Merge tag 'renesas-clock-fixes-for-v3.18' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45
46 #include <trace/events/ext4.h>
47
48 /*
49 * used by extent splitting.
50 */
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
55
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
58
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
61 {
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
69 }
70
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
73 {
74 struct ext4_extent_tail *et;
75
76 if (!ext4_has_metadata_csum(inode->i_sb))
77 return 1;
78
79 et = find_ext4_extent_tail(eh);
80 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81 return 0;
82 return 1;
83 }
84
85 static void ext4_extent_block_csum_set(struct inode *inode,
86 struct ext4_extent_header *eh)
87 {
88 struct ext4_extent_tail *et;
89
90 if (!ext4_has_metadata_csum(inode->i_sb))
91 return;
92
93 et = find_ext4_extent_tail(eh);
94 et->et_checksum = ext4_extent_block_csum(inode, eh);
95 }
96
97 static int ext4_split_extent(handle_t *handle,
98 struct inode *inode,
99 struct ext4_ext_path **ppath,
100 struct ext4_map_blocks *map,
101 int split_flag,
102 int flags);
103
104 static int ext4_split_extent_at(handle_t *handle,
105 struct inode *inode,
106 struct ext4_ext_path **ppath,
107 ext4_lblk_t split,
108 int split_flag,
109 int flags);
110
111 static int ext4_find_delayed_extent(struct inode *inode,
112 struct extent_status *newes);
113
114 static int ext4_ext_truncate_extend_restart(handle_t *handle,
115 struct inode *inode,
116 int needed)
117 {
118 int err;
119
120 if (!ext4_handle_valid(handle))
121 return 0;
122 if (handle->h_buffer_credits > needed)
123 return 0;
124 err = ext4_journal_extend(handle, needed);
125 if (err <= 0)
126 return err;
127 err = ext4_truncate_restart_trans(handle, inode, needed);
128 if (err == 0)
129 err = -EAGAIN;
130
131 return err;
132 }
133
134 /*
135 * could return:
136 * - EROFS
137 * - ENOMEM
138 */
139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
140 struct ext4_ext_path *path)
141 {
142 if (path->p_bh) {
143 /* path points to block */
144 BUFFER_TRACE(path->p_bh, "get_write_access");
145 return ext4_journal_get_write_access(handle, path->p_bh);
146 }
147 /* path points to leaf/index in inode body */
148 /* we use in-core data, no need to protect them */
149 return 0;
150 }
151
152 /*
153 * could return:
154 * - EROFS
155 * - ENOMEM
156 * - EIO
157 */
158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
159 struct inode *inode, struct ext4_ext_path *path)
160 {
161 int err;
162
163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
172 }
173 return err;
174 }
175
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
179 {
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
183
184 /*
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
200 */
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
210 }
211
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
216 }
217
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
220 }
221
222 /*
223 * Allocation for a meta data block
224 */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 ext4_fsblk_t goal, newblock;
231
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
236 }
237
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 int size;
241
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
249 }
250
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 int size;
254
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
262 }
263
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 int size;
267
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
276 }
277
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 int size;
281
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
290 }
291
292 static inline int
293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
294 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
295 int nofail)
296 {
297 struct ext4_ext_path *path = *ppath;
298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
299
300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
304 }
305
306 /*
307 * Calculate the number of metadata blocks needed
308 * to allocate @blocks
309 * Worse case is one block per extent
310 */
311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
312 {
313 struct ext4_inode_info *ei = EXT4_I(inode);
314 int idxs;
315
316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
317 / sizeof(struct ext4_extent_idx));
318
319 /*
320 * If the new delayed allocation block is contiguous with the
321 * previous da block, it can share index blocks with the
322 * previous block, so we only need to allocate a new index
323 * block every idxs leaf blocks. At ldxs**2 blocks, we need
324 * an additional index block, and at ldxs**3 blocks, yet
325 * another index blocks.
326 */
327 if (ei->i_da_metadata_calc_len &&
328 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
329 int num = 0;
330
331 if ((ei->i_da_metadata_calc_len % idxs) == 0)
332 num++;
333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
334 num++;
335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
336 num++;
337 ei->i_da_metadata_calc_len = 0;
338 } else
339 ei->i_da_metadata_calc_len++;
340 ei->i_da_metadata_calc_last_lblock++;
341 return num;
342 }
343
344 /*
345 * In the worst case we need a new set of index blocks at
346 * every level of the inode's extent tree.
347 */
348 ei->i_da_metadata_calc_len = 1;
349 ei->i_da_metadata_calc_last_lblock = lblock;
350 return ext_depth(inode) + 1;
351 }
352
353 static int
354 ext4_ext_max_entries(struct inode *inode, int depth)
355 {
356 int max;
357
358 if (depth == ext_depth(inode)) {
359 if (depth == 0)
360 max = ext4_ext_space_root(inode, 1);
361 else
362 max = ext4_ext_space_root_idx(inode, 1);
363 } else {
364 if (depth == 0)
365 max = ext4_ext_space_block(inode, 1);
366 else
367 max = ext4_ext_space_block_idx(inode, 1);
368 }
369
370 return max;
371 }
372
373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
374 {
375 ext4_fsblk_t block = ext4_ext_pblock(ext);
376 int len = ext4_ext_get_actual_len(ext);
377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
378 ext4_lblk_t last = lblock + len - 1;
379
380 if (lblock > last)
381 return 0;
382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
383 }
384
385 static int ext4_valid_extent_idx(struct inode *inode,
386 struct ext4_extent_idx *ext_idx)
387 {
388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
389
390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
391 }
392
393 static int ext4_valid_extent_entries(struct inode *inode,
394 struct ext4_extent_header *eh,
395 int depth)
396 {
397 unsigned short entries;
398 if (eh->eh_entries == 0)
399 return 1;
400
401 entries = le16_to_cpu(eh->eh_entries);
402
403 if (depth == 0) {
404 /* leaf entries */
405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
407 ext4_fsblk_t pblock = 0;
408 ext4_lblk_t lblock = 0;
409 ext4_lblk_t prev = 0;
410 int len = 0;
411 while (entries) {
412 if (!ext4_valid_extent(inode, ext))
413 return 0;
414
415 /* Check for overlapping extents */
416 lblock = le32_to_cpu(ext->ee_block);
417 len = ext4_ext_get_actual_len(ext);
418 if ((lblock <= prev) && prev) {
419 pblock = ext4_ext_pblock(ext);
420 es->s_last_error_block = cpu_to_le64(pblock);
421 return 0;
422 }
423 ext++;
424 entries--;
425 prev = lblock + len - 1;
426 }
427 } else {
428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
429 while (entries) {
430 if (!ext4_valid_extent_idx(inode, ext_idx))
431 return 0;
432 ext_idx++;
433 entries--;
434 }
435 }
436 return 1;
437 }
438
439 static int __ext4_ext_check(const char *function, unsigned int line,
440 struct inode *inode, struct ext4_extent_header *eh,
441 int depth, ext4_fsblk_t pblk)
442 {
443 const char *error_msg;
444 int max = 0;
445
446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
447 error_msg = "invalid magic";
448 goto corrupted;
449 }
450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
451 error_msg = "unexpected eh_depth";
452 goto corrupted;
453 }
454 if (unlikely(eh->eh_max == 0)) {
455 error_msg = "invalid eh_max";
456 goto corrupted;
457 }
458 max = ext4_ext_max_entries(inode, depth);
459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
460 error_msg = "too large eh_max";
461 goto corrupted;
462 }
463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
464 error_msg = "invalid eh_entries";
465 goto corrupted;
466 }
467 if (!ext4_valid_extent_entries(inode, eh, depth)) {
468 error_msg = "invalid extent entries";
469 goto corrupted;
470 }
471 /* Verify checksum on non-root extent tree nodes */
472 if (ext_depth(inode) != depth &&
473 !ext4_extent_block_csum_verify(inode, eh)) {
474 error_msg = "extent tree corrupted";
475 goto corrupted;
476 }
477 return 0;
478
479 corrupted:
480 ext4_error_inode(inode, function, line, 0,
481 "pblk %llu bad header/extent: %s - magic %x, "
482 "entries %u, max %u(%u), depth %u(%u)",
483 (unsigned long long) pblk, error_msg,
484 le16_to_cpu(eh->eh_magic),
485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
486 max, le16_to_cpu(eh->eh_depth), depth);
487 return -EIO;
488 }
489
490 #define ext4_ext_check(inode, eh, depth, pblk) \
491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
492
493 int ext4_ext_check_inode(struct inode *inode)
494 {
495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
496 }
497
498 static struct buffer_head *
499 __read_extent_tree_block(const char *function, unsigned int line,
500 struct inode *inode, ext4_fsblk_t pblk, int depth,
501 int flags)
502 {
503 struct buffer_head *bh;
504 int err;
505
506 bh = sb_getblk(inode->i_sb, pblk);
507 if (unlikely(!bh))
508 return ERR_PTR(-ENOMEM);
509
510 if (!bh_uptodate_or_lock(bh)) {
511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
512 err = bh_submit_read(bh);
513 if (err < 0)
514 goto errout;
515 }
516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
517 return bh;
518 err = __ext4_ext_check(function, line, inode,
519 ext_block_hdr(bh), depth, pblk);
520 if (err)
521 goto errout;
522 set_buffer_verified(bh);
523 /*
524 * If this is a leaf block, cache all of its entries
525 */
526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
527 struct ext4_extent_header *eh = ext_block_hdr(bh);
528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
529 ext4_lblk_t prev = 0;
530 int i;
531
532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
533 unsigned int status = EXTENT_STATUS_WRITTEN;
534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
535 int len = ext4_ext_get_actual_len(ex);
536
537 if (prev && (prev != lblk))
538 ext4_es_cache_extent(inode, prev,
539 lblk - prev, ~0,
540 EXTENT_STATUS_HOLE);
541
542 if (ext4_ext_is_unwritten(ex))
543 status = EXTENT_STATUS_UNWRITTEN;
544 ext4_es_cache_extent(inode, lblk, len,
545 ext4_ext_pblock(ex), status);
546 prev = lblk + len;
547 }
548 }
549 return bh;
550 errout:
551 put_bh(bh);
552 return ERR_PTR(err);
553
554 }
555
556 #define read_extent_tree_block(inode, pblk, depth, flags) \
557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
558 (depth), (flags))
559
560 /*
561 * This function is called to cache a file's extent information in the
562 * extent status tree
563 */
564 int ext4_ext_precache(struct inode *inode)
565 {
566 struct ext4_inode_info *ei = EXT4_I(inode);
567 struct ext4_ext_path *path = NULL;
568 struct buffer_head *bh;
569 int i = 0, depth, ret = 0;
570
571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
572 return 0; /* not an extent-mapped inode */
573
574 down_read(&ei->i_data_sem);
575 depth = ext_depth(inode);
576
577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
578 GFP_NOFS);
579 if (path == NULL) {
580 up_read(&ei->i_data_sem);
581 return -ENOMEM;
582 }
583
584 /* Don't cache anything if there are no external extent blocks */
585 if (depth == 0)
586 goto out;
587 path[0].p_hdr = ext_inode_hdr(inode);
588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
589 if (ret)
590 goto out;
591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
592 while (i >= 0) {
593 /*
594 * If this is a leaf block or we've reached the end of
595 * the index block, go up
596 */
597 if ((i == depth) ||
598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
599 brelse(path[i].p_bh);
600 path[i].p_bh = NULL;
601 i--;
602 continue;
603 }
604 bh = read_extent_tree_block(inode,
605 ext4_idx_pblock(path[i].p_idx++),
606 depth - i - 1,
607 EXT4_EX_FORCE_CACHE);
608 if (IS_ERR(bh)) {
609 ret = PTR_ERR(bh);
610 break;
611 }
612 i++;
613 path[i].p_bh = bh;
614 path[i].p_hdr = ext_block_hdr(bh);
615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
616 }
617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
618 out:
619 up_read(&ei->i_data_sem);
620 ext4_ext_drop_refs(path);
621 kfree(path);
622 return ret;
623 }
624
625 #ifdef EXT_DEBUG
626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
627 {
628 int k, l = path->p_depth;
629
630 ext_debug("path:");
631 for (k = 0; k <= l; k++, path++) {
632 if (path->p_idx) {
633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
634 ext4_idx_pblock(path->p_idx));
635 } else if (path->p_ext) {
636 ext_debug(" %d:[%d]%d:%llu ",
637 le32_to_cpu(path->p_ext->ee_block),
638 ext4_ext_is_unwritten(path->p_ext),
639 ext4_ext_get_actual_len(path->p_ext),
640 ext4_ext_pblock(path->p_ext));
641 } else
642 ext_debug(" []");
643 }
644 ext_debug("\n");
645 }
646
647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
648 {
649 int depth = ext_depth(inode);
650 struct ext4_extent_header *eh;
651 struct ext4_extent *ex;
652 int i;
653
654 if (!path)
655 return;
656
657 eh = path[depth].p_hdr;
658 ex = EXT_FIRST_EXTENT(eh);
659
660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
661
662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
664 ext4_ext_is_unwritten(ex),
665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
666 }
667 ext_debug("\n");
668 }
669
670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
671 ext4_fsblk_t newblock, int level)
672 {
673 int depth = ext_depth(inode);
674 struct ext4_extent *ex;
675
676 if (depth != level) {
677 struct ext4_extent_idx *idx;
678 idx = path[level].p_idx;
679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
680 ext_debug("%d: move %d:%llu in new index %llu\n", level,
681 le32_to_cpu(idx->ei_block),
682 ext4_idx_pblock(idx),
683 newblock);
684 idx++;
685 }
686
687 return;
688 }
689
690 ex = path[depth].p_ext;
691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
693 le32_to_cpu(ex->ee_block),
694 ext4_ext_pblock(ex),
695 ext4_ext_is_unwritten(ex),
696 ext4_ext_get_actual_len(ex),
697 newblock);
698 ex++;
699 }
700 }
701
702 #else
703 #define ext4_ext_show_path(inode, path)
704 #define ext4_ext_show_leaf(inode, path)
705 #define ext4_ext_show_move(inode, path, newblock, level)
706 #endif
707
708 void ext4_ext_drop_refs(struct ext4_ext_path *path)
709 {
710 int depth, i;
711
712 if (!path)
713 return;
714 depth = path->p_depth;
715 for (i = 0; i <= depth; i++, path++)
716 if (path->p_bh) {
717 brelse(path->p_bh);
718 path->p_bh = NULL;
719 }
720 }
721
722 /*
723 * ext4_ext_binsearch_idx:
724 * binary search for the closest index of the given block
725 * the header must be checked before calling this
726 */
727 static void
728 ext4_ext_binsearch_idx(struct inode *inode,
729 struct ext4_ext_path *path, ext4_lblk_t block)
730 {
731 struct ext4_extent_header *eh = path->p_hdr;
732 struct ext4_extent_idx *r, *l, *m;
733
734
735 ext_debug("binsearch for %u(idx): ", block);
736
737 l = EXT_FIRST_INDEX(eh) + 1;
738 r = EXT_LAST_INDEX(eh);
739 while (l <= r) {
740 m = l + (r - l) / 2;
741 if (block < le32_to_cpu(m->ei_block))
742 r = m - 1;
743 else
744 l = m + 1;
745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
746 m, le32_to_cpu(m->ei_block),
747 r, le32_to_cpu(r->ei_block));
748 }
749
750 path->p_idx = l - 1;
751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
752 ext4_idx_pblock(path->p_idx));
753
754 #ifdef CHECK_BINSEARCH
755 {
756 struct ext4_extent_idx *chix, *ix;
757 int k;
758
759 chix = ix = EXT_FIRST_INDEX(eh);
760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
761 if (k != 0 &&
762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
763 printk(KERN_DEBUG "k=%d, ix=0x%p, "
764 "first=0x%p\n", k,
765 ix, EXT_FIRST_INDEX(eh));
766 printk(KERN_DEBUG "%u <= %u\n",
767 le32_to_cpu(ix->ei_block),
768 le32_to_cpu(ix[-1].ei_block));
769 }
770 BUG_ON(k && le32_to_cpu(ix->ei_block)
771 <= le32_to_cpu(ix[-1].ei_block));
772 if (block < le32_to_cpu(ix->ei_block))
773 break;
774 chix = ix;
775 }
776 BUG_ON(chix != path->p_idx);
777 }
778 #endif
779
780 }
781
782 /*
783 * ext4_ext_binsearch:
784 * binary search for closest extent of the given block
785 * the header must be checked before calling this
786 */
787 static void
788 ext4_ext_binsearch(struct inode *inode,
789 struct ext4_ext_path *path, ext4_lblk_t block)
790 {
791 struct ext4_extent_header *eh = path->p_hdr;
792 struct ext4_extent *r, *l, *m;
793
794 if (eh->eh_entries == 0) {
795 /*
796 * this leaf is empty:
797 * we get such a leaf in split/add case
798 */
799 return;
800 }
801
802 ext_debug("binsearch for %u: ", block);
803
804 l = EXT_FIRST_EXTENT(eh) + 1;
805 r = EXT_LAST_EXTENT(eh);
806
807 while (l <= r) {
808 m = l + (r - l) / 2;
809 if (block < le32_to_cpu(m->ee_block))
810 r = m - 1;
811 else
812 l = m + 1;
813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
814 m, le32_to_cpu(m->ee_block),
815 r, le32_to_cpu(r->ee_block));
816 }
817
818 path->p_ext = l - 1;
819 ext_debug(" -> %d:%llu:[%d]%d ",
820 le32_to_cpu(path->p_ext->ee_block),
821 ext4_ext_pblock(path->p_ext),
822 ext4_ext_is_unwritten(path->p_ext),
823 ext4_ext_get_actual_len(path->p_ext));
824
825 #ifdef CHECK_BINSEARCH
826 {
827 struct ext4_extent *chex, *ex;
828 int k;
829
830 chex = ex = EXT_FIRST_EXTENT(eh);
831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
832 BUG_ON(k && le32_to_cpu(ex->ee_block)
833 <= le32_to_cpu(ex[-1].ee_block));
834 if (block < le32_to_cpu(ex->ee_block))
835 break;
836 chex = ex;
837 }
838 BUG_ON(chex != path->p_ext);
839 }
840 #endif
841
842 }
843
844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
845 {
846 struct ext4_extent_header *eh;
847
848 eh = ext_inode_hdr(inode);
849 eh->eh_depth = 0;
850 eh->eh_entries = 0;
851 eh->eh_magic = EXT4_EXT_MAGIC;
852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
853 ext4_mark_inode_dirty(handle, inode);
854 return 0;
855 }
856
857 struct ext4_ext_path *
858 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
859 struct ext4_ext_path **orig_path, int flags)
860 {
861 struct ext4_extent_header *eh;
862 struct buffer_head *bh;
863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
864 short int depth, i, ppos = 0;
865 int ret;
866
867 eh = ext_inode_hdr(inode);
868 depth = ext_depth(inode);
869
870 if (path) {
871 ext4_ext_drop_refs(path);
872 if (depth > path[0].p_maxdepth) {
873 kfree(path);
874 *orig_path = path = NULL;
875 }
876 }
877 if (!path) {
878 /* account possible depth increase */
879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
880 GFP_NOFS);
881 if (unlikely(!path))
882 return ERR_PTR(-ENOMEM);
883 path[0].p_maxdepth = depth + 1;
884 }
885 path[0].p_hdr = eh;
886 path[0].p_bh = NULL;
887
888 i = depth;
889 /* walk through the tree */
890 while (i) {
891 ext_debug("depth %d: num %d, max %d\n",
892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
893
894 ext4_ext_binsearch_idx(inode, path + ppos, block);
895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
896 path[ppos].p_depth = i;
897 path[ppos].p_ext = NULL;
898
899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
900 flags);
901 if (unlikely(IS_ERR(bh))) {
902 ret = PTR_ERR(bh);
903 goto err;
904 }
905
906 eh = ext_block_hdr(bh);
907 ppos++;
908 if (unlikely(ppos > depth)) {
909 put_bh(bh);
910 EXT4_ERROR_INODE(inode,
911 "ppos %d > depth %d", ppos, depth);
912 ret = -EIO;
913 goto err;
914 }
915 path[ppos].p_bh = bh;
916 path[ppos].p_hdr = eh;
917 }
918
919 path[ppos].p_depth = i;
920 path[ppos].p_ext = NULL;
921 path[ppos].p_idx = NULL;
922
923 /* find extent */
924 ext4_ext_binsearch(inode, path + ppos, block);
925 /* if not an empty leaf */
926 if (path[ppos].p_ext)
927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
928
929 ext4_ext_show_path(inode, path);
930
931 return path;
932
933 err:
934 ext4_ext_drop_refs(path);
935 kfree(path);
936 if (orig_path)
937 *orig_path = NULL;
938 return ERR_PTR(ret);
939 }
940
941 /*
942 * ext4_ext_insert_index:
943 * insert new index [@logical;@ptr] into the block at @curp;
944 * check where to insert: before @curp or after @curp
945 */
946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
947 struct ext4_ext_path *curp,
948 int logical, ext4_fsblk_t ptr)
949 {
950 struct ext4_extent_idx *ix;
951 int len, err;
952
953 err = ext4_ext_get_access(handle, inode, curp);
954 if (err)
955 return err;
956
957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
958 EXT4_ERROR_INODE(inode,
959 "logical %d == ei_block %d!",
960 logical, le32_to_cpu(curp->p_idx->ei_block));
961 return -EIO;
962 }
963
964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
965 >= le16_to_cpu(curp->p_hdr->eh_max))) {
966 EXT4_ERROR_INODE(inode,
967 "eh_entries %d >= eh_max %d!",
968 le16_to_cpu(curp->p_hdr->eh_entries),
969 le16_to_cpu(curp->p_hdr->eh_max));
970 return -EIO;
971 }
972
973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
974 /* insert after */
975 ext_debug("insert new index %d after: %llu\n", logical, ptr);
976 ix = curp->p_idx + 1;
977 } else {
978 /* insert before */
979 ext_debug("insert new index %d before: %llu\n", logical, ptr);
980 ix = curp->p_idx;
981 }
982
983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
984 BUG_ON(len < 0);
985 if (len > 0) {
986 ext_debug("insert new index %d: "
987 "move %d indices from 0x%p to 0x%p\n",
988 logical, len, ix, ix + 1);
989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
990 }
991
992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
994 return -EIO;
995 }
996
997 ix->ei_block = cpu_to_le32(logical);
998 ext4_idx_store_pblock(ix, ptr);
999 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1000
1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1003 return -EIO;
1004 }
1005
1006 err = ext4_ext_dirty(handle, inode, curp);
1007 ext4_std_error(inode->i_sb, err);
1008
1009 return err;
1010 }
1011
1012 /*
1013 * ext4_ext_split:
1014 * inserts new subtree into the path, using free index entry
1015 * at depth @at:
1016 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1017 * - makes decision where to split
1018 * - moves remaining extents and index entries (right to the split point)
1019 * into the newly allocated blocks
1020 * - initializes subtree
1021 */
1022 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1023 unsigned int flags,
1024 struct ext4_ext_path *path,
1025 struct ext4_extent *newext, int at)
1026 {
1027 struct buffer_head *bh = NULL;
1028 int depth = ext_depth(inode);
1029 struct ext4_extent_header *neh;
1030 struct ext4_extent_idx *fidx;
1031 int i = at, k, m, a;
1032 ext4_fsblk_t newblock, oldblock;
1033 __le32 border;
1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1035 int err = 0;
1036
1037 /* make decision: where to split? */
1038 /* FIXME: now decision is simplest: at current extent */
1039
1040 /* if current leaf will be split, then we should use
1041 * border from split point */
1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1044 return -EIO;
1045 }
1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1047 border = path[depth].p_ext[1].ee_block;
1048 ext_debug("leaf will be split."
