ext4: Introduce FALLOC_FL_ZERO_RANGE flag for fallocate
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45
46 #include <trace/events/ext4.h>
47
48 /*
49 * used by extent splitting.
50 */
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
54 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
58
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
61 {
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
69 }
70
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
73 {
74 struct ext4_extent_tail *et;
75
76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 return;
94
95 et = find_ext4_extent_tail(eh);
96 et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98
99 static int ext4_split_extent(handle_t *handle,
100 struct inode *inode,
101 struct ext4_ext_path *path,
102 struct ext4_map_blocks *map,
103 int split_flag,
104 int flags);
105
106 static int ext4_split_extent_at(handle_t *handle,
107 struct inode *inode,
108 struct ext4_ext_path *path,
109 ext4_lblk_t split,
110 int split_flag,
111 int flags);
112
113 static int ext4_find_delayed_extent(struct inode *inode,
114 struct extent_status *newes);
115
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 struct inode *inode,
118 int needed)
119 {
120 int err;
121
122 if (!ext4_handle_valid(handle))
123 return 0;
124 if (handle->h_buffer_credits > needed)
125 return 0;
126 err = ext4_journal_extend(handle, needed);
127 if (err <= 0)
128 return err;
129 err = ext4_truncate_restart_trans(handle, inode, needed);
130 if (err == 0)
131 err = -EAGAIN;
132
133 return err;
134 }
135
136 /*
137 * could return:
138 * - EROFS
139 * - ENOMEM
140 */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 struct ext4_ext_path *path)
143 {
144 if (path->p_bh) {
145 /* path points to block */
146 return ext4_journal_get_write_access(handle, path->p_bh);
147 }
148 /* path points to leaf/index in inode body */
149 /* we use in-core data, no need to protect them */
150 return 0;
151 }
152
153 /*
154 * could return:
155 * - EROFS
156 * - ENOMEM
157 * - EIO
158 */
159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
160 struct inode *inode, struct ext4_ext_path *path)
161 {
162 int err;
163 if (path->p_bh) {
164 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
165 /* path points to block */
166 err = __ext4_handle_dirty_metadata(where, line, handle,
167 inode, path->p_bh);
168 } else {
169 /* path points to leaf/index in inode body */
170 err = ext4_mark_inode_dirty(handle, inode);
171 }
172 return err;
173 }
174
175 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176 struct ext4_ext_path *path,
177 ext4_lblk_t block)
178 {
179 if (path) {
180 int depth = path->p_depth;
181 struct ext4_extent *ex;
182
183 /*
184 * Try to predict block placement assuming that we are
185 * filling in a file which will eventually be
186 * non-sparse --- i.e., in the case of libbfd writing
187 * an ELF object sections out-of-order but in a way
188 * the eventually results in a contiguous object or
189 * executable file, or some database extending a table
190 * space file. However, this is actually somewhat
191 * non-ideal if we are writing a sparse file such as
192 * qemu or KVM writing a raw image file that is going
193 * to stay fairly sparse, since it will end up
194 * fragmenting the file system's free space. Maybe we
195 * should have some hueristics or some way to allow
196 * userspace to pass a hint to file system,
197 * especially if the latter case turns out to be
198 * common.
199 */
200 ex = path[depth].p_ext;
201 if (ex) {
202 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
203 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
204
205 if (block > ext_block)
206 return ext_pblk + (block - ext_block);
207 else
208 return ext_pblk - (ext_block - block);
209 }
210
211 /* it looks like index is empty;
212 * try to find starting block from index itself */
213 if (path[depth].p_bh)
214 return path[depth].p_bh->b_blocknr;
215 }
216
217 /* OK. use inode's group */
218 return ext4_inode_to_goal_block(inode);
219 }
220
221 /*
222 * Allocation for a meta data block
223 */
224 static ext4_fsblk_t
225 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
226 struct ext4_ext_path *path,
227 struct ext4_extent *ex, int *err, unsigned int flags)
228 {
229 ext4_fsblk_t goal, newblock;
230
231 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
232 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
233 NULL, err);
234 return newblock;
235 }
236
237 static inline int ext4_ext_space_block(struct inode *inode, int check)
238 {
239 int size;
240
241 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 / sizeof(struct ext4_extent);
243 #ifdef AGGRESSIVE_TEST
244 if (!check && size > 6)
245 size = 6;
246 #endif
247 return size;
248 }
249
250 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
251 {
252 int size;
253
254 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255 / sizeof(struct ext4_extent_idx);
256 #ifdef AGGRESSIVE_TEST
257 if (!check && size > 5)
258 size = 5;
259 #endif
260 return size;
261 }
262
263 static inline int ext4_ext_space_root(struct inode *inode, int check)
264 {
265 int size;
266
267 size = sizeof(EXT4_I(inode)->i_data);
268 size -= sizeof(struct ext4_extent_header);
269 size /= sizeof(struct ext4_extent);
270 #ifdef AGGRESSIVE_TEST
271 if (!check && size > 3)
272 size = 3;
273 #endif
274 return size;
275 }
276
277 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278 {
279 int size;
280
281 size = sizeof(EXT4_I(inode)->i_data);
282 size -= sizeof(struct ext4_extent_header);
283 size /= sizeof(struct ext4_extent_idx);
284 #ifdef AGGRESSIVE_TEST
285 if (!check && size > 4)
286 size = 4;
287 #endif
288 return size;
289 }
290
291 /*
292 * Calculate the number of metadata blocks needed
293 * to allocate @blocks
294 * Worse case is one block per extent
295 */
296 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
297 {
298 struct ext4_inode_info *ei = EXT4_I(inode);
299 int idxs;
300
301 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302 / sizeof(struct ext4_extent_idx));
303
304 /*
305 * If the new delayed allocation block is contiguous with the
306 * previous da block, it can share index blocks with the
307 * previous block, so we only need to allocate a new index
308 * block every idxs leaf blocks. At ldxs**2 blocks, we need
309 * an additional index block, and at ldxs**3 blocks, yet
310 * another index blocks.
311 */
312 if (ei->i_da_metadata_calc_len &&
313 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314 int num = 0;
315
316 if ((ei->i_da_metadata_calc_len % idxs) == 0)
317 num++;
318 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319 num++;
320 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321 num++;
322 ei->i_da_metadata_calc_len = 0;
323 } else
324 ei->i_da_metadata_calc_len++;
325 ei->i_da_metadata_calc_last_lblock++;
326 return num;
327 }
328
329 /*
330 * In the worst case we need a new set of index blocks at
331 * every level of the inode's extent tree.
332 */
333 ei->i_da_metadata_calc_len = 1;
334 ei->i_da_metadata_calc_last_lblock = lblock;
335 return ext_depth(inode) + 1;
336 }
337
338 static int
339 ext4_ext_max_entries(struct inode *inode, int depth)
340 {
341 int max;
342
343 if (depth == ext_depth(inode)) {
344 if (depth == 0)
345 max = ext4_ext_space_root(inode, 1);
346 else
347 max = ext4_ext_space_root_idx(inode, 1);
348 } else {
349 if (depth == 0)
350 max = ext4_ext_space_block(inode, 1);
351 else
352 max = ext4_ext_space_block_idx(inode, 1);
353 }
354
355 return max;
356 }
357
358 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359 {
360 ext4_fsblk_t block = ext4_ext_pblock(ext);
361 int len = ext4_ext_get_actual_len(ext);
362 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
363 ext4_lblk_t last = lblock + len - 1;
364
365 if (lblock > last)
366 return 0;
367 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
368 }
369
370 static int ext4_valid_extent_idx(struct inode *inode,
371 struct ext4_extent_idx *ext_idx)
372 {
373 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374
375 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
376 }
377
378 static int ext4_valid_extent_entries(struct inode *inode,
379 struct ext4_extent_header *eh,
380 int depth)
381 {
382 unsigned short entries;
383 if (eh->eh_entries == 0)
384 return 1;
385
386 entries = le16_to_cpu(eh->eh_entries);
387
388 if (depth == 0) {
389 /* leaf entries */
390 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
392 ext4_fsblk_t pblock = 0;
393 ext4_lblk_t lblock = 0;
394 ext4_lblk_t prev = 0;
395 int len = 0;
396 while (entries) {
397 if (!ext4_valid_extent(inode, ext))
398 return 0;
399
400 /* Check for overlapping extents */
401 lblock = le32_to_cpu(ext->ee_block);
402 len = ext4_ext_get_actual_len(ext);
403 if ((lblock <= prev) && prev) {
404 pblock = ext4_ext_pblock(ext);
405 es->s_last_error_block = cpu_to_le64(pblock);
406 return 0;
407 }
408 ext++;
409 entries--;
410 prev = lblock + len - 1;
411 }
412 } else {
413 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
414 while (entries) {
415 if (!ext4_valid_extent_idx(inode, ext_idx))
416 return 0;
417 ext_idx++;
418 entries--;
419 }
420 }
421 return 1;
422 }
423
424 static int __ext4_ext_check(const char *function, unsigned int line,
425 struct inode *inode, struct ext4_extent_header *eh,
426 int depth, ext4_fsblk_t pblk)
427 {
428 const char *error_msg;
429 int max = 0;
430
431 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
432 error_msg = "invalid magic";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
436 error_msg = "unexpected eh_depth";
437 goto corrupted;
438 }
439 if (unlikely(eh->eh_max == 0)) {
440 error_msg = "invalid eh_max";
441 goto corrupted;
442 }
443 max = ext4_ext_max_entries(inode, depth);
444 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
445 error_msg = "too large eh_max";
446 goto corrupted;
447 }
448 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
449 error_msg = "invalid eh_entries";
450 goto corrupted;
451 }
452 if (!ext4_valid_extent_entries(inode, eh, depth)) {
453 error_msg = "invalid extent entries";
454 goto corrupted;
455 }
456 /* Verify checksum on non-root extent tree nodes */
457 if (ext_depth(inode) != depth &&
458 !ext4_extent_block_csum_verify(inode, eh)) {
459 error_msg = "extent tree corrupted";
460 goto corrupted;
461 }
462 return 0;
463
464 corrupted:
465 ext4_error_inode(inode, function, line, 0,
466 "pblk %llu bad header/extent: %s - magic %x, "
467 "entries %u, max %u(%u), depth %u(%u)",
468 (unsigned long long) pblk, error_msg,
469 le16_to_cpu(eh->eh_magic),
470 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471 max, le16_to_cpu(eh->eh_depth), depth);
472 return -EIO;
473 }
474
475 #define ext4_ext_check(inode, eh, depth, pblk) \
476 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
477
478 int ext4_ext_check_inode(struct inode *inode)
479 {
480 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
481 }
482
483 static struct buffer_head *
484 __read_extent_tree_block(const char *function, unsigned int line,
485 struct inode *inode, ext4_fsblk_t pblk, int depth,
486 int flags)
487 {
488 struct buffer_head *bh;
489 int err;
490
491 bh = sb_getblk(inode->i_sb, pblk);
492 if (unlikely(!bh))
493 return ERR_PTR(-ENOMEM);
494
495 if (!bh_uptodate_or_lock(bh)) {
496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497 err = bh_submit_read(bh);
498 if (err < 0)
499 goto errout;
500 }
501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502 return bh;
503 err = __ext4_ext_check(function, line, inode,
504 ext_block_hdr(bh), depth, pblk);
505 if (err)
506 goto errout;
507 set_buffer_verified(bh);
508 /*
509 * If this is a leaf block, cache all of its entries
510 */
511 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
512 struct ext4_extent_header *eh = ext_block_hdr(bh);
513 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
514 ext4_lblk_t prev = 0;
515 int i;
516
517 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
518 unsigned int status = EXTENT_STATUS_WRITTEN;
519 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
520 int len = ext4_ext_get_actual_len(ex);
521
522 if (prev && (prev != lblk))
523 ext4_es_cache_extent(inode, prev,
524 lblk - prev, ~0,
525 EXTENT_STATUS_HOLE);
526
527 if (ext4_ext_is_uninitialized(ex))
528 status = EXTENT_STATUS_UNWRITTEN;
529 ext4_es_cache_extent(inode, lblk, len,
530 ext4_ext_pblock(ex), status);
531 prev = lblk + len;
532 }
533 }
534 return bh;
535 errout:
536 put_bh(bh);
537 return ERR_PTR(err);
538
539 }
540
541 #define read_extent_tree_block(inode, pblk, depth, flags) \
542 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
543 (depth), (flags))
544
545 /*
546 * This function is called to cache a file's extent information in the
547 * extent status tree
548 */
549 int ext4_ext_precache(struct inode *inode)
550 {
551 struct ext4_inode_info *ei = EXT4_I(inode);
552 struct ext4_ext_path *path = NULL;
553 struct buffer_head *bh;
554 int i = 0, depth, ret = 0;
555
556 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
557 return 0; /* not an extent-mapped inode */
558
559 down_read(&ei->i_data_sem);
560 depth = ext_depth(inode);
561
562 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
563 GFP_NOFS);
564 if (path == NULL) {
565 up_read(&ei->i_data_sem);
566 return -ENOMEM;
567 }
568
569 /* Don't cache anything if there are no external extent blocks */
570 if (depth == 0)
571 goto out;
572 path[0].p_hdr = ext_inode_hdr(inode);
573 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
574 if (ret)
575 goto out;
576 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
577 while (i >= 0) {
578 /*
579 * If this is a leaf block or we've reached the end of
580 * the index block, go up
581 */
582 if ((i == depth) ||
583 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
584 brelse(path[i].p_bh);
585 path[i].p_bh = NULL;
586 i--;
587 continue;
588 }
589 bh = read_extent_tree_block(inode,
590 ext4_idx_pblock(path[i].p_idx++),
591 depth - i - 1,
592 EXT4_EX_FORCE_CACHE);
593 if (IS_ERR(bh)) {
594 ret = PTR_ERR(bh);
595 break;
596 }
597 i++;
598 path[i].p_bh = bh;
599 path[i].p_hdr = ext_block_hdr(bh);
600 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
601 }
602 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
603 out:
604 up_read(&ei->i_data_sem);
605 ext4_ext_drop_refs(path);
606 kfree(path);
607 return ret;
608 }
609
610 #ifdef EXT_DEBUG
611 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
612 {
613 int k, l = path->p_depth;
614
615 ext_debug("path:");
616 for (k = 0; k <= l; k++, path++) {
617 if (path->p_idx) {
618 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
619 ext4_idx_pblock(path->p_idx));
620 } else if (path->p_ext) {
621 ext_debug(" %d:[%d]%d:%llu ",
622 le32_to_cpu(path->p_ext->ee_block),
623 ext4_ext_is_uninitialized(path->p_ext),
624 ext4_ext_get_actual_len(path->p_ext),
625 ext4_ext_pblock(path->p_ext));
626 } else
627 ext_debug(" []");
628 }
629 ext_debug("\n");
630 }
631
632 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
633 {
634 int depth = ext_depth(inode);
635 struct ext4_extent_header *eh;
636 struct ext4_extent *ex;
637 int i;
638
639 if (!path)
640 return;
641
642 eh = path[depth].p_hdr;
643 ex = EXT_FIRST_EXTENT(eh);
644
645 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
646
647 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
648 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
649 ext4_ext_is_uninitialized(ex),
650 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
651 }
652 ext_debug("\n");
653 }
654
655 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
656 ext4_fsblk_t newblock, int level)
657 {
658 int depth = ext_depth(inode);
659 struct ext4_extent *ex;
660
661 if (depth != level) {
662 struct ext4_extent_idx *idx;
663 idx = path[level].p_idx;
664 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
665 ext_debug("%d: move %d:%llu in new index %llu\n", level,
666 le32_to_cpu(idx->ei_block),
667 ext4_idx_pblock(idx),
668 newblock);
669 idx++;
670 }
671
672 return;
673 }
674
675 ex = path[depth].p_ext;
676 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
677 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
678 le32_to_cpu(ex->ee_block),
679 ext4_ext_pblock(ex),
680 ext4_ext_is_uninitialized(ex),
681 ext4_ext_get_actual_len(ex),
682 newblock);
683 ex++;
684 }
685 }
686
687 #else
688 #define ext4_ext_show_path(inode, path)
689 #define ext4_ext_show_leaf(inode, path)
690 #define ext4_ext_show_move(inode, path, newblock, level)
691 #endif
692
693 void ext4_ext_drop_refs(struct ext4_ext_path *path)
694 {
695 int depth = path->p_depth;
696 int i;
697
698 for (i = 0; i <= depth; i++, path++)
699 if (path->p_bh) {
700 brelse(path->p_bh);
701 path->p_bh = NULL;
702 }
703 }
704
705 /*
706 * ext4_ext_binsearch_idx:
707 * binary search for the closest index of the given block
708 * the header must be checked before calling this
709 */
710 static void
711 ext4_ext_binsearch_idx(struct inode *inode,
712 struct ext4_ext_path *path, ext4_lblk_t block)
713 {
714 struct ext4_extent_header *eh = path->p_hdr;
715 struct ext4_extent_idx *r, *l, *m;
716
717
718 ext_debug("binsearch for %u(idx): ", block);
719
720 l = EXT_FIRST_INDEX(eh) + 1;
721 r = EXT_LAST_INDEX(eh);
722 while (l <= r) {
723 m = l + (r - l) / 2;
724 if (block < le32_to_cpu(m->ei_block))
725 r = m - 1;
726 else
727 l = m + 1;
728 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
729 m, le32_to_cpu(m->ei_block),
730 r, le32_to_cpu(r->ei_block));
731 }
732
733 path->p_idx = l - 1;
734 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
735 ext4_idx_pblock(path->p_idx));
736
737 #ifdef CHECK_BINSEARCH
738 {
739 struct ext4_extent_idx *chix, *ix;
740 int k;
741
742 chix = ix = EXT_FIRST_INDEX(eh);
743 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
744 if (k != 0 &&
745 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
746 printk(KERN_DEBUG "k=%d, ix=0x%p, "
747 "first=0x%p\n", k,
748 ix, EXT_FIRST_INDEX(eh));
749 printk(KERN_DEBUG "%u <= %u\n",
750 le32_to_cpu(ix->ei_block),
751 le32_to_cpu(ix[-1].ei_block));
752 }
753 BUG_ON(k && le32_to_cpu(ix->ei_block)
754 <= le32_to_cpu(ix[-1].ei_block));
755 if (block < le32_to_cpu(ix->ei_block))
756 break;
757 chix = ix;
758 }
759 BUG_ON(chix != path->p_idx);
760 }
761 #endif
762
763 }
764
765 /*
766 * ext4_ext_binsearch:
767 * binary search for closest extent of the given block
768 * the header must be checked before calling this
769 */
770 static void
771 ext4_ext_binsearch(struct inode *inode,
772 struct ext4_ext_path *path, ext4_lblk_t block)
773 {
774 struct ext4_extent_header *eh = path->p_hdr;
775 struct ext4_extent *r, *l, *m;
776
777 if (eh->eh_entries == 0) {
778 /*
779 * this leaf is empty:
780 * we get such a leaf in split/add case
781 */
782 return;
783 }
784
785 ext_debug("binsearch for %u: ", block);
786
787 l = EXT_FIRST_EXTENT(eh) + 1;
788 r = EXT_LAST_EXTENT(eh);
789
790 while (l <= r) {
791 m = l + (r - l) / 2;
792 if (block < le32_to_cpu(m->ee_block))
793 r = m - 1;
794 else
795 l = m + 1;
796 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
797 m, le32_to_cpu(m->ee_block),
798 r, le32_to_cpu(r->ee_block));
799 }
800
801 path->p_ext = l - 1;
802 ext_debug(" -> %d:%llu:[%d]%d ",
803 le32_to_cpu(path->p_ext->ee_block),
804 ext4_ext_pblock(path->p_ext),
805 ext4_ext_is_uninitialized(path->p_ext),
806 ext4_ext_get_actual_len(path->p_ext));
807
808 #ifdef CHECK_BINSEARCH
809 {
810 struct ext4_extent *chex, *ex;
811 int k;
812
813 chex = ex = EXT_FIRST_EXTENT(eh);
814 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
815 BUG_ON(k && le32_to_cpu(ex->ee_block)
816 <= le32_to_cpu(ex[-1].ee_block));
817 if (block < le32_to_cpu(ex->ee_block))
818 break;
819 chex = ex;
820 }
821 BUG_ON(chex != path->p_ext);
822 }
823 #endif
824
825 }
826
827 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
828 {
829 struct ext4_extent_header *eh;
830
831 eh = ext_inode_hdr(inode);
832 eh->eh_depth = 0;
833 eh->eh_entries = 0;
834 eh->eh_magic = EXT4_EXT_MAGIC;
835 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
836 ext4_mark_inode_dirty(handle, inode);
837 return 0;
838 }
839
840 struct ext4_ext_path *
841 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
842 struct ext4_ext_path *path, int flags)
843 {
844 struct ext4_extent_header *eh;
845 struct buffer_head *bh;
846 short int depth, i, ppos = 0, alloc = 0;
847 int ret;
848
849 eh = ext_inode_hdr(inode);
850 depth = ext_depth(inode);
851
852 /* account possible depth increase */
853 if (!path) {
854 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
855 GFP_NOFS);
856 if (!path)
857 return ERR_PTR(-ENOMEM);
858 alloc = 1;
859 }
860 path[0].p_hdr = eh;
861 path[0].p_bh = NULL;
862
863 i = depth;
864 /* walk through the tree */
865 while (i) {
866 ext_debug("depth %d: num %d, max %d\n",
867 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
868
869 ext4_ext_binsearch_idx(inode, path + ppos, block);
870 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
871 path[ppos].p_depth = i;
872 path[ppos].p_ext = NULL;
873
874 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
875 flags);
876 if (IS_ERR(bh)) {
877 ret = PTR_ERR(bh);
878 goto err;
879 }
880
881 eh = ext_block_hdr(bh);
882 ppos++;
883 if (unlikely(ppos > depth)) {
884 put_bh(bh);
885 EXT4_ERROR_INODE(inode,
886 "ppos %d > depth %d", ppos, depth);
887 ret = -EIO;
888 goto err;
889 }
890 path[ppos].p_bh = bh;
891 path[ppos].p_hdr = eh;
892 }
893
894 path[ppos].p_depth = i;
895 path[ppos].p_ext = NULL;
896 path[ppos].p_idx = NULL;
897
898 /* find extent */
899 ext4_ext_binsearch(inode, path + ppos, block);
900 /* if not an empty leaf */
901 if (path[ppos].p_ext)
902 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
903
904 ext4_ext_show_path(inode, path);
905
906 return path;
907
908 err:
909 ext4_ext_drop_refs(path);
910 if (alloc)
911 kfree(path);
912 return ERR_PTR(ret);
913 }
914
915 /*
916 * ext4_ext_insert_index:
917 * insert new index [@logical;@ptr] into the block at @curp;
918 * check where to insert: before @curp or after @curp
919 */
920 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
921 struct ext4_ext_path *curp,
922 int logical, ext4_fsblk_t ptr)
923 {
924 struct ext4_extent_idx *ix;
925 int len, err;
926
927 err = ext4_ext_get_access(handle, inode, curp);
928 if (err)
929 return err;
930
931 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
932 EXT4_ERROR_INODE(inode,
933 "logical %d == ei_block %d!",
934 logical, le32_to_cpu(curp->p_idx->ei_block));
935 return -EIO;
936 }
937
938 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
939 >= le16_to_cpu(curp->p_hdr->eh_max))) {
940 EXT4_ERROR_INODE(inode,
941 "eh_entries %d >= eh_max %d!",
942 le16_to_cpu(curp->p_hdr->eh_entries),
943 le16_to_cpu(curp->p_hdr->eh_max));
944 return -EIO;
945 }
946
947 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
948 /* insert after */
949 ext_debug("insert new index %d after: %llu\n", logical, ptr);
950 ix = curp->p_idx + 1;
951 } else {
952 /* insert before */
953 ext_debug("insert new index %d before: %llu\n", logical, ptr);
954 ix = curp->p_idx;
955 }
956
957 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
958 BUG_ON(len < 0);
959 if (len > 0) {
960 ext_debug("insert new index %d: "
961 "move %d indices from 0x%p to 0x%p\n",
962 logical, len, ix, ix + 1);
963 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
964 }
965
966 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
967 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
968 return -EIO;
969 }
970
971 ix->ei_block = cpu_to_le32(logical);
972 ext4_idx_store_pblock(ix, ptr);
973 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
974
975 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
976 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
977 return -EIO;
978 }
979
980 err = ext4_ext_dirty(handle, inode, curp);
981 ext4_std_error(inode->i_sb, err);
982
983 return err;
984 }
985
986 /*
987 * ext4_ext_split:
988 * inserts new subtree into the path, using free index entry
989 * at depth @at:
990 * - allocates all needed blocks (new leaf and all intermediate index blocks)
991 * - makes decision where to split
992 * - moves remaining extents and index entries (right to the split point)
993 * into the newly allocated blocks
994 * - initializes subtree
995 */
996 static int ext4_ext_split(handle_t *handle, struct inode *inode,
997 unsigned int flags,
998 struct ext4_ext_path *path,
999 struct ext4_extent *newext, int at)
1000 {
1001 struct buffer_head *bh = NULL;
1002 int depth = ext_depth(inode);
1003 struct ext4_extent_header *neh;
1004 struct ext4_extent_idx *fidx;
1005 int i = at, k, m, a;
1006 ext4_fsblk_t newblock, oldblock;
1007 __le32 border;
1008 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009 int err = 0;
1010
1011 /* make decision: where to split? */
1012 /* FIXME: now decision is simplest: at current extent */
1013
1014 /* if current leaf will be split, then we should use
1015 * border from split point */
1016 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018 return -EIO;
1019 }
1020 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021 border = path[depth].p_ext[1].ee_block;
1022 ext_debug("leaf will be split."
