538f9a4d96ffbd090c8da30822664042f93c7f81
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45
46 #include <trace/events/ext4.h>
47
48 /*
49 * used by extent splitting.
50 */
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
55
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
58
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
61 {
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
69 }
70
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
73 {
74 struct ext4_extent_tail *et;
75
76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 return;
94
95 et = find_ext4_extent_tail(eh);
96 et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98
99 static int ext4_split_extent(handle_t *handle,
100 struct inode *inode,
101 struct ext4_ext_path **ppath,
102 struct ext4_map_blocks *map,
103 int split_flag,
104 int flags);
105
106 static int ext4_split_extent_at(handle_t *handle,
107 struct inode *inode,
108 struct ext4_ext_path **ppath,
109 ext4_lblk_t split,
110 int split_flag,
111 int flags);
112
113 static int ext4_find_delayed_extent(struct inode *inode,
114 struct extent_status *newes);
115
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 struct inode *inode,
118 int needed)
119 {
120 int err;
121
122 if (!ext4_handle_valid(handle))
123 return 0;
124 if (handle->h_buffer_credits > needed)
125 return 0;
126 err = ext4_journal_extend(handle, needed);
127 if (err <= 0)
128 return err;
129 err = ext4_truncate_restart_trans(handle, inode, needed);
130 if (err == 0)
131 err = -EAGAIN;
132
133 return err;
134 }
135
136 /*
137 * could return:
138 * - EROFS
139 * - ENOMEM
140 */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 struct ext4_ext_path *path)
143 {
144 if (path->p_bh) {
145 /* path points to block */
146 BUFFER_TRACE(path->p_bh, "get_write_access");
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
162 {
163 int err;
164
165 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
166 if (path->p_bh) {
167 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
168 /* path points to block */
169 err = __ext4_handle_dirty_metadata(where, line, handle,
170 inode, path->p_bh);
171 } else {
172 /* path points to leaf/index in inode body */
173 err = ext4_mark_inode_dirty(handle, inode);
174 }
175 return err;
176 }
177
178 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
179 struct ext4_ext_path *path,
180 ext4_lblk_t block)
181 {
182 if (path) {
183 int depth = path->p_depth;
184 struct ext4_extent *ex;
185
186 /*
187 * Try to predict block placement assuming that we are
188 * filling in a file which will eventually be
189 * non-sparse --- i.e., in the case of libbfd writing
190 * an ELF object sections out-of-order but in a way
191 * the eventually results in a contiguous object or
192 * executable file, or some database extending a table
193 * space file. However, this is actually somewhat
194 * non-ideal if we are writing a sparse file such as
195 * qemu or KVM writing a raw image file that is going
196 * to stay fairly sparse, since it will end up
197 * fragmenting the file system's free space. Maybe we
198 * should have some hueristics or some way to allow
199 * userspace to pass a hint to file system,
200 * especially if the latter case turns out to be
201 * common.
202 */
203 ex = path[depth].p_ext;
204 if (ex) {
205 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
206 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
207
208 if (block > ext_block)
209 return ext_pblk + (block - ext_block);
210 else
211 return ext_pblk - (ext_block - block);
212 }
213
214 /* it looks like index is empty;
215 * try to find starting block from index itself */
216 if (path[depth].p_bh)
217 return path[depth].p_bh->b_blocknr;
218 }
219
220 /* OK. use inode's group */
221 return ext4_inode_to_goal_block(inode);
222 }
223
224 /*
225 * Allocation for a meta data block
226 */
227 static ext4_fsblk_t
228 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
229 struct ext4_ext_path *path,
230 struct ext4_extent *ex, int *err, unsigned int flags)
231 {
232 ext4_fsblk_t goal, newblock;
233
234 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
235 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
236 NULL, err);
237 return newblock;
238 }
239
240 static inline int ext4_ext_space_block(struct inode *inode, int check)
241 {
242 int size;
243
244 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
245 / sizeof(struct ext4_extent);
246 #ifdef AGGRESSIVE_TEST
247 if (!check && size > 6)
248 size = 6;
249 #endif
250 return size;
251 }
252
253 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
254 {
255 int size;
256
257 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
258 / sizeof(struct ext4_extent_idx);
259 #ifdef AGGRESSIVE_TEST
260 if (!check && size > 5)
261 size = 5;
262 #endif
263 return size;
264 }
265
266 static inline int ext4_ext_space_root(struct inode *inode, int check)
267 {
268 int size;
269
270 size = sizeof(EXT4_I(inode)->i_data);
271 size -= sizeof(struct ext4_extent_header);
272 size /= sizeof(struct ext4_extent);
273 #ifdef AGGRESSIVE_TEST
274 if (!check && size > 3)
275 size = 3;
276 #endif
277 return size;
278 }
279
280 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
281 {
282 int size;
283
284 size = sizeof(EXT4_I(inode)->i_data);
285 size -= sizeof(struct ext4_extent_header);
286 size /= sizeof(struct ext4_extent_idx);
287 #ifdef AGGRESSIVE_TEST
288 if (!check && size > 4)
289 size = 4;
290 #endif
291 return size;
292 }
293
294 static inline int
295 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
296 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
297 int nofail)
298 {
299 struct ext4_ext_path *path = *ppath;
300 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
301
302 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
303 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
304 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
305 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
306 }
307
308 /*
309 * Calculate the number of metadata blocks needed
310 * to allocate @blocks
311 * Worse case is one block per extent
312 */
313 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
314 {
315 struct ext4_inode_info *ei = EXT4_I(inode);
316 int idxs;
317
318 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
319 / sizeof(struct ext4_extent_idx));
320
321 /*
322 * If the new delayed allocation block is contiguous with the
323 * previous da block, it can share index blocks with the
324 * previous block, so we only need to allocate a new index
325 * block every idxs leaf blocks. At ldxs**2 blocks, we need
326 * an additional index block, and at ldxs**3 blocks, yet
327 * another index blocks.
328 */
329 if (ei->i_da_metadata_calc_len &&
330 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
331 int num = 0;
332
333 if ((ei->i_da_metadata_calc_len % idxs) == 0)
334 num++;
335 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
336 num++;
337 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
338 num++;
339 ei->i_da_metadata_calc_len = 0;
340 } else
341 ei->i_da_metadata_calc_len++;
342 ei->i_da_metadata_calc_last_lblock++;
343 return num;
344 }
345
346 /*
347 * In the worst case we need a new set of index blocks at
348 * every level of the inode's extent tree.
349 */
350 ei->i_da_metadata_calc_len = 1;
351 ei->i_da_metadata_calc_last_lblock = lblock;
352 return ext_depth(inode) + 1;
353 }
354
355 static int
356 ext4_ext_max_entries(struct inode *inode, int depth)
357 {
358 int max;
359
360 if (depth == ext_depth(inode)) {
361 if (depth == 0)
362 max = ext4_ext_space_root(inode, 1);
363 else
364 max = ext4_ext_space_root_idx(inode, 1);
365 } else {
366 if (depth == 0)
367 max = ext4_ext_space_block(inode, 1);
368 else
369 max = ext4_ext_space_block_idx(inode, 1);
370 }
371
372 return max;
373 }
374
375 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
376 {
377 ext4_fsblk_t block = ext4_ext_pblock(ext);
378 int len = ext4_ext_get_actual_len(ext);
379 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
380 ext4_lblk_t last = lblock + len - 1;
381
382 if (lblock > last)
383 return 0;
384 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
385 }
386
387 static int ext4_valid_extent_idx(struct inode *inode,
388 struct ext4_extent_idx *ext_idx)
389 {
390 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
391
392 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
393 }
394
395 static int ext4_valid_extent_entries(struct inode *inode,
396 struct ext4_extent_header *eh,
397 int depth)
398 {
399 unsigned short entries;
400 if (eh->eh_entries == 0)
401 return 1;
402
403 entries = le16_to_cpu(eh->eh_entries);
404
405 if (depth == 0) {
406 /* leaf entries */
407 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
409 ext4_fsblk_t pblock = 0;
410 ext4_lblk_t lblock = 0;
411 ext4_lblk_t prev = 0;
412 int len = 0;
413 while (entries) {
414 if (!ext4_valid_extent(inode, ext))
415 return 0;
416
417 /* Check for overlapping extents */
418 lblock = le32_to_cpu(ext->ee_block);
419 len = ext4_ext_get_actual_len(ext);
420 if ((lblock <= prev) && prev) {
421 pblock = ext4_ext_pblock(ext);
422 es->s_last_error_block = cpu_to_le64(pblock);
423 return 0;
424 }
425 ext++;
426 entries--;
427 prev = lblock + len - 1;
428 }
429 } else {
430 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
431 while (entries) {
432 if (!ext4_valid_extent_idx(inode, ext_idx))
433 return 0;
434 ext_idx++;
435 entries--;
436 }
437 }
438 return 1;
439 }
440
441 static int __ext4_ext_check(const char *function, unsigned int line,
442 struct inode *inode, struct ext4_extent_header *eh,
443 int depth, ext4_fsblk_t pblk)
444 {
445 const char *error_msg;
446 int max = 0;
447
448 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
449 error_msg = "invalid magic";
450 goto corrupted;
451 }
452 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
453 error_msg = "unexpected eh_depth";
454 goto corrupted;
455 }
456 if (unlikely(eh->eh_max == 0)) {
457 error_msg = "invalid eh_max";
458 goto corrupted;
459 }
460 max = ext4_ext_max_entries(inode, depth);
461 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
462 error_msg = "too large eh_max";
463 goto corrupted;
464 }
465 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
466 error_msg = "invalid eh_entries";
467 goto corrupted;
468 }
469 if (!ext4_valid_extent_entries(inode, eh, depth)) {
470 error_msg = "invalid extent entries";
471 goto corrupted;
472 }
473 /* Verify checksum on non-root extent tree nodes */
474 if (ext_depth(inode) != depth &&
475 !ext4_extent_block_csum_verify(inode, eh)) {
476 error_msg = "extent tree corrupted";
477 goto corrupted;
478 }
479 return 0;
480
481 corrupted:
482 ext4_error_inode(inode, function, line, 0,
483 "pblk %llu bad header/extent: %s - magic %x, "
484 "entries %u, max %u(%u), depth %u(%u)",
485 (unsigned long long) pblk, error_msg,
486 le16_to_cpu(eh->eh_magic),
487 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
488 max, le16_to_cpu(eh->eh_depth), depth);
489 return -EIO;
490 }
491
492 #define ext4_ext_check(inode, eh, depth, pblk) \
493 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
494
495 int ext4_ext_check_inode(struct inode *inode)
496 {
497 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
498 }
499
500 static struct buffer_head *
501 __read_extent_tree_block(const char *function, unsigned int line,
502 struct inode *inode, ext4_fsblk_t pblk, int depth,
503 int flags)
504 {
505 struct buffer_head *bh;
506 int err;
507
508 bh = sb_getblk(inode->i_sb, pblk);
509 if (unlikely(!bh))
510 return ERR_PTR(-ENOMEM);
511
512 if (!bh_uptodate_or_lock(bh)) {
513 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
514 err = bh_submit_read(bh);
515 if (err < 0)
516 goto errout;
517 }
518 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
519 return bh;
520 err = __ext4_ext_check(function, line, inode,
521 ext_block_hdr(bh), depth, pblk);
522 if (err)
523 goto errout;
524 set_buffer_verified(bh);
525 /*
526 * If this is a leaf block, cache all of its entries
527 */
528 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
529 struct ext4_extent_header *eh = ext_block_hdr(bh);
530 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
531 ext4_lblk_t prev = 0;
532 int i;
533
534 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
535 unsigned int status = EXTENT_STATUS_WRITTEN;
536 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
537 int len = ext4_ext_get_actual_len(ex);
538
539 if (prev && (prev != lblk))
540 ext4_es_cache_extent(inode, prev,
541 lblk - prev, ~0,
542 EXTENT_STATUS_HOLE);
543
544 if (ext4_ext_is_unwritten(ex))
545 status = EXTENT_STATUS_UNWRITTEN;
546 ext4_es_cache_extent(inode, lblk, len,
547 ext4_ext_pblock(ex), status);
548 prev = lblk + len;
549 }
550 }
551 return bh;
552 errout:
553 put_bh(bh);
554 return ERR_PTR(err);
555
556 }
557
558 #define read_extent_tree_block(inode, pblk, depth, flags) \
559 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
560 (depth), (flags))
561
562 /*
563 * This function is called to cache a file's extent information in the
564 * extent status tree
565 */
566 int ext4_ext_precache(struct inode *inode)
567 {
568 struct ext4_inode_info *ei = EXT4_I(inode);
569 struct ext4_ext_path *path = NULL;
570 struct buffer_head *bh;
571 int i = 0, depth, ret = 0;
572
573 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
574 return 0; /* not an extent-mapped inode */
575
576 down_read(&ei->i_data_sem);
577 depth = ext_depth(inode);
578
579 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
580 GFP_NOFS);
581 if (path == NULL) {
582 up_read(&ei->i_data_sem);
583 return -ENOMEM;
584 }
585
586 /* Don't cache anything if there are no external extent blocks */
587 if (depth == 0)
588 goto out;
589 path[0].p_hdr = ext_inode_hdr(inode);
590 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
591 if (ret)
592 goto out;
593 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
594 while (i >= 0) {
595 /*
596 * If this is a leaf block or we've reached the end of
597 * the index block, go up
598 */
599 if ((i == depth) ||
600 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
601 brelse(path[i].p_bh);
602 path[i].p_bh = NULL;
603 i--;
604 continue;
605 }
606 bh = read_extent_tree_block(inode,
607 ext4_idx_pblock(path[i].p_idx++),
608 depth - i - 1,
609 EXT4_EX_FORCE_CACHE);
610 if (IS_ERR(bh)) {
611 ret = PTR_ERR(bh);
612 break;
613 }
614 i++;
615 path[i].p_bh = bh;
616 path[i].p_hdr = ext_block_hdr(bh);
617 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
618 }
619 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
620 out:
621 up_read(&ei->i_data_sem);
622 ext4_ext_drop_refs(path);
623 kfree(path);
624 return ret;
625 }
626
627 #ifdef EXT_DEBUG
628 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
629 {
630 int k, l = path->p_depth;
631
632 ext_debug("path:");
633 for (k = 0; k <= l; k++, path++) {
634 if (path->p_idx) {
635 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
636 ext4_idx_pblock(path->p_idx));
637 } else if (path->p_ext) {
638 ext_debug(" %d:[%d]%d:%llu ",
639 le32_to_cpu(path->p_ext->ee_block),
640 ext4_ext_is_unwritten(path->p_ext),
641 ext4_ext_get_actual_len(path->p_ext),
642 ext4_ext_pblock(path->p_ext));
643 } else
644 ext_debug(" []");
645 }
646 ext_debug("\n");
647 }
648
649 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
650 {
651 int depth = ext_depth(inode);
652 struct ext4_extent_header *eh;
653 struct ext4_extent *ex;
654 int i;
655
656 if (!path)
657 return;
658
659 eh = path[depth].p_hdr;
660 ex = EXT_FIRST_EXTENT(eh);
661
662 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
663
664 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
665 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
666 ext4_ext_is_unwritten(ex),
667 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
668 }
669 ext_debug("\n");
670 }
671
672 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
673 ext4_fsblk_t newblock, int level)
674 {
675 int depth = ext_depth(inode);
676 struct ext4_extent *ex;
677
678 if (depth != level) {
679 struct ext4_extent_idx *idx;
680 idx = path[level].p_idx;
681 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
682 ext_debug("%d: move %d:%llu in new index %llu\n", level,
683 le32_to_cpu(idx->ei_block),
684 ext4_idx_pblock(idx),
685 newblock);
686 idx++;
687 }
688
689 return;
690 }
691
692 ex = path[depth].p_ext;
693 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
694 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
695 le32_to_cpu(ex->ee_block),
696 ext4_ext_pblock(ex),
697 ext4_ext_is_unwritten(ex),
698 ext4_ext_get_actual_len(ex),
699 newblock);
700 ex++;
701 }
702 }
703
704 #else
705 #define ext4_ext_show_path(inode, path)
706 #define ext4_ext_show_leaf(inode, path)
707 #define ext4_ext_show_move(inode, path, newblock, level)
708 #endif
709
710 void ext4_ext_drop_refs(struct ext4_ext_path *path)
711 {
712 int depth, i;
713
714 if (!path)
715 return;
716 depth = path->p_depth;
717 for (i = 0; i <= depth; i++, path++)
718 if (path->p_bh) {
719 brelse(path->p_bh);
720 path->p_bh = NULL;
721 }
722 }
723
724 /*
725 * ext4_ext_binsearch_idx:
726 * binary search for the closest index of the given block
727 * the header must be checked before calling this
728 */
729 static void
730 ext4_ext_binsearch_idx(struct inode *inode,
731 struct ext4_ext_path *path, ext4_lblk_t block)
732 {
733 struct ext4_extent_header *eh = path->p_hdr;
734 struct ext4_extent_idx *r, *l, *m;
735
736
737 ext_debug("binsearch for %u(idx): ", block);
738
739 l = EXT_FIRST_INDEX(eh) + 1;
740 r = EXT_LAST_INDEX(eh);
741 while (l <= r) {
742 m = l + (r - l) / 2;
743 if (block < le32_to_cpu(m->ei_block))
744 r = m - 1;
745 else
746 l = m + 1;
747 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
748 m, le32_to_cpu(m->ei_block),
749 r, le32_to_cpu(r->ei_block));
750 }
751
752 path->p_idx = l - 1;
753 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
754 ext4_idx_pblock(path->p_idx));
755
756 #ifdef CHECK_BINSEARCH
757 {
758 struct ext4_extent_idx *chix, *ix;
759 int k;
760
761 chix = ix = EXT_FIRST_INDEX(eh);
762 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
763 if (k != 0 &&
764 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
765 printk(KERN_DEBUG "k=%d, ix=0x%p, "
766 "first=0x%p\n", k,
767 ix, EXT_FIRST_INDEX(eh));
768 printk(KERN_DEBUG "%u <= %u\n",
769 le32_to_cpu(ix->ei_block),
770 le32_to_cpu(ix[-1].ei_block));
771 }
772 BUG_ON(k && le32_to_cpu(ix->ei_block)
773 <= le32_to_cpu(ix[-1].ei_block));
774 if (block < le32_to_cpu(ix->ei_block))
775 break;
776 chix = ix;
777 }
778 BUG_ON(chix != path->p_idx);
779 }
780 #endif
781
782 }
783
784 /*
785 * ext4_ext_binsearch:
786 * binary search for closest extent of the given block
787 * the header must be checked before calling this
788 */
789 static void
790 ext4_ext_binsearch(struct inode *inode,
791 struct ext4_ext_path *path, ext4_lblk_t block)
792 {
793 struct ext4_extent_header *eh = path->p_hdr;
794 struct ext4_extent *r, *l, *m;
795
796 if (eh->eh_entries == 0) {
797 /*
798 * this leaf is empty:
799 * we get such a leaf in split/add case
800 */
801 return;
802 }
803
804 ext_debug("binsearch for %u: ", block);
805
806 l = EXT_FIRST_EXTENT(eh) + 1;
807 r = EXT_LAST_EXTENT(eh);
808
809 while (l <= r) {
810 m = l + (r - l) / 2;
811 if (block < le32_to_cpu(m->ee_block))
812 r = m - 1;
813 else
814 l = m + 1;
815 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
816 m, le32_to_cpu(m->ee_block),
817 r, le32_to_cpu(r->ee_block));
818 }
819
820 path->p_ext = l - 1;
821 ext_debug(" -> %d:%llu:[%d]%d ",
822 le32_to_cpu(path->p_ext->ee_block),
823 ext4_ext_pblock(path->p_ext),
824 ext4_ext_is_unwritten(path->p_ext),
825 ext4_ext_get_actual_len(path->p_ext));
826
827 #ifdef CHECK_BINSEARCH
828 {
829 struct ext4_extent *chex, *ex;
830 int k;
831
832 chex = ex = EXT_FIRST_EXTENT(eh);
833 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
834 BUG_ON(k && le32_to_cpu(ex->ee_block)
835 <= le32_to_cpu(ex[-1].ee_block));
836 if (block < le32_to_cpu(ex->ee_block))
837 break;
838 chex = ex;
839 }
840 BUG_ON(chex != path->p_ext);
841 }
842 #endif
843
844 }
845
846 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
847 {
848 struct ext4_extent_header *eh;
849
850 eh = ext_inode_hdr(inode);
851 eh->eh_depth = 0;
852 eh->eh_entries = 0;
853 eh->eh_magic = EXT4_EXT_MAGIC;
854 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
855 ext4_mark_inode_dirty(handle, inode);
856 return 0;
857 }
858
859 struct ext4_ext_path *
860 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
861 struct ext4_ext_path **orig_path, int flags)
862 {
863 struct ext4_extent_header *eh;
864 struct buffer_head *bh;
865 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
866 short int depth, i, ppos = 0;
867 int ret;
868
869 eh = ext_inode_hdr(inode);
870 depth = ext_depth(inode);
871
872 if (path)
873 ext4_ext_drop_refs(path);
874 else {
875 /* account possible depth increase */
876 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
877 GFP_NOFS);
878 if (unlikely(!path))
879 return ERR_PTR(-ENOMEM);
880 }
881 path[0].p_hdr = eh;
882 path[0].p_bh = NULL;
883
884 i = depth;
885 /* walk through the tree */
886 while (i) {
887 ext_debug("depth %d: num %d, max %d\n",
888 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
889
890 ext4_ext_binsearch_idx(inode, path + ppos, block);
891 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
892 path[ppos].p_depth = i;
893 path[ppos].p_ext = NULL;
894
895 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
896 flags);
897 if (unlikely(IS_ERR(bh))) {
898 ret = PTR_ERR(bh);
899 goto err;
900 }
901
902 eh = ext_block_hdr(bh);
903 ppos++;
904 if (unlikely(ppos > depth)) {
905 put_bh(bh);
906 EXT4_ERROR_INODE(inode,
907 "ppos %d > depth %d", ppos, depth);
908 ret = -EIO;
909 goto err;
910 }
911 path[ppos].p_bh = bh;
912 path[ppos].p_hdr = eh;
913 }
914
915 path[ppos].p_depth = i;
916 path[ppos].p_ext = NULL;
917 path[ppos].p_idx = NULL;
918
919 /* find extent */
920 ext4_ext_binsearch(inode, path + ppos, block);
921 /* if not an empty leaf */
922 if (path[ppos].p_ext)
923 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
924
925 ext4_ext_show_path(inode, path);
926
927 return path;
928
929 err:
930 ext4_ext_drop_refs(path);
931 kfree(path);
932 if (orig_path)
933 *orig_path = NULL;
934 return ERR_PTR(ret);
935 }
936
937 /*
938 * ext4_ext_insert_index:
939 * insert new index [@logical;@ptr] into the block at @curp;
940 * check where to insert: before @curp or after @curp
941 */
942 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
943 struct ext4_ext_path *curp,
944 int logical, ext4_fsblk_t ptr)
945 {
946 struct ext4_extent_idx *ix;
947 int len, err;
948
949 err = ext4_ext_get_access(handle, inode, curp);
950 if (err)
951 return err;
952
953 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
954 EXT4_ERROR_INODE(inode,
955 "logical %d == ei_block %d!",
956 logical, le32_to_cpu(curp->p_idx->ei_block));
957 return -EIO;
958 }
959
960 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
961 >= le16_to_cpu(curp->p_hdr->eh_max))) {
962 EXT4_ERROR_INODE(inode,
963 "eh_entries %d >= eh_max %d!",
964 le16_to_cpu(curp->p_hdr->eh_entries),
965 le16_to_cpu(curp->p_hdr->eh_max));
966 return -EIO;
967 }
968
969 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
970 /* insert after */
971 ext_debug("insert new index %d after: %llu\n", logical, ptr);
972 ix = curp->p_idx + 1;
973 } else {
974 /* insert before */
975 ext_debug("insert new index %d before: %llu\n", logical, ptr);
976 ix = curp->p_idx;
977 }
978
979 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
980 BUG_ON(len < 0);
981 if (len > 0) {
982 ext_debug("insert new index %d: "
983 "move %d indices from 0x%p to 0x%p\n",
984 logical, len, ix, ix + 1);
985 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
986 }
987
988 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
989 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
990 return -EIO;
991 }
992
993 ix->ei_block = cpu_to_le32(logical);
994 ext4_idx_store_pblock(ix, ptr);
995 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
996
997 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
998 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
999 return -EIO;
1000 }
1001
1002 err = ext4_ext_dirty(handle, inode, curp);
1003 ext4_std_error(inode->i_sb, err);
1004
1005 return err;
1006 }
1007
1008 /*
1009 * ext4_ext_split:
1010 * inserts new subtree into the path, using free index entry
1011 * at depth @at:
1012 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1013 * - makes decision where to split
1014 * - moves remaining extents and index entries (right to the split point)
1015 * into the newly allocated blocks
1016 * - initializes subtree
1017 */
1018 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1019 unsigned int flags,
1020 struct ext4_ext_path *path,
1021 struct ext4_extent *newext, int at)
1022 {
1023 struct buffer_head *bh = NULL;
1024 int depth = ext_depth(inode);
1025 struct ext4_extent_header *neh;
1026 struct ext4_extent_idx *fidx;
1027 int i = at, k, m, a;
1028 ext4_fsblk_t newblock, oldblock;
1029 __le32 border;
1030 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1031 int err = 0;
1032
1033 /* make decision: where to split? */
1034 /* FIXME: now decision is simplest: at current extent */
1035
1036 /* if current leaf will be split, then we should use
1037 * border from split point */
1038 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1039 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1040 return -EIO;
1041 }
1042 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1043 border = path[depth].p_ext[1].ee_block;
1044 ext_debug("leaf will be split."