1049 " next leaf starts at %d\n",
1050 le32_to_cpu(border));
1051 } else {
1052 border = newext->ee_block;
1053 ext_debug("leaf will be added."
1054 " next leaf starts at %d\n",
1055 le32_to_cpu(border));
1056 }
1057
1058 /*
1059 * If error occurs, then we break processing
1060 * and mark filesystem read-only. index won't
1061 * be inserted and tree will be in consistent
1062 * state. Next mount will repair buffers too.
1063 */
1064
1065 /*
1066 * Get array to track all allocated blocks.
1067 * We need this to handle errors and free blocks
1068 * upon them.
1069 */
1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1071 if (!ablocks)
1072 return -ENOMEM;
1073
1074 /* allocate all needed blocks */
1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1076 for (a = 0; a < depth - at; a++) {
1077 newblock = ext4_ext_new_meta_block(handle, inode, path,
1078 newext, &err, flags);
1079 if (newblock == 0)
1080 goto cleanup;
1081 ablocks[a] = newblock;
1082 }
1083
1084 /* initialize new leaf */
1085 newblock = ablocks[--a];
1086 if (unlikely(newblock == 0)) {
1087 EXT4_ERROR_INODE(inode, "newblock == 0!");
1088 err = -EIO;
1089 goto cleanup;
1090 }
1091 bh = sb_getblk(inode->i_sb, newblock);
1092 if (unlikely(!bh)) {
1093 err = -ENOMEM;
1094 goto cleanup;
1095 }
1096 lock_buffer(bh);
1097
1098 err = ext4_journal_get_create_access(handle, bh);
1099 if (err)
1100 goto cleanup;
1101
1102 neh = ext_block_hdr(bh);
1103 neh->eh_entries = 0;
1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1105 neh->eh_magic = EXT4_EXT_MAGIC;
1106 neh->eh_depth = 0;
1107
1108 /* move remainder of path[depth] to the new leaf */
1109 if (unlikely(path[depth].p_hdr->eh_entries !=
1110 path[depth].p_hdr->eh_max)) {
1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1112 path[depth].p_hdr->eh_entries,
1113 path[depth].p_hdr->eh_max);
1114 err = -EIO;
1115 goto cleanup;
1116 }
1117 /* start copy from next extent */
1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1119 ext4_ext_show_move(inode, path, newblock, depth);
1120 if (m) {
1121 struct ext4_extent *ex;
1122 ex = EXT_FIRST_EXTENT(neh);
1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1124 le16_add_cpu(&neh->eh_entries, m);
1125 }
1126
1127 ext4_extent_block_csum_set(inode, neh);
1128 set_buffer_uptodate(bh);
1129 unlock_buffer(bh);
1130
1131 err = ext4_handle_dirty_metadata(handle, inode, bh);
1132 if (err)
1133 goto cleanup;
1134 brelse(bh);
1135 bh = NULL;
1136
1137 /* correct old leaf */
1138 if (m) {
1139 err = ext4_ext_get_access(handle, inode, path + depth);
1140 if (err)
1141 goto cleanup;
1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1143 err = ext4_ext_dirty(handle, inode, path + depth);
1144 if (err)
1145 goto cleanup;
1146
1147 }
1148
1149 /* create intermediate indexes */
1150 k = depth - at - 1;
1151 if (unlikely(k < 0)) {
1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1153 err = -EIO;
1154 goto cleanup;
1155 }
1156 if (k)
1157 ext_debug("create %d intermediate indices\n", k);
1158 /* insert new index into current index block */
1159 /* current depth stored in i var */
1160 i = depth - 1;
1161 while (k--) {
1162 oldblock = newblock;
1163 newblock = ablocks[--a];
1164 bh = sb_getblk(inode->i_sb, newblock);
1165 if (unlikely(!bh)) {
1166 err = -ENOMEM;
1167 goto cleanup;
1168 }
1169 lock_buffer(bh);
1170
1171 err = ext4_journal_get_create_access(handle, bh);
1172 if (err)
1173 goto cleanup;
1174
1175 neh = ext_block_hdr(bh);
1176 neh->eh_entries = cpu_to_le16(1);
1177 neh->eh_magic = EXT4_EXT_MAGIC;
1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1179 neh->eh_depth = cpu_to_le16(depth - i);
1180 fidx = EXT_FIRST_INDEX(neh);
1181 fidx->ei_block = border;
1182 ext4_idx_store_pblock(fidx, oldblock);
1183
1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1185 i, newblock, le32_to_cpu(border), oldblock);
1186
1187 /* move remainder of path[i] to the new index block */
1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1189 EXT_LAST_INDEX(path[i].p_hdr))) {
1190 EXT4_ERROR_INODE(inode,
1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1192 le32_to_cpu(path[i].p_ext->ee_block));
1193 err = -EIO;
1194 goto cleanup;
1195 }
1196 /* start copy indexes */
1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1199 EXT_MAX_INDEX(path[i].p_hdr));
1200 ext4_ext_show_move(inode, path, newblock, i);
1201 if (m) {
1202 memmove(++fidx, path[i].p_idx,
1203 sizeof(struct ext4_extent_idx) * m);
1204 le16_add_cpu(&neh->eh_entries, m);
1205 }
1206 ext4_extent_block_csum_set(inode, neh);
1207 set_buffer_uptodate(bh);
1208 unlock_buffer(bh);
1209
1210 err = ext4_handle_dirty_metadata(handle, inode, bh);
1211 if (err)
1212 goto cleanup;
1213 brelse(bh);
1214 bh = NULL;
1215
1216 /* correct old index */
1217 if (m) {
1218 err = ext4_ext_get_access(handle, inode, path + i);
1219 if (err)
1220 goto cleanup;
1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1222 err = ext4_ext_dirty(handle, inode, path + i);
1223 if (err)
1224 goto cleanup;
1225 }
1226
1227 i--;
1228 }
1229
1230 /* insert new index */
1231 err = ext4_ext_insert_index(handle, inode, path + at,
1232 le32_to_cpu(border), newblock);
1233
1234 cleanup:
1235 if (bh) {
1236 if (buffer_locked(bh))
1237 unlock_buffer(bh);
1238 brelse(bh);
1239 }
1240
1241 if (err) {
1242 /* free all allocated blocks in error case */
1243 for (i = 0; i < depth; i++) {
1244 if (!ablocks[i])
1245 continue;
1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1247 EXT4_FREE_BLOCKS_METADATA);
1248 }
1249 }
1250 kfree(ablocks);
1251
1252 return err;
1253 }
1254
1255 /*
1256 * ext4_ext_grow_indepth:
1257 * implements tree growing procedure:
1258 * - allocates new block
1259 * - moves top-level data (index block or leaf) into the new block
1260 * - initializes new top-level, creating index that points to the
1261 * just created block
1262 */
1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1264 unsigned int flags)
1265 {
1266 struct ext4_extent_header *neh;
1267 struct buffer_head *bh;
1268 ext4_fsblk_t newblock, goal = 0;
1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1270 int err = 0;
1271
1272 /* Try to prepend new index to old one */
1273 if (ext_depth(inode))
1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1275 if (goal > le32_to_cpu(es->s_first_data_block)) {
1276 flags |= EXT4_MB_HINT_TRY_GOAL;
1277 goal--;
1278 } else
1279 goal = ext4_inode_to_goal_block(inode);
1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1281 NULL, &err);
1282 if (newblock == 0)
1283 return err;
1284
1285 bh = sb_getblk(inode->i_sb, newblock);
1286 if (unlikely(!bh))
1287 return -ENOMEM;
1288 lock_buffer(bh);
1289
1290 err = ext4_journal_get_create_access(handle, bh);
1291 if (err) {
1292 unlock_buffer(bh);
1293 goto out;
1294 }
1295
1296 /* move top-level index/leaf into new block */
1297 memmove(bh->b_data, EXT4_I(inode)->i_data,
1298 sizeof(EXT4_I(inode)->i_data));
1299
1300 /* set size of new block */
1301 neh = ext_block_hdr(bh);
1302 /* old root could have indexes or leaves
1303 * so calculate e_max right way */
1304 if (ext_depth(inode))
1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1306 else
1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1308 neh->eh_magic = EXT4_EXT_MAGIC;
1309 ext4_extent_block_csum_set(inode, neh);
1310 set_buffer_uptodate(bh);
1311 unlock_buffer(bh);
1312
1313 err = ext4_handle_dirty_metadata(handle, inode, bh);
1314 if (err)
1315 goto out;
1316
1317 /* Update top-level index: num,max,pointer */
1318 neh = ext_inode_hdr(inode);
1319 neh->eh_entries = cpu_to_le16(1);
1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1321 if (neh->eh_depth == 0) {
1322 /* Root extent block becomes index block */
1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1324 EXT_FIRST_INDEX(neh)->ei_block =
1325 EXT_FIRST_EXTENT(neh)->ee_block;
1326 }
1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1331
1332 le16_add_cpu(&neh->eh_depth, 1);
1333 ext4_mark_inode_dirty(handle, inode);
1334 out:
1335 brelse(bh);
1336
1337 return err;
1338 }
1339
1340 /*
1341 * ext4_ext_create_new_leaf:
1342 * finds empty index and adds new leaf.
1343 * if no free index is found, then it requests in-depth growing.
1344 */
1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1346 unsigned int mb_flags,
1347 unsigned int gb_flags,
1348 struct ext4_ext_path **ppath,
1349 struct ext4_extent *newext)
1350 {
1351 struct ext4_ext_path *path = *ppath;
1352 struct ext4_ext_path *curp;
1353 int depth, i, err = 0;
1354
1355 repeat:
1356 i = depth = ext_depth(inode);
1357
1358 /* walk up to the tree and look for free index entry */
1359 curp = path + depth;
1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1361 i--;
1362 curp--;
1363 }
1364
1365 /* we use already allocated block for index block,
1366 * so subsequent data blocks should be contiguous */
1367 if (EXT_HAS_FREE_INDEX(curp)) {
1368 /* if we found index with free entry, then use that
1369 * entry: create all needed subtree and add new leaf */
1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1371 if (err)
1372 goto out;
1373
1374 /* refill path */
1375 path = ext4_find_extent(inode,
1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1377 ppath, gb_flags);
1378 if (IS_ERR(path))
1379 err = PTR_ERR(path);
1380 } else {
1381 /* tree is full, time to grow in depth */
1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1383 if (err)
1384 goto out;
1385
1386 /* refill path */
1387 path = ext4_find_extent(inode,
1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1389 ppath, gb_flags);
1390 if (IS_ERR(path)) {
1391 err = PTR_ERR(path);
1392 goto out;
1393 }
1394
1395 /*
1396 * only first (depth 0 -> 1) produces free space;
1397 * in all other cases we have to split the grown tree
1398 */
1399 depth = ext_depth(inode);
1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1401 /* now we need to split */
1402 goto repeat;
1403 }
1404 }
1405
1406 out:
1407 return err;
1408 }
1409
1410 /*
1411 * search the closest allocated block to the left for *logical
1412 * and returns it at @logical + it's physical address at @phys
1413 * if *logical is the smallest allocated block, the function
1414 * returns 0 at @phys
1415 * return value contains 0 (success) or error code
1416 */
1417 static int ext4_ext_search_left(struct inode *inode,
1418 struct ext4_ext_path *path,
1419 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1420 {
1421 struct ext4_extent_idx *ix;
1422 struct ext4_extent *ex;
1423 int depth, ee_len;
1424
1425 if (unlikely(path == NULL)) {
1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1427 return -EIO;
1428 }
1429 depth = path->p_depth;
1430 *phys = 0;
1431
1432 if (depth == 0 && path->p_ext == NULL)
1433 return 0;
1434
1435 /* usually extent in the path covers blocks smaller
1436 * then *logical, but it can be that extent is the
1437 * first one in the file */
1438
1439 ex = path[depth].p_ext;
1440 ee_len = ext4_ext_get_actual_len(ex);
1441 if (*logical < le32_to_cpu(ex->ee_block)) {
1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1443 EXT4_ERROR_INODE(inode,
1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1445 *logical, le32_to_cpu(ex->ee_block));
1446 return -EIO;
1447 }
1448 while (--depth >= 0) {
1449 ix = path[depth].p_idx;
1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1451 EXT4_ERROR_INODE(inode,
1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1456 depth);
1457 return -EIO;
1458 }
1459 }
1460 return 0;
1461 }
1462
1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1464 EXT4_ERROR_INODE(inode,
1465 "logical %d < ee_block %d + ee_len %d!",
1466 *logical, le32_to_cpu(ex->ee_block), ee_len);
1467 return -EIO;
1468 }
1469
1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1471 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1472 return 0;
1473 }
1474
1475 /*
1476 * search the closest allocated block to the right for *logical
1477 * and returns it at @logical + it's physical address at @phys
1478 * if *logical is the largest allocated block, the function
1479 * returns 0 at @phys
1480 * return value contains 0 (success) or error code
1481 */
1482 static int ext4_ext_search_right(struct inode *inode,
1483 struct ext4_ext_path *path,
1484 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1485 struct ext4_extent **ret_ex)
1486 {
1487 struct buffer_head *bh = NULL;
1488 struct ext4_extent_header *eh;
1489 struct ext4_extent_idx *ix;
1490 struct ext4_extent *ex;
1491 ext4_fsblk_t block;
1492 int depth; /* Note, NOT eh_depth; depth from top of tree */
1493 int ee_len;
1494
1495 if (unlikely(path == NULL)) {
1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1497 return -EIO;
1498 }
1499 depth = path->p_depth;
1500 *phys = 0;
1501
1502 if (depth == 0 && path->p_ext == NULL)
1503 return 0;
1504
1505 /* usually extent in the path covers blocks smaller
1506 * then *logical, but it can be that extent is the
1507 * first one in the file */
1508
1509 ex = path[depth].p_ext;
1510 ee_len = ext4_ext_get_actual_len(ex);
1511 if (*logical < le32_to_cpu(ex->ee_block)) {
1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1513 EXT4_ERROR_INODE(inode,
1514 "first_extent(path[%d].p_hdr) != ex",
1515 depth);
1516 return -EIO;
1517 }
1518 while (--depth >= 0) {
1519 ix = path[depth].p_idx;
1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1521 EXT4_ERROR_INODE(inode,
1522 "ix != EXT_FIRST_INDEX *logical %d!",
1523 *logical);
1524 return -EIO;
1525 }
1526 }
1527 goto found_extent;
1528 }
1529
1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1531 EXT4_ERROR_INODE(inode,
1532 "logical %d < ee_block %d + ee_len %d!",
1533 *logical, le32_to_cpu(ex->ee_block), ee_len);
1534 return -EIO;
1535 }
1536
1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1538 /* next allocated block in this leaf */
1539 ex++;
1540 goto found_extent;
1541 }
1542
1543 /* go up and search for index to the right */
1544 while (--depth >= 0) {
1545 ix = path[depth].p_idx;
1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1547 goto got_index;
1548 }
1549
1550 /* we've gone up to the root and found no index to the right */
1551 return 0;
1552
1553 got_index:
1554 /* we've found index to the right, let's
1555 * follow it and find the closest allocated
1556 * block to the right */
1557 ix++;
1558 block = ext4_idx_pblock(ix);
1559 while (++depth < path->p_depth) {
1560 /* subtract from p_depth to get proper eh_depth */
1561 bh = read_extent_tree_block(inode, block,
1562 path->p_depth - depth, 0);
1563 if (IS_ERR(bh))
1564 return PTR_ERR(bh);
1565 eh = ext_block_hdr(bh);
1566 ix = EXT_FIRST_INDEX(eh);
1567 block = ext4_idx_pblock(ix);
1568 put_bh(bh);
1569 }
1570
1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1572 if (IS_ERR(bh))
1573 return PTR_ERR(bh);
1574 eh = ext_block_hdr(bh);
1575 ex = EXT_FIRST_EXTENT(eh);
1576 found_extent:
1577 *logical = le32_to_cpu(ex->ee_block);
1578 *phys = ext4_ext_pblock(ex);
1579 *ret_ex = ex;
1580 if (bh)
1581 put_bh(bh);
1582 return 0;
1583 }
1584
1585 /*
1586 * ext4_ext_next_allocated_block:
1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1588 * NOTE: it considers block number from index entry as
1589 * allocated block. Thus, index entries have to be consistent
1590 * with leaves.
1591 */
1592 ext4_lblk_t
1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1594 {
1595 int depth;
1596
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1599
1600 if (depth == 0 && path->p_ext == NULL)
1601 return EXT_MAX_BLOCKS;
1602
1603 while (depth >= 0) {
1604 if (depth == path->p_depth) {
1605 /* leaf */
1606 if (path[depth].p_ext &&
1607 path[depth].p_ext !=
1608 EXT_LAST_EXTENT(path[depth].p_hdr))
1609 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1610 } else {
1611 /* index */
1612 if (path[depth].p_idx !=
1613 EXT_LAST_INDEX(path[depth].p_hdr))
1614 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1615 }
1616 depth--;
1617 }
1618
1619 return EXT_MAX_BLOCKS;
1620 }
1621
1622 /*
1623 * ext4_ext_next_leaf_block:
1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1625 */
1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1627 {
1628 int depth;
1629
1630 BUG_ON(path == NULL);
1631 depth = path->p_depth;
1632
1633 /* zero-tree has no leaf blocks at all */
1634 if (depth == 0)
1635 return EXT_MAX_BLOCKS;
1636
1637 /* go to index block */
1638 depth--;
1639
1640 while (depth >= 0) {
1641 if (path[depth].p_idx !=
1642 EXT_LAST_INDEX(path[depth].p_hdr))
1643 return (ext4_lblk_t)
1644 le32_to_cpu(path[depth].p_idx[1].ei_block);
1645 depth--;
1646 }
1647
1648 return EXT_MAX_BLOCKS;
1649 }
1650
1651 /*
1652 * ext4_ext_correct_indexes:
1653 * if leaf gets modified and modified extent is first in the leaf,
1654 * then we have to correct all indexes above.
1655 * TODO: do we need to correct tree in all cases?