1023 " next leaf starts at %d\n",
1024 le32_to_cpu(border));
1025 } else {
1026 border = newext->ee_block;
1027 ext_debug("leaf will be added."
1028 " next leaf starts at %d\n",
1029 le32_to_cpu(border));
1030 }
1031
1032 /*
1033 * If error occurs, then we break processing
1034 * and mark filesystem read-only. index won't
1035 * be inserted and tree will be in consistent
1036 * state. Next mount will repair buffers too.
1037 */
1038
1039 /*
1040 * Get array to track all allocated blocks.
1041 * We need this to handle errors and free blocks
1042 * upon them.
1043 */
1044 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045 if (!ablocks)
1046 return -ENOMEM;
1047
1048 /* allocate all needed blocks */
1049 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050 for (a = 0; a < depth - at; a++) {
1051 newblock = ext4_ext_new_meta_block(handle, inode, path,
1052 newext, &err, flags);
1053 if (newblock == 0)
1054 goto cleanup;
1055 ablocks[a] = newblock;
1056 }
1057
1058 /* initialize new leaf */
1059 newblock = ablocks[--a];
1060 if (unlikely(newblock == 0)) {
1061 EXT4_ERROR_INODE(inode, "newblock == 0!");
1062 err = -EIO;
1063 goto cleanup;
1064 }
1065 bh = sb_getblk(inode->i_sb, newblock);
1066 if (unlikely(!bh)) {
1067 err = -ENOMEM;
1068 goto cleanup;
1069 }
1070 lock_buffer(bh);
1071
1072 err = ext4_journal_get_create_access(handle, bh);
1073 if (err)
1074 goto cleanup;
1075
1076 neh = ext_block_hdr(bh);
1077 neh->eh_entries = 0;
1078 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079 neh->eh_magic = EXT4_EXT_MAGIC;
1080 neh->eh_depth = 0;
1081
1082 /* move remainder of path[depth] to the new leaf */
1083 if (unlikely(path[depth].p_hdr->eh_entries !=
1084 path[depth].p_hdr->eh_max)) {
1085 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086 path[depth].p_hdr->eh_entries,
1087 path[depth].p_hdr->eh_max);
1088 err = -EIO;
1089 goto cleanup;
1090 }
1091 /* start copy from next extent */
1092 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093 ext4_ext_show_move(inode, path, newblock, depth);
1094 if (m) {
1095 struct ext4_extent *ex;
1096 ex = EXT_FIRST_EXTENT(neh);
1097 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098 le16_add_cpu(&neh->eh_entries, m);
1099 }
1100
1101 ext4_extent_block_csum_set(inode, neh);
1102 set_buffer_uptodate(bh);
1103 unlock_buffer(bh);
1104
1105 err = ext4_handle_dirty_metadata(handle, inode, bh);
1106 if (err)
1107 goto cleanup;
1108 brelse(bh);
1109 bh = NULL;
1110
1111 /* correct old leaf */
1112 if (m) {
1113 err = ext4_ext_get_access(handle, inode, path + depth);
1114 if (err)
1115 goto cleanup;
1116 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117 err = ext4_ext_dirty(handle, inode, path + depth);
1118 if (err)
1119 goto cleanup;
1120
1121 }
1122
1123 /* create intermediate indexes */
1124 k = depth - at - 1;
1125 if (unlikely(k < 0)) {
1126 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127 err = -EIO;
1128 goto cleanup;
1129 }
1130 if (k)
1131 ext_debug("create %d intermediate indices\n", k);
1132 /* insert new index into current index block */
1133 /* current depth stored in i var */
1134 i = depth - 1;
1135 while (k--) {
1136 oldblock = newblock;
1137 newblock = ablocks[--a];
1138 bh = sb_getblk(inode->i_sb, newblock);
1139 if (unlikely(!bh)) {
1140 err = -ENOMEM;
1141 goto cleanup;
1142 }
1143 lock_buffer(bh);
1144
1145 err = ext4_journal_get_create_access(handle, bh);
1146 if (err)
1147 goto cleanup;
1148
1149 neh = ext_block_hdr(bh);
1150 neh->eh_entries = cpu_to_le16(1);
1151 neh->eh_magic = EXT4_EXT_MAGIC;
1152 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153 neh->eh_depth = cpu_to_le16(depth - i);
1154 fidx = EXT_FIRST_INDEX(neh);
1155 fidx->ei_block = border;
1156 ext4_idx_store_pblock(fidx, oldblock);
1157
1158 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159 i, newblock, le32_to_cpu(border), oldblock);
1160
1161 /* move remainder of path[i] to the new index block */
1162 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163 EXT_LAST_INDEX(path[i].p_hdr))) {
1164 EXT4_ERROR_INODE(inode,
1165 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166 le32_to_cpu(path[i].p_ext->ee_block));
1167 err = -EIO;
1168 goto cleanup;
1169 }
1170 /* start copy indexes */
1171 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173 EXT_MAX_INDEX(path[i].p_hdr));
1174 ext4_ext_show_move(inode, path, newblock, i);
1175 if (m) {
1176 memmove(++fidx, path[i].p_idx,
1177 sizeof(struct ext4_extent_idx) * m);
1178 le16_add_cpu(&neh->eh_entries, m);
1179 }
1180 ext4_extent_block_csum_set(inode, neh);
1181 set_buffer_uptodate(bh);
1182 unlock_buffer(bh);
1183
1184 err = ext4_handle_dirty_metadata(handle, inode, bh);
1185 if (err)
1186 goto cleanup;
1187 brelse(bh);
1188 bh = NULL;
1189
1190 /* correct old index */
1191 if (m) {
1192 err = ext4_ext_get_access(handle, inode, path + i);
1193 if (err)
1194 goto cleanup;
1195 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196 err = ext4_ext_dirty(handle, inode, path + i);
1197 if (err)
1198 goto cleanup;
1199 }
1200
1201 i--;
1202 }
1203
1204 /* insert new index */
1205 err = ext4_ext_insert_index(handle, inode, path + at,
1206 le32_to_cpu(border), newblock);
1207
1208 cleanup:
1209 if (bh) {
1210 if (buffer_locked(bh))
1211 unlock_buffer(bh);
1212 brelse(bh);
1213 }
1214
1215 if (err) {
1216 /* free all allocated blocks in error case */
1217 for (i = 0; i < depth; i++) {
1218 if (!ablocks[i])
1219 continue;
1220 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221 EXT4_FREE_BLOCKS_METADATA);
1222 }
1223 }
1224 kfree(ablocks);
1225
1226 return err;
1227 }
1228
1229 /*
1230 * ext4_ext_grow_indepth:
1231 * implements tree growing procedure:
1232 * - allocates new block
1233 * - moves top-level data (index block or leaf) into the new block
1234 * - initializes new top-level, creating index that points to the
1235 * just created block
1236 */
1237 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238 unsigned int flags,
1239 struct ext4_extent *newext)
1240 {
1241 struct ext4_extent_header *neh;
1242 struct buffer_head *bh;
1243 ext4_fsblk_t newblock;
1244 int err = 0;
1245
1246 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247 newext, &err, flags);
1248 if (newblock == 0)
1249 return err;
1250
1251 bh = sb_getblk(inode->i_sb, newblock);
1252 if (unlikely(!bh))
1253 return -ENOMEM;
1254 lock_buffer(bh);
1255
1256 err = ext4_journal_get_create_access(handle, bh);
1257 if (err) {
1258 unlock_buffer(bh);
1259 goto out;
1260 }
1261
1262 /* move top-level index/leaf into new block */
1263 memmove(bh->b_data, EXT4_I(inode)->i_data,
1264 sizeof(EXT4_I(inode)->i_data));
1265
1266 /* set size of new block */
1267 neh = ext_block_hdr(bh);
1268 /* old root could have indexes or leaves
1269 * so calculate e_max right way */
1270 if (ext_depth(inode))
1271 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272 else
1273 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274 neh->eh_magic = EXT4_EXT_MAGIC;
1275 ext4_extent_block_csum_set(inode, neh);
1276 set_buffer_uptodate(bh);
1277 unlock_buffer(bh);
1278
1279 err = ext4_handle_dirty_metadata(handle, inode, bh);
1280 if (err)
1281 goto out;
1282
1283 /* Update top-level index: num,max,pointer */
1284 neh = ext_inode_hdr(inode);
1285 neh->eh_entries = cpu_to_le16(1);
1286 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287 if (neh->eh_depth == 0) {
1288 /* Root extent block becomes index block */
1289 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290 EXT_FIRST_INDEX(neh)->ei_block =
1291 EXT_FIRST_EXTENT(neh)->ee_block;
1292 }
1293 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1297
1298 le16_add_cpu(&neh->eh_depth, 1);
1299 ext4_mark_inode_dirty(handle, inode);
1300 out:
1301 brelse(bh);
1302
1303 return err;
1304 }
1305
1306 /*
1307 * ext4_ext_create_new_leaf:
1308 * finds empty index and adds new leaf.
1309 * if no free index is found, then it requests in-depth growing.
1310 */
1311 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312 unsigned int mb_flags,
1313 unsigned int gb_flags,
1314 struct ext4_ext_path *path,
1315 struct ext4_extent *newext)
1316 {
1317 struct ext4_ext_path *curp;
1318 int depth, i, err = 0;
1319
1320 repeat:
1321 i = depth = ext_depth(inode);
1322
1323 /* walk up to the tree and look for free index entry */
1324 curp = path + depth;
1325 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326 i--;
1327 curp--;
1328 }
1329
1330 /* we use already allocated block for index block,
1331 * so subsequent data blocks should be contiguous */
1332 if (EXT_HAS_FREE_INDEX(curp)) {
1333 /* if we found index with free entry, then use that
1334 * entry: create all needed subtree and add new leaf */
1335 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336 if (err)
1337 goto out;
1338
1339 /* refill path */
1340 ext4_ext_drop_refs(path);
1341 path = ext4_ext_find_extent(inode,
1342 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343 path, gb_flags);
1344 if (IS_ERR(path))
1345 err = PTR_ERR(path);
1346 } else {
1347 /* tree is full, time to grow in depth */
1348 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1349 if (err)
1350 goto out;
1351
1352 /* refill path */
1353 ext4_ext_drop_refs(path);
1354 path = ext4_ext_find_extent(inode,
1355 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356 path, gb_flags);
1357 if (IS_ERR(path)) {
1358 err = PTR_ERR(path);
1359 goto out;
1360 }
1361
1362 /*
1363 * only first (depth 0 -> 1) produces free space;
1364 * in all other cases we have to split the grown tree
1365 */
1366 depth = ext_depth(inode);
1367 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368 /* now we need to split */
1369 goto repeat;
1370 }
1371 }
1372
1373 out:
1374 return err;
1375 }
1376
1377 /*
1378 * search the closest allocated block to the left for *logical
1379 * and returns it at @logical + it's physical address at @phys
1380 * if *logical is the smallest allocated block, the function
1381 * returns 0 at @phys
1382 * return value contains 0 (success) or error code
1383 */
1384 static int ext4_ext_search_left(struct inode *inode,
1385 struct ext4_ext_path *path,
1386 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1387 {
1388 struct ext4_extent_idx *ix;
1389 struct ext4_extent *ex;
1390 int depth, ee_len;
1391
1392 if (unlikely(path == NULL)) {
1393 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394 return -EIO;
1395 }
1396 depth = path->p_depth;
1397 *phys = 0;
1398
1399 if (depth == 0 && path->p_ext == NULL)
1400 return 0;
1401
1402 /* usually extent in the path covers blocks smaller
1403 * then *logical, but it can be that extent is the
1404 * first one in the file */
1405
1406 ex = path[depth].p_ext;
1407 ee_len = ext4_ext_get_actual_len(ex);
1408 if (*logical < le32_to_cpu(ex->ee_block)) {
1409 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410 EXT4_ERROR_INODE(inode,
1411 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412 *logical, le32_to_cpu(ex->ee_block));
1413 return -EIO;
1414 }
1415 while (--depth >= 0) {
1416 ix = path[depth].p_idx;
1417 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418 EXT4_ERROR_INODE(inode,
1419 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423 depth);
1424 return -EIO;
1425 }
1426 }
1427 return 0;
1428 }
1429
1430 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431 EXT4_ERROR_INODE(inode,
1432 "logical %d < ee_block %d + ee_len %d!",
1433 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434 return -EIO;
1435 }
1436
1437 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1439 return 0;
1440 }
1441
1442 /*
1443 * search the closest allocated block to the right for *logical
1444 * and returns it at @logical + it's physical address at @phys
1445 * if *logical is the largest allocated block, the function
1446 * returns 0 at @phys
1447 * return value contains 0 (success) or error code
1448 */
1449 static int ext4_ext_search_right(struct inode *inode,
1450 struct ext4_ext_path *path,
1451 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452 struct ext4_extent **ret_ex)
1453 {
1454 struct buffer_head *bh = NULL;
1455 struct ext4_extent_header *eh;
1456 struct ext4_extent_idx *ix;
1457 struct ext4_extent *ex;
1458 ext4_fsblk_t block;
1459 int depth; /* Note, NOT eh_depth; depth from top of tree */
1460 int ee_len;
1461
1462 if (unlikely(path == NULL)) {
1463 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464 return -EIO;
1465 }
1466 depth = path->p_depth;
1467 *phys = 0;
1468
1469 if (depth == 0 && path->p_ext == NULL)
1470 return 0;
1471
1472 /* usually extent in the path covers blocks smaller
1473 * then *logical, but it can be that extent is the
1474 * first one in the file */
1475
1476 ex = path[depth].p_ext;
1477 ee_len = ext4_ext_get_actual_len(ex);
1478 if (*logical < le32_to_cpu(ex->ee_block)) {
1479 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480 EXT4_ERROR_INODE(inode,
1481 "first_extent(path[%d].p_hdr) != ex",
1482 depth);
1483 return -EIO;
1484 }
1485 while (--depth >= 0) {
1486 ix = path[depth].p_idx;
1487 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488 EXT4_ERROR_INODE(inode,
1489 "ix != EXT_FIRST_INDEX *logical %d!",
1490 *logical);
1491 return -EIO;
1492 }
1493 }
1494 goto found_extent;
1495 }
1496
1497 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498 EXT4_ERROR_INODE(inode,
1499 "logical %d < ee_block %d + ee_len %d!",
1500 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501 return -EIO;
1502 }
1503
1504 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505 /* next allocated block in this leaf */
1506 ex++;
1507 goto found_extent;
1508 }
1509
1510 /* go up and search for index to the right */
1511 while (--depth >= 0) {
1512 ix = path[depth].p_idx;
1513 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514 goto got_index;
1515 }
1516
1517 /* we've gone up to the root and found no index to the right */
1518 return 0;
1519
1520 got_index:
1521 /* we've found index to the right, let's
1522 * follow it and find the closest allocated
1523 * block to the right */
1524 ix++;
1525 block = ext4_idx_pblock(ix);
1526 while (++depth < path->p_depth) {
1527 /* subtract from p_depth to get proper eh_depth */
1528 bh = read_extent_tree_block(inode, block,
1529 path->p_depth - depth, 0);
1530 if (IS_ERR(bh))
1531 return PTR_ERR(bh);
1532 eh = ext_block_hdr(bh);
1533 ix = EXT_FIRST_INDEX(eh);
1534 block = ext4_idx_pblock(ix);
1535 put_bh(bh);
1536 }
1537
1538 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539 if (IS_ERR(bh))
1540 return PTR_ERR(bh);
1541 eh = ext_block_hdr(bh);
1542 ex = EXT_FIRST_EXTENT(eh);
1543 found_extent:
1544 *logical = le32_to_cpu(ex->ee_block);
1545 *phys = ext4_ext_pblock(ex);
1546 *ret_ex = ex;
1547 if (bh)
1548 put_bh(bh);
1549 return 0;
1550 }
1551
1552 /*
1553 * ext4_ext_next_allocated_block:
1554 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555 * NOTE: it considers block number from index entry as
1556 * allocated block. Thus, index entries have to be consistent
1557 * with leaves.