1045 " next leaf starts at %d\n",
1046 le32_to_cpu(border));
1047 } else {
1048 border = newext->ee_block;
1049 ext_debug("leaf will be added."
1050 " next leaf starts at %d\n",
1051 le32_to_cpu(border));
1052 }
1053
1054 /*
1055 * If error occurs, then we break processing
1056 * and mark filesystem read-only. index won't
1057 * be inserted and tree will be in consistent
1058 * state. Next mount will repair buffers too.
1059 */
1060
1061 /*
1062 * Get array to track all allocated blocks.
1063 * We need this to handle errors and free blocks
1064 * upon them.
1065 */
1066 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1067 if (!ablocks)
1068 return -ENOMEM;
1069
1070 /* allocate all needed blocks */
1071 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1072 for (a = 0; a < depth - at; a++) {
1073 newblock = ext4_ext_new_meta_block(handle, inode, path,
1074 newext, &err, flags);
1075 if (newblock == 0)
1076 goto cleanup;
1077 ablocks[a] = newblock;
1078 }
1079
1080 /* initialize new leaf */
1081 newblock = ablocks[--a];
1082 if (unlikely(newblock == 0)) {
1083 EXT4_ERROR_INODE(inode, "newblock == 0!");
1084 err = -EIO;
1085 goto cleanup;
1086 }
1087 bh = sb_getblk(inode->i_sb, newblock);
1088 if (unlikely(!bh)) {
1089 err = -ENOMEM;
1090 goto cleanup;
1091 }
1092 lock_buffer(bh);
1093
1094 err = ext4_journal_get_create_access(handle, bh);
1095 if (err)
1096 goto cleanup;
1097
1098 neh = ext_block_hdr(bh);
1099 neh->eh_entries = 0;
1100 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1101 neh->eh_magic = EXT4_EXT_MAGIC;
1102 neh->eh_depth = 0;
1103
1104 /* move remainder of path[depth] to the new leaf */
1105 if (unlikely(path[depth].p_hdr->eh_entries !=
1106 path[depth].p_hdr->eh_max)) {
1107 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1108 path[depth].p_hdr->eh_entries,
1109 path[depth].p_hdr->eh_max);
1110 err = -EIO;
1111 goto cleanup;
1112 }
1113 /* start copy from next extent */
1114 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1115 ext4_ext_show_move(inode, path, newblock, depth);
1116 if (m) {
1117 struct ext4_extent *ex;
1118 ex = EXT_FIRST_EXTENT(neh);
1119 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1120 le16_add_cpu(&neh->eh_entries, m);
1121 }
1122
1123 ext4_extent_block_csum_set(inode, neh);
1124 set_buffer_uptodate(bh);
1125 unlock_buffer(bh);
1126
1127 err = ext4_handle_dirty_metadata(handle, inode, bh);
1128 if (err)
1129 goto cleanup;
1130 brelse(bh);
1131 bh = NULL;
1132
1133 /* correct old leaf */
1134 if (m) {
1135 err = ext4_ext_get_access(handle, inode, path + depth);
1136 if (err)
1137 goto cleanup;
1138 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1139 err = ext4_ext_dirty(handle, inode, path + depth);
1140 if (err)
1141 goto cleanup;
1142
1143 }
1144
1145 /* create intermediate indexes */
1146 k = depth - at - 1;
1147 if (unlikely(k < 0)) {
1148 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1149 err = -EIO;
1150 goto cleanup;
1151 }
1152 if (k)
1153 ext_debug("create %d intermediate indices\n", k);
1154 /* insert new index into current index block */
1155 /* current depth stored in i var */
1156 i = depth - 1;
1157 while (k--) {
1158 oldblock = newblock;
1159 newblock = ablocks[--a];
1160 bh = sb_getblk(inode->i_sb, newblock);
1161 if (unlikely(!bh)) {
1162 err = -ENOMEM;
1163 goto cleanup;
1164 }
1165 lock_buffer(bh);
1166
1167 err = ext4_journal_get_create_access(handle, bh);
1168 if (err)
1169 goto cleanup;
1170
1171 neh = ext_block_hdr(bh);
1172 neh->eh_entries = cpu_to_le16(1);
1173 neh->eh_magic = EXT4_EXT_MAGIC;
1174 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1175 neh->eh_depth = cpu_to_le16(depth - i);
1176 fidx = EXT_FIRST_INDEX(neh);
1177 fidx->ei_block = border;
1178 ext4_idx_store_pblock(fidx, oldblock);
1179
1180 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1181 i, newblock, le32_to_cpu(border), oldblock);
1182
1183 /* move remainder of path[i] to the new index block */
1184 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1185 EXT_LAST_INDEX(path[i].p_hdr))) {
1186 EXT4_ERROR_INODE(inode,
1187 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1188 le32_to_cpu(path[i].p_ext->ee_block));
1189 err = -EIO;
1190 goto cleanup;
1191 }
1192 /* start copy indexes */
1193 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1194 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1195 EXT_MAX_INDEX(path[i].p_hdr));
1196 ext4_ext_show_move(inode, path, newblock, i);
1197 if (m) {
1198 memmove(++fidx, path[i].p_idx,
1199 sizeof(struct ext4_extent_idx) * m);
1200 le16_add_cpu(&neh->eh_entries, m);
1201 }
1202 ext4_extent_block_csum_set(inode, neh);
1203 set_buffer_uptodate(bh);
1204 unlock_buffer(bh);
1205
1206 err = ext4_handle_dirty_metadata(handle, inode, bh);
1207 if (err)
1208 goto cleanup;
1209 brelse(bh);
1210 bh = NULL;
1211
1212 /* correct old index */
1213 if (m) {
1214 err = ext4_ext_get_access(handle, inode, path + i);
1215 if (err)
1216 goto cleanup;
1217 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1218 err = ext4_ext_dirty(handle, inode, path + i);
1219 if (err)
1220 goto cleanup;
1221 }
1222
1223 i--;
1224 }
1225
1226 /* insert new index */
1227 err = ext4_ext_insert_index(handle, inode, path + at,
1228 le32_to_cpu(border), newblock);
1229
1230 cleanup:
1231 if (bh) {
1232 if (buffer_locked(bh))
1233 unlock_buffer(bh);
1234 brelse(bh);
1235 }
1236
1237 if (err) {
1238 /* free all allocated blocks in error case */
1239 for (i = 0; i < depth; i++) {
1240 if (!ablocks[i])
1241 continue;
1242 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1243 EXT4_FREE_BLOCKS_METADATA);
1244 }
1245 }
1246 kfree(ablocks);
1247
1248 return err;
1249 }
1250
1251 /*
1252 * ext4_ext_grow_indepth:
1253 * implements tree growing procedure:
1254 * - allocates new block
1255 * - moves top-level data (index block or leaf) into the new block
1256 * - initializes new top-level, creating index that points to the
1257 * just created block
1258 */
1259 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1260 unsigned int flags,
1261 struct ext4_extent *newext)
1262 {
1263 struct ext4_extent_header *neh;
1264 struct buffer_head *bh;
1265 ext4_fsblk_t newblock;
1266 int err = 0;
1267
1268 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1269 newext, &err, flags);
1270 if (newblock == 0)
1271 return err;
1272
1273 bh = sb_getblk(inode->i_sb, newblock);
1274 if (unlikely(!bh))
1275 return -ENOMEM;
1276 lock_buffer(bh);
1277
1278 err = ext4_journal_get_create_access(handle, bh);
1279 if (err) {
1280 unlock_buffer(bh);
1281 goto out;
1282 }
1283
1284 /* move top-level index/leaf into new block */
1285 memmove(bh->b_data, EXT4_I(inode)->i_data,
1286 sizeof(EXT4_I(inode)->i_data));
1287
1288 /* set size of new block */
1289 neh = ext_block_hdr(bh);
1290 /* old root could have indexes or leaves
1291 * so calculate e_max right way */
1292 if (ext_depth(inode))
1293 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1294 else
1295 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1296 neh->eh_magic = EXT4_EXT_MAGIC;
1297 ext4_extent_block_csum_set(inode, neh);
1298 set_buffer_uptodate(bh);
1299 unlock_buffer(bh);
1300
1301 err = ext4_handle_dirty_metadata(handle, inode, bh);
1302 if (err)
1303 goto out;
1304
1305 /* Update top-level index: num,max,pointer */
1306 neh = ext_inode_hdr(inode);
1307 neh->eh_entries = cpu_to_le16(1);
1308 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1309 if (neh->eh_depth == 0) {
1310 /* Root extent block becomes index block */
1311 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1312 EXT_FIRST_INDEX(neh)->ei_block =
1313 EXT_FIRST_EXTENT(neh)->ee_block;
1314 }
1315 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1316 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1317 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1318 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1319
1320 le16_add_cpu(&neh->eh_depth, 1);
1321 ext4_mark_inode_dirty(handle, inode);
1322 out:
1323 brelse(bh);
1324
1325 return err;
1326 }
1327
1328 /*
1329 * ext4_ext_create_new_leaf:
1330 * finds empty index and adds new leaf.
1331 * if no free index is found, then it requests in-depth growing.
1332 */
1333 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1334 unsigned int mb_flags,
1335 unsigned int gb_flags,
1336 struct ext4_ext_path **ppath,
1337 struct ext4_extent *newext)
1338 {
1339 struct ext4_ext_path *path = *ppath;
1340 struct ext4_ext_path *curp;
1341 int depth, i, err = 0;
1342
1343 repeat:
1344 i = depth = ext_depth(inode);
1345
1346 /* walk up to the tree and look for free index entry */
1347 curp = path + depth;
1348 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1349 i--;
1350 curp--;
1351 }
1352
1353 /* we use already allocated block for index block,
1354 * so subsequent data blocks should be contiguous */
1355 if (EXT_HAS_FREE_INDEX(curp)) {
1356 /* if we found index with free entry, then use that
1357 * entry: create all needed subtree and add new leaf */
1358 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1359 if (err)
1360 goto out;
1361
1362 /* refill path */
1363 path = ext4_ext_find_extent(inode,
1364 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1365 ppath, gb_flags);
1366 if (IS_ERR(path))
1367 err = PTR_ERR(path);
1368 } else {
1369 /* tree is full, time to grow in depth */
1370 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1371 if (err)
1372 goto out;
1373
1374 /* refill path */
1375 path = ext4_ext_find_extent(inode,
1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1377 ppath, gb_flags);
1378 if (IS_ERR(path)) {
1379 err = PTR_ERR(path);
1380 goto out;
1381 }
1382
1383 /*
1384 * only first (depth 0 -> 1) produces free space;
1385 * in all other cases we have to split the grown tree
1386 */
1387 depth = ext_depth(inode);
1388 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1389 /* now we need to split */
1390 goto repeat;
1391 }
1392 }
1393
1394 out:
1395 return err;
1396 }
1397
1398 /*
1399 * search the closest allocated block to the left for *logical
1400 * and returns it at @logical + it's physical address at @phys
1401 * if *logical is the smallest allocated block, the function
1402 * returns 0 at @phys
1403 * return value contains 0 (success) or error code
1404 */
1405 static int ext4_ext_search_left(struct inode *inode,
1406 struct ext4_ext_path *path,
1407 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1408 {
1409 struct ext4_extent_idx *ix;
1410 struct ext4_extent *ex;
1411 int depth, ee_len;
1412
1413 if (unlikely(path == NULL)) {
1414 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1415 return -EIO;
1416 }
1417 depth = path->p_depth;
1418 *phys = 0;
1419
1420 if (depth == 0 && path->p_ext == NULL)
1421 return 0;
1422
1423 /* usually extent in the path covers blocks smaller
1424 * then *logical, but it can be that extent is the
1425 * first one in the file */
1426
1427 ex = path[depth].p_ext;
1428 ee_len = ext4_ext_get_actual_len(ex);
1429 if (*logical < le32_to_cpu(ex->ee_block)) {
1430 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1431 EXT4_ERROR_INODE(inode,
1432 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1433 *logical, le32_to_cpu(ex->ee_block));
1434 return -EIO;
1435 }
1436 while (--depth >= 0) {
1437 ix = path[depth].p_idx;
1438 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1439 EXT4_ERROR_INODE(inode,
1440 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1441 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1442 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1443 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1444 depth);
1445 return -EIO;
1446 }
1447 }
1448 return 0;
1449 }
1450
1451 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1452 EXT4_ERROR_INODE(inode,
1453 "logical %d < ee_block %d + ee_len %d!",
1454 *logical, le32_to_cpu(ex->ee_block), ee_len);
1455 return -EIO;
1456 }
1457
1458 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1459 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1460 return 0;
1461 }
1462
1463 /*
1464 * search the closest allocated block to the right for *logical
1465 * and returns it at @logical + it's physical address at @phys
1466 * if *logical is the largest allocated block, the function
1467 * returns 0 at @phys
1468 * return value contains 0 (success) or error code
1469 */
1470 static int ext4_ext_search_right(struct inode *inode,
1471 struct ext4_ext_path *path,
1472 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1473 struct ext4_extent **ret_ex)
1474 {
1475 struct buffer_head *bh = NULL;
1476 struct ext4_extent_header *eh;
1477 struct ext4_extent_idx *ix;
1478 struct ext4_extent *ex;
1479 ext4_fsblk_t block;
1480 int depth; /* Note, NOT eh_depth; depth from top of tree */
1481 int ee_len;
1482
1483 if (unlikely(path == NULL)) {
1484 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1485 return -EIO;
1486 }
1487 depth = path->p_depth;
1488 *phys = 0;
1489
1490 if (depth == 0 && path->p_ext == NULL)
1491 return 0;
1492
1493 /* usually extent in the path covers blocks smaller
1494 * then *logical, but it can be that extent is the
1495 * first one in the file */
1496
1497 ex = path[depth].p_ext;
1498 ee_len = ext4_ext_get_actual_len(ex);
1499 if (*logical < le32_to_cpu(ex->ee_block)) {
1500 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1501 EXT4_ERROR_INODE(inode,
1502 "first_extent(path[%d].p_hdr) != ex",
1503 depth);
1504 return -EIO;
1505 }
1506 while (--depth >= 0) {
1507 ix = path[depth].p_idx;
1508 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1509 EXT4_ERROR_INODE(inode,
1510 "ix != EXT_FIRST_INDEX *logical %d!",
1511 *logical);
1512 return -EIO;
1513 }
1514 }
1515 goto found_extent;
1516 }
1517
1518 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1519 EXT4_ERROR_INODE(inode,
1520 "logical %d < ee_block %d + ee_len %d!",
1521 *logical, le32_to_cpu(ex->ee_block), ee_len);
1522 return -EIO;
1523 }
1524
1525 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1526 /* next allocated block in this leaf */
1527 ex++;
1528 goto found_extent;
1529 }
1530
1531 /* go up and search for index to the right */
1532 while (--depth >= 0) {
1533 ix = path[depth].p_idx;
1534 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1535 goto got_index;
1536 }
1537
1538 /* we've gone up to the root and found no index to the right */
1539 return 0;
1540
1541 got_index:
1542 /* we've found index to the right, let's
1543 * follow it and find the closest allocated
1544 * block to the right */
1545 ix++;
1546 block = ext4_idx_pblock(ix);
1547 while (++depth < path->p_depth) {
1548 /* subtract from p_depth to get proper eh_depth */
1549 bh = read_extent_tree_block(inode, block,
1550 path->p_depth - depth, 0);
1551 if (IS_ERR(bh))
1552 return PTR_ERR(bh);
1553 eh = ext_block_hdr(bh);
1554 ix = EXT_FIRST_INDEX(eh);
1555 block = ext4_idx_pblock(ix);
1556 put_bh(bh);
1557 }
1558
1559 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1560 if (IS_ERR(bh))
1561 return PTR_ERR(bh);
1562 eh = ext_block_hdr(bh);
1563 ex = EXT_FIRST_EXTENT(eh);
1564 found_extent:
1565 *logical = le32_to_cpu(ex->ee_block);
1566 *phys = ext4_ext_pblock(ex);
1567 *ret_ex = ex;
1568 if (bh)
1569 put_bh(bh);
1570 return 0;
1571 }
1572
1573 /*
1574 * ext4_ext_next_allocated_block:
1575 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1576 * NOTE: it considers block number from index entry as
1577 * allocated block. Thus, index entries have to be consistent
1578 * with leaves.
1579 */
1580 ext4_lblk_t
1581 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1582 {
1583 int depth;
1584
1585 BUG_ON(path == NULL);
1586 depth = path->p_depth;
1587
1588 if (depth == 0 && path->p_ext == NULL)
1589 return EXT_MAX_BLOCKS;
1590
1591 while (depth >= 0) {
1592 if (depth == path->p_depth) {
1593 /* leaf */
1594 if (path[depth].p_ext &&
1595 path[depth].p_ext !=
1596 EXT_LAST_EXTENT(path[depth].p_hdr))
1597 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1598 } else {
1599 /* index */
1600 if (path[depth].p_idx !=
1601 EXT_LAST_INDEX(path[depth].p_hdr))
1602 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1603 }
1604 depth--;
1605 }
1606
1607 return EXT_MAX_BLOCKS;
1608 }
1609
1610 /*
1611 * ext4_ext_next_leaf_block:
1612 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1613 */
1614 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1615 {
1616 int depth;
1617
1618 BUG_ON(path == NULL);
1619 depth = path->p_depth;
1620
1621 /* zero-tree has no leaf blocks at all */
1622 if (depth == 0)
1623 return EXT_MAX_BLOCKS;
1624
1625 /* go to index block */
1626 depth--;
1627
1628 while (depth >= 0) {
1629 if (path[depth].p_idx !=
1630 EXT_LAST_INDEX(path[depth].p_hdr))
1631 return (ext4_lblk_t)
1632 le32_to_cpu(path[depth].p_idx[1].ei_block);
1633 depth--;
1634 }
1635
1636 return EXT_MAX_BLOCKS;
1637 }
1638
1639 /*
1640 * ext4_ext_correct_indexes:
1641 * if leaf gets modified and modified extent is first in the leaf,
1642 * then we have to correct all indexes above.