1656 */
1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1658 struct ext4_ext_path *path)
1659 {
1660 struct ext4_extent_header *eh;
1661 int depth = ext_depth(inode);
1662 struct ext4_extent *ex;
1663 __le32 border;
1664 int k, err = 0;
1665
1666 eh = path[depth].p_hdr;
1667 ex = path[depth].p_ext;
1668
1669 if (unlikely(ex == NULL || eh == NULL)) {
1670 EXT4_ERROR_INODE(inode,
1671 "ex %p == NULL or eh %p == NULL", ex, eh);
1672 return -EIO;
1673 }
1674
1675 if (depth == 0) {
1676 /* there is no tree at all */
1677 return 0;
1678 }
1679
1680 if (ex != EXT_FIRST_EXTENT(eh)) {
1681 /* we correct tree if first leaf got modified only */
1682 return 0;
1683 }
1684
1685 /*
1686 * TODO: we need correction if border is smaller than current one
1687 */
1688 k = depth - 1;
1689 border = path[depth].p_ext->ee_block;
1690 err = ext4_ext_get_access(handle, inode, path + k);
1691 if (err)
1692 return err;
1693 path[k].p_idx->ei_block = border;
1694 err = ext4_ext_dirty(handle, inode, path + k);
1695 if (err)
1696 return err;
1697
1698 while (k--) {
1699 /* change all left-side indexes */
1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1701 break;
1702 err = ext4_ext_get_access(handle, inode, path + k);
1703 if (err)
1704 break;
1705 path[k].p_idx->ei_block = border;
1706 err = ext4_ext_dirty(handle, inode, path + k);
1707 if (err)
1708 break;
1709 }
1710
1711 return err;
1712 }
1713
1714 int
1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1716 struct ext4_extent *ex2)
1717 {
1718 unsigned short ext1_ee_len, ext2_ee_len;
1719
1720 /*
1721 * Make sure that both extents are initialized. We don't merge
1722 * unwritten extents so that we can be sure that end_io code has
1723 * the extent that was written properly split out and conversion to
1724 * initialized is trivial.
1725 */
1726 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1727 return 0;
1728
1729 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1730 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1731
1732 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1733 le32_to_cpu(ex2->ee_block))
1734 return 0;
1735
1736 /*
1737 * To allow future support for preallocated extents to be added
1738 * as an RO_COMPAT feature, refuse to merge to extents if
1739 * this can result in the top bit of ee_len being set.
1740 */
1741 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1742 return 0;
1743 if (ext4_ext_is_unwritten(ex1) &&
1744 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1745 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1746 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1747 return 0;
1748 #ifdef AGGRESSIVE_TEST
1749 if (ext1_ee_len >= 4)
1750 return 0;
1751 #endif
1752
1753 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1754 return 1;
1755 return 0;
1756 }
1757
1758 /*
1759 * This function tries to merge the "ex" extent to the next extent in the tree.
1760 * It always tries to merge towards right. If you want to merge towards
1761 * left, pass "ex - 1" as argument instead of "ex".
1762 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1763 * 1 if they got merged.
1764 */
1765 static int ext4_ext_try_to_merge_right(struct inode *inode,
1766 struct ext4_ext_path *path,
1767 struct ext4_extent *ex)
1768 {
1769 struct ext4_extent_header *eh;
1770 unsigned int depth, len;
1771 int merge_done = 0, unwritten;
1772
1773 depth = ext_depth(inode);
1774 BUG_ON(path[depth].p_hdr == NULL);
1775 eh = path[depth].p_hdr;
1776
1777 while (ex < EXT_LAST_EXTENT(eh)) {
1778 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1779 break;
1780 /* merge with next extent! */
1781 unwritten = ext4_ext_is_unwritten(ex);
1782 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1783 + ext4_ext_get_actual_len(ex + 1));
1784 if (unwritten)
1785 ext4_ext_mark_unwritten(ex);
1786
1787 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1788 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1789 * sizeof(struct ext4_extent);
1790 memmove(ex + 1, ex + 2, len);
1791 }
1792 le16_add_cpu(&eh->eh_entries, -1);
1793 merge_done = 1;
1794 WARN_ON(eh->eh_entries == 0);
1795 if (!eh->eh_entries)
1796 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1797 }
1798
1799 return merge_done;
1800 }
1801
1802 /*
1803 * This function does a very simple check to see if we can collapse
1804 * an extent tree with a single extent tree leaf block into the inode.
1805 */
1806 static void ext4_ext_try_to_merge_up(handle_t *handle,
1807 struct inode *inode,
1808 struct ext4_ext_path *path)
1809 {
1810 size_t s;
1811 unsigned max_root = ext4_ext_space_root(inode, 0);
1812 ext4_fsblk_t blk;
1813
1814 if ((path[0].p_depth != 1) ||
1815 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1816 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1817 return;
1818
1819 /*
1820 * We need to modify the block allocation bitmap and the block
1821 * group descriptor to release the extent tree block. If we
1822 * can't get the journal credits, give up.
1823 */
1824 if (ext4_journal_extend(handle, 2))
1825 return;
1826
1827 /*
1828 * Copy the extent data up to the inode
1829 */
1830 blk = ext4_idx_pblock(path[0].p_idx);
1831 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1832 sizeof(struct ext4_extent_idx);
1833 s += sizeof(struct ext4_extent_header);
1834
1835 path[1].p_maxdepth = path[0].p_maxdepth;
1836 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1837 path[0].p_depth = 0;
1838 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1839 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1840 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1841
1842 brelse(path[1].p_bh);
1843 ext4_free_blocks(handle, inode, NULL, blk, 1,
1844 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1845 }
1846
1847 /*
1848 * This function tries to merge the @ex extent to neighbours in the tree.
1849 * return 1 if merge left else 0.
1850 */
1851 static void ext4_ext_try_to_merge(handle_t *handle,
1852 struct inode *inode,
1853 struct ext4_ext_path *path,
1854 struct ext4_extent *ex) {
1855 struct ext4_extent_header *eh;
1856 unsigned int depth;
1857 int merge_done = 0;
1858
1859 depth = ext_depth(inode);
1860 BUG_ON(path[depth].p_hdr == NULL);
1861 eh = path[depth].p_hdr;
1862
1863 if (ex > EXT_FIRST_EXTENT(eh))
1864 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1865
1866 if (!merge_done)
1867 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1868
1869 ext4_ext_try_to_merge_up(handle, inode, path);
1870 }
1871
1872 /*
1873 * check if a portion of the "newext" extent overlaps with an
1874 * existing extent.
1875 *
1876 * If there is an overlap discovered, it updates the length of the newext
1877 * such that there will be no overlap, and then returns 1.
1878 * If there is no overlap found, it returns 0.
1879 */
1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1881 struct inode *inode,
1882 struct ext4_extent *newext,
1883 struct ext4_ext_path *path)
1884 {
1885 ext4_lblk_t b1, b2;
1886 unsigned int depth, len1;
1887 unsigned int ret = 0;
1888
1889 b1 = le32_to_cpu(newext->ee_block);
1890 len1 = ext4_ext_get_actual_len(newext);
1891 depth = ext_depth(inode);
1892 if (!path[depth].p_ext)
1893 goto out;
1894 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1895
1896 /*
1897 * get the next allocated block if the extent in the path
1898 * is before the requested block(s)
1899 */
1900 if (b2 < b1) {
1901 b2 = ext4_ext_next_allocated_block(path);
1902 if (b2 == EXT_MAX_BLOCKS)
1903 goto out;
1904 b2 = EXT4_LBLK_CMASK(sbi, b2);
1905 }
1906
1907 /* check for wrap through zero on extent logical start block*/
1908 if (b1 + len1 < b1) {
1909 len1 = EXT_MAX_BLOCKS - b1;
1910 newext->ee_len = cpu_to_le16(len1);
1911 ret = 1;
1912 }
1913
1914 /* check for overlap */
1915 if (b1 + len1 > b2) {
1916 newext->ee_len = cpu_to_le16(b2 - b1);
1917 ret = 1;
1918 }
1919 out:
1920 return ret;
1921 }
1922
1923 /*
1924 * ext4_ext_insert_extent:
1925 * tries to merge requsted extent into the existing extent or
1926 * inserts requested extent as new one into the tree,
1927 * creating new leaf in the no-space case.
1928 */
1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1930 struct ext4_ext_path **ppath,
1931 struct ext4_extent *newext, int gb_flags)
1932 {
1933 struct ext4_ext_path *path = *ppath;
1934 struct ext4_extent_header *eh;
1935 struct ext4_extent *ex, *fex;
1936 struct ext4_extent *nearex; /* nearest extent */
1937 struct ext4_ext_path *npath = NULL;
1938 int depth, len, err;
1939 ext4_lblk_t next;
1940 int mb_flags = 0, unwritten;
1941
1942 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1943 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1944 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1945 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1946 return -EIO;
1947 }
1948 depth = ext_depth(inode);
1949 ex = path[depth].p_ext;
1950 eh = path[depth].p_hdr;
1951 if (unlikely(path[depth].p_hdr == NULL)) {
1952 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1953 return -EIO;
1954 }
1955
1956 /* try to insert block into found extent and return */
1957 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1958
1959 /*
1960 * Try to see whether we should rather test the extent on
1961 * right from ex, or from the left of ex. This is because
1962 * ext4_find_extent() can return either extent on the
1963 * left, or on the right from the searched position. This
1964 * will make merging more effective.
1965 */
1966 if (ex < EXT_LAST_EXTENT(eh) &&
1967 (le32_to_cpu(ex->ee_block) +
1968 ext4_ext_get_actual_len(ex) <
1969 le32_to_cpu(newext->ee_block))) {
1970 ex += 1;
1971 goto prepend;
1972 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1973 (le32_to_cpu(newext->ee_block) +
1974 ext4_ext_get_actual_len(newext) <
1975 le32_to_cpu(ex->ee_block)))
1976 ex -= 1;
1977
1978 /* Try to append newex to the ex */
1979 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1980 ext_debug("append [%d]%d block to %u:[%d]%d"
1981 "(from %llu)\n",
1982 ext4_ext_is_unwritten(newext),
1983 ext4_ext_get_actual_len(newext),
1984 le32_to_cpu(ex->ee_block),
1985 ext4_ext_is_unwritten(ex),
1986 ext4_ext_get_actual_len(ex),
1987 ext4_ext_pblock(ex));
1988 err = ext4_ext_get_access(handle, inode,
1989 path + depth);
1990 if (err)
1991 return err;
1992 unwritten = ext4_ext_is_unwritten(ex);
1993 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1994 + ext4_ext_get_actual_len(newext));
1995 if (unwritten)
1996 ext4_ext_mark_unwritten(ex);
1997 eh = path[depth].p_hdr;
1998 nearex = ex;
1999 goto merge;
2000 }
2001
2002 prepend:
2003 /* Try to prepend newex to the ex */
2004 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2005 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2006 "(from %llu)\n",
2007 le32_to_cpu(newext->ee_block),
2008 ext4_ext_is_unwritten(newext),
2009 ext4_ext_get_actual_len(newext),
2010 le32_to_cpu(ex->ee_block),
2011 ext4_ext_is_unwritten(ex),
2012 ext4_ext_get_actual_len(ex),
2013 ext4_ext_pblock(ex));
2014 err = ext4_ext_get_access(handle, inode,
2015 path + depth);
2016 if (err)
2017 return err;
2018
2019 unwritten = ext4_ext_is_unwritten(ex);
2020 ex->ee_block = newext->ee_block;
2021 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2022 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2023 + ext4_ext_get_actual_len(newext));
2024 if (unwritten)
2025 ext4_ext_mark_unwritten(ex);
2026 eh = path[depth].p_hdr;
2027 nearex = ex;
2028 goto merge;
2029 }
2030 }
2031
2032 depth = ext_depth(inode);
2033 eh = path[depth].p_hdr;
2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2035 goto has_space;
2036
2037 /* probably next leaf has space for us? */
2038 fex = EXT_LAST_EXTENT(eh);
2039 next = EXT_MAX_BLOCKS;
2040 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2041 next = ext4_ext_next_leaf_block(path);
2042 if (next != EXT_MAX_BLOCKS) {
2043 ext_debug("next leaf block - %u\n", next);
2044 BUG_ON(npath != NULL);
2045 npath = ext4_find_extent(inode, next, NULL, 0);
2046 if (IS_ERR(npath))
2047 return PTR_ERR(npath);
2048 BUG_ON(npath->p_depth != path->p_depth);
2049 eh = npath[depth].p_hdr;
2050 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2051 ext_debug("next leaf isn't full(%d)\n",
2052 le16_to_cpu(eh->eh_entries));
2053 path = npath;
2054 goto has_space;
2055 }
2056 ext_debug("next leaf has no free space(%d,%d)\n",
2057 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2058 }
2059
2060 /*
2061 * There is no free space in the found leaf.
2062 * We're gonna add a new leaf in the tree.
2063 */
2064 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2065 mb_flags |= EXT4_MB_USE_RESERVED;
2066 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2067 ppath, newext);
2068 if (err)
2069 goto cleanup;
2070 depth = ext_depth(inode);
2071 eh = path[depth].p_hdr;
2072
2073 has_space:
2074 nearex = path[depth].p_ext;
2075
2076 err = ext4_ext_get_access(handle, inode, path + depth);
2077 if (err)
2078 goto cleanup;
2079
2080 if (!nearex) {
2081 /* there is no extent in this leaf, create first one */
2082 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2083 le32_to_cpu(newext->ee_block),
2084 ext4_ext_pblock(newext),
2085 ext4_ext_is_unwritten(newext),
2086 ext4_ext_get_actual_len(newext));
2087 nearex = EXT_FIRST_EXTENT(eh);
2088 } else {
2089 if (le32_to_cpu(newext->ee_block)
2090 > le32_to_cpu(nearex->ee_block)) {
2091 /* Insert after */
2092 ext_debug("insert %u:%llu:[%d]%d before: "
2093 "nearest %p\n",
2094 le32_to_cpu(newext->ee_block),
2095 ext4_ext_pblock(newext),
2096 ext4_ext_is_unwritten(newext),
2097 ext4_ext_get_actual_len(newext),
2098 nearex);
2099 nearex++;
2100 } else {
2101 /* Insert before */
2102 BUG_ON(newext->ee_block == nearex->ee_block);
2103 ext_debug("insert %u:%llu:[%d]%d after: "
2104 "nearest %p\n",
2105 le32_to_cpu(newext->ee_block),
2106 ext4_ext_pblock(newext),
2107 ext4_ext_is_unwritten(newext),
2108 ext4_ext_get_actual_len(newext),
2109 nearex);
2110 }
2111 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2112 if (len > 0) {
2113 ext_debug("insert %u:%llu:[%d]%d: "
2114 "move %d extents from 0x%p to 0x%p\n",
2115 le32_to_cpu(newext->ee_block),
2116 ext4_ext_pblock(newext),
2117 ext4_ext_is_unwritten(newext),
2118 ext4_ext_get_actual_len(newext),
2119 len, nearex, nearex + 1);
2120 memmove(nearex + 1, nearex,
2121 len * sizeof(struct ext4_extent));
2122 }
2123 }
2124
2125 le16_add_cpu(&eh->eh_entries, 1);
2126 path[depth].p_ext = nearex;
2127 nearex->ee_block = newext->ee_block;
2128 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2129 nearex->ee_len = newext->ee_len;
2130
2131 merge:
2132 /* try to merge extents */
2133 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2134 ext4_ext_try_to_merge(handle, inode, path, nearex);
2135
2136
2137 /* time to correct all indexes above */
2138 err = ext4_ext_correct_indexes(handle, inode, path);
2139 if (err)
2140 goto cleanup;
2141
2142 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2143
2144 cleanup:
2145 ext4_ext_drop_refs(npath);
2146 kfree(npath);
2147 return err;
2148 }
2149
2150 static int ext4_fill_fiemap_extents(struct inode *inode,
2151 ext4_lblk_t block, ext4_lblk_t num,
2152 struct fiemap_extent_info *fieinfo)
2153 {
2154 struct ext4_ext_path *path = NULL;
2155 struct ext4_extent *ex;
2156 struct extent_status es;
2157 ext4_lblk_t next, next_del, start = 0, end = 0;
2158 ext4_lblk_t last = block + num;
2159 int exists, depth = 0, err = 0;
2160 unsigned int flags = 0;
2161 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2162
2163 while (block < last && block != EXT_MAX_BLOCKS) {
2164 num = last - block;
2165 /* find extent for this block */
2166 down_read(&EXT4_I(inode)->i_data_sem);
2167
2168 path = ext4_find_extent(inode, block, &path, 0);
2169 if (IS_ERR(path)) {
2170 up_read(&EXT4_I(inode)->i_data_sem);
2171 err = PTR_ERR(path);
2172 path = NULL;
2173 break;
2174 }
2175
2176 depth = ext_depth(inode);
2177 if (unlikely(path[depth].p_hdr == NULL)) {
2178 up_read(&EXT4_I(inode)->i_data_sem);
2179 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2180 err = -EIO;
2181 break;
2182 }
2183 ex = path[depth].p_ext;
2184 next = ext4_ext_next_allocated_block(path);
2185
2186 flags = 0;
2187 exists = 0;
2188 if (!ex) {
2189 /* there is no extent yet, so try to allocate
2190 * all requested space */
2191 start = block;
2192 end = block + num;
2193 } else if (le32_to_cpu(ex->ee_block) > block) {
2194 /* need to allocate space before found extent */
2195 start = block;
2196 end = le32_to_cpu(ex->ee_block);
2197 if (block + num < end)
2198 end = block + num;
2199 } else if (block >= le32_to_cpu(ex->ee_block)
2200 + ext4_ext_get_actual_len(ex)) {
2201 /* need to allocate space after found extent */
2202 start = block;
2203 end = block + num;
2204 if (end >= next)
2205 end = next;
2206 } else if (block >= le32_to_cpu(ex->ee_block)) {
2207 /*
2208 * some part of requested space is covered
2209 * by found extent
2210 */
2211 start = block;
2212 end = le32_to_cpu(ex->ee_block)
2213 + ext4_ext_get_actual_len(ex);
2214 if (block + num < end)
2215 end = block + num;
2216 exists = 1;
2217 } else {
2218 BUG();
2219 }
2220 BUG_ON(end <= start);
2221
2222 if (!exists) {
2223 es.es_lblk = start;
2224 es.es_len = end - start;
2225 es.es_pblk = 0;
2226 } else {
2227 es.es_lblk = le32_to_cpu(ex->ee_block);
2228 es.es_len = ext4_ext_get_actual_len(ex);
2229 es.es_pblk = ext4_ext_pblock(ex);
2230 if (ext4_ext_is_unwritten(ex))
2231 flags |= FIEMAP_EXTENT_UNWRITTEN;
2232 }
2233
2234 /*
2235 * Find delayed extent and update es accordingly. We call
2236 * it even in !exists case to find out whether es is the
2237 * last existing extent or not.
2238 */
2239 next_del = ext4_find_delayed_extent(inode, &es);
2240 if (!exists && next_del) {
2241 exists = 1;
2242 flags |= (FIEMAP_EXTENT_DELALLOC |
2243 FIEMAP_EXTENT_UNKNOWN);
2244 }
2245 up_read(&EXT4_I(inode)->i_data_sem);
2246
2247 if (unlikely(es.es_len == 0)) {
2248 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2249 err = -EIO;
2250 break;
2251 }
2252
2253 /*
2254 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2255 * we need to check next == EXT_MAX_BLOCKS because it is
2256 * possible that an extent is with unwritten and delayed
2257 * status due to when an extent is delayed allocated and
2258 * is allocated by fallocate status tree will track both of
2259 * them in a extent.
2260 *
2261 * So we could return a unwritten and delayed extent, and
2262 * its block is equal to 'next'.
2263 */
2264 if (next == next_del && next == EXT_MAX_BLOCKS) {
2265 flags |= FIEMAP_EXTENT_LAST;
2266 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2267 next != EXT_MAX_BLOCKS)) {
2268 EXT4_ERROR_INODE(inode,
2269 "next extent == %u, next "
2270 "delalloc extent = %u",
2271 next, next_del);
2272 err = -EIO;
2273 break;
2274 }
2275 }
2276
2277 if (exists) {
2278 err = fiemap_fill_next_extent(fieinfo,
2279 (__u64)es.es_lblk << blksize_bits,
2280 (__u64)es.es_pblk << blksize_bits,
2281 (__u64)es.es_len << blksize_bits,
2282 flags);
2283 if (err < 0)
2284 break;
2285 if (err == 1) {
2286 err = 0;
2287 break;
2288 }
2289 }
2290
2291 block = es.es_lblk + es.es_len;
2292 }
2293
2294 ext4_ext_drop_refs(path);
2295 kfree(path);
2296 return err;
2297 }
2298
2299 /*
2300 * ext4_ext_put_gap_in_cache:
2301 * calculate boundaries of the gap that the requested block fits into
2302 * and cache this gap
2303 */
2304 static void
2305 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2306 ext4_lblk_t block)
2307 {
2308 int depth = ext_depth(inode);
2309 unsigned long len = 0;
2310 ext4_lblk_t lblock = 0;
2311 struct ext4_extent *ex;
2312
2313 ex = path[depth].p_ext;
2314 if (ex == NULL) {
2315 /*
2316 * there is no extent yet, so gap is [0;-] and we
2317 * don't cache it
2318 */
2319 ext_debug("cache gap(whole file):");
2320 } else if (block < le32_to_cpu(ex->ee_block)) {
2321 lblock = block;
2322 len = le32_to_cpu(ex->ee_block) - block;
2323 ext_debug("cache gap(before): %u [%u:%u]",
2324 block,
2325 le32_to_cpu(ex->ee_block),
2326 ext4_ext_get_actual_len(ex));
2327 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2328 ext4_es_insert_extent(inode, lblock, len, ~0,
2329 EXTENT_STATUS_HOLE);
2330 } else if (block >= le32_to_cpu(ex->ee_block)
2331 + ext4_ext_get_actual_len(ex)) {
2332 ext4_lblk_t next;
2333 lblock = le32_to_cpu(ex->ee_block)
2334 + ext4_ext_get_actual_len(ex);
2335
2336 next = ext4_ext_next_allocated_block(path);
2337 ext_debug("cache gap(after): [%u:%u] %u",
2338 le32_to_cpu(ex->ee_block),
2339 ext4_ext_get_actual_len(ex),
2340 block);
2341 BUG_ON(next == lblock);
2342 len = next - lblock;
2343 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2344 ext4_es_insert_extent(inode, lblock, len, ~0,
2345 EXTENT_STATUS_HOLE);
2346 } else {
2347 BUG();
2348 }
2349
2350 ext_debug(" -> %u:%lu\n", lblock, len);
2351 }
2352
2353 /*
2354 * ext4_ext_rm_idx:
2355 * removes index from the index block.
