECK_BINSEARCH
793 {
794 struct ext4_extent *chex, *ex;
795 int k;
796
797 chex = ex = EXT_FIRST_EXTENT(eh);
798 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
799 BUG_ON(k && le32_to_cpu(ex->ee_block)
800 <= le32_to_cpu(ex[-1].ee_block));
801 if (block < le32_to_cpu(ex->ee_block))
802 break;
803 chex = ex;
804 }
805 BUG_ON(chex != path->p_ext);
806 }
807 #endif
808
809 }
810
811 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
812 {
813 struct ext4_extent_header *eh;
814
815 eh = ext_inode_hdr(inode);
816 eh->eh_depth = 0;
817 eh->eh_entries = 0;
818 eh->eh_magic = EXT4_EXT_MAGIC;
819 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
820 ext4_mark_inode_dirty(handle, inode);
821 return 0;
822 }
823
824 struct ext4_ext_path *
825 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
826 struct ext4_ext_path *path, int flags)
827 {
828 struct ext4_extent_header *eh;
829 struct buffer_head *bh;
830 short int depth, i, ppos = 0, alloc = 0;
831 int ret;
832
833 eh = ext_inode_hdr(inode);
834 depth = ext_depth(inode);
835
836 /* account possible depth increase */
837 if (!path) {
838 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
839 GFP_NOFS);
840 if (!path)
841 return ERR_PTR(-ENOMEM);
842 alloc = 1;
843 }
844 path[0].p_hdr = eh;
845 path[0].p_bh = NULL;
846
847 i = depth;
848 /* walk through the tree */
849 while (i) {
850 ext_debug("depth %d: num %d, max %d\n",
851 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
852
853 ext4_ext_binsearch_idx(inode, path + ppos, block);
854 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
855 path[ppos].p_depth = i;
856 path[ppos].p_ext = NULL;
857
858 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
859 flags);
860 if (IS_ERR(bh)) {
861 ret = PTR_ERR(bh);
862 goto err;
863 }
864
865 eh = ext_block_hdr(bh);
866 ppos++;
867 if (unlikely(ppos > depth)) {
868 put_bh(bh);
869 EXT4_ERROR_INODE(inode,
870 "ppos %d > depth %d", ppos, depth);
871 ret = -EIO;
872 goto err;
873 }
874 path[ppos].p_bh = bh;
875 path[ppos].p_hdr = eh;
876 }
877
878 path[ppos].p_depth = i;
879 path[ppos].p_ext = NULL;
880 path[ppos].p_idx = NULL;
881
882 /* find extent */
883 ext4_ext_binsearch(inode, path + ppos, block);
884 /* if not an empty leaf */
885 if (path[ppos].p_ext)
886 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
887
888 ext4_ext_show_path(inode, path);
889
890 return path;
891
892 err:
893 ext4_ext_drop_refs(path);
894 if (alloc)
895 kfree(path);
896 return ERR_PTR(ret);
897 }
898
899 /*
900 * ext4_ext_insert_index:
901 * insert new index [@logical;@ptr] into the block at @curp;
902 * check where to insert: before @curp or after @curp
903 */
904 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
905 struct ext4_ext_path *curp,
906 int logical, ext4_fsblk_t ptr)
907 {
908 struct ext4_extent_idx *ix;
909 int len, err;
910
911 err = ext4_ext_get_access(handle, inode, curp);
912 if (err)
913 return err;
914
915 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
916 EXT4_ERROR_INODE(inode,
917 "logical %d == ei_block %d!",
918 logical, le32_to_cpu(curp->p_idx->ei_block));
919 return -EIO;
920 }
921
922 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
923 >= le16_to_cpu(curp->p_hdr->eh_max))) {
924 EXT4_ERROR_INODE(inode,
925 "eh_entries %d >= eh_max %d!",
926 le16_to_cpu(curp->p_hdr->eh_entries),
927 le16_to_cpu(curp->p_hdr->eh_max));
928 return -EIO;
929 }
930
931 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
932 /* insert after */
933 ext_debug("insert new index %d after: %llu\n", logical, ptr);
934 ix = curp->p_idx + 1;
935 } else {
936 /* insert before */
937 ext_debug("insert new index %d before: %llu\n", logical, ptr);
938 ix = curp->p_idx;
939 }
940
941 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
942 BUG_ON(len < 0);
943 if (len > 0) {
944 ext_debug("insert new index %d: "
945 "move %d indices from 0x%p to 0x%p\n",
946 logical, len, ix, ix + 1);
947 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
948 }
949
950 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
951 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
952 return -EIO;
953 }
954
955 ix->ei_block = cpu_to_le32(logical);
956 ext4_idx_store_pblock(ix, ptr);
957 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
958
959 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
960 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
961 return -EIO;
962 }
963
964 err = ext4_ext_dirty(handle, inode, curp);
965 ext4_std_error(inode->i_sb, err);
966
967 return err;
968 }
969
970 /*
971 * ext4_ext_split:
972 * inserts new subtree into the path, using free index entry
973 * at depth @at:
974 * - allocates all needed blocks (new leaf and all intermediate index blocks)
975 * - makes decision where to split
976 * - moves remaining extents and index entries (right to the split point)
977 * into the newly allocated blocks
978 * - initializes subtree
979 */
980 static int ext4_ext_split(handle_t *handle, struct inode *inode,
981 unsigned int flags,
982 struct ext4_ext_path *path,
983 struct ext4_extent *newext, int at)
984 {
985 struct buffer_head *bh = NULL;
986 int depth = ext_depth(inode);
987 struct ext4_extent_header *neh;
988 struct ext4_extent_idx *fidx;
989 int i = at, k, m, a;
990 ext4_fsblk_t newblock, oldblock;
991 __le32 border;
992 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
993 int err = 0;
994
995 /* make decision: where to split? */
996 /* FIXME: now decision is simplest: at current extent */
997
998 /* if current leaf will be split, then we should use
999 * border from split point */
1000 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1001 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1002 return -EIO;
1003 }
1004 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1005 border = path[depth].p_ext[1].ee_block;
1006 ext_debug("leaf will be split."
1007 " next leaf starts at %d\n",
1008 le32_to_cpu(border));
1009 } else {
1010 border = newext->ee_block;
1011 ext_debug("leaf will be added."
1012 " next leaf starts at %d\n",
1013 le32_to_cpu(border));
1014 }
1015
1016 /*
1017 * If error occurs, then we break processing
1018 * and mark filesystem read-only. index won't
1019 * be inserted and tree will be in consistent
1020 * state. Next mount will repair buffers too.
1021 */
1022
1023 /*
1024 * Get array to track all allocated blocks.
1025 * We need this to handle errors and free blocks
1026 * upon them.
1027 */
1028 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1029 if (!ablocks)
1030 return -ENOMEM;
1031
1032 /* allocate all needed blocks */
1033 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1034 for (a = 0; a < depth - at; a++) {
1035 newblock = ext4_ext_new_meta_block(handle, inode, path,
1036 newext, &err, flags);
1037 if (newblock == 0)
1038 goto cleanup;
1039 ablocks[a] = newblock;
1040 }
1041
1042 /* initialize new leaf */
1043 newblock = ablocks[--a];
1044 if (unlikely(newblock == 0)) {
1045 EXT4_ERROR_INODE(inode, "newblock == 0!");
1046 err = -EIO;
1047 goto cleanup;
1048 }
1049 bh = sb_getblk(inode->i_sb, newblock);
1050 if (unlikely(!bh)) {
1051 err = -ENOMEM;
1052 goto cleanup;
1053 }
1054 lock_buffer(bh);
1055
1056 err = ext4_journal_get_create_access(handle, bh);
1057 if (err)
1058 goto cleanup;
1059
1060 neh = ext_block_hdr(bh);
1061 neh->eh_entries = 0;
1062 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1063 neh->eh_magic = EXT4_EXT_MAGIC;
1064 neh->eh_depth = 0;
1065
1066 /* move remainder of path[depth] to the new leaf */
1067 if (unlikely(path[depth].p_hdr->eh_entries !=
1068 path[depth].p_hdr->eh_max)) {
1069 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1070 path[depth].p_hdr->eh_entries,
1071 path[depth].p_hdr->eh_max);
1072 err = -EIO;
1073 goto cleanup;
1074 }
1075 /* start copy from next extent */
1076 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1077 ext4_ext_show_move(inode, path, newblock, depth);
1078 if (m) {
1079 struct ext4_extent *ex;
1080 ex = EXT_FIRST_EXTENT(neh);
1081 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1082 le16_add_cpu(&neh->eh_entries, m);
1083 }
1084
1085 ext4_extent_block_csum_set(inode, neh);
1086 set_buffer_uptodate(bh);
1087 unlock_buffer(bh);
1088
1089 err = ext4_handle_dirty_metadata(handle, inode, bh);
1090 if (err)
1091 goto cleanup;
1092 brelse(bh);
1093 bh = NULL;
1094
1095 /* correct old leaf */
1096 if (m) {
1097 err = ext4_ext_get_access(handle, inode, path + depth);
1098 if (err)
1099 goto cleanup;
1100 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1101 err = ext4_ext_dirty(handle, inode, path + depth);
1102 if (err)
1103 goto cleanup;
1104
1105 }
1106
1107 /* create intermediate indexes */
1108 k = depth - at - 1;
1109 if (unlikely(k < 0)) {
1110 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1111 err = -EIO;
1112 goto cleanup;
1113 }
1114 if (k)
1115 ext_debug("create %d intermediate indices\n", k);
1116 /* insert new index into current index block */
1117 /* current depth stored in i var */
1118 i = depth - 1;
1119 while (k--) {
1120 oldblock = newblock;
1121 newblock = ablocks[--a];
1122 bh = sb_getblk(inode->i_sb, newblock);
1123 if (unlikely(!bh)) {
1124 err = -ENOMEM;
1125 goto cleanup;
1126 }
1127 lock_buffer(bh);
1128
1129 err = ext4_journal_get_create_access(handle, bh);
1130 if (err)
1131 goto cleanup;
1132
1133 neh = ext_block_hdr(bh);
1134 neh->eh_entries = cpu_to_le16(1);
1135 neh->eh_magic = EXT4_EXT_MAGIC;
1136 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1137 neh->eh_depth = cpu_to_le16(depth - i);
1138 fidx = EXT_FIRST_INDEX(neh);
1139 fidx->ei_block = border;
1140 ext4_idx_store_pblock(fidx, oldblock);
1141
1142 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1143 i, newblock, le32_to_cpu(border), oldblock);
1144
1145 /* move remainder of path[i] to the new index block */
1146 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1147 EXT_LAST_INDEX(path[i].p_hdr))) {
1148 EXT4_ERROR_INODE(inode,
1149 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1150 le32_to_cpu(path[i].p_ext->ee_block));
1151 err = -EIO;
1152 goto cleanup;
1153 }
1154 /* start copy indexes */
1155 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1156 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1157 EXT_MAX_INDEX(path[i].p_hdr));
1158 ext4_ext_show_move(inode, path, newblock, i);
1159 if (m) {
1160 memmove(++fidx, path[i].p_idx,
1161 sizeof(struct ext4_extent_idx) * m);
1162 le16_add_cpu(&neh->eh_entries, m);
1163 }
1164 ext4_extent_block_csum_set(inode, neh);
1165 set_buffer_uptodate(bh);
1166 unlock_buffer(bh);
1167
1168 err = ext4_handle_dirty_metadata(handle, inode, bh);
1169 if (err)
1170 goto cleanup;
1171 brelse(bh);
1172 bh = NULL;
1173
1174 /* correct old index */
1175 if (m) {
1176 err = ext4_ext_get_access(handle, inode, path + i);
1177 if (err)
1178 goto cleanup;
1179 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1180 err = ext4_ext_dirty(handle, inode, path + i);
1181 if (err)
1182 goto cleanup;
1183 }
1184
1185 i--;
1186 }
1187
1188 /* insert new index */
1189 err = ext4_ext_insert_index(handle, inode, path + at,
1190 le32_to_cpu(border), newblock);
1191
1192 cleanup:
1193 if (bh) {
1194 if (buffer_locked(bh))
1195 unlock_buffer(bh);
1196 brelse(bh);
1197 }
1198
1199 if (err) {
1200 /* free all allocated blocks in error case */
1201 for (i = 0; i < depth; i++) {
1202 if (!ablocks[i])
1203 continue;
1204 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1205 EXT4_FREE_BLOCKS_METADATA);
1206 }
1207 }
1208 kfree(ablocks);
1209
1210 return err;
1211 }
1212
1213 /*
1214 * ext4_ext_grow_indepth:
1215 * implements tree growing procedure:
1216 * - allocates new block
1217 * - moves top-level data (index block or leaf) into the new block
1218 * - initializes new top-level, creating index that points to the
1219 * just created block
1220 */
1221 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1222 unsigned int flags,
1223 struct ext4_extent *newext)
1224 {
1225 struct ext4_extent_header *neh;
1226 struct buffer_head *bh;
1227 ext4_fsblk_t newblock;
1228 int err = 0;
1229
1230 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1231 newext, &err, flags);
1232 if (newblock == 0)
1233 return err;
1234
1235 bh = sb_getblk(inode->i_sb, newblock);
1236 if (unlikely(!bh))
1237 return -ENOMEM;
1238 lock_buffer(bh);
1239
1240 err = ext4_journal_get_create_access(handle, bh);
1241 if (err) {
1242 unlock_buffer(bh);
1243 goto out;
1244 }
1245
1246 /* move top-level index/leaf into new block */
1247 memmove(bh->b_data, EXT4_I(inode)->i_data,
1248 sizeof(EXT4_I(inode)->i_data));
1249
1250 /* set size of new block */
1251 neh = ext_block_hdr(bh);
1252 /* old root could have indexes or leaves
1253 * so calculate e_max right way */
1254 if (ext_depth(inode))
1255 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1256 else
1257 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1258 neh->eh_magic = EXT4_EXT_MAGIC;
1259 ext4_extent_block_csum_set(inode, neh);
1260 set_buffer_uptodate(bh);
1261 unlock_buffer(bh);
1262
1263 err = ext4_handle_dirty_metadata(handle, inode, bh);
1264 if (err)
1265 goto out;
1266
1267 /* Update top-level index: num,max,pointer */
1268 neh = ext_inode_hdr(inode);
1269 neh->eh_entries = cpu_to_le16(1);
1270 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1271 if (neh->eh_depth == 0) {
1272 /* Root extent block becomes index block */
1273 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1274 EXT_FIRST_INDEX(neh)->ei_block =
1275 EXT_FIRST_EXTENT(neh)->ee_block;
1276 }
1277 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1278 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1279 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1280 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1281
1282 le16_add_cpu(&neh->eh_depth, 1);
1283 ext4_mark_inode_dirty(handle, inode);
1284 out:
1285 brelse(bh);
1286
1287 return err;
1288 }
1289
1290 /*
1291 * ext4_ext_create_new_leaf:
1292 * finds empty index and adds new leaf.
1293 * if no free index is found, then it requests in-depth growing.