1643 * TODO: do we need to correct tree in all cases?
1644 */
1645 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1646 struct ext4_ext_path *path)
1647 {
1648 struct ext4_extent_header *eh;
1649 int depth = ext_depth(inode);
1650 struct ext4_extent *ex;
1651 __le32 border;
1652 int k, err = 0;
1653
1654 eh = path[depth].p_hdr;
1655 ex = path[depth].p_ext;
1656
1657 if (unlikely(ex == NULL || eh == NULL)) {
1658 EXT4_ERROR_INODE(inode,
1659 "ex %p == NULL or eh %p == NULL", ex, eh);
1660 return -EIO;
1661 }
1662
1663 if (depth == 0) {
1664 /* there is no tree at all */
1665 return 0;
1666 }
1667
1668 if (ex != EXT_FIRST_EXTENT(eh)) {
1669 /* we correct tree if first leaf got modified only */
1670 return 0;
1671 }
1672
1673 /*
1674 * TODO: we need correction if border is smaller than current one
1675 */
1676 k = depth - 1;
1677 border = path[depth].p_ext->ee_block;
1678 err = ext4_ext_get_access(handle, inode, path + k);
1679 if (err)
1680 return err;
1681 path[k].p_idx->ei_block = border;
1682 err = ext4_ext_dirty(handle, inode, path + k);
1683 if (err)
1684 return err;
1685
1686 while (k--) {
1687 /* change all left-side indexes */
1688 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1689 break;
1690 err = ext4_ext_get_access(handle, inode, path + k);
1691 if (err)
1692 break;
1693 path[k].p_idx->ei_block = border;
1694 err = ext4_ext_dirty(handle, inode, path + k);
1695 if (err)
1696 break;
1697 }
1698
1699 return err;
1700 }
1701
1702 int
1703 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1704 struct ext4_extent *ex2)
1705 {
1706 unsigned short ext1_ee_len, ext2_ee_len;
1707
1708 /*
1709 * Make sure that both extents are initialized. We don't merge
1710 * unwritten extents so that we can be sure that end_io code has
1711 * the extent that was written properly split out and conversion to
1712 * initialized is trivial.
1713 */
1714 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1715 return 0;
1716
1717 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1718 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1719
1720 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1721 le32_to_cpu(ex2->ee_block))
1722 return 0;
1723
1724 /*
1725 * To allow future support for preallocated extents to be added
1726 * as an RO_COMPAT feature, refuse to merge to extents if
1727 * this can result in the top bit of ee_len being set.
1728 */
1729 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1730 return 0;
1731 if (ext4_ext_is_unwritten(ex1) &&
1732 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1733 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1734 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1735 return 0;
1736 #ifdef AGGRESSIVE_TEST
1737 if (ext1_ee_len >= 4)
1738 return 0;
1739 #endif
1740
1741 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1742 return 1;
1743 return 0;
1744 }
1745
1746 /*
1747 * This function tries to merge the "ex" extent to the next extent in the tree.
1748 * It always tries to merge towards right. If you want to merge towards
1749 * left, pass "ex - 1" as argument instead of "ex".
1750 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1751 * 1 if they got merged.
1752 */
1753 static int ext4_ext_try_to_merge_right(struct inode *inode,
1754 struct ext4_ext_path *path,
1755 struct ext4_extent *ex)
1756 {
1757 struct ext4_extent_header *eh;
1758 unsigned int depth, len;
1759 int merge_done = 0, unwritten;
1760
1761 depth = ext_depth(inode);
1762 BUG_ON(path[depth].p_hdr == NULL);
1763 eh = path[depth].p_hdr;
1764
1765 while (ex < EXT_LAST_EXTENT(eh)) {
1766 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1767 break;
1768 /* merge with next extent! */
1769 unwritten = ext4_ext_is_unwritten(ex);
1770 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1771 + ext4_ext_get_actual_len(ex + 1));
1772 if (unwritten)
1773 ext4_ext_mark_unwritten(ex);
1774
1775 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1776 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1777 * sizeof(struct ext4_extent);
1778 memmove(ex + 1, ex + 2, len);
1779 }
1780 le16_add_cpu(&eh->eh_entries, -1);
1781 merge_done = 1;
1782 WARN_ON(eh->eh_entries == 0);
1783 if (!eh->eh_entries)
1784 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1785 }
1786
1787 return merge_done;
1788 }
1789
1790 /*
1791 * This function does a very simple check to see if we can collapse
1792 * an extent tree with a single extent tree leaf block into the inode.
1793 */
1794 static void ext4_ext_try_to_merge_up(handle_t *handle,
1795 struct inode *inode,
1796 struct ext4_ext_path *path)
1797 {
1798 size_t s;
1799 unsigned max_root = ext4_ext_space_root(inode, 0);
1800 ext4_fsblk_t blk;
1801
1802 if ((path[0].p_depth != 1) ||
1803 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1804 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1805 return;
1806
1807 /*
1808 * We need to modify the block allocation bitmap and the block
1809 * group descriptor to release the extent tree block. If we
1810 * can't get the journal credits, give up.
1811 */
1812 if (ext4_journal_extend(handle, 2))
1813 return;
1814
1815 /*
1816 * Copy the extent data up to the inode
1817 */
1818 blk = ext4_idx_pblock(path[0].p_idx);
1819 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1820 sizeof(struct ext4_extent_idx);
1821 s += sizeof(struct ext4_extent_header);
1822
1823 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1824 path[0].p_depth = 0;
1825 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1826 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1827 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1828
1829 brelse(path[1].p_bh);
1830 ext4_free_blocks(handle, inode, NULL, blk, 1,
1831 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1832 }
1833
1834 /*
1835 * This function tries to merge the @ex extent to neighbours in the tree.
1836 * return 1 if merge left else 0.
1837 */
1838 static void ext4_ext_try_to_merge(handle_t *handle,
1839 struct inode *inode,
1840 struct ext4_ext_path *path,
1841 struct ext4_extent *ex) {
1842 struct ext4_extent_header *eh;
1843 unsigned int depth;
1844 int merge_done = 0;
1845
1846 depth = ext_depth(inode);
1847 BUG_ON(path[depth].p_hdr == NULL);
1848 eh = path[depth].p_hdr;
1849
1850 if (ex > EXT_FIRST_EXTENT(eh))
1851 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1852
1853 if (!merge_done)
1854 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1855
1856 ext4_ext_try_to_merge_up(handle, inode, path);
1857 }
1858
1859 /*
1860 * check if a portion of the "newext" extent overlaps with an
1861 * existing extent.
1862 *
1863 * If there is an overlap discovered, it updates the length of the newext
1864 * such that there will be no overlap, and then returns 1.
1865 * If there is no overlap found, it returns 0.
1866 */
1867 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1868 struct inode *inode,
1869 struct ext4_extent *newext,
1870 struct ext4_ext_path *path)
1871 {
1872 ext4_lblk_t b1, b2;
1873 unsigned int depth, len1;
1874 unsigned int ret = 0;
1875
1876 b1 = le32_to_cpu(newext->ee_block);
1877 len1 = ext4_ext_get_actual_len(newext);
1878 depth = ext_depth(inode);
1879 if (!path[depth].p_ext)
1880 goto out;
1881 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1882
1883 /*
1884 * get the next allocated block if the extent in the path
1885 * is before the requested block(s)
1886 */
1887 if (b2 < b1) {
1888 b2 = ext4_ext_next_allocated_block(path);
1889 if (b2 == EXT_MAX_BLOCKS)
1890 goto out;
1891 b2 = EXT4_LBLK_CMASK(sbi, b2);
1892 }
1893
1894 /* check for wrap through zero on extent logical start block*/
1895 if (b1 + len1 < b1) {
1896 len1 = EXT_MAX_BLOCKS - b1;
1897 newext->ee_len = cpu_to_le16(len1);
1898 ret = 1;
1899 }
1900
1901 /* check for overlap */
1902 if (b1 + len1 > b2) {
1903 newext->ee_len = cpu_to_le16(b2 - b1);
1904 ret = 1;
1905 }
1906 out:
1907 return ret;
1908 }
1909
1910 /*
1911 * ext4_ext_insert_extent:
1912 * tries to merge requsted extent into the existing extent or
1913 * inserts requested extent as new one into the tree,
1914 * creating new leaf in the no-space case.
1915 */
1916 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1917 struct ext4_ext_path **ppath,
1918 struct ext4_extent *newext, int gb_flags)
1919 {
1920 struct ext4_ext_path *path = *ppath;
1921 struct ext4_extent_header *eh;
1922 struct ext4_extent *ex, *fex;
1923 struct ext4_extent *nearex; /* nearest extent */
1924 struct ext4_ext_path *npath = NULL;
1925 int depth, len, err;
1926 ext4_lblk_t next;
1927 int mb_flags = 0, unwritten;
1928
1929 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1930 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1931 return -EIO;
1932 }
1933 depth = ext_depth(inode);
1934 ex = path[depth].p_ext;
1935 eh = path[depth].p_hdr;
1936 if (unlikely(path[depth].p_hdr == NULL)) {
1937 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1938 return -EIO;
1939 }
1940
1941 /* try to insert block into found extent and return */
1942 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1943
1944 /*
1945 * Try to see whether we should rather test the extent on
1946 * right from ex, or from the left of ex. This is because
1947 * ext4_ext_find_extent() can return either extent on the
1948 * left, or on the right from the searched position. This
1949 * will make merging more effective.
1950 */
1951 if (ex < EXT_LAST_EXTENT(eh) &&
1952 (le32_to_cpu(ex->ee_block) +
1953 ext4_ext_get_actual_len(ex) <
1954 le32_to_cpu(newext->ee_block))) {
1955 ex += 1;
1956 goto prepend;
1957 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1958 (le32_to_cpu(newext->ee_block) +
1959 ext4_ext_get_actual_len(newext) <
1960 le32_to_cpu(ex->ee_block)))
1961 ex -= 1;
1962
1963 /* Try to append newex to the ex */
1964 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1965 ext_debug("append [%d]%d block to %u:[%d]%d"
1966 "(from %llu)\n",
1967 ext4_ext_is_unwritten(newext),
1968 ext4_ext_get_actual_len(newext),
1969 le32_to_cpu(ex->ee_block),
1970 ext4_ext_is_unwritten(ex),
1971 ext4_ext_get_actual_len(ex),
1972 ext4_ext_pblock(ex));
1973 err = ext4_ext_get_access(handle, inode,
1974 path + depth);
1975 if (err)
1976 return err;
1977 unwritten = ext4_ext_is_unwritten(ex);
1978 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1979 + ext4_ext_get_actual_len(newext));
1980 if (unwritten)
1981 ext4_ext_mark_unwritten(ex);
1982 eh = path[depth].p_hdr;
1983 nearex = ex;
1984 goto merge;
1985 }
1986
1987 prepend:
1988 /* Try to prepend newex to the ex */
1989 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1990 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1991 "(from %llu)\n",
1992 le32_to_cpu(newext->ee_block),
1993 ext4_ext_is_unwritten(newext),
1994 ext4_ext_get_actual_len(newext),
1995 le32_to_cpu(ex->ee_block),
1996 ext4_ext_is_unwritten(ex),
1997 ext4_ext_get_actual_len(ex),
1998 ext4_ext_pblock(ex));
1999 err = ext4_ext_get_access(handle, inode,
2000 path + depth);
2001 if (err)
2002 return err;
2003
2004 unwritten = ext4_ext_is_unwritten(ex);
2005 ex->ee_block = newext->ee_block;
2006 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2007 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2008 + ext4_ext_get_actual_len(newext));
2009 if (unwritten)
2010 ext4_ext_mark_unwritten(ex);
2011 eh = path[depth].p_hdr;
2012 nearex = ex;
2013 goto merge;
2014 }
2015 }
2016
2017 depth = ext_depth(inode);
2018 eh = path[depth].p_hdr;
2019 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2020 goto has_space;
2021
2022 /* probably next leaf has space for us? */
2023 fex = EXT_LAST_EXTENT(eh);
2024 next = EXT_MAX_BLOCKS;
2025 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2026 next = ext4_ext_next_leaf_block(path);
2027 if (next != EXT_MAX_BLOCKS) {
2028 ext_debug("next leaf block - %u\n", next);
2029 BUG_ON(npath != NULL);
2030 npath = ext4_ext_find_extent(inode, next, NULL, 0);
2031 if (IS_ERR(npath))
2032 return PTR_ERR(npath);
2033 BUG_ON(npath->p_depth != path->p_depth);
2034 eh = npath[depth].p_hdr;
2035 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2036 ext_debug("next leaf isn't full(%d)\n",
2037 le16_to_cpu(eh->eh_entries));
2038 path = npath;
2039 goto has_space;
2040 }
2041 ext_debug("next leaf has no free space(%d,%d)\n",
2042 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2043 }
2044
2045 /*
2046 * There is no free space in the found leaf.
2047 * We're gonna add a new leaf in the tree.
2048 */
2049 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2050 mb_flags = EXT4_MB_USE_RESERVED;
2051 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2052 ppath, newext);
2053 if (err)
2054 goto cleanup;
2055 depth = ext_depth(inode);
2056 eh = path[depth].p_hdr;
2057
2058 has_space:
2059 nearex = path[depth].p_ext;
2060
2061 err = ext4_ext_get_access(handle, inode, path + depth);
2062 if (err)
2063 goto cleanup;
2064
2065 if (!nearex) {
2066 /* there is no extent in this leaf, create first one */
2067 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2068 le32_to_cpu(newext->ee_block),
2069 ext4_ext_pblock(newext),
2070 ext4_ext_is_unwritten(newext),
2071 ext4_ext_get_actual_len(newext));
2072 nearex = EXT_FIRST_EXTENT(eh);
2073 } else {
2074 if (le32_to_cpu(newext->ee_block)
2075 > le32_to_cpu(nearex->ee_block)) {
2076 /* Insert after */
2077 ext_debug("insert %u:%llu:[%d]%d before: "
2078 "nearest %p\n",
2079 le32_to_cpu(newext->ee_block),
2080 ext4_ext_pblock(newext),
2081 ext4_ext_is_unwritten(newext),
2082 ext4_ext_get_actual_len(newext),
2083 nearex);
2084 nearex++;
2085 } else {
2086 /* Insert before */
2087 BUG_ON(newext->ee_block == nearex->ee_block);
2088 ext_debug("insert %u:%llu:[%d]%d after: "
2089 "nearest %p\n",
2090 le32_to_cpu(newext->ee_block),
2091 ext4_ext_pblock(newext),
2092 ext4_ext_is_unwritten(newext),
2093 ext4_ext_get_actual_len(newext),
2094 nearex);
2095 }
2096 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2097 if (len > 0) {
2098 ext_debug("insert %u:%llu:[%d]%d: "
2099 "move %d extents from 0x%p to 0x%p\n",
2100 le32_to_cpu(newext->ee_block),
2101 ext4_ext_pblock(newext),
2102 ext4_ext_is_unwritten(newext),
2103 ext4_ext_get_actual_len(newext),
2104 len, nearex, nearex + 1);
2105 memmove(nearex + 1, nearex,
2106 len * sizeof(struct ext4_extent));
2107 }
2108 }
2109
2110 le16_add_cpu(&eh->eh_entries, 1);
2111 path[depth].p_ext = nearex;
2112 nearex->ee_block = newext->ee_block;
2113 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2114 nearex->ee_len = newext->ee_len;
2115
2116 merge:
2117 /* try to merge extents */
2118 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2119 ext4_ext_try_to_merge(handle, inode, path, nearex);
2120
2121
2122 /* time to correct all indexes above */
2123 err = ext4_ext_correct_indexes(handle, inode, path);
2124 if (err)
2125 goto cleanup;
2126
2127 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2128
2129 cleanup:
2130 ext4_ext_drop_refs(npath);
2131 kfree(npath);
2132 return err;
2133 }
2134
2135 static int ext4_fill_fiemap_extents(struct inode *inode,
2136 ext4_lblk_t block, ext4_lblk_t num,
2137 struct fiemap_extent_info *fieinfo)
2138 {
2139 struct ext4_ext_path *path = NULL;
2140 struct ext4_extent *ex;
2141 struct extent_status es;
2142 ext4_lblk_t next, next_del, start = 0, end = 0;
2143 ext4_lblk_t last = block + num;
2144 int exists, depth = 0, err = 0;
2145 unsigned int flags = 0;
2146 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2147
2148 while (block < last && block != EXT_MAX_BLOCKS) {
2149 num = last - block;
2150 /* find extent for this block */
2151 down_read(&EXT4_I(inode)->i_data_sem);
2152
2153 if (path && ext_depth(inode) != depth) {
2154 /* depth was changed. we have to realloc path */
2155 kfree(path);
2156 path = NULL;
2157 }
2158
2159 path = ext4_ext_find_extent(inode, block, &path, 0);
2160 if (IS_ERR(path)) {
2161 up_read(&EXT4_I(inode)->i_data_sem);
2162 err = PTR_ERR(path);
2163 path = NULL;
2164 break;
2165 }
2166
2167 depth = ext_depth(inode);
2168 if (unlikely(path[depth].p_hdr == NULL)) {
2169 up_read(&EXT4_I(inode)->i_data_sem);
2170 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2171 err = -EIO;
2172 break;
2173 }
2174 ex = path[depth].p_ext;
2175 next = ext4_ext_next_allocated_block(path);
2176 ext4_ext_drop_refs(path);
2177
2178 flags = 0;
2179 exists = 0;
2180 if (!ex) {
2181 /* there is no extent yet, so try to allocate
2182 * all requested space */
2183 start = block;
2184 end = block + num;
2185 } else if (le32_to_cpu(ex->ee_block) > block) {
2186 /* need to allocate space before found extent */
2187 start = block;
2188 end = le32_to_cpu(ex->ee_block);
2189 if (block + num < end)
2190 end = block + num;
2191 } else if (block >= le32_to_cpu(ex->ee_block)
2192 + ext4_ext_get_actual_len(ex)) {
2193 /* need to allocate space after found extent */
2194 start = block;
2195 end = block + num;
2196 if (end >= next)
2197 end = next;
2198 } else if (block >= le32_to_cpu(ex->ee_block)) {
2199 /*
2200 * some part of requested space is covered
2201 * by found extent
2202 */
2203 start = block;
2204 end = le32_to_cpu(ex->ee_block)
2205 + ext4_ext_get_actual_len(ex);
2206 if (block + num < end)
2207 end = block + num;
2208 exists = 1;
2209 } else {
2210 BUG();
2211 }
2212 BUG_ON(end <= start);
2213
2214 if (!exists) {
2215 es.es_lblk = start;
2216 es.es_len = end - start;
2217 es.es_pblk = 0;
2218 } else {
2219 es.es_lblk = le32_to_cpu(ex->ee_block);
2220 es.es_len = ext4_ext_get_actual_len(ex);
2221 es.es_pblk = ext4_ext_pblock(ex);
2222 if (ext4_ext_is_unwritten(ex))
2223 flags |= FIEMAP_EXTENT_UNWRITTEN;
2224 }
2225
2226 /*
2227 * Find delayed extent and update es accordingly. We call
2228 * it even in !exists case to find out whether es is the
2229 * last existing extent or not.
2230 */
2231 next_del = ext4_find_delayed_extent(inode, &es);
2232 if (!exists && next_del) {
2233 exists = 1;
2234 flags |= (FIEMAP_EXTENT_DELALLOC |
2235 FIEMAP_EXTENT_UNKNOWN);
2236 }
2237 up_read(&EXT4_I(inode)->i_data_sem);
2238
2239 if (unlikely(es.es_len == 0)) {
2240 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2241 err = -EIO;
2242 break;
2243 }
2244
2245 /*
2246 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2247 * we need to check next == EXT_MAX_BLOCKS because it is
2248 * possible that an extent is with unwritten and delayed
2249 * status due to when an extent is delayed allocated and
2250 * is allocated by fallocate status tree will track both of
2251 * them in a extent.
2252 *
2253 * So we could return a unwritten and delayed extent, and
2254 * its block is equal to 'next'.