1558 */
1559 static ext4_lblk_t
1560 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1561 {
1562 int depth;
1563
1564 BUG_ON(path == NULL);
1565 depth = path->p_depth;
1566
1567 if (depth == 0 && path->p_ext == NULL)
1568 return EXT_MAX_BLOCKS;
1569
1570 while (depth >= 0) {
1571 if (depth == path->p_depth) {
1572 /* leaf */
1573 if (path[depth].p_ext &&
1574 path[depth].p_ext !=
1575 EXT_LAST_EXTENT(path[depth].p_hdr))
1576 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577 } else {
1578 /* index */
1579 if (path[depth].p_idx !=
1580 EXT_LAST_INDEX(path[depth].p_hdr))
1581 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1582 }
1583 depth--;
1584 }
1585
1586 return EXT_MAX_BLOCKS;
1587 }
1588
1589 /*
1590 * ext4_ext_next_leaf_block:
1591 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1592 */
1593 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1594 {
1595 int depth;
1596
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1599
1600 /* zero-tree has no leaf blocks at all */
1601 if (depth == 0)
1602 return EXT_MAX_BLOCKS;
1603
1604 /* go to index block */
1605 depth--;
1606
1607 while (depth >= 0) {
1608 if (path[depth].p_idx !=
1609 EXT_LAST_INDEX(path[depth].p_hdr))
1610 return (ext4_lblk_t)
1611 le32_to_cpu(path[depth].p_idx[1].ei_block);
1612 depth--;
1613 }
1614
1615 return EXT_MAX_BLOCKS;
1616 }
1617
1618 /*
1619 * ext4_ext_correct_indexes:
1620 * if leaf gets modified and modified extent is first in the leaf,
1621 * then we have to correct all indexes above.
1622 * TODO: do we need to correct tree in all cases?
1623 */
1624 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625 struct ext4_ext_path *path)
1626 {
1627 struct ext4_extent_header *eh;
1628 int depth = ext_depth(inode);
1629 struct ext4_extent *ex;
1630 __le32 border;
1631 int k, err = 0;
1632
1633 eh = path[depth].p_hdr;
1634 ex = path[depth].p_ext;
1635
1636 if (unlikely(ex == NULL || eh == NULL)) {
1637 EXT4_ERROR_INODE(inode,
1638 "ex %p == NULL or eh %p == NULL", ex, eh);
1639 return -EIO;
1640 }
1641
1642 if (depth == 0) {
1643 /* there is no tree at all */
1644 return 0;
1645 }
1646
1647 if (ex != EXT_FIRST_EXTENT(eh)) {
1648 /* we correct tree if first leaf got modified only */
1649 return 0;
1650 }
1651
1652 /*
1653 * TODO: we need correction if border is smaller than current one
1654 */
1655 k = depth - 1;
1656 border = path[depth].p_ext->ee_block;
1657 err = ext4_ext_get_access(handle, inode, path + k);
1658 if (err)
1659 return err;
1660 path[k].p_idx->ei_block = border;
1661 err = ext4_ext_dirty(handle, inode, path + k);
1662 if (err)
1663 return err;
1664
1665 while (k--) {
1666 /* change all left-side indexes */
1667 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668 break;
1669 err = ext4_ext_get_access(handle, inode, path + k);
1670 if (err)
1671 break;
1672 path[k].p_idx->ei_block = border;
1673 err = ext4_ext_dirty(handle, inode, path + k);
1674 if (err)
1675 break;
1676 }
1677
1678 return err;
1679 }
1680
1681 int
1682 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683 struct ext4_extent *ex2)
1684 {
1685 unsigned short ext1_ee_len, ext2_ee_len;
1686
1687 /*
1688 * Make sure that both extents are initialized. We don't merge
1689 * uninitialized extents so that we can be sure that end_io code has
1690 * the extent that was written properly split out and conversion to
1691 * initialized is trivial.
1692 */
1693 if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694 return 0;
1695
1696 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1698
1699 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700 le32_to_cpu(ex2->ee_block))
1701 return 0;
1702
1703 /*
1704 * To allow future support for preallocated extents to be added
1705 * as an RO_COMPAT feature, refuse to merge to extents if
1706 * this can result in the top bit of ee_len being set.
1707 */
1708 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709 return 0;
1710 if (ext4_ext_is_uninitialized(ex1) &&
1711 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713 (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714 return 0;
1715 #ifdef AGGRESSIVE_TEST
1716 if (ext1_ee_len >= 4)
1717 return 0;
1718 #endif
1719
1720 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721 return 1;
1722 return 0;
1723 }
1724
1725 /*
1726 * This function tries to merge the "ex" extent to the next extent in the tree.
1727 * It always tries to merge towards right. If you want to merge towards
1728 * left, pass "ex - 1" as argument instead of "ex".
1729 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730 * 1 if they got merged.
1731 */
1732 static int ext4_ext_try_to_merge_right(struct inode *inode,
1733 struct ext4_ext_path *path,
1734 struct ext4_extent *ex)
1735 {
1736 struct ext4_extent_header *eh;
1737 unsigned int depth, len;
1738 int merge_done = 0, uninit;
1739
1740 depth = ext_depth(inode);
1741 BUG_ON(path[depth].p_hdr == NULL);
1742 eh = path[depth].p_hdr;
1743
1744 while (ex < EXT_LAST_EXTENT(eh)) {
1745 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746 break;
1747 /* merge with next extent! */
1748 uninit = ext4_ext_is_uninitialized(ex);
1749 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750 + ext4_ext_get_actual_len(ex + 1));
1751 if (uninit)
1752 ext4_ext_mark_uninitialized(ex);
1753
1754 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756 * sizeof(struct ext4_extent);
1757 memmove(ex + 1, ex + 2, len);
1758 }
1759 le16_add_cpu(&eh->eh_entries, -1);
1760 merge_done = 1;
1761 WARN_ON(eh->eh_entries == 0);
1762 if (!eh->eh_entries)
1763 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1764 }
1765
1766 return merge_done;
1767 }
1768
1769 /*
1770 * This function does a very simple check to see if we can collapse
1771 * an extent tree with a single extent tree leaf block into the inode.
1772 */
1773 static void ext4_ext_try_to_merge_up(handle_t *handle,
1774 struct inode *inode,
1775 struct ext4_ext_path *path)
1776 {
1777 size_t s;
1778 unsigned max_root = ext4_ext_space_root(inode, 0);
1779 ext4_fsblk_t blk;
1780
1781 if ((path[0].p_depth != 1) ||
1782 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784 return;
1785
1786 /*
1787 * We need to modify the block allocation bitmap and the block
1788 * group descriptor to release the extent tree block. If we
1789 * can't get the journal credits, give up.
1790 */
1791 if (ext4_journal_extend(handle, 2))
1792 return;
1793
1794 /*
1795 * Copy the extent data up to the inode
1796 */
1797 blk = ext4_idx_pblock(path[0].p_idx);
1798 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799 sizeof(struct ext4_extent_idx);
1800 s += sizeof(struct ext4_extent_header);
1801
1802 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803 path[0].p_depth = 0;
1804 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1807
1808 brelse(path[1].p_bh);
1809 ext4_free_blocks(handle, inode, NULL, blk, 1,
1810 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811 EXT4_FREE_BLOCKS_RESERVE);
1812 }
1813
1814 /*
1815 * This function tries to merge the @ex extent to neighbours in the tree.
1816 * return 1 if merge left else 0.
1817 */
1818 static void ext4_ext_try_to_merge(handle_t *handle,
1819 struct inode *inode,
1820 struct ext4_ext_path *path,
1821 struct ext4_extent *ex) {
1822 struct ext4_extent_header *eh;
1823 unsigned int depth;
1824 int merge_done = 0;
1825
1826 depth = ext_depth(inode);
1827 BUG_ON(path[depth].p_hdr == NULL);
1828 eh = path[depth].p_hdr;
1829
1830 if (ex > EXT_FIRST_EXTENT(eh))
1831 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1832
1833 if (!merge_done)
1834 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1835
1836 ext4_ext_try_to_merge_up(handle, inode, path);
1837 }
1838
1839 /*
1840 * check if a portion of the "newext" extent overlaps with an
1841 * existing extent.
1842 *
1843 * If there is an overlap discovered, it updates the length of the newext
1844 * such that there will be no overlap, and then returns 1.
1845 * If there is no overlap found, it returns 0.
1846 */
1847 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848 struct inode *inode,
1849 struct ext4_extent *newext,
1850 struct ext4_ext_path *path)
1851 {
1852 ext4_lblk_t b1, b2;
1853 unsigned int depth, len1;
1854 unsigned int ret = 0;
1855
1856 b1 = le32_to_cpu(newext->ee_block);
1857 len1 = ext4_ext_get_actual_len(newext);
1858 depth = ext_depth(inode);
1859 if (!path[depth].p_ext)
1860 goto out;
1861 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1862
1863 /*
1864 * get the next allocated block if the extent in the path
1865 * is before the requested block(s)
1866 */
1867 if (b2 < b1) {
1868 b2 = ext4_ext_next_allocated_block(path);
1869 if (b2 == EXT_MAX_BLOCKS)
1870 goto out;
1871 b2 = EXT4_LBLK_CMASK(sbi, b2);
1872 }
1873
1874 /* check for wrap through zero on extent logical start block*/
1875 if (b1 + len1 < b1) {
1876 len1 = EXT_MAX_BLOCKS - b1;
1877 newext->ee_len = cpu_to_le16(len1);
1878 ret = 1;
1879 }
1880
1881 /* check for overlap */
1882 if (b1 + len1 > b2) {
1883 newext->ee_len = cpu_to_le16(b2 - b1);
1884 ret = 1;
1885 }
1886 out:
1887 return ret;
1888 }
1889
1890 /*
1891 * ext4_ext_insert_extent:
1892 * tries to merge requsted extent into the existing extent or
1893 * inserts requested extent as new one into the tree,
1894 * creating new leaf in the no-space case.
1895 */
1896 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897 struct ext4_ext_path *path,
1898 struct ext4_extent *newext, int gb_flags)
1899 {
1900 struct ext4_extent_header *eh;
1901 struct ext4_extent *ex, *fex;
1902 struct ext4_extent *nearex; /* nearest extent */
1903 struct ext4_ext_path *npath = NULL;
1904 int depth, len, err;
1905 ext4_lblk_t next;
1906 int mb_flags = 0, uninit;
1907
1908 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910 return -EIO;
1911 }
1912 depth = ext_depth(inode);
1913 ex = path[depth].p_ext;
1914 eh = path[depth].p_hdr;
1915 if (unlikely(path[depth].p_hdr == NULL)) {
1916 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917 return -EIO;
1918 }
1919
1920 /* try to insert block into found extent and return */
1921 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1922
1923 /*
1924 * Try to see whether we should rather test the extent on
1925 * right from ex, or from the left of ex. This is because
1926 * ext4_ext_find_extent() can return either extent on the
1927 * left, or on the right from the searched position. This
1928 * will make merging more effective.
1929 */
1930 if (ex < EXT_LAST_EXTENT(eh) &&
1931 (le32_to_cpu(ex->ee_block) +
1932 ext4_ext_get_actual_len(ex) <
1933 le32_to_cpu(newext->ee_block))) {
1934 ex += 1;
1935 goto prepend;
1936 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937 (le32_to_cpu(newext->ee_block) +
1938 ext4_ext_get_actual_len(newext) <
1939 le32_to_cpu(ex->ee_block)))
1940 ex -= 1;
1941
1942 /* Try to append newex to the ex */
1943 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944 ext_debug("append [%d]%d block to %u:[%d]%d"
1945 "(from %llu)\n",
1946 ext4_ext_is_uninitialized(newext),
1947 ext4_ext_get_actual_len(newext),
1948 le32_to_cpu(ex->ee_block),
1949 ext4_ext_is_uninitialized(ex),
1950 ext4_ext_get_actual_len(ex),
1951 ext4_ext_pblock(ex));
1952 err = ext4_ext_get_access(handle, inode,
1953 path + depth);
1954 if (err)
1955 return err;
1956 uninit = ext4_ext_is_uninitialized(ex);
1957 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958 + ext4_ext_get_actual_len(newext));
1959 if (uninit)
1960 ext4_ext_mark_uninitialized(ex);
1961 eh = path[depth].p_hdr;
1962 nearex = ex;
1963 goto merge;
1964 }
1965
1966 prepend:
1967 /* Try to prepend newex to the ex */
1968 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970 "(from %llu)\n",
1971 le32_to_cpu(newext->ee_block),
1972 ext4_ext_is_uninitialized(newext),
1973 ext4_ext_get_actual_len(newext),
1974 le32_to_cpu(ex->ee_block),
1975 ext4_ext_is_uninitialized(ex),
1976 ext4_ext_get_actual_len(ex),
1977 ext4_ext_pblock(ex));
1978 err = ext4_ext_get_access(handle, inode,
1979 path + depth);
1980 if (err)
1981 return err;
1982
1983 uninit = ext4_ext_is_uninitialized(ex);
1984 ex->ee_block = newext->ee_block;
1985 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987 + ext4_ext_get_actual_len(newext));
1988 if (uninit)
1989 ext4_ext_mark_uninitialized(ex);
1990 eh = path[depth].p_hdr;
1991 nearex = ex;
1992 goto merge;
1993 }
1994 }
1995
1996 depth = ext_depth(inode);
1997 eh = path[depth].p_hdr;
1998 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999 goto has_space;
2000
2001 /* probably next leaf has space for us? */
2002 fex = EXT_LAST_EXTENT(eh);
2003 next = EXT_MAX_BLOCKS;
2004 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005 next = ext4_ext_next_leaf_block(path);
2006 if (next != EXT_MAX_BLOCKS) {
2007 ext_debug("next leaf block - %u\n", next);
2008 BUG_ON(npath != NULL);
2009 npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010 if (IS_ERR(npath))
2011 return PTR_ERR(npath);
2012 BUG_ON(npath->p_depth != path->p_depth);
2013 eh = npath[depth].p_hdr;
2014 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015 ext_debug("next leaf isn't full(%d)\n",
2016 le16_to_cpu(eh->eh_entries));
2017 path = npath;
2018 goto has_space;
2019 }
2020 ext_debug("next leaf has no free space(%d,%d)\n",
2021 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2022 }
2023
2024 /*
2025 * There is no free space in the found leaf.
2026 * We're gonna add a new leaf in the tree.
2027 */
2028 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029 mb_flags = EXT4_MB_USE_RESERVED;
2030 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031 path, newext);
2032 if (err)
2033 goto cleanup;
2034 depth = ext_depth(inode);
2035 eh = path[depth].p_hdr;
2036
2037 has_space:
2038 nearex = path[depth].p_ext;
2039
2040 err = ext4_ext_get_access(handle, inode, path + depth);
2041 if (err)
2042 goto cleanup;
2043
2044 if (!nearex) {
2045 /* there is no extent in this leaf, create first one */
2046 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047 le32_to_cpu(newext->ee_block),
2048 ext4_ext_pblock(newext),
2049 ext4_ext_is_uninitialized(newext),
2050 ext4_ext_get_actual_len(newext));
2051 nearex = EXT_FIRST_EXTENT(eh);
2052 } else {
2053 if (le32_to_cpu(newext->ee_block)
2054 > le32_to_cpu(nearex->ee_block)) {
2055 /* Insert after */
2056 ext_debug("insert %u:%llu:[%d]%d before: "
2057 "nearest %p\n",
2058 le32_to_cpu(newext->ee_block),
2059 ext4_ext_pblock(newext),
2060 ext4_ext_is_uninitialized(newext),
2061 ext4_ext_get_actual_len(newext),
2062 nearex);
2063 nearex++;
2064 } else {
2065 /* Insert before */
2066 BUG_ON(newext->ee_block == nearex->ee_block);
2067 ext_debug("insert %u:%llu:[%d]%d after: "
2068 "nearest %p\n",
2069 le32_to_cpu(newext->ee_block),
2070 ext4_ext_pblock(newext),
2071 ext4_ext_is_uninitialized(newext),
2072 ext4_ext_get_actual_len(newext),
2073 nearex);
2074 }
2075 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076 if (len > 0) {
2077 ext_debug("insert %u:%llu:[%d]%d: "
2078 "move %d extents from 0x%p to 0x%p\n",
2079 le32_to_cpu(newext->ee_block),
2080 ext4_ext_pblock(newext),
2081 ext4_ext_is_uninitialized(newext),
2082 ext4_ext_get_actual_len(newext),
2083 len, nearex, nearex + 1);
2084 memmove(nearex + 1, nearex,
2085 len * sizeof(struct ext4_extent));
2086 }
2087 }
2088
2089 le16_add_cpu(&eh->eh_entries, 1);
2090 path[depth].p_ext = nearex;
2091 nearex->ee_block = newext->ee_block;
2092 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093 nearex->ee_len = newext->ee_len;
2094
2095 merge:
2096 /* try to merge extents */
2097 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098 ext4_ext_try_to_merge(handle, inode, path, nearex);
2099
2100
2101 /* time to correct all indexes above */
2102 err = ext4_ext_correct_indexes(handle, inode, path);
2103 if (err)
2104 goto cleanup;
2105
2106 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2107
2108 cleanup:
2109 if (npath) {
2110 ext4_ext_drop_refs(npath);
2111 kfree(npath);
2112 }
2113 return err;
2114 }
2115
2116 static int ext4_fill_fiemap_extents(struct inode *inode,
2117 ext4_lblk_t block, ext4_lblk_t num,
2118 struct fiemap_extent_info *fieinfo)
2119 {
2120 struct ext4_ext_path *path = NULL;
2121 struct ext4_extent *ex;
2122 struct extent_status es;
2123 ext4_lblk_t next, next_del, start = 0, end = 0;
2124 ext4_lblk_t last = block + num;
2125 int exists, depth = 0, err = 0;
2126 unsigned int flags = 0;
2127 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2128
2129 while (block < last && block != EXT_MAX_BLOCKS) {
2130 num = last - block;
2131 /* find extent for this block */
2132 down_read(&EXT4_I(inode)->i_data_sem);
2133
2134 if (path && ext_depth(inode) != depth) {
2135 /* depth was changed. we have to realloc path */
2136 kfree(path);
2137 path = NULL;
2138 }
2139
2140 path = ext4_ext_find_extent(inode, block, path, 0);
2141 if (IS_ERR(path)) {
2142 up_read(&EXT4_I(inode)->i_data_sem);
2143 err = PTR_ERR(path);
2144 path = NULL;
2145 break;
2146 }
2147
2148 depth = ext_depth(inode);
2149 if (unlikely(path[depth].p_hdr == NULL)) {
2150 up_read(&EXT4_I(inode)->i_data_sem);
2151 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152 err = -EIO;
2153 break;
2154 }
2155 ex = path[depth].p_ext;
2156 next = ext4_ext_next_allocated_block(path);
2157 ext4_ext_drop_refs(path);
2158
2159 flags = 0;
2160 exists = 0;
2161 if (!ex) {
2162 /* there is no extent yet, so try to allocate
2163 * all requested space */
2164 start = block;
2165 end = block + num;
2166 } else if (le32_to_cpu(ex->ee_block) > block) {
2167 /* need to allocate space before found extent */
2168 start = block;
2169 end = le32_to_cpu(ex->ee_block);
2170 if (block + num < end)
2171 end = block + num;
2172 } else if (block >= le32_to_cpu(ex->ee_block)
2173 + ext4_ext_get_actual_len(ex)) {
2174 /* need to allocate space after found extent */
2175 start = block;
2176 end = block + num;
2177 if (end >= next)
2178 end = next;
2179 } else if (block >= le32_to_cpu(ex->ee_block)) {
2180 /*
2181 * some part of requested space is covered
2182 * by found extent
2183 */
2184 start = block;
2185 end = le32_to_cpu(ex->ee_block)
2186 + ext4_ext_get_actual_len(ex);
2187 if (block + num < end)
2188 end = block + num;
2189 exists = 1;
2190 } else {
2191 BUG();
2192 }
2193 BUG_ON(end <= start);
2194
2195 if (!exists) {
2196 es.es_lblk = start;
2197 es.es_len = end - start;
2198 es.es_pblk = 0;
2199 } else {
2200 es.es_lblk = le32_to_cpu(ex->ee_block);
2201 es.es_len = ext4_ext_get_actual_len(ex);
2202 es.es_pblk = ext4_ext_pblock(ex);
2203 if (ext4_ext_is_uninitialized(ex))
2204 flags |= FIEMAP_EXTENT_UNWRITTEN;
2205 }
2206
2207 /*
2208 * Find delayed extent and update es accordingly. We call
2209 * it even in !exists case to find out whether es is the
2210 * last existing extent or not.