2356 */
2357 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2358 struct ext4_ext_path *path, int depth)
2359 {
2360 int err;
2361 ext4_fsblk_t leaf;
2362
2363 /* free index block */
2364 depth--;
2365 path = path + depth;
2366 leaf = ext4_idx_pblock(path->p_idx);
2367 if (unlikely(path->p_hdr->eh_entries == 0)) {
2368 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2369 return -EIO;
2370 }
2371 err = ext4_ext_get_access(handle, inode, path);
2372 if (err)
2373 return err;
2374
2375 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2376 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2377 len *= sizeof(struct ext4_extent_idx);
2378 memmove(path->p_idx, path->p_idx + 1, len);
2379 }
2380
2381 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2382 err = ext4_ext_dirty(handle, inode, path);
2383 if (err)
2384 return err;
2385 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2386 trace_ext4_ext_rm_idx(inode, leaf);
2387
2388 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2389 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2390
2391 while (--depth >= 0) {
2392 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2393 break;
2394 path--;
2395 err = ext4_ext_get_access(handle, inode, path);
2396 if (err)
2397 break;
2398 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2399 err = ext4_ext_dirty(handle, inode, path);
2400 if (err)
2401 break;
2402 }
2403 return err;
2404 }
2405
2406 /*
2407 * ext4_ext_calc_credits_for_single_extent:
2408 * This routine returns max. credits that needed to insert an extent
2409 * to the extent tree.
2410 * When pass the actual path, the caller should calculate credits
2411 * under i_data_sem.
2412 */
2413 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2414 struct ext4_ext_path *path)
2415 {
2416 if (path) {
2417 int depth = ext_depth(inode);
2418 int ret = 0;
2419
2420 /* probably there is space in leaf? */
2421 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2422 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2423
2424 /*
2425 * There are some space in the leaf tree, no
2426 * need to account for leaf block credit
2427 *
2428 * bitmaps and block group descriptor blocks
2429 * and other metadata blocks still need to be
2430 * accounted.
2431 */
2432 /* 1 bitmap, 1 block group descriptor */
2433 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2434 return ret;
2435 }
2436 }
2437
2438 return ext4_chunk_trans_blocks(inode, nrblocks);
2439 }
2440
2441 /*
2442 * How many index/leaf blocks need to change/allocate to add @extents extents?
2443 *
2444 * If we add a single extent, then in the worse case, each tree level
2445 * index/leaf need to be changed in case of the tree split.
2446 *
2447 * If more extents are inserted, they could cause the whole tree split more
2448 * than once, but this is really rare.
2449 */
2450 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2451 {
2452 int index;
2453 int depth;
2454
2455 /* If we are converting the inline data, only one is needed here. */
2456 if (ext4_has_inline_data(inode))
2457 return 1;
2458
2459 depth = ext_depth(inode);
2460
2461 if (extents <= 1)
2462 index = depth * 2;
2463 else
2464 index = depth * 3;
2465
2466 return index;
2467 }
2468
2469 static inline int get_default_free_blocks_flags(struct inode *inode)
2470 {
2471 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2472 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2473 else if (ext4_should_journal_data(inode))
2474 return EXT4_FREE_BLOCKS_FORGET;
2475 return 0;
2476 }
2477
2478 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2479 struct ext4_extent *ex,
2480 long long *partial_cluster,
2481 ext4_lblk_t from, ext4_lblk_t to)
2482 {
2483 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2484 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2485 ext4_fsblk_t pblk;
2486 int flags = get_default_free_blocks_flags(inode);
2487
2488 /*
2489 * For bigalloc file systems, we never free a partial cluster
2490 * at the beginning of the extent. Instead, we make a note
2491 * that we tried freeing the cluster, and check to see if we
2492 * need to free it on a subsequent call to ext4_remove_blocks,
2493 * or at the end of the ext4_truncate() operation.
2494 */
2495 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2496
2497 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2498 /*
2499 * If we have a partial cluster, and it's different from the
2500 * cluster of the last block, we need to explicitly free the
2501 * partial cluster here.
2502 */
2503 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2504 if ((*partial_cluster > 0) &&
2505 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2506 ext4_free_blocks(handle, inode, NULL,
2507 EXT4_C2B(sbi, *partial_cluster),
2508 sbi->s_cluster_ratio, flags);
2509 *partial_cluster = 0;
2510 }
2511
2512 #ifdef EXTENTS_STATS
2513 {
2514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2515 spin_lock(&sbi->s_ext_stats_lock);
2516 sbi->s_ext_blocks += ee_len;
2517 sbi->s_ext_extents++;
2518 if (ee_len < sbi->s_ext_min)
2519 sbi->s_ext_min = ee_len;
2520 if (ee_len > sbi->s_ext_max)
2521 sbi->s_ext_max = ee_len;
2522 if (ext_depth(inode) > sbi->s_depth_max)
2523 sbi->s_depth_max = ext_depth(inode);
2524 spin_unlock(&sbi->s_ext_stats_lock);
2525 }
2526 #endif
2527 if (from >= le32_to_cpu(ex->ee_block)
2528 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2529 /* tail removal */
2530 ext4_lblk_t num;
2531 unsigned int unaligned;
2532
2533 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2534 pblk = ext4_ext_pblock(ex) + ee_len - num;
2535 /*
2536 * Usually we want to free partial cluster at the end of the
2537 * extent, except for the situation when the cluster is still
2538 * used by any other extent (partial_cluster is negative).
2539 */
2540 if (*partial_cluster < 0 &&
2541 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2542 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2543
2544 ext_debug("free last %u blocks starting %llu partial %lld\n",
2545 num, pblk, *partial_cluster);
2546 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2547 /*
2548 * If the block range to be freed didn't start at the
2549 * beginning of a cluster, and we removed the entire
2550 * extent and the cluster is not used by any other extent,
2551 * save the partial cluster here, since we might need to
2552 * delete if we determine that the truncate operation has
2553 * removed all of the blocks in the cluster.
2554 *
2555 * On the other hand, if we did not manage to free the whole
2556 * extent, we have to mark the cluster as used (store negative
2557 * cluster number in partial_cluster).
2558 */
2559 unaligned = EXT4_PBLK_COFF(sbi, pblk);
2560 if (unaligned && (ee_len == num) &&
2561 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2562 *partial_cluster = EXT4_B2C(sbi, pblk);
2563 else if (unaligned)
2564 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2565 else if (*partial_cluster > 0)
2566 *partial_cluster = 0;
2567 } else
2568 ext4_error(sbi->s_sb, "strange request: removal(2) "
2569 "%u-%u from %u:%u\n",
2570 from, to, le32_to_cpu(ex->ee_block), ee_len);
2571 return 0;
2572 }
2573
2574
2575 /*
2576 * ext4_ext_rm_leaf() Removes the extents associated with the
2577 * blocks appearing between "start" and "end", and splits the extents
2578 * if "start" and "end" appear in the same extent
2579 *
2580 * @handle: The journal handle
2581 * @inode: The files inode
2582 * @path: The path to the leaf
2583 * @partial_cluster: The cluster which we'll have to free if all extents
2584 * has been released from it. It gets negative in case
2585 * that the cluster is still used.
2586 * @start: The first block to remove
2587 * @end: The last block to remove
2588 */
2589 static int
2590 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2591 struct ext4_ext_path *path,
2592 long long *partial_cluster,
2593 ext4_lblk_t start, ext4_lblk_t end)
2594 {
2595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2596 int err = 0, correct_index = 0;
2597 int depth = ext_depth(inode), credits;
2598 struct ext4_extent_header *eh;
2599 ext4_lblk_t a, b;
2600 unsigned num;
2601 ext4_lblk_t ex_ee_block;
2602 unsigned short ex_ee_len;
2603 unsigned unwritten = 0;
2604 struct ext4_extent *ex;
2605 ext4_fsblk_t pblk;
2606
2607 /* the header must be checked already in ext4_ext_remove_space() */
2608 ext_debug("truncate since %u in leaf to %u\n", start, end);
2609 if (!path[depth].p_hdr)
2610 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2611 eh = path[depth].p_hdr;
2612 if (unlikely(path[depth].p_hdr == NULL)) {
2613 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2614 return -EIO;
2615 }
2616 /* find where to start removing */
2617 ex = path[depth].p_ext;
2618 if (!ex)
2619 ex = EXT_LAST_EXTENT(eh);
2620
2621 ex_ee_block = le32_to_cpu(ex->ee_block);
2622 ex_ee_len = ext4_ext_get_actual_len(ex);
2623
2624 /*
2625 * If we're starting with an extent other than the last one in the
2626 * node, we need to see if it shares a cluster with the extent to
2627 * the right (towards the end of the file). If its leftmost cluster
2628 * is this extent's rightmost cluster and it is not cluster aligned,
2629 * we'll mark it as a partial that is not to be deallocated.
2630 */
2631
2632 if (ex != EXT_LAST_EXTENT(eh)) {
2633 ext4_fsblk_t current_pblk, right_pblk;
2634 long long current_cluster, right_cluster;
2635
2636 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2637 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2638 right_pblk = ext4_ext_pblock(ex + 1);
2639 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2640 if (current_cluster == right_cluster &&
2641 EXT4_PBLK_COFF(sbi, right_pblk))
2642 *partial_cluster = -right_cluster;
2643 }
2644
2645 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2646
2647 while (ex >= EXT_FIRST_EXTENT(eh) &&
2648 ex_ee_block + ex_ee_len > start) {
2649
2650 if (ext4_ext_is_unwritten(ex))
2651 unwritten = 1;
2652 else
2653 unwritten = 0;
2654
2655 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2656 unwritten, ex_ee_len);
2657 path[depth].p_ext = ex;
2658
2659 a = ex_ee_block > start ? ex_ee_block : start;
2660 b = ex_ee_block+ex_ee_len - 1 < end ?
2661 ex_ee_block+ex_ee_len - 1 : end;
2662
2663 ext_debug(" border %u:%u\n", a, b);
2664
2665 /* If this extent is beyond the end of the hole, skip it */
2666 if (end < ex_ee_block) {
2667 /*
2668 * We're going to skip this extent and move to another,
2669 * so if this extent is not cluster aligned we have
2670 * to mark the current cluster as used to avoid
2671 * accidentally freeing it later on
2672 */
2673 pblk = ext4_ext_pblock(ex);
2674 if (EXT4_PBLK_COFF(sbi, pblk))
2675 *partial_cluster =
2676 -((long long)EXT4_B2C(sbi, pblk));
2677 ex--;
2678 ex_ee_block = le32_to_cpu(ex->ee_block);
2679 ex_ee_len = ext4_ext_get_actual_len(ex);
2680 continue;
2681 } else if (b != ex_ee_block + ex_ee_len - 1) {
2682 EXT4_ERROR_INODE(inode,
2683 "can not handle truncate %u:%u "
2684 "on extent %u:%u",
2685 start, end, ex_ee_block,
2686 ex_ee_block + ex_ee_len - 1);
2687 err = -EIO;
2688 goto out;
2689 } else if (a != ex_ee_block) {
2690 /* remove tail of the extent */
2691 num = a - ex_ee_block;
2692 } else {
2693 /* remove whole extent: excellent! */
2694 num = 0;
2695 }
2696 /*
2697 * 3 for leaf, sb, and inode plus 2 (bmap and group
2698 * descriptor) for each block group; assume two block
2699 * groups plus ex_ee_len/blocks_per_block_group for
2700 * the worst case
2701 */
2702 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2703 if (ex == EXT_FIRST_EXTENT(eh)) {
2704 correct_index = 1;
2705 credits += (ext_depth(inode)) + 1;
2706 }
2707 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2708
2709 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2710 if (err)
2711 goto out;
2712
2713 err = ext4_ext_get_access(handle, inode, path + depth);
2714 if (err)
2715 goto out;
2716
2717 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2718 a, b);
2719 if (err)
2720 goto out;
2721
2722 if (num == 0)
2723 /* this extent is removed; mark slot entirely unused */
2724 ext4_ext_store_pblock(ex, 0);
2725
2726 ex->ee_len = cpu_to_le16(num);
2727 /*
2728 * Do not mark unwritten if all the blocks in the
2729 * extent have been removed.
2730 */
2731 if (unwritten && num)
2732 ext4_ext_mark_unwritten(ex);
2733 /*
2734 * If the extent was completely released,
2735 * we need to remove it from the leaf
2736 */
2737 if (num == 0) {
2738 if (end != EXT_MAX_BLOCKS - 1) {
2739 /*
2740 * For hole punching, we need to scoot all the
2741 * extents up when an extent is removed so that
2742 * we dont have blank extents in the middle
2743 */
2744 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2745 sizeof(struct ext4_extent));
2746
2747 /* Now get rid of the one at the end */
2748 memset(EXT_LAST_EXTENT(eh), 0,
2749 sizeof(struct ext4_extent));
2750 }
2751 le16_add_cpu(&eh->eh_entries, -1);
2752 } else if (*partial_cluster > 0)
2753 *partial_cluster = 0;
2754
2755 err = ext4_ext_dirty(handle, inode, path + depth);
2756 if (err)
2757 goto out;
2758
2759 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2760 ext4_ext_pblock(ex));
2761 ex--;
2762 ex_ee_block = le32_to_cpu(ex->ee_block);
2763 ex_ee_len = ext4_ext_get_actual_len(ex);
2764 }
2765
2766 if (correct_index && eh->eh_entries)
2767 err = ext4_ext_correct_indexes(handle, inode, path);
2768
2769 /*
2770 * If there's a partial cluster and at least one extent remains in
2771 * the leaf, free the partial cluster if it isn't shared with the
2772 * current extent. If there's a partial cluster and no extents
2773 * remain in the leaf, it can't be freed here. It can only be
2774 * freed when it's possible to determine if it's not shared with
2775 * any other extent - when the next leaf is processed or when space
2776 * removal is complete.
2777 */
2778 if (*partial_cluster > 0 && eh->eh_entries &&
2779 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2780 *partial_cluster)) {
2781 int flags = get_default_free_blocks_flags(inode);
2782
2783 ext4_free_blocks(handle, inode, NULL,
2784 EXT4_C2B(sbi, *partial_cluster),
2785 sbi->s_cluster_ratio, flags);
2786 *partial_cluster = 0;
2787 }
2788
2789 /* if this leaf is free, then we should
2790 * remove it from index block above */
2791 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2792 err = ext4_ext_rm_idx(handle, inode, path, depth);
2793
2794 out:
2795 return err;
2796 }
2797
2798 /*
2799 * ext4_ext_more_to_rm:
2800 * returns 1 if current index has to be freed (even partial)
2801 */
2802 static int
2803 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2804 {
2805 BUG_ON(path->p_idx == NULL);
2806
2807 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2808 return 0;
2809
2810 /*
2811 * if truncate on deeper level happened, it wasn't partial,
2812 * so we have to consider current index for truncation
2813 */
2814 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2815 return 0;
2816 return 1;
2817 }
2818
2819 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2820 ext4_lblk_t end)
2821 {
2822 struct super_block *sb = inode->i_sb;
2823 int depth = ext_depth(inode);
2824 struct ext4_ext_path *path = NULL;
2825 long long partial_cluster = 0;
2826 handle_t *handle;
2827 int i = 0, err = 0;
2828
2829 ext_debug("truncate since %u to %u\n", start, end);
2830
2831 /* probably first extent we're gonna free will be last in block */
2832 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2833 if (IS_ERR(handle))
2834 return PTR_ERR(handle);
2835
2836 again:
2837 trace_ext4_ext_remove_space(inode, start, end, depth);
2838
2839 /*
2840 * Check if we are removing extents inside the extent tree. If that
2841 * is the case, we are going to punch a hole inside the extent tree
2842 * so we have to check whether we need to split the extent covering
2843 * the last block to remove so we can easily remove the part of it
2844 * in ext4_ext_rm_leaf().
2845 */
2846 if (end < EXT_MAX_BLOCKS - 1) {
2847 struct ext4_extent *ex;
2848 ext4_lblk_t ee_block;
2849
2850 /* find extent for this block */
2851 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2852 if (IS_ERR(path)) {
2853 ext4_journal_stop(handle);
2854 return PTR_ERR(path);
2855 }
2856 depth = ext_depth(inode);
2857 /* Leaf not may not exist only if inode has no blocks at all */
2858 ex = path[depth].p_ext;
2859 if (!ex) {
2860 if (depth) {
2861 EXT4_ERROR_INODE(inode,
2862 "path[%d].p_hdr == NULL",
2863 depth);
2864 err = -EIO;
2865 }
2866 goto out;
2867 }
2868
2869 ee_block = le32_to_cpu(ex->ee_block);
2870
2871 /*
2872 * See if the last block is inside the extent, if so split
2873 * the extent at 'end' block so we can easily remove the
2874 * tail of the first part of the split extent in
2875 * ext4_ext_rm_leaf().
2876 */
2877 if (end >= ee_block &&
2878 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2879 /*
2880 * Split the extent in two so that 'end' is the last
2881 * block in the first new extent. Also we should not
2882 * fail removing space due to ENOSPC so try to use
2883 * reserved block if that happens.
2884 */
2885 err = ext4_force_split_extent_at(handle, inode, &path,
2886 end + 1, 1);
2887 if (err < 0)
2888 goto out;
2889 }
2890 }
2891 /*
2892 * We start scanning from right side, freeing all the blocks
2893 * after i_size and walking into the tree depth-wise.
2894 */
2895 depth = ext_depth(inode);
2896 if (path) {
2897 int k = i = depth;
2898 while (--k > 0)
2899 path[k].p_block =
2900 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2901 } else {
2902 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2903 GFP_NOFS);
2904 if (path == NULL) {
2905 ext4_journal_stop(handle);
2906 return -ENOMEM;
2907 }
2908 path[0].p_maxdepth = path[0].p_depth = depth;
2909 path[0].p_hdr = ext_inode_hdr(inode);
2910 i = 0;
2911
2912 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2913 err = -EIO;
2914 goto out;
2915 }
2916 }
2917 err = 0;
2918
2919 while (i >= 0 && err == 0) {
2920 if (i == depth) {
2921 /* this is leaf block */
2922 err = ext4_ext_rm_leaf(handle, inode, path,
2923 &partial_cluster, start,
2924 end);
2925 /* root level has p_bh == NULL, brelse() eats this */
2926 brelse(path[i].p_bh);
2927 path[i].p_bh = NULL;
2928 i--;
2929 continue;
2930 }
2931
2932 /* this is index block */
2933 if (!path[i].p_hdr) {
2934 ext_debug("initialize header\n");
2935 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2936 }
2937
2938 if (!path[i].p_idx) {
2939 /* this level hasn't been touched yet */
2940 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2941 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2942 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2943 path[i].p_hdr,
2944 le16_to_cpu(path[i].p_hdr->eh_entries));
2945 } else {
2946 /* we were already here, see at next index */
2947 path[i].p_idx--;
2948 }
2949
2950 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2951 i, EXT_FIRST_INDEX(path[i].p_hdr),
2952 path[i].p_idx);
2953 if (ext4_ext_more_to_rm(path + i)) {
2954 struct buffer_head *bh;
2955 /* go to the next level */
2956 ext_debug("move to level %d (block %llu)\n",
2957 i + 1, ext4_idx_pblock(path[i].p_idx));
2958 memset(path + i + 1, 0, sizeof(*path));
2959 bh = read_extent_tree_block(inode,
2960 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2961 EXT4_EX_NOCACHE);
2962 if (IS_ERR(bh)) {
2963 /* should we reset i_size? */
2964 err = PTR_ERR(bh);
2965 break;
2966 }
2967 /* Yield here to deal with large extent trees.