2255 */
2256 if (next == next_del && next == EXT_MAX_BLOCKS) {
2257 flags |= FIEMAP_EXTENT_LAST;
2258 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2259 next != EXT_MAX_BLOCKS)) {
2260 EXT4_ERROR_INODE(inode,
2261 "next extent == %u, next "
2262 "delalloc extent = %u",
2263 next, next_del);
2264 err = -EIO;
2265 break;
2266 }
2267 }
2268
2269 if (exists) {
2270 err = fiemap_fill_next_extent(fieinfo,
2271 (__u64)es.es_lblk << blksize_bits,
2272 (__u64)es.es_pblk << blksize_bits,
2273 (__u64)es.es_len << blksize_bits,
2274 flags);
2275 if (err < 0)
2276 break;
2277 if (err == 1) {
2278 err = 0;
2279 break;
2280 }
2281 }
2282
2283 block = es.es_lblk + es.es_len;
2284 }
2285
2286 ext4_ext_drop_refs(path);
2287 kfree(path);
2288 return err;
2289 }
2290
2291 /*
2292 * ext4_ext_put_gap_in_cache:
2293 * calculate boundaries of the gap that the requested block fits into
2294 * and cache this gap
2295 */
2296 static void
2297 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2298 ext4_lblk_t block)
2299 {
2300 int depth = ext_depth(inode);
2301 unsigned long len = 0;
2302 ext4_lblk_t lblock = 0;
2303 struct ext4_extent *ex;
2304
2305 ex = path[depth].p_ext;
2306 if (ex == NULL) {
2307 /*
2308 * there is no extent yet, so gap is [0;-] and we
2309 * don't cache it
2310 */
2311 ext_debug("cache gap(whole file):");
2312 } else if (block < le32_to_cpu(ex->ee_block)) {
2313 lblock = block;
2314 len = le32_to_cpu(ex->ee_block) - block;
2315 ext_debug("cache gap(before): %u [%u:%u]",
2316 block,
2317 le32_to_cpu(ex->ee_block),
2318 ext4_ext_get_actual_len(ex));
2319 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320 ext4_es_insert_extent(inode, lblock, len, ~0,
2321 EXTENT_STATUS_HOLE);
2322 } else if (block >= le32_to_cpu(ex->ee_block)
2323 + ext4_ext_get_actual_len(ex)) {
2324 ext4_lblk_t next;
2325 lblock = le32_to_cpu(ex->ee_block)
2326 + ext4_ext_get_actual_len(ex);
2327
2328 next = ext4_ext_next_allocated_block(path);
2329 ext_debug("cache gap(after): [%u:%u] %u",
2330 le32_to_cpu(ex->ee_block),
2331 ext4_ext_get_actual_len(ex),
2332 block);
2333 BUG_ON(next == lblock);
2334 len = next - lblock;
2335 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2336 ext4_es_insert_extent(inode, lblock, len, ~0,
2337 EXTENT_STATUS_HOLE);
2338 } else {
2339 BUG();
2340 }
2341
2342 ext_debug(" -> %u:%lu\n", lblock, len);
2343 }
2344
2345 /*
2346 * ext4_ext_rm_idx:
2347 * removes index from the index block.
2348 */
2349 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2350 struct ext4_ext_path *path, int depth)
2351 {
2352 int err;
2353 ext4_fsblk_t leaf;
2354
2355 /* free index block */
2356 depth--;
2357 path = path + depth;
2358 leaf = ext4_idx_pblock(path->p_idx);
2359 if (unlikely(path->p_hdr->eh_entries == 0)) {
2360 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2361 return -EIO;
2362 }
2363 err = ext4_ext_get_access(handle, inode, path);
2364 if (err)
2365 return err;
2366
2367 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2368 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2369 len *= sizeof(struct ext4_extent_idx);
2370 memmove(path->p_idx, path->p_idx + 1, len);
2371 }
2372
2373 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2374 err = ext4_ext_dirty(handle, inode, path);
2375 if (err)
2376 return err;
2377 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2378 trace_ext4_ext_rm_idx(inode, leaf);
2379
2380 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2381 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2382
2383 while (--depth >= 0) {
2384 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2385 break;
2386 path--;
2387 err = ext4_ext_get_access(handle, inode, path);
2388 if (err)
2389 break;
2390 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2391 err = ext4_ext_dirty(handle, inode, path);
2392 if (err)
2393 break;
2394 }
2395 return err;
2396 }
2397
2398 /*
2399 * ext4_ext_calc_credits_for_single_extent:
2400 * This routine returns max. credits that needed to insert an extent
2401 * to the extent tree.
2402 * When pass the actual path, the caller should calculate credits
2403 * under i_data_sem.
2404 */
2405 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2406 struct ext4_ext_path *path)
2407 {
2408 if (path) {
2409 int depth = ext_depth(inode);
2410 int ret = 0;
2411
2412 /* probably there is space in leaf? */
2413 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2414 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2415
2416 /*
2417 * There are some space in the leaf tree, no
2418 * need to account for leaf block credit
2419 *
2420 * bitmaps and block group descriptor blocks
2421 * and other metadata blocks still need to be
2422 * accounted.
2423 */
2424 /* 1 bitmap, 1 block group descriptor */
2425 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2426 return ret;
2427 }
2428 }
2429
2430 return ext4_chunk_trans_blocks(inode, nrblocks);
2431 }
2432
2433 /*
2434 * How many index/leaf blocks need to change/allocate to add @extents extents?
2435 *
2436 * If we add a single extent, then in the worse case, each tree level
2437 * index/leaf need to be changed in case of the tree split.
2438 *
2439 * If more extents are inserted, they could cause the whole tree split more
2440 * than once, but this is really rare.
2441 */
2442 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2443 {
2444 int index;
2445 int depth;
2446
2447 /* If we are converting the inline data, only one is needed here. */
2448 if (ext4_has_inline_data(inode))
2449 return 1;
2450
2451 depth = ext_depth(inode);
2452
2453 if (extents <= 1)
2454 index = depth * 2;
2455 else
2456 index = depth * 3;
2457
2458 return index;
2459 }
2460
2461 static inline int get_default_free_blocks_flags(struct inode *inode)
2462 {
2463 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2464 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2465 else if (ext4_should_journal_data(inode))
2466 return EXT4_FREE_BLOCKS_FORGET;
2467 return 0;
2468 }
2469
2470 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2471 struct ext4_extent *ex,
2472 long long *partial_cluster,
2473 ext4_lblk_t from, ext4_lblk_t to)
2474 {
2475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2476 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2477 ext4_fsblk_t pblk;
2478 int flags = get_default_free_blocks_flags(inode);
2479
2480 /*
2481 * For bigalloc file systems, we never free a partial cluster
2482 * at the beginning of the extent. Instead, we make a note
2483 * that we tried freeing the cluster, and check to see if we
2484 * need to free it on a subsequent call to ext4_remove_blocks,
2485 * or at the end of the ext4_truncate() operation.
2486 */
2487 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2488
2489 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2490 /*
2491 * If we have a partial cluster, and it's different from the
2492 * cluster of the last block, we need to explicitly free the
2493 * partial cluster here.
2494 */
2495 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2496 if ((*partial_cluster > 0) &&
2497 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2498 ext4_free_blocks(handle, inode, NULL,
2499 EXT4_C2B(sbi, *partial_cluster),
2500 sbi->s_cluster_ratio, flags);
2501 *partial_cluster = 0;
2502 }
2503
2504 #ifdef EXTENTS_STATS
2505 {
2506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2507 spin_lock(&sbi->s_ext_stats_lock);
2508 sbi->s_ext_blocks += ee_len;
2509 sbi->s_ext_extents++;
2510 if (ee_len < sbi->s_ext_min)
2511 sbi->s_ext_min = ee_len;
2512 if (ee_len > sbi->s_ext_max)
2513 sbi->s_ext_max = ee_len;
2514 if (ext_depth(inode) > sbi->s_depth_max)
2515 sbi->s_depth_max = ext_depth(inode);
2516 spin_unlock(&sbi->s_ext_stats_lock);
2517 }
2518 #endif
2519 if (from >= le32_to_cpu(ex->ee_block)
2520 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2521 /* tail removal */
2522 ext4_lblk_t num;
2523 unsigned int unaligned;
2524
2525 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2526 pblk = ext4_ext_pblock(ex) + ee_len - num;
2527 /*
2528 * Usually we want to free partial cluster at the end of the
2529 * extent, except for the situation when the cluster is still
2530 * used by any other extent (partial_cluster is negative).
2531 */
2532 if (*partial_cluster < 0 &&
2533 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2534 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2535
2536 ext_debug("free last %u blocks starting %llu partial %lld\n",
2537 num, pblk, *partial_cluster);
2538 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2539 /*
2540 * If the block range to be freed didn't start at the
2541 * beginning of a cluster, and we removed the entire
2542 * extent and the cluster is not used by any other extent,
2543 * save the partial cluster here, since we might need to
2544 * delete if we determine that the truncate operation has
2545 * removed all of the blocks in the cluster.
2546 *
2547 * On the other hand, if we did not manage to free the whole
2548 * extent, we have to mark the cluster as used (store negative
2549 * cluster number in partial_cluster).
2550 */
2551 unaligned = EXT4_PBLK_COFF(sbi, pblk);
2552 if (unaligned && (ee_len == num) &&
2553 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2554 *partial_cluster = EXT4_B2C(sbi, pblk);
2555 else if (unaligned)
2556 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2557 else if (*partial_cluster > 0)
2558 *partial_cluster = 0;
2559 } else
2560 ext4_error(sbi->s_sb, "strange request: removal(2) "
2561 "%u-%u from %u:%u\n",
2562 from, to, le32_to_cpu(ex->ee_block), ee_len);
2563 return 0;
2564 }
2565
2566
2567 /*
2568 * ext4_ext_rm_leaf() Removes the extents associated with the
2569 * blocks appearing between "start" and "end", and splits the extents
2570 * if "start" and "end" appear in the same extent
2571 *
2572 * @handle: The journal handle
2573 * @inode: The files inode
2574 * @path: The path to the leaf
2575 * @partial_cluster: The cluster which we'll have to free if all extents
2576 * has been released from it. It gets negative in case
2577 * that the cluster is still used.
2578 * @start: The first block to remove
2579 * @end: The last block to remove
2580 */
2581 static int
2582 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2583 struct ext4_ext_path *path,
2584 long long *partial_cluster,
2585 ext4_lblk_t start, ext4_lblk_t end)
2586 {
2587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2588 int err = 0, correct_index = 0;
2589 int depth = ext_depth(inode), credits;
2590 struct ext4_extent_header *eh;
2591 ext4_lblk_t a, b;
2592 unsigned num;
2593 ext4_lblk_t ex_ee_block;
2594 unsigned short ex_ee_len;
2595 unsigned unwritten = 0;
2596 struct ext4_extent *ex;
2597 ext4_fsblk_t pblk;
2598
2599 /* the header must be checked already in ext4_ext_remove_space() */
2600 ext_debug("truncate since %u in leaf to %u\n", start, end);
2601 if (!path[depth].p_hdr)
2602 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2603 eh = path[depth].p_hdr;
2604 if (unlikely(path[depth].p_hdr == NULL)) {
2605 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2606 return -EIO;
2607 }
2608 /* find where to start removing */
2609 ex = path[depth].p_ext;
2610 if (!ex)
2611 ex = EXT_LAST_EXTENT(eh);
2612
2613 ex_ee_block = le32_to_cpu(ex->ee_block);
2614 ex_ee_len = ext4_ext_get_actual_len(ex);
2615
2616 /*
2617 * If we're starting with an extent other than the last one in the
2618 * node, we need to see if it shares a cluster with the extent to
2619 * the right (towards the end of the file). If its leftmost cluster
2620 * is this extent's rightmost cluster and it is not cluster aligned,
2621 * we'll mark it as a partial that is not to be deallocated.
2622 */
2623
2624 if (ex != EXT_LAST_EXTENT(eh)) {
2625 ext4_fsblk_t current_pblk, right_pblk;
2626 long long current_cluster, right_cluster;
2627
2628 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2629 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2630 right_pblk = ext4_ext_pblock(ex + 1);
2631 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2632 if (current_cluster == right_cluster &&
2633 EXT4_PBLK_COFF(sbi, right_pblk))
2634 *partial_cluster = -right_cluster;
2635 }
2636
2637 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2638
2639 while (ex >= EXT_FIRST_EXTENT(eh) &&
2640 ex_ee_block + ex_ee_len > start) {
2641
2642 if (ext4_ext_is_unwritten(ex))
2643 unwritten = 1;
2644 else
2645 unwritten = 0;
2646
2647 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2648 unwritten, ex_ee_len);
2649 path[depth].p_ext = ex;
2650
2651 a = ex_ee_block > start ? ex_ee_block : start;
2652 b = ex_ee_block+ex_ee_len - 1 < end ?
2653 ex_ee_block+ex_ee_len - 1 : end;
2654
2655 ext_debug(" border %u:%u\n", a, b);
2656
2657 /* If this extent is beyond the end of the hole, skip it */
2658 if (end < ex_ee_block) {
2659 /*
2660 * We're going to skip this extent and move to another,
2661 * so if this extent is not cluster aligned we have
2662 * to mark the current cluster as used to avoid
2663 * accidentally freeing it later on
2664 */
2665 pblk = ext4_ext_pblock(ex);
2666 if (EXT4_PBLK_COFF(sbi, pblk))
2667 *partial_cluster =
2668 -((long long)EXT4_B2C(sbi, pblk));
2669 ex--;
2670 ex_ee_block = le32_to_cpu(ex->ee_block);
2671 ex_ee_len = ext4_ext_get_actual_len(ex);
2672 continue;
2673 } else if (b != ex_ee_block + ex_ee_len - 1) {
2674 EXT4_ERROR_INODE(inode,
2675 "can not handle truncate %u:%u "
2676 "on extent %u:%u",
2677 start, end, ex_ee_block,
2678 ex_ee_block + ex_ee_len - 1);
2679 err = -EIO;
2680 goto out;
2681 } else if (a != ex_ee_block) {
2682 /* remove tail of the extent */
2683 num = a - ex_ee_block;
2684 } else {
2685 /* remove whole extent: excellent! */
2686 num = 0;
2687 }
2688 /*
2689 * 3 for leaf, sb, and inode plus 2 (bmap and group
2690 * descriptor) for each block group; assume two block
2691 * groups plus ex_ee_len/blocks_per_block_group for
2692 * the worst case
2693 */
2694 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2695 if (ex == EXT_FIRST_EXTENT(eh)) {
2696 correct_index = 1;
2697 credits += (ext_depth(inode)) + 1;
2698 }
2699 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2700
2701 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2702 if (err)
2703 goto out;
2704
2705 err = ext4_ext_get_access(handle, inode, path + depth);
2706 if (err)
2707 goto out;
2708
2709 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2710 a, b);
2711 if (err)
2712 goto out;
2713
2714 if (num == 0)
2715 /* this extent is removed; mark slot entirely unused */
2716 ext4_ext_store_pblock(ex, 0);
2717
2718 ex->ee_len = cpu_to_le16(num);
2719 /*
2720 * Do not mark unwritten if all the blocks in the
2721 * extent have been removed.
2722 */
2723 if (unwritten && num)
2724 ext4_ext_mark_unwritten(ex);
2725 /*
2726 * If the extent was completely released,
2727 * we need to remove it from the leaf
2728 */
2729 if (num == 0) {
2730 if (end != EXT_MAX_BLOCKS - 1) {
2731 /*
2732 * For hole punching, we need to scoot all the
2733 * extents up when an extent is removed so that
2734 * we dont have blank extents in the middle
2735 */
2736 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2737 sizeof(struct ext4_extent));
2738
2739 /* Now get rid of the one at the end */
2740 memset(EXT_LAST_EXTENT(eh), 0,
2741 sizeof(struct ext4_extent));
2742 }
2743 le16_add_cpu(&eh->eh_entries, -1);
2744 } else if (*partial_cluster > 0)
2745 *partial_cluster = 0;
2746
2747 err = ext4_ext_dirty(handle, inode, path + depth);
2748 if (err)
2749 goto out;
2750
2751 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2752 ext4_ext_pblock(ex));
2753 ex--;
2754 ex_ee_block = le32_to_cpu(ex->ee_block);
2755 ex_ee_len = ext4_ext_get_actual_len(ex);
2756 }
2757
2758 if (correct_index && eh->eh_entries)
2759 err = ext4_ext_correct_indexes(handle, inode, path);
2760
2761 /*
2762 * If there's a partial cluster and at least one extent remains in
2763 * the leaf, free the partial cluster if it isn't shared with the
2764 * current extent. If there's a partial cluster and no extents
2765 * remain in the leaf, it can't be freed here. It can only be
2766 * freed when it's possible to determine if it's not shared with
2767 * any other extent - when the next leaf is processed or when space
2768 * removal is complete.
2769 */
2770 if (*partial_cluster > 0 && eh->eh_entries &&
2771 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2772 *partial_cluster)) {
2773 int flags = get_default_free_blocks_flags(inode);
2774
2775 ext4_free_blocks(handle, inode, NULL,
2776 EXT4_C2B(sbi, *partial_cluster),
2777 sbi->s_cluster_ratio, flags);
2778 *partial_cluster = 0;
2779 }
2780
2781 /* if this leaf is free, then we should
2782 * remove it from index block above */
2783 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2784 err = ext4_ext_rm_idx(handle, inode, path, depth);
2785
2786 out:
2787 return err;
2788 }
2789
2790 /*
2791 * ext4_ext_more_to_rm:
2792 * returns 1 if current index has to be freed (even partial)
2793 */
2794 static int
2795 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2796 {
2797 BUG_ON(path->p_idx == NULL);
2798
2799 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2800 return 0;
2801
2802 /*
2803 * if truncate on deeper level happened, it wasn't partial,
2804 * so we have to consider current index for truncation
2805 */
2806 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2807 return 0;
2808 return 1;
2809 }
2810
2811 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2812 ext4_lblk_t end)
2813 {
2814 struct super_block *sb = inode->i_sb;
2815 int depth = ext_depth(inode);
2816 struct ext4_ext_path *path = NULL;
2817 long long partial_cluster = 0;
2818 handle_t *handle;
2819 int i = 0, err = 0;
2820
2821 ext_debug("truncate since %u to %u\n", start, end);
2822
2823 /* probably first extent we're gonna free will be last in block */
2824 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2825 if (IS_ERR(handle))
2826 return PTR_ERR(handle);
2827
2828 again:
2829 trace_ext4_ext_remove_space(inode, start, end, depth);
2830
2831 /*
2832 * Check if we are removing extents inside the extent tree. If that
2833 * is the case, we are going to punch a hole inside the extent tree
2834 * so we have to check whether we need to split the extent covering
2835 * the last block to remove so we can easily remove the part of it
2836 * in ext4_ext_rm_leaf().
2837 */
2838 if (end < EXT_MAX_BLOCKS - 1) {
2839 struct ext4_extent *ex;
2840 ext4_lblk_t ee_block;
2841
2842 /* find extent for this block */
2843 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2844 if (IS_ERR(path)) {
2845 ext4_journal_stop(handle);
2846 return PTR_ERR(path);
2847 }
2848 depth = ext_depth(inode);
2849 /* Leaf not may not exist only if inode has no blocks at all */
2850 ex = path[depth].p_ext;
2851 if (!ex) {
2852 if (depth) {
2853 EXT4_ERROR_INODE(inode,
2854 "path[%d].p_hdr == NULL",
2855 depth);
2856 err = -EIO;
2857 }
2858 goto out;
2859 }
2860
2861 ee_block = le32_to_cpu(ex->ee_block);
2862
2863 /*
2864 * See if the last block is inside the extent, if so split
2865 * the extent at 'end' block so we can easily remove the
2866 * tail of the first part of the split extent in
2867 * ext4_ext_rm_leaf().
2868 */
2869 if (end >= ee_block &&
2870 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2871 /*
2872 * Split the extent in two so that 'end' is the last
2873 * block in the first new extent. Also we should not
2874 * fail removing space due to ENOSPC so try to use
2875 * reserved block if that happens.
2876 */
2877 err = ext4_force_split_extent_at(handle, inode, &path,
2878 end + 1, 1);
2879 if (err < 0)
2880 goto out;
2881 }
2882 }
2883 /*
2884 * We start scanning from right side, freeing all the blocks
2885 * after i_size and walking into the tree depth-wise.
2886 */
2887 depth = ext_depth(inode);
2888 if (path) {
2889 int k = i = depth;
2890 while (--k > 0)
2891 path[k].p_block =
2892 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2893 } else {
2894 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2895 GFP_NOFS);
2896 if (path == NULL) {
2897 ext4_journal_stop(handle);
2898 return -ENOMEM;
2899 }
2900 path[0].p_depth = depth;
2901 path[0].p_hdr = ext_inode_hdr(inode);
2902 i = 0;
2903
2904 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2905 err = -EIO;
2906 goto out;
2907 }
2908 }
2909 err = 0;
2910
2911 while (i >= 0 && err == 0) {
2912 if (i == depth) {
2913 /* this is leaf block */
2914 err = ext4_ext_rm_leaf(handle, inode, path,
2915 &partial_cluster, start,
2916 end);
2917 /* root level has p_bh == NULL, brelse() eats this */
2918 brelse(path[i].p_bh);
2919 path[i].p_bh = NULL;
2920 i--;
2921 continue;
2922 }
2923
2924 /* this is index block */
2925 if (!path[i].p_hdr) {
2926 ext_debug("initialize header\n");
2927 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2928 }
2929
2930 if (!path[i].p_idx) {
2931 /* this level hasn't been touched yet */
2932 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2933 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2934 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2935 path[i].p_hdr,
2936 le16_to_cpu(path[i].p_hdr->eh_entries));
2937 } else {
2938 /* we were already here, see at next index */
2939 path[i].p_idx--;
2940 }
2941
2942 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2943 i, EXT_FIRST_INDEX(path[i].p_hdr),
2944 path[i].p_idx);
2945 if (ext4_ext_more_to_rm(path + i)) {
2946 struct buffer_head *bh;
2947 /* go to the next level */
2948 ext_debug("move to level %d (block %llu)\n",
2949 i + 1, ext4_idx_pblock(path[i].p_idx));
2950 memset(path + i + 1, 0, sizeof(*path));
2951 bh = read_extent_tree_block(inode,
2952 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2953 EXT4_EX_NOCACHE);
2954 if (IS_ERR(bh)) {
2955 /* should we reset i_size? */
2956 err = PTR_ERR(bh);
2957 break;
2958 }
2959 /* Yield here to deal with large extent trees.