1294 */
1295 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1296 unsigned int mb_flags,
1297 unsigned int gb_flags,
1298 struct ext4_ext_path *path,
1299 struct ext4_extent *newext)
1300 {
1301 struct ext4_ext_path *curp;
1302 int depth, i, err = 0;
1303
1304 repeat:
1305 i = depth = ext_depth(inode);
1306
1307 /* walk up to the tree and look for free index entry */
1308 curp = path + depth;
1309 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1310 i--;
1311 curp--;
1312 }
1313
1314 /* we use already allocated block for index block,
1315 * so subsequent data blocks should be contiguous */
1316 if (EXT_HAS_FREE_INDEX(curp)) {
1317 /* if we found index with free entry, then use that
1318 * entry: create all needed subtree and add new leaf */
1319 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1320 if (err)
1321 goto out;
1322
1323 /* refill path */
1324 ext4_ext_drop_refs(path);
1325 path = ext4_ext_find_extent(inode,
1326 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1327 path, gb_flags);
1328 if (IS_ERR(path))
1329 err = PTR_ERR(path);
1330 } else {
1331 /* tree is full, time to grow in depth */
1332 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1333 if (err)
1334 goto out;
1335
1336 /* refill path */
1337 ext4_ext_drop_refs(path);
1338 path = ext4_ext_find_extent(inode,
1339 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1340 path, gb_flags);
1341 if (IS_ERR(path)) {
1342 err = PTR_ERR(path);
1343 goto out;
1344 }
1345
1346 /*
1347 * only first (depth 0 -> 1) produces free space;
1348 * in all other cases we have to split the grown tree
1349 */
1350 depth = ext_depth(inode);
1351 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1352 /* now we need to split */
1353 goto repeat;
1354 }
1355 }
1356
1357 out:
1358 return err;
1359 }
1360
1361 /*
1362 * search the closest allocated block to the left for *logical
1363 * and returns it at @logical + it's physical address at @phys
1364 * if *logical is the smallest allocated block, the function
1365 * returns 0 at @phys
1366 * return value contains 0 (success) or error code
1367 */
1368 static int ext4_ext_search_left(struct inode *inode,
1369 struct ext4_ext_path *path,
1370 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1371 {
1372 struct ext4_extent_idx *ix;
1373 struct ext4_extent *ex;
1374 int depth, ee_len;
1375
1376 if (unlikely(path == NULL)) {
1377 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1378 return -EIO;
1379 }
1380 depth = path->p_depth;
1381 *phys = 0;
1382
1383 if (depth == 0 && path->p_ext == NULL)
1384 return 0;
1385
1386 /* usually extent in the path covers blocks smaller
1387 * then *logical, but it can be that extent is the
1388 * first one in the file */
1389
1390 ex = path[depth].p_ext;
1391 ee_len = ext4_ext_get_actual_len(ex);
1392 if (*logical < le32_to_cpu(ex->ee_block)) {
1393 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1394 EXT4_ERROR_INODE(inode,
1395 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1396 *logical, le32_to_cpu(ex->ee_block));
1397 return -EIO;
1398 }
1399 while (--depth >= 0) {
1400 ix = path[depth].p_idx;
1401 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1402 EXT4_ERROR_INODE(inode,
1403 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1404 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1405 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1406 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1407 depth);
1408 return -EIO;
1409 }
1410 }
1411 return 0;
1412 }
1413
1414 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1415 EXT4_ERROR_INODE(inode,
1416 "logical %d < ee_block %d + ee_len %d!",
1417 *logical, le32_to_cpu(ex->ee_block), ee_len);
1418 return -EIO;
1419 }
1420
1421 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1422 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1423 return 0;
1424 }
1425
1426 /*
1427 * search the closest allocated block to the right for *logical
1428 * and returns it at @logical + it's physical address at @phys
1429 * if *logical is the largest allocated block, the function
1430 * returns 0 at @phys
1431 * return value contains 0 (success) or error code
1432 */
1433 static int ext4_ext_search_right(struct inode *inode,
1434 struct ext4_ext_path *path,
1435 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1436 struct ext4_extent **ret_ex)
1437 {
1438 struct buffer_head *bh = NULL;
1439 struct ext4_extent_header *eh;
1440 struct ext4_extent_idx *ix;
1441 struct ext4_extent *ex;
1442 ext4_fsblk_t block;
1443 int depth; /* Note, NOT eh_depth; depth from top of tree */
1444 int ee_len;
1445
1446 if (unlikely(path == NULL)) {
1447 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1448 return -EIO;
1449 }
1450 depth = path->p_depth;
1451 *phys = 0;
1452
1453 if (depth == 0 && path->p_ext == NULL)
1454 return 0;
1455
1456 /* usually extent in the path covers blocks smaller
1457 * then *logical, but it can be that extent is the
1458 * first one in the file */
1459
1460 ex = path[depth].p_ext;
1461 ee_len = ext4_ext_get_actual_len(ex);
1462 if (*logical < le32_to_cpu(ex->ee_block)) {
1463 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1464 EXT4_ERROR_INODE(inode,
1465 "first_extent(path[%d].p_hdr) != ex",
1466 depth);
1467 return -EIO;
1468 }
1469 while (--depth >= 0) {
1470 ix = path[depth].p_idx;
1471 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1472 EXT4_ERROR_INODE(inode,
1473 "ix != EXT_FIRST_INDEX *logical %d!",
1474 *logical);
1475 return -EIO;
1476 }
1477 }
1478 goto found_extent;
1479 }
1480
1481 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1482 EXT4_ERROR_INODE(inode,
1483 "logical %d < ee_block %d + ee_len %d!",
1484 *logical, le32_to_cpu(ex->ee_block), ee_len);
1485 return -EIO;
1486 }
1487
1488 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1489 /* next allocated block in this leaf */
1490 ex++;
1491 goto found_extent;
1492 }
1493
1494 /* go up and search for index to the right */
1495 while (--depth >= 0) {
1496 ix = path[depth].p_idx;
1497 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1498 goto got_index;
1499 }
1500
1501 /* we've gone up to the root and found no index to the right */
1502 return 0;
1503
1504 got_index:
1505 /* we've found index to the right, let's
1506 * follow it and find the closest allocated
1507 * block to the right */
1508 ix++;
1509 block = ext4_idx_pblock(ix);
1510 while (++depth < path->p_depth) {
1511 /* subtract from p_depth to get proper eh_depth */
1512 bh = read_extent_tree_block(inode, block,
1513 path->p_depth - depth, 0);
1514 if (IS_ERR(bh))
1515 return PTR_ERR(bh);
1516 eh = ext_block_hdr(bh);
1517 ix = EXT_FIRST_INDEX(eh);
1518 block = ext4_idx_pblock(ix);
1519 put_bh(bh);
1520 }
1521
1522 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1523 if (IS_ERR(bh))
1524 return PTR_ERR(bh);
1525 eh = ext_block_hdr(bh);
1526 ex = EXT_FIRST_EXTENT(eh);
1527 found_extent:
1528 *logical = le32_to_cpu(ex->ee_block);
1529 *phys = ext4_ext_pblock(ex);
1530 *ret_ex = ex;
1531 if (bh)
1532 put_bh(bh);
1533 return 0;
1534 }
1535
1536 /*
1537 * ext4_ext_next_allocated_block:
1538 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1539 * NOTE: it considers block number from index entry as
1540 * allocated block. Thus, index entries have to be consistent
1541 * with leaves.
1542 */
1543 static ext4_lblk_t
1544 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1545 {
1546 int depth;
1547
1548 BUG_ON(path == NULL);
1549 depth = path->p_depth;
1550
1551 if (depth == 0 && path->p_ext == NULL)
1552 return EXT_MAX_BLOCKS;
1553
1554 while (depth >= 0) {
1555 if (depth == path->p_depth) {
1556 /* leaf */
1557 if (path[depth].p_ext &&
1558 path[depth].p_ext !=
1559 EXT_LAST_EXTENT(path[depth].p_hdr))
1560 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1561 } else {
1562 /* index */
1563 if (path[depth].p_idx !=
1564 EXT_LAST_INDEX(path[depth].p_hdr))
1565 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1566 }
1567 depth--;
1568 }
1569
1570 return EXT_MAX_BLOCKS;
1571 }
1572
1573 /*
1574 * ext4_ext_next_leaf_block:
1575 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1576 */
1577 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1578 {
1579 int depth;
1580
1581 BUG_ON(path == NULL);
1582 depth = path->p_depth;
1583
1584 /* zero-tree has no leaf blocks at all */
1585 if (depth == 0)
1586 return EXT_MAX_BLOCKS;
1587
1588 /* go to index block */
1589 depth--;
1590
1591 while (depth >= 0) {
1592 if (path[depth].p_idx !=
1593 EXT_LAST_INDEX(path[depth].p_hdr))
1594 return (ext4_lblk_t)
1595 le32_to_cpu(path[depth].p_idx[1].ei_block);
1596 depth--;
1597 }
1598
1599 return EXT_MAX_BLOCKS;
1600 }
1601
1602 /*
1603 * ext4_ext_correct_indexes:
1604 * if leaf gets modified and modified extent is first in the leaf,
1605 * then we have to correct all indexes above.
1606 * TODO: do we need to correct tree in all cases?
1607 */
1608 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1609 struct ext4_ext_path *path)
1610 {
1611 struct ext4_extent_header *eh;
1612 int depth = ext_depth(inode);
1613 struct ext4_extent *ex;
1614 __le32 border;
1615 int k, err = 0;
1616
1617 eh = path[depth].p_hdr;
1618 ex = path[depth].p_ext;
1619
1620 if (unlikely(ex == NULL || eh == NULL)) {
1621 EXT4_ERROR_INODE(inode,
1622 "ex %p == NULL or eh %p == NULL", ex, eh);
1623 return -EIO;
1624 }
1625
1626 if (depth == 0) {
1627 /* there is no tree at all */
1628 return 0;
1629 }
1630
1631 if (ex != EXT_FIRST_EXTENT(eh)) {
1632 /* we correct tree if first leaf got modified only */
1633 return 0;
1634 }
1635
1636 /*
1637 * TODO: we need correction if border is smaller than current one
1638 */
1639 k = depth - 1;
1640 border = path[depth].p_ext->ee_block;
1641 err = ext4_ext_get_access(handle, inode, path + k);
1642 if (err)
1643 return err;
1644 path[k].p_idx->ei_block = border;
1645 err = ext4_ext_dirty(handle, inode, path + k);
1646 if (err)
1647 return err;
1648
1649 while (k--) {
1650 /* change all left-side indexes */
1651 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1652 break;
1653 err = ext4_ext_get_access(handle, inode, path + k);
1654 if (err)
1655 break;
1656 path[k].p_idx->ei_block = border;
1657 err = ext4_ext_dirty(handle, inode, path + k);
1658 if (err)
1659 break;
1660 }
1661
1662 return err;
1663 }
1664
1665 int
1666 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1667 struct ext4_extent *ex2)
1668 {
1669 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1670
1671 /*
1672 * Make sure that both extents are initialized. We don't merge
1673 * uninitialized extents so that we can be sure that end_io code has
1674 * the extent that was written properly split out and conversion to
1675 * initialized is trivial.
1676 */
1677 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1678 return 0;
1679
1680 if (ext4_ext_is_uninitialized(ex1))
1681 max_len = EXT_UNINIT_MAX_LEN;
1682 else
1683 max_len = EXT_INIT_MAX_LEN;
1684
1685 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1686 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1687
1688 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1689 le32_to_cpu(ex2->ee_block))
1690 return 0;
1691
1692 /*
1693 * To allow future support for preallocated extents to be added
1694 * as an RO_COMPAT feature, refuse to merge to extents if
1695 * this can result in the top bit of ee_len being set.
1696 */
1697 if (ext1_ee_len + ext2_ee_len > max_len)
1698 return 0;
1699 #ifdef AGGRESSIVE_TEST
1700 if (ext1_ee_len >= 4)
1701 return 0;
1702 #endif
1703
1704 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1705 return 1;
1706 return 0;
1707 }
1708
1709 /*
1710 * This function tries to merge the "ex" extent to the next extent in the tree.
1711 * It always tries to merge towards right. If you want to merge towards
1712 * left, pass "ex - 1" as argument instead of "ex".
1713 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1714 * 1 if they got merged.
1715 */
1716 static int ext4_ext_try_to_merge_right(struct inode *inode,
1717 struct ext4_ext_path *path,
1718 struct ext4_extent *ex)
1719 {
1720 struct ext4_extent_header *eh;
1721 unsigned int depth, len;
1722 int merge_done = 0;
1723 int uninitialized = 0;
1724
1725 depth = ext_depth(inode);
1726 BUG_ON(path[depth].p_hdr == NULL);
1727 eh = path[depth].p_hdr;
1728
1729 while (ex < EXT_LAST_EXTENT(eh)) {
1730 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1731 break;
1732 /* merge with next extent! */
1733 if (ext4_ext_is_uninitialized(ex))
1734 uninitialized = 1;
1735 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1736 + ext4_ext_get_actual_len(ex + 1));
1737 if (uninitialized)
1738 ext4_ext_mark_uninitialized(ex);
1739
1740 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1741 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1742 * sizeof(struct ext4_extent);
1743 memmove(ex + 1, ex + 2, len);
1744 }
1745 le16_add_cpu(&eh->eh_entries, -1);
1746 merge_done = 1;
1747 WARN_ON(eh->eh_entries == 0);
1748 if (!eh->eh_entries)
1749 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1750 }
1751
1752 return merge_done;
1753 }
1754
1755 /*
1756 * This function does a very simple check to see if we can collapse
1757 * an extent tree with a single extent tree leaf block into the inode.
1758 */
1759 static void ext4_ext_try_to_merge_up(handle_t *handle,
1760 struct inode *inode,
1761 struct ext4_ext_path *path)
1762 {
1763 size_t s;
1764 unsigned max_root = ext4_ext_space_root(inode, 0);
1765 ext4_fsblk_t blk;
1766
1767 if ((path[0].p_depth != 1) ||
1768 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1769 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1770 return;
1771
1772 /*
1773 * We need to modify the block allocation bitmap and the block
1774 * group descriptor to release the extent tree block. If we
1775 * can't get the journal credits, give up.
1776 */
1777 if (ext4_journal_extend(handle, 2))
1778 return;
1779
1780 /*
1781 * Copy the extent data up to the inode
1782 */
1783 blk = ext4_idx_pblock(path[0].p_idx);
1784 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1785 sizeof(struct ext4_extent_idx);
1786 s += sizeof(struct ext4_extent_header);
1787
1788 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1789 path[0].p_depth = 0;
1790 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1791 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1792 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1793
1794 brelse(path[1].p_bh);
1795 ext4_free_blocks(handle, inode, NULL, blk, 1,
1796 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1797 }
1798
1799 /*
1800 * This function tries to merge the @ex extent to neighbours in the tree.
1801 * return 1 if merge left else 0.
1802 */
1803 static void ext4_ext_try_to_merge(handle_t *handle,
1804 struct inode *inode,
1805 struct ext4_ext_path *path,
1806 struct ext4_extent *ex) {
1807 struct ext4_extent_header *eh;
1808 unsigned int depth;
1809 int merge_done = 0;
1810
1811 depth = ext_depth(inode);
1812 BUG_ON(path[depth].p_hdr == NULL);
1813 eh = path[depth].p_hdr;
1814
1815 if (ex > EXT_FIRST_EXTENT(eh))
1816 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1817
1818 if (!merge_done)
1819 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1820
1821 ext4_ext_try_to_merge_up(handle, inode, path);
1822 }
1823
1824 /*
1825 * check if a portion of the "newext" extent overlaps with an
1826 * existing extent.
1827 *
1828 * If there is an overlap discovered, it updates the length of the newext
1829 * such that there will be no overlap, and then returns 1.
1830 * If there is no overlap found, it returns 0.
1831 */
1832 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1833 struct inode *inode,
1834 struct ext4_extent *newext,
1835 struct ext4_ext_path *path)
1836 {
1837 ext4_lblk_t b1, b2;
1838 unsigned int depth, len1;
1839 unsigned int ret = 0;
1840
1841 b1 = le32_to_cpu(newext->ee_block);
1842 len1 = ext4_ext_get_actual_len(newext);
1843 depth = ext_depth(inode);
1844 if (!path[depth].p_ext)
1845 goto out;
1846 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1847 b2 &= ~(sbi->s_cluster_ratio - 1);
1848
1849 /*
1850 * get the next allocated block if the extent in the path
1851 * is before the requested block(s)
1852 */
1853 if (b2 < b1) {
1854 b2 = ext4_ext_next_allocated_block(path);
1855 if (b2 == EXT_MAX_BLOCKS)
1856 goto out;
1857 b2 &= ~(sbi->s_cluster_ratio - 1);
1858 }
1859
1860 /* check for wrap through zero on extent logical start block*/
1861 if (b1 + len1 < b1) {
1862 len1 = EXT_MAX_BLOCKS - b1;
1863 newext->ee_len = cpu_to_le16(len1);
1864 ret = 1;
1865 }
1866
1867 /* check for overlap */
1868 if (b1 + len1 > b2) {
1869 newext->ee_len = cpu_to_le16(b2 - b1);
1870 ret = 1;
1871 }
1872 out:
1873 return ret;
1874 }
1875
1876 /*
1877 * ext4_ext_insert_extent:
1878 * tries to merge requsted extent into the existing extent or
1879 * inserts requested extent as new one into the tree,
1880 * creating new leaf in the no-space case.