2211 */
2212 next_del = ext4_find_delayed_extent(inode, &es);
2213 if (!exists && next_del) {
2214 exists = 1;
2215 flags |= (FIEMAP_EXTENT_DELALLOC |
2216 FIEMAP_EXTENT_UNKNOWN);
2217 }
2218 up_read(&EXT4_I(inode)->i_data_sem);
2219
2220 if (unlikely(es.es_len == 0)) {
2221 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222 err = -EIO;
2223 break;
2224 }
2225
2226 /*
2227 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228 * we need to check next == EXT_MAX_BLOCKS because it is
2229 * possible that an extent is with unwritten and delayed
2230 * status due to when an extent is delayed allocated and
2231 * is allocated by fallocate status tree will track both of
2232 * them in a extent.
2233 *
2234 * So we could return a unwritten and delayed extent, and
2235 * its block is equal to 'next'.
2236 */
2237 if (next == next_del && next == EXT_MAX_BLOCKS) {
2238 flags |= FIEMAP_EXTENT_LAST;
2239 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240 next != EXT_MAX_BLOCKS)) {
2241 EXT4_ERROR_INODE(inode,
2242 "next extent == %u, next "
2243 "delalloc extent = %u",
2244 next, next_del);
2245 err = -EIO;
2246 break;
2247 }
2248 }
2249
2250 if (exists) {
2251 err = fiemap_fill_next_extent(fieinfo,
2252 (__u64)es.es_lblk << blksize_bits,
2253 (__u64)es.es_pblk << blksize_bits,
2254 (__u64)es.es_len << blksize_bits,
2255 flags);
2256 if (err < 0)
2257 break;
2258 if (err == 1) {
2259 err = 0;
2260 break;
2261 }
2262 }
2263
2264 block = es.es_lblk + es.es_len;
2265 }
2266
2267 if (path) {
2268 ext4_ext_drop_refs(path);
2269 kfree(path);
2270 }
2271
2272 return err;
2273 }
2274
2275 /*
2276 * ext4_ext_put_gap_in_cache:
2277 * calculate boundaries of the gap that the requested block fits into
2278 * and cache this gap
2279 */
2280 static void
2281 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282 ext4_lblk_t block)
2283 {
2284 int depth = ext_depth(inode);
2285 unsigned long len = 0;
2286 ext4_lblk_t lblock = 0;
2287 struct ext4_extent *ex;
2288
2289 ex = path[depth].p_ext;
2290 if (ex == NULL) {
2291 /*
2292 * there is no extent yet, so gap is [0;-] and we
2293 * don't cache it
2294 */
2295 ext_debug("cache gap(whole file):");
2296 } else if (block < le32_to_cpu(ex->ee_block)) {
2297 lblock = block;
2298 len = le32_to_cpu(ex->ee_block) - block;
2299 ext_debug("cache gap(before): %u [%u:%u]",
2300 block,
2301 le32_to_cpu(ex->ee_block),
2302 ext4_ext_get_actual_len(ex));
2303 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304 ext4_es_insert_extent(inode, lblock, len, ~0,
2305 EXTENT_STATUS_HOLE);
2306 } else if (block >= le32_to_cpu(ex->ee_block)
2307 + ext4_ext_get_actual_len(ex)) {
2308 ext4_lblk_t next;
2309 lblock = le32_to_cpu(ex->ee_block)
2310 + ext4_ext_get_actual_len(ex);
2311
2312 next = ext4_ext_next_allocated_block(path);
2313 ext_debug("cache gap(after): [%u:%u] %u",
2314 le32_to_cpu(ex->ee_block),
2315 ext4_ext_get_actual_len(ex),
2316 block);
2317 BUG_ON(next == lblock);
2318 len = next - lblock;
2319 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320 ext4_es_insert_extent(inode, lblock, len, ~0,
2321 EXTENT_STATUS_HOLE);
2322 } else {
2323 BUG();
2324 }
2325
2326 ext_debug(" -> %u:%lu\n", lblock, len);
2327 }
2328
2329 /*
2330 * ext4_ext_rm_idx:
2331 * removes index from the index block.
2332 */
2333 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334 struct ext4_ext_path *path, int depth)
2335 {
2336 int err;
2337 ext4_fsblk_t leaf;
2338
2339 /* free index block */
2340 depth--;
2341 path = path + depth;
2342 leaf = ext4_idx_pblock(path->p_idx);
2343 if (unlikely(path->p_hdr->eh_entries == 0)) {
2344 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345 return -EIO;
2346 }
2347 err = ext4_ext_get_access(handle, inode, path);
2348 if (err)
2349 return err;
2350
2351 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353 len *= sizeof(struct ext4_extent_idx);
2354 memmove(path->p_idx, path->p_idx + 1, len);
2355 }
2356
2357 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358 err = ext4_ext_dirty(handle, inode, path);
2359 if (err)
2360 return err;
2361 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362 trace_ext4_ext_rm_idx(inode, leaf);
2363
2364 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2366
2367 while (--depth >= 0) {
2368 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369 break;
2370 path--;
2371 err = ext4_ext_get_access(handle, inode, path);
2372 if (err)
2373 break;
2374 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375 err = ext4_ext_dirty(handle, inode, path);
2376 if (err)
2377 break;
2378 }
2379 return err;
2380 }
2381
2382 /*
2383 * ext4_ext_calc_credits_for_single_extent:
2384 * This routine returns max. credits that needed to insert an extent
2385 * to the extent tree.
2386 * When pass the actual path, the caller should calculate credits
2387 * under i_data_sem.
2388 */
2389 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390 struct ext4_ext_path *path)
2391 {
2392 if (path) {
2393 int depth = ext_depth(inode);
2394 int ret = 0;
2395
2396 /* probably there is space in leaf? */
2397 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2399
2400 /*
2401 * There are some space in the leaf tree, no
2402 * need to account for leaf block credit
2403 *
2404 * bitmaps and block group descriptor blocks
2405 * and other metadata blocks still need to be
2406 * accounted.
2407 */
2408 /* 1 bitmap, 1 block group descriptor */
2409 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410 return ret;
2411 }
2412 }
2413
2414 return ext4_chunk_trans_blocks(inode, nrblocks);
2415 }
2416
2417 /*
2418 * How many index/leaf blocks need to change/allocate to add @extents extents?
2419 *
2420 * If we add a single extent, then in the worse case, each tree level
2421 * index/leaf need to be changed in case of the tree split.
2422 *
2423 * If more extents are inserted, they could cause the whole tree split more
2424 * than once, but this is really rare.
2425 */
2426 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2427 {
2428 int index;
2429 int depth;
2430
2431 /* If we are converting the inline data, only one is needed here. */
2432 if (ext4_has_inline_data(inode))
2433 return 1;
2434
2435 depth = ext_depth(inode);
2436
2437 if (extents <= 1)
2438 index = depth * 2;
2439 else
2440 index = depth * 3;
2441
2442 return index;
2443 }
2444
2445 static inline int get_default_free_blocks_flags(struct inode *inode)
2446 {
2447 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449 else if (ext4_should_journal_data(inode))
2450 return EXT4_FREE_BLOCKS_FORGET;
2451 return 0;
2452 }
2453
2454 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455 struct ext4_extent *ex,
2456 long long *partial_cluster,
2457 ext4_lblk_t from, ext4_lblk_t to)
2458 {
2459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2461 ext4_fsblk_t pblk;
2462 int flags = get_default_free_blocks_flags(inode);
2463
2464 /*
2465 * For bigalloc file systems, we never free a partial cluster
2466 * at the beginning of the extent. Instead, we make a note
2467 * that we tried freeing the cluster, and check to see if we
2468 * need to free it on a subsequent call to ext4_remove_blocks,
2469 * or at the end of the ext4_truncate() operation.
2470 */
2471 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2472
2473 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2474 /*
2475 * If we have a partial cluster, and it's different from the
2476 * cluster of the last block, we need to explicitly free the
2477 * partial cluster here.
2478 */
2479 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480 if ((*partial_cluster > 0) &&
2481 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482 ext4_free_blocks(handle, inode, NULL,
2483 EXT4_C2B(sbi, *partial_cluster),
2484 sbi->s_cluster_ratio, flags);
2485 *partial_cluster = 0;
2486 }
2487
2488 #ifdef EXTENTS_STATS
2489 {
2490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491 spin_lock(&sbi->s_ext_stats_lock);
2492 sbi->s_ext_blocks += ee_len;
2493 sbi->s_ext_extents++;
2494 if (ee_len < sbi->s_ext_min)
2495 sbi->s_ext_min = ee_len;
2496 if (ee_len > sbi->s_ext_max)
2497 sbi->s_ext_max = ee_len;
2498 if (ext_depth(inode) > sbi->s_depth_max)
2499 sbi->s_depth_max = ext_depth(inode);
2500 spin_unlock(&sbi->s_ext_stats_lock);
2501 }
2502 #endif
2503 if (from >= le32_to_cpu(ex->ee_block)
2504 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505 /* tail removal */
2506 ext4_lblk_t num;
2507 unsigned int unaligned;
2508
2509 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510 pblk = ext4_ext_pblock(ex) + ee_len - num;
2511 /*
2512 * Usually we want to free partial cluster at the end of the
2513 * extent, except for the situation when the cluster is still
2514 * used by any other extent (partial_cluster is negative).
2515 */
2516 if (*partial_cluster < 0 &&
2517 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2519
2520 ext_debug("free last %u blocks starting %llu partial %lld\n",
2521 num, pblk, *partial_cluster);
2522 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2523 /*
2524 * If the block range to be freed didn't start at the
2525 * beginning of a cluster, and we removed the entire
2526 * extent and the cluster is not used by any other extent,
2527 * save the partial cluster here, since we might need to
2528 * delete if we determine that the truncate operation has
2529 * removed all of the blocks in the cluster.
2530 *
2531 * On the other hand, if we did not manage to free the whole
2532 * extent, we have to mark the cluster as used (store negative
2533 * cluster number in partial_cluster).
2534 */
2535 unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536 if (unaligned && (ee_len == num) &&
2537 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538 *partial_cluster = EXT4_B2C(sbi, pblk);
2539 else if (unaligned)
2540 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541 else if (*partial_cluster > 0)
2542 *partial_cluster = 0;
2543 } else
2544 ext4_error(sbi->s_sb, "strange request: removal(2) "
2545 "%u-%u from %u:%u\n",
2546 from, to, le32_to_cpu(ex->ee_block), ee_len);
2547 return 0;
2548 }
2549
2550
2551 /*
2552 * ext4_ext_rm_leaf() Removes the extents associated with the
2553 * blocks appearing between "start" and "end", and splits the extents
2554 * if "start" and "end" appear in the same extent
2555 *
2556 * @handle: The journal handle
2557 * @inode: The files inode
2558 * @path: The path to the leaf
2559 * @partial_cluster: The cluster which we'll have to free if all extents
2560 * has been released from it. It gets negative in case
2561 * that the cluster is still used.
2562 * @start: The first block to remove
2563 * @end: The last block to remove
2564 */
2565 static int
2566 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567 struct ext4_ext_path *path,
2568 long long *partial_cluster,
2569 ext4_lblk_t start, ext4_lblk_t end)
2570 {
2571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572 int err = 0, correct_index = 0;
2573 int depth = ext_depth(inode), credits;
2574 struct ext4_extent_header *eh;
2575 ext4_lblk_t a, b;
2576 unsigned num;
2577 ext4_lblk_t ex_ee_block;
2578 unsigned short ex_ee_len;
2579 unsigned uninitialized = 0;
2580 struct ext4_extent *ex;
2581 ext4_fsblk_t pblk;
2582
2583 /* the header must be checked already in ext4_ext_remove_space() */
2584 ext_debug("truncate since %u in leaf to %u\n", start, end);
2585 if (!path[depth].p_hdr)
2586 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587 eh = path[depth].p_hdr;
2588 if (unlikely(path[depth].p_hdr == NULL)) {
2589 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590 return -EIO;
2591 }
2592 /* find where to start removing */
2593 ex = path[depth].p_ext;
2594 if (!ex)
2595 ex = EXT_LAST_EXTENT(eh);
2596
2597 ex_ee_block = le32_to_cpu(ex->ee_block);
2598 ex_ee_len = ext4_ext_get_actual_len(ex);
2599
2600 /*
2601 * If we're starting with an extent other than the last one in the
2602 * node, we need to see if it shares a cluster with the extent to
2603 * the right (towards the end of the file). If its leftmost cluster
2604 * is this extent's rightmost cluster and it is not cluster aligned,
2605 * we'll mark it as a partial that is not to be deallocated.
2606 */
2607
2608 if (ex != EXT_LAST_EXTENT(eh)) {
2609 ext4_fsblk_t current_pblk, right_pblk;
2610 long long current_cluster, right_cluster;
2611
2612 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2613 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2614 right_pblk = ext4_ext_pblock(ex + 1);
2615 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2616 if (current_cluster == right_cluster &&
2617 EXT4_PBLK_COFF(sbi, right_pblk))
2618 *partial_cluster = -right_cluster;
2619 }
2620
2621 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2622
2623 while (ex >= EXT_FIRST_EXTENT(eh) &&
2624 ex_ee_block + ex_ee_len > start) {
2625
2626 if (ext4_ext_is_uninitialized(ex))
2627 uninitialized = 1;
2628 else
2629 uninitialized = 0;
2630
2631 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2632 uninitialized, ex_ee_len);
2633 path[depth].p_ext = ex;
2634
2635 a = ex_ee_block > start ? ex_ee_block : start;
2636 b = ex_ee_block+ex_ee_len - 1 < end ?
2637 ex_ee_block+ex_ee_len - 1 : end;
2638
2639 ext_debug(" border %u:%u\n", a, b);
2640
2641 /* If this extent is beyond the end of the hole, skip it */
2642 if (end < ex_ee_block) {
2643 /*
2644 * We're going to skip this extent and move to another,
2645 * so if this extent is not cluster aligned we have
2646 * to mark the current cluster as used to avoid
2647 * accidentally freeing it later on
2648 */
2649 pblk = ext4_ext_pblock(ex);
2650 if (EXT4_PBLK_COFF(sbi, pblk))
2651 *partial_cluster =
2652 -((long long)EXT4_B2C(sbi, pblk));
2653 ex--;
2654 ex_ee_block = le32_to_cpu(ex->ee_block);
2655 ex_ee_len = ext4_ext_get_actual_len(ex);
2656 continue;
2657 } else if (b != ex_ee_block + ex_ee_len - 1) {
2658 EXT4_ERROR_INODE(inode,
2659 "can not handle truncate %u:%u "
2660 "on extent %u:%u",
2661 start, end, ex_ee_block,
2662 ex_ee_block + ex_ee_len - 1);
2663 err = -EIO;
2664 goto out;
2665 } else if (a != ex_ee_block) {
2666 /* remove tail of the extent */
2667 num = a - ex_ee_block;
2668 } else {
2669 /* remove whole extent: excellent! */
2670 num = 0;
2671 }
2672 /*
2673 * 3 for leaf, sb, and inode plus 2 (bmap and group
2674 * descriptor) for each block group; assume two block
2675 * groups plus ex_ee_len/blocks_per_block_group for
2676 * the worst case
2677 */
2678 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2679 if (ex == EXT_FIRST_EXTENT(eh)) {
2680 correct_index = 1;
2681 credits += (ext_depth(inode)) + 1;
2682 }
2683 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2684
2685 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2686 if (err)
2687 goto out;
2688
2689 err = ext4_ext_get_access(handle, inode, path + depth);
2690 if (err)
2691 goto out;
2692
2693 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2694 a, b);
2695 if (err)
2696 goto out;
2697
2698 if (num == 0)
2699 /* this extent is removed; mark slot entirely unused */
2700 ext4_ext_store_pblock(ex, 0);
2701
2702 ex->ee_len = cpu_to_le16(num);
2703 /*
2704 * Do not mark uninitialized if all the blocks in the
2705 * extent have been removed.
2706 */
2707 if (uninitialized && num)
2708 ext4_ext_mark_uninitialized(ex);
2709 /*
2710 * If the extent was completely released,
2711 * we need to remove it from the leaf
2712 */
2713 if (num == 0) {
2714 if (end != EXT_MAX_BLOCKS - 1) {
2715 /*
2716 * For hole punching, we need to scoot all the
2717 * extents up when an extent is removed so that
2718 * we dont have blank extents in the middle
2719 */
2720 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2721 sizeof(struct ext4_extent));
2722
2723 /* Now get rid of the one at the end */
2724 memset(EXT_LAST_EXTENT(eh), 0,
2725 sizeof(struct ext4_extent));
2726 }
2727 le16_add_cpu(&eh->eh_entries, -1);
2728 } else if (*partial_cluster > 0)
2729 *partial_cluster = 0;
2730
2731 err = ext4_ext_dirty(handle, inode, path + depth);
2732 if (err)
2733 goto out;
2734
2735 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2736 ext4_ext_pblock(ex));
2737 ex--;
2738 ex_ee_block = le32_to_cpu(ex->ee_block);
2739 ex_ee_len = ext4_ext_get_actual_len(ex);
2740 }
2741
2742 if (correct_index && eh->eh_entries)
2743 err = ext4_ext_correct_indexes(handle, inode, path);
2744
2745 /*
2746 * Free the partial cluster only if the current extent does not
2747 * reference it. Otherwise we might free used cluster.
2748 */
2749 if (*partial_cluster > 0 &&
2750 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2751 *partial_cluster)) {
2752 int flags = get_default_free_blocks_flags(inode);
2753
2754 ext4_free_blocks(handle, inode, NULL,
2755 EXT4_C2B(sbi, *partial_cluster),
2756 sbi->s_cluster_ratio, flags);
2757 *partial_cluster = 0;
2758 }
2759
2760 /* if this leaf is free, then we should
2761 * remove it from index block above */
2762 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2763 err = ext4_ext_rm_idx(handle, inode, path, depth);
2764
2765 out:
2766 return err;
2767 }
2768
2769 /*
2770 * ext4_ext_more_to_rm:
2771 * returns 1 if current index has to be freed (even partial)
2772 */
2773 static int
2774 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2775 {
2776 BUG_ON(path->p_idx == NULL);
2777
2778 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2779 return 0;
2780
2781 /*
2782 * if truncate on deeper level happened, it wasn't partial,
2783 * so we have to consider current index for truncation
2784 */
2785 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2786 return 0;
2787 return 1;
2788 }
2789
2790 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2791 ext4_lblk_t end)
2792 {
2793 struct super_block *sb = inode->i_sb;
2794 int depth = ext_depth(inode);
2795 struct ext4_ext_path *path = NULL;
2796 long long partial_cluster = 0;
2797 handle_t *handle;
2798 int i = 0, err = 0;
2799
2800 ext_debug("truncate since %u to %u\n", start, end);
2801
2802 /* probably first extent we're gonna free will be last in block */
2803 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2804 if (IS_ERR(handle))
2805 return PTR_ERR(handle);
2806
2807 again:
2808 trace_ext4_ext_remove_space(inode, start, end, depth);
2809
2810 /*
2811 * Check if we are removing extents inside the extent tree. If that
2812 * is the case, we are going to punch a hole inside the extent tree
2813 * so we have to check whether we need to split the extent covering
2814 * the last block to remove so we can easily remove the part of it
2815 * in ext4_ext_rm_leaf().
2816 */
2817 if (end < EXT_MAX_BLOCKS - 1) {
2818 struct ext4_extent *ex;
2819 ext4_lblk_t ee_block;
2820
2821 /* find extent for this block */
2822 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2823 if (IS_ERR(path)) {
2824 ext4_journal_stop(handle);
2825 return PTR_ERR(path);
2826 }
2827 depth = ext_depth(inode);
2828 /* Leaf not may not exist only if inode has no blocks at all */
2829 ex = path[depth].p_ext;
2830 if (!ex) {
2831 if (depth) {
2832 EXT4_ERROR_INODE(inode,
2833 "path[%d].p_hdr == NULL",
2834 depth);
2835 err = -EIO;
2836 }
2837 goto out;
2838 }
2839
2840 ee_block = le32_to_cpu(ex->ee_block);
2841
2842 /*
2843 * See if the last block is inside the extent, if so split
2844 * the extent at 'end' block so we can easily remove the
2845 * tail of the first part of the split extent in
2846 * ext4_ext_rm_leaf().