2960 * Should be a no-op if we did IO above. */
2961 cond_resched();
2962 if (WARN_ON(i + 1 > depth)) {
2963 err = -EIO;
2964 break;
2965 }
2966 path[i + 1].p_bh = bh;
2967
2968 /* save actual number of indexes since this
2969 * number is changed at the next iteration */
2970 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2971 i++;
2972 } else {
2973 /* we finished processing this index, go up */
2974 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2975 /* index is empty, remove it;
2976 * handle must be already prepared by the
2977 * truncatei_leaf() */
2978 err = ext4_ext_rm_idx(handle, inode, path, i);
2979 }
2980 /* root level has p_bh == NULL, brelse() eats this */
2981 brelse(path[i].p_bh);
2982 path[i].p_bh = NULL;
2983 i--;
2984 ext_debug("return to level %d\n", i);
2985 }
2986 }
2987
2988 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2989 partial_cluster, path->p_hdr->eh_entries);
2990
2991 /* If we still have something in the partial cluster and we have removed
2992 * even the first extent, then we should free the blocks in the partial
2993 * cluster as well. */
2994 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2995 int flags = get_default_free_blocks_flags(inode);
2996
2997 ext4_free_blocks(handle, inode, NULL,
2998 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2999 EXT4_SB(sb)->s_cluster_ratio, flags);
3000 partial_cluster = 0;
3001 }
3002
3003 /* TODO: flexible tree reduction should be here */
3004 if (path->p_hdr->eh_entries == 0) {
3005 /*
3006 * truncate to zero freed all the tree,
3007 * so we need to correct eh_depth
3008 */
3009 err = ext4_ext_get_access(handle, inode, path);
3010 if (err == 0) {
3011 ext_inode_hdr(inode)->eh_depth = 0;
3012 ext_inode_hdr(inode)->eh_max =
3013 cpu_to_le16(ext4_ext_space_root(inode, 0));
3014 err = ext4_ext_dirty(handle, inode, path);
3015 }
3016 }
3017 out:
3018 ext4_ext_drop_refs(path);
3019 kfree(path);
3020 path = NULL;
3021 if (err == -EAGAIN)
3022 goto again;
3023 ext4_journal_stop(handle);
3024
3025 return err;
3026 }
3027
3028 /*
3029 * called at mount time
3030 */
3031 void ext4_ext_init(struct super_block *sb)
3032 {
3033 /*
3034 * possible initialization would be here
3035 */
3036
3037 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3038 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3039 printk(KERN_INFO "EXT4-fs: file extents enabled"
3040 #ifdef AGGRESSIVE_TEST
3041 ", aggressive tests"
3042 #endif
3043 #ifdef CHECK_BINSEARCH
3044 ", check binsearch"
3045 #endif
3046 #ifdef EXTENTS_STATS
3047 ", stats"
3048 #endif
3049 "\n");
3050 #endif
3051 #ifdef EXTENTS_STATS
3052 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3053 EXT4_SB(sb)->s_ext_min = 1 << 30;
3054 EXT4_SB(sb)->s_ext_max = 0;
3055 #endif
3056 }
3057 }
3058
3059 /*
3060 * called at umount time
3061 */
3062 void ext4_ext_release(struct super_block *sb)
3063 {
3064 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3065 return;
3066
3067 #ifdef EXTENTS_STATS
3068 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3069 struct ext4_sb_info *sbi = EXT4_SB(sb);
3070 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3071 sbi->s_ext_blocks, sbi->s_ext_extents,
3072 sbi->s_ext_blocks / sbi->s_ext_extents);
3073 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3074 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3075 }
3076 #endif
3077 }
3078
3079 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3080 {
3081 ext4_lblk_t ee_block;
3082 ext4_fsblk_t ee_pblock;
3083 unsigned int ee_len;
3084
3085 ee_block = le32_to_cpu(ex->ee_block);
3086 ee_len = ext4_ext_get_actual_len(ex);
3087 ee_pblock = ext4_ext_pblock(ex);
3088
3089 if (ee_len == 0)
3090 return 0;
3091
3092 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3093 EXTENT_STATUS_WRITTEN);
3094 }
3095
3096 /* FIXME!! we need to try to merge to left or right after zero-out */
3097 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3098 {
3099 ext4_fsblk_t ee_pblock;
3100 unsigned int ee_len;
3101 int ret;
3102
3103 ee_len = ext4_ext_get_actual_len(ex);
3104 ee_pblock = ext4_ext_pblock(ex);
3105
3106 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3107 if (ret > 0)
3108 ret = 0;
3109
3110 return ret;
3111 }
3112
3113 /*
3114 * ext4_split_extent_at() splits an extent at given block.
3115 *
3116 * @handle: the journal handle
3117 * @inode: the file inode
3118 * @path: the path to the extent
3119 * @split: the logical block where the extent is splitted.
3120 * @split_flags: indicates if the extent could be zeroout if split fails, and
3121 * the states(init or unwritten) of new extents.
3122 * @flags: flags used to insert new extent to extent tree.
3123 *
3124 *
3125 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3126 * of which are deterimined by split_flag.
3127 *
3128 * There are two cases:
3129 * a> the extent are splitted into two extent.
3130 * b> split is not needed, and just mark the extent.
3131 *
3132 * return 0 on success.
3133 */
3134 static int ext4_split_extent_at(handle_t *handle,
3135 struct inode *inode,
3136 struct ext4_ext_path **ppath,
3137 ext4_lblk_t split,
3138 int split_flag,
3139 int flags)
3140 {
3141 struct ext4_ext_path *path = *ppath;
3142 ext4_fsblk_t newblock;
3143 ext4_lblk_t ee_block;
3144 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3145 struct ext4_extent *ex2 = NULL;
3146 unsigned int ee_len, depth;
3147 int err = 0;
3148
3149 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3150 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3151
3152 ext_debug("ext4_split_extents_at: inode %lu, logical"
3153 "block %llu\n", inode->i_ino, (unsigned long long)split);
3154
3155 ext4_ext_show_leaf(inode, path);
3156
3157 depth = ext_depth(inode);
3158 ex = path[depth].p_ext;
3159 ee_block = le32_to_cpu(ex->ee_block);
3160 ee_len = ext4_ext_get_actual_len(ex);
3161 newblock = split - ee_block + ext4_ext_pblock(ex);
3162
3163 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3164 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3165 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3166 EXT4_EXT_MARK_UNWRIT1 |
3167 EXT4_EXT_MARK_UNWRIT2));
3168
3169 err = ext4_ext_get_access(handle, inode, path + depth);
3170 if (err)
3171 goto out;
3172
3173 if (split == ee_block) {
3174 /*
3175 * case b: block @split is the block that the extent begins with
3176 * then we just change the state of the extent, and splitting
3177 * is not needed.
3178 */
3179 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3180 ext4_ext_mark_unwritten(ex);
3181 else
3182 ext4_ext_mark_initialized(ex);
3183
3184 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3185 ext4_ext_try_to_merge(handle, inode, path, ex);
3186
3187 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3188 goto out;
3189 }
3190
3191 /* case a */
3192 memcpy(&orig_ex, ex, sizeof(orig_ex));
3193 ex->ee_len = cpu_to_le16(split - ee_block);
3194 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3195 ext4_ext_mark_unwritten(ex);
3196
3197 /*
3198 * path may lead to new leaf, not to original leaf any more
3199 * after ext4_ext_insert_extent() returns,
3200 */
3201 err = ext4_ext_dirty(handle, inode, path + depth);
3202 if (err)
3203 goto fix_extent_len;
3204
3205 ex2 = &newex;
3206 ex2->ee_block = cpu_to_le32(split);
3207 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3208 ext4_ext_store_pblock(ex2, newblock);
3209 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3210 ext4_ext_mark_unwritten(ex2);
3211
3212 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3213 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3214 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3215 if (split_flag & EXT4_EXT_DATA_VALID1) {
3216 err = ext4_ext_zeroout(inode, ex2);
3217 zero_ex.ee_block = ex2->ee_block;
3218 zero_ex.ee_len = cpu_to_le16(
3219 ext4_ext_get_actual_len(ex2));
3220 ext4_ext_store_pblock(&zero_ex,
3221 ext4_ext_pblock(ex2));
3222 } else {
3223 err = ext4_ext_zeroout(inode, ex);
3224 zero_ex.ee_block = ex->ee_block;
3225 zero_ex.ee_len = cpu_to_le16(
3226 ext4_ext_get_actual_len(ex));
3227 ext4_ext_store_pblock(&zero_ex,
3228 ext4_ext_pblock(ex));
3229 }
3230 } else {
3231 err = ext4_ext_zeroout(inode, &orig_ex);
3232 zero_ex.ee_block = orig_ex.ee_block;
3233 zero_ex.ee_len = cpu_to_le16(
3234 ext4_ext_get_actual_len(&orig_ex));
3235 ext4_ext_store_pblock(&zero_ex,
3236 ext4_ext_pblock(&orig_ex));
3237 }
3238
3239 if (err)
3240 goto fix_extent_len;
3241 /* update the extent length and mark as initialized */
3242 ex->ee_len = cpu_to_le16(ee_len);
3243 ext4_ext_try_to_merge(handle, inode, path, ex);
3244 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3245 if (err)
3246 goto fix_extent_len;
3247
3248 /* update extent status tree */
3249 err = ext4_zeroout_es(inode, &zero_ex);
3250
3251 goto out;
3252 } else if (err)
3253 goto fix_extent_len;
3254
3255 out:
3256 ext4_ext_show_leaf(inode, path);
3257 return err;
3258
3259 fix_extent_len:
3260 ex->ee_len = orig_ex.ee_len;
3261 ext4_ext_dirty(handle, inode, path + path->p_depth);
3262 return err;
3263 }
3264
3265 /*
3266 * ext4_split_extents() splits an extent and mark extent which is covered
3267 * by @map as split_flags indicates
3268 *
3269 * It may result in splitting the extent into multiple extents (up to three)
3270 * There are three possibilities:
3271 * a> There is no split required
3272 * b> Splits in two extents: Split is happening at either end of the extent
3273 * c> Splits in three extents: Somone is splitting in middle of the extent
3274 *
3275 */
3276 static int ext4_split_extent(handle_t *handle,
3277 struct inode *inode,
3278 struct ext4_ext_path **ppath,
3279 struct ext4_map_blocks *map,
3280 int split_flag,
3281 int flags)
3282 {
3283 struct ext4_ext_path *path = *ppath;
3284 ext4_lblk_t ee_block;
3285 struct ext4_extent *ex;
3286 unsigned int ee_len, depth;
3287 int err = 0;
3288 int unwritten;
3289 int split_flag1, flags1;
3290 int allocated = map->m_len;
3291
3292 depth = ext_depth(inode);
3293 ex = path[depth].p_ext;
3294 ee_block = le32_to_cpu(ex->ee_block);
3295 ee_len = ext4_ext_get_actual_len(ex);
3296 unwritten = ext4_ext_is_unwritten(ex);
3297
3298 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3299 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3300 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3301 if (unwritten)
3302 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3303 EXT4_EXT_MARK_UNWRIT2;
3304 if (split_flag & EXT4_EXT_DATA_VALID2)
3305 split_flag1 |= EXT4_EXT_DATA_VALID1;
3306 err = ext4_split_extent_at(handle, inode, ppath,
3307 map->m_lblk + map->m_len, split_flag1, flags1);
3308 if (err)
3309 goto out;
3310 } else {
3311 allocated = ee_len - (map->m_lblk - ee_block);
3312 }
3313 /*
3314 * Update path is required because previous ext4_split_extent_at() may
3315 * result in split of original leaf or extent zeroout.
3316 */
3317 path = ext4_ext_find_extent(inode, map->m_lblk, ppath, 0);
3318 if (IS_ERR(path))
3319 return PTR_ERR(path);
3320 depth = ext_depth(inode);
3321 ex = path[depth].p_ext;
3322 if (!ex) {
3323 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3324 (unsigned long) map->m_lblk);
3325 return -EIO;
3326 }
3327 unwritten = ext4_ext_is_unwritten(ex);
3328 split_flag1 = 0;
3329
3330 if (map->m_lblk >= ee_block) {
3331 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3332 if (unwritten) {
3333 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3334 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3335 EXT4_EXT_MARK_UNWRIT2);
3336 }
3337 err = ext4_split_extent_at(handle, inode, ppath,
3338 map->m_lblk, split_flag1, flags);
3339 if (err)
3340 goto out;
3341 }
3342
3343 ext4_ext_show_leaf(inode, path);
3344 out:
3345 return err ? err : allocated;
3346 }
3347
3348 /*
3349 * This function is called by ext4_ext_map_blocks() if someone tries to write
3350 * to an unwritten extent. It may result in splitting the unwritten
3351 * extent into multiple extents (up to three - one initialized and two
3352 * unwritten).
3353 * There are three possibilities:
3354 * a> There is no split required: Entire extent should be initialized
3355 * b> Splits in two extents: Write is happening at either end of the extent
3356 * c> Splits in three extents: Somone is writing in middle of the extent
3357 *
3358 * Pre-conditions:
3359 * - The extent pointed to by 'path' is unwritten.
3360 * - The extent pointed to by 'path' contains a superset
3361 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3362 *
3363 * Post-conditions on success:
3364 * - the returned value is the number of blocks beyond map->l_lblk
3365 * that are allocated and initialized.
3366 * It is guaranteed to be >= map->m_len.
3367 */
3368 static int ext4_ext_convert_to_initialized(handle_t *handle,
3369 struct inode *inode,
3370 struct ext4_map_blocks *map,
3371 struct ext4_ext_path **ppath,
3372 int flags)
3373 {
3374 struct ext4_ext_path *path = *ppath;
3375 struct ext4_sb_info *sbi;
3376 struct ext4_extent_header *eh;
3377 struct ext4_map_blocks split_map;
3378 struct ext4_extent zero_ex;
3379 struct ext4_extent *ex, *abut_ex;
3380 ext4_lblk_t ee_block, eof_block;
3381 unsigned int ee_len, depth, map_len = map->m_len;
3382 int allocated = 0, max_zeroout = 0;
3383 int err = 0;
3384 int split_flag = 0;
3385
3386 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3387 "block %llu, max_blocks %u\n", inode->i_ino,
3388 (unsigned long long)map->m_lblk, map_len);
3389
3390 sbi = EXT4_SB(inode->i_sb);
3391 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3392 inode->i_sb->s_blocksize_bits;
3393 if (eof_block < map->m_lblk + map_len)
3394 eof_block = map->m_lblk + map_len;
3395
3396 depth = ext_depth(inode);
3397 eh = path[depth].p_hdr;
3398 ex = path[depth].p_ext;
3399 ee_block = le32_to_cpu(ex->ee_block);
3400 ee_len = ext4_ext_get_actual_len(ex);
3401 zero_ex.ee_len = 0;
3402
3403 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3404
3405 /* Pre-conditions */
3406 BUG_ON(!ext4_ext_is_unwritten(ex));
3407 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3408
3409 /*
3410 * Attempt to transfer newly initialized blocks from the currently
3411 * unwritten extent to its neighbor. This is much cheaper
3412 * than an insertion followed by a merge as those involve costly
3413 * memmove() calls. Transferring to the left is the common case in
3414 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3415 * followed by append writes.
3416 *
3417 * Limitations of the current logic:
3418 * - L1: we do not deal with writes covering the whole extent.
3419 * This would require removing the extent if the transfer
3420 * is possible.
3421 * - L2: we only attempt to merge with an extent stored in the
3422 * same extent tree node.
3423 */
3424 if ((map->m_lblk == ee_block) &&
3425 /* See if we can merge left */
3426 (map_len < ee_len) && /*L1*/
3427 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3428 ext4_lblk_t prev_lblk;
3429 ext4_fsblk_t prev_pblk, ee_pblk;
3430 unsigned int prev_len;
3431
3432 abut_ex = ex - 1;
3433 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3434 prev_len = ext4_ext_get_actual_len(abut_ex);
3435 prev_pblk = ext4_ext_pblock(abut_ex);
3436 ee_pblk = ext4_ext_pblock(ex);
3437
3438 /*
3439 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3440 * upon those conditions:
3441 * - C1: abut_ex is initialized,
3442 * - C2: abut_ex is logically abutting ex,
3443 * - C3: abut_ex is physically abutting ex,
3444 * - C4: abut_ex can receive the additional blocks without
3445 * overflowing the (initialized) length limit.
3446 */
3447 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3448 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3449 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3450 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3451 err = ext4_ext_get_access(handle, inode, path + depth);
3452 if (err)
3453 goto out;
3454
3455 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3456 map, ex, abut_ex);
3457
3458 /* Shift the start of ex by 'map_len' blocks */
3459 ex->ee_block = cpu_to_le32(ee_block + map_len);
3460 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3461 ex->ee_len = cpu_to_le16(ee_len - map_len);
3462 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3463
3464 /* Extend abut_ex by 'map_len' blocks */
3465 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3466
3467 /* Result: number of initialized blocks past m_lblk */
3468 allocated = map_len;
3469 }
3470 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3471 (map_len < ee_len) && /*L1*/
3472 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3473 /* See if we can merge right */
3474 ext4_lblk_t next_lblk;
3475 ext4_fsblk_t next_pblk, ee_pblk;
3476 unsigned int next_len;
3477
3478 abut_ex = ex + 1;
3479 next_lblk = le32_to_cpu(abut_ex->ee_block);
3480 next_len = ext4_ext_get_actual_len(abut_ex);
3481 next_pblk = ext4_ext_pblock(abut_ex);
3482 ee_pblk = ext4_ext_pblock(ex);
3483
3484 /*
3485 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3486 * upon those conditions:
3487 * - C1: abut_ex is initialized,
3488 * - C2: abut_ex is logically abutting ex,
3489 * - C3: abut_ex is physically abutting ex,
3490 * - C4: abut_ex can receive the additional blocks without
3491 * overflowing the (initialized) length limit.
3492 */
3493 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3494 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3495 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3496 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3497 err = ext4_ext_get_access(handle, inode, path + depth);
3498 if (err)
3499 goto out;
3500
3501 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3502 map, ex, abut_ex);
3503
3504 /* Shift the start of abut_ex by 'map_len' blocks */
3505 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3506 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3507 ex->ee_len = cpu_to_le16(ee_len - map_len);
3508 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3509
3510 /* Extend abut_ex by 'map_len' blocks */
3511 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3512
3513 /* Result: number of initialized blocks past m_lblk */
3514 allocated = map_len;
3515 }
3516 }
3517 if (allocated) {
3518 /* Mark the block containing both extents as dirty */
3519 ext4_ext_dirty(handle, inode, path + depth);
3520
3521 /* Update path to point to the right extent */
3522 path[depth].p_ext = abut_ex;
3523 goto out;
3524 } else
3525 allocated = ee_len - (map->m_lblk - ee_block);
3526
3527 WARN_ON(map->m_lblk < ee_block);
3528 /*
3529 * It is safe to convert extent to initialized via explicit
3530 * zeroout only if extent is fully inside i_size or new_size.
3531 */
3532 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3533
3534 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3535 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3536 (inode->i_sb->s_blocksize_bits - 10);
3537
3538 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3539 if (max_zeroout && (ee_len <= max_zeroout)) {
3540 err = ext4_ext_zeroout(inode, ex);
3541 if (err)
3542 goto out;
3543 zero_ex.ee_block = ex->ee_block;
3544 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3545 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3546
3547 err = ext4_ext_get_access(handle, inode, path + depth);
3548 if (err)
3549 goto out;
3550 ext4_ext_mark_initialized(ex);
3551 ext4_ext_try_to_merge(handle, inode, path, ex);
3552 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3553 goto out;
3554 }
3555
3556 /*
3557 * four cases:
3558 * 1. split the extent into three extents.
3559 * 2. split the extent into two extents, zeroout the first half.
3560 * 3. split the extent into two extents, zeroout the second half.
3561 * 4. split the extent into two extents with out zeroout.
3562 */
3563 split_map.m_lblk = map->m_lblk;
3564 split_map.m_len = map->m_len;
3565
3566 if (max_zeroout && (allocated > map->m_len)) {
3567 if (allocated <= max_zeroout) {
3568 /* case 3 */
3569 zero_ex.ee_block =
3570 cpu_to_le32(map->m_lblk);
3571 zero_ex.ee_len = cpu_to_le16(allocated);
3572 ext4_ext_store_pblock(&zero_ex,
3573 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3574 err = ext4_ext_zeroout(inode, &zero_ex);
3575 if (err)
3576 goto out;
3577 split_map.m_lblk = map->m_lblk;
3578 split_map.m_len = allocated;
3579 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3580 /* case 2 */
3581 if (map->m_lblk != ee_block) {
3582 zero_ex.ee_block = ex->ee_block;
3583 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3584 ee_block);
3585 ext4_ext_store_pblock(&zero_ex,
3586 ext4_ext_pblock(ex));
3587 err = ext4_ext_zeroout(inode, &zero_ex);
3588 if (err)
3589 goto out;
3590 }
3591
3592 split_map.m_lblk = ee_block;
3593 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3594 allocated = map->m_len;
3595 }
3596 }
3597
3598 allocated = ext4_split_extent(handle, inode, ppath,
3599 &split_map, split_flag, flags);
3600 if (allocated < 0)
3601 err = allocated;
3602
3603 out:
3604 /* If we have gotten a failure, don't zero out status tree */
3605 if (!err)
3606 err = ext4_zeroout_es(inode, &zero_ex);
3607 return err ? err : allocated;
3608 }
3609
3610 /*
3611 * This function is called by ext4_ext_map_blocks() from
3612 * ext4_get_blocks_dio_write() when DIO to write
3613 * to an unwritten extent.