2968 * Should be a no-op if we did IO above. */
2969 cond_resched();
2970 if (WARN_ON(i + 1 > depth)) {
2971 err = -EIO;
2972 break;
2973 }
2974 path[i + 1].p_bh = bh;
2975
2976 /* save actual number of indexes since this
2977 * number is changed at the next iteration */
2978 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2979 i++;
2980 } else {
2981 /* we finished processing this index, go up */
2982 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2983 /* index is empty, remove it;
2984 * handle must be already prepared by the
2985 * truncatei_leaf() */
2986 err = ext4_ext_rm_idx(handle, inode, path, i);
2987 }
2988 /* root level has p_bh == NULL, brelse() eats this */
2989 brelse(path[i].p_bh);
2990 path[i].p_bh = NULL;
2991 i--;
2992 ext_debug("return to level %d\n", i);
2993 }
2994 }
2995
2996 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2997 partial_cluster, path->p_hdr->eh_entries);
2998
2999 /* If we still have something in the partial cluster and we have removed
3000 * even the first extent, then we should free the blocks in the partial
3001 * cluster as well. */
3002 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
3003 int flags = get_default_free_blocks_flags(inode);
3004
3005 ext4_free_blocks(handle, inode, NULL,
3006 EXT4_C2B(EXT4_SB(sb), partial_cluster),
3007 EXT4_SB(sb)->s_cluster_ratio, flags);
3008 partial_cluster = 0;
3009 }
3010
3011 /* TODO: flexible tree reduction should be here */
3012 if (path->p_hdr->eh_entries == 0) {
3013 /*
3014 * truncate to zero freed all the tree,
3015 * so we need to correct eh_depth
3016 */
3017 err = ext4_ext_get_access(handle, inode, path);
3018 if (err == 0) {
3019 ext_inode_hdr(inode)->eh_depth = 0;
3020 ext_inode_hdr(inode)->eh_max =
3021 cpu_to_le16(ext4_ext_space_root(inode, 0));
3022 err = ext4_ext_dirty(handle, inode, path);
3023 }
3024 }
3025 out:
3026 ext4_ext_drop_refs(path);
3027 kfree(path);
3028 path = NULL;
3029 if (err == -EAGAIN)
3030 goto again;
3031 ext4_journal_stop(handle);
3032
3033 return err;
3034 }
3035
3036 /*
3037 * called at mount time
3038 */
3039 void ext4_ext_init(struct super_block *sb)
3040 {
3041 /*
3042 * possible initialization would be here
3043 */
3044
3045 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3046 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3047 printk(KERN_INFO "EXT4-fs: file extents enabled"
3048 #ifdef AGGRESSIVE_TEST
3049 ", aggressive tests"
3050 #endif
3051 #ifdef CHECK_BINSEARCH
3052 ", check binsearch"
3053 #endif
3054 #ifdef EXTENTS_STATS
3055 ", stats"
3056 #endif
3057 "\n");
3058 #endif
3059 #ifdef EXTENTS_STATS
3060 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3061 EXT4_SB(sb)->s_ext_min = 1 << 30;
3062 EXT4_SB(sb)->s_ext_max = 0;
3063 #endif
3064 }
3065 }
3066
3067 /*
3068 * called at umount time
3069 */
3070 void ext4_ext_release(struct super_block *sb)
3071 {
3072 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3073 return;
3074
3075 #ifdef EXTENTS_STATS
3076 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3077 struct ext4_sb_info *sbi = EXT4_SB(sb);
3078 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3079 sbi->s_ext_blocks, sbi->s_ext_extents,
3080 sbi->s_ext_blocks / sbi->s_ext_extents);
3081 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3082 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3083 }
3084 #endif
3085 }
3086
3087 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3088 {
3089 ext4_lblk_t ee_block;
3090 ext4_fsblk_t ee_pblock;
3091 unsigned int ee_len;
3092
3093 ee_block = le32_to_cpu(ex->ee_block);
3094 ee_len = ext4_ext_get_actual_len(ex);
3095 ee_pblock = ext4_ext_pblock(ex);
3096
3097 if (ee_len == 0)
3098 return 0;
3099
3100 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3101 EXTENT_STATUS_WRITTEN);
3102 }
3103
3104 /* FIXME!! we need to try to merge to left or right after zero-out */
3105 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3106 {
3107 ext4_fsblk_t ee_pblock;
3108 unsigned int ee_len;
3109 int ret;
3110
3111 ee_len = ext4_ext_get_actual_len(ex);
3112 ee_pblock = ext4_ext_pblock(ex);
3113
3114 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3115 if (ret > 0)
3116 ret = 0;
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * ext4_split_extent_at() splits an extent at given block.
3123 *
3124 * @handle: the journal handle
3125 * @inode: the file inode
3126 * @path: the path to the extent
3127 * @split: the logical block where the extent is splitted.
3128 * @split_flags: indicates if the extent could be zeroout if split fails, and
3129 * the states(init or unwritten) of new extents.
3130 * @flags: flags used to insert new extent to extent tree.
3131 *
3132 *
3133 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3134 * of which are deterimined by split_flag.
3135 *
3136 * There are two cases:
3137 * a> the extent are splitted into two extent.
3138 * b> split is not needed, and just mark the extent.
3139 *
3140 * return 0 on success.
3141 */
3142 static int ext4_split_extent_at(handle_t *handle,
3143 struct inode *inode,
3144 struct ext4_ext_path **ppath,
3145 ext4_lblk_t split,
3146 int split_flag,
3147 int flags)
3148 {
3149 struct ext4_ext_path *path = *ppath;
3150 ext4_fsblk_t newblock;
3151 ext4_lblk_t ee_block;
3152 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3153 struct ext4_extent *ex2 = NULL;
3154 unsigned int ee_len, depth;
3155 int err = 0;
3156
3157 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3158 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3159
3160 ext_debug("ext4_split_extents_at: inode %lu, logical"
3161 "block %llu\n", inode->i_ino, (unsigned long long)split);
3162
3163 ext4_ext_show_leaf(inode, path);
3164
3165 depth = ext_depth(inode);
3166 ex = path[depth].p_ext;
3167 ee_block = le32_to_cpu(ex->ee_block);
3168 ee_len = ext4_ext_get_actual_len(ex);
3169 newblock = split - ee_block + ext4_ext_pblock(ex);
3170
3171 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3172 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3173 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3174 EXT4_EXT_MARK_UNWRIT1 |
3175 EXT4_EXT_MARK_UNWRIT2));
3176
3177 err = ext4_ext_get_access(handle, inode, path + depth);
3178 if (err)
3179 goto out;
3180
3181 if (split == ee_block) {
3182 /*
3183 * case b: block @split is the block that the extent begins with
3184 * then we just change the state of the extent, and splitting
3185 * is not needed.
3186 */
3187 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3188 ext4_ext_mark_unwritten(ex);
3189 else
3190 ext4_ext_mark_initialized(ex);
3191
3192 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3193 ext4_ext_try_to_merge(handle, inode, path, ex);
3194
3195 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3196 goto out;
3197 }
3198
3199 /* case a */
3200 memcpy(&orig_ex, ex, sizeof(orig_ex));
3201 ex->ee_len = cpu_to_le16(split - ee_block);
3202 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3203 ext4_ext_mark_unwritten(ex);
3204
3205 /*
3206 * path may lead to new leaf, not to original leaf any more
3207 * after ext4_ext_insert_extent() returns,
3208 */
3209 err = ext4_ext_dirty(handle, inode, path + depth);
3210 if (err)
3211 goto fix_extent_len;
3212
3213 ex2 = &newex;
3214 ex2->ee_block = cpu_to_le32(split);
3215 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3216 ext4_ext_store_pblock(ex2, newblock);
3217 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3218 ext4_ext_mark_unwritten(ex2);
3219
3220 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3221 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3222 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3223 if (split_flag & EXT4_EXT_DATA_VALID1) {
3224 err = ext4_ext_zeroout(inode, ex2);
3225 zero_ex.ee_block = ex2->ee_block;
3226 zero_ex.ee_len = cpu_to_le16(
3227 ext4_ext_get_actual_len(ex2));
3228 ext4_ext_store_pblock(&zero_ex,
3229 ext4_ext_pblock(ex2));
3230 } else {
3231 err = ext4_ext_zeroout(inode, ex);
3232 zero_ex.ee_block = ex->ee_block;
3233 zero_ex.ee_len = cpu_to_le16(
3234 ext4_ext_get_actual_len(ex));
3235 ext4_ext_store_pblock(&zero_ex,
3236 ext4_ext_pblock(ex));
3237 }
3238 } else {
3239 err = ext4_ext_zeroout(inode, &orig_ex);
3240 zero_ex.ee_block = orig_ex.ee_block;
3241 zero_ex.ee_len = cpu_to_le16(
3242 ext4_ext_get_actual_len(&orig_ex));
3243 ext4_ext_store_pblock(&zero_ex,
3244 ext4_ext_pblock(&orig_ex));
3245 }
3246
3247 if (err)
3248 goto fix_extent_len;
3249 /* update the extent length and mark as initialized */
3250 ex->ee_len = cpu_to_le16(ee_len);
3251 ext4_ext_try_to_merge(handle, inode, path, ex);
3252 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3253 if (err)
3254 goto fix_extent_len;
3255
3256 /* update extent status tree */
3257 err = ext4_zeroout_es(inode, &zero_ex);
3258
3259 goto out;
3260 } else if (err)
3261 goto fix_extent_len;
3262
3263 out:
3264 ext4_ext_show_leaf(inode, path);
3265 return err;
3266
3267 fix_extent_len:
3268 ex->ee_len = orig_ex.ee_len;
3269 ext4_ext_dirty(handle, inode, path + path->p_depth);
3270 return err;
3271 }
3272
3273 /*
3274 * ext4_split_extents() splits an extent and mark extent which is covered
3275 * by @map as split_flags indicates
3276 *
3277 * It may result in splitting the extent into multiple extents (up to three)
3278 * There are three possibilities:
3279 * a> There is no split required
3280 * b> Splits in two extents: Split is happening at either end of the extent
3281 * c> Splits in three extents: Somone is splitting in middle of the extent
3282 *
3283 */
3284 static int ext4_split_extent(handle_t *handle,
3285 struct inode *inode,
3286 struct ext4_ext_path **ppath,
3287 struct ext4_map_blocks *map,
3288 int split_flag,
3289 int flags)
3290 {
3291 struct ext4_ext_path *path = *ppath;
3292 ext4_lblk_t ee_block;
3293 struct ext4_extent *ex;
3294 unsigned int ee_len, depth;
3295 int err = 0;
3296 int unwritten;
3297 int split_flag1, flags1;
3298 int allocated = map->m_len;
3299
3300 depth = ext_depth(inode);
3301 ex = path[depth].p_ext;
3302 ee_block = le32_to_cpu(ex->ee_block);
3303 ee_len = ext4_ext_get_actual_len(ex);
3304 unwritten = ext4_ext_is_unwritten(ex);
3305
3306 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3307 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3308 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3309 if (unwritten)
3310 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3311 EXT4_EXT_MARK_UNWRIT2;
3312 if (split_flag & EXT4_EXT_DATA_VALID2)
3313 split_flag1 |= EXT4_EXT_DATA_VALID1;
3314 err = ext4_split_extent_at(handle, inode, ppath,
3315 map->m_lblk + map->m_len, split_flag1, flags1);
3316 if (err)
3317 goto out;
3318 } else {
3319 allocated = ee_len - (map->m_lblk - ee_block);
3320 }
3321 /*
3322 * Update path is required because previous ext4_split_extent_at() may
3323 * result in split of original leaf or extent zeroout.
3324 */
3325 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3326 if (IS_ERR(path))
3327 return PTR_ERR(path);
3328 depth = ext_depth(inode);
3329 ex = path[depth].p_ext;
3330 if (!ex) {
3331 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3332 (unsigned long) map->m_lblk);
3333 return -EIO;
3334 }
3335 unwritten = ext4_ext_is_unwritten(ex);
3336 split_flag1 = 0;
3337
3338 if (map->m_lblk >= ee_block) {
3339 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3340 if (unwritten) {
3341 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3342 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3343 EXT4_EXT_MARK_UNWRIT2);
3344 }
3345 err = ext4_split_extent_at(handle, inode, ppath,
3346 map->m_lblk, split_flag1, flags);
3347 if (err)
3348 goto out;
3349 }
3350
3351 ext4_ext_show_leaf(inode, path);
3352 out:
3353 return err ? err : allocated;
3354 }
3355
3356 /*
3357 * This function is called by ext4_ext_map_blocks() if someone tries to write
3358 * to an unwritten extent. It may result in splitting the unwritten
3359 * extent into multiple extents (up to three - one initialized and two
3360 * unwritten).
3361 * There are three possibilities:
3362 * a> There is no split required: Entire extent should be initialized
3363 * b> Splits in two extents: Write is happening at either end of the extent
3364 * c> Splits in three extents: Somone is writing in middle of the extent
3365 *
3366 * Pre-conditions:
3367 * - The extent pointed to by 'path' is unwritten.
3368 * - The extent pointed to by 'path' contains a superset
3369 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3370 *
3371 * Post-conditions on success:
3372 * - the returned value is the number of blocks beyond map->l_lblk
3373 * that are allocated and initialized.
3374 * It is guaranteed to be >= map->m_len.
3375 */
3376 static int ext4_ext_convert_to_initialized(handle_t *handle,
3377 struct inode *inode,
3378 struct ext4_map_blocks *map,
3379 struct ext4_ext_path **ppath,
3380 int flags)
3381 {
3382 struct ext4_ext_path *path = *ppath;
3383 struct ext4_sb_info *sbi;
3384 struct ext4_extent_header *eh;
3385 struct ext4_map_blocks split_map;
3386 struct ext4_extent zero_ex;
3387 struct ext4_extent *ex, *abut_ex;
3388 ext4_lblk_t ee_block, eof_block;
3389 unsigned int ee_len, depth, map_len = map->m_len;
3390 int allocated = 0, max_zeroout = 0;
3391 int err = 0;
3392 int split_flag = 0;
3393
3394 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3395 "block %llu, max_blocks %u\n", inode->i_ino,
3396 (unsigned long long)map->m_lblk, map_len);
3397
3398 sbi = EXT4_SB(inode->i_sb);
3399 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3400 inode->i_sb->s_blocksize_bits;
3401 if (eof_block < map->m_lblk + map_len)
3402 eof_block = map->m_lblk + map_len;
3403
3404 depth = ext_depth(inode);
3405 eh = path[depth].p_hdr;
3406 ex = path[depth].p_ext;
3407 ee_block = le32_to_cpu(ex->ee_block);
3408 ee_len = ext4_ext_get_actual_len(ex);
3409 zero_ex.ee_len = 0;
3410
3411 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3412
3413 /* Pre-conditions */
3414 BUG_ON(!ext4_ext_is_unwritten(ex));
3415 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3416
3417 /*
3418 * Attempt to transfer newly initialized blocks from the currently
3419 * unwritten extent to its neighbor. This is much cheaper
3420 * than an insertion followed by a merge as those involve costly
3421 * memmove() calls. Transferring to the left is the common case in
3422 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3423 * followed by append writes.
3424 *
3425 * Limitations of the current logic:
3426 * - L1: we do not deal with writes covering the whole extent.
3427 * This would require removing the extent if the transfer
3428 * is possible.
3429 * - L2: we only attempt to merge with an extent stored in the
3430 * same extent tree node.
3431 */
3432 if ((map->m_lblk == ee_block) &&
3433 /* See if we can merge left */
3434 (map_len < ee_len) && /*L1*/
3435 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3436 ext4_lblk_t prev_lblk;
3437 ext4_fsblk_t prev_pblk, ee_pblk;
3438 unsigned int prev_len;
3439
3440 abut_ex = ex - 1;
3441 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3442 prev_len = ext4_ext_get_actual_len(abut_ex);
3443 prev_pblk = ext4_ext_pblock(abut_ex);
3444 ee_pblk = ext4_ext_pblock(ex);
3445
3446 /*
3447 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3448 * upon those conditions:
3449 * - C1: abut_ex is initialized,
3450 * - C2: abut_ex is logically abutting ex,
3451 * - C3: abut_ex is physically abutting ex,
3452 * - C4: abut_ex can receive the additional blocks without
3453 * overflowing the (initialized) length limit.
3454 */
3455 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3456 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3457 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3458 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3459 err = ext4_ext_get_access(handle, inode, path + depth);
3460 if (err)
3461 goto out;
3462
3463 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3464 map, ex, abut_ex);
3465
3466 /* Shift the start of ex by 'map_len' blocks */
3467 ex->ee_block = cpu_to_le32(ee_block + map_len);
3468 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3469 ex->ee_len = cpu_to_le16(ee_len - map_len);
3470 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3471
3472 /* Extend abut_ex by 'map_len' blocks */
3473 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3474
3475 /* Result: number of initialized blocks past m_lblk */
3476 allocated = map_len;
3477 }
3478 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3479 (map_len < ee_len) && /*L1*/
3480 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3481 /* See if we can merge right */
3482 ext4_lblk_t next_lblk;
3483 ext4_fsblk_t next_pblk, ee_pblk;
3484 unsigned int next_len;
3485
3486 abut_ex = ex + 1;
3487 next_lblk = le32_to_cpu(abut_ex->ee_block);
3488 next_len = ext4_ext_get_actual_len(abut_ex);
3489 next_pblk = ext4_ext_pblock(abut_ex);
3490 ee_pblk = ext4_ext_pblock(ex);
3491
3492 /*
3493 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3494 * upon those conditions:
3495 * - C1: abut_ex is initialized,
3496 * - C2: abut_ex is logically abutting ex,
3497 * - C3: abut_ex is physically abutting ex,
3498 * - C4: abut_ex can receive the additional blocks without
3499 * overflowing the (initialized) length limit.
3500 */
3501 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3502 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3503 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3504 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3505 err = ext4_ext_get_access(handle, inode, path + depth);
3506 if (err)
3507 goto out;
3508
3509 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3510 map, ex, abut_ex);
3511
3512 /* Shift the start of abut_ex by 'map_len' blocks */
3513 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3514 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3515 ex->ee_len = cpu_to_le16(ee_len - map_len);
3516 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3517
3518 /* Extend abut_ex by 'map_len' blocks */
3519 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3520
3521 /* Result: number of initialized blocks past m_lblk */
3522 allocated = map_len;
3523 }
3524 }
3525 if (allocated) {
3526 /* Mark the block containing both extents as dirty */
3527 ext4_ext_dirty(handle, inode, path + depth);
3528
3529 /* Update path to point to the right extent */
3530 path[depth].p_ext = abut_ex;
3531 goto out;
3532 } else
3533 allocated = ee_len - (map->m_lblk - ee_block);
3534
3535 WARN_ON(map->m_lblk < ee_block);
3536 /*
3537 * It is safe to convert extent to initialized via explicit
3538 * zeroout only if extent is fully inside i_size or new_size.
3539 */
3540 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3541
3542 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3543 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3544 (inode->i_sb->s_blocksize_bits - 10);
3545
3546 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3547 if (max_zeroout && (ee_len <= max_zeroout)) {
3548 err = ext4_ext_zeroout(inode, ex);
3549 if (err)
3550 goto out;
3551 zero_ex.ee_block = ex->ee_block;
3552 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3553 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3554
3555 err = ext4_ext_get_access(handle, inode, path + depth);
3556 if (err)
3557 goto out;
3558 ext4_ext_mark_initialized(ex);
3559 ext4_ext_try_to_merge(handle, inode, path, ex);
3560 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3561 goto out;
3562 }
3563
3564 /*
3565 * four cases:
3566 * 1. split the extent into three extents.
3567 * 2. split the extent into two extents, zeroout the first half.
3568 * 3. split the extent into two extents, zeroout the second half.
3569 * 4. split the extent into two extents with out zeroout.
3570 */
3571 split_map.m_lblk = map->m_lblk;
3572 split_map.m_len = map->m_len;
3573
3574 if (max_zeroout && (allocated > map->m_len)) {
3575 if (allocated <= max_zeroout) {
3576 /* case 3 */
3577 zero_ex.ee_block =
3578 cpu_to_le32(map->m_lblk);
3579 zero_ex.ee_len = cpu_to_le16(allocated);
3580 ext4_ext_store_pblock(&zero_ex,
3581 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3582 err = ext4_ext_zeroout(inode, &zero_ex);
3583 if (err)
3584 goto out;
3585 split_map.m_lblk = map->m_lblk;
3586 split_map.m_len = allocated;
3587 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3588 /* case 2 */
3589 if (map->m_lblk != ee_block) {
3590 zero_ex.ee_block = ex->ee_block;
3591 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3592 ee_block);
3593 ext4_ext_store_pblock(&zero_ex,
3594 ext4_ext_pblock(ex));
3595 err = ext4_ext_zeroout(inode, &zero_ex);
3596 if (err)
3597 goto out;
3598 }
3599
3600 split_map.m_lblk = ee_block;
3601 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3602 allocated = map->m_len;
3603 }
3604 }
3605
3606 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3607 flags);
3608 if (err > 0)
3609 err = 0;
3610 out:
3611 /* If we have gotten a failure, don't zero out status tree */
3612 if (!err)
3613 err = ext4_zeroout_es(inode, &zero_ex);
3614 return err ? err : allocated;
3615 }
3616
3617 /*
3618 * This function is called by ext4_ext_map_blocks() from
3619 * ext4_get_blocks_dio_write() when DIO to write
3620 * to an unwritten extent.
3621 *
3622 * Writing to an unwritten extent may result in splitting the unwritten
3623 * extent into multiple initialized/unwritten extents (up to three)
3624 * There are three possibilities:
3625 * a> There is no split required: Entire extent should be unwritten
3626 * b> Splits in two extents: Write is happening at either end of the extent
3627 * c> Splits in three extents: Somone is writing in middle of the extent
3628 *
3629 * This works the same way in the case of initialized -> unwritten conversion.
3630 *
3631 * One of more index blocks maybe needed if the extent tree grow after
3632 * the unwritten extent split. To prevent ENOSPC occur at the IO
3633 * complete, we need to split the unwritten extent before DIO submit
3634 * the IO. The unwritten extent called at this time will be split
3635 * into three unwritten extent(at most). After IO complete, the part
3636 * being filled will be convert to initialized by the end_io callback function
3637 * via ext4_convert_unwritten_extents().
3638 *
3639 * Returns the size of unwritten extent to be written on success.