2847 */
2848 if (end >= ee_block &&
2849 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2850 int split_flag = 0;
2851
2852 if (ext4_ext_is_uninitialized(ex))
2853 split_flag = EXT4_EXT_MARK_UNINIT1 |
2854 EXT4_EXT_MARK_UNINIT2;
2855
2856 /*
2857 * Split the extent in two so that 'end' is the last
2858 * block in the first new extent. Also we should not
2859 * fail removing space due to ENOSPC so try to use
2860 * reserved block if that happens.
2861 */
2862 err = ext4_split_extent_at(handle, inode, path,
2863 end + 1, split_flag,
2864 EXT4_EX_NOCACHE |
2865 EXT4_GET_BLOCKS_PRE_IO |
2866 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2867
2868 if (err < 0)
2869 goto out;
2870 }
2871 }
2872 /*
2873 * We start scanning from right side, freeing all the blocks
2874 * after i_size and walking into the tree depth-wise.
2875 */
2876 depth = ext_depth(inode);
2877 if (path) {
2878 int k = i = depth;
2879 while (--k > 0)
2880 path[k].p_block =
2881 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2882 } else {
2883 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2884 GFP_NOFS);
2885 if (path == NULL) {
2886 ext4_journal_stop(handle);
2887 return -ENOMEM;
2888 }
2889 path[0].p_depth = depth;
2890 path[0].p_hdr = ext_inode_hdr(inode);
2891 i = 0;
2892
2893 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2894 err = -EIO;
2895 goto out;
2896 }
2897 }
2898 err = 0;
2899
2900 while (i >= 0 && err == 0) {
2901 if (i == depth) {
2902 /* this is leaf block */
2903 err = ext4_ext_rm_leaf(handle, inode, path,
2904 &partial_cluster, start,
2905 end);
2906 /* root level has p_bh == NULL, brelse() eats this */
2907 brelse(path[i].p_bh);
2908 path[i].p_bh = NULL;
2909 i--;
2910 continue;
2911 }
2912
2913 /* this is index block */
2914 if (!path[i].p_hdr) {
2915 ext_debug("initialize header\n");
2916 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2917 }
2918
2919 if (!path[i].p_idx) {
2920 /* this level hasn't been touched yet */
2921 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2922 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2923 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2924 path[i].p_hdr,
2925 le16_to_cpu(path[i].p_hdr->eh_entries));
2926 } else {
2927 /* we were already here, see at next index */
2928 path[i].p_idx--;
2929 }
2930
2931 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2932 i, EXT_FIRST_INDEX(path[i].p_hdr),
2933 path[i].p_idx);
2934 if (ext4_ext_more_to_rm(path + i)) {
2935 struct buffer_head *bh;
2936 /* go to the next level */
2937 ext_debug("move to level %d (block %llu)\n",
2938 i + 1, ext4_idx_pblock(path[i].p_idx));
2939 memset(path + i + 1, 0, sizeof(*path));
2940 bh = read_extent_tree_block(inode,
2941 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2942 EXT4_EX_NOCACHE);
2943 if (IS_ERR(bh)) {
2944 /* should we reset i_size? */
2945 err = PTR_ERR(bh);
2946 break;
2947 }
2948 /* Yield here to deal with large extent trees.
2949 * Should be a no-op if we did IO above. */
2950 cond_resched();
2951 if (WARN_ON(i + 1 > depth)) {
2952 err = -EIO;
2953 break;
2954 }
2955 path[i + 1].p_bh = bh;
2956
2957 /* save actual number of indexes since this
2958 * number is changed at the next iteration */
2959 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2960 i++;
2961 } else {
2962 /* we finished processing this index, go up */
2963 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2964 /* index is empty, remove it;
2965 * handle must be already prepared by the
2966 * truncatei_leaf() */
2967 err = ext4_ext_rm_idx(handle, inode, path, i);
2968 }
2969 /* root level has p_bh == NULL, brelse() eats this */
2970 brelse(path[i].p_bh);
2971 path[i].p_bh = NULL;
2972 i--;
2973 ext_debug("return to level %d\n", i);
2974 }
2975 }
2976
2977 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2978 partial_cluster, path->p_hdr->eh_entries);
2979
2980 /* If we still have something in the partial cluster and we have removed
2981 * even the first extent, then we should free the blocks in the partial
2982 * cluster as well. */
2983 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2984 int flags = get_default_free_blocks_flags(inode);
2985
2986 ext4_free_blocks(handle, inode, NULL,
2987 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2988 EXT4_SB(sb)->s_cluster_ratio, flags);
2989 partial_cluster = 0;
2990 }
2991
2992 /* TODO: flexible tree reduction should be here */
2993 if (path->p_hdr->eh_entries == 0) {
2994 /*
2995 * truncate to zero freed all the tree,
2996 * so we need to correct eh_depth
2997 */
2998 err = ext4_ext_get_access(handle, inode, path);
2999 if (err == 0) {
3000 ext_inode_hdr(inode)->eh_depth = 0;
3001 ext_inode_hdr(inode)->eh_max =
3002 cpu_to_le16(ext4_ext_space_root(inode, 0));
3003 err = ext4_ext_dirty(handle, inode, path);
3004 }
3005 }
3006 out:
3007 ext4_ext_drop_refs(path);
3008 kfree(path);
3009 if (err == -EAGAIN) {
3010 path = NULL;
3011 goto again;
3012 }
3013 ext4_journal_stop(handle);
3014
3015 return err;
3016 }
3017
3018 /*
3019 * called at mount time
3020 */
3021 void ext4_ext_init(struct super_block *sb)
3022 {
3023 /*
3024 * possible initialization would be here
3025 */
3026
3027 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3028 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3029 printk(KERN_INFO "EXT4-fs: file extents enabled"
3030 #ifdef AGGRESSIVE_TEST
3031 ", aggressive tests"
3032 #endif
3033 #ifdef CHECK_BINSEARCH
3034 ", check binsearch"
3035 #endif
3036 #ifdef EXTENTS_STATS
3037 ", stats"
3038 #endif
3039 "\n");
3040 #endif
3041 #ifdef EXTENTS_STATS
3042 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3043 EXT4_SB(sb)->s_ext_min = 1 << 30;
3044 EXT4_SB(sb)->s_ext_max = 0;
3045 #endif
3046 }
3047 }
3048
3049 /*
3050 * called at umount time
3051 */
3052 void ext4_ext_release(struct super_block *sb)
3053 {
3054 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3055 return;
3056
3057 #ifdef EXTENTS_STATS
3058 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3059 struct ext4_sb_info *sbi = EXT4_SB(sb);
3060 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3061 sbi->s_ext_blocks, sbi->s_ext_extents,
3062 sbi->s_ext_blocks / sbi->s_ext_extents);
3063 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3064 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3065 }
3066 #endif
3067 }
3068
3069 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3070 {
3071 ext4_lblk_t ee_block;
3072 ext4_fsblk_t ee_pblock;
3073 unsigned int ee_len;
3074
3075 ee_block = le32_to_cpu(ex->ee_block);
3076 ee_len = ext4_ext_get_actual_len(ex);
3077 ee_pblock = ext4_ext_pblock(ex);
3078
3079 if (ee_len == 0)
3080 return 0;
3081
3082 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3083 EXTENT_STATUS_WRITTEN);
3084 }
3085
3086 /* FIXME!! we need to try to merge to left or right after zero-out */
3087 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3088 {
3089 ext4_fsblk_t ee_pblock;
3090 unsigned int ee_len;
3091 int ret;
3092
3093 ee_len = ext4_ext_get_actual_len(ex);
3094 ee_pblock = ext4_ext_pblock(ex);
3095
3096 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3097 if (ret > 0)
3098 ret = 0;
3099
3100 return ret;
3101 }
3102
3103 /*
3104 * ext4_split_extent_at() splits an extent at given block.
3105 *
3106 * @handle: the journal handle
3107 * @inode: the file inode
3108 * @path: the path to the extent
3109 * @split: the logical block where the extent is splitted.
3110 * @split_flags: indicates if the extent could be zeroout if split fails, and
3111 * the states(init or uninit) of new extents.
3112 * @flags: flags used to insert new extent to extent tree.
3113 *
3114 *
3115 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3116 * of which are deterimined by split_flag.
3117 *
3118 * There are two cases:
3119 * a> the extent are splitted into two extent.
3120 * b> split is not needed, and just mark the extent.
3121 *
3122 * return 0 on success.
3123 */
3124 static int ext4_split_extent_at(handle_t *handle,
3125 struct inode *inode,
3126 struct ext4_ext_path *path,
3127 ext4_lblk_t split,
3128 int split_flag,
3129 int flags)
3130 {
3131 ext4_fsblk_t newblock;
3132 ext4_lblk_t ee_block;
3133 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3134 struct ext4_extent *ex2 = NULL;
3135 unsigned int ee_len, depth;
3136 int err = 0;
3137
3138 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3139 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3140
3141 ext_debug("ext4_split_extents_at: inode %lu, logical"
3142 "block %llu\n", inode->i_ino, (unsigned long long)split);
3143
3144 ext4_ext_show_leaf(inode, path);
3145
3146 depth = ext_depth(inode);
3147 ex = path[depth].p_ext;
3148 ee_block = le32_to_cpu(ex->ee_block);
3149 ee_len = ext4_ext_get_actual_len(ex);
3150 newblock = split - ee_block + ext4_ext_pblock(ex);
3151
3152 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3153 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3154 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3155 EXT4_EXT_MARK_UNINIT1 |
3156 EXT4_EXT_MARK_UNINIT2));
3157
3158 err = ext4_ext_get_access(handle, inode, path + depth);
3159 if (err)
3160 goto out;
3161
3162 if (split == ee_block) {
3163 /*
3164 * case b: block @split is the block that the extent begins with
3165 * then we just change the state of the extent, and splitting
3166 * is not needed.
3167 */
3168 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3169 ext4_ext_mark_uninitialized(ex);
3170 else
3171 ext4_ext_mark_initialized(ex);
3172
3173 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3174 ext4_ext_try_to_merge(handle, inode, path, ex);
3175
3176 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3177 goto out;
3178 }
3179
3180 /* case a */
3181 memcpy(&orig_ex, ex, sizeof(orig_ex));
3182 ex->ee_len = cpu_to_le16(split - ee_block);
3183 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3184 ext4_ext_mark_uninitialized(ex);
3185
3186 /*
3187 * path may lead to new leaf, not to original leaf any more
3188 * after ext4_ext_insert_extent() returns,
3189 */
3190 err = ext4_ext_dirty(handle, inode, path + depth);
3191 if (err)
3192 goto fix_extent_len;
3193
3194 ex2 = &newex;
3195 ex2->ee_block = cpu_to_le32(split);
3196 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3197 ext4_ext_store_pblock(ex2, newblock);
3198 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3199 ext4_ext_mark_uninitialized(ex2);
3200
3201 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3202 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3203 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3204 if (split_flag & EXT4_EXT_DATA_VALID1) {
3205 err = ext4_ext_zeroout(inode, ex2);
3206 zero_ex.ee_block = ex2->ee_block;
3207 zero_ex.ee_len = cpu_to_le16(
3208 ext4_ext_get_actual_len(ex2));
3209 ext4_ext_store_pblock(&zero_ex,
3210 ext4_ext_pblock(ex2));
3211 } else {
3212 err = ext4_ext_zeroout(inode, ex);
3213 zero_ex.ee_block = ex->ee_block;
3214 zero_ex.ee_len = cpu_to_le16(
3215 ext4_ext_get_actual_len(ex));
3216 ext4_ext_store_pblock(&zero_ex,
3217 ext4_ext_pblock(ex));
3218 }
3219 } else {
3220 err = ext4_ext_zeroout(inode, &orig_ex);
3221 zero_ex.ee_block = orig_ex.ee_block;
3222 zero_ex.ee_len = cpu_to_le16(
3223 ext4_ext_get_actual_len(&orig_ex));
3224 ext4_ext_store_pblock(&zero_ex,
3225 ext4_ext_pblock(&orig_ex));
3226 }
3227
3228 if (err)
3229 goto fix_extent_len;
3230 /* update the extent length and mark as initialized */
3231 ex->ee_len = cpu_to_le16(ee_len);
3232 ext4_ext_try_to_merge(handle, inode, path, ex);
3233 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3234 if (err)
3235 goto fix_extent_len;
3236
3237 /* update extent status tree */
3238 err = ext4_zeroout_es(inode, &zero_ex);
3239
3240 goto out;
3241 } else if (err)
3242 goto fix_extent_len;
3243
3244 out:
3245 ext4_ext_show_leaf(inode, path);
3246 return err;
3247
3248 fix_extent_len:
3249 ex->ee_len = orig_ex.ee_len;
3250 ext4_ext_dirty(handle, inode, path + depth);
3251 return err;
3252 }
3253
3254 /*
3255 * ext4_split_extents() splits an extent and mark extent which is covered
3256 * by @map as split_flags indicates
3257 *
3258 * It may result in splitting the extent into multiple extents (up to three)
3259 * There are three possibilities:
3260 * a> There is no split required
3261 * b> Splits in two extents: Split is happening at either end of the extent
3262 * c> Splits in three extents: Somone is splitting in middle of the extent
3263 *
3264 */
3265 static int ext4_split_extent(handle_t *handle,
3266 struct inode *inode,
3267 struct ext4_ext_path *path,
3268 struct ext4_map_blocks *map,
3269 int split_flag,
3270 int flags)
3271 {
3272 ext4_lblk_t ee_block;
3273 struct ext4_extent *ex;
3274 unsigned int ee_len, depth;
3275 int err = 0;
3276 int uninitialized;
3277 int split_flag1, flags1;
3278 int allocated = map->m_len;
3279
3280 depth = ext_depth(inode);
3281 ex = path[depth].p_ext;
3282 ee_block = le32_to_cpu(ex->ee_block);
3283 ee_len = ext4_ext_get_actual_len(ex);
3284 uninitialized = ext4_ext_is_uninitialized(ex);
3285
3286 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3287 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3288 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3289 if (uninitialized)
3290 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3291 EXT4_EXT_MARK_UNINIT2;
3292 if (split_flag & EXT4_EXT_DATA_VALID2)
3293 split_flag1 |= EXT4_EXT_DATA_VALID1;
3294 err = ext4_split_extent_at(handle, inode, path,
3295 map->m_lblk + map->m_len, split_flag1, flags1);
3296 if (err)
3297 goto out;
3298 } else {
3299 allocated = ee_len - (map->m_lblk - ee_block);
3300 }
3301 /*
3302 * Update path is required because previous ext4_split_extent_at() may
3303 * result in split of original leaf or extent zeroout.
3304 */
3305 ext4_ext_drop_refs(path);
3306 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3307 if (IS_ERR(path))
3308 return PTR_ERR(path);
3309 depth = ext_depth(inode);
3310 ex = path[depth].p_ext;
3311 uninitialized = ext4_ext_is_uninitialized(ex);
3312 split_flag1 = 0;
3313
3314 if (map->m_lblk >= ee_block) {
3315 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3316 if (uninitialized) {
3317 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3318 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3319 EXT4_EXT_MARK_UNINIT2);
3320 }
3321 err = ext4_split_extent_at(handle, inode, path,
3322 map->m_lblk, split_flag1, flags);
3323 if (err)
3324 goto out;
3325 }
3326
3327 ext4_ext_show_leaf(inode, path);
3328 out:
3329 return err ? err : allocated;
3330 }
3331
3332 /*
3333 * This function is called by ext4_ext_map_blocks() if someone tries to write
3334 * to an uninitialized extent. It may result in splitting the uninitialized
3335 * extent into multiple extents (up to three - one initialized and two
3336 * uninitialized).
3337 * There are three possibilities:
3338 * a> There is no split required: Entire extent should be initialized
3339 * b> Splits in two extents: Write is happening at either end of the extent
3340 * c> Splits in three extents: Somone is writing in middle of the extent
3341 *
3342 * Pre-conditions:
3343 * - The extent pointed to by 'path' is uninitialized.
3344 * - The extent pointed to by 'path' contains a superset
3345 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3346 *
3347 * Post-conditions on success:
3348 * - the returned value is the number of blocks beyond map->l_lblk
3349 * that are allocated and initialized.
3350 * It is guaranteed to be >= map->m_len.
3351 */
3352 static int ext4_ext_convert_to_initialized(handle_t *handle,
3353 struct inode *inode,
3354 struct ext4_map_blocks *map,
3355 struct ext4_ext_path *path,
3356 int flags)
3357 {
3358 struct ext4_sb_info *sbi;
3359 struct ext4_extent_header *eh;
3360 struct ext4_map_blocks split_map;
3361 struct ext4_extent zero_ex;
3362 struct ext4_extent *ex, *abut_ex;
3363 ext4_lblk_t ee_block, eof_block;
3364 unsigned int ee_len, depth, map_len = map->m_len;
3365 int allocated = 0, max_zeroout = 0;
3366 int err = 0;
3367 int split_flag = 0;
3368
3369 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3370 "block %llu, max_blocks %u\n", inode->i_ino,
3371 (unsigned long long)map->m_lblk, map_len);
3372
3373 sbi = EXT4_SB(inode->i_sb);
3374 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3375 inode->i_sb->s_blocksize_bits;
3376 if (eof_block < map->m_lblk + map_len)
3377 eof_block = map->m_lblk + map_len;
3378
3379 depth = ext_depth(inode);
3380 eh = path[depth].p_hdr;
3381 ex = path[depth].p_ext;
3382 ee_block = le32_to_cpu(ex->ee_block);
3383 ee_len = ext4_ext_get_actual_len(ex);
3384 zero_ex.ee_len = 0;
3385
3386 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3387
3388 /* Pre-conditions */
3389 BUG_ON(!ext4_ext_is_uninitialized(ex));
3390 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3391
3392 /*
3393 * Attempt to transfer newly initialized blocks from the currently
3394 * uninitialized extent to its neighbor. This is much cheaper
3395 * than an insertion followed by a merge as those involve costly
3396 * memmove() calls. Transferring to the left is the common case in
3397 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3398 * followed by append writes.
3399 *
3400 * Limitations of the current logic:
3401 * - L1: we do not deal with writes covering the whole extent.
3402 * This would require removing the extent if the transfer
3403 * is possible.
3404 * - L2: we only attempt to merge with an extent stored in the
3405 * same extent tree node.
3406 */
3407 if ((map->m_lblk == ee_block) &&
3408 /* See if we can merge left */
3409 (map_len < ee_len) && /*L1*/
3410 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3411 ext4_lblk_t prev_lblk;
3412 ext4_fsblk_t prev_pblk, ee_pblk;
3413 unsigned int prev_len;
3414
3415 abut_ex = ex - 1;
3416 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3417 prev_len = ext4_ext_get_actual_len(abut_ex);
3418 prev_pblk = ext4_ext_pblock(abut_ex);
3419 ee_pblk = ext4_ext_pblock(ex);
3420
3421 /*
3422 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3423 * upon those conditions:
3424 * - C1: abut_ex is initialized,
3425 * - C2: abut_ex is logically abutting ex,
3426 * - C3: abut_ex is physically abutting ex,
3427 * - C4: abut_ex can receive the additional blocks without
3428 * overflowing the (initialized) length limit.
3429 */
3430 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3431 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3432 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3433 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3434 err = ext4_ext_get_access(handle, inode, path + depth);
3435 if (err)
3436 goto out;
3437
3438 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3439 map, ex, abut_ex);
3440
3441 /* Shift the start of ex by 'map_len' blocks */
3442 ex->ee_block = cpu_to_le32(ee_block + map_len);
3443 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3444 ex->ee_len = cpu_to_le16(ee_len - map_len);
3445 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3446
3447 /* Extend abut_ex by 'map_len' blocks */
3448 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3449
3450 /* Result: number of initialized blocks past m_lblk */
3451 allocated = map_len;
3452 }
3453 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3454 (map_len < ee_len) && /*L1*/
3455 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3456 /* See if we can merge right */
3457 ext4_lblk_t next_lblk;
3458 ext4_fsblk_t next_pblk, ee_pblk;
3459 unsigned int next_len;
3460
3461 abut_ex = ex + 1;
3462 next_lblk = le32_to_cpu(abut_ex->ee_block);
3463 next_len = ext4_ext_get_actual_len(abut_ex);
3464 next_pblk = ext4_ext_pblock(abut_ex);
3465 ee_pblk = ext4_ext_pblock(ex);
3466
3467 /*
3468 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3469 * upon those conditions:
3470 * - C1: abut_ex is initialized,
3471 * - C2: abut_ex is logically abutting ex,
3472 * - C3: abut_ex is physically abutting ex,
3473 * - C4: abut_ex can receive the additional blocks without
3474 * overflowing the (initialized) length limit.