1881 */
1882 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1883 struct ext4_ext_path *path,
1884 struct ext4_extent *newext, int gb_flags)
1885 {
1886 struct ext4_extent_header *eh;
1887 struct ext4_extent *ex, *fex;
1888 struct ext4_extent *nearex; /* nearest extent */
1889 struct ext4_ext_path *npath = NULL;
1890 int depth, len, err;
1891 ext4_lblk_t next;
1892 unsigned uninitialized = 0;
1893 int mb_flags = 0;
1894
1895 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1896 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1897 return -EIO;
1898 }
1899 depth = ext_depth(inode);
1900 ex = path[depth].p_ext;
1901 eh = path[depth].p_hdr;
1902 if (unlikely(path[depth].p_hdr == NULL)) {
1903 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1904 return -EIO;
1905 }
1906
1907 /* try to insert block into found extent and return */
1908 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1909
1910 /*
1911 * Try to see whether we should rather test the extent on
1912 * right from ex, or from the left of ex. This is because
1913 * ext4_ext_find_extent() can return either extent on the
1914 * left, or on the right from the searched position. This
1915 * will make merging more effective.
1916 */
1917 if (ex < EXT_LAST_EXTENT(eh) &&
1918 (le32_to_cpu(ex->ee_block) +
1919 ext4_ext_get_actual_len(ex) <
1920 le32_to_cpu(newext->ee_block))) {
1921 ex += 1;
1922 goto prepend;
1923 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1924 (le32_to_cpu(newext->ee_block) +
1925 ext4_ext_get_actual_len(newext) <
1926 le32_to_cpu(ex->ee_block)))
1927 ex -= 1;
1928
1929 /* Try to append newex to the ex */
1930 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1931 ext_debug("append [%d]%d block to %u:[%d]%d"
1932 "(from %llu)\n",
1933 ext4_ext_is_uninitialized(newext),
1934 ext4_ext_get_actual_len(newext),
1935 le32_to_cpu(ex->ee_block),
1936 ext4_ext_is_uninitialized(ex),
1937 ext4_ext_get_actual_len(ex),
1938 ext4_ext_pblock(ex));
1939 err = ext4_ext_get_access(handle, inode,
1940 path + depth);
1941 if (err)
1942 return err;
1943
1944 /*
1945 * ext4_can_extents_be_merged should have checked
1946 * that either both extents are uninitialized, or
1947 * both aren't. Thus we need to check only one of
1948 * them here.
1949 */
1950 if (ext4_ext_is_uninitialized(ex))
1951 uninitialized = 1;
1952 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1953 + ext4_ext_get_actual_len(newext));
1954 if (uninitialized)
1955 ext4_ext_mark_uninitialized(ex);
1956 eh = path[depth].p_hdr;
1957 nearex = ex;
1958 goto merge;
1959 }
1960
1961 prepend:
1962 /* Try to prepend newex to the ex */
1963 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1964 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1965 "(from %llu)\n",
1966 le32_to_cpu(newext->ee_block),
1967 ext4_ext_is_uninitialized(newext),
1968 ext4_ext_get_actual_len(newext),
1969 le32_to_cpu(ex->ee_block),
1970 ext4_ext_is_uninitialized(ex),
1971 ext4_ext_get_actual_len(ex),
1972 ext4_ext_pblock(ex));
1973 err = ext4_ext_get_access(handle, inode,
1974 path + depth);
1975 if (err)
1976 return err;
1977
1978 /*
1979 * ext4_can_extents_be_merged should have checked
1980 * that either both extents are uninitialized, or
1981 * both aren't. Thus we need to check only one of
1982 * them here.
1983 */
1984 if (ext4_ext_is_uninitialized(ex))
1985 uninitialized = 1;
1986 ex->ee_block = newext->ee_block;
1987 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1988 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1989 + ext4_ext_get_actual_len(newext));
1990 if (uninitialized)
1991 ext4_ext_mark_uninitialized(ex);
1992 eh = path[depth].p_hdr;
1993 nearex = ex;
1994 goto merge;
1995 }
1996 }
1997
1998 depth = ext_depth(inode);
1999 eh = path[depth].p_hdr;
2000 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2001 goto has_space;
2002
2003 /* probably next leaf has space for us? */
2004 fex = EXT_LAST_EXTENT(eh);
2005 next = EXT_MAX_BLOCKS;
2006 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2007 next = ext4_ext_next_leaf_block(path);
2008 if (next != EXT_MAX_BLOCKS) {
2009 ext_debug("next leaf block - %u\n", next);
2010 BUG_ON(npath != NULL);
2011 npath = ext4_ext_find_extent(inode, next, NULL, 0);
2012 if (IS_ERR(npath))
2013 return PTR_ERR(npath);
2014 BUG_ON(npath->p_depth != path->p_depth);
2015 eh = npath[depth].p_hdr;
2016 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2017 ext_debug("next leaf isn't full(%d)\n",
2018 le16_to_cpu(eh->eh_entries));
2019 path = npath;
2020 goto has_space;
2021 }
2022 ext_debug("next leaf has no free space(%d,%d)\n",
2023 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2024 }
2025
2026 /*
2027 * There is no free space in the found leaf.
2028 * We're gonna add a new leaf in the tree.
2029 */
2030 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2031 mb_flags = EXT4_MB_USE_RESERVED;
2032 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2033 path, newext);
2034 if (err)
2035 goto cleanup;
2036 depth = ext_depth(inode);
2037 eh = path[depth].p_hdr;
2038
2039 has_space:
2040 nearex = path[depth].p_ext;
2041
2042 err = ext4_ext_get_access(handle, inode, path + depth);
2043 if (err)
2044 goto cleanup;
2045
2046 if (!nearex) {
2047 /* there is no extent in this leaf, create first one */
2048 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2049 le32_to_cpu(newext->ee_block),
2050 ext4_ext_pblock(newext),
2051 ext4_ext_is_uninitialized(newext),
2052 ext4_ext_get_actual_len(newext));
2053 nearex = EXT_FIRST_EXTENT(eh);
2054 } else {
2055 if (le32_to_cpu(newext->ee_block)
2056 > le32_to_cpu(nearex->ee_block)) {
2057 /* Insert after */
2058 ext_debug("insert %u:%llu:[%d]%d before: "
2059 "nearest %p\n",
2060 le32_to_cpu(newext->ee_block),
2061 ext4_ext_pblock(newext),
2062 ext4_ext_is_uninitialized(newext),
2063 ext4_ext_get_actual_len(newext),
2064 nearex);
2065 nearex++;
2066 } else {
2067 /* Insert before */
2068 BUG_ON(newext->ee_block == nearex->ee_block);
2069 ext_debug("insert %u:%llu:[%d]%d after: "
2070 "nearest %p\n",
2071 le32_to_cpu(newext->ee_block),
2072 ext4_ext_pblock(newext),
2073 ext4_ext_is_uninitialized(newext),
2074 ext4_ext_get_actual_len(newext),
2075 nearex);
2076 }
2077 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2078 if (len > 0) {
2079 ext_debug("insert %u:%llu:[%d]%d: "
2080 "move %d extents from 0x%p to 0x%p\n",
2081 le32_to_cpu(newext->ee_block),
2082 ext4_ext_pblock(newext),
2083 ext4_ext_is_uninitialized(newext),
2084 ext4_ext_get_actual_len(newext),
2085 len, nearex, nearex + 1);
2086 memmove(nearex + 1, nearex,
2087 len * sizeof(struct ext4_extent));
2088 }
2089 }
2090
2091 le16_add_cpu(&eh->eh_entries, 1);
2092 path[depth].p_ext = nearex;
2093 nearex->ee_block = newext->ee_block;
2094 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2095 nearex->ee_len = newext->ee_len;
2096
2097 merge:
2098 /* try to merge extents */
2099 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2100 ext4_ext_try_to_merge(handle, inode, path, nearex);
2101
2102
2103 /* time to correct all indexes above */
2104 err = ext4_ext_correct_indexes(handle, inode, path);
2105 if (err)
2106 goto cleanup;
2107
2108 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2109
2110 cleanup:
2111 if (npath) {
2112 ext4_ext_drop_refs(npath);
2113 kfree(npath);
2114 }
2115 return err;
2116 }
2117
2118 static int ext4_fill_fiemap_extents(struct inode *inode,
2119 ext4_lblk_t block, ext4_lblk_t num,
2120 struct fiemap_extent_info *fieinfo)
2121 {
2122 struct ext4_ext_path *path = NULL;
2123 struct ext4_extent *ex;
2124 struct extent_status es;
2125 ext4_lblk_t next, next_del, start = 0, end = 0;
2126 ext4_lblk_t last = block + num;
2127 int exists, depth = 0, err = 0;
2128 unsigned int flags = 0;
2129 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2130
2131 while (block < last && block != EXT_MAX_BLOCKS) {
2132 num = last - block;
2133 /* find extent for this block */
2134 down_read(&EXT4_I(inode)->i_data_sem);
2135
2136 if (path && ext_depth(inode) != depth) {
2137 /* depth was changed. we have to realloc path */
2138 kfree(path);
2139 path = NULL;
2140 }
2141
2142 path = ext4_ext_find_extent(inode, block, path, 0);
2143 if (IS_ERR(path)) {
2144 up_read(&EXT4_I(inode)->i_data_sem);
2145 err = PTR_ERR(path);
2146 path = NULL;
2147 break;
2148 }
2149
2150 depth = ext_depth(inode);
2151 if (unlikely(path[depth].p_hdr == NULL)) {
2152 up_read(&EXT4_I(inode)->i_data_sem);
2153 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2154 err = -EIO;
2155 break;
2156 }
2157 ex = path[depth].p_ext;
2158 next = ext4_ext_next_allocated_block(path);
2159 ext4_ext_drop_refs(path);
2160
2161 flags = 0;
2162 exists = 0;
2163 if (!ex) {
2164 /* there is no extent yet, so try to allocate
2165 * all requested space */
2166 start = block;
2167 end = block + num;
2168 } else if (le32_to_cpu(ex->ee_block) > block) {
2169 /* need to allocate space before found extent */
2170 start = block;
2171 end = le32_to_cpu(ex->ee_block);
2172 if (block + num < end)
2173 end = block + num;
2174 } else if (block >= le32_to_cpu(ex->ee_block)
2175 + ext4_ext_get_actual_len(ex)) {
2176 /* need to allocate space after found extent */
2177 start = block;
2178 end = block + num;
2179 if (end >= next)
2180 end = next;
2181 } else if (block >= le32_to_cpu(ex->ee_block)) {
2182 /*
2183 * some part of requested space is covered
2184 * by found extent
2185 */
2186 start = block;
2187 end = le32_to_cpu(ex->ee_block)
2188 + ext4_ext_get_actual_len(ex);
2189 if (block + num < end)
2190 end = block + num;
2191 exists = 1;
2192 } else {
2193 BUG();
2194 }
2195 BUG_ON(end <= start);
2196
2197 if (!exists) {
2198 es.es_lblk = start;
2199 es.es_len = end - start;
2200 es.es_pblk = 0;
2201 } else {
2202 es.es_lblk = le32_to_cpu(ex->ee_block);
2203 es.es_len = ext4_ext_get_actual_len(ex);
2204 es.es_pblk = ext4_ext_pblock(ex);
2205 if (ext4_ext_is_uninitialized(ex))
2206 flags |= FIEMAP_EXTENT_UNWRITTEN;
2207 }
2208
2209 /*
2210 * Find delayed extent and update es accordingly. We call
2211 * it even in !exists case to find out whether es is the
2212 * last existing extent or not.
2213 */
2214 next_del = ext4_find_delayed_extent(inode, &es);
2215 if (!exists && next_del) {
2216 exists = 1;
2217 flags |= (FIEMAP_EXTENT_DELALLOC |
2218 FIEMAP_EXTENT_UNKNOWN);
2219 }
2220 up_read(&EXT4_I(inode)->i_data_sem);
2221
2222 if (unlikely(es.es_len == 0)) {
2223 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2224 err = -EIO;
2225 break;
2226 }
2227
2228 /*
2229 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2230 * we need to check next == EXT_MAX_BLOCKS because it is
2231 * possible that an extent is with unwritten and delayed
2232 * status due to when an extent is delayed allocated and
2233 * is allocated by fallocate status tree will track both of
2234 * them in a extent.
2235 *
2236 * So we could return a unwritten and delayed extent, and
2237 * its block is equal to 'next'.
2238 */
2239 if (next == next_del && next == EXT_MAX_BLOCKS) {
2240 flags |= FIEMAP_EXTENT_LAST;
2241 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2242 next != EXT_MAX_BLOCKS)) {
2243 EXT4_ERROR_INODE(inode,
2244 "next extent == %u, next "
2245 "delalloc extent = %u",
2246 next, next_del);
2247 err = -EIO;
2248 break;
2249 }
2250 }
2251
2252 if (exists) {
2253 err = fiemap_fill_next_extent(fieinfo,
2254 (__u64)es.es_lblk << blksize_bits,
2255 (__u64)es.es_pblk << blksize_bits,
2256 (__u64)es.es_len << blksize_bits,
2257 flags);
2258 if (err < 0)
2259 break;
2260 if (err == 1) {
2261 err = 0;
2262 break;
2263 }
2264 }
2265
2266 block = es.es_lblk + es.es_len;
2267 }
2268
2269 if (path) {
2270 ext4_ext_drop_refs(path);
2271 kfree(path);
2272 }
2273
2274 return err;
2275 }
2276
2277 /*
2278 * ext4_ext_put_gap_in_cache:
2279 * calculate boundaries of the gap that the requested block fits into
2280 * and cache this gap
2281 */
2282 static void
2283 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2284 ext4_lblk_t block)
2285 {
2286 int depth = ext_depth(inode);
2287 unsigned long len;
2288 ext4_lblk_t lblock;
2289 struct ext4_extent *ex;
2290
2291 ex = path[depth].p_ext;
2292 if (ex == NULL) {
2293 /*
2294 * there is no extent yet, so gap is [0;-] and we
2295 * don't cache it
2296 */
2297 ext_debug("cache gap(whole file):");
2298 } else if (block < le32_to_cpu(ex->ee_block)) {
2299 lblock = block;
2300 len = le32_to_cpu(ex->ee_block) - block;
2301 ext_debug("cache gap(before): %u [%u:%u]",
2302 block,
2303 le32_to_cpu(ex->ee_block),
2304 ext4_ext_get_actual_len(ex));
2305 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2306 ext4_es_insert_extent(inode, lblock, len, ~0,
2307 EXTENT_STATUS_HOLE);
2308 } else if (block >= le32_to_cpu(ex->ee_block)
2309 + ext4_ext_get_actual_len(ex)) {
2310 ext4_lblk_t next;
2311 lblock = le32_to_cpu(ex->ee_block)
2312 + ext4_ext_get_actual_len(ex);
2313
2314 next = ext4_ext_next_allocated_block(path);
2315 ext_debug("cache gap(after): [%u:%u] %u",
2316 le32_to_cpu(ex->ee_block),
2317 ext4_ext_get_actual_len(ex),
2318 block);
2319 BUG_ON(next == lblock);
2320 len = next - lblock;
2321 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2322 ext4_es_insert_extent(inode, lblock, len, ~0,
2323 EXTENT_STATUS_HOLE);
2324 } else {
2325 lblock = len = 0;
2326 BUG();
2327 }
2328
2329 ext_debug(" -> %u:%lu\n", lblock, len);
2330 }
2331
2332 /*
2333 * ext4_ext_rm_idx:
2334 * removes index from the index block.