3640 */
3641 static int ext4_split_convert_extents(handle_t *handle,
3642 struct inode *inode,
3643 struct ext4_map_blocks *map,
3644 struct ext4_ext_path **ppath,
3645 int flags)
3646 {
3647 struct ext4_ext_path *path = *ppath;
3648 ext4_lblk_t eof_block;
3649 ext4_lblk_t ee_block;
3650 struct ext4_extent *ex;
3651 unsigned int ee_len;
3652 int split_flag = 0, depth;
3653
3654 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3655 __func__, inode->i_ino,
3656 (unsigned long long)map->m_lblk, map->m_len);
3657
3658 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3659 inode->i_sb->s_blocksize_bits;
3660 if (eof_block < map->m_lblk + map->m_len)
3661 eof_block = map->m_lblk + map->m_len;
3662 /*
3663 * It is safe to convert extent to initialized via explicit
3664 * zeroout only if extent is fully insde i_size or new_size.
3665 */
3666 depth = ext_depth(inode);
3667 ex = path[depth].p_ext;
3668 ee_block = le32_to_cpu(ex->ee_block);
3669 ee_len = ext4_ext_get_actual_len(ex);
3670
3671 /* Convert to unwritten */
3672 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3673 split_flag |= EXT4_EXT_DATA_VALID1;
3674 /* Convert to initialized */
3675 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3676 split_flag |= ee_block + ee_len <= eof_block ?
3677 EXT4_EXT_MAY_ZEROOUT : 0;
3678 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3679 }
3680 flags |= EXT4_GET_BLOCKS_PRE_IO;
3681 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3682 }
3683
3684 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3685 struct inode *inode,
3686 struct ext4_map_blocks *map,
3687 struct ext4_ext_path **ppath)
3688 {
3689 struct ext4_ext_path *path = *ppath;
3690 struct ext4_extent *ex;
3691 ext4_lblk_t ee_block;
3692 unsigned int ee_len;
3693 int depth;
3694 int err = 0;
3695
3696 depth = ext_depth(inode);
3697 ex = path[depth].p_ext;
3698 ee_block = le32_to_cpu(ex->ee_block);
3699 ee_len = ext4_ext_get_actual_len(ex);
3700
3701 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3702 "block %llu, max_blocks %u\n", inode->i_ino,
3703 (unsigned long long)ee_block, ee_len);
3704
3705 /* If extent is larger than requested it is a clear sign that we still
3706 * have some extent state machine issues left. So extent_split is still
3707 * required.
3708 * TODO: Once all related issues will be fixed this situation should be
3709 * illegal.
3710 */
3711 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3712 #ifdef EXT4_DEBUG
3713 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3714 " len %u; IO logical block %llu, len %u\n",
3715 inode->i_ino, (unsigned long long)ee_block, ee_len,
3716 (unsigned long long)map->m_lblk, map->m_len);
3717 #endif
3718 err = ext4_split_convert_extents(handle, inode, map, ppath,
3719 EXT4_GET_BLOCKS_CONVERT);
3720 if (err < 0)
3721 return err;
3722 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3723 if (IS_ERR(path))
3724 return PTR_ERR(path);
3725 depth = ext_depth(inode);
3726 ex = path[depth].p_ext;
3727 }
3728
3729 err = ext4_ext_get_access(handle, inode, path + depth);
3730 if (err)
3731 goto out;
3732 /* first mark the extent as initialized */
3733 ext4_ext_mark_initialized(ex);
3734
3735 /* note: ext4_ext_correct_indexes() isn't needed here because
3736 * borders are not changed
3737 */
3738 ext4_ext_try_to_merge(handle, inode, path, ex);
3739
3740 /* Mark modified extent as dirty */
3741 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3742 out:
3743 ext4_ext_show_leaf(inode, path);
3744 return err;
3745 }
3746
3747 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3748 sector_t block, int count)
3749 {
3750 int i;
3751 for (i = 0; i < count; i++)
3752 unmap_underlying_metadata(bdev, block + i);
3753 }
3754
3755 /*
3756 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3757 */
3758 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3759 ext4_lblk_t lblk,
3760 struct ext4_ext_path *path,
3761 unsigned int len)
3762 {
3763 int i, depth;
3764 struct ext4_extent_header *eh;
3765 struct ext4_extent *last_ex;
3766
3767 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3768 return 0;
3769
3770 depth = ext_depth(inode);
3771 eh = path[depth].p_hdr;
3772
3773 /*
3774 * We're going to remove EOFBLOCKS_FL entirely in future so we
3775 * do not care for this case anymore. Simply remove the flag
3776 * if there are no extents.
3777 */
3778 if (unlikely(!eh->eh_entries))
3779 goto out;
3780 last_ex = EXT_LAST_EXTENT(eh);
3781 /*
3782 * We should clear the EOFBLOCKS_FL flag if we are writing the
3783 * last block in the last extent in the file. We test this by
3784 * first checking to see if the caller to
3785 * ext4_ext_get_blocks() was interested in the last block (or
3786 * a block beyond the last block) in the current extent. If
3787 * this turns out to be false, we can bail out from this
3788 * function immediately.
3789 */
3790 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3791 ext4_ext_get_actual_len(last_ex))
3792 return 0;
3793 /*
3794 * If the caller does appear to be planning to write at or
3795 * beyond the end of the current extent, we then test to see
3796 * if the current extent is the last extent in the file, by
3797 * checking to make sure it was reached via the rightmost node
3798 * at each level of the tree.
3799 */
3800 for (i = depth-1; i >= 0; i--)
3801 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3802 return 0;
3803 out:
3804 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3805 return ext4_mark_inode_dirty(handle, inode);
3806 }
3807
3808 /**
3809 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3810 *
3811 * Return 1 if there is a delalloc block in the range, otherwise 0.
3812 */
3813 int ext4_find_delalloc_range(struct inode *inode,
3814 ext4_lblk_t lblk_start,
3815 ext4_lblk_t lblk_end)
3816 {
3817 struct extent_status es;
3818
3819 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3820 if (es.es_len == 0)
3821 return 0; /* there is no delay extent in this tree */
3822 else if (es.es_lblk <= lblk_start &&
3823 lblk_start < es.es_lblk + es.es_len)
3824 return 1;
3825 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3826 return 1;
3827 else
3828 return 0;
3829 }
3830
3831 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3832 {
3833 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3834 ext4_lblk_t lblk_start, lblk_end;
3835 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3836 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3837
3838 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3839 }
3840
3841 /**
3842 * Determines how many complete clusters (out of those specified by the 'map')
3843 * are under delalloc and were reserved quota for.
3844 * This function is called when we are writing out the blocks that were
3845 * originally written with their allocation delayed, but then the space was
3846 * allocated using fallocate() before the delayed allocation could be resolved.
3847 * The cases to look for are:
3848 * ('=' indicated delayed allocated blocks
3849 * '-' indicates non-delayed allocated blocks)
3850 * (a) partial clusters towards beginning and/or end outside of allocated range
3851 * are not delalloc'ed.
3852 * Ex:
3853 * |----c---=|====c====|====c====|===-c----|
3854 * |++++++ allocated ++++++|
3855 * ==> 4 complete clusters in above example
3856 *
3857 * (b) partial cluster (outside of allocated range) towards either end is
3858 * marked for delayed allocation. In this case, we will exclude that
3859 * cluster.
3860 * Ex:
3861 * |----====c========|========c========|
3862 * |++++++ allocated ++++++|
3863 * ==> 1 complete clusters in above example
3864 *
3865 * Ex:
3866 * |================c================|
3867 * |++++++ allocated ++++++|
3868 * ==> 0 complete clusters in above example
3869 *
3870 * The ext4_da_update_reserve_space will be called only if we
3871 * determine here that there were some "entire" clusters that span
3872 * this 'allocated' range.
3873 * In the non-bigalloc case, this function will just end up returning num_blks
3874 * without ever calling ext4_find_delalloc_range.
3875 */
3876 static unsigned int
3877 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3878 unsigned int num_blks)
3879 {
3880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3881 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3882 ext4_lblk_t lblk_from, lblk_to, c_offset;
3883 unsigned int allocated_clusters = 0;
3884
3885 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3886 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3887
3888 /* max possible clusters for this allocation */
3889 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3890
3891 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3892
3893 /* Check towards left side */
3894 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3895 if (c_offset) {
3896 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3897 lblk_to = lblk_from + c_offset - 1;
3898
3899 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3900 allocated_clusters--;
3901 }
3902
3903 /* Now check towards right. */
3904 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3905 if (allocated_clusters && c_offset) {
3906 lblk_from = lblk_start + num_blks;
3907 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3908
3909 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3910 allocated_clusters--;
3911 }
3912
3913 return allocated_clusters;
3914 }
3915
3916 static int
3917 convert_initialized_extent(handle_t *handle, struct inode *inode,
3918 struct ext4_map_blocks *map,
3919 struct ext4_ext_path **ppath, int flags,
3920 unsigned int allocated, ext4_fsblk_t newblock)
3921 {
3922 struct ext4_ext_path *path = *ppath;
3923 struct ext4_extent *ex;
3924 ext4_lblk_t ee_block;
3925 unsigned int ee_len;
3926 int depth;
3927 int err = 0;
3928
3929 /*
3930 * Make sure that the extent is no bigger than we support with
3931 * unwritten extent
3932 */
3933 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3934 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3935
3936 depth = ext_depth(inode);
3937 ex = path[depth].p_ext;
3938 ee_block = le32_to_cpu(ex->ee_block);
3939 ee_len = ext4_ext_get_actual_len(ex);
3940
3941 ext_debug("%s: inode %lu, logical"
3942 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3943 (unsigned long long)ee_block, ee_len);
3944
3945 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3946 err = ext4_split_convert_extents(handle, inode, map, ppath,
3947 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3948 if (err < 0)
3949 return err;
3950 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3951 if (IS_ERR(path))
3952 return PTR_ERR(path);
3953 depth = ext_depth(inode);
3954 ex = path[depth].p_ext;
3955 if (!ex) {
3956 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3957 (unsigned long) map->m_lblk);
3958 return -EIO;
3959 }
3960 }
3961
3962 err = ext4_ext_get_access(handle, inode, path + depth);
3963 if (err)
3964 return err;
3965 /* first mark the extent as unwritten */
3966 ext4_ext_mark_unwritten(ex);
3967
3968 /* note: ext4_ext_correct_indexes() isn't needed here because
3969 * borders are not changed
3970 */
3971 ext4_ext_try_to_merge(handle, inode, path, ex);
3972
3973 /* Mark modified extent as dirty */
3974 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3975 if (err)
3976 return err;
3977 ext4_ext_show_leaf(inode, path);
3978
3979 ext4_update_inode_fsync_trans(handle, inode, 1);
3980 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3981 if (err)
3982 return err;
3983 map->m_flags |= EXT4_MAP_UNWRITTEN;
3984 if (allocated > map->m_len)
3985 allocated = map->m_len;
3986 map->m_len = allocated;
3987 return allocated;
3988 }
3989
3990 static int
3991 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3992 struct ext4_map_blocks *map,
3993 struct ext4_ext_path **ppath, int flags,
3994 unsigned int allocated, ext4_fsblk_t newblock)
3995 {
3996 struct ext4_ext_path *path = *ppath;
3997 int ret = 0;
3998 int err = 0;
3999 ext4_io_end_t *io = ext4_inode_aio(inode);
4000
4001 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4002 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4003 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4004 flags, allocated);
4005 ext4_ext_show_leaf(inode, path);
4006
4007 /*
4008 * When writing into unwritten space, we should not fail to
4009 * allocate metadata blocks for the new extent block if needed.
4010 */
4011 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4012
4013 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4014 allocated, newblock);
4015
4016 /* get_block() before submit the IO, split the extent */
4017 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4018 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4019 flags | EXT4_GET_BLOCKS_CONVERT);
4020 if (ret <= 0)
4021 goto out;
4022 /*
4023 * Flag the inode(non aio case) or end_io struct (aio case)
4024 * that this IO needs to conversion to written when IO is
4025 * completed
4026 */
4027 if (io)
4028 ext4_set_io_unwritten_flag(inode, io);
4029 else
4030 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4031 map->m_flags |= EXT4_MAP_UNWRITTEN;
4032 goto out;
4033 }
4034 /* IO end_io complete, convert the filled extent to written */
4035 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4036 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4037 ppath);
4038 if (ret >= 0) {
4039 ext4_update_inode_fsync_trans(handle, inode, 1);
4040 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4041 path, map->m_len);
4042 } else
4043 err = ret;
4044 map->m_flags |= EXT4_MAP_MAPPED;
4045 map->m_pblk = newblock;
4046 if (allocated > map->m_len)
4047 allocated = map->m_len;
4048 map->m_len = allocated;
4049 goto out2;
4050 }
4051 /* buffered IO case */
4052 /*
4053 * repeat fallocate creation request
4054 * we already have an unwritten extent
4055 */
4056 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4057 map->m_flags |= EXT4_MAP_UNWRITTEN;
4058 goto map_out;
4059 }
4060
4061 /* buffered READ or buffered write_begin() lookup */
4062 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4063 /*
4064 * We have blocks reserved already. We
4065 * return allocated blocks so that delalloc
4066 * won't do block reservation for us. But
4067 * the buffer head will be unmapped so that
4068 * a read from the block returns 0s.
4069 */
4070 map->m_flags |= EXT4_MAP_UNWRITTEN;
4071 goto out1;
4072 }
4073
4074 /* buffered write, writepage time, convert*/
4075 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4076 if (ret >= 0)
4077 ext4_update_inode_fsync_trans(handle, inode, 1);
4078 out:
4079 if (ret <= 0) {
4080 err = ret;
4081 goto out2;
4082 } else
4083 allocated = ret;
4084 map->m_flags |= EXT4_MAP_NEW;
4085 /*
4086 * if we allocated more blocks than requested
4087 * we need to make sure we unmap the extra block
4088 * allocated. The actual needed block will get
4089 * unmapped later when we find the buffer_head marked
4090 * new.
4091 */
4092 if (allocated > map->m_len) {
4093 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4094 newblock + map->m_len,
4095 allocated - map->m_len);
4096 allocated = map->m_len;
4097 }
4098 map->m_len = allocated;
4099
4100 /*
4101 * If we have done fallocate with the offset that is already
4102 * delayed allocated, we would have block reservation
4103 * and quota reservation done in the delayed write path.
4104 * But fallocate would have already updated quota and block
4105 * count for this offset. So cancel these reservation
4106 */
4107 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4108 unsigned int reserved_clusters;
4109 reserved_clusters = get_reserved_cluster_alloc(inode,
4110 map->m_lblk, map->m_len);
4111 if (reserved_clusters)
4112 ext4_da_update_reserve_space(inode,
4113 reserved_clusters,
4114 0);
4115 }
4116
4117 map_out:
4118 map->m_flags |= EXT4_MAP_MAPPED;
4119 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4120 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4121 map->m_len);
4122 if (err < 0)
4123 goto out2;
4124 }
4125 out1:
4126 if (allocated > map->m_len)
4127 allocated = map->m_len;
4128 ext4_ext_show_leaf(inode, path);
4129 map->m_pblk = newblock;
4130 map->m_len = allocated;
4131 out2:
4132 return err ? err : allocated;
4133 }
4134
4135 /*
4136 * get_implied_cluster_alloc - check to see if the requested
4137 * allocation (in the map structure) overlaps with a cluster already
4138 * allocated in an extent.
4139 * @sb The filesystem superblock structure
4140 * @map The requested lblk->pblk mapping
4141 * @ex The extent structure which might contain an implied
4142 * cluster allocation
4143 *
4144 * This function is called by ext4_ext_map_blocks() after we failed to
4145 * find blocks that were already in the inode's extent tree. Hence,
4146 * we know that the beginning of the requested region cannot overlap
4147 * the extent from the inode's extent tree. There are three cases we
4148 * want to catch. The first is this case:
4149 *
4150 * |--- cluster # N--|
4151 * |--- extent ---| |---- requested region ---|
4152 * |==========|
4153 *
4154 * The second case that we need to test for is this one:
4155 *
4156 * |--------- cluster # N ----------------|
4157 * |--- requested region --| |------- extent ----|
4158 * |=======================|
4159 *
4160 * The third case is when the requested region lies between two extents
4161 * within the same cluster:
4162 * |------------- cluster # N-------------|
4163 * |----- ex -----| |---- ex_right ----|
4164 * |------ requested region ------|
4165 * |================|
4166 *
4167 * In each of the above cases, we need to set the map->m_pblk and
4168 * map->m_len so it corresponds to the return the extent labelled as
4169 * "|====|" from cluster #N, since it is already in use for data in
4170 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4171 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4172 * as a new "allocated" block region. Otherwise, we will return 0 and
4173 * ext4_ext_map_blocks() will then allocate one or more new clusters
4174 * by calling ext4_mb_new_blocks().
4175 */
4176 static int get_implied_cluster_alloc(struct super_block *sb,
4177 struct ext4_map_blocks *map,
4178 struct ext4_extent *ex,
4179 struct ext4_ext_path *path)
4180 {
4181 struct ext4_sb_info *sbi = EXT4_SB(sb);
4182 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4183 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4184 ext4_lblk_t rr_cluster_start;
4185 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4186 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4187 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4188
4189 /* The extent passed in that we are trying to match */
4190 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4191 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4192
4193 /* The requested region passed into ext4_map_blocks() */
4194 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4195
4196 if ((rr_cluster_start == ex_cluster_end) ||
4197 (rr_cluster_start == ex_cluster_start)) {
4198 if (rr_cluster_start == ex_cluster_end)
4199 ee_start += ee_len - 1;
4200 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4201 map->m_len = min(map->m_len,
4202 (unsigned) sbi->s_cluster_ratio - c_offset);
4203 /*
4204 * Check for and handle this case:
4205 *
4206 * |--------- cluster # N-------------|
4207 * |------- extent ----|
4208 * |--- requested region ---|
4209 * |===========|
4210 */
4211
4212 if (map->m_lblk < ee_block)
4213 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4214
4215 /*
4216 * Check for the case where there is already another allocated
4217 * block to the right of 'ex' but before the end of the cluster.
4218 *
4219 * |------------- cluster # N-------------|
4220 * |----- ex -----| |---- ex_right ----|
4221 * |------ requested region ------|
4222 * |================|
4223 */
4224 if (map->m_lblk > ee_block) {
4225 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4226 map->m_len = min(map->m_len, next - map->m_lblk);
4227 }
4228
4229 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4230 return 1;
4231 }
4232
4233 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4234 return 0;
4235 }
4236
4237
4238 /*
4239 * Block allocation/map/preallocation routine for extents based files
4240 *
4241 *
4242 * Need to be called with
4243 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4244 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4245 *
4246 * return > 0, number of of blocks already mapped/allocated
4247 * if create == 0 and these are pre-allocated blocks
4248 * buffer head is unmapped
4249 * otherwise blocks are mapped
4250 *
4251 * return = 0, if plain look up failed (blocks have not been allocated)
4252 * buffer head is unmapped
4253 *
4254 * return < 0, error case.
4255 */
4256 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4257 struct ext4_map_blocks *map, int flags)
4258 {
4259 struct ext4_ext_path *path = NULL;
4260 struct ext4_extent newex, *ex, *ex2;
4261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4262 ext4_fsblk_t newblock = 0;
4263 int free_on_err = 0, err = 0, depth, ret;
4264 unsigned int allocated = 0, offset = 0;
4265 unsigned int allocated_clusters = 0;
4266 struct ext4_allocation_request ar;
4267 ext4_io_end_t *io = ext4_inode_aio(inode);
4268 ext4_lblk_t cluster_offset;
4269 int set_unwritten = 0;
4270
4271 ext_debug("blocks %u/%u requested for inode %lu\n",
4272 map->m_lblk, map->m_len, inode->i_ino);
4273 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4274
4275 /* find extent for this block */
4276 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4277 if (IS_ERR(path)) {
4278 err = PTR_ERR(path);
4279 path = NULL;
4280 goto out2;
4281 }
4282
4283 depth = ext_depth(inode);
4284
4285 /*
4286 * consistent leaf must not be empty;
4287 * this situation is possible, though, _during_ tree modification;
4288 * this is why assert can't be put in ext4_find_extent()
4289 */
4290 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4291 EXT4_ERROR_INODE(inode, "bad extent address "
4292 "lblock: %lu, depth: %d pblock %lld",
4293 (unsigned long) map->m_lblk, depth,
4294 path[depth].p_block);
4295 err = -EIO;
4296 goto out2;
4297 }
4298
4299 ex = path[depth].p_ext;
4300 if (ex) {
4301 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4302 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4303 unsigned short ee_len;
4304
4305
4306 /*
4307 * unwritten extents are treated as holes, except that
4308 * we split out initialized portions during a write.
4309 */
4310 ee_len = ext4_ext_get_actual_len(ex);
4311
4312 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4313
4314 /* if found extent covers block, simply return it */
4315 if (in_range(map->m_lblk, ee_block, ee_len)) {
4316 newblock = map->m_lblk - ee_block + ee_start;
4317 /* number of remaining blocks in the extent */
4318 allocated = ee_len - (map->m_lblk - ee_block);
4319 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4320 ee_block, ee_len, newblock);
4321
4322 /*
4323 * If the extent is initialized check whether the
4324 * caller wants to convert it to unwritten.