3614 *
3615 * Writing to an unwritten extent may result in splitting the unwritten
3616 * extent into multiple initialized/unwritten extents (up to three)
3617 * There are three possibilities:
3618 * a> There is no split required: Entire extent should be unwritten
3619 * b> Splits in two extents: Write is happening at either end of the extent
3620 * c> Splits in three extents: Somone is writing in middle of the extent
3621 *
3622 * This works the same way in the case of initialized -> unwritten conversion.
3623 *
3624 * One of more index blocks maybe needed if the extent tree grow after
3625 * the unwritten extent split. To prevent ENOSPC occur at the IO
3626 * complete, we need to split the unwritten extent before DIO submit
3627 * the IO. The unwritten extent called at this time will be split
3628 * into three unwritten extent(at most). After IO complete, the part
3629 * being filled will be convert to initialized by the end_io callback function
3630 * via ext4_convert_unwritten_extents().
3631 *
3632 * Returns the size of unwritten extent to be written on success.
3633 */
3634 static int ext4_split_convert_extents(handle_t *handle,
3635 struct inode *inode,
3636 struct ext4_map_blocks *map,
3637 struct ext4_ext_path **ppath,
3638 int flags)
3639 {
3640 struct ext4_ext_path *path = *ppath;
3641 ext4_lblk_t eof_block;
3642 ext4_lblk_t ee_block;
3643 struct ext4_extent *ex;
3644 unsigned int ee_len;
3645 int split_flag = 0, depth;
3646
3647 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3648 __func__, inode->i_ino,
3649 (unsigned long long)map->m_lblk, map->m_len);
3650
3651 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3652 inode->i_sb->s_blocksize_bits;
3653 if (eof_block < map->m_lblk + map->m_len)
3654 eof_block = map->m_lblk + map->m_len;
3655 /*
3656 * It is safe to convert extent to initialized via explicit
3657 * zeroout only if extent is fully insde i_size or new_size.
3658 */
3659 depth = ext_depth(inode);
3660 ex = path[depth].p_ext;
3661 ee_block = le32_to_cpu(ex->ee_block);
3662 ee_len = ext4_ext_get_actual_len(ex);
3663
3664 /* Convert to unwritten */
3665 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3666 split_flag |= EXT4_EXT_DATA_VALID1;
3667 /* Convert to initialized */
3668 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3669 split_flag |= ee_block + ee_len <= eof_block ?
3670 EXT4_EXT_MAY_ZEROOUT : 0;
3671 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3672 }
3673 flags |= EXT4_GET_BLOCKS_PRE_IO;
3674 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3675 }
3676
3677 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3678 struct inode *inode,
3679 struct ext4_map_blocks *map,
3680 struct ext4_ext_path **ppath)
3681 {
3682 struct ext4_ext_path *path = *ppath;
3683 struct ext4_extent *ex;
3684 ext4_lblk_t ee_block;
3685 unsigned int ee_len;
3686 int depth;
3687 int err = 0;
3688
3689 depth = ext_depth(inode);
3690 ex = path[depth].p_ext;
3691 ee_block = le32_to_cpu(ex->ee_block);
3692 ee_len = ext4_ext_get_actual_len(ex);
3693
3694 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3695 "block %llu, max_blocks %u\n", inode->i_ino,
3696 (unsigned long long)ee_block, ee_len);
3697
3698 /* If extent is larger than requested it is a clear sign that we still
3699 * have some extent state machine issues left. So extent_split is still
3700 * required.
3701 * TODO: Once all related issues will be fixed this situation should be
3702 * illegal.
3703 */
3704 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3705 #ifdef EXT4_DEBUG
3706 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3707 " len %u; IO logical block %llu, len %u\n",
3708 inode->i_ino, (unsigned long long)ee_block, ee_len,
3709 (unsigned long long)map->m_lblk, map->m_len);
3710 #endif
3711 err = ext4_split_convert_extents(handle, inode, map, ppath,
3712 EXT4_GET_BLOCKS_CONVERT);
3713 if (err < 0)
3714 return err;
3715 path = ext4_ext_find_extent(inode, map->m_lblk, ppath, 0);
3716 if (IS_ERR(path))
3717 return PTR_ERR(path);
3718 depth = ext_depth(inode);
3719 ex = path[depth].p_ext;
3720 }
3721
3722 err = ext4_ext_get_access(handle, inode, path + depth);
3723 if (err)
3724 goto out;
3725 /* first mark the extent as initialized */
3726 ext4_ext_mark_initialized(ex);
3727
3728 /* note: ext4_ext_correct_indexes() isn't needed here because
3729 * borders are not changed
3730 */
3731 ext4_ext_try_to_merge(handle, inode, path, ex);
3732
3733 /* Mark modified extent as dirty */
3734 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3735 out:
3736 ext4_ext_show_leaf(inode, path);
3737 return err;
3738 }
3739
3740 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3741 sector_t block, int count)
3742 {
3743 int i;
3744 for (i = 0; i < count; i++)
3745 unmap_underlying_metadata(bdev, block + i);
3746 }
3747
3748 /*
3749 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3750 */
3751 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3752 ext4_lblk_t lblk,
3753 struct ext4_ext_path *path,
3754 unsigned int len)
3755 {
3756 int i, depth;
3757 struct ext4_extent_header *eh;
3758 struct ext4_extent *last_ex;
3759
3760 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3761 return 0;
3762
3763 depth = ext_depth(inode);
3764 eh = path[depth].p_hdr;
3765
3766 /*
3767 * We're going to remove EOFBLOCKS_FL entirely in future so we
3768 * do not care for this case anymore. Simply remove the flag
3769 * if there are no extents.
3770 */
3771 if (unlikely(!eh->eh_entries))
3772 goto out;
3773 last_ex = EXT_LAST_EXTENT(eh);
3774 /*
3775 * We should clear the EOFBLOCKS_FL flag if we are writing the
3776 * last block in the last extent in the file. We test this by
3777 * first checking to see if the caller to
3778 * ext4_ext_get_blocks() was interested in the last block (or
3779 * a block beyond the last block) in the current extent. If
3780 * this turns out to be false, we can bail out from this
3781 * function immediately.
3782 */
3783 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3784 ext4_ext_get_actual_len(last_ex))
3785 return 0;
3786 /*
3787 * If the caller does appear to be planning to write at or
3788 * beyond the end of the current extent, we then test to see
3789 * if the current extent is the last extent in the file, by
3790 * checking to make sure it was reached via the rightmost node
3791 * at each level of the tree.
3792 */
3793 for (i = depth-1; i >= 0; i--)
3794 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3795 return 0;
3796 out:
3797 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3798 return ext4_mark_inode_dirty(handle, inode);
3799 }
3800
3801 /**
3802 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3803 *
3804 * Return 1 if there is a delalloc block in the range, otherwise 0.
3805 */
3806 int ext4_find_delalloc_range(struct inode *inode,
3807 ext4_lblk_t lblk_start,
3808 ext4_lblk_t lblk_end)
3809 {
3810 struct extent_status es;
3811
3812 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3813 if (es.es_len == 0)
3814 return 0; /* there is no delay extent in this tree */
3815 else if (es.es_lblk <= lblk_start &&
3816 lblk_start < es.es_lblk + es.es_len)
3817 return 1;
3818 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3819 return 1;
3820 else
3821 return 0;
3822 }
3823
3824 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3825 {
3826 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3827 ext4_lblk_t lblk_start, lblk_end;
3828 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3829 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3830
3831 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3832 }
3833
3834 /**
3835 * Determines how many complete clusters (out of those specified by the 'map')
3836 * are under delalloc and were reserved quota for.
3837 * This function is called when we are writing out the blocks that were
3838 * originally written with their allocation delayed, but then the space was
3839 * allocated using fallocate() before the delayed allocation could be resolved.
3840 * The cases to look for are:
3841 * ('=' indicated delayed allocated blocks
3842 * '-' indicates non-delayed allocated blocks)
3843 * (a) partial clusters towards beginning and/or end outside of allocated range
3844 * are not delalloc'ed.
3845 * Ex:
3846 * |----c---=|====c====|====c====|===-c----|
3847 * |++++++ allocated ++++++|
3848 * ==> 4 complete clusters in above example
3849 *
3850 * (b) partial cluster (outside of allocated range) towards either end is
3851 * marked for delayed allocation. In this case, we will exclude that
3852 * cluster.
3853 * Ex:
3854 * |----====c========|========c========|
3855 * |++++++ allocated ++++++|
3856 * ==> 1 complete clusters in above example
3857 *
3858 * Ex:
3859 * |================c================|
3860 * |++++++ allocated ++++++|
3861 * ==> 0 complete clusters in above example
3862 *
3863 * The ext4_da_update_reserve_space will be called only if we
3864 * determine here that there were some "entire" clusters that span
3865 * this 'allocated' range.
3866 * In the non-bigalloc case, this function will just end up returning num_blks
3867 * without ever calling ext4_find_delalloc_range.
3868 */
3869 static unsigned int
3870 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3871 unsigned int num_blks)
3872 {
3873 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3874 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3875 ext4_lblk_t lblk_from, lblk_to, c_offset;
3876 unsigned int allocated_clusters = 0;
3877
3878 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3879 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3880
3881 /* max possible clusters for this allocation */
3882 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3883
3884 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3885
3886 /* Check towards left side */
3887 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3888 if (c_offset) {
3889 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3890 lblk_to = lblk_from + c_offset - 1;
3891
3892 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3893 allocated_clusters--;
3894 }
3895
3896 /* Now check towards right. */
3897 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3898 if (allocated_clusters && c_offset) {
3899 lblk_from = lblk_start + num_blks;
3900 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3901
3902 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3903 allocated_clusters--;
3904 }
3905
3906 return allocated_clusters;
3907 }
3908
3909 static int
3910 convert_initialized_extent(handle_t *handle, struct inode *inode,
3911 struct ext4_map_blocks *map,
3912 struct ext4_ext_path **ppath, int flags,
3913 unsigned int allocated, ext4_fsblk_t newblock)
3914 {
3915 struct ext4_ext_path *path = *ppath;
3916 struct ext4_extent *ex;
3917 ext4_lblk_t ee_block;
3918 unsigned int ee_len;
3919 int depth;
3920 int err = 0;
3921
3922 /*
3923 * Make sure that the extent is no bigger than we support with
3924 * unwritten extent
3925 */
3926 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3927 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3928
3929 depth = ext_depth(inode);
3930 ex = path[depth].p_ext;
3931 ee_block = le32_to_cpu(ex->ee_block);
3932 ee_len = ext4_ext_get_actual_len(ex);
3933
3934 ext_debug("%s: inode %lu, logical"
3935 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3936 (unsigned long long)ee_block, ee_len);
3937
3938 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3939 err = ext4_split_convert_extents(handle, inode, map, ppath,
3940 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3941 if (err < 0)
3942 return err;
3943 path = ext4_ext_find_extent(inode, map->m_lblk, ppath, 0);
3944 if (IS_ERR(path))
3945 return PTR_ERR(path);
3946 depth = ext_depth(inode);
3947 ex = path[depth].p_ext;
3948 if (!ex) {
3949 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3950 (unsigned long) map->m_lblk);
3951 return -EIO;
3952 }
3953 }
3954
3955 err = ext4_ext_get_access(handle, inode, path + depth);
3956 if (err)
3957 return err;
3958 /* first mark the extent as unwritten */
3959 ext4_ext_mark_unwritten(ex);
3960
3961 /* note: ext4_ext_correct_indexes() isn't needed here because
3962 * borders are not changed
3963 */
3964 ext4_ext_try_to_merge(handle, inode, path, ex);
3965
3966 /* Mark modified extent as dirty */
3967 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3968 if (err)
3969 return err;
3970 ext4_ext_show_leaf(inode, path);
3971
3972 ext4_update_inode_fsync_trans(handle, inode, 1);
3973 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3974 if (err)
3975 return err;
3976 map->m_flags |= EXT4_MAP_UNWRITTEN;
3977 if (allocated > map->m_len)
3978 allocated = map->m_len;
3979 map->m_len = allocated;
3980 return allocated;
3981 }
3982
3983 static int
3984 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3985 struct ext4_map_blocks *map,
3986 struct ext4_ext_path **ppath, int flags,
3987 unsigned int allocated, ext4_fsblk_t newblock)
3988 {
3989 struct ext4_ext_path *path = *ppath;
3990 int ret = 0;
3991 int err = 0;
3992 ext4_io_end_t *io = ext4_inode_aio(inode);
3993
3994 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
3995 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3996 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3997 flags, allocated);
3998 ext4_ext_show_leaf(inode, path);
3999
4000 /*
4001 * When writing into unwritten space, we should not fail to
4002 * allocate metadata blocks for the new extent block if needed.
4003 */
4004 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4005
4006 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4007 allocated, newblock);
4008
4009 /* get_block() before submit the IO, split the extent */
4010 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4011 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4012 flags | EXT4_GET_BLOCKS_CONVERT);
4013 if (ret <= 0)
4014 goto out;
4015 /*
4016 * Flag the inode(non aio case) or end_io struct (aio case)
4017 * that this IO needs to conversion to written when IO is
4018 * completed
4019 */
4020 if (io)
4021 ext4_set_io_unwritten_flag(inode, io);
4022 else
4023 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4024 map->m_flags |= EXT4_MAP_UNWRITTEN;
4025 goto out;
4026 }
4027 /* IO end_io complete, convert the filled extent to written */
4028 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4029 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4030 ppath);
4031 if (ret >= 0) {
4032 ext4_update_inode_fsync_trans(handle, inode, 1);
4033 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4034 path, map->m_len);
4035 } else
4036 err = ret;
4037 map->m_flags |= EXT4_MAP_MAPPED;
4038 map->m_pblk = newblock;
4039 if (allocated > map->m_len)
4040 allocated = map->m_len;
4041 map->m_len = allocated;
4042 goto out2;
4043 }
4044 /* buffered IO case */
4045 /*
4046 * repeat fallocate creation request
4047 * we already have an unwritten extent
4048 */
4049 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4050 map->m_flags |= EXT4_MAP_UNWRITTEN;
4051 goto map_out;
4052 }
4053
4054 /* buffered READ or buffered write_begin() lookup */
4055 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4056 /*
4057 * We have blocks reserved already. We
4058 * return allocated blocks so that delalloc
4059 * won't do block reservation for us. But
4060 * the buffer head will be unmapped so that
4061 * a read from the block returns 0s.
4062 */
4063 map->m_flags |= EXT4_MAP_UNWRITTEN;
4064 goto out1;
4065 }
4066
4067 /* buffered write, writepage time, convert*/
4068 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4069 if (ret >= 0)
4070 ext4_update_inode_fsync_trans(handle, inode, 1);
4071 out:
4072 if (ret <= 0) {
4073 err = ret;
4074 goto out2;
4075 } else
4076 allocated = ret;
4077 map->m_flags |= EXT4_MAP_NEW;
4078 /*
4079 * if we allocated more blocks than requested
4080 * we need to make sure we unmap the extra block
4081 * allocated. The actual needed block will get
4082 * unmapped later when we find the buffer_head marked
4083 * new.
4084 */
4085 if (allocated > map->m_len) {
4086 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4087 newblock + map->m_len,
4088 allocated - map->m_len);
4089 allocated = map->m_len;
4090 }
4091 map->m_len = allocated;
4092
4093 /*
4094 * If we have done fallocate with the offset that is already
4095 * delayed allocated, we would have block reservation
4096 * and quota reservation done in the delayed write path.
4097 * But fallocate would have already updated quota and block
4098 * count for this offset. So cancel these reservation
4099 */
4100 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4101 unsigned int reserved_clusters;
4102 reserved_clusters = get_reserved_cluster_alloc(inode,
4103 map->m_lblk, map->m_len);
4104 if (reserved_clusters)
4105 ext4_da_update_reserve_space(inode,
4106 reserved_clusters,
4107 0);
4108 }
4109
4110 map_out:
4111 map->m_flags |= EXT4_MAP_MAPPED;
4112 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4113 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4114 map->m_len);
4115 if (err < 0)
4116 goto out2;
4117 }
4118 out1:
4119 if (allocated > map->m_len)
4120 allocated = map->m_len;
4121 ext4_ext_show_leaf(inode, path);
4122 map->m_pblk = newblock;
4123 map->m_len = allocated;
4124 out2:
4125 return err ? err : allocated;
4126 }
4127
4128 /*
4129 * get_implied_cluster_alloc - check to see if the requested
4130 * allocation (in the map structure) overlaps with a cluster already
4131 * allocated in an extent.
4132 * @sb The filesystem superblock structure
4133 * @map The requested lblk->pblk mapping
4134 * @ex The extent structure which might contain an implied
4135 * cluster allocation
4136 *
4137 * This function is called by ext4_ext_map_blocks() after we failed to
4138 * find blocks that were already in the inode's extent tree. Hence,
4139 * we know that the beginning of the requested region cannot overlap
4140 * the extent from the inode's extent tree. There are three cases we
4141 * want to catch. The first is this case:
4142 *
4143 * |--- cluster # N--|
4144 * |--- extent ---| |---- requested region ---|
4145 * |==========|
4146 *
4147 * The second case that we need to test for is this one:
4148 *
4149 * |--------- cluster # N ----------------|
4150 * |--- requested region --| |------- extent ----|
4151 * |=======================|
4152 *
4153 * The third case is when the requested region lies between two extents
4154 * within the same cluster:
4155 * |------------- cluster # N-------------|
4156 * |----- ex -----| |---- ex_right ----|
4157 * |------ requested region ------|
4158 * |================|
4159 *
4160 * In each of the above cases, we need to set the map->m_pblk and
4161 * map->m_len so it corresponds to the return the extent labelled as
4162 * "|====|" from cluster #N, since it is already in use for data in
4163 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4164 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4165 * as a new "allocated" block region. Otherwise, we will return 0 and
4166 * ext4_ext_map_blocks() will then allocate one or more new clusters
4167 * by calling ext4_mb_new_blocks().
4168 */
4169 static int get_implied_cluster_alloc(struct super_block *sb,
4170 struct ext4_map_blocks *map,
4171 struct ext4_extent *ex,
4172 struct ext4_ext_path *path)
4173 {
4174 struct ext4_sb_info *sbi = EXT4_SB(sb);
4175 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4176 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4177 ext4_lblk_t rr_cluster_start;
4178 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4179 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4180 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4181
4182 /* The extent passed in that we are trying to match */
4183 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4184 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4185
4186 /* The requested region passed into ext4_map_blocks() */
4187 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4188
4189 if ((rr_cluster_start == ex_cluster_end) ||
4190 (rr_cluster_start == ex_cluster_start)) {
4191 if (rr_cluster_start == ex_cluster_end)
4192 ee_start += ee_len - 1;
4193 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4194 map->m_len = min(map->m_len,
4195 (unsigned) sbi->s_cluster_ratio - c_offset);
4196 /*
4197 * Check for and handle this case:
4198 *
4199 * |--------- cluster # N-------------|
4200 * |------- extent ----|
4201 * |--- requested region ---|
4202 * |===========|
4203 */
4204
4205 if (map->m_lblk < ee_block)
4206 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4207
4208 /*
4209 * Check for the case where there is already another allocated
4210 * block to the right of 'ex' but before the end of the cluster.
4211 *
4212 * |------------- cluster # N-------------|
4213 * |----- ex -----| |---- ex_right ----|
4214 * |------ requested region ------|
4215 * |================|
4216 */
4217 if (map->m_lblk > ee_block) {
4218 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4219 map->m_len = min(map->m_len, next - map->m_lblk);
4220 }
4221
4222 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4223 return 1;
4224 }
4225
4226 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4227 return 0;
4228 }
4229
4230
4231 /*
4232 * Block allocation/map/preallocation routine for extents based files
4233 *
4234 *
4235 * Need to be called with
4236 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4237 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4238 *
4239 * return > 0, number of of blocks already mapped/allocated
4240 * if create == 0 and these are pre-allocated blocks
4241 * buffer head is unmapped
4242 * otherwise blocks are mapped
4243 *
4244 * return = 0, if plain look up failed (blocks have not been allocated)
4245 * buffer head is unmapped
4246 *
4247 * return < 0, error case.
4248 */
4249 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4250 struct ext4_map_blocks *map, int flags)
4251 {
4252 struct ext4_ext_path *path = NULL;
4253 struct ext4_extent newex, *ex, *ex2;
4254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4255 ext4_fsblk_t newblock = 0;
4256 int free_on_err = 0, err = 0, depth, ret;
4257 unsigned int allocated = 0, offset = 0;
4258 unsigned int allocated_clusters = 0;
4259 struct ext4_allocation_request ar;
4260 ext4_io_end_t *io = ext4_inode_aio(inode);
4261 ext4_lblk_t cluster_offset;
4262 int set_unwritten = 0;
4263
4264 ext_debug("blocks %u/%u requested for inode %lu\n",
4265 map->m_lblk, map->m_len, inode->i_ino);
4266 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4267
4268 /* find extent for this block */
4269 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4270 if (IS_ERR(path)) {
4271 err = PTR_ERR(path);
4272 path = NULL;
4273 goto out2;
4274 }
4275
4276 depth = ext_depth(inode);
4277
4278 /*
4279 * consistent leaf must not be empty;
4280 * this situation is possible, though, _during_ tree modification;
4281 * this is why assert can't be put in ext4_ext_find_extent()
4282 */
4283 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4284 EXT4_ERROR_INODE(inode, "bad extent address "
4285 "lblock: %lu, depth: %d pblock %lld",
4286 (unsigned long) map->m_lblk, depth,
4287 path[depth].p_block);
4288 err = -EIO;
4289 goto out2;
4290 }
4291
4292 ex = path[depth].p_ext;
4293 if (ex) {
4294 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4295 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4296 unsigned short ee_len;
4297
4298
4299 /*
4300 * unwritten extents are treated as holes, except that
4301 * we split out initialized portions during a write.