2335 */
2336 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2337 struct ext4_ext_path *path, int depth)
2338 {
2339 int err;
2340 ext4_fsblk_t leaf;
2341
2342 /* free index block */
2343 depth--;
2344 path = path + depth;
2345 leaf = ext4_idx_pblock(path->p_idx);
2346 if (unlikely(path->p_hdr->eh_entries == 0)) {
2347 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2348 return -EIO;
2349 }
2350 err = ext4_ext_get_access(handle, inode, path);
2351 if (err)
2352 return err;
2353
2354 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2355 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2356 len *= sizeof(struct ext4_extent_idx);
2357 memmove(path->p_idx, path->p_idx + 1, len);
2358 }
2359
2360 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2361 err = ext4_ext_dirty(handle, inode, path);
2362 if (err)
2363 return err;
2364 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2365 trace_ext4_ext_rm_idx(inode, leaf);
2366
2367 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2368 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2369
2370 while (--depth >= 0) {
2371 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2372 break;
2373 path--;
2374 err = ext4_ext_get_access(handle, inode, path);
2375 if (err)
2376 break;
2377 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2378 err = ext4_ext_dirty(handle, inode, path);
2379 if (err)
2380 break;
2381 }
2382 return err;
2383 }
2384
2385 /*
2386 * ext4_ext_calc_credits_for_single_extent:
2387 * This routine returns max. credits that needed to insert an extent
2388 * to the extent tree.
2389 * When pass the actual path, the caller should calculate credits
2390 * under i_data_sem.
2391 */
2392 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2393 struct ext4_ext_path *path)
2394 {
2395 if (path) {
2396 int depth = ext_depth(inode);
2397 int ret = 0;
2398
2399 /* probably there is space in leaf? */
2400 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2401 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2402
2403 /*
2404 * There are some space in the leaf tree, no
2405 * need to account for leaf block credit
2406 *
2407 * bitmaps and block group descriptor blocks
2408 * and other metadata blocks still need to be
2409 * accounted.
2410 */
2411 /* 1 bitmap, 1 block group descriptor */
2412 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2413 return ret;
2414 }
2415 }
2416
2417 return ext4_chunk_trans_blocks(inode, nrblocks);
2418 }
2419
2420 /*
2421 * How many index/leaf blocks need to change/allocate to add @extents extents?
2422 *
2423 * If we add a single extent, then in the worse case, each tree level
2424 * index/leaf need to be changed in case of the tree split.
2425 *
2426 * If more extents are inserted, they could cause the whole tree split more
2427 * than once, but this is really rare.
2428 */
2429 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2430 {
2431 int index;
2432 int depth;
2433
2434 /* If we are converting the inline data, only one is needed here. */
2435 if (ext4_has_inline_data(inode))
2436 return 1;
2437
2438 depth = ext_depth(inode);
2439
2440 if (extents <= 1)
2441 index = depth * 2;
2442 else
2443 index = depth * 3;
2444
2445 return index;
2446 }
2447
2448 static inline int get_default_free_blocks_flags(struct inode *inode)
2449 {
2450 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2451 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2452 else if (ext4_should_journal_data(inode))
2453 return EXT4_FREE_BLOCKS_FORGET;
2454 return 0;
2455 }
2456
2457 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2458 struct ext4_extent *ex,
2459 long long *partial_cluster,
2460 ext4_lblk_t from, ext4_lblk_t to)
2461 {
2462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2463 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2464 ext4_fsblk_t pblk;
2465 int flags = get_default_free_blocks_flags(inode);
2466
2467 /*
2468 * For bigalloc file systems, we never free a partial cluster
2469 * at the beginning of the extent. Instead, we make a note
2470 * that we tried freeing the cluster, and check to see if we
2471 * need to free it on a subsequent call to ext4_remove_blocks,
2472 * or at the end of the ext4_truncate() operation.
2473 */
2474 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2475
2476 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2477 /*
2478 * If we have a partial cluster, and it's different from the
2479 * cluster of the last block, we need to explicitly free the
2480 * partial cluster here.
2481 */
2482 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2483 if ((*partial_cluster > 0) &&
2484 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2485 ext4_free_blocks(handle, inode, NULL,
2486 EXT4_C2B(sbi, *partial_cluster),
2487 sbi->s_cluster_ratio, flags);
2488 *partial_cluster = 0;
2489 }
2490
2491 #ifdef EXTENTS_STATS
2492 {
2493 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2494 spin_lock(&sbi->s_ext_stats_lock);
2495 sbi->s_ext_blocks += ee_len;
2496 sbi->s_ext_extents++;
2497 if (ee_len < sbi->s_ext_min)
2498 sbi->s_ext_min = ee_len;
2499 if (ee_len > sbi->s_ext_max)
2500 sbi->s_ext_max = ee_len;
2501 if (ext_depth(inode) > sbi->s_depth_max)
2502 sbi->s_depth_max = ext_depth(inode);
2503 spin_unlock(&sbi->s_ext_stats_lock);
2504 }
2505 #endif
2506 if (from >= le32_to_cpu(ex->ee_block)
2507 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2508 /* tail removal */
2509 ext4_lblk_t num;
2510 unsigned int unaligned;
2511
2512 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2513 pblk = ext4_ext_pblock(ex) + ee_len - num;
2514 /*
2515 * Usually we want to free partial cluster at the end of the
2516 * extent, except for the situation when the cluster is still
2517 * used by any other extent (partial_cluster is negative).
2518 */
2519 if (*partial_cluster < 0 &&
2520 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2521 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2522
2523 ext_debug("free last %u blocks starting %llu partial %lld\n",
2524 num, pblk, *partial_cluster);
2525 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2526 /*
2527 * If the block range to be freed didn't start at the
2528 * beginning of a cluster, and we removed the entire
2529 * extent and the cluster is not used by any other extent,
2530 * save the partial cluster here, since we might need to
2531 * delete if we determine that the truncate operation has
2532 * removed all of the blocks in the cluster.
2533 *
2534 * On the other hand, if we did not manage to free the whole
2535 * extent, we have to mark the cluster as used (store negative
2536 * cluster number in partial_cluster).
2537 */
2538 unaligned = pblk & (sbi->s_cluster_ratio - 1);
2539 if (unaligned && (ee_len == num) &&
2540 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2541 *partial_cluster = EXT4_B2C(sbi, pblk);
2542 else if (unaligned)
2543 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2544 else if (*partial_cluster > 0)
2545 *partial_cluster = 0;
2546 } else
2547 ext4_error(sbi->s_sb, "strange request: removal(2) "
2548 "%u-%u from %u:%u\n",
2549 from, to, le32_to_cpu(ex->ee_block), ee_len);
2550 return 0;
2551 }
2552
2553
2554 /*
2555 * ext4_ext_rm_leaf() Removes the extents associated with the
2556 * blocks appearing between "start" and "end", and splits the extents
2557 * if "start" and "end" appear in the same extent
2558 *
2559 * @handle: The journal handle
2560 * @inode: The files inode
2561 * @path: The path to the leaf
2562 * @partial_cluster: The cluster which we'll have to free if all extents
2563 * has been released from it. It gets negative in case
2564 * that the cluster is still used.
2565 * @start: The first block to remove
2566 * @end: The last block to remove
2567 */
2568 static int
2569 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2570 struct ext4_ext_path *path,
2571 long long *partial_cluster,
2572 ext4_lblk_t start, ext4_lblk_t end)
2573 {
2574 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2575 int err = 0, correct_index = 0;
2576 int depth = ext_depth(inode), credits;
2577 struct ext4_extent_header *eh;
2578 ext4_lblk_t a, b;
2579 unsigned num;
2580 ext4_lblk_t ex_ee_block;
2581 unsigned short ex_ee_len;
2582 unsigned uninitialized = 0;
2583 struct ext4_extent *ex;
2584 ext4_fsblk_t pblk;
2585
2586 /* the header must be checked already in ext4_ext_remove_space() */
2587 ext_debug("truncate since %u in leaf to %u\n", start, end);
2588 if (!path[depth].p_hdr)
2589 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2590 eh = path[depth].p_hdr;
2591 if (unlikely(path[depth].p_hdr == NULL)) {
2592 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2593 return -EIO;
2594 }
2595 /* find where to start removing */
2596 ex = path[depth].p_ext;
2597 if (!ex)
2598 ex = EXT_LAST_EXTENT(eh);
2599
2600 ex_ee_block = le32_to_cpu(ex->ee_block);
2601 ex_ee_len = ext4_ext_get_actual_len(ex);
2602
2603 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2604
2605 while (ex >= EXT_FIRST_EXTENT(eh) &&
2606 ex_ee_block + ex_ee_len > start) {
2607
2608 if (ext4_ext_is_uninitialized(ex))
2609 uninitialized = 1;
2610 else
2611 uninitialized = 0;
2612
2613 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2614 uninitialized, ex_ee_len);
2615 path[depth].p_ext = ex;
2616
2617 a = ex_ee_block > start ? ex_ee_block : start;
2618 b = ex_ee_block+ex_ee_len - 1 < end ?
2619 ex_ee_block+ex_ee_len - 1 : end;
2620
2621 ext_debug(" border %u:%u\n", a, b);
2622
2623 /* If this extent is beyond the end of the hole, skip it */
2624 if (end < ex_ee_block) {
2625 /*
2626 * We're going to skip this extent and move to another,
2627 * so if this extent is not cluster aligned we have
2628 * to mark the current cluster as used to avoid
2629 * accidentally freeing it later on
2630 */
2631 pblk = ext4_ext_pblock(ex);
2632 if (pblk & (sbi->s_cluster_ratio - 1))
2633 *partial_cluster =
2634 -((long long)EXT4_B2C(sbi, pblk));
2635 ex--;
2636 ex_ee_block = le32_to_cpu(ex->ee_block);
2637 ex_ee_len = ext4_ext_get_actual_len(ex);
2638 continue;
2639 } else if (b != ex_ee_block + ex_ee_len - 1) {
2640 EXT4_ERROR_INODE(inode,
2641 "can not handle truncate %u:%u "
2642 "on extent %u:%u",
2643 start, end, ex_ee_block,
2644 ex_ee_block + ex_ee_len - 1);
2645 err = -EIO;
2646 goto out;
2647 } else if (a != ex_ee_block) {
2648 /* remove tail of the extent */
2649 num = a - ex_ee_block;
2650 } else {
2651 /* remove whole extent: excellent! */
2652 num = 0;
2653 }
2654 /*
2655 * 3 for leaf, sb, and inode plus 2 (bmap and group
2656 * descriptor) for each block group; assume two block
2657 * groups plus ex_ee_len/blocks_per_block_group for
2658 * the worst case
2659 */
2660 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2661 if (ex == EXT_FIRST_EXTENT(eh)) {
2662 correct_index = 1;
2663 credits += (ext_depth(inode)) + 1;
2664 }
2665 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2666
2667 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2668 if (err)
2669 goto out;
2670
2671 err = ext4_ext_get_access(handle, inode, path + depth);
2672 if (err)
2673 goto out;
2674
2675 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2676 a, b);
2677 if (err)
2678 goto out;
2679
2680 if (num == 0)
2681 /* this extent is removed; mark slot entirely unused */
2682 ext4_ext_store_pblock(ex, 0);
2683
2684 ex->ee_len = cpu_to_le16(num);
2685 /*
2686 * Do not mark uninitialized if all the blocks in the
2687 * extent have been removed.
2688 */
2689 if (uninitialized && num)
2690 ext4_ext_mark_uninitialized(ex);
2691 /*
2692 * If the extent was completely released,
2693 * we need to remove it from the leaf
2694 */
2695 if (num == 0) {
2696 if (end != EXT_MAX_BLOCKS - 1) {
2697 /*
2698 * For hole punching, we need to scoot all the
2699 * extents up when an extent is removed so that
2700 * we dont have blank extents in the middle
2701 */
2702 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2703 sizeof(struct ext4_extent));
2704
2705 /* Now get rid of the one at the end */
2706 memset(EXT_LAST_EXTENT(eh), 0,
2707 sizeof(struct ext4_extent));
2708 }
2709 le16_add_cpu(&eh->eh_entries, -1);
2710 } else if (*partial_cluster > 0)
2711 *partial_cluster = 0;
2712
2713 err = ext4_ext_dirty(handle, inode, path + depth);
2714 if (err)
2715 goto out;
2716
2717 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2718 ext4_ext_pblock(ex));
2719 ex--;
2720 ex_ee_block = le32_to_cpu(ex->ee_block);
2721 ex_ee_len = ext4_ext_get_actual_len(ex);
2722 }
2723
2724 if (correct_index && eh->eh_entries)
2725 err = ext4_ext_correct_indexes(handle, inode, path);
2726
2727 /*
2728 * Free the partial cluster only if the current extent does not
2729 * reference it. Otherwise we might free used cluster.
2730 */
2731 if (*partial_cluster > 0 &&
2732 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2733 *partial_cluster)) {
2734 int flags = get_default_free_blocks_flags(inode);
2735
2736 ext4_free_blocks(handle, inode, NULL,
2737 EXT4_C2B(sbi, *partial_cluster),
2738 sbi->s_cluster_ratio, flags);
2739 *partial_cluster = 0;
2740 }
2741
2742 /* if this leaf is free, then we should
2743 * remove it from index block above */
2744 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2745 err = ext4_ext_rm_idx(handle, inode, path, depth);
2746
2747 out:
2748 return err;
2749 }
2750
2751 /*
2752 * ext4_ext_more_to_rm:
2753 * returns 1 if current index has to be freed (even partial)
2754 */
2755 static int
2756 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2757 {
2758 BUG_ON(path->p_idx == NULL);
2759
2760 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2761 return 0;
2762
2763 /*
2764 * if truncate on deeper level happened, it wasn't partial,
2765 * so we have to consider current index for truncation
2766 */
2767 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2768 return 0;
2769 return 1;
2770 }
2771
2772 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2773 ext4_lblk_t end)
2774 {
2775 struct super_block *sb = inode->i_sb;
2776 int depth = ext_depth(inode);
2777 struct ext4_ext_path *path = NULL;
2778 long long partial_cluster = 0;
2779 handle_t *handle;
2780 int i = 0, err = 0;
2781
2782 ext_debug("truncate since %u to %u\n", start, end);
2783
2784 /* probably first extent we're gonna free will be last in block */
2785 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2786 if (IS_ERR(handle))
2787 return PTR_ERR(handle);
2788
2789 again:
2790 trace_ext4_ext_remove_space(inode, start, end, depth);
2791
2792 /*
2793 * Check if we are removing extents inside the extent tree. If that
2794 * is the case, we are going to punch a hole inside the extent tree
2795 * so we have to check whether we need to split the extent covering
2796 * the last block to remove so we can easily remove the part of it
2797 * in ext4_ext_rm_leaf().
2798 */
2799 if (end < EXT_MAX_BLOCKS - 1) {
2800 struct ext4_extent *ex;
2801 ext4_lblk_t ee_block;
2802
2803 /* find extent for this block */
2804 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2805 if (IS_ERR(path)) {
2806 ext4_journal_stop(handle);
2807 return PTR_ERR(path);
2808 }
2809 depth = ext_depth(inode);
2810 /* Leaf not may not exist only if inode has no blocks at all */
2811 ex = path[depth].p_ext;
2812 if (!ex) {
2813 if (depth) {
2814 EXT4_ERROR_INODE(inode,
2815 "path[%d].p_hdr == NULL",
2816 depth);
2817 err = -EIO;
2818 }
2819 goto out;
2820 }
2821
2822 ee_block = le32_to_cpu(ex->ee_block);
2823
2824 /*
2825 * See if the last block is inside the extent, if so split
2826 * the extent at 'end' block so we can easily remove the
2827 * tail of the first part of the split extent in
2828 * ext4_ext_rm_leaf().
2829 */
2830 if (end >= ee_block &&
2831 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2832 int split_flag = 0;
2833
2834 if (ext4_ext_is_uninitialized(ex))
2835 split_flag = EXT4_EXT_MARK_UNINIT1 |
2836 EXT4_EXT_MARK_UNINIT2;
2837
2838 /*
2839 * Split the extent in two so that 'end' is the last
2840 * block in the first new extent. Also we should not
2841 * fail removing space due to ENOSPC so try to use
2842 * reserved block if that happens.
2843 */
2844 err = ext4_split_extent_at(handle, inode, path,
2845 end + 1, split_flag,
2846 EXT4_EX_NOCACHE |
2847 EXT4_GET_BLOCKS_PRE_IO |
2848 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2849
2850 if (err < 0)
2851 goto out;
2852 }
2853 }
2854 /*
2855 * We start scanning from right side, freeing all the blocks
2856 * after i_size and walking into the tree depth-wise.