3475 */
3476 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3477 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3478 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3479 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3480 err = ext4_ext_get_access(handle, inode, path + depth);
3481 if (err)
3482 goto out;
3483
3484 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3485 map, ex, abut_ex);
3486
3487 /* Shift the start of abut_ex by 'map_len' blocks */
3488 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3489 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3490 ex->ee_len = cpu_to_le16(ee_len - map_len);
3491 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3492
3493 /* Extend abut_ex by 'map_len' blocks */
3494 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3495
3496 /* Result: number of initialized blocks past m_lblk */
3497 allocated = map_len;
3498 }
3499 }
3500 if (allocated) {
3501 /* Mark the block containing both extents as dirty */
3502 ext4_ext_dirty(handle, inode, path + depth);
3503
3504 /* Update path to point to the right extent */
3505 path[depth].p_ext = abut_ex;
3506 goto out;
3507 } else
3508 allocated = ee_len - (map->m_lblk - ee_block);
3509
3510 WARN_ON(map->m_lblk < ee_block);
3511 /*
3512 * It is safe to convert extent to initialized via explicit
3513 * zeroout only if extent is fully inside i_size or new_size.
3514 */
3515 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3516
3517 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3518 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3519 (inode->i_sb->s_blocksize_bits - 10);
3520
3521 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3522 if (max_zeroout && (ee_len <= max_zeroout)) {
3523 err = ext4_ext_zeroout(inode, ex);
3524 if (err)
3525 goto out;
3526 zero_ex.ee_block = ex->ee_block;
3527 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3528 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3529
3530 err = ext4_ext_get_access(handle, inode, path + depth);
3531 if (err)
3532 goto out;
3533 ext4_ext_mark_initialized(ex);
3534 ext4_ext_try_to_merge(handle, inode, path, ex);
3535 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3536 goto out;
3537 }
3538
3539 /*
3540 * four cases:
3541 * 1. split the extent into three extents.
3542 * 2. split the extent into two extents, zeroout the first half.
3543 * 3. split the extent into two extents, zeroout the second half.
3544 * 4. split the extent into two extents with out zeroout.
3545 */
3546 split_map.m_lblk = map->m_lblk;
3547 split_map.m_len = map->m_len;
3548
3549 if (max_zeroout && (allocated > map->m_len)) {
3550 if (allocated <= max_zeroout) {
3551 /* case 3 */
3552 zero_ex.ee_block =
3553 cpu_to_le32(map->m_lblk);
3554 zero_ex.ee_len = cpu_to_le16(allocated);
3555 ext4_ext_store_pblock(&zero_ex,
3556 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3557 err = ext4_ext_zeroout(inode, &zero_ex);
3558 if (err)
3559 goto out;
3560 split_map.m_lblk = map->m_lblk;
3561 split_map.m_len = allocated;
3562 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3563 /* case 2 */
3564 if (map->m_lblk != ee_block) {
3565 zero_ex.ee_block = ex->ee_block;
3566 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3567 ee_block);
3568 ext4_ext_store_pblock(&zero_ex,
3569 ext4_ext_pblock(ex));
3570 err = ext4_ext_zeroout(inode, &zero_ex);
3571 if (err)
3572 goto out;
3573 }
3574
3575 split_map.m_lblk = ee_block;
3576 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3577 allocated = map->m_len;
3578 }
3579 }
3580
3581 allocated = ext4_split_extent(handle, inode, path,
3582 &split_map, split_flag, flags);
3583 if (allocated < 0)
3584 err = allocated;
3585
3586 out:
3587 /* If we have gotten a failure, don't zero out status tree */
3588 if (!err)
3589 err = ext4_zeroout_es(inode, &zero_ex);
3590 return err ? err : allocated;
3591 }
3592
3593 /*
3594 * This function is called by ext4_ext_map_blocks() from
3595 * ext4_get_blocks_dio_write() when DIO to write
3596 * to an uninitialized extent.
3597 *
3598 * Writing to an uninitialized extent may result in splitting the uninitialized
3599 * extent into multiple initialized/uninitialized extents (up to three)
3600 * There are three possibilities:
3601 * a> There is no split required: Entire extent should be uninitialized
3602 * b> Splits in two extents: Write is happening at either end of the extent
3603 * c> Splits in three extents: Somone is writing in middle of the extent
3604 *
3605 * This works the same way in the case of initialized -> unwritten conversion.
3606 *
3607 * One of more index blocks maybe needed if the extent tree grow after
3608 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3609 * complete, we need to split the uninitialized extent before DIO submit
3610 * the IO. The uninitialized extent called at this time will be split
3611 * into three uninitialized extent(at most). After IO complete, the part
3612 * being filled will be convert to initialized by the end_io callback function
3613 * via ext4_convert_unwritten_extents().
3614 *
3615 * Returns the size of uninitialized extent to be written on success.
3616 */
3617 static int ext4_split_convert_extents(handle_t *handle,
3618 struct inode *inode,
3619 struct ext4_map_blocks *map,
3620 struct ext4_ext_path *path,
3621 int flags)
3622 {
3623 ext4_lblk_t eof_block;
3624 ext4_lblk_t ee_block;
3625 struct ext4_extent *ex;
3626 unsigned int ee_len;
3627 int split_flag = 0, depth;
3628
3629 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3630 __func__, inode->i_ino,
3631 (unsigned long long)map->m_lblk, map->m_len);
3632
3633 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3634 inode->i_sb->s_blocksize_bits;
3635 if (eof_block < map->m_lblk + map->m_len)
3636 eof_block = map->m_lblk + map->m_len;
3637 /*
3638 * It is safe to convert extent to initialized via explicit
3639 * zeroout only if extent is fully insde i_size or new_size.
3640 */
3641 depth = ext_depth(inode);
3642 ex = path[depth].p_ext;
3643 ee_block = le32_to_cpu(ex->ee_block);
3644 ee_len = ext4_ext_get_actual_len(ex);
3645
3646 /* Convert to unwritten */
3647 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3648 split_flag |= EXT4_EXT_DATA_VALID1;
3649 /* Convert to initialized */
3650 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3651 split_flag |= ee_block + ee_len <= eof_block ?
3652 EXT4_EXT_MAY_ZEROOUT : 0;
3653 split_flag |= (EXT4_EXT_MARK_UNINIT2 | EXT4_EXT_DATA_VALID2);
3654 }
3655 flags |= EXT4_GET_BLOCKS_PRE_IO;
3656 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3657 }
3658
3659 static int ext4_convert_initialized_extents(handle_t *handle,
3660 struct inode *inode,
3661 struct ext4_map_blocks *map,
3662 struct ext4_ext_path *path)
3663 {
3664 struct ext4_extent *ex;
3665 ext4_lblk_t ee_block;
3666 unsigned int ee_len;
3667 int depth;
3668 int err = 0;
3669
3670 depth = ext_depth(inode);
3671 ex = path[depth].p_ext;
3672 ee_block = le32_to_cpu(ex->ee_block);
3673 ee_len = ext4_ext_get_actual_len(ex);
3674
3675 ext_debug("%s: inode %lu, logical"
3676 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3677 (unsigned long long)ee_block, ee_len);
3678
3679 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3680 err = ext4_split_convert_extents(handle, inode, map, path,
3681 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3682 if (err < 0)
3683 goto out;
3684 ext4_ext_drop_refs(path);
3685 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3686 if (IS_ERR(path)) {
3687 err = PTR_ERR(path);
3688 goto out;
3689 }
3690 depth = ext_depth(inode);
3691 ex = path[depth].p_ext;
3692 }
3693
3694 err = ext4_ext_get_access(handle, inode, path + depth);
3695 if (err)
3696 goto out;
3697 /* first mark the extent as uninitialized */
3698 ext4_ext_mark_uninitialized(ex);
3699
3700 /* note: ext4_ext_correct_indexes() isn't needed here because
3701 * borders are not changed
3702 */
3703 ext4_ext_try_to_merge(handle, inode, path, ex);
3704
3705 /* Mark modified extent as dirty */
3706 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3707 out:
3708 ext4_ext_show_leaf(inode, path);
3709 return err;
3710 }
3711
3712
3713 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3714 struct inode *inode,
3715 struct ext4_map_blocks *map,
3716 struct ext4_ext_path *path)
3717 {
3718 struct ext4_extent *ex;
3719 ext4_lblk_t ee_block;
3720 unsigned int ee_len;
3721 int depth;
3722 int err = 0;
3723
3724 depth = ext_depth(inode);
3725 ex = path[depth].p_ext;
3726 ee_block = le32_to_cpu(ex->ee_block);
3727 ee_len = ext4_ext_get_actual_len(ex);
3728
3729 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3730 "block %llu, max_blocks %u\n", inode->i_ino,
3731 (unsigned long long)ee_block, ee_len);
3732
3733 /* If extent is larger than requested it is a clear sign that we still
3734 * have some extent state machine issues left. So extent_split is still
3735 * required.
3736 * TODO: Once all related issues will be fixed this situation should be
3737 * illegal.
3738 */
3739 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3740 #ifdef EXT4_DEBUG
3741 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3742 " len %u; IO logical block %llu, len %u\n",
3743 inode->i_ino, (unsigned long long)ee_block, ee_len,
3744 (unsigned long long)map->m_lblk, map->m_len);
3745 #endif
3746 err = ext4_split_convert_extents(handle, inode, map, path,
3747 EXT4_GET_BLOCKS_CONVERT);
3748 if (err < 0)
3749 goto out;
3750 ext4_ext_drop_refs(path);
3751 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3752 if (IS_ERR(path)) {
3753 err = PTR_ERR(path);
3754 goto out;
3755 }
3756 depth = ext_depth(inode);
3757 ex = path[depth].p_ext;
3758 }
3759
3760 err = ext4_ext_get_access(handle, inode, path + depth);
3761 if (err)
3762 goto out;
3763 /* first mark the extent as initialized */
3764 ext4_ext_mark_initialized(ex);
3765
3766 /* note: ext4_ext_correct_indexes() isn't needed here because
3767 * borders are not changed
3768 */
3769 ext4_ext_try_to_merge(handle, inode, path, ex);
3770
3771 /* Mark modified extent as dirty */
3772 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3773 out:
3774 ext4_ext_show_leaf(inode, path);
3775 return err;
3776 }
3777
3778 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3779 sector_t block, int count)
3780 {
3781 int i;
3782 for (i = 0; i < count; i++)
3783 unmap_underlying_metadata(bdev, block + i);
3784 }
3785
3786 /*
3787 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3788 */
3789 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3790 ext4_lblk_t lblk,
3791 struct ext4_ext_path *path,
3792 unsigned int len)
3793 {
3794 int i, depth;
3795 struct ext4_extent_header *eh;
3796 struct ext4_extent *last_ex;
3797
3798 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3799 return 0;
3800
3801 depth = ext_depth(inode);
3802 eh = path[depth].p_hdr;
3803
3804 /*
3805 * We're going to remove EOFBLOCKS_FL entirely in future so we
3806 * do not care for this case anymore. Simply remove the flag
3807 * if there are no extents.
3808 */
3809 if (unlikely(!eh->eh_entries))
3810 goto out;
3811 last_ex = EXT_LAST_EXTENT(eh);
3812 /*
3813 * We should clear the EOFBLOCKS_FL flag if we are writing the
3814 * last block in the last extent in the file. We test this by
3815 * first checking to see if the caller to
3816 * ext4_ext_get_blocks() was interested in the last block (or
3817 * a block beyond the last block) in the current extent. If
3818 * this turns out to be false, we can bail out from this
3819 * function immediately.
3820 */
3821 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3822 ext4_ext_get_actual_len(last_ex))
3823 return 0;
3824 /*
3825 * If the caller does appear to be planning to write at or
3826 * beyond the end of the current extent, we then test to see
3827 * if the current extent is the last extent in the file, by
3828 * checking to make sure it was reached via the rightmost node
3829 * at each level of the tree.
3830 */
3831 for (i = depth-1; i >= 0; i--)
3832 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3833 return 0;
3834 out:
3835 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3836 return ext4_mark_inode_dirty(handle, inode);
3837 }
3838
3839 /**
3840 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3841 *
3842 * Return 1 if there is a delalloc block in the range, otherwise 0.
3843 */
3844 int ext4_find_delalloc_range(struct inode *inode,
3845 ext4_lblk_t lblk_start,
3846 ext4_lblk_t lblk_end)
3847 {
3848 struct extent_status es;
3849
3850 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3851 if (es.es_len == 0)
3852 return 0; /* there is no delay extent in this tree */
3853 else if (es.es_lblk <= lblk_start &&
3854 lblk_start < es.es_lblk + es.es_len)
3855 return 1;
3856 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3857 return 1;
3858 else
3859 return 0;
3860 }
3861
3862 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3863 {
3864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3865 ext4_lblk_t lblk_start, lblk_end;
3866 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3867 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3868
3869 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3870 }
3871
3872 /**
3873 * Determines how many complete clusters (out of those specified by the 'map')
3874 * are under delalloc and were reserved quota for.
3875 * This function is called when we are writing out the blocks that were
3876 * originally written with their allocation delayed, but then the space was
3877 * allocated using fallocate() before the delayed allocation could be resolved.
3878 * The cases to look for are:
3879 * ('=' indicated delayed allocated blocks
3880 * '-' indicates non-delayed allocated blocks)
3881 * (a) partial clusters towards beginning and/or end outside of allocated range
3882 * are not delalloc'ed.
3883 * Ex:
3884 * |----c---=|====c====|====c====|===-c----|
3885 * |++++++ allocated ++++++|
3886 * ==> 4 complete clusters in above example
3887 *
3888 * (b) partial cluster (outside of allocated range) towards either end is
3889 * marked for delayed allocation. In this case, we will exclude that
3890 * cluster.
3891 * Ex:
3892 * |----====c========|========c========|
3893 * |++++++ allocated ++++++|
3894 * ==> 1 complete clusters in above example
3895 *
3896 * Ex:
3897 * |================c================|
3898 * |++++++ allocated ++++++|
3899 * ==> 0 complete clusters in above example
3900 *
3901 * The ext4_da_update_reserve_space will be called only if we
3902 * determine here that there were some "entire" clusters that span
3903 * this 'allocated' range.
3904 * In the non-bigalloc case, this function will just end up returning num_blks
3905 * without ever calling ext4_find_delalloc_range.
3906 */
3907 static unsigned int
3908 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3909 unsigned int num_blks)
3910 {
3911 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3912 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3913 ext4_lblk_t lblk_from, lblk_to, c_offset;
3914 unsigned int allocated_clusters = 0;
3915
3916 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3917 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3918
3919 /* max possible clusters for this allocation */
3920 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3921
3922 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3923
3924 /* Check towards left side */
3925 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3926 if (c_offset) {
3927 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3928 lblk_to = lblk_from + c_offset - 1;
3929
3930 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3931 allocated_clusters--;
3932 }
3933
3934 /* Now check towards right. */
3935 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3936 if (allocated_clusters && c_offset) {
3937 lblk_from = lblk_start + num_blks;
3938 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3939
3940 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3941 allocated_clusters--;
3942 }
3943
3944 return allocated_clusters;
3945 }
3946
3947 static int
3948 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3949 struct ext4_map_blocks *map,
3950 struct ext4_ext_path *path, int flags,
3951 unsigned int allocated, ext4_fsblk_t newblock)
3952 {
3953 int ret = 0;
3954 int err = 0;
3955
3956 /*
3957 * Make sure that the extent is no bigger than we support with
3958 * uninitialized extent
3959 */
3960 if (map->m_len > EXT_UNINIT_MAX_LEN)
3961 map->m_len = EXT_UNINIT_MAX_LEN / 2;
3962
3963 ret = ext4_convert_initialized_extents(handle, inode, map,
3964 path);
3965 if (ret >= 0) {
3966 ext4_update_inode_fsync_trans(handle, inode, 1);
3967 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3968 path, map->m_len);
3969 } else
3970 err = ret;
3971 map->m_flags |= EXT4_MAP_UNWRITTEN;
3972 if (allocated > map->m_len)
3973 allocated = map->m_len;
3974 map->m_len = allocated;
3975
3976 return err ? err : allocated;
3977 }
3978
3979 static int
3980 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3981 struct ext4_map_blocks *map,
3982 struct ext4_ext_path *path, int flags,
3983 unsigned int allocated, ext4_fsblk_t newblock)
3984 {
3985 int ret = 0;
3986 int err = 0;
3987 ext4_io_end_t *io = ext4_inode_aio(inode);
3988
3989 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3990 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3991 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3992 flags, allocated);
3993 ext4_ext_show_leaf(inode, path);
3994
3995 /*
3996 * When writing into uninitialized space, we should not fail to
3997 * allocate metadata blocks for the new extent block if needed.
3998 */
3999 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4000
4001 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
4002 allocated, newblock);
4003
4004 /* get_block() before submit the IO, split the extent */
4005 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4006 ret = ext4_split_convert_extents(handle, inode, map,
4007 path, flags | EXT4_GET_BLOCKS_CONVERT);
4008 if (ret <= 0)
4009 goto out;
4010 /*
4011 * Flag the inode(non aio case) or end_io struct (aio case)
4012 * that this IO needs to conversion to written when IO is
4013 * completed
4014 */
4015 if (io)
4016 ext4_set_io_unwritten_flag(inode, io);
4017 else
4018 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4019 map->m_flags |= EXT4_MAP_UNWRITTEN;
4020 if (ext4_should_dioread_nolock(inode))
4021 map->m_flags |= EXT4_MAP_UNINIT;
4022 goto out;
4023 }
4024 /* IO end_io complete, convert the filled extent to written */
4025 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
4026 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4027 path);
4028 if (ret >= 0) {
4029 ext4_update_inode_fsync_trans(handle, inode, 1);
4030 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4031 path, map->m_len);
4032 } else
4033 err = ret;
4034 map->m_flags |= EXT4_MAP_MAPPED;
4035 map->m_pblk = newblock;
4036 if (allocated > map->m_len)
4037 allocated = map->m_len;
4038 map->m_len = allocated;
4039 goto out2;
4040 }
4041 /* buffered IO case */
4042 /*
4043 * repeat fallocate creation request
4044 * we already have an unwritten extent
4045 */
4046 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
4047 map->m_flags |= EXT4_MAP_UNWRITTEN;
4048 goto map_out;
4049 }
4050
4051 /* buffered READ or buffered write_begin() lookup */
4052 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4053 /*
4054 * We have blocks reserved already. We
4055 * return allocated blocks so that delalloc
4056 * won't do block reservation for us. But
4057 * the buffer head will be unmapped so that
4058 * a read from the block returns 0s.
4059 */
4060 map->m_flags |= EXT4_MAP_UNWRITTEN;
4061 goto out1;
4062 }
4063
4064 /* buffered write, writepage time, convert*/
4065 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4066 if (ret >= 0)
4067 ext4_update_inode_fsync_trans(handle, inode, 1);
4068 out:
4069 if (ret <= 0) {
4070 err = ret;
4071 goto out2;
4072 } else
4073 allocated = ret;
4074 map->m_flags |= EXT4_MAP_NEW;
4075 /*
4076 * if we allocated more blocks than requested
4077 * we need to make sure we unmap the extra block
4078 * allocated. The actual needed block will get
4079 * unmapped later when we find the buffer_head marked
4080 * new.
4081 */
4082 if (allocated > map->m_len) {
4083 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4084 newblock + map->m_len,
4085 allocated - map->m_len);
4086 allocated = map->m_len;
4087 }
4088 map->m_len = allocated;
4089
4090 /*
4091 * If we have done fallocate with the offset that is already
4092 * delayed allocated, we would have block reservation
4093 * and quota reservation done in the delayed write path.
4094 * But fallocate would have already updated quota and block
4095 * count for this offset. So cancel these reservation
4096 */
4097 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4098 unsigned int reserved_clusters;
4099 reserved_clusters = get_reserved_cluster_alloc(inode,
4100 map->m_lblk, map->m_len);
4101 if (reserved_clusters)
4102 ext4_da_update_reserve_space(inode,
4103 reserved_clusters,
4104 0);
4105 }
4106
4107 map_out:
4108 map->m_flags |= EXT4_MAP_MAPPED;
4109 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4110 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4111 map->m_len);
4112 if (err < 0)
4113 goto out2;
4114 }
4115 out1:
4116 if (allocated > map->m_len)
4117 allocated = map->m_len;
4118 ext4_ext_show_leaf(inode, path);
4119 map->m_pblk = newblock;
4120 map->m_len = allocated;
4121 out2:
4122 return err ? err : allocated;
4123 }
4124
4125 /*
4126 * get_implied_cluster_alloc - check to see if the requested
4127 * allocation (in the map structure) overlaps with a cluster already
4128 * allocated in an extent.