4302 */
4303 ee_len = ext4_ext_get_actual_len(ex);
4304
4305 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4306
4307 /* if found extent covers block, simply return it */
4308 if (in_range(map->m_lblk, ee_block, ee_len)) {
4309 newblock = map->m_lblk - ee_block + ee_start;
4310 /* number of remaining blocks in the extent */
4311 allocated = ee_len - (map->m_lblk - ee_block);
4312 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4313 ee_block, ee_len, newblock);
4314
4315 /*
4316 * If the extent is initialized check whether the
4317 * caller wants to convert it to unwritten.
4318 */
4319 if ((!ext4_ext_is_unwritten(ex)) &&
4320 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4321 allocated = convert_initialized_extent(
4322 handle, inode, map, &path,
4323 flags, allocated, newblock);
4324 goto out2;
4325 } else if (!ext4_ext_is_unwritten(ex))
4326 goto out;
4327
4328 ret = ext4_ext_handle_unwritten_extents(
4329 handle, inode, map, &path, flags,
4330 allocated, newblock);
4331 if (ret < 0)
4332 err = ret;
4333 else
4334 allocated = ret;
4335 goto out2;
4336 }
4337 }
4338
4339 if ((sbi->s_cluster_ratio > 1) &&
4340 ext4_find_delalloc_cluster(inode, map->m_lblk))
4341 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4342
4343 /*
4344 * requested block isn't allocated yet;
4345 * we couldn't try to create block if create flag is zero
4346 */
4347 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4348 /*
4349 * put just found gap into cache to speed up
4350 * subsequent requests
4351 */
4352 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4353 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4354 goto out2;
4355 }
4356
4357 /*
4358 * Okay, we need to do block allocation.
4359 */
4360 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4361 newex.ee_block = cpu_to_le32(map->m_lblk);
4362 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4363
4364 /*
4365 * If we are doing bigalloc, check to see if the extent returned
4366 * by ext4_ext_find_extent() implies a cluster we can use.
4367 */
4368 if (cluster_offset && ex &&
4369 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4370 ar.len = allocated = map->m_len;
4371 newblock = map->m_pblk;
4372 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4373 goto got_allocated_blocks;
4374 }
4375
4376 /* find neighbour allocated blocks */
4377 ar.lleft = map->m_lblk;
4378 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4379 if (err)
4380 goto out2;
4381 ar.lright = map->m_lblk;
4382 ex2 = NULL;
4383 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4384 if (err)
4385 goto out2;
4386
4387 /* Check if the extent after searching to the right implies a
4388 * cluster we can use. */
4389 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4390 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4391 ar.len = allocated = map->m_len;
4392 newblock = map->m_pblk;
4393 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4394 goto got_allocated_blocks;
4395 }
4396
4397 /*
4398 * See if request is beyond maximum number of blocks we can have in
4399 * a single extent. For an initialized extent this limit is
4400 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4401 * EXT_UNWRITTEN_MAX_LEN.
4402 */
4403 if (map->m_len > EXT_INIT_MAX_LEN &&
4404 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4405 map->m_len = EXT_INIT_MAX_LEN;
4406 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4407 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4408 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4409
4410 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4411 newex.ee_len = cpu_to_le16(map->m_len);
4412 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4413 if (err)
4414 allocated = ext4_ext_get_actual_len(&newex);
4415 else
4416 allocated = map->m_len;
4417
4418 /* allocate new block */
4419 ar.inode = inode;
4420 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4421 ar.logical = map->m_lblk;
4422 /*
4423 * We calculate the offset from the beginning of the cluster
4424 * for the logical block number, since when we allocate a
4425 * physical cluster, the physical block should start at the
4426 * same offset from the beginning of the cluster. This is
4427 * needed so that future calls to get_implied_cluster_alloc()
4428 * work correctly.
4429 */
4430 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4431 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4432 ar.goal -= offset;
4433 ar.logical -= offset;
4434 if (S_ISREG(inode->i_mode))
4435 ar.flags = EXT4_MB_HINT_DATA;
4436 else
4437 /* disable in-core preallocation for non-regular files */
4438 ar.flags = 0;
4439 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4440 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4441 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4442 if (!newblock)
4443 goto out2;
4444 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4445 ar.goal, newblock, allocated);
4446 free_on_err = 1;
4447 allocated_clusters = ar.len;
4448 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4449 if (ar.len > allocated)
4450 ar.len = allocated;
4451
4452 got_allocated_blocks:
4453 /* try to insert new extent into found leaf and return */
4454 ext4_ext_store_pblock(&newex, newblock + offset);
4455 newex.ee_len = cpu_to_le16(ar.len);
4456 /* Mark unwritten */
4457 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4458 ext4_ext_mark_unwritten(&newex);
4459 map->m_flags |= EXT4_MAP_UNWRITTEN;
4460 /*
4461 * io_end structure was created for every IO write to an
4462 * unwritten extent. To avoid unnecessary conversion,
4463 * here we flag the IO that really needs the conversion.
4464 * For non asycn direct IO case, flag the inode state
4465 * that we need to perform conversion when IO is done.
4466 */
4467 if (flags & EXT4_GET_BLOCKS_PRE_IO)
4468 set_unwritten = 1;
4469 }
4470
4471 err = 0;
4472 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4473 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4474 path, ar.len);
4475 if (!err)
4476 err = ext4_ext_insert_extent(handle, inode, &path,
4477 &newex, flags);
4478
4479 if (!err && set_unwritten) {
4480 if (io)
4481 ext4_set_io_unwritten_flag(inode, io);
4482 else
4483 ext4_set_inode_state(inode,
4484 EXT4_STATE_DIO_UNWRITTEN);
4485 }
4486
4487 if (err && free_on_err) {
4488 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4489 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4490 /* free data blocks we just allocated */
4491 /* not a good idea to call discard here directly,
4492 * but otherwise we'd need to call it every free() */
4493 ext4_discard_preallocations(inode);
4494 ext4_free_blocks(handle, inode, NULL, newblock,
4495 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4496 goto out2;
4497 }
4498
4499 /* previous routine could use block we allocated */
4500 newblock = ext4_ext_pblock(&newex);
4501 allocated = ext4_ext_get_actual_len(&newex);
4502 if (allocated > map->m_len)
4503 allocated = map->m_len;
4504 map->m_flags |= EXT4_MAP_NEW;
4505
4506 /*
4507 * Update reserved blocks/metadata blocks after successful
4508 * block allocation which had been deferred till now.
4509 */
4510 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4511 unsigned int reserved_clusters;
4512 /*
4513 * Check how many clusters we had reserved this allocated range
4514 */
4515 reserved_clusters = get_reserved_cluster_alloc(inode,
4516 map->m_lblk, allocated);
4517 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4518 if (reserved_clusters) {
4519 /*
4520 * We have clusters reserved for this range.
4521 * But since we are not doing actual allocation
4522 * and are simply using blocks from previously
4523 * allocated cluster, we should release the
4524 * reservation and not claim quota.
4525 */
4526 ext4_da_update_reserve_space(inode,
4527 reserved_clusters, 0);
4528 }
4529 } else {
4530 BUG_ON(allocated_clusters < reserved_clusters);
4531 if (reserved_clusters < allocated_clusters) {
4532 struct ext4_inode_info *ei = EXT4_I(inode);
4533 int reservation = allocated_clusters -
4534 reserved_clusters;
4535 /*
4536 * It seems we claimed few clusters outside of
4537 * the range of this allocation. We should give
4538 * it back to the reservation pool. This can
4539 * happen in the following case:
4540 *
4541 * * Suppose s_cluster_ratio is 4 (i.e., each
4542 * cluster has 4 blocks. Thus, the clusters
4543 * are [0-3],[4-7],[8-11]...
4544 * * First comes delayed allocation write for
4545 * logical blocks 10 & 11. Since there were no
4546 * previous delayed allocated blocks in the
4547 * range [8-11], we would reserve 1 cluster
4548 * for this write.
4549 * * Next comes write for logical blocks 3 to 8.
4550 * In this case, we will reserve 2 clusters
4551 * (for [0-3] and [4-7]; and not for [8-11] as
4552 * that range has a delayed allocated blocks.
4553 * Thus total reserved clusters now becomes 3.
4554 * * Now, during the delayed allocation writeout
4555 * time, we will first write blocks [3-8] and
4556 * allocate 3 clusters for writing these
4557 * blocks. Also, we would claim all these
4558 * three clusters above.
4559 * * Now when we come here to writeout the
4560 * blocks [10-11], we would expect to claim
4561 * the reservation of 1 cluster we had made
4562 * (and we would claim it since there are no
4563 * more delayed allocated blocks in the range
4564 * [8-11]. But our reserved cluster count had
4565 * already gone to 0.
4566 *
4567 * Thus, at the step 4 above when we determine
4568 * that there are still some unwritten delayed
4569 * allocated blocks outside of our current
4570 * block range, we should increment the
4571 * reserved clusters count so that when the
4572 * remaining blocks finally gets written, we
4573 * could claim them.
4574 */
4575 dquot_reserve_block(inode,
4576 EXT4_C2B(sbi, reservation));
4577 spin_lock(&ei->i_block_reservation_lock);
4578 ei->i_reserved_data_blocks += reservation;
4579 spin_unlock(&ei->i_block_reservation_lock);
4580 }
4581 /*
4582 * We will claim quota for all newly allocated blocks.
4583 * We're updating the reserved space *after* the
4584 * correction above so we do not accidentally free
4585 * all the metadata reservation because we might
4586 * actually need it later on.
4587 */
4588 ext4_da_update_reserve_space(inode, allocated_clusters,
4589 1);
4590 }
4591 }
4592
4593 /*
4594 * Cache the extent and update transaction to commit on fdatasync only
4595 * when it is _not_ an unwritten extent.
4596 */
4597 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4598 ext4_update_inode_fsync_trans(handle, inode, 1);
4599 else
4600 ext4_update_inode_fsync_trans(handle, inode, 0);
4601 out:
4602 if (allocated > map->m_len)
4603 allocated = map->m_len;
4604 ext4_ext_show_leaf(inode, path);
4605 map->m_flags |= EXT4_MAP_MAPPED;
4606 map->m_pblk = newblock;
4607 map->m_len = allocated;
4608 out2:
4609 ext4_ext_drop_refs(path);
4610 kfree(path);
4611
4612 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4613 err ? err : allocated);
4614 ext4_es_lru_add(inode);
4615 return err ? err : allocated;
4616 }
4617
4618 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4619 {
4620 struct super_block *sb = inode->i_sb;
4621 ext4_lblk_t last_block;
4622 int err = 0;
4623
4624 /*
4625 * TODO: optimization is possible here.
4626 * Probably we need not scan at all,
4627 * because page truncation is enough.
4628 */
4629
4630 /* we have to know where to truncate from in crash case */
4631 EXT4_I(inode)->i_disksize = inode->i_size;
4632 ext4_mark_inode_dirty(handle, inode);
4633
4634 last_block = (inode->i_size + sb->s_blocksize - 1)
4635 >> EXT4_BLOCK_SIZE_BITS(sb);
4636 retry:
4637 err = ext4_es_remove_extent(inode, last_block,
4638 EXT_MAX_BLOCKS - last_block);
4639 if (err == -ENOMEM) {
4640 cond_resched();
4641 congestion_wait(BLK_RW_ASYNC, HZ/50);
4642 goto retry;
4643 }
4644 if (err) {
4645 ext4_std_error(inode->i_sb, err);
4646 return;
4647 }
4648 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4649 ext4_std_error(inode->i_sb, err);
4650 }
4651
4652 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4653 ext4_lblk_t len, loff_t new_size,
4654 int flags, int mode)
4655 {
4656 struct inode *inode = file_inode(file);
4657 handle_t *handle;
4658 int ret = 0;
4659 int ret2 = 0;
4660 int retries = 0;
4661 struct ext4_map_blocks map;
4662 unsigned int credits;
4663 loff_t epos;
4664
4665 map.m_lblk = offset;
4666 map.m_len = len;
4667 /*
4668 * Don't normalize the request if it can fit in one extent so
4669 * that it doesn't get unnecessarily split into multiple
4670 * extents.
4671 */
4672 if (len <= EXT_UNWRITTEN_MAX_LEN)
4673 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4674
4675 /*
4676 * credits to insert 1 extent into extent tree
4677 */
4678 credits = ext4_chunk_trans_blocks(inode, len);
4679
4680 retry:
4681 while (ret >= 0 && len) {
4682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4683 credits);
4684 if (IS_ERR(handle)) {
4685 ret = PTR_ERR(handle);
4686 break;
4687 }
4688 ret = ext4_map_blocks(handle, inode, &map, flags);
4689 if (ret <= 0) {
4690 ext4_debug("inode #%lu: block %u: len %u: "
4691 "ext4_ext_map_blocks returned %d",
4692 inode->i_ino, map.m_lblk,
4693 map.m_len, ret);
4694 ext4_mark_inode_dirty(handle, inode);
4695 ret2 = ext4_journal_stop(handle);
4696 break;
4697 }
4698 map.m_lblk += ret;
4699 map.m_len = len = len - ret;
4700 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4701 inode->i_ctime = ext4_current_time(inode);
4702 if (new_size) {
4703 if (epos > new_size)
4704 epos = new_size;
4705 if (ext4_update_inode_size(inode, epos) & 0x1)
4706 inode->i_mtime = inode->i_ctime;
4707 } else {
4708 if (epos > inode->i_size)
4709 ext4_set_inode_flag(inode,
4710 EXT4_INODE_EOFBLOCKS);
4711 }
4712 ext4_mark_inode_dirty(handle, inode);
4713 ret2 = ext4_journal_stop(handle);
4714 if (ret2)
4715 break;
4716 }
4717 if (ret == -ENOSPC &&
4718 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4719 ret = 0;
4720 goto retry;
4721 }
4722
4723 return ret > 0 ? ret2 : ret;
4724 }
4725
4726 static long ext4_zero_range(struct file *file, loff_t offset,
4727 loff_t len, int mode)
4728 {
4729 struct inode *inode = file_inode(file);
4730 handle_t *handle = NULL;
4731 unsigned int max_blocks;
4732 loff_t new_size = 0;
4733 int ret = 0;
4734 int flags;
4735 int credits;
4736 int partial_begin, partial_end;
4737 loff_t start, end;
4738 ext4_lblk_t lblk;
4739 struct address_space *mapping = inode->i_mapping;
4740 unsigned int blkbits = inode->i_blkbits;
4741
4742 trace_ext4_zero_range(inode, offset, len, mode);
4743
4744 if (!S_ISREG(inode->i_mode))
4745 return -EINVAL;
4746
4747 /* Call ext4_force_commit to flush all data in case of data=journal. */
4748 if (ext4_should_journal_data(inode)) {
4749 ret = ext4_force_commit(inode->i_sb);
4750 if (ret)
4751 return ret;
4752 }
4753
4754 /*
4755 * Write out all dirty pages to avoid race conditions
4756 * Then release them.
4757 */
4758 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4759 ret = filemap_write_and_wait_range(mapping, offset,
4760 offset + len - 1);
4761 if (ret)
4762 return ret;
4763 }
4764
4765 /*
4766 * Round up offset. This is not fallocate, we neet to zero out
4767 * blocks, so convert interior block aligned part of the range to
4768 * unwritten and possibly manually zero out unaligned parts of the
4769 * range.
4770 */
4771 start = round_up(offset, 1 << blkbits);
4772 end = round_down((offset + len), 1 << blkbits);
4773
4774 if (start < offset || end > offset + len)
4775 return -EINVAL;
4776 partial_begin = offset & ((1 << blkbits) - 1);
4777 partial_end = (offset + len) & ((1 << blkbits) - 1);
4778
4779 lblk = start >> blkbits;
4780 max_blocks = (end >> blkbits);
4781 if (max_blocks < lblk)
4782 max_blocks = 0;
4783 else
4784 max_blocks -= lblk;
4785
4786 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
4787 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4788 EXT4_EX_NOCACHE;
4789 if (mode & FALLOC_FL_KEEP_SIZE)
4790 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4791
4792 mutex_lock(&inode->i_mutex);
4793
4794 /*
4795 * Indirect files do not support unwritten extnets
4796 */
4797 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4798 ret = -EOPNOTSUPP;
4799 goto out_mutex;
4800 }
4801
4802 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4803 offset + len > i_size_read(inode)) {
4804 new_size = offset + len;
4805 ret = inode_newsize_ok(inode, new_size);
4806 if (ret)
4807 goto out_mutex;
4808 /*
4809 * If we have a partial block after EOF we have to allocate
4810 * the entire block.
4811 */
4812 if (partial_end)
4813 max_blocks += 1;
4814 }
4815
4816 if (max_blocks > 0) {
4817
4818 /* Now release the pages and zero block aligned part of pages*/
4819 truncate_pagecache_range(inode, start, end - 1);
4820 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4821
4822 /* Wait all existing dio workers, newcomers will block on i_mutex */
4823 ext4_inode_block_unlocked_dio(inode);
4824 inode_dio_wait(inode);
4825
4826 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4827 flags, mode);
4828 if (ret)
4829 goto out_dio;
4830 /*
4831 * Remove entire range from the extent status tree.
4832 *
4833 * ext4_es_remove_extent(inode, lblk, max_blocks) is
4834 * NOT sufficient. I'm not sure why this is the case,
4835 * but let's be conservative and remove the extent
4836 * status tree for the entire inode. There should be
4837 * no outstanding delalloc extents thanks to the
4838 * filemap_write_and_wait_range() call above.
4839 */
4840 ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
4841 if (ret)
4842 goto out_dio;
4843 }
4844 if (!partial_begin && !partial_end)
4845 goto out_dio;
4846
4847 /*
4848 * In worst case we have to writeout two nonadjacent unwritten
4849 * blocks and update the inode
4850 */
4851 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4852 if (ext4_should_journal_data(inode))
4853 credits += 2;
4854 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4855 if (IS_ERR(handle)) {
4856 ret = PTR_ERR(handle);
4857 ext4_std_error(inode->i_sb, ret);
4858 goto out_dio;
4859 }
4860
4861 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4862 if (new_size) {
4863 ext4_update_inode_size(inode, new_size);
4864 } else {
4865 /*
4866 * Mark that we allocate beyond EOF so the subsequent truncate
4867 * can proceed even if the new size is the same as i_size.
4868 */
4869 if ((offset + len) > i_size_read(inode))
4870 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4871 }
4872 ext4_mark_inode_dirty(handle, inode);
4873
4874 /* Zero out partial block at the edges of the range */
4875 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4876
4877 if (file->f_flags & O_SYNC)
4878 ext4_handle_sync(handle);
4879
4880 ext4_journal_stop(handle);
4881 out_dio:
4882 ext4_inode_resume_unlocked_dio(inode);
4883 out_mutex:
4884 mutex_unlock(&inode->i_mutex);
4885 return ret;
4886 }
4887
4888 /*
4889 * preallocate space for a file. This implements ext4's fallocate file
4890 * operation, which gets called from sys_fallocate system call.
4891 * For block-mapped files, posix_fallocate should fall back to the method
4892 * of writing zeroes to the required new blocks (the same behavior which is
4893 * expected for file systems which do not support fallocate() system call).
4894 */
4895 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4896 {
4897 struct inode *inode = file_inode(file);
4898 loff_t new_size = 0;
4899 unsigned int max_blocks;
4900 int ret = 0;
4901 int flags;
4902 ext4_lblk_t lblk;
4903 unsigned int blkbits = inode->i_blkbits;
4904
4905 /* Return error if mode is not supported */
4906 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4907 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4908 return -EOPNOTSUPP;
4909
4910 if (mode & FALLOC_FL_PUNCH_HOLE)
4911 return ext4_punch_hole(inode, offset, len);
4912
4913 ret = ext4_convert_inline_data(inode);
4914 if (ret)
4915 return ret;
4916
4917 /*
4918 * currently supporting (pre)allocate mode for extent-based
4919 * files _only_
4920 */
4921 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4922 return -EOPNOTSUPP;
4923
4924 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4925 return ext4_collapse_range(inode, offset, len);
4926
4927 if (mode & FALLOC_FL_ZERO_RANGE)
4928 return ext4_zero_range(file, offset, len, mode);
4929
4930 trace_ext4_fallocate_enter(inode, offset, len, mode);
4931 lblk = offset >> blkbits;
4932 /*
4933 * We can't just convert len to max_blocks because
4934 * If blocksize = 4096 offset = 3072 and len = 2048
4935 */
4936 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4937 - lblk;
4938
4939 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4940 if (mode & FALLOC_FL_KEEP_SIZE)
4941 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4942
4943 mutex_lock(&inode->i_mutex);
4944
4945 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4946 offset + len > i_size_read(inode)) {
4947 new_size = offset + len;
4948 ret = inode_newsize_ok(inode, new_size);
4949 if (ret)
4950 goto out;
4951 }
4952
4953 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4954 flags, mode);
4955 if (ret)
4956 goto out;
4957
4958 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4959 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4960 EXT4_I(inode)->i_sync_tid);
4961 }
4962 out:
4963 mutex_unlock(&inode->i_mutex);
4964 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4965 return ret;
4966 }
4967
4968 /*
4969 * This function convert a range of blocks to written extents
4970 * The caller of this function will pass the start offset and the size.
4971 * all unwritten extents within this range will be converted to
4972 * written extents.
4973 *
4974 * This function is called from the direct IO end io call back
4975 * function, to convert the fallocated extents after IO is completed.
4976 * Returns 0 on success.