4325 */
4326 if ((!ext4_ext_is_unwritten(ex)) &&
4327 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4328 allocated = convert_initialized_extent(
4329 handle, inode, map, &path,
4330 flags, allocated, newblock);
4331 goto out2;
4332 } else if (!ext4_ext_is_unwritten(ex))
4333 goto out;
4334
4335 ret = ext4_ext_handle_unwritten_extents(
4336 handle, inode, map, &path, flags,
4337 allocated, newblock);
4338 if (ret < 0)
4339 err = ret;
4340 else
4341 allocated = ret;
4342 goto out2;
4343 }
4344 }
4345
4346 if ((sbi->s_cluster_ratio > 1) &&
4347 ext4_find_delalloc_cluster(inode, map->m_lblk))
4348 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4349
4350 /*
4351 * requested block isn't allocated yet;
4352 * we couldn't try to create block if create flag is zero
4353 */
4354 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4355 /*
4356 * put just found gap into cache to speed up
4357 * subsequent requests
4358 */
4359 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4360 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4361 goto out2;
4362 }
4363
4364 /*
4365 * Okay, we need to do block allocation.
4366 */
4367 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4368 newex.ee_block = cpu_to_le32(map->m_lblk);
4369 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4370
4371 /*
4372 * If we are doing bigalloc, check to see if the extent returned
4373 * by ext4_find_extent() implies a cluster we can use.
4374 */
4375 if (cluster_offset && ex &&
4376 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4377 ar.len = allocated = map->m_len;
4378 newblock = map->m_pblk;
4379 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4380 goto got_allocated_blocks;
4381 }
4382
4383 /* find neighbour allocated blocks */
4384 ar.lleft = map->m_lblk;
4385 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4386 if (err)
4387 goto out2;
4388 ar.lright = map->m_lblk;
4389 ex2 = NULL;
4390 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4391 if (err)
4392 goto out2;
4393
4394 /* Check if the extent after searching to the right implies a
4395 * cluster we can use. */
4396 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4397 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4398 ar.len = allocated = map->m_len;
4399 newblock = map->m_pblk;
4400 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4401 goto got_allocated_blocks;
4402 }
4403
4404 /*
4405 * See if request is beyond maximum number of blocks we can have in
4406 * a single extent. For an initialized extent this limit is
4407 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4408 * EXT_UNWRITTEN_MAX_LEN.
4409 */
4410 if (map->m_len > EXT_INIT_MAX_LEN &&
4411 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4412 map->m_len = EXT_INIT_MAX_LEN;
4413 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4414 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4415 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4416
4417 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4418 newex.ee_len = cpu_to_le16(map->m_len);
4419 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4420 if (err)
4421 allocated = ext4_ext_get_actual_len(&newex);
4422 else
4423 allocated = map->m_len;
4424
4425 /* allocate new block */
4426 ar.inode = inode;
4427 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4428 ar.logical = map->m_lblk;
4429 /*
4430 * We calculate the offset from the beginning of the cluster
4431 * for the logical block number, since when we allocate a
4432 * physical cluster, the physical block should start at the
4433 * same offset from the beginning of the cluster. This is
4434 * needed so that future calls to get_implied_cluster_alloc()
4435 * work correctly.
4436 */
4437 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4438 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4439 ar.goal -= offset;
4440 ar.logical -= offset;
4441 if (S_ISREG(inode->i_mode))
4442 ar.flags = EXT4_MB_HINT_DATA;
4443 else
4444 /* disable in-core preallocation for non-regular files */
4445 ar.flags = 0;
4446 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4447 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4448 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4449 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4450 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4451 if (!newblock)
4452 goto out2;
4453 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4454 ar.goal, newblock, allocated);
4455 free_on_err = 1;
4456 allocated_clusters = ar.len;
4457 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4458 if (ar.len > allocated)
4459 ar.len = allocated;
4460
4461 got_allocated_blocks:
4462 /* try to insert new extent into found leaf and return */
4463 ext4_ext_store_pblock(&newex, newblock + offset);
4464 newex.ee_len = cpu_to_le16(ar.len);
4465 /* Mark unwritten */
4466 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4467 ext4_ext_mark_unwritten(&newex);
4468 map->m_flags |= EXT4_MAP_UNWRITTEN;
4469 /*
4470 * io_end structure was created for every IO write to an
4471 * unwritten extent. To avoid unnecessary conversion,
4472 * here we flag the IO that really needs the conversion.
4473 * For non asycn direct IO case, flag the inode state
4474 * that we need to perform conversion when IO is done.
4475 */
4476 if (flags & EXT4_GET_BLOCKS_PRE_IO)
4477 set_unwritten = 1;
4478 }
4479
4480 err = 0;
4481 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4482 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4483 path, ar.len);
4484 if (!err)
4485 err = ext4_ext_insert_extent(handle, inode, &path,
4486 &newex, flags);
4487
4488 if (!err && set_unwritten) {
4489 if (io)
4490 ext4_set_io_unwritten_flag(inode, io);
4491 else
4492 ext4_set_inode_state(inode,
4493 EXT4_STATE_DIO_UNWRITTEN);
4494 }
4495
4496 if (err && free_on_err) {
4497 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4498 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4499 /* free data blocks we just allocated */
4500 /* not a good idea to call discard here directly,
4501 * but otherwise we'd need to call it every free() */
4502 ext4_discard_preallocations(inode);
4503 ext4_free_blocks(handle, inode, NULL, newblock,
4504 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4505 goto out2;
4506 }
4507
4508 /* previous routine could use block we allocated */
4509 newblock = ext4_ext_pblock(&newex);
4510 allocated = ext4_ext_get_actual_len(&newex);
4511 if (allocated > map->m_len)
4512 allocated = map->m_len;
4513 map->m_flags |= EXT4_MAP_NEW;
4514
4515 /*
4516 * Update reserved blocks/metadata blocks after successful
4517 * block allocation which had been deferred till now.
4518 */
4519 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4520 unsigned int reserved_clusters;
4521 /*
4522 * Check how many clusters we had reserved this allocated range
4523 */
4524 reserved_clusters = get_reserved_cluster_alloc(inode,
4525 map->m_lblk, allocated);
4526 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4527 if (reserved_clusters) {
4528 /*
4529 * We have clusters reserved for this range.
4530 * But since we are not doing actual allocation
4531 * and are simply using blocks from previously
4532 * allocated cluster, we should release the
4533 * reservation and not claim quota.
4534 */
4535 ext4_da_update_reserve_space(inode,
4536 reserved_clusters, 0);
4537 }
4538 } else {
4539 BUG_ON(allocated_clusters < reserved_clusters);
4540 if (reserved_clusters < allocated_clusters) {
4541 struct ext4_inode_info *ei = EXT4_I(inode);
4542 int reservation = allocated_clusters -
4543 reserved_clusters;
4544 /*
4545 * It seems we claimed few clusters outside of
4546 * the range of this allocation. We should give
4547 * it back to the reservation pool. This can
4548 * happen in the following case:
4549 *
4550 * * Suppose s_cluster_ratio is 4 (i.e., each
4551 * cluster has 4 blocks. Thus, the clusters
4552 * are [0-3],[4-7],[8-11]...
4553 * * First comes delayed allocation write for
4554 * logical blocks 10 & 11. Since there were no
4555 * previous delayed allocated blocks in the
4556 * range [8-11], we would reserve 1 cluster
4557 * for this write.
4558 * * Next comes write for logical blocks 3 to 8.
4559 * In this case, we will reserve 2 clusters
4560 * (for [0-3] and [4-7]; and not for [8-11] as
4561 * that range has a delayed allocated blocks.
4562 * Thus total reserved clusters now becomes 3.
4563 * * Now, during the delayed allocation writeout
4564 * time, we will first write blocks [3-8] and
4565 * allocate 3 clusters for writing these
4566 * blocks. Also, we would claim all these
4567 * three clusters above.
4568 * * Now when we come here to writeout the
4569 * blocks [10-11], we would expect to claim
4570 * the reservation of 1 cluster we had made
4571 * (and we would claim it since there are no
4572 * more delayed allocated blocks in the range
4573 * [8-11]. But our reserved cluster count had
4574 * already gone to 0.
4575 *
4576 * Thus, at the step 4 above when we determine
4577 * that there are still some unwritten delayed
4578 * allocated blocks outside of our current
4579 * block range, we should increment the
4580 * reserved clusters count so that when the
4581 * remaining blocks finally gets written, we
4582 * could claim them.
4583 */
4584 dquot_reserve_block(inode,
4585 EXT4_C2B(sbi, reservation));
4586 spin_lock(&ei->i_block_reservation_lock);
4587 ei->i_reserved_data_blocks += reservation;
4588 spin_unlock(&ei->i_block_reservation_lock);
4589 }
4590 /*
4591 * We will claim quota for all newly allocated blocks.
4592 * We're updating the reserved space *after* the
4593 * correction above so we do not accidentally free
4594 * all the metadata reservation because we might
4595 * actually need it later on.
4596 */
4597 ext4_da_update_reserve_space(inode, allocated_clusters,
4598 1);
4599 }
4600 }
4601
4602 /*
4603 * Cache the extent and update transaction to commit on fdatasync only
4604 * when it is _not_ an unwritten extent.
4605 */
4606 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4607 ext4_update_inode_fsync_trans(handle, inode, 1);
4608 else
4609 ext4_update_inode_fsync_trans(handle, inode, 0);
4610 out:
4611 if (allocated > map->m_len)
4612 allocated = map->m_len;
4613 ext4_ext_show_leaf(inode, path);
4614 map->m_flags |= EXT4_MAP_MAPPED;
4615 map->m_pblk = newblock;
4616 map->m_len = allocated;
4617 out2:
4618 ext4_ext_drop_refs(path);
4619 kfree(path);
4620
4621 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4622 err ? err : allocated);
4623 ext4_es_lru_add(inode);
4624 return err ? err : allocated;
4625 }
4626
4627 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4628 {
4629 struct super_block *sb = inode->i_sb;
4630 ext4_lblk_t last_block;
4631 int err = 0;
4632
4633 /*
4634 * TODO: optimization is possible here.
4635 * Probably we need not scan at all,
4636 * because page truncation is enough.
4637 */
4638
4639 /* we have to know where to truncate from in crash case */
4640 EXT4_I(inode)->i_disksize = inode->i_size;
4641 ext4_mark_inode_dirty(handle, inode);
4642
4643 last_block = (inode->i_size + sb->s_blocksize - 1)
4644 >> EXT4_BLOCK_SIZE_BITS(sb);
4645 retry:
4646 err = ext4_es_remove_extent(inode, last_block,
4647 EXT_MAX_BLOCKS - last_block);
4648 if (err == -ENOMEM) {
4649 cond_resched();
4650 congestion_wait(BLK_RW_ASYNC, HZ/50);
4651 goto retry;
4652 }
4653 if (err) {
4654 ext4_std_error(inode->i_sb, err);
4655 return;
4656 }
4657 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4658 ext4_std_error(inode->i_sb, err);
4659 }
4660
4661 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4662 ext4_lblk_t len, loff_t new_size,
4663 int flags, int mode)
4664 {
4665 struct inode *inode = file_inode(file);
4666 handle_t *handle;
4667 int ret = 0;
4668 int ret2 = 0;
4669 int retries = 0;
4670 struct ext4_map_blocks map;
4671 unsigned int credits;
4672 loff_t epos;
4673
4674 map.m_lblk = offset;
4675 map.m_len = len;
4676 /*
4677 * Don't normalize the request if it can fit in one extent so
4678 * that it doesn't get unnecessarily split into multiple
4679 * extents.
4680 */
4681 if (len <= EXT_UNWRITTEN_MAX_LEN)
4682 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4683
4684 /*
4685 * credits to insert 1 extent into extent tree
4686 */
4687 credits = ext4_chunk_trans_blocks(inode, len);
4688
4689 retry:
4690 while (ret >= 0 && len) {
4691 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4692 credits);
4693 if (IS_ERR(handle)) {
4694 ret = PTR_ERR(handle);
4695 break;
4696 }
4697 ret = ext4_map_blocks(handle, inode, &map, flags);
4698 if (ret <= 0) {
4699 ext4_debug("inode #%lu: block %u: len %u: "
4700 "ext4_ext_map_blocks returned %d",
4701 inode->i_ino, map.m_lblk,
4702 map.m_len, ret);
4703 ext4_mark_inode_dirty(handle, inode);
4704 ret2 = ext4_journal_stop(handle);
4705 break;
4706 }
4707 map.m_lblk += ret;
4708 map.m_len = len = len - ret;
4709 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4710 inode->i_ctime = ext4_current_time(inode);
4711 if (new_size) {
4712 if (epos > new_size)
4713 epos = new_size;
4714 if (ext4_update_inode_size(inode, epos) & 0x1)
4715 inode->i_mtime = inode->i_ctime;
4716 } else {
4717 if (epos > inode->i_size)
4718 ext4_set_inode_flag(inode,
4719 EXT4_INODE_EOFBLOCKS);
4720 }
4721 ext4_mark_inode_dirty(handle, inode);
4722 ret2 = ext4_journal_stop(handle);
4723 if (ret2)
4724 break;
4725 }
4726 if (ret == -ENOSPC &&
4727 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4728 ret = 0;
4729 goto retry;
4730 }
4731
4732 return ret > 0 ? ret2 : ret;
4733 }
4734
4735 static long ext4_zero_range(struct file *file, loff_t offset,
4736 loff_t len, int mode)
4737 {
4738 struct inode *inode = file_inode(file);
4739 handle_t *handle = NULL;
4740 unsigned int max_blocks;
4741 loff_t new_size = 0;
4742 int ret = 0;
4743 int flags;
4744 int credits;
4745 int partial_begin, partial_end;
4746 loff_t start, end;
4747 ext4_lblk_t lblk;
4748 struct address_space *mapping = inode->i_mapping;
4749 unsigned int blkbits = inode->i_blkbits;
4750
4751 trace_ext4_zero_range(inode, offset, len, mode);
4752
4753 if (!S_ISREG(inode->i_mode))
4754 return -EINVAL;
4755
4756 /* Call ext4_force_commit to flush all data in case of data=journal. */
4757 if (ext4_should_journal_data(inode)) {
4758 ret = ext4_force_commit(inode->i_sb);
4759 if (ret)
4760 return ret;
4761 }
4762
4763 /*
4764 * Write out all dirty pages to avoid race conditions
4765 * Then release them.
4766 */
4767 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4768 ret = filemap_write_and_wait_range(mapping, offset,
4769 offset + len - 1);
4770 if (ret)
4771 return ret;
4772 }
4773
4774 /*
4775 * Round up offset. This is not fallocate, we neet to zero out
4776 * blocks, so convert interior block aligned part of the range to
4777 * unwritten and possibly manually zero out unaligned parts of the
4778 * range.
4779 */
4780 start = round_up(offset, 1 << blkbits);
4781 end = round_down((offset + len), 1 << blkbits);
4782
4783 if (start < offset || end > offset + len)
4784 return -EINVAL;
4785 partial_begin = offset & ((1 << blkbits) - 1);
4786 partial_end = (offset + len) & ((1 << blkbits) - 1);
4787
4788 lblk = start >> blkbits;
4789 max_blocks = (end >> blkbits);
4790 if (max_blocks < lblk)
4791 max_blocks = 0;
4792 else
4793 max_blocks -= lblk;
4794
4795 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
4796 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4797 EXT4_EX_NOCACHE;
4798 if (mode & FALLOC_FL_KEEP_SIZE)
4799 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4800
4801 mutex_lock(&inode->i_mutex);
4802
4803 /*
4804 * Indirect files do not support unwritten extnets
4805 */
4806 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4807 ret = -EOPNOTSUPP;
4808 goto out_mutex;
4809 }
4810
4811 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4812 offset + len > i_size_read(inode)) {
4813 new_size = offset + len;
4814 ret = inode_newsize_ok(inode, new_size);
4815 if (ret)
4816 goto out_mutex;
4817 /*
4818 * If we have a partial block after EOF we have to allocate
4819 * the entire block.
4820 */
4821 if (partial_end)
4822 max_blocks += 1;
4823 }
4824
4825 if (max_blocks > 0) {
4826
4827 /* Now release the pages and zero block aligned part of pages*/
4828 truncate_pagecache_range(inode, start, end - 1);
4829 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4830
4831 /* Wait all existing dio workers, newcomers will block on i_mutex */
4832 ext4_inode_block_unlocked_dio(inode);
4833 inode_dio_wait(inode);
4834
4835 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4836 flags, mode);
4837 if (ret)
4838 goto out_dio;
4839 /*
4840 * Remove entire range from the extent status tree.
4841 *
4842 * ext4_es_remove_extent(inode, lblk, max_blocks) is
4843 * NOT sufficient. I'm not sure why this is the case,
4844 * but let's be conservative and remove the extent
4845 * status tree for the entire inode. There should be
4846 * no outstanding delalloc extents thanks to the
4847 * filemap_write_and_wait_range() call above.
4848 */
4849 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
4850 if (ret)
4851 goto out_dio;
4852 }
4853 if (!partial_begin && !partial_end)
4854 goto out_dio;
4855
4856 /*
4857 * In worst case we have to writeout two nonadjacent unwritten
4858 * blocks and update the inode
4859 */
4860 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4861 if (ext4_should_journal_data(inode))
4862 credits += 2;
4863 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4864 if (IS_ERR(handle)) {
4865 ret = PTR_ERR(handle);
4866 ext4_std_error(inode->i_sb, ret);
4867 goto out_dio;
4868 }
4869
4870 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4871 if (new_size) {
4872 ext4_update_inode_size(inode, new_size);
4873 } else {
4874 /*
4875 * Mark that we allocate beyond EOF so the subsequent truncate
4876 * can proceed even if the new size is the same as i_size.
4877 */
4878 if ((offset + len) > i_size_read(inode))
4879 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4880 }
4881 ext4_mark_inode_dirty(handle, inode);
4882
4883 /* Zero out partial block at the edges of the range */
4884 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4885
4886 if (file->f_flags & O_SYNC)
4887 ext4_handle_sync(handle);
4888
4889 ext4_journal_stop(handle);
4890 out_dio:
4891 ext4_inode_resume_unlocked_dio(inode);
4892 out_mutex:
4893 mutex_unlock(&inode->i_mutex);
4894 return ret;
4895 }
4896
4897 /*
4898 * preallocate space for a file. This implements ext4's fallocate file
4899 * operation, which gets called from sys_fallocate system call.
4900 * For block-mapped files, posix_fallocate should fall back to the method
4901 * of writing zeroes to the required new blocks (the same behavior which is
4902 * expected for file systems which do not support fallocate() system call).
4903 */
4904 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4905 {
4906 struct inode *inode = file_inode(file);
4907 loff_t new_size = 0;
4908 unsigned int max_blocks;
4909 int ret = 0;
4910 int flags;
4911 ext4_lblk_t lblk;
4912 unsigned int blkbits = inode->i_blkbits;
4913
4914 /* Return error if mode is not supported */
4915 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4916 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4917 return -EOPNOTSUPP;
4918
4919 if (mode & FALLOC_FL_PUNCH_HOLE)
4920 return ext4_punch_hole(inode, offset, len);
4921
4922 ret = ext4_convert_inline_data(inode);
4923 if (ret)
4924 return ret;
4925
4926 /*
4927 * currently supporting (pre)allocate mode for extent-based
4928 * files _only_
4929 */
4930 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4931 return -EOPNOTSUPP;
4932
4933 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4934 return ext4_collapse_range(inode, offset, len);
4935
4936 if (mode & FALLOC_FL_ZERO_RANGE)
4937 return ext4_zero_range(file, offset, len, mode);
4938
4939 trace_ext4_fallocate_enter(inode, offset, len, mode);
4940 lblk = offset >> blkbits;
4941 /*
4942 * We can't just convert len to max_blocks because
4943 * If blocksize = 4096 offset = 3072 and len = 2048
4944 */
4945 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4946 - lblk;
4947
4948 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4949 if (mode & FALLOC_FL_KEEP_SIZE)
4950 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4951
4952 mutex_lock(&inode->i_mutex);
4953
4954 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4955 offset + len > i_size_read(inode)) {
4956 new_size = offset + len;
4957 ret = inode_newsize_ok(inode, new_size);
4958 if (ret)
4959 goto out;
4960 }
4961
4962 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4963 flags, mode);
4964 if (ret)
4965 goto out;
4966
4967 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4968 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4969 EXT4_I(inode)->i_sync_tid);
4970 }
4971 out:
4972 mutex_unlock(&inode->i_mutex);
4973 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4974 return ret;
4975 }
4976
4977 /*
4978 * This function convert a range of blocks to written extents
4979 * The caller of this function will pass the start offset and the size.
4980 * all unwritten extents within this range will be converted to
4981 * written extents.
4982 *
4983 * This function is called from the direct IO end io call back
4984 * function, to convert the fallocated extents after IO is completed.
4985 * Returns 0 on success.
4986 */
4987 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4988 loff_t offset, ssize_t len)
4989 {
4990 unsigned int max_blocks;
4991 int ret = 0;
4992 int ret2 = 0;
4993 struct ext4_map_blocks map;
4994 unsigned int credits, blkbits = inode->i_blkbits;
4995
4996 map.m_lblk = offset >> blkbits;
4997 /*
4998 * We can't just convert len to max_blocks because
4999 * If blocksize = 4096 offset = 3072 and len = 2048
5000 */
5001 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5002 map.m_lblk);
5003 /*
5004 * This is somewhat ugly but the idea is clear: When transaction is
5005 * reserved, everything goes into it. Otherwise we rather start several
5006 * smaller transactions for conversion of each extent separately.