2857 */
2858 depth = ext_depth(inode);
2859 if (path) {
2860 int k = i = depth;
2861 while (--k > 0)
2862 path[k].p_block =
2863 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2864 } else {
2865 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2866 GFP_NOFS);
2867 if (path == NULL) {
2868 ext4_journal_stop(handle);
2869 return -ENOMEM;
2870 }
2871 path[0].p_depth = depth;
2872 path[0].p_hdr = ext_inode_hdr(inode);
2873 i = 0;
2874
2875 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2876 err = -EIO;
2877 goto out;
2878 }
2879 }
2880 err = 0;
2881
2882 while (i >= 0 && err == 0) {
2883 if (i == depth) {
2884 /* this is leaf block */
2885 err = ext4_ext_rm_leaf(handle, inode, path,
2886 &partial_cluster, start,
2887 end);
2888 /* root level has p_bh == NULL, brelse() eats this */
2889 brelse(path[i].p_bh);
2890 path[i].p_bh = NULL;
2891 i--;
2892 continue;
2893 }
2894
2895 /* this is index block */
2896 if (!path[i].p_hdr) {
2897 ext_debug("initialize header\n");
2898 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2899 }
2900
2901 if (!path[i].p_idx) {
2902 /* this level hasn't been touched yet */
2903 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2904 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2905 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2906 path[i].p_hdr,
2907 le16_to_cpu(path[i].p_hdr->eh_entries));
2908 } else {
2909 /* we were already here, see at next index */
2910 path[i].p_idx--;
2911 }
2912
2913 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2914 i, EXT_FIRST_INDEX(path[i].p_hdr),
2915 path[i].p_idx);
2916 if (ext4_ext_more_to_rm(path + i)) {
2917 struct buffer_head *bh;
2918 /* go to the next level */
2919 ext_debug("move to level %d (block %llu)\n",
2920 i + 1, ext4_idx_pblock(path[i].p_idx));
2921 memset(path + i + 1, 0, sizeof(*path));
2922 bh = read_extent_tree_block(inode,
2923 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2924 EXT4_EX_NOCACHE);
2925 if (IS_ERR(bh)) {
2926 /* should we reset i_size? */
2927 err = PTR_ERR(bh);
2928 break;
2929 }
2930 /* Yield here to deal with large extent trees.
2931 * Should be a no-op if we did IO above. */
2932 cond_resched();
2933 if (WARN_ON(i + 1 > depth)) {
2934 err = -EIO;
2935 break;
2936 }
2937 path[i + 1].p_bh = bh;
2938
2939 /* save actual number of indexes since this
2940 * number is changed at the next iteration */
2941 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2942 i++;
2943 } else {
2944 /* we finished processing this index, go up */
2945 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2946 /* index is empty, remove it;
2947 * handle must be already prepared by the
2948 * truncatei_leaf() */
2949 err = ext4_ext_rm_idx(handle, inode, path, i);
2950 }
2951 /* root level has p_bh == NULL, brelse() eats this */
2952 brelse(path[i].p_bh);
2953 path[i].p_bh = NULL;
2954 i--;
2955 ext_debug("return to level %d\n", i);
2956 }
2957 }
2958
2959 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2960 partial_cluster, path->p_hdr->eh_entries);
2961
2962 /* If we still have something in the partial cluster and we have removed
2963 * even the first extent, then we should free the blocks in the partial
2964 * cluster as well. */
2965 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2966 int flags = get_default_free_blocks_flags(inode);
2967
2968 ext4_free_blocks(handle, inode, NULL,
2969 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2970 EXT4_SB(sb)->s_cluster_ratio, flags);
2971 partial_cluster = 0;
2972 }
2973
2974 /* TODO: flexible tree reduction should be here */
2975 if (path->p_hdr->eh_entries == 0) {
2976 /*
2977 * truncate to zero freed all the tree,
2978 * so we need to correct eh_depth
2979 */
2980 err = ext4_ext_get_access(handle, inode, path);
2981 if (err == 0) {
2982 ext_inode_hdr(inode)->eh_depth = 0;
2983 ext_inode_hdr(inode)->eh_max =
2984 cpu_to_le16(ext4_ext_space_root(inode, 0));
2985 err = ext4_ext_dirty(handle, inode, path);
2986 }
2987 }
2988 out:
2989 ext4_ext_drop_refs(path);
2990 kfree(path);
2991 if (err == -EAGAIN) {
2992 path = NULL;
2993 goto again;
2994 }
2995 ext4_journal_stop(handle);
2996
2997 return err;
2998 }
2999
3000 /*
3001 * called at mount time
3002 */
3003 void ext4_ext_init(struct super_block *sb)
3004 {
3005 /*
3006 * possible initialization would be here
3007 */
3008
3009 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3010 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3011 printk(KERN_INFO "EXT4-fs: file extents enabled"
3012 #ifdef AGGRESSIVE_TEST
3013 ", aggressive tests"
3014 #endif
3015 #ifdef CHECK_BINSEARCH
3016 ", check binsearch"
3017 #endif
3018 #ifdef EXTENTS_STATS
3019 ", stats"
3020 #endif
3021 "\n");
3022 #endif
3023 #ifdef EXTENTS_STATS
3024 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3025 EXT4_SB(sb)->s_ext_min = 1 << 30;
3026 EXT4_SB(sb)->s_ext_max = 0;
3027 #endif
3028 }
3029 }
3030
3031 /*
3032 * called at umount time
3033 */
3034 void ext4_ext_release(struct super_block *sb)
3035 {
3036 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3037 return;
3038
3039 #ifdef EXTENTS_STATS
3040 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3041 struct ext4_sb_info *sbi = EXT4_SB(sb);
3042 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3043 sbi->s_ext_blocks, sbi->s_ext_extents,
3044 sbi->s_ext_blocks / sbi->s_ext_extents);
3045 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3046 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3047 }
3048 #endif
3049 }
3050
3051 /* FIXME!! we need to try to merge to left or right after zero-out */
3052 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3053 {
3054 ext4_fsblk_t ee_pblock;
3055 unsigned int ee_len;
3056 int ret;
3057
3058 ee_len = ext4_ext_get_actual_len(ex);
3059 ee_pblock = ext4_ext_pblock(ex);
3060
3061 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3062 if (ret > 0)
3063 ret = 0;
3064
3065 return ret;
3066 }
3067
3068 /*
3069 * ext4_split_extent_at() splits an extent at given block.
3070 *
3071 * @handle: the journal handle
3072 * @inode: the file inode
3073 * @path: the path to the extent
3074 * @split: the logical block where the extent is splitted.
3075 * @split_flags: indicates if the extent could be zeroout if split fails, and
3076 * the states(init or uninit) of new extents.
3077 * @flags: flags used to insert new extent to extent tree.
3078 *
3079 *
3080 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3081 * of which are deterimined by split_flag.
3082 *
3083 * There are two cases:
3084 * a> the extent are splitted into two extent.
3085 * b> split is not needed, and just mark the extent.
3086 *
3087 * return 0 on success.
3088 */
3089 static int ext4_split_extent_at(handle_t *handle,
3090 struct inode *inode,
3091 struct ext4_ext_path *path,
3092 ext4_lblk_t split,
3093 int split_flag,
3094 int flags)
3095 {
3096 ext4_fsblk_t newblock;
3097 ext4_lblk_t ee_block;
3098 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3099 struct ext4_extent *ex2 = NULL;
3100 unsigned int ee_len, depth;
3101 int err = 0;
3102
3103 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3104 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3105
3106 ext_debug("ext4_split_extents_at: inode %lu, logical"
3107 "block %llu\n", inode->i_ino, (unsigned long long)split);
3108
3109 ext4_ext_show_leaf(inode, path);
3110
3111 depth = ext_depth(inode);
3112 ex = path[depth].p_ext;
3113 ee_block = le32_to_cpu(ex->ee_block);
3114 ee_len = ext4_ext_get_actual_len(ex);
3115 newblock = split - ee_block + ext4_ext_pblock(ex);
3116
3117 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3118 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3119 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3120 EXT4_EXT_MARK_UNINIT1 |
3121 EXT4_EXT_MARK_UNINIT2));
3122
3123 err = ext4_ext_get_access(handle, inode, path + depth);
3124 if (err)
3125 goto out;
3126
3127 if (split == ee_block) {
3128 /*
3129 * case b: block @split is the block that the extent begins with
3130 * then we just change the state of the extent, and splitting
3131 * is not needed.
3132 */
3133 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3134 ext4_ext_mark_uninitialized(ex);
3135 else
3136 ext4_ext_mark_initialized(ex);
3137
3138 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3139 ext4_ext_try_to_merge(handle, inode, path, ex);
3140
3141 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3142 goto out;
3143 }
3144
3145 /* case a */
3146 memcpy(&orig_ex, ex, sizeof(orig_ex));
3147 ex->ee_len = cpu_to_le16(split - ee_block);
3148 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3149 ext4_ext_mark_uninitialized(ex);
3150
3151 /*
3152 * path may lead to new leaf, not to original leaf any more
3153 * after ext4_ext_insert_extent() returns,
3154 */
3155 err = ext4_ext_dirty(handle, inode, path + depth);
3156 if (err)
3157 goto fix_extent_len;
3158
3159 ex2 = &newex;
3160 ex2->ee_block = cpu_to_le32(split);
3161 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3162 ext4_ext_store_pblock(ex2, newblock);
3163 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3164 ext4_ext_mark_uninitialized(ex2);
3165
3166 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3167 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3168 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3169 if (split_flag & EXT4_EXT_DATA_VALID1) {
3170 err = ext4_ext_zeroout(inode, ex2);
3171 zero_ex.ee_block = ex2->ee_block;
3172 zero_ex.ee_len = cpu_to_le16(
3173 ext4_ext_get_actual_len(ex2));
3174 ext4_ext_store_pblock(&zero_ex,
3175 ext4_ext_pblock(ex2));
3176 } else {
3177 err = ext4_ext_zeroout(inode, ex);
3178 zero_ex.ee_block = ex->ee_block;
3179 zero_ex.ee_len = cpu_to_le16(
3180 ext4_ext_get_actual_len(ex));
3181 ext4_ext_store_pblock(&zero_ex,
3182 ext4_ext_pblock(ex));
3183 }
3184 } else {
3185 err = ext4_ext_zeroout(inode, &orig_ex);
3186 zero_ex.ee_block = orig_ex.ee_block;
3187 zero_ex.ee_len = cpu_to_le16(
3188 ext4_ext_get_actual_len(&orig_ex));
3189 ext4_ext_store_pblock(&zero_ex,
3190 ext4_ext_pblock(&orig_ex));
3191 }
3192
3193 if (err)
3194 goto fix_extent_len;
3195 /* update the extent length and mark as initialized */
3196 ex->ee_len = cpu_to_le16(ee_len);
3197 ext4_ext_try_to_merge(handle, inode, path, ex);
3198 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3199 if (err)
3200 goto fix_extent_len;
3201
3202 /* update extent status tree */
3203 err = ext4_es_zeroout(inode, &zero_ex);
3204
3205 goto out;
3206 } else if (err)
3207 goto fix_extent_len;
3208
3209 out:
3210 ext4_ext_show_leaf(inode, path);
3211 return err;
3212
3213 fix_extent_len:
3214 ex->ee_len = orig_ex.ee_len;
3215 ext4_ext_dirty(handle, inode, path + depth);
3216 return err;
3217 }
3218
3219 /*
3220 * ext4_split_extents() splits an extent and mark extent which is covered
3221 * by @map as split_flags indicates
3222 *
3223 * It may result in splitting the extent into multiple extents (upto three)
3224 * There are three possibilities:
3225 * a> There is no split required
3226 * b> Splits in two extents: Split is happening at either end of the extent
3227 * c> Splits in three extents: Somone is splitting in middle of the extent
3228 *
3229 */
3230 static int ext4_split_extent(handle_t *handle,
3231 struct inode *inode,
3232 struct ext4_ext_path *path,
3233 struct ext4_map_blocks *map,
3234 int split_flag,
3235 int flags)
3236 {
3237 ext4_lblk_t ee_block;
3238 struct ext4_extent *ex;
3239 unsigned int ee_len, depth;
3240 int err = 0;
3241 int uninitialized;
3242 int split_flag1, flags1;
3243 int allocated = map->m_len;
3244
3245 depth = ext_depth(inode);
3246 ex = path[depth].p_ext;
3247 ee_block = le32_to_cpu(ex->ee_block);
3248 ee_len = ext4_ext_get_actual_len(ex);
3249 uninitialized = ext4_ext_is_uninitialized(ex);
3250
3251 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3252 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3253 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3254 if (uninitialized)
3255 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3256 EXT4_EXT_MARK_UNINIT2;
3257 if (split_flag & EXT4_EXT_DATA_VALID2)
3258 split_flag1 |= EXT4_EXT_DATA_VALID1;
3259 err = ext4_split_extent_at(handle, inode, path,
3260 map->m_lblk + map->m_len, split_flag1, flags1);
3261 if (err)
3262 goto out;
3263 } else {
3264 allocated = ee_len - (map->m_lblk - ee_block);
3265 }
3266 /*
3267 * Update path is required because previous ext4_split_extent_at() may
3268 * result in split of original leaf or extent zeroout.
3269 */
3270 ext4_ext_drop_refs(path);
3271 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3272 if (IS_ERR(path))
3273 return PTR_ERR(path);
3274 depth = ext_depth(inode);
3275 ex = path[depth].p_ext;
3276 uninitialized = ext4_ext_is_uninitialized(ex);
3277 split_flag1 = 0;
3278
3279 if (map->m_lblk >= ee_block) {
3280 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3281 if (uninitialized) {
3282 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3283 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3284 EXT4_EXT_MARK_UNINIT2);
3285 }
3286 err = ext4_split_extent_at(handle, inode, path,
3287 map->m_lblk, split_flag1, flags);
3288 if (err)
3289 goto out;
3290 }
3291
3292 ext4_ext_show_leaf(inode, path);
3293 out:
3294 return err ? err : allocated;
3295 }
3296
3297 /*
3298 * This function is called by ext4_ext_map_blocks() if someone tries to write
3299 * to an uninitialized extent. It may result in splitting the uninitialized
3300 * extent into multiple extents (up to three - one initialized and two
3301 * uninitialized).
3302 * There are three possibilities:
3303 * a> There is no split required: Entire extent should be initialized
3304 * b> Splits in two extents: Write is happening at either end of the extent
3305 * c> Splits in three extents: Somone is writing in middle of the extent
3306 *
3307 * Pre-conditions:
3308 * - The extent pointed to by 'path' is uninitialized.
3309 * - The extent pointed to by 'path' contains a superset
3310 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3311 *
3312 * Post-conditions on success:
3313 * - the returned value is the number of blocks beyond map->l_lblk
3314 * that are allocated and initialized.
3315 * It is guaranteed to be >= map->m_len.
3316 */
3317 static int ext4_ext_convert_to_initialized(handle_t *handle,
3318 struct inode *inode,
3319 struct ext4_map_blocks *map,
3320 struct ext4_ext_path *path,
3321 int flags)
3322 {
3323 struct ext4_sb_info *sbi;
3324 struct ext4_extent_header *eh;
3325 struct ext4_map_blocks split_map;
3326 struct ext4_extent zero_ex;
3327 struct ext4_extent *ex, *abut_ex;
3328 ext4_lblk_t ee_block, eof_block;
3329 unsigned int ee_len, depth, map_len = map->m_len;
3330 int allocated = 0, max_zeroout = 0;
3331 int err = 0;
3332 int split_flag = 0;
3333
3334 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3335 "block %llu, max_blocks %u\n", inode->i_ino,
3336 (unsigned long long)map->m_lblk, map_len);
3337
3338 sbi = EXT4_SB(inode->i_sb);
3339 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3340 inode->i_sb->s_blocksize_bits;
3341 if (eof_block < map->m_lblk + map_len)
3342 eof_block = map->m_lblk + map_len;
3343
3344 depth = ext_depth(inode);
3345 eh = path[depth].p_hdr;
3346 ex = path[depth].p_ext;
3347 ee_block = le32_to_cpu(ex->ee_block);
3348 ee_len = ext4_ext_get_actual_len(ex);
3349 zero_ex.ee_len = 0;
3350
3351 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3352
3353 /* Pre-conditions */
3354 BUG_ON(!ext4_ext_is_uninitialized(ex));
3355 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3356
3357 /*
3358 * Attempt to transfer newly initialized blocks from the currently
3359 * uninitialized extent to its neighbor. This is much cheaper
3360 * than an insertion followed by a merge as those involve costly
3361 * memmove() calls. Transferring to the left is the common case in
3362 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3363 * followed by append writes.