4129 * @sb The filesystem superblock structure
4130 * @map The requested lblk->pblk mapping
4131 * @ex The extent structure which might contain an implied
4132 * cluster allocation
4133 *
4134 * This function is called by ext4_ext_map_blocks() after we failed to
4135 * find blocks that were already in the inode's extent tree. Hence,
4136 * we know that the beginning of the requested region cannot overlap
4137 * the extent from the inode's extent tree. There are three cases we
4138 * want to catch. The first is this case:
4139 *
4140 * |--- cluster # N--|
4141 * |--- extent ---| |---- requested region ---|
4142 * |==========|
4143 *
4144 * The second case that we need to test for is this one:
4145 *
4146 * |--------- cluster # N ----------------|
4147 * |--- requested region --| |------- extent ----|
4148 * |=======================|
4149 *
4150 * The third case is when the requested region lies between two extents
4151 * within the same cluster:
4152 * |------------- cluster # N-------------|
4153 * |----- ex -----| |---- ex_right ----|
4154 * |------ requested region ------|
4155 * |================|
4156 *
4157 * In each of the above cases, we need to set the map->m_pblk and
4158 * map->m_len so it corresponds to the return the extent labelled as
4159 * "|====|" from cluster #N, since it is already in use for data in
4160 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4161 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4162 * as a new "allocated" block region. Otherwise, we will return 0 and
4163 * ext4_ext_map_blocks() will then allocate one or more new clusters
4164 * by calling ext4_mb_new_blocks().
4165 */
4166 static int get_implied_cluster_alloc(struct super_block *sb,
4167 struct ext4_map_blocks *map,
4168 struct ext4_extent *ex,
4169 struct ext4_ext_path *path)
4170 {
4171 struct ext4_sb_info *sbi = EXT4_SB(sb);
4172 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4173 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4174 ext4_lblk_t rr_cluster_start;
4175 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4176 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4177 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4178
4179 /* The extent passed in that we are trying to match */
4180 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4181 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4182
4183 /* The requested region passed into ext4_map_blocks() */
4184 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4185
4186 if ((rr_cluster_start == ex_cluster_end) ||
4187 (rr_cluster_start == ex_cluster_start)) {
4188 if (rr_cluster_start == ex_cluster_end)
4189 ee_start += ee_len - 1;
4190 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4191 map->m_len = min(map->m_len,
4192 (unsigned) sbi->s_cluster_ratio - c_offset);
4193 /*
4194 * Check for and handle this case:
4195 *
4196 * |--------- cluster # N-------------|
4197 * |------- extent ----|
4198 * |--- requested region ---|
4199 * |===========|
4200 */
4201
4202 if (map->m_lblk < ee_block)
4203 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4204
4205 /*
4206 * Check for the case where there is already another allocated
4207 * block to the right of 'ex' but before the end of the cluster.
4208 *
4209 * |------------- cluster # N-------------|
4210 * |----- ex -----| |---- ex_right ----|
4211 * |------ requested region ------|
4212 * |================|
4213 */
4214 if (map->m_lblk > ee_block) {
4215 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4216 map->m_len = min(map->m_len, next - map->m_lblk);
4217 }
4218
4219 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4220 return 1;
4221 }
4222
4223 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4224 return 0;
4225 }
4226
4227
4228 /*
4229 * Block allocation/map/preallocation routine for extents based files
4230 *
4231 *
4232 * Need to be called with
4233 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4234 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4235 *
4236 * return > 0, number of of blocks already mapped/allocated
4237 * if create == 0 and these are pre-allocated blocks
4238 * buffer head is unmapped
4239 * otherwise blocks are mapped
4240 *
4241 * return = 0, if plain look up failed (blocks have not been allocated)
4242 * buffer head is unmapped
4243 *
4244 * return < 0, error case.
4245 */
4246 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4247 struct ext4_map_blocks *map, int flags)
4248 {
4249 struct ext4_ext_path *path = NULL;
4250 struct ext4_extent newex, *ex, *ex2;
4251 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4252 ext4_fsblk_t newblock = 0;
4253 int free_on_err = 0, err = 0, depth, ret;
4254 unsigned int allocated = 0, offset = 0;
4255 unsigned int allocated_clusters = 0;
4256 struct ext4_allocation_request ar;
4257 ext4_io_end_t *io = ext4_inode_aio(inode);
4258 ext4_lblk_t cluster_offset;
4259 int set_unwritten = 0;
4260
4261 ext_debug("blocks %u/%u requested for inode %lu\n",
4262 map->m_lblk, map->m_len, inode->i_ino);
4263 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4264
4265 /* find extent for this block */
4266 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4267 if (IS_ERR(path)) {
4268 err = PTR_ERR(path);
4269 path = NULL;
4270 goto out2;
4271 }
4272
4273 depth = ext_depth(inode);
4274
4275 /*
4276 * consistent leaf must not be empty;
4277 * this situation is possible, though, _during_ tree modification;
4278 * this is why assert can't be put in ext4_ext_find_extent()
4279 */
4280 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4281 EXT4_ERROR_INODE(inode, "bad extent address "
4282 "lblock: %lu, depth: %d pblock %lld",
4283 (unsigned long) map->m_lblk, depth,
4284 path[depth].p_block);
4285 err = -EIO;
4286 goto out2;
4287 }
4288
4289 ex = path[depth].p_ext;
4290 if (ex) {
4291 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4292 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4293 unsigned short ee_len;
4294
4295
4296 /*
4297 * Uninitialized extents are treated as holes, except that
4298 * we split out initialized portions during a write.
4299 */
4300 ee_len = ext4_ext_get_actual_len(ex);
4301
4302 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4303
4304 /* if found extent covers block, simply return it */
4305 if (in_range(map->m_lblk, ee_block, ee_len)) {
4306 newblock = map->m_lblk - ee_block + ee_start;
4307 /* number of remaining blocks in the extent */
4308 allocated = ee_len - (map->m_lblk - ee_block);
4309 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4310 ee_block, ee_len, newblock);
4311
4312 /*
4313 * If the extent is initialized check whether the
4314 * caller wants to convert it to unwritten.
4315 */
4316 if ((!ext4_ext_is_uninitialized(ex)) &&
4317 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4318 allocated = ext4_ext_convert_initialized_extent(
4319 handle, inode, map, path, flags,
4320 allocated, newblock);
4321 goto out2;
4322 } else if (!ext4_ext_is_uninitialized(ex))
4323 goto out;
4324
4325 ret = ext4_ext_handle_uninitialized_extents(
4326 handle, inode, map, path, flags,
4327 allocated, newblock);
4328 if (ret < 0)
4329 err = ret;
4330 else
4331 allocated = ret;
4332 goto out2;
4333 }
4334 }
4335
4336 if ((sbi->s_cluster_ratio > 1) &&
4337 ext4_find_delalloc_cluster(inode, map->m_lblk))
4338 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4339
4340 /*
4341 * requested block isn't allocated yet;
4342 * we couldn't try to create block if create flag is zero
4343 */
4344 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4345 /*
4346 * put just found gap into cache to speed up
4347 * subsequent requests
4348 */
4349 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4350 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4351 goto out2;
4352 }
4353
4354 /*
4355 * Okay, we need to do block allocation.
4356 */
4357 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4358 newex.ee_block = cpu_to_le32(map->m_lblk);
4359 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4360
4361 /*
4362 * If we are doing bigalloc, check to see if the extent returned
4363 * by ext4_ext_find_extent() implies a cluster we can use.
4364 */
4365 if (cluster_offset && ex &&
4366 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4367 ar.len = allocated = map->m_len;
4368 newblock = map->m_pblk;
4369 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4370 goto got_allocated_blocks;
4371 }
4372
4373 /* find neighbour allocated blocks */
4374 ar.lleft = map->m_lblk;
4375 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4376 if (err)
4377 goto out2;
4378 ar.lright = map->m_lblk;
4379 ex2 = NULL;
4380 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4381 if (err)
4382 goto out2;
4383
4384 /* Check if the extent after searching to the right implies a
4385 * cluster we can use. */
4386 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4387 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4388 ar.len = allocated = map->m_len;
4389 newblock = map->m_pblk;
4390 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4391 goto got_allocated_blocks;
4392 }
4393
4394 /*
4395 * See if request is beyond maximum number of blocks we can have in
4396 * a single extent. For an initialized extent this limit is
4397 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4398 * EXT_UNINIT_MAX_LEN.
4399 */
4400 if (map->m_len > EXT_INIT_MAX_LEN &&
4401 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4402 map->m_len = EXT_INIT_MAX_LEN;
4403 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4404 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4405 map->m_len = EXT_UNINIT_MAX_LEN;
4406
4407 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4408 newex.ee_len = cpu_to_le16(map->m_len);
4409 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4410 if (err)
4411 allocated = ext4_ext_get_actual_len(&newex);
4412 else
4413 allocated = map->m_len;
4414
4415 /* allocate new block */
4416 ar.inode = inode;
4417 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4418 ar.logical = map->m_lblk;
4419 /*
4420 * We calculate the offset from the beginning of the cluster
4421 * for the logical block number, since when we allocate a
4422 * physical cluster, the physical block should start at the
4423 * same offset from the beginning of the cluster. This is
4424 * needed so that future calls to get_implied_cluster_alloc()
4425 * work correctly.
4426 */
4427 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4428 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4429 ar.goal -= offset;
4430 ar.logical -= offset;
4431 if (S_ISREG(inode->i_mode))
4432 ar.flags = EXT4_MB_HINT_DATA;
4433 else
4434 /* disable in-core preallocation for non-regular files */
4435 ar.flags = 0;
4436 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4437 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4438 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4439 if (!newblock)
4440 goto out2;
4441 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4442 ar.goal, newblock, allocated);
4443 free_on_err = 1;
4444 allocated_clusters = ar.len;
4445 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4446 if (ar.len > allocated)
4447 ar.len = allocated;
4448
4449 got_allocated_blocks:
4450 /* try to insert new extent into found leaf and return */
4451 ext4_ext_store_pblock(&newex, newblock + offset);
4452 newex.ee_len = cpu_to_le16(ar.len);
4453 /* Mark uninitialized */
4454 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4455 ext4_ext_mark_uninitialized(&newex);
4456 map->m_flags |= EXT4_MAP_UNWRITTEN;
4457 /*
4458 * io_end structure was created for every IO write to an
4459 * uninitialized extent. To avoid unnecessary conversion,
4460 * here we flag the IO that really needs the conversion.
4461 * For non asycn direct IO case, flag the inode state
4462 * that we need to perform conversion when IO is done.
4463 */
4464 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4465 set_unwritten = 1;
4466 if (ext4_should_dioread_nolock(inode))
4467 map->m_flags |= EXT4_MAP_UNINIT;
4468 }
4469
4470 err = 0;
4471 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4472 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4473 path, ar.len);
4474 if (!err)
4475 err = ext4_ext_insert_extent(handle, inode, path,
4476 &newex, flags);
4477
4478 if (!err && set_unwritten) {
4479 if (io)
4480 ext4_set_io_unwritten_flag(inode, io);
4481 else
4482 ext4_set_inode_state(inode,
4483 EXT4_STATE_DIO_UNWRITTEN);
4484 }
4485
4486 if (err && free_on_err) {
4487 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4488 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4489 /* free data blocks we just allocated */
4490 /* not a good idea to call discard here directly,
4491 * but otherwise we'd need to call it every free() */
4492 ext4_discard_preallocations(inode);
4493 ext4_free_blocks(handle, inode, NULL, newblock,
4494 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4495 goto out2;
4496 }
4497
4498 /* previous routine could use block we allocated */
4499 newblock = ext4_ext_pblock(&newex);
4500 allocated = ext4_ext_get_actual_len(&newex);
4501 if (allocated > map->m_len)
4502 allocated = map->m_len;
4503 map->m_flags |= EXT4_MAP_NEW;
4504
4505 /*
4506 * Update reserved blocks/metadata blocks after successful
4507 * block allocation which had been deferred till now.
4508 */
4509 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4510 unsigned int reserved_clusters;
4511 /*
4512 * Check how many clusters we had reserved this allocated range
4513 */
4514 reserved_clusters = get_reserved_cluster_alloc(inode,
4515 map->m_lblk, allocated);
4516 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4517 if (reserved_clusters) {
4518 /*
4519 * We have clusters reserved for this range.
4520 * But since we are not doing actual allocation
4521 * and are simply using blocks from previously
4522 * allocated cluster, we should release the
4523 * reservation and not claim quota.
4524 */
4525 ext4_da_update_reserve_space(inode,
4526 reserved_clusters, 0);
4527 }
4528 } else {
4529 BUG_ON(allocated_clusters < reserved_clusters);
4530 if (reserved_clusters < allocated_clusters) {
4531 struct ext4_inode_info *ei = EXT4_I(inode);
4532 int reservation = allocated_clusters -
4533 reserved_clusters;
4534 /*
4535 * It seems we claimed few clusters outside of
4536 * the range of this allocation. We should give
4537 * it back to the reservation pool. This can
4538 * happen in the following case:
4539 *
4540 * * Suppose s_cluster_ratio is 4 (i.e., each
4541 * cluster has 4 blocks. Thus, the clusters
4542 * are [0-3],[4-7],[8-11]...
4543 * * First comes delayed allocation write for
4544 * logical blocks 10 & 11. Since there were no
4545 * previous delayed allocated blocks in the
4546 * range [8-11], we would reserve 1 cluster
4547 * for this write.
4548 * * Next comes write for logical blocks 3 to 8.
4549 * In this case, we will reserve 2 clusters
4550 * (for [0-3] and [4-7]; and not for [8-11] as
4551 * that range has a delayed allocated blocks.
4552 * Thus total reserved clusters now becomes 3.
4553 * * Now, during the delayed allocation writeout
4554 * time, we will first write blocks [3-8] and
4555 * allocate 3 clusters for writing these
4556 * blocks. Also, we would claim all these
4557 * three clusters above.
4558 * * Now when we come here to writeout the
4559 * blocks [10-11], we would expect to claim
4560 * the reservation of 1 cluster we had made
4561 * (and we would claim it since there are no
4562 * more delayed allocated blocks in the range
4563 * [8-11]. But our reserved cluster count had
4564 * already gone to 0.
4565 *
4566 * Thus, at the step 4 above when we determine
4567 * that there are still some unwritten delayed
4568 * allocated blocks outside of our current
4569 * block range, we should increment the
4570 * reserved clusters count so that when the
4571 * remaining blocks finally gets written, we
4572 * could claim them.
4573 */
4574 dquot_reserve_block(inode,
4575 EXT4_C2B(sbi, reservation));
4576 spin_lock(&ei->i_block_reservation_lock);
4577 ei->i_reserved_data_blocks += reservation;
4578 spin_unlock(&ei->i_block_reservation_lock);
4579 }
4580 /*
4581 * We will claim quota for all newly allocated blocks.
4582 * We're updating the reserved space *after* the
4583 * correction above so we do not accidentally free
4584 * all the metadata reservation because we might
4585 * actually need it later on.
4586 */
4587 ext4_da_update_reserve_space(inode, allocated_clusters,
4588 1);
4589 }
4590 }
4591
4592 /*
4593 * Cache the extent and update transaction to commit on fdatasync only
4594 * when it is _not_ an uninitialized extent.
4595 */
4596 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4597 ext4_update_inode_fsync_trans(handle, inode, 1);
4598 else
4599 ext4_update_inode_fsync_trans(handle, inode, 0);
4600 out:
4601 if (allocated > map->m_len)
4602 allocated = map->m_len;
4603 ext4_ext_show_leaf(inode, path);
4604 map->m_flags |= EXT4_MAP_MAPPED;
4605 map->m_pblk = newblock;
4606 map->m_len = allocated;
4607 out2:
4608 if (path) {
4609 ext4_ext_drop_refs(path);
4610 kfree(path);
4611 }
4612
4613 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4614 err ? err : allocated);
4615 ext4_es_lru_add(inode);
4616 return err ? err : allocated;
4617 }
4618
4619 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4620 {
4621 struct super_block *sb = inode->i_sb;
4622 ext4_lblk_t last_block;
4623 int err = 0;
4624
4625 /*
4626 * TODO: optimization is possible here.
4627 * Probably we need not scan at all,
4628 * because page truncation is enough.
4629 */
4630
4631 /* we have to know where to truncate from in crash case */
4632 EXT4_I(inode)->i_disksize = inode->i_size;
4633 ext4_mark_inode_dirty(handle, inode);
4634
4635 last_block = (inode->i_size + sb->s_blocksize - 1)
4636 >> EXT4_BLOCK_SIZE_BITS(sb);
4637 retry:
4638 err = ext4_es_remove_extent(inode, last_block,
4639 EXT_MAX_BLOCKS - last_block);
4640 if (err == -ENOMEM) {
4641 cond_resched();
4642 congestion_wait(BLK_RW_ASYNC, HZ/50);
4643 goto retry;
4644 }
4645 if (err) {
4646 ext4_std_error(inode->i_sb, err);
4647 return;
4648 }
4649 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4650 ext4_std_error(inode->i_sb, err);
4651 }
4652
4653 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4654 ext4_lblk_t len, int flags, int mode)
4655 {
4656 struct inode *inode = file_inode(file);
4657 handle_t *handle;
4658 int ret = 0;
4659 int ret2 = 0;
4660 int retries = 0;
4661 struct ext4_map_blocks map;
4662 unsigned int credits;
4663
4664 map.m_lblk = offset;
4665 /*
4666 * Don't normalize the request if it can fit in one extent so
4667 * that it doesn't get unnecessarily split into multiple
4668 * extents.
4669 */
4670 if (len <= EXT_UNINIT_MAX_LEN)
4671 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4672
4673 /*
4674 * credits to insert 1 extent into extent tree
4675 */
4676 credits = ext4_chunk_trans_blocks(inode, len);
4677
4678 retry:
4679 while (ret >= 0 && ret < len) {
4680 map.m_lblk = map.m_lblk + ret;
4681 map.m_len = len = len - ret;
4682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4683 credits);
4684 if (IS_ERR(handle)) {
4685 ret = PTR_ERR(handle);
4686 break;
4687 }
4688 ret = ext4_map_blocks(handle, inode, &map, flags);
4689 if (ret <= 0) {
4690 ext4_debug("inode #%lu: block %u: len %u: "
4691 "ext4_ext_map_blocks returned %d",
4692 inode->i_ino, map.m_lblk,
4693 map.m_len, ret);
4694 ext4_mark_inode_dirty(handle, inode);
4695 ret2 = ext4_journal_stop(handle);
4696 break;
4697 }
4698 ret2 = ext4_journal_stop(handle);
4699 if (ret2)
4700 break;
4701 }
4702 if (ret == -ENOSPC &&
4703 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4704 ret = 0;
4705 goto retry;
4706 }
4707
4708 return ret > 0 ? ret2 : ret;
4709 }
4710
4711 static long ext4_zero_range(struct file *file, loff_t offset,
4712 loff_t len, int mode)
4713 {
4714 struct inode *inode = file_inode(file);
4715 handle_t *handle = NULL;
4716 unsigned int max_blocks;
4717 loff_t new_size = 0;
4718 int ret = 0;
4719 int flags;
4720 int partial;
4721 loff_t start, end;
4722 ext4_lblk_t lblk;
4723 struct address_space *mapping = inode->i_mapping;
4724 unsigned int blkbits = inode->i_blkbits;
4725
4726 trace_ext4_zero_range(inode, offset, len, mode);
4727
4728 /*
4729 * Write out all dirty pages to avoid race conditions
4730 * Then release them.
4731 */
4732 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4733 ret = filemap_write_and_wait_range(mapping, offset,
4734 offset + len - 1);
4735 if (ret)
4736 return ret;
4737 }
4738
4739 /*
4740 * Round up offset. This is not fallocate, we neet to zero out
4741 * blocks, so convert interior block aligned part of the range to
4742 * unwritten and possibly manually zero out unaligned parts of the
4743 * range.
4744 */
4745 start = round_up(offset, 1 << blkbits);
4746 end = round_down((offset + len), 1 << blkbits);
4747
4748 if (start < offset || end > offset + len)
4749 return -EINVAL;
4750 partial = (offset + len) & ((1 << blkbits) - 1);
4751
4752 lblk = start >> blkbits;
4753 max_blocks = (end >> blkbits);
4754 if (max_blocks < lblk)
4755 max_blocks = 0;
4756 else
4757 max_blocks -= lblk;
4758
4759 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4760 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4761 if (mode & FALLOC_FL_KEEP_SIZE)
4762 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4763
4764 mutex_lock(&inode->i_mutex);
4765
4766 /*
4767 * Indirect files do not support unwritten extnets
4768 */
4769 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4770 ret = -EOPNOTSUPP;
4771 goto out_mutex;
4772 }
4773
4774 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4775 offset + len > i_size_read(inode)) {
4776 new_size = offset + len;
4777 ret = inode_newsize_ok(inode, new_size);
4778 if (ret)
4779 goto out_mutex;
4780 /*
4781 * If we have a partial block after EOF we have to allocate
4782 * the entire block.