5007 */
5008 if (handle) {
5009 handle = ext4_journal_start_reserved(handle,
5010 EXT4_HT_EXT_CONVERT);
5011 if (IS_ERR(handle))
5012 return PTR_ERR(handle);
5013 credits = 0;
5014 } else {
5015 /*
5016 * credits to insert 1 extent into extent tree
5017 */
5018 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5019 }
5020 while (ret >= 0 && ret < max_blocks) {
5021 map.m_lblk += ret;
5022 map.m_len = (max_blocks -= ret);
5023 if (credits) {
5024 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5025 credits);
5026 if (IS_ERR(handle)) {
5027 ret = PTR_ERR(handle);
5028 break;
5029 }
5030 }
5031 ret = ext4_map_blocks(handle, inode, &map,
5032 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5033 if (ret <= 0)
5034 ext4_warning(inode->i_sb,
5035 "inode #%lu: block %u: len %u: "
5036 "ext4_ext_map_blocks returned %d",
5037 inode->i_ino, map.m_lblk,
5038 map.m_len, ret);
5039 ext4_mark_inode_dirty(handle, inode);
5040 if (credits)
5041 ret2 = ext4_journal_stop(handle);
5042 if (ret <= 0 || ret2)
5043 break;
5044 }
5045 if (!credits)
5046 ret2 = ext4_journal_stop(handle);
5047 return ret > 0 ? ret2 : ret;
5048 }
5049
5050 /*
5051 * If newes is not existing extent (newes->ec_pblk equals zero) find
5052 * delayed extent at start of newes and update newes accordingly and
5053 * return start of the next delayed extent.
5054 *
5055 * If newes is existing extent (newes->ec_pblk is not equal zero)
5056 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5057 * extent found. Leave newes unmodified.
5058 */
5059 static int ext4_find_delayed_extent(struct inode *inode,
5060 struct extent_status *newes)
5061 {
5062 struct extent_status es;
5063 ext4_lblk_t block, next_del;
5064
5065 if (newes->es_pblk == 0) {
5066 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5067 newes->es_lblk + newes->es_len - 1, &es);
5068
5069 /*
5070 * No extent in extent-tree contains block @newes->es_pblk,
5071 * then the block may stay in 1)a hole or 2)delayed-extent.
5072 */
5073 if (es.es_len == 0)
5074 /* A hole found. */
5075 return 0;
5076
5077 if (es.es_lblk > newes->es_lblk) {
5078 /* A hole found. */
5079 newes->es_len = min(es.es_lblk - newes->es_lblk,
5080 newes->es_len);
5081 return 0;
5082 }
5083
5084 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5085 }
5086
5087 block = newes->es_lblk + newes->es_len;
5088 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5089 if (es.es_len == 0)
5090 next_del = EXT_MAX_BLOCKS;
5091 else
5092 next_del = es.es_lblk;
5093
5094 return next_del;
5095 }
5096 /* fiemap flags we can handle specified here */
5097 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5098
5099 static int ext4_xattr_fiemap(struct inode *inode,
5100 struct fiemap_extent_info *fieinfo)
5101 {
5102 __u64 physical = 0;
5103 __u64 length;
5104 __u32 flags = FIEMAP_EXTENT_LAST;
5105 int blockbits = inode->i_sb->s_blocksize_bits;
5106 int error = 0;
5107
5108 /* in-inode? */
5109 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5110 struct ext4_iloc iloc;
5111 int offset; /* offset of xattr in inode */
5112
5113 error = ext4_get_inode_loc(inode, &iloc);
5114 if (error)
5115 return error;
5116 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5117 offset = EXT4_GOOD_OLD_INODE_SIZE +
5118 EXT4_I(inode)->i_extra_isize;
5119 physical += offset;
5120 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5121 flags |= FIEMAP_EXTENT_DATA_INLINE;
5122 brelse(iloc.bh);
5123 } else { /* external block */
5124 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5125 length = inode->i_sb->s_blocksize;
5126 }
5127
5128 if (physical)
5129 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5130 length, flags);
5131 return (error < 0 ? error : 0);
5132 }
5133
5134 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5135 __u64 start, __u64 len)
5136 {
5137 ext4_lblk_t start_blk;
5138 int error = 0;
5139
5140 if (ext4_has_inline_data(inode)) {
5141 int has_inline = 1;
5142
5143 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5144
5145 if (has_inline)
5146 return error;
5147 }
5148
5149 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5150 error = ext4_ext_precache(inode);
5151 if (error)
5152 return error;
5153 }
5154
5155 /* fallback to generic here if not in extents fmt */
5156 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5157 return generic_block_fiemap(inode, fieinfo, start, len,
5158 ext4_get_block);
5159
5160 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5161 return -EBADR;
5162
5163 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5164 error = ext4_xattr_fiemap(inode, fieinfo);
5165 } else {
5166 ext4_lblk_t len_blks;
5167 __u64 last_blk;
5168
5169 start_blk = start >> inode->i_sb->s_blocksize_bits;
5170 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5171 if (last_blk >= EXT_MAX_BLOCKS)
5172 last_blk = EXT_MAX_BLOCKS-1;
5173 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5174
5175 /*
5176 * Walk the extent tree gathering extent information
5177 * and pushing extents back to the user.
5178 */
5179 error = ext4_fill_fiemap_extents(inode, start_blk,
5180 len_blks, fieinfo);
5181 }
5182 ext4_es_lru_add(inode);
5183 return error;
5184 }
5185
5186 /*
5187 * ext4_access_path:
5188 * Function to access the path buffer for marking it dirty.
5189 * It also checks if there are sufficient credits left in the journal handle
5190 * to update path.
5191 */
5192 static int
5193 ext4_access_path(handle_t *handle, struct inode *inode,
5194 struct ext4_ext_path *path)
5195 {
5196 int credits, err;
5197
5198 if (!ext4_handle_valid(handle))
5199 return 0;
5200
5201 /*
5202 * Check if need to extend journal credits
5203 * 3 for leaf, sb, and inode plus 2 (bmap and group
5204 * descriptor) for each block group; assume two block
5205 * groups
5206 */
5207 if (handle->h_buffer_credits < 7) {
5208 credits = ext4_writepage_trans_blocks(inode);
5209 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5210 /* EAGAIN is success */
5211 if (err && err != -EAGAIN)
5212 return err;
5213 }
5214
5215 err = ext4_ext_get_access(handle, inode, path);
5216 return err;
5217 }
5218
5219 /*
5220 * ext4_ext_shift_path_extents:
5221 * Shift the extents of a path structure lying between path[depth].p_ext
5222 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5223 * from starting block for each extent.
5224 */
5225 static int
5226 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5227 struct inode *inode, handle_t *handle,
5228 ext4_lblk_t *start)
5229 {
5230 int depth, err = 0;
5231 struct ext4_extent *ex_start, *ex_last;
5232 bool update = 0;
5233 depth = path->p_depth;
5234
5235 while (depth >= 0) {
5236 if (depth == path->p_depth) {
5237 ex_start = path[depth].p_ext;
5238 if (!ex_start)
5239 return -EIO;
5240
5241 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5242 if (!ex_last)
5243 return -EIO;
5244
5245 err = ext4_access_path(handle, inode, path + depth);
5246 if (err)
5247 goto out;
5248
5249 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5250 update = 1;
5251
5252 *start = le32_to_cpu(ex_last->ee_block) +
5253 ext4_ext_get_actual_len(ex_last);
5254
5255 while (ex_start <= ex_last) {
5256 le32_add_cpu(&ex_start->ee_block, -shift);
5257 /* Try to merge to the left. */
5258 if ((ex_start >
5259 EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5260 ext4_ext_try_to_merge_right(inode,
5261 path, ex_start - 1))
5262 ex_last--;
5263 else
5264 ex_start++;
5265 }
5266 err = ext4_ext_dirty(handle, inode, path + depth);
5267 if (err)
5268 goto out;
5269
5270 if (--depth < 0 || !update)
5271 break;
5272 }
5273
5274 /* Update index too */
5275 err = ext4_access_path(handle, inode, path + depth);
5276 if (err)
5277 goto out;
5278
5279 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5280 err = ext4_ext_dirty(handle, inode, path + depth);
5281 if (err)
5282 goto out;
5283
5284 /* we are done if current index is not a starting index */
5285 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5286 break;
5287
5288 depth--;
5289 }
5290
5291 out:
5292 return err;
5293 }
5294
5295 /*
5296 * ext4_ext_shift_extents:
5297 * All the extents which lies in the range from start to the last allocated
5298 * block for the file are shifted downwards by shift blocks.
5299 * On success, 0 is returned, error otherwise.
5300 */
5301 static int
5302 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5303 ext4_lblk_t start, ext4_lblk_t shift)
5304 {
5305 struct ext4_ext_path *path;
5306 int ret = 0, depth;
5307 struct ext4_extent *extent;
5308 ext4_lblk_t stop_block;
5309 ext4_lblk_t ex_start, ex_end;
5310
5311 /* Let path point to the last extent */
5312 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5313 if (IS_ERR(path))
5314 return PTR_ERR(path);
5315
5316 depth = path->p_depth;
5317 extent = path[depth].p_ext;
5318 if (!extent)
5319 goto out;
5320
5321 stop_block = le32_to_cpu(extent->ee_block) +
5322 ext4_ext_get_actual_len(extent);
5323
5324 /* Nothing to shift, if hole is at the end of file */
5325 if (start >= stop_block)
5326 goto out;
5327
5328 /*
5329 * Don't start shifting extents until we make sure the hole is big
5330 * enough to accomodate the shift.
5331 */
5332 path = ext4_find_extent(inode, start - 1, &path, 0);
5333 if (IS_ERR(path))
5334 return PTR_ERR(path);
5335 depth = path->p_depth;
5336 extent = path[depth].p_ext;
5337 if (extent) {
5338 ex_start = le32_to_cpu(extent->ee_block);
5339 ex_end = le32_to_cpu(extent->ee_block) +
5340 ext4_ext_get_actual_len(extent);
5341 } else {
5342 ex_start = 0;
5343 ex_end = 0;
5344 }
5345
5346 if ((start == ex_start && shift > ex_start) ||
5347 (shift > start - ex_end))
5348 return -EINVAL;
5349
5350 /* Its safe to start updating extents */
5351 while (start < stop_block) {
5352 path = ext4_find_extent(inode, start, &path, 0);
5353 if (IS_ERR(path))
5354 return PTR_ERR(path);
5355 depth = path->p_depth;
5356 extent = path[depth].p_ext;
5357 if (!extent) {
5358 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5359 (unsigned long) start);
5360 return -EIO;
5361 }
5362 if (start > le32_to_cpu(extent->ee_block)) {
5363 /* Hole, move to the next extent */
5364 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5365 path[depth].p_ext++;
5366 } else {
5367 start = ext4_ext_next_allocated_block(path);
5368 continue;
5369 }
5370 }
5371 ret = ext4_ext_shift_path_extents(path, shift, inode,
5372 handle, &start);
5373 if (ret)
5374 break;
5375 }
5376 out:
5377 ext4_ext_drop_refs(path);
5378 kfree(path);
5379 return ret;
5380 }
5381
5382 /*
5383 * ext4_collapse_range:
5384 * This implements the fallocate's collapse range functionality for ext4
5385 * Returns: 0 and non-zero on error.
5386 */
5387 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5388 {
5389 struct super_block *sb = inode->i_sb;
5390 ext4_lblk_t punch_start, punch_stop;
5391 handle_t *handle;
5392 unsigned int credits;
5393 loff_t new_size, ioffset;
5394 int ret;
5395
5396 /* Collapse range works only on fs block size aligned offsets. */
5397 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5398 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5399 return -EINVAL;
5400
5401 if (!S_ISREG(inode->i_mode))
5402 return -EINVAL;
5403
5404 trace_ext4_collapse_range(inode, offset, len);
5405
5406 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5407 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5408
5409 /* Call ext4_force_commit to flush all data in case of data=journal. */
5410 if (ext4_should_journal_data(inode)) {
5411 ret = ext4_force_commit(inode->i_sb);
5412 if (ret)
5413 return ret;
5414 }
5415
5416 /*
5417 * Need to round down offset to be aligned with page size boundary
5418 * for page size > block size.
5419 */
5420 ioffset = round_down(offset, PAGE_SIZE);
5421
5422 /* Write out all dirty pages */
5423 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5424 LLONG_MAX);
5425 if (ret)
5426 return ret;
5427
5428 /* Take mutex lock */
5429 mutex_lock(&inode->i_mutex);
5430
5431 /*
5432 * There is no need to overlap collapse range with EOF, in which case
5433 * it is effectively a truncate operation
5434 */
5435 if (offset + len >= i_size_read(inode)) {
5436 ret = -EINVAL;
5437 goto out_mutex;
5438 }
5439
5440 /* Currently just for extent based files */
5441 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5442 ret = -EOPNOTSUPP;
5443 goto out_mutex;
5444 }
5445
5446 truncate_pagecache(inode, ioffset);
5447
5448 /* Wait for existing dio to complete */
5449 ext4_inode_block_unlocked_dio(inode);
5450 inode_dio_wait(inode);
5451
5452 credits = ext4_writepage_trans_blocks(inode);
5453 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5454 if (IS_ERR(handle)) {
5455 ret = PTR_ERR(handle);
5456 goto out_dio;
5457 }
5458
5459 down_write(&EXT4_I(inode)->i_data_sem);
5460 ext4_discard_preallocations(inode);
5461
5462 ret = ext4_es_remove_extent(inode, punch_start,
5463 EXT_MAX_BLOCKS - punch_start);
5464 if (ret) {
5465 up_write(&EXT4_I(inode)->i_data_sem);
5466 goto out_stop;
5467 }
5468
5469 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5470 if (ret) {
5471 up_write(&EXT4_I(inode)->i_data_sem);
5472 goto out_stop;
5473 }
5474 ext4_discard_preallocations(inode);
5475
5476 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5477 punch_stop - punch_start);
5478 if (ret) {
5479 up_write(&EXT4_I(inode)->i_data_sem);
5480 goto out_stop;
5481 }
5482
5483 new_size = i_size_read(inode) - len;
5484 i_size_write(inode, new_size);
5485 EXT4_I(inode)->i_disksize = new_size;
5486
5487 up_write(&EXT4_I(inode)->i_data_sem);
5488 if (IS_SYNC(inode))
5489 ext4_handle_sync(handle);
5490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5491 ext4_mark_inode_dirty(handle, inode);
5492
5493 out_stop:
5494 ext4_journal_stop(handle);
5495 out_dio:
5496 ext4_inode_resume_unlocked_dio(inode);
5497 out_mutex:
5498 mutex_unlock(&inode->i_mutex);
5499 return ret;
5500 }
5501
5502 /**
5503 * ext4_swap_extents - Swap extents between two inodes
5504 *
5505 * @inode1: First inode
5506 * @inode2: Second inode
5507 * @lblk1: Start block for first inode
5508 * @lblk2: Start block for second inode
5509 * @count: Number of blocks to swap
5510 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5511 * @erp: Pointer to save error value
5512 *
5513 * This helper routine does exactly what is promise "swap extents". All other
5514 * stuff such as page-cache locking consistency, bh mapping consistency or
5515 * extent's data copying must be performed by caller.
5516 * Locking:
5517 * i_mutex is held for both inodes
5518 * i_data_sem is locked for write for both inodes
5519 * Assumptions:
5520 * All pages from requested range are locked for both inodes
5521 */
5522 int
5523 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5524 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5525 ext4_lblk_t count, int unwritten, int *erp)
5526 {
5527 struct ext4_ext_path *path1 = NULL;
5528 struct ext4_ext_path *path2 = NULL;
5529 int replaced_count = 0;
5530
5531 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5532 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5533 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5534 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5535
5536 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5537 if (unlikely(*erp))
5538 return 0;
5539 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5540 if (unlikely(*erp))
5541 return 0;
5542
5543 while (count) {
5544 struct ext4_extent *ex1, *ex2, tmp_ex;
5545 ext4_lblk_t e1_blk, e2_blk;
5546 int e1_len, e2_len, len;
5547 int split = 0;
5548
5549 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5550 if (unlikely(IS_ERR(path1))) {
5551 *erp = PTR_ERR(path1);
5552 path1 = NULL;
5553 finish:
5554 count = 0;
5555 goto repeat;
5556 }
5557 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5558 if (unlikely(IS_ERR(path2))) {
5559 *erp = PTR_ERR(path2);
5560 path2 = NULL;
5561 goto finish;
5562 }
5563 ex1 = path1[path1->p_depth].p_ext;
5564 ex2 = path2[path2->p_depth].p_ext;
5565 /* Do we have somthing to swap ? */
5566 if (unlikely(!ex2 || !ex1))
5567 goto finish;
5568
5569 e1_blk = le32_to_cpu(ex1->ee_block);
5570 e2_blk = le32_to_cpu(ex2->ee_block);
5571 e1_len = ext4_ext_get_actual_len(ex1);
5572 e2_len = ext4_ext_get_actual_len(ex2);
5573
5574 /* Hole handling */
5575 if (!in_range(lblk1, e1_blk, e1_len) ||
5576 !in_range(lblk2, e2_blk, e2_len)) {
5577 ext4_lblk_t next1, next2;
5578
5579 /* if hole after extent, then go to next extent */
5580 next1 = ext4_ext_next_allocated_block(path1);
5581 next2 = ext4_ext_next_allocated_block(path2);
5582 /* If hole before extent, then shift to that extent */
5583 if (e1_blk > lblk1)
5584 next1 = e1_blk;
5585 if (e2_blk > lblk2)
5586 next2 = e1_blk;
5587 /* Do we have something to swap */
5588 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5589 goto finish;
5590 /* Move to the rightest boundary */
5591 len = next1 - lblk1;
5592 if (len < next2 - lblk2)
5593 len = next2 - lblk2;
5594 if (len > count)
5595 len = count;
5596 lblk1 += len;
5597 lblk2 += len;
5598 count -= len;
5599 goto repeat;
5600 }
5601
5602 /* Prepare left boundary */
5603 if (e1_blk < lblk1) {
5604 split = 1;
5605 *erp = ext4_force_split_extent_at(handle, inode1,
5606 &path1, lblk1, 0);
5607 if (unlikely(*erp))
5608 goto finish;
5609 }
5610 if (e2_blk < lblk2) {
5611 split = 1;
5612 *erp = ext4_force_split_extent_at(handle, inode2,
5613 &path2, lblk2, 0);
5614 if (unlikely(*erp))
5615 goto finish;
5616 }
5617 /* ext4_split_extent_at() may result in leaf extent split,
5618 * path must to be revalidated. */
5619 if (split)
5620 goto repeat;
5621
5622 /* Prepare right boundary */
5623 len = count;
5624 if (len > e1_blk + e1_len - lblk1)
5625 len = e1_blk + e1_len - lblk1;
5626 if (len > e2_blk + e2_len - lblk2)
5627 len = e2_blk + e2_len - lblk2;
5628
5629 if (len != e1_len) {
5630 split = 1;
5631 *erp = ext4_force_split_extent_at(handle, inode1,
5632 &path1, lblk1 + len, 0);
5633 if (unlikely(*erp))
5634 goto finish;
5635 }
5636 if (len != e2_len) {
5637 split = 1;
5638 *erp = ext4_force_split_extent_at(handle, inode2,
5639 &path2, lblk2 + len, 0);
5640 if (*erp)
5641 goto finish;
5642 }
5643 /* ext4_split_extent_at() may result in leaf extent split,
5644 * path must to be revalidated. */
5645 if (split)
5646 goto repeat;
5647
5648 BUG_ON(e2_len != e1_len);
5649 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5650 if (unlikely(*erp))
5651 goto finish;
5652 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5653 if (unlikely(*erp))
5654 goto finish;
5655
5656 /* Both extents are fully inside boundaries. Swap it now */
5657 tmp_ex = *ex1;
5658 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5659 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5660 ex1->ee_len = cpu_to_le16(e2_len);
5661 ex2->ee_len = cpu_to_le16(e1_len);
5662 if (unwritten)
5663 ext4_ext_mark_unwritten(ex2);
5664 if (ext4_ext_is_unwritten(&tmp_ex))
5665 ext4_ext_mark_unwritten(ex1);
5666
5667 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5668 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5669 *erp = ext4_ext_dirty(handle, inode2, path2 +
5670 path2->p_depth);
5671 if (unlikely(*erp))
5672 goto finish;
5673 *erp = ext4_ext_dirty(handle, inode1, path1 +
5674 path1->p_depth);
5675 /*
5676 * Looks scarry ah..? second inode already points to new blocks,
5677 * and it was successfully dirtied. But luckily error may happen
5678 * only due to journal error, so full transaction will be
5679 * aborted anyway.
5680 */
5681 if (unlikely(*erp))
5682 goto finish;
5683 lblk1 += len;
5684 lblk2 += len;
5685 replaced_count += len;
5686 count -= len;
5687
5688 repeat:
5689 ext4_ext_drop_refs(path1);
5690 kfree(path1);
5691 ext4_ext_drop_refs(path2);
5692 kfree(path2);
5693 path1 = path2 = NULL;
5694 }
5695 return replaced_count;
5696 }
This page took 0.178286 seconds and 5 git commands to generate.