3364 *
3365 * Limitations of the current logic:
3366 * - L1: we do not deal with writes covering the whole extent.
3367 * This would require removing the extent if the transfer
3368 * is possible.
3369 * - L2: we only attempt to merge with an extent stored in the
3370 * same extent tree node.
3371 */
3372 if ((map->m_lblk == ee_block) &&
3373 /* See if we can merge left */
3374 (map_len < ee_len) && /*L1*/
3375 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3376 ext4_lblk_t prev_lblk;
3377 ext4_fsblk_t prev_pblk, ee_pblk;
3378 unsigned int prev_len;
3379
3380 abut_ex = ex - 1;
3381 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3382 prev_len = ext4_ext_get_actual_len(abut_ex);
3383 prev_pblk = ext4_ext_pblock(abut_ex);
3384 ee_pblk = ext4_ext_pblock(ex);
3385
3386 /*
3387 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3388 * upon those conditions:
3389 * - C1: abut_ex is initialized,
3390 * - C2: abut_ex is logically abutting ex,
3391 * - C3: abut_ex is physically abutting ex,
3392 * - C4: abut_ex can receive the additional blocks without
3393 * overflowing the (initialized) length limit.
3394 */
3395 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3396 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3397 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3398 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3399 err = ext4_ext_get_access(handle, inode, path + depth);
3400 if (err)
3401 goto out;
3402
3403 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3404 map, ex, abut_ex);
3405
3406 /* Shift the start of ex by 'map_len' blocks */
3407 ex->ee_block = cpu_to_le32(ee_block + map_len);
3408 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3409 ex->ee_len = cpu_to_le16(ee_len - map_len);
3410 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3411
3412 /* Extend abut_ex by 'map_len' blocks */
3413 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3414
3415 /* Result: number of initialized blocks past m_lblk */
3416 allocated = map_len;
3417 }
3418 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3419 (map_len < ee_len) && /*L1*/
3420 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3421 /* See if we can merge right */
3422 ext4_lblk_t next_lblk;
3423 ext4_fsblk_t next_pblk, ee_pblk;
3424 unsigned int next_len;
3425
3426 abut_ex = ex + 1;
3427 next_lblk = le32_to_cpu(abut_ex->ee_block);
3428 next_len = ext4_ext_get_actual_len(abut_ex);
3429 next_pblk = ext4_ext_pblock(abut_ex);
3430 ee_pblk = ext4_ext_pblock(ex);
3431
3432 /*
3433 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3434 * upon those conditions:
3435 * - C1: abut_ex is initialized,
3436 * - C2: abut_ex is logically abutting ex,
3437 * - C3: abut_ex is physically abutting ex,
3438 * - C4: abut_ex can receive the additional blocks without
3439 * overflowing the (initialized) length limit.
3440 */
3441 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3442 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3443 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3444 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3445 err = ext4_ext_get_access(handle, inode, path + depth);
3446 if (err)
3447 goto out;
3448
3449 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3450 map, ex, abut_ex);
3451
3452 /* Shift the start of abut_ex by 'map_len' blocks */
3453 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3454 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3455 ex->ee_len = cpu_to_le16(ee_len - map_len);
3456 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3457
3458 /* Extend abut_ex by 'map_len' blocks */
3459 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3460
3461 /* Result: number of initialized blocks past m_lblk */
3462 allocated = map_len;
3463 }
3464 }
3465 if (allocated) {
3466 /* Mark the block containing both extents as dirty */
3467 ext4_ext_dirty(handle, inode, path + depth);
3468
3469 /* Update path to point to the right extent */
3470 path[depth].p_ext = abut_ex;
3471 goto out;
3472 } else
3473 allocated = ee_len - (map->m_lblk - ee_block);
3474
3475 WARN_ON(map->m_lblk < ee_block);
3476 /*
3477 * It is safe to convert extent to initialized via explicit
3478 * zeroout only if extent is fully insde i_size or new_size.
3479 */
3480 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3481
3482 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3483 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3484 (inode->i_sb->s_blocksize_bits - 10);
3485
3486 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3487 if (max_zeroout && (ee_len <= max_zeroout)) {
3488 err = ext4_ext_zeroout(inode, ex);
3489 if (err)
3490 goto out;
3491 zero_ex.ee_block = ex->ee_block;
3492 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3493 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3494
3495 err = ext4_ext_get_access(handle, inode, path + depth);
3496 if (err)
3497 goto out;
3498 ext4_ext_mark_initialized(ex);
3499 ext4_ext_try_to_merge(handle, inode, path, ex);
3500 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3501 goto out;
3502 }
3503
3504 /*
3505 * four cases:
3506 * 1. split the extent into three extents.
3507 * 2. split the extent into two extents, zeroout the first half.
3508 * 3. split the extent into two extents, zeroout the second half.
3509 * 4. split the extent into two extents with out zeroout.
3510 */
3511 split_map.m_lblk = map->m_lblk;
3512 split_map.m_len = map->m_len;
3513
3514 if (max_zeroout && (allocated > map->m_len)) {
3515 if (allocated <= max_zeroout) {
3516 /* case 3 */
3517 zero_ex.ee_block =
3518 cpu_to_le32(map->m_lblk);
3519 zero_ex.ee_len = cpu_to_le16(allocated);
3520 ext4_ext_store_pblock(&zero_ex,
3521 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3522 err = ext4_ext_zeroout(inode, &zero_ex);
3523 if (err)
3524 goto out;
3525 split_map.m_lblk = map->m_lblk;
3526 split_map.m_len = allocated;
3527 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3528 /* case 2 */
3529 if (map->m_lblk != ee_block) {
3530 zero_ex.ee_block = ex->ee_block;
3531 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3532 ee_block);
3533 ext4_ext_store_pblock(&zero_ex,
3534 ext4_ext_pblock(ex));
3535 err = ext4_ext_zeroout(inode, &zero_ex);
3536 if (err)
3537 goto out;
3538 }
3539
3540 split_map.m_lblk = ee_block;
3541 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3542 allocated = map->m_len;
3543 }
3544 }
3545
3546 allocated = ext4_split_extent(handle, inode, path,
3547 &split_map, split_flag, flags);
3548 if (allocated < 0)
3549 err = allocated;
3550
3551 out:
3552 /* If we have gotten a failure, don't zero out status tree */
3553 if (!err)
3554 err = ext4_es_zeroout(inode, &zero_ex);
3555 return err ? err : allocated;
3556 }
3557
3558 /*
3559 * This function is called by ext4_ext_map_blocks() from
3560 * ext4_get_blocks_dio_write() when DIO to write
3561 * to an uninitialized extent.
3562 *
3563 * Writing to an uninitialized extent may result in splitting the uninitialized
3564 * extent into multiple initialized/uninitialized extents (up to three)
3565 * There are three possibilities:
3566 * a> There is no split required: Entire extent should be uninitialized
3567 * b> Splits in two extents: Write is happening at either end of the extent
3568 * c> Splits in three extents: Somone is writing in middle of the extent
3569 *
3570 * One of more index blocks maybe needed if the extent tree grow after
3571 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3572 * complete, we need to split the uninitialized extent before DIO submit
3573 * the IO. The uninitialized extent called at this time will be split
3574 * into three uninitialized extent(at most). After IO complete, the part
3575 * being filled will be convert to initialized by the end_io callback function
3576 * via ext4_convert_unwritten_extents().
3577 *
3578 * Returns the size of uninitialized extent to be written on success.
3579 */
3580 static int ext4_split_unwritten_extents(handle_t *handle,
3581 struct inode *inode,
3582 struct ext4_map_blocks *map,
3583 struct ext4_ext_path *path,
3584 int flags)
3585 {
3586 ext4_lblk_t eof_block;
3587 ext4_lblk_t ee_block;
3588 struct ext4_extent *ex;
3589 unsigned int ee_len;
3590 int split_flag = 0, depth;
3591
3592 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3593 "block %llu, max_blocks %u\n", inode->i_ino,
3594 (unsigned long long)map->m_lblk, map->m_len);
3595
3596 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3597 inode->i_sb->s_blocksize_bits;
3598 if (eof_block < map->m_lblk + map->m_len)
3599 eof_block = map->m_lblk + map->m_len;
3600 /*
3601 * It is safe to convert extent to initialized via explicit
3602 * zeroout only if extent is fully insde i_size or new_size.
3603 */
3604 depth = ext_depth(inode);
3605 ex = path[depth].p_ext;
3606 ee_block = le32_to_cpu(ex->ee_block);
3607 ee_len = ext4_ext_get_actual_len(ex);
3608
3609 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3610 split_flag |= EXT4_EXT_MARK_UNINIT2;
3611 if (flags & EXT4_GET_BLOCKS_CONVERT)
3612 split_flag |= EXT4_EXT_DATA_VALID2;
3613 flags |= EXT4_GET_BLOCKS_PRE_IO;
3614 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3615 }
3616
3617 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3618 struct inode *inode,
3619 struct ext4_map_blocks *map,
3620 struct ext4_ext_path *path)
3621 {
3622 struct ext4_extent *ex;
3623 ext4_lblk_t ee_block;
3624 unsigned int ee_len;
3625 int depth;
3626 int err = 0;
3627
3628 depth = ext_depth(inode);
3629 ex = path[depth].p_ext;
3630 ee_block = le32_to_cpu(ex->ee_block);
3631 ee_len = ext4_ext_get_actual_len(ex);
3632
3633 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3634 "block %llu, max_blocks %u\n", inode->i_ino,
3635 (unsigned long long)ee_block, ee_len);
3636
3637 /* If extent is larger than requested it is a clear sign that we still
3638 * have some extent state machine issues left. So extent_split is still
3639 * required.
3640 * TODO: Once all related issues will be fixed this situation should be
3641 * illegal.
3642 */
3643 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3644 #ifdef EXT4_DEBUG
3645 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3646 " len %u; IO logical block %llu, len %u\n",
3647 inode->i_ino, (unsigned long long)ee_block, ee_len,
3648 (unsigned long long)map->m_lblk, map->m_len);
3649 #endif
3650 err = ext4_split_unwritten_extents(handle, inode, map, path,
3651 EXT4_GET_BLOCKS_CONVERT);
3652 if (err < 0)
3653 goto out;
3654 ext4_ext_drop_refs(path);
3655 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3656 if (IS_ERR(path)) {
3657 err = PTR_ERR(path);
3658 goto out;
3659 }
3660 depth = ext_depth(inode);
3661 ex = path[depth].p_ext;
3662 }
3663
3664 err = ext4_ext_get_access(handle, inode, path + depth);
3665 if (err)
3666 goto out;
3667 /* first mark the extent as initialized */
3668 ext4_ext_mark_initialized(ex);
3669
3670 /* note: ext4_ext_correct_indexes() isn't needed here because
3671 * borders are not changed
3672 */
3673 ext4_ext_try_to_merge(handle, inode, path, ex);
3674
3675 /* Mark modified extent as dirty */
3676 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3677 out:
3678 ext4_ext_show_leaf(inode, path);
3679 return err;
3680 }
3681
3682 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3683 sector_t block, int count)
3684 {
3685 int i;
3686 for (i = 0; i < count; i++)
3687 unmap_underlying_metadata(bdev, block + i);
3688 }
3689
3690 /*
3691 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3692 */
3693 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3694 ext4_lblk_t lblk,
3695 struct ext4_ext_path *path,
3696 unsigned int len)
3697 {
3698 int i, depth;
3699 struct ext4_extent_header *eh;
3700 struct ext4_extent *last_ex;
3701
3702 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3703 return 0;
3704
3705 depth = ext_depth(inode);
3706 eh = path[depth].p_hdr;
3707
3708 /*
3709 * We're going to remove EOFBLOCKS_FL entirely in future so we
3710 * do not care for this case anymore. Simply remove the flag
3711 * if there are no extents.
3712 */
3713 if (unlikely(!eh->eh_entries))
3714 goto out;
3715 last_ex = EXT_LAST_EXTENT(eh);
3716 /*
3717 * We should clear the EOFBLOCKS_FL flag if we are writing the
3718 * last block in the last extent in the file. We test this by
3719 * first checking to see if the caller to
3720 * ext4_ext_get_blocks() was interested in the last block (or
3721 * a block beyond the last block) in the current extent. If
3722 * this turns out to be false, we can bail out from this
3723 * function immediately.
3724 */
3725 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3726 ext4_ext_get_actual_len(last_ex))
3727 return 0;
3728 /*
3729 * If the caller does appear to be planning to write at or
3730 * beyond the end of the current extent, we then test to see
3731 * if the current extent is the last extent in the file, by
3732 * checking to make sure it was reached via the rightmost node
3733 * at each level of the tree.
3734 */
3735 for (i = depth-1; i >= 0; i--)
3736 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3737 return 0;
3738 out:
3739 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3740 return ext4_mark_inode_dirty(handle, inode);
3741 }
3742
3743 /**
3744 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3745 *
3746 * Return 1 if there is a delalloc block in the range, otherwise 0.
3747 */
3748 int ext4_find_delalloc_range(struct inode *inode,
3749 ext4_lblk_t lblk_start,
3750 ext4_lblk_t lblk_end)
3751 {
3752 struct extent_status es;
3753
3754 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3755 if (es.es_len == 0)
3756 return 0; /* there is no delay extent in this tree */
3757 else if (es.es_lblk <= lblk_start &&
3758 lblk_start < es.es_lblk + es.es_len)
3759 return 1;
3760 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3761 return 1;
3762 else
3763 return 0;
3764 }
3765
3766 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3767 {
3768 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3769 ext4_lblk_t lblk_start, lblk_end;
3770 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3771 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3772
3773 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3774 }
3775
3776 /**
3777 * Determines how many complete clusters (out of those specified by the 'map')
3778 * are under delalloc and were reserved quota for.
3779 * This function is called when we are writing out the blocks that were
3780 * originally written with their allocation delayed, but then the space was
3781 * allocated using fallocate() before the delayed allocation could be resolved.
3782 * The cases to look for are:
3783 * ('=' indicated delayed allocated blocks
3784 * '-' indicates non-delayed allocated blocks)
3785 * (a) partial clusters towards beginning and/or end outside of allocated range
3786 * are not delalloc'ed.
3787 * Ex:
3788 * |----c---=|====c====|====c====|===-c----|
3789 * |++++++ allocated ++++++|
3790 * ==> 4 complete clusters in above example
3791 *
3792 * (b) partial cluster (outside of allocated range) towards either end is
3793 * marked for delayed allocation. In this case, we will exclude that
3794 * cluster.
3795 * Ex:
3796 * |----====c========|========c========|
3797 * |++++++ allocated ++++++|
3798 * ==> 1 complete clusters in above example
3799 *
3800 * Ex:
3801 * |================c================|
3802 * |++++++ allocated ++++++|
3803 * ==> 0 complete clusters in above example
3804 *
3805 * The ext4_da_update_reserve_space will be called only if we
3806 * determine here that there were some "entire" clusters that span
3807 * this 'allocated' range.
3808 * In the non-bigalloc case, this function will just end up returning num_blks
3809 * without ever calling ext4_find_delalloc_range.
3810 */
3811 static unsigned int
3812 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3813 unsigned int num_blks)
3814 {
3815 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3816 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3817 ext4_lblk_t lblk_from, lblk_to, c_offset;
3818 unsigned int allocated_clusters = 0;
3819
3820 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3821 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3822
3823 /* max possible clusters for this allocation */
3824 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3825
3826 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3827
3828 /* Check towards left side */
3829 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3830 if (c_offset) {
3831 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3832 lblk_to = lblk_from + c_offset - 1;
3833
3834 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3835 allocated_clusters--;
3836 }
3837
3838 /* Now check towards right. */
3839 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3840 if (allocated_clusters && c_offset) {
3841 lblk_from = lblk_start + num_blks;
3842 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3843
3844 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3845 allocated_clusters--;
3846 }
3847
3848 return allocated_clusters;
3849 }
3850
3851 static int
3852 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3853 struct ext4_map_blocks *map,
3854 struct ext4_ext_path *path, int flags,
3855 unsigned int allocated, ext4_fsblk_t newblock)
3856 {
3857 int ret = 0;
3858 int err = 0;
3859 ext4_io_end_t *io = ext4_inode_aio(inode);
3860
3861 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3862 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3863 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3864 flags, allocated);
3865 ext4_ext_show_leaf(inode, path);
3866
3867 /*
3868 * When writing into uninitialized space, we should not fail to
3869 * allocate metadata blocks for the new extent block if needed.