4783 */
4784 if (partial)
4785 max_blocks += 1;
4786 }
4787
4788 if (max_blocks > 0) {
4789
4790 /* Now release the pages and zero block aligned part of pages*/
4791 truncate_pagecache_range(inode, start, end - 1);
4792
4793 /* Wait all existing dio workers, newcomers will block on i_mutex */
4794 ext4_inode_block_unlocked_dio(inode);
4795 inode_dio_wait(inode);
4796
4797 /*
4798 * Remove entire range from the extent status tree.
4799 */
4800 ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4801 if (ret)
4802 goto out_dio;
4803
4804 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4805 mode);
4806 if (ret)
4807 goto out_dio;
4808 }
4809
4810 handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4811 if (IS_ERR(handle)) {
4812 ret = PTR_ERR(handle);
4813 ext4_std_error(inode->i_sb, ret);
4814 goto out_dio;
4815 }
4816
4817 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4818
4819 if (!ret && new_size) {
4820 if (new_size > i_size_read(inode))
4821 i_size_write(inode, new_size);
4822 if (new_size > EXT4_I(inode)->i_disksize)
4823 ext4_update_i_disksize(inode, new_size);
4824 } else if (!ret && !new_size) {
4825 /*
4826 * Mark that we allocate beyond EOF so the subsequent truncate
4827 * can proceed even if the new size is the same as i_size.
4828 */
4829 if ((offset + len) > i_size_read(inode))
4830 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4831 }
4832
4833 ext4_mark_inode_dirty(handle, inode);
4834
4835 /* Zero out partial block at the edges of the range */
4836 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4837
4838 if (file->f_flags & O_SYNC)
4839 ext4_handle_sync(handle);
4840
4841 ext4_journal_stop(handle);
4842 out_dio:
4843 ext4_inode_resume_unlocked_dio(inode);
4844 out_mutex:
4845 mutex_unlock(&inode->i_mutex);
4846 return ret;
4847 }
4848
4849 /*
4850 * preallocate space for a file. This implements ext4's fallocate file
4851 * operation, which gets called from sys_fallocate system call.
4852 * For block-mapped files, posix_fallocate should fall back to the method
4853 * of writing zeroes to the required new blocks (the same behavior which is
4854 * expected for file systems which do not support fallocate() system call).
4855 */
4856 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4857 {
4858 struct inode *inode = file_inode(file);
4859 handle_t *handle;
4860 loff_t new_size = 0;
4861 unsigned int max_blocks;
4862 int ret = 0;
4863 int flags;
4864 ext4_lblk_t lblk;
4865 struct timespec tv;
4866 unsigned int blkbits = inode->i_blkbits;
4867
4868 /* Return error if mode is not supported */
4869 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4870 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4871 return -EOPNOTSUPP;
4872
4873 if (mode & FALLOC_FL_PUNCH_HOLE)
4874 return ext4_punch_hole(inode, offset, len);
4875
4876 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4877 return ext4_collapse_range(inode, offset, len);
4878
4879 ret = ext4_convert_inline_data(inode);
4880 if (ret)
4881 return ret;
4882
4883 /*
4884 * currently supporting (pre)allocate mode for extent-based
4885 * files _only_
4886 */
4887 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4888 return -EOPNOTSUPP;
4889
4890 if (mode & FALLOC_FL_ZERO_RANGE)
4891 return ext4_zero_range(file, offset, len, mode);
4892
4893 trace_ext4_fallocate_enter(inode, offset, len, mode);
4894 lblk = offset >> blkbits;
4895 /*
4896 * We can't just convert len to max_blocks because
4897 * If blocksize = 4096 offset = 3072 and len = 2048
4898 */
4899 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4900 - lblk;
4901
4902 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4903 if (mode & FALLOC_FL_KEEP_SIZE)
4904 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4905
4906 mutex_lock(&inode->i_mutex);
4907
4908 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4909 offset + len > i_size_read(inode)) {
4910 new_size = offset + len;
4911 ret = inode_newsize_ok(inode, new_size);
4912 if (ret)
4913 goto out;
4914 }
4915
4916 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4917 if (ret)
4918 goto out;
4919
4920 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4921 if (IS_ERR(handle))
4922 goto out;
4923
4924 tv = inode->i_ctime = ext4_current_time(inode);
4925
4926 if (!ret && new_size) {
4927 if (new_size > i_size_read(inode)) {
4928 i_size_write(inode, new_size);
4929 inode->i_mtime = tv;
4930 }
4931 if (new_size > EXT4_I(inode)->i_disksize)
4932 ext4_update_i_disksize(inode, new_size);
4933 } else if (!ret && !new_size) {
4934 /*
4935 * Mark that we allocate beyond EOF so the subsequent truncate
4936 * can proceed even if the new size is the same as i_size.
4937 */
4938 if ((offset + len) > i_size_read(inode))
4939 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4940 }
4941 ext4_mark_inode_dirty(handle, inode);
4942 if (file->f_flags & O_SYNC)
4943 ext4_handle_sync(handle);
4944
4945 ext4_journal_stop(handle);
4946 out:
4947 mutex_unlock(&inode->i_mutex);
4948 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4949 return ret;
4950 }
4951
4952 /*
4953 * This function convert a range of blocks to written extents
4954 * The caller of this function will pass the start offset and the size.
4955 * all unwritten extents within this range will be converted to
4956 * written extents.
4957 *
4958 * This function is called from the direct IO end io call back
4959 * function, to convert the fallocated extents after IO is completed.
4960 * Returns 0 on success.
4961 */
4962 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4963 loff_t offset, ssize_t len)
4964 {
4965 unsigned int max_blocks;
4966 int ret = 0;
4967 int ret2 = 0;
4968 struct ext4_map_blocks map;
4969 unsigned int credits, blkbits = inode->i_blkbits;
4970
4971 map.m_lblk = offset >> blkbits;
4972 /*
4973 * We can't just convert len to max_blocks because
4974 * If blocksize = 4096 offset = 3072 and len = 2048
4975 */
4976 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4977 map.m_lblk);
4978 /*
4979 * This is somewhat ugly but the idea is clear: When transaction is
4980 * reserved, everything goes into it. Otherwise we rather start several
4981 * smaller transactions for conversion of each extent separately.
4982 */
4983 if (handle) {
4984 handle = ext4_journal_start_reserved(handle,
4985 EXT4_HT_EXT_CONVERT);
4986 if (IS_ERR(handle))
4987 return PTR_ERR(handle);
4988 credits = 0;
4989 } else {
4990 /*
4991 * credits to insert 1 extent into extent tree
4992 */
4993 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4994 }
4995 while (ret >= 0 && ret < max_blocks) {
4996 map.m_lblk += ret;
4997 map.m_len = (max_blocks -= ret);
4998 if (credits) {
4999 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5000 credits);
5001 if (IS_ERR(handle)) {
5002 ret = PTR_ERR(handle);
5003 break;
5004 }
5005 }
5006 ret = ext4_map_blocks(handle, inode, &map,
5007 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5008 if (ret <= 0)
5009 ext4_warning(inode->i_sb,
5010 "inode #%lu: block %u: len %u: "
5011 "ext4_ext_map_blocks returned %d",
5012 inode->i_ino, map.m_lblk,
5013 map.m_len, ret);
5014 ext4_mark_inode_dirty(handle, inode);
5015 if (credits)
5016 ret2 = ext4_journal_stop(handle);
5017 if (ret <= 0 || ret2)
5018 break;
5019 }
5020 if (!credits)
5021 ret2 = ext4_journal_stop(handle);
5022 return ret > 0 ? ret2 : ret;
5023 }
5024
5025 /*
5026 * If newes is not existing extent (newes->ec_pblk equals zero) find
5027 * delayed extent at start of newes and update newes accordingly and
5028 * return start of the next delayed extent.
5029 *
5030 * If newes is existing extent (newes->ec_pblk is not equal zero)
5031 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5032 * extent found. Leave newes unmodified.
5033 */
5034 static int ext4_find_delayed_extent(struct inode *inode,
5035 struct extent_status *newes)
5036 {
5037 struct extent_status es;
5038 ext4_lblk_t block, next_del;
5039
5040 if (newes->es_pblk == 0) {
5041 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5042 newes->es_lblk + newes->es_len - 1, &es);
5043
5044 /*
5045 * No extent in extent-tree contains block @newes->es_pblk,
5046 * then the block may stay in 1)a hole or 2)delayed-extent.
5047 */
5048 if (es.es_len == 0)
5049 /* A hole found. */
5050 return 0;
5051
5052 if (es.es_lblk > newes->es_lblk) {
5053 /* A hole found. */
5054 newes->es_len = min(es.es_lblk - newes->es_lblk,
5055 newes->es_len);
5056 return 0;
5057 }
5058
5059 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5060 }
5061
5062 block = newes->es_lblk + newes->es_len;
5063 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5064 if (es.es_len == 0)
5065 next_del = EXT_MAX_BLOCKS;
5066 else
5067 next_del = es.es_lblk;
5068
5069 return next_del;
5070 }
5071 /* fiemap flags we can handle specified here */
5072 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5073
5074 static int ext4_xattr_fiemap(struct inode *inode,
5075 struct fiemap_extent_info *fieinfo)
5076 {
5077 __u64 physical = 0;
5078 __u64 length;
5079 __u32 flags = FIEMAP_EXTENT_LAST;
5080 int blockbits = inode->i_sb->s_blocksize_bits;
5081 int error = 0;
5082
5083 /* in-inode? */
5084 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5085 struct ext4_iloc iloc;
5086 int offset; /* offset of xattr in inode */
5087
5088 error = ext4_get_inode_loc(inode, &iloc);
5089 if (error)
5090 return error;
5091 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5092 offset = EXT4_GOOD_OLD_INODE_SIZE +
5093 EXT4_I(inode)->i_extra_isize;
5094 physical += offset;
5095 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5096 flags |= FIEMAP_EXTENT_DATA_INLINE;
5097 brelse(iloc.bh);
5098 } else { /* external block */
5099 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5100 length = inode->i_sb->s_blocksize;
5101 }
5102
5103 if (physical)
5104 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5105 length, flags);
5106 return (error < 0 ? error : 0);
5107 }
5108
5109 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5110 __u64 start, __u64 len)
5111 {
5112 ext4_lblk_t start_blk;
5113 int error = 0;
5114
5115 if (ext4_has_inline_data(inode)) {
5116 int has_inline = 1;
5117
5118 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5119
5120 if (has_inline)
5121 return error;
5122 }
5123
5124 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5125 error = ext4_ext_precache(inode);
5126 if (error)
5127 return error;
5128 }
5129
5130 /* fallback to generic here if not in extents fmt */
5131 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5132 return generic_block_fiemap(inode, fieinfo, start, len,
5133 ext4_get_block);
5134
5135 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5136 return -EBADR;
5137
5138 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5139 error = ext4_xattr_fiemap(inode, fieinfo);
5140 } else {
5141 ext4_lblk_t len_blks;
5142 __u64 last_blk;
5143
5144 start_blk = start >> inode->i_sb->s_blocksize_bits;
5145 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5146 if (last_blk >= EXT_MAX_BLOCKS)
5147 last_blk = EXT_MAX_BLOCKS-1;
5148 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5149
5150 /*
5151 * Walk the extent tree gathering extent information
5152 * and pushing extents back to the user.
5153 */
5154 error = ext4_fill_fiemap_extents(inode, start_blk,
5155 len_blks, fieinfo);
5156 }
5157 ext4_es_lru_add(inode);
5158 return error;
5159 }
5160
5161 /*
5162 * ext4_access_path:
5163 * Function to access the path buffer for marking it dirty.
5164 * It also checks if there are sufficient credits left in the journal handle
5165 * to update path.
5166 */
5167 static int
5168 ext4_access_path(handle_t *handle, struct inode *inode,
5169 struct ext4_ext_path *path)
5170 {
5171 int credits, err;
5172
5173 if (!ext4_handle_valid(handle))
5174 return 0;
5175
5176 /*
5177 * Check if need to extend journal credits
5178 * 3 for leaf, sb, and inode plus 2 (bmap and group
5179 * descriptor) for each block group; assume two block
5180 * groups
5181 */
5182 if (handle->h_buffer_credits < 7) {
5183 credits = ext4_writepage_trans_blocks(inode);
5184 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5185 /* EAGAIN is success */
5186 if (err && err != -EAGAIN)
5187 return err;
5188 }
5189
5190 err = ext4_ext_get_access(handle, inode, path);
5191 return err;
5192 }
5193
5194 /*
5195 * ext4_ext_shift_path_extents:
5196 * Shift the extents of a path structure lying between path[depth].p_ext
5197 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5198 * from starting block for each extent.
5199 */
5200 static int
5201 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5202 struct inode *inode, handle_t *handle,
5203 ext4_lblk_t *start)
5204 {
5205 int depth, err = 0;
5206 struct ext4_extent *ex_start, *ex_last;
5207 bool update = 0;
5208 depth = path->p_depth;
5209
5210 while (depth >= 0) {
5211 if (depth == path->p_depth) {
5212 ex_start = path[depth].p_ext;
5213 if (!ex_start)
5214 return -EIO;
5215
5216 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5217 if (!ex_last)
5218 return -EIO;
5219
5220 err = ext4_access_path(handle, inode, path + depth);
5221 if (err)
5222 goto out;
5223
5224 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5225 update = 1;
5226
5227 *start = ex_last->ee_block +
5228 ext4_ext_get_actual_len(ex_last);
5229
5230 while (ex_start <= ex_last) {
5231 ex_start->ee_block -= shift;
5232 if (ex_start >
5233 EXT_FIRST_EXTENT(path[depth].p_hdr)) {
5234 if (ext4_ext_try_to_merge_right(inode,
5235 path, ex_start - 1))
5236 ex_last--;
5237 }
5238 ex_start++;
5239 }
5240 err = ext4_ext_dirty(handle, inode, path + depth);
5241 if (err)
5242 goto out;
5243
5244 if (--depth < 0 || !update)
5245 break;
5246 }
5247
5248 /* Update index too */
5249 err = ext4_access_path(handle, inode, path + depth);
5250 if (err)
5251 goto out;
5252
5253 path[depth].p_idx->ei_block -= shift;
5254 err = ext4_ext_dirty(handle, inode, path + depth);
5255 if (err)
5256 goto out;
5257
5258 /* we are done if current index is not a starting index */
5259 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5260 break;
5261
5262 depth--;
5263 }
5264
5265 out:
5266 return err;
5267 }
5268
5269 /*
5270 * ext4_ext_shift_extents:
5271 * All the extents which lies in the range from start to the last allocated
5272 * block for the file are shifted downwards by shift blocks.
5273 * On success, 0 is returned, error otherwise.
5274 */
5275 static int
5276 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5277 ext4_lblk_t start, ext4_lblk_t shift)
5278 {
5279 struct ext4_ext_path *path;
5280 int ret = 0, depth;
5281 struct ext4_extent *extent;
5282 ext4_lblk_t stop_block, current_block;
5283 ext4_lblk_t ex_start, ex_end;
5284
5285 /* Let path point to the last extent */
5286 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5287 if (IS_ERR(path))
5288 return PTR_ERR(path);
5289
5290 depth = path->p_depth;
5291 extent = path[depth].p_ext;
5292 if (!extent) {
5293 ext4_ext_drop_refs(path);
5294 kfree(path);
5295 return ret;
5296 }
5297
5298 stop_block = extent->ee_block + ext4_ext_get_actual_len(extent);
5299 ext4_ext_drop_refs(path);
5300 kfree(path);
5301
5302 /* Nothing to shift, if hole is at the end of file */
5303 if (start >= stop_block)
5304 return ret;
5305
5306 /*
5307 * Don't start shifting extents until we make sure the hole is big
5308 * enough to accomodate the shift.
5309 */
5310 path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5311 depth = path->p_depth;
5312 extent = path[depth].p_ext;
5313 ex_start = extent->ee_block;
5314 ex_end = extent->ee_block + ext4_ext_get_actual_len(extent);
5315 ext4_ext_drop_refs(path);
5316 kfree(path);
5317
5318 if ((start == ex_start && shift > ex_start) ||
5319 (shift > start - ex_end))
5320 return -EINVAL;
5321
5322 /* Its safe to start updating extents */
5323 while (start < stop_block) {
5324 path = ext4_ext_find_extent(inode, start, NULL, 0);
5325 if (IS_ERR(path))
5326 return PTR_ERR(path);
5327 depth = path->p_depth;
5328 extent = path[depth].p_ext;
5329 current_block = extent->ee_block;
5330 if (start > current_block) {
5331 /* Hole, move to the next extent */
5332 ret = mext_next_extent(inode, path, &extent);
5333 if (ret != 0) {
5334 ext4_ext_drop_refs(path);
5335 kfree(path);
5336 if (ret == 1)
5337 ret = 0;
5338 break;
5339 }
5340 }
5341 ret = ext4_ext_shift_path_extents(path, shift, inode,
5342 handle, &start);
5343 ext4_ext_drop_refs(path);
5344 kfree(path);
5345 if (ret)
5346 break;
5347 }
5348
5349 return ret;
5350 }
5351
5352 /*
5353 * ext4_collapse_range:
5354 * This implements the fallocate's collapse range functionality for ext4
5355 * Returns: 0 and non-zero on error.
5356 */
5357 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5358 {
5359 struct super_block *sb = inode->i_sb;
5360 ext4_lblk_t punch_start, punch_stop;
5361 handle_t *handle;
5362 unsigned int credits;
5363 loff_t new_size;
5364 int ret;
5365
5366 BUG_ON(offset + len > i_size_read(inode));
5367
5368 /* Collapse range works only on fs block size aligned offsets. */
5369 if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5370 len & (EXT4_BLOCK_SIZE(sb) - 1))
5371 return -EINVAL;
5372
5373 if (!S_ISREG(inode->i_mode))
5374 return -EOPNOTSUPP;
5375
5376 trace_ext4_collapse_range(inode, offset, len);
5377
5378 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5379 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5380
5381 /* Write out all dirty pages */
5382 ret = filemap_write_and_wait_range(inode->i_mapping, offset, -1);
5383 if (ret)
5384 return ret;
5385
5386 /* Take mutex lock */
5387 mutex_lock(&inode->i_mutex);
5388
5389 /* It's not possible punch hole on append only file */
5390 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5391 ret = -EPERM;
5392 goto out_mutex;
5393 }
5394
5395 if (IS_SWAPFILE(inode)) {
5396 ret = -ETXTBSY;
5397 goto out_mutex;
5398 }
5399
5400 /* Currently just for extent based files */
5401 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5402 ret = -EOPNOTSUPP;
5403 goto out_mutex;
5404 }
5405
5406 truncate_pagecache_range(inode, offset, -1);
5407
5408 /* Wait for existing dio to complete */
5409 ext4_inode_block_unlocked_dio(inode);
5410 inode_dio_wait(inode);
5411
5412 credits = ext4_writepage_trans_blocks(inode);
5413 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5414 if (IS_ERR(handle)) {
5415 ret = PTR_ERR(handle);
5416 goto out_dio;
5417 }
5418
5419 down_write(&EXT4_I(inode)->i_data_sem);
5420 ext4_discard_preallocations(inode);
5421
5422 ret = ext4_es_remove_extent(inode, punch_start,
5423 EXT_MAX_BLOCKS - punch_start - 1);
5424 if (ret) {
5425 up_write(&EXT4_I(inode)->i_data_sem);
5426 goto out_stop;
5427 }
5428
5429 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5430 if (ret) {
5431 up_write(&EXT4_I(inode)->i_data_sem);
5432 goto out_stop;
5433 }
5434
5435 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5436 punch_stop - punch_start);
5437 if (ret) {
5438 up_write(&EXT4_I(inode)->i_data_sem);
5439 goto out_stop;
5440 }
5441
5442 new_size = i_size_read(inode) - len;
5443 truncate_setsize(inode, new_size);
5444 EXT4_I(inode)->i_disksize = new_size;
5445
5446 ext4_discard_preallocations(inode);
5447 up_write(&EXT4_I(inode)->i_data_sem);
5448 if (IS_SYNC(inode))
5449 ext4_handle_sync(handle);
5450 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5451 ext4_mark_inode_dirty(handle, inode);
5452
5453 out_stop:
5454 ext4_journal_stop(handle);
5455 out_dio:
5456 ext4_inode_resume_unlocked_dio(inode);
5457 out_mutex:
5458 mutex_unlock(&inode->i_mutex);
5459 return ret;
5460 }
This page took 0.13916 seconds and 5 git commands to generate.