3870 */
3871 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3872
3873 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3874 allocated, newblock);
3875
3876 /* get_block() before submit the IO, split the extent */
3877 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3878 ret = ext4_split_unwritten_extents(handle, inode, map,
3879 path, flags);
3880 if (ret <= 0)
3881 goto out;
3882 /*
3883 * Flag the inode(non aio case) or end_io struct (aio case)
3884 * that this IO needs to conversion to written when IO is
3885 * completed
3886 */
3887 if (io)
3888 ext4_set_io_unwritten_flag(inode, io);
3889 else
3890 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3891 map->m_flags |= EXT4_MAP_UNWRITTEN;
3892 if (ext4_should_dioread_nolock(inode))
3893 map->m_flags |= EXT4_MAP_UNINIT;
3894 goto out;
3895 }
3896 /* IO end_io complete, convert the filled extent to written */
3897 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3898 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3899 path);
3900 if (ret >= 0) {
3901 ext4_update_inode_fsync_trans(handle, inode, 1);
3902 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3903 path, map->m_len);
3904 } else
3905 err = ret;
3906 map->m_flags |= EXT4_MAP_MAPPED;
3907 if (allocated > map->m_len)
3908 allocated = map->m_len;
3909 map->m_len = allocated;
3910 goto out2;
3911 }
3912 /* buffered IO case */
3913 /*
3914 * repeat fallocate creation request
3915 * we already have an unwritten extent
3916 */
3917 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3918 map->m_flags |= EXT4_MAP_UNWRITTEN;
3919 goto map_out;
3920 }
3921
3922 /* buffered READ or buffered write_begin() lookup */
3923 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3924 /*
3925 * We have blocks reserved already. We
3926 * return allocated blocks so that delalloc
3927 * won't do block reservation for us. But
3928 * the buffer head will be unmapped so that
3929 * a read from the block returns 0s.
3930 */
3931 map->m_flags |= EXT4_MAP_UNWRITTEN;
3932 goto out1;
3933 }
3934
3935 /* buffered write, writepage time, convert*/
3936 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3937 if (ret >= 0)
3938 ext4_update_inode_fsync_trans(handle, inode, 1);
3939 out:
3940 if (ret <= 0) {
3941 err = ret;
3942 goto out2;
3943 } else
3944 allocated = ret;
3945 map->m_flags |= EXT4_MAP_NEW;
3946 /*
3947 * if we allocated more blocks than requested
3948 * we need to make sure we unmap the extra block
3949 * allocated. The actual needed block will get
3950 * unmapped later when we find the buffer_head marked
3951 * new.
3952 */
3953 if (allocated > map->m_len) {
3954 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3955 newblock + map->m_len,
3956 allocated - map->m_len);
3957 allocated = map->m_len;
3958 }
3959 map->m_len = allocated;
3960
3961 /*
3962 * If we have done fallocate with the offset that is already
3963 * delayed allocated, we would have block reservation
3964 * and quota reservation done in the delayed write path.
3965 * But fallocate would have already updated quota and block
3966 * count for this offset. So cancel these reservation
3967 */
3968 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3969 unsigned int reserved_clusters;
3970 reserved_clusters = get_reserved_cluster_alloc(inode,
3971 map->m_lblk, map->m_len);
3972 if (reserved_clusters)
3973 ext4_da_update_reserve_space(inode,
3974 reserved_clusters,
3975 0);
3976 }
3977
3978 map_out:
3979 map->m_flags |= EXT4_MAP_MAPPED;
3980 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3981 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3982 map->m_len);
3983 if (err < 0)
3984 goto out2;
3985 }
3986 out1:
3987 if (allocated > map->m_len)
3988 allocated = map->m_len;
3989 ext4_ext_show_leaf(inode, path);
3990 map->m_pblk = newblock;
3991 map->m_len = allocated;
3992 out2:
3993 if (path) {
3994 ext4_ext_drop_refs(path);
3995 kfree(path);
3996 }
3997 return err ? err : allocated;
3998 }
3999
4000 /*
4001 * get_implied_cluster_alloc - check to see if the requested
4002 * allocation (in the map structure) overlaps with a cluster already
4003 * allocated in an extent.
4004 * @sb The filesystem superblock structure
4005 * @map The requested lblk->pblk mapping
4006 * @ex The extent structure which might contain an implied
4007 * cluster allocation
4008 *
4009 * This function is called by ext4_ext_map_blocks() after we failed to
4010 * find blocks that were already in the inode's extent tree. Hence,
4011 * we know that the beginning of the requested region cannot overlap
4012 * the extent from the inode's extent tree. There are three cases we
4013 * want to catch. The first is this case:
4014 *
4015 * |--- cluster # N--|
4016 * |--- extent ---| |---- requested region ---|
4017 * |==========|
4018 *
4019 * The second case that we need to test for is this one:
4020 *
4021 * |--------- cluster # N ----------------|
4022 * |--- requested region --| |------- extent ----|
4023 * |=======================|
4024 *
4025 * The third case is when the requested region lies between two extents
4026 * within the same cluster:
4027 * |------------- cluster # N-------------|
4028 * |----- ex -----| |---- ex_right ----|
4029 * |------ requested region ------|
4030 * |================|
4031 *
4032 * In each of the above cases, we need to set the map->m_pblk and
4033 * map->m_len so it corresponds to the return the extent labelled as
4034 * "|====|" from cluster #N, since it is already in use for data in
4035 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4036 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4037 * as a new "allocated" block region. Otherwise, we will return 0 and
4038 * ext4_ext_map_blocks() will then allocate one or more new clusters
4039 * by calling ext4_mb_new_blocks().
4040 */
4041 static int get_implied_cluster_alloc(struct super_block *sb,
4042 struct ext4_map_blocks *map,
4043 struct ext4_extent *ex,
4044 struct ext4_ext_path *path)
4045 {
4046 struct ext4_sb_info *sbi = EXT4_SB(sb);
4047 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4048 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4049 ext4_lblk_t rr_cluster_start;
4050 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4051 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4052 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4053
4054 /* The extent passed in that we are trying to match */
4055 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4056 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4057
4058 /* The requested region passed into ext4_map_blocks() */
4059 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4060
4061 if ((rr_cluster_start == ex_cluster_end) ||
4062 (rr_cluster_start == ex_cluster_start)) {
4063 if (rr_cluster_start == ex_cluster_end)
4064 ee_start += ee_len - 1;
4065 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4066 c_offset;
4067 map->m_len = min(map->m_len,
4068 (unsigned) sbi->s_cluster_ratio - c_offset);
4069 /*
4070 * Check for and handle this case:
4071 *
4072 * |--------- cluster # N-------------|
4073 * |------- extent ----|
4074 * |--- requested region ---|
4075 * |===========|
4076 */
4077
4078 if (map->m_lblk < ee_block)
4079 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4080
4081 /*
4082 * Check for the case where there is already another allocated
4083 * block to the right of 'ex' but before the end of the cluster.
4084 *
4085 * |------------- cluster # N-------------|
4086 * |----- ex -----| |---- ex_right ----|
4087 * |------ requested region ------|
4088 * |================|
4089 */
4090 if (map->m_lblk > ee_block) {
4091 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4092 map->m_len = min(map->m_len, next - map->m_lblk);
4093 }
4094
4095 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4096 return 1;
4097 }
4098
4099 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4100 return 0;
4101 }
4102
4103
4104 /*
4105 * Block allocation/map/preallocation routine for extents based files
4106 *
4107 *
4108 * Need to be called with
4109 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4110 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4111 *
4112 * return > 0, number of of blocks already mapped/allocated
4113 * if create == 0 and these are pre-allocated blocks
4114 * buffer head is unmapped
4115 * otherwise blocks are mapped
4116 *
4117 * return = 0, if plain look up failed (blocks have not been allocated)
4118 * buffer head is unmapped
4119 *
4120 * return < 0, error case.
4121 */
4122 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4123 struct ext4_map_blocks *map, int flags)
4124 {
4125 struct ext4_ext_path *path = NULL;
4126 struct ext4_extent newex, *ex, *ex2;
4127 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4128 ext4_fsblk_t newblock = 0;
4129 int free_on_err = 0, err = 0, depth;
4130 unsigned int allocated = 0, offset = 0;
4131 unsigned int allocated_clusters = 0;
4132 struct ext4_allocation_request ar;
4133 ext4_io_end_t *io = ext4_inode_aio(inode);
4134 ext4_lblk_t cluster_offset;
4135 int set_unwritten = 0;
4136
4137 ext_debug("blocks %u/%u requested for inode %lu\n",
4138 map->m_lblk, map->m_len, inode->i_ino);
4139 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4140
4141 /* find extent for this block */
4142 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4143 if (IS_ERR(path)) {
4144 err = PTR_ERR(path);
4145 path = NULL;
4146 goto out2;
4147 }
4148
4149 depth = ext_depth(inode);
4150
4151 /*
4152 * consistent leaf must not be empty;
4153 * this situation is possible, though, _during_ tree modification;
4154 * this is why assert can't be put in ext4_ext_find_extent()
4155 */
4156 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4157 EXT4_ERROR_INODE(inode, "bad extent address "
4158 "lblock: %lu, depth: %d pblock %lld",
4159 (unsigned long) map->m_lblk, depth,
4160 path[depth].p_block);
4161 err = -EIO;
4162 goto out2;
4163 }
4164
4165 ex = path[depth].p_ext;
4166 if (ex) {
4167 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4168 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4169 unsigned short ee_len;
4170
4171 /*
4172 * Uninitialized extents are treated as holes, except that
4173 * we split out initialized portions during a write.
4174 */
4175 ee_len = ext4_ext_get_actual_len(ex);
4176
4177 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4178
4179 /* if found extent covers block, simply return it */
4180 if (in_range(map->m_lblk, ee_block, ee_len)) {
4181 newblock = map->m_lblk - ee_block + ee_start;
4182 /* number of remaining blocks in the extent */
4183 allocated = ee_len - (map->m_lblk - ee_block);
4184 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4185 ee_block, ee_len, newblock);
4186
4187 if (!ext4_ext_is_uninitialized(ex))
4188 goto out;
4189
4190 allocated = ext4_ext_handle_uninitialized_extents(
4191 handle, inode, map, path, flags,
4192 allocated, newblock);
4193 goto out3;
4194 }
4195 }
4196
4197 if ((sbi->s_cluster_ratio > 1) &&
4198 ext4_find_delalloc_cluster(inode, map->m_lblk))
4199 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4200
4201 /*
4202 * requested block isn't allocated yet;
4203 * we couldn't try to create block if create flag is zero
4204 */
4205 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4206 /*
4207 * put just found gap into cache to speed up
4208 * subsequent requests
4209 */
4210 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4211 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4212 goto out2;
4213 }
4214
4215 /*
4216 * Okay, we need to do block allocation.
4217 */
4218 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4219 newex.ee_block = cpu_to_le32(map->m_lblk);
4220 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4221
4222 /*
4223 * If we are doing bigalloc, check to see if the extent returned
4224 * by ext4_ext_find_extent() implies a cluster we can use.
4225 */
4226 if (cluster_offset && ex &&
4227 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4228 ar.len = allocated = map->m_len;
4229 newblock = map->m_pblk;
4230 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4231 goto got_allocated_blocks;
4232 }
4233
4234 /* find neighbour allocated blocks */
4235 ar.lleft = map->m_lblk;
4236 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4237 if (err)
4238 goto out2;
4239 ar.lright = map->m_lblk;
4240 ex2 = NULL;
4241 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4242 if (err)
4243 goto out2;
4244
4245 /* Check if the extent after searching to the right implies a
4246 * cluster we can use. */
4247 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4248 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4249 ar.len = allocated = map->m_len;
4250 newblock = map->m_pblk;
4251 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4252 goto got_allocated_blocks;
4253 }
4254
4255 /*
4256 * See if request is beyond maximum number of blocks we can have in
4257 * a single extent. For an initialized extent this limit is
4258 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4259 * EXT_UNINIT_MAX_LEN.
4260 */
4261 if (map->m_len > EXT_INIT_MAX_LEN &&
4262 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4263 map->m_len = EXT_INIT_MAX_LEN;
4264 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4265 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4266 map->m_len = EXT_UNINIT_MAX_LEN;
4267
4268 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4269 newex.ee_len = cpu_to_le16(map->m_len);
4270 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4271 if (err)
4272 allocated = ext4_ext_get_actual_len(&newex);
4273 else
4274 allocated = map->m_len;
4275
4276 /* allocate new block */
4277 ar.inode = inode;
4278 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4279 ar.logical = map->m_lblk;
4280 /*
4281 * We calculate the offset from the beginning of the cluster
4282 * for the logical block number, since when we allocate a
4283 * physical cluster, the physical block should start at the
4284 * same offset from the beginning of the cluster. This is
4285 * needed so that future calls to get_implied_cluster_alloc()
4286 * work correctly.
4287 */
4288 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4289 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4290 ar.goal -= offset;
4291 ar.logical -= offset;
4292 if (S_ISREG(inode->i_mode))
4293 ar.flags = EXT4_MB_HINT_DATA;
4294 else
4295 /* disable in-core preallocation for non-regular files */
4296 ar.flags = 0;
4297 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4298 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4299 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4300 if (!newblock)
4301 goto out2;
4302 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4303 ar.goal, newblock, allocated);
4304 free_on_err = 1;
4305 allocated_clusters = ar.len;
4306 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4307 if (ar.len > allocated)
4308 ar.len = allocated;
4309
4310 got_allocated_blocks:
4311 /* try to insert new extent into found leaf and return */
4312 ext4_ext_store_pblock(&newex, newblock + offset);
4313 newex.ee_len = cpu_to_le16(ar.len);
4314 /* Mark uninitialized */
4315 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4316 ext4_ext_mark_uninitialized(&newex);
4317 map->m_flags |= EXT4_MAP_UNWRITTEN;
4318 /*
4319 * io_end structure was created for every IO write to an
4320 * uninitialized extent. To avoid unnecessary conversion,
4321 * here we flag the IO that really needs the conversion.
4322 * For non asycn direct IO case, flag the inode state
4323 * that we need to perform conversion when IO is done.
4324 */
4325 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4326 set_unwritten = 1;
4327 if (ext4_should_dioread_nolock(inode))
4328 map->m_flags |= EXT4_MAP_UNINIT;
4329 }
4330
4331 err = 0;
4332 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4333 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4334 path, ar.len);
4335 if (!err)
4336 err = ext4_ext_insert_extent(handle, inode, path,
4337 &newex, flags);
4338
4339 if (!err && set_unwritten) {
4340 if (io)
4341 ext4_set_io_unwritten_flag(inode, io);
4342 else
4343 ext4_set_inode_state(inode,
4344 EXT4_STATE_DIO_UNWRITTEN);
4345 }
4346
4347 if (err && free_on_err) {
4348 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4349 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4350 /* free data blocks we just allocated */
4351 /* not a good idea to call discard here directly,
4352 * but otherwise we'd need to call it every free() */
4353 ext4_discard_preallocations(inode);
4354 ext4_free_blocks(handle, inode, NULL, newblock,
4355 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4356 goto out2;
4357 }
4358
4359 /* previous routine could use block we allocated */
4360 newblock = ext4_ext_pblock(&newex);
4361 allocated = ext4_ext_get_actual_len(&newex);
4362 if (allocated > map->m_len)
4363 allocated = map->m_len;
4364 map->m_flags |= EXT4_MAP_NEW;
4365
4366 /*
4367 * Update reserved blocks/metadata blocks after successful
4368 * block allocation which had been deferred till now.
4369 */
4370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4371 unsigned int reserved_clusters;
4372 /*
4373 * Check how many clusters we had reserved this allocated range
4374 */
4375 reserved_clusters = get_reserved_cluster_alloc(inode,
4376 map->m_lblk, allocated);
4377 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4378 if (reserved_clusters) {
4379 /*
4380 * We have clusters reserved for this range.
4381 * But since we are not doing actual allocation
4382 * and are simply using blocks from previously
4383 * allocated cluster, we should release the
4384 * reservation and not claim quota.
4385 */
4386 ext4_da_update_reserve_space(inode,
4387 reserved_clusters, 0);
4388 }
4389 } else {
4390 BUG_ON(allocated_clusters < reserved_clusters);
4391 if (reserved_clusters < allocated_clusters) {
4392 struct ext4_inode_info *ei = EXT4_I(inode);
4393 int reservation = allocated_clusters -
4394 reserved_clusters;
4395 /*
4396 * It seems we claimed few clusters outside of
4397 * the range of this allocation. We should give
4398 * it back to the reservation pool. This can
4399 * happen in the following case:
4400 *
4401 * * Suppose s_cluster_ratio is 4 (i.e., each
4402 * cluster has 4 blocks. Thus, the clusters
4403 * are [0-3],[4-7],[8-11]...
4404 * * First comes delayed allocation write for
4405 * logical blocks 10 & 11. Since there were no
4406 * previous delayed allocated blocks in the
4407 * range [8-11], we would reserve 1 cluster
4408 * for this write.
4409 * * Next comes write for logical blocks 3 to 8.
4410 * In this case, we will reserve 2 clusters
4411 * (for [0-3] and [4-7]; and not for [8-11] as
4412 * that range has a delayed allocated blocks.
4413 * Thus total reserved clusters now becomes 3.
4414 * * Now, during the delayed allocation writeout
4415 * time, we will first write blocks [3-8] and
4416 * allocate 3 clusters for writing these
4417 * blocks. Also, we would claim all these
4418 * three clusters above.
4419 * * Now when we come here to writeout the
4420 * blocks [10-11], we would expect to claim
4421 * the reservation of 1 cluster we had made
4422 * (and we would claim it since there are no
4423 * more delayed allocated blocks in the range
4424 * [8-11]. But our reserved cluster count had
4425 * already gone to 0.
4426 *
4427 * Thus, at the step 4 above when we determine
4428 * that there are still some unwritten delayed
4429 * allocated blocks outside of our current
4430 * block range, we should increment the
4431 * reserved clusters count so that when the
4432 * remaining blocks finally gets written, we
4433 * could claim them.
4434 */
4435 dquot_reserve_block(inode,
4436 EXT4_C2B(sbi, reservation));
4437 spin_lock(&ei->i_block_reservation_lock);
4438 ei->i_reserved_data_blocks += reservation;
4439 spin_unlock(&ei->i_block_reservation_lock);
4440 }
4441 /*
4442 * We will claim quota for all newly allocated blocks.
4443 * We're updating the reserved space *after* the
4444 * correction above so we do not accidentally free
4445 * all the metadata reservation because we might
4446 * actually need it later on.
4447 */
4448 ext4_da_update_reserve_space(inode, allocated_clusters,
4449 1);
4450 }
4451 }
4452
4453 /*
4454 * Cache the extent and update transaction to commit on fdatasync only
4455 * when it is _not_ an uninitialized extent.
4456 */
4457 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4458 ext4_update_inode_fsync_trans(handle, inode, 1);
4459 else
4460 ext4_update_inode_fsync_trans(handle, inode, 0);
4461 out:
4462 if (allocated > map->m_len)
4463 allocated = map->m_len;
4464 ext4_ext_show_leaf(inode, path);
4465 map->m_flags |= EXT4_MAP_MAPPED;
4466 map->m_pblk = newblock;
4467 map->m_len = allocated;
4468 out2:
4469 if (path) {
4470 ext4_ext_drop_refs(path);
4471 kfree(path);
4472 }
4473
4474 out3:
4475 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4476 err ? err : allocated);
4477 ext4_es_lru_add(inode);
4478 return err ? err : allocated;
4479 }
4480
4481 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4482 {
4483 struct super_block *sb = inode->i_sb;
4484 ext4_lblk_t last_block;
4485 int err = 0;
4486
4487 /*
4488 * TODO: optimization is possible here.
4489 * Probably we need not scan at all,
4490 * because page truncation is enough.
4491 */
4492
4493 /* we have to know where to truncate from in crash case */
4494 EXT4_I(inode)->i_disksize = inode->i_size;
4495 ext4_mark_inode_dirty(handle, inode);
4496
4497 last_block = (inode->i_size + sb->s_blocksize - 1)
4498 >> EXT4_BLOCK_SIZE_BITS(sb);
4499 retry:
4500 err = ext4_es_remove_extent(inode, last_block,
4501 EXT_MAX_BLOCKS - last_block);
4502 if (err == -ENOMEM) {
4503 cond_resched();
4504 congestion_wait(BLK_RW_ASYNC, HZ/50);
4505 goto retry;
4506 }
4507 if (err) {
4508 ext4_std_error(inode->i_sb, err);
4509 return;
4510 }
4511 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4512 ext4_std_error(inode->i_sb, err);
4513 }
4514
4515 static void ext4_falloc_update_inode(struct inode *inode,
4516 int mode, loff_t new_size, int update_ctime)
4517 {
4518 struct timespec now;
4519
4520 if (update_ctime) {
4521 now = current_fs_time(inode->i_sb);
4522 if (!timespec_equal(&inode->i_ctime, &now))
4523 inode->i_ctime = now;
4524 }
4525 /*
4526 * Update only when preallocation was requested beyond
4527 * the file size.
4528 */
4529 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4530 if (new_size > i_size_read(inode))
4531 i_size_write(inode, new_size);
4532 if (new_size > EXT4_I(inode)->i_disksize)
4533 ext4_update_i_disksize(inode, new_size);
4534 } else {
4535 /*
4536 * Mark that we allocate beyond EOF so the subsequent truncate
4537 * can proceed even if the new size is the same as i_size.
4538 */
4539 if (new_size > i_size_read(inode))
4540 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4541 }
4542
4543 }
4544
4545 /*
4546 * preallocate space for a file. This implements ext4's fallocate file
4547 * operation, which gets called from sys_fallocate system call.
4548 * For block-mapped files, posix_fallocate should fall back to the method
4549 * of writing zeroes to the required new blocks (the same behavior which is
4550 * expected for file systems which do not support fallocate() system call).
4551 */
4552 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4553 {
4554 struct inode *inode = file_inode(file);
4555 handle_t *handle;
4556 loff_t new_size;
4557 unsigned int max_blocks;
4558 int ret = 0;
4559 int ret2 = 0;
4560 int retries = 0;
4561 int flags;
4562 struct ext4_map_blocks map;
4563 unsigned int credits, blkbits = inode->i_blkbits;
4564
4565 /* Return error if mode is not supported */
4566 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4567 return -EOPNOTSUPP;
4568
4569 if (mode & FALLOC_FL_PUNCH_HOLE)
4570 return ext4_punch_hole(inode, offset, len);
4571
4572 ret = ext4_convert_inline_data(inode);
4573 if (ret)
4574 return ret;
4575
4576 /*
4577 * currently supporting (pre)allocate mode for extent-based
4578 * files _only_
4579 */
4580 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4581 return -EOPNOTSUPP;
4582
4583 trace_ext4_fallocate_enter(inode, offset, len, mode);
4584 map.m_lblk = offset >> blkbits;
4585 /*
4586 * We can't just convert len to max_blocks because
4587 * If blocksize = 4096 offset = 3072 and len = 2048
4588 */
4589 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4590 - map.m_lblk;
4591 /*
4592 * credits to insert 1 extent into extent tree
4593 */
4594 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4595 mutex_lock(&inode->i_mutex);
4596 ret = inode_newsize_ok(inode, (len + offset));
4597 if (ret) {
4598 mutex_unlock(&inode->i_mutex);
4599 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4600 return ret;
4601 }
4602 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4603 if (mode & FALLOC_FL_KEEP_SIZE)
4604 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4605 /*
4606 * Don't normalize the request if it can fit in one extent so
4607 * that it doesn't get unnecessarily split into multiple
4608 * extents.
4609 */
4610 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4611 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4612
4613 retry:
4614 while (ret >= 0 && ret < max_blocks) {
4615 map.m_lblk = map.m_lblk + ret;
4616 map.m_len = max_blocks = max_blocks - ret;
4617 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4618 credits);
4619 if (IS_ERR(handle)) {
4620 ret = PTR_ERR(handle);
4621 break;
4622 }
4623 ret = ext4_map_blocks(handle, inode, &map, flags);
4624 if (ret <= 0) {
4625 #ifdef EXT4FS_DEBUG
4626 ext4_warning(inode->i_sb,
4627 "inode #%lu: block %u: len %u: "
4628 "ext4_ext_map_blocks returned %d",
4629 inode->i_ino, map.m_lblk,
4630 map.m_len, ret);
4631 #endif
4632 ext4_mark_inode_dirty(handle, inode);
4633 ret2 = ext4_journal_stop(handle);
4634 break;
4635 }
4636 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4637 blkbits) >> blkbits))
4638 new_size = offset + len;
4639 else
4640 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4641
4642 ext4_falloc_update_inode(inode, mode, new_size,
4643 (map.m_flags & EXT4_MAP_NEW));
4644 ext4_mark_inode_dirty(handle, inode);
4645 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4646 ext4_handle_sync(handle);
4647 ret2 = ext4_journal_stop(handle);
4648 if (ret2)
4649 break;
4650 }
4651 if (ret == -ENOSPC &&
4652 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4653 ret = 0;
4654 goto retry;
4655 }
4656 mutex_unlock(&inode->i_mutex);
4657 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4658 ret > 0 ? ret2 : ret);
4659 return ret > 0 ? ret2 : ret;
4660 }
4661
4662 /*
4663 * This function convert a range of blocks to written extents
4664 * The caller of this function will pass the start offset and the size.
4665 * all unwritten extents within this range will be converted to
4666 * written extents.
4667 *
4668 * This function is called from the direct IO end io call back
4669 * function, to convert the fallocated extents after IO is completed.
4670 * Returns 0 on success.
4671 */
4672 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4673 loff_t offset, ssize_t len)
4674 {
4675 unsigned int max_blocks;
4676 int ret = 0;
4677 int ret2 = 0;
4678 struct ext4_map_blocks map;
4679 unsigned int credits, blkbits = inode->i_blkbits;
4680
4681 map.m_lblk = offset >> blkbits;
4682 /*
4683 * We can't just convert len to max_blocks because
4684 * If blocksize = 4096 offset = 3072 and len = 2048
4685 */
4686 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4687 map.m_lblk);
4688 /*
4689 * This is somewhat ugly but the idea is clear: When transaction is
4690 * reserved, everything goes into it. Otherwise we rather start several
4691 * smaller transactions for conversion of each extent separately.
4692 */
4693 if (handle) {
4694 handle = ext4_journal_start_reserved(handle,
4695 EXT4_HT_EXT_CONVERT);
4696 if (IS_ERR(handle))
4697 return PTR_ERR(handle);
4698 credits = 0;
4699 } else {
4700 /*
4701 * credits to insert 1 extent into extent tree
4702 */
4703 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4704 }
4705 while (ret >= 0 && ret < max_blocks) {
4706 map.m_lblk += ret;
4707 map.m_len = (max_blocks -= ret);
4708 if (credits) {
4709 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4710 credits);
4711 if (IS_ERR(handle)) {
4712 ret = PTR_ERR(handle);
4713 break;
4714 }
4715 }
4716 ret = ext4_map_blocks(handle, inode, &map,
4717 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4718 if (ret <= 0)
4719 ext4_warning(inode->i_sb,
4720 "inode #%lu: block %u: len %u: "
4721 "ext4_ext_map_blocks returned %d",
4722 inode->i_ino, map.m_lblk,
4723 map.m_len, ret);
4724 ext4_mark_inode_dirty(handle, inode);
4725 if (credits)
4726 ret2 = ext4_journal_stop(handle);
4727 if (ret <= 0 || ret2)
4728 break;
4729 }
4730 if (!credits)
4731 ret2 = ext4_journal_stop(handle);
4732 return ret > 0 ? ret2 : ret;
4733 }
4734
4735 /*
4736 * If newes is not existing extent (newes->ec_pblk equals zero) find
4737 * delayed extent at start of newes and update newes accordingly and
4738 * return start of the next delayed extent.
4739 *
4740 * If newes is existing extent (newes->ec_pblk is not equal zero)
4741 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4742 * extent found. Leave newes unmodified.
4743 */
4744 static int ext4_find_delayed_extent(struct inode *inode,
4745 struct extent_status *newes)
4746 {
4747 struct extent_status es;
4748 ext4_lblk_t block, next_del;
4749
4750 if (newes->es_pblk == 0) {
4751 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4752 newes->es_lblk + newes->es_len - 1, &es);
4753
4754 /*
4755 * No extent in extent-tree contains block @newes->es_pblk,
4756 * then the block may stay in 1)a hole or 2)delayed-extent.
4757 */
4758 if (es.es_len == 0)
4759 /* A hole found. */
4760 return 0;
4761
4762 if (es.es_lblk > newes->es_lblk) {
4763 /* A hole found. */
4764 newes->es_len = min(es.es_lblk - newes->es_lblk,
4765 newes->es_len);
4766 return 0;
4767 }
4768
4769 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4770 }
4771
4772 block = newes->es_lblk + newes->es_len;
4773 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4774 if (es.es_len == 0)
4775 next_del = EXT_MAX_BLOCKS;
4776 else
4777 next_del = es.es_lblk;
4778
4779 return next_del;
4780 }
4781 /* fiemap flags we can handle specified here */
4782 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4783
4784 static int ext4_xattr_fiemap(struct inode *inode,
4785 struct fiemap_extent_info *fieinfo)
4786 {
4787 __u64 physical = 0;
4788 __u64 length;
4789 __u32 flags = FIEMAP_EXTENT_LAST;
4790 int blockbits = inode->i_sb->s_blocksize_bits;
4791 int error = 0;
4792
4793 /* in-inode? */
4794 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4795 struct ext4_iloc iloc;
4796 int offset; /* offset of xattr in inode */
4797
4798 error = ext4_get_inode_loc(inode, &iloc);
4799 if (error)
4800 return error;
4801 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4802 offset = EXT4_GOOD_OLD_INODE_SIZE +
4803 EXT4_I(inode)->i_extra_isize;
4804 physical += offset;
4805 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4806 flags |= FIEMAP_EXTENT_DATA_INLINE;
4807 brelse(iloc.bh);
4808 } else { /* external block */
4809 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4810 length = inode->i_sb->s_blocksize;
4811 }
4812
4813 if (physical)
4814 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4815 length, flags);
4816 return (error < 0 ? error : 0);
4817 }
4818
4819 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4820 __u64 start, __u64 len)
4821 {
4822 ext4_lblk_t start_blk;
4823 int error = 0;
4824
4825 if (ext4_has_inline_data(inode)) {
4826 int has_inline = 1;
4827
4828 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4829
4830 if (has_inline)
4831 return error;
4832 }
4833
4834 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4835 error = ext4_ext_precache(inode);
4836 if (error)
4837 return error;
4838 }
4839
4840 /* fallback to generic here if not in extents fmt */
4841 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4842 return generic_block_fiemap(inode, fieinfo, start, len,
4843 ext4_get_block);
4844
4845 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4846 return -EBADR;
4847
4848 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4849 error = ext4_xattr_fiemap(inode, fieinfo);
4850 } else {
4851 ext4_lblk_t len_blks;
4852 __u64 last_blk;
4853
4854 start_blk = start >> inode->i_sb->s_blocksize_bits;
4855 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4856 if (last_blk >= EXT_MAX_BLOCKS)
4857 last_blk = EXT_MAX_BLOCKS-1;
4858 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4859
4860 /*
4861 * Walk the extent tree gathering extent information
4862 * and pushing extents back to the user.
4863 */
4864 error = ext4_fill_fiemap_extents(inode, start_blk,
4865 len_blks, fieinfo);
4866 }
4867 ext4_es_lru_add(inode);
4868 return error;
4869 }
This page took 0.197611 seconds and 5 git commands to generate.