4977 */
4978 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4979 loff_t offset, ssize_t len)
4980 {
4981 unsigned int max_blocks;
4982 int ret = 0;
4983 int ret2 = 0;
4984 struct ext4_map_blocks map;
4985 unsigned int credits, blkbits = inode->i_blkbits;
4986
4987 map.m_lblk = offset >> blkbits;
4988 /*
4989 * We can't just convert len to max_blocks because
4990 * If blocksize = 4096 offset = 3072 and len = 2048
4991 */
4992 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4993 map.m_lblk);
4994 /*
4995 * This is somewhat ugly but the idea is clear: When transaction is
4996 * reserved, everything goes into it. Otherwise we rather start several
4997 * smaller transactions for conversion of each extent separately.
4998 */
4999 if (handle) {
5000 handle = ext4_journal_start_reserved(handle,
5001 EXT4_HT_EXT_CONVERT);
5002 if (IS_ERR(handle))
5003 return PTR_ERR(handle);
5004 credits = 0;
5005 } else {
5006 /*
5007 * credits to insert 1 extent into extent tree
5008 */
5009 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5010 }
5011 while (ret >= 0 && ret < max_blocks) {
5012 map.m_lblk += ret;
5013 map.m_len = (max_blocks -= ret);
5014 if (credits) {
5015 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5016 credits);
5017 if (IS_ERR(handle)) {
5018 ret = PTR_ERR(handle);
5019 break;
5020 }
5021 }
5022 ret = ext4_map_blocks(handle, inode, &map,
5023 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5024 if (ret <= 0)
5025 ext4_warning(inode->i_sb,
5026 "inode #%lu: block %u: len %u: "
5027 "ext4_ext_map_blocks returned %d",
5028 inode->i_ino, map.m_lblk,
5029 map.m_len, ret);
5030 ext4_mark_inode_dirty(handle, inode);
5031 if (credits)
5032 ret2 = ext4_journal_stop(handle);
5033 if (ret <= 0 || ret2)
5034 break;
5035 }
5036 if (!credits)
5037 ret2 = ext4_journal_stop(handle);
5038 return ret > 0 ? ret2 : ret;
5039 }
5040
5041 /*
5042 * If newes is not existing extent (newes->ec_pblk equals zero) find
5043 * delayed extent at start of newes and update newes accordingly and
5044 * return start of the next delayed extent.
5045 *
5046 * If newes is existing extent (newes->ec_pblk is not equal zero)
5047 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5048 * extent found. Leave newes unmodified.
5049 */
5050 static int ext4_find_delayed_extent(struct inode *inode,
5051 struct extent_status *newes)
5052 {
5053 struct extent_status es;
5054 ext4_lblk_t block, next_del;
5055
5056 if (newes->es_pblk == 0) {
5057 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5058 newes->es_lblk + newes->es_len - 1, &es);
5059
5060 /*
5061 * No extent in extent-tree contains block @newes->es_pblk,
5062 * then the block may stay in 1)a hole or 2)delayed-extent.
5063 */
5064 if (es.es_len == 0)
5065 /* A hole found. */
5066 return 0;
5067
5068 if (es.es_lblk > newes->es_lblk) {
5069 /* A hole found. */
5070 newes->es_len = min(es.es_lblk - newes->es_lblk,
5071 newes->es_len);
5072 return 0;
5073 }
5074
5075 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5076 }
5077
5078 block = newes->es_lblk + newes->es_len;
5079 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5080 if (es.es_len == 0)
5081 next_del = EXT_MAX_BLOCKS;
5082 else
5083 next_del = es.es_lblk;
5084
5085 return next_del;
5086 }
5087 /* fiemap flags we can handle specified here */
5088 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5089
5090 static int ext4_xattr_fiemap(struct inode *inode,
5091 struct fiemap_extent_info *fieinfo)
5092 {
5093 __u64 physical = 0;
5094 __u64 length;
5095 __u32 flags = FIEMAP_EXTENT_LAST;
5096 int blockbits = inode->i_sb->s_blocksize_bits;
5097 int error = 0;
5098
5099 /* in-inode? */
5100 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5101 struct ext4_iloc iloc;
5102 int offset; /* offset of xattr in inode */
5103
5104 error = ext4_get_inode_loc(inode, &iloc);
5105 if (error)
5106 return error;
5107 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5108 offset = EXT4_GOOD_OLD_INODE_SIZE +
5109 EXT4_I(inode)->i_extra_isize;
5110 physical += offset;
5111 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5112 flags |= FIEMAP_EXTENT_DATA_INLINE;
5113 brelse(iloc.bh);
5114 } else { /* external block */
5115 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5116 length = inode->i_sb->s_blocksize;
5117 }
5118
5119 if (physical)
5120 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5121 length, flags);
5122 return (error < 0 ? error : 0);
5123 }
5124
5125 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5126 __u64 start, __u64 len)
5127 {
5128 ext4_lblk_t start_blk;
5129 int error = 0;
5130
5131 if (ext4_has_inline_data(inode)) {
5132 int has_inline = 1;
5133
5134 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5135
5136 if (has_inline)
5137 return error;
5138 }
5139
5140 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5141 error = ext4_ext_precache(inode);
5142 if (error)
5143 return error;
5144 }
5145
5146 /* fallback to generic here if not in extents fmt */
5147 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5148 return generic_block_fiemap(inode, fieinfo, start, len,
5149 ext4_get_block);
5150
5151 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5152 return -EBADR;
5153
5154 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5155 error = ext4_xattr_fiemap(inode, fieinfo);
5156 } else {
5157 ext4_lblk_t len_blks;
5158 __u64 last_blk;
5159
5160 start_blk = start >> inode->i_sb->s_blocksize_bits;
5161 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5162 if (last_blk >= EXT_MAX_BLOCKS)
5163 last_blk = EXT_MAX_BLOCKS-1;
5164 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5165
5166 /*
5167 * Walk the extent tree gathering extent information
5168 * and pushing extents back to the user.
5169 */
5170 error = ext4_fill_fiemap_extents(inode, start_blk,
5171 len_blks, fieinfo);
5172 }
5173 ext4_es_lru_add(inode);
5174 return error;
5175 }
5176
5177 /*
5178 * ext4_access_path:
5179 * Function to access the path buffer for marking it dirty.
5180 * It also checks if there are sufficient credits left in the journal handle
5181 * to update path.
5182 */
5183 static int
5184 ext4_access_path(handle_t *handle, struct inode *inode,
5185 struct ext4_ext_path *path)
5186 {
5187 int credits, err;
5188
5189 if (!ext4_handle_valid(handle))
5190 return 0;
5191
5192 /*
5193 * Check if need to extend journal credits
5194 * 3 for leaf, sb, and inode plus 2 (bmap and group
5195 * descriptor) for each block group; assume two block
5196 * groups
5197 */
5198 if (handle->h_buffer_credits < 7) {
5199 credits = ext4_writepage_trans_blocks(inode);
5200 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5201 /* EAGAIN is success */
5202 if (err && err != -EAGAIN)
5203 return err;
5204 }
5205
5206 err = ext4_ext_get_access(handle, inode, path);
5207 return err;
5208 }
5209
5210 /*
5211 * ext4_ext_shift_path_extents:
5212 * Shift the extents of a path structure lying between path[depth].p_ext
5213 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5214 * from starting block for each extent.
5215 */
5216 static int
5217 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5218 struct inode *inode, handle_t *handle,
5219 ext4_lblk_t *start)
5220 {
5221 int depth, err = 0;
5222 struct ext4_extent *ex_start, *ex_last;
5223 bool update = 0;
5224 depth = path->p_depth;
5225
5226 while (depth >= 0) {
5227 if (depth == path->p_depth) {
5228 ex_start = path[depth].p_ext;
5229 if (!ex_start)
5230 return -EIO;
5231
5232 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5233 if (!ex_last)
5234 return -EIO;
5235
5236 err = ext4_access_path(handle, inode, path + depth);
5237 if (err)
5238 goto out;
5239
5240 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5241 update = 1;
5242
5243 *start = le32_to_cpu(ex_last->ee_block) +
5244 ext4_ext_get_actual_len(ex_last);
5245
5246 while (ex_start <= ex_last) {
5247 le32_add_cpu(&ex_start->ee_block, -shift);
5248 /* Try to merge to the left. */
5249 if ((ex_start >
5250 EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5251 ext4_ext_try_to_merge_right(inode,
5252 path, ex_start - 1))
5253 ex_last--;
5254 else
5255 ex_start++;
5256 }
5257 err = ext4_ext_dirty(handle, inode, path + depth);
5258 if (err)
5259 goto out;
5260
5261 if (--depth < 0 || !update)
5262 break;
5263 }
5264
5265 /* Update index too */
5266 err = ext4_access_path(handle, inode, path + depth);
5267 if (err)
5268 goto out;
5269
5270 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5271 err = ext4_ext_dirty(handle, inode, path + depth);
5272 if (err)
5273 goto out;
5274
5275 /* we are done if current index is not a starting index */
5276 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5277 break;
5278
5279 depth--;
5280 }
5281
5282 out:
5283 return err;
5284 }
5285
5286 /*
5287 * ext4_ext_shift_extents:
5288 * All the extents which lies in the range from start to the last allocated
5289 * block for the file are shifted downwards by shift blocks.
5290 * On success, 0 is returned, error otherwise.
5291 */
5292 static int
5293 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5294 ext4_lblk_t start, ext4_lblk_t shift)
5295 {
5296 struct ext4_ext_path *path;
5297 int ret = 0, depth;
5298 struct ext4_extent *extent;
5299 ext4_lblk_t stop_block;
5300 ext4_lblk_t ex_start, ex_end;
5301
5302 /* Let path point to the last extent */
5303 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5304 if (IS_ERR(path))
5305 return PTR_ERR(path);
5306
5307 depth = path->p_depth;
5308 extent = path[depth].p_ext;
5309 if (!extent) {
5310 ext4_ext_drop_refs(path);
5311 kfree(path);
5312 return ret;
5313 }
5314
5315 stop_block = le32_to_cpu(extent->ee_block) +
5316 ext4_ext_get_actual_len(extent);
5317 ext4_ext_drop_refs(path);
5318 kfree(path);
5319
5320 /* Nothing to shift, if hole is at the end of file */
5321 if (start >= stop_block)
5322 return ret;
5323
5324 /*
5325 * Don't start shifting extents until we make sure the hole is big
5326 * enough to accomodate the shift.
5327 */
5328 path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5329 if (IS_ERR(path))
5330 return PTR_ERR(path);
5331 depth = path->p_depth;
5332 extent = path[depth].p_ext;
5333 if (extent) {
5334 ex_start = le32_to_cpu(extent->ee_block);
5335 ex_end = le32_to_cpu(extent->ee_block) +
5336 ext4_ext_get_actual_len(extent);
5337 } else {
5338 ex_start = 0;
5339 ex_end = 0;
5340 }
5341 ext4_ext_drop_refs(path);
5342 kfree(path);
5343
5344 if ((start == ex_start && shift > ex_start) ||
5345 (shift > start - ex_end))
5346 return -EINVAL;
5347
5348 /* Its safe to start updating extents */
5349 while (start < stop_block) {
5350 path = ext4_ext_find_extent(inode, start, NULL, 0);
5351 if (IS_ERR(path))
5352 return PTR_ERR(path);
5353 depth = path->p_depth;
5354 extent = path[depth].p_ext;
5355 if (!extent) {
5356 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5357 (unsigned long) start);
5358 return -EIO;
5359 }
5360 if (start > le32_to_cpu(extent->ee_block)) {
5361 /* Hole, move to the next extent */
5362 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5363 path[depth].p_ext++;
5364 } else {
5365 start = ext4_ext_next_allocated_block(path);
5366 ext4_ext_drop_refs(path);
5367 kfree(path);
5368 continue;
5369 }
5370 }
5371 ret = ext4_ext_shift_path_extents(path, shift, inode,
5372 handle, &start);
5373 ext4_ext_drop_refs(path);
5374 kfree(path);
5375 if (ret)
5376 break;
5377 }
5378
5379 return ret;
5380 }
5381
5382 /*
5383 * ext4_collapse_range:
5384 * This implements the fallocate's collapse range functionality for ext4
5385 * Returns: 0 and non-zero on error.
5386 */
5387 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5388 {
5389 struct super_block *sb = inode->i_sb;
5390 ext4_lblk_t punch_start, punch_stop;
5391 handle_t *handle;
5392 unsigned int credits;
5393 loff_t new_size, ioffset;
5394 int ret;
5395
5396 /* Collapse range works only on fs block size aligned offsets. */
5397 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5398 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5399 return -EINVAL;
5400
5401 if (!S_ISREG(inode->i_mode))
5402 return -EINVAL;
5403
5404 trace_ext4_collapse_range(inode, offset, len);
5405
5406 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5407 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5408
5409 /* Call ext4_force_commit to flush all data in case of data=journal. */
5410 if (ext4_should_journal_data(inode)) {
5411 ret = ext4_force_commit(inode->i_sb);
5412 if (ret)
5413 return ret;
5414 }
5415
5416 /*
5417 * Need to round down offset to be aligned with page size boundary
5418 * for page size > block size.
5419 */
5420 ioffset = round_down(offset, PAGE_SIZE);
5421
5422 /* Write out all dirty pages */
5423 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5424 LLONG_MAX);
5425 if (ret)
5426 return ret;
5427
5428 /* Take mutex lock */
5429 mutex_lock(&inode->i_mutex);
5430
5431 /*
5432 * There is no need to overlap collapse range with EOF, in which case
5433 * it is effectively a truncate operation
5434 */
5435 if (offset + len >= i_size_read(inode)) {
5436 ret = -EINVAL;
5437 goto out_mutex;
5438 }
5439
5440 /* Currently just for extent based files */
5441 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5442 ret = -EOPNOTSUPP;
5443 goto out_mutex;
5444 }
5445
5446 truncate_pagecache(inode, ioffset);
5447
5448 /* Wait for existing dio to complete */
5449 ext4_inode_block_unlocked_dio(inode);
5450 inode_dio_wait(inode);
5451
5452 credits = ext4_writepage_trans_blocks(inode);
5453 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5454 if (IS_ERR(handle)) {
5455 ret = PTR_ERR(handle);
5456 goto out_dio;
5457 }
5458
5459 down_write(&EXT4_I(inode)->i_data_sem);
5460 ext4_discard_preallocations(inode);
5461
5462 ret = ext4_es_remove_extent(inode, punch_start,
5463 EXT_MAX_BLOCKS - punch_start);
5464 if (ret) {
5465 up_write(&EXT4_I(inode)->i_data_sem);
5466 goto out_stop;
5467 }
5468
5469 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5470 if (ret) {
5471 up_write(&EXT4_I(inode)->i_data_sem);
5472 goto out_stop;
5473 }
5474 ext4_discard_preallocations(inode);
5475
5476 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5477 punch_stop - punch_start);
5478 if (ret) {
5479 up_write(&EXT4_I(inode)->i_data_sem);
5480 goto out_stop;
5481 }
5482
5483 new_size = i_size_read(inode) - len;
5484 i_size_write(inode, new_size);
5485 EXT4_I(inode)->i_disksize = new_size;
5486
5487 up_write(&EXT4_I(inode)->i_data_sem);
5488 if (IS_SYNC(inode))
5489 ext4_handle_sync(handle);
5490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5491 ext4_mark_inode_dirty(handle, inode);
5492
5493 out_stop:
5494 ext4_journal_stop(handle);
5495 out_dio:
5496 ext4_inode_resume_unlocked_dio(inode);
5497 out_mutex:
5498 mutex_unlock(&inode->i_mutex);
5499 return ret;
5500 }
5501
5502 /**
5503 * ext4_swap_extents - Swap extents between two inodes
5504 *
5505 * @inode1: First inode
5506 * @inode2: Second inode
5507 * @lblk1: Start block for first inode
5508 * @lblk2: Start block for second inode
5509 * @count: Number of blocks to swap
5510 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5511 * @erp: Pointer to save error value
5512 *
5513 * This helper routine does exactly what is promise "swap extents". All other
5514 * stuff such as page-cache locking consistency, bh mapping consistency or
5515 * extent's data copying must be performed by caller.
5516 * Locking:
5517 * i_mutex is held for both inodes
5518 * i_data_sem is locked for write for both inodes
5519 * Assumptions:
5520 * All pages from requested range are locked for both inodes
5521 */
5522 int
5523 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5524 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5525 ext4_lblk_t count, int unwritten, int *erp)
5526 {
5527 struct ext4_ext_path *path1 = NULL;
5528 struct ext4_ext_path *path2 = NULL;
5529 int replaced_count = 0;
5530
5531 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5532 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5533 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5534 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5535
5536 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5537 if (unlikely(*erp))
5538 return 0;
5539 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5540 if (unlikely(*erp))
5541 return 0;
5542
5543 while (count) {
5544 struct ext4_extent *ex1, *ex2, tmp_ex;
5545 ext4_lblk_t e1_blk, e2_blk;
5546 int e1_len, e2_len, len;
5547 int split = 0;
5548
5549 path1 = ext4_ext_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5550 if (unlikely(IS_ERR(path1))) {
5551 *erp = PTR_ERR(path1);
5552 path1 = NULL;
5553 finish:
5554 count = 0;
5555 goto repeat;
5556 }
5557 path2 = ext4_ext_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5558 if (unlikely(IS_ERR(path2))) {
5559 *erp = PTR_ERR(path2);
5560 path2 = NULL;
5561 goto finish;
5562 }
5563 ex1 = path1[path1->p_depth].p_ext;
5564 ex2 = path2[path2->p_depth].p_ext;
5565 /* Do we have somthing to swap ? */
5566 if (unlikely(!ex2 || !ex1))
5567 goto finish;
5568
5569 e1_blk = le32_to_cpu(ex1->ee_block);
5570 e2_blk = le32_to_cpu(ex2->ee_block);
5571 e1_len = ext4_ext_get_actual_len(ex1);
5572 e2_len = ext4_ext_get_actual_len(ex2);
5573
5574 /* Hole handling */
5575 if (!in_range(lblk1, e1_blk, e1_len) ||
5576 !in_range(lblk2, e2_blk, e2_len)) {
5577 ext4_lblk_t next1, next2;
5578
5579 /* if hole after extent, then go to next extent */
5580 next1 = ext4_ext_next_allocated_block(path1);
5581 next2 = ext4_ext_next_allocated_block(path2);
5582 /* If hole before extent, then shift to that extent */
5583 if (e1_blk > lblk1)
5584 next1 = e1_blk;
5585 if (e2_blk > lblk2)
5586 next2 = e1_blk;
5587 /* Do we have something to swap */
5588 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5589 goto finish;
5590 /* Move to the rightest boundary */
5591 len = next1 - lblk1;
5592 if (len < next2 - lblk2)
5593 len = next2 - lblk2;
5594 if (len > count)
5595 len = count;
5596 lblk1 += len;
5597 lblk2 += len;
5598 count -= len;
5599 goto repeat;
5600 }
5601
5602 /* Prepare left boundary */
5603 if (e1_blk < lblk1) {
5604 split = 1;
5605 *erp = ext4_force_split_extent_at(handle, inode1,
5606 &path1, lblk1, 0);
5607 if (unlikely(*erp))
5608 goto finish;
5609 }
5610 if (e2_blk < lblk2) {
5611 split = 1;
5612 *erp = ext4_force_split_extent_at(handle, inode2,
5613 &path2, lblk2, 0);
5614 if (unlikely(*erp))
5615 goto finish;
5616 }
5617 /* ext4_split_extent_at() may result in leaf extent split,
5618 * path must to be revalidated. */
5619 if (split)
5620 goto repeat;
5621
5622 /* Prepare right boundary */
5623 len = count;
5624 if (len > e1_blk + e1_len - lblk1)
5625 len = e1_blk + e1_len - lblk1;
5626 if (len > e2_blk + e2_len - lblk2)
5627 len = e2_blk + e2_len - lblk2;
5628
5629 if (len != e1_len) {
5630 split = 1;
5631 *erp = ext4_force_split_extent_at(handle, inode1,
5632 &path1, lblk1 + len, 0);
5633 if (unlikely(*erp))
5634 goto finish;
5635 }
5636 if (len != e2_len) {
5637 split = 1;
5638 *erp = ext4_force_split_extent_at(handle, inode2,
5639 &path2, lblk2 + len, 0);
5640 if (*erp)
5641 goto finish;
5642 }
5643 /* ext4_split_extent_at() may result in leaf extent split,
5644 * path must to be revalidated. */
5645 if (split)
5646 goto repeat;
5647
5648 BUG_ON(e2_len != e1_len);
5649 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5650 if (unlikely(*erp))
5651 goto finish;
5652 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5653 if (unlikely(*erp))
5654 goto finish;
5655
5656 /* Both extents are fully inside boundaries. Swap it now */
5657 tmp_ex = *ex1;
5658 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5659 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5660 ex1->ee_len = cpu_to_le16(e2_len);
5661 ex2->ee_len = cpu_to_le16(e1_len);
5662 if (unwritten)
5663 ext4_ext_mark_unwritten(ex2);
5664 if (ext4_ext_is_unwritten(&tmp_ex))
5665 ext4_ext_mark_unwritten(ex1);
5666
5667 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5668 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5669 *erp = ext4_ext_dirty(handle, inode2, path2 +
5670 path2->p_depth);
5671 if (unlikely(*erp))
5672 goto finish;
5673 *erp = ext4_ext_dirty(handle, inode1, path1 +
5674 path1->p_depth);
5675 /*
5676 * Looks scarry ah..? second inode already points to new blocks,
5677 * and it was successfully dirtied. But luckily error may happen
5678 * only due to journal error, so full transaction will be
5679 * aborted anyway.
5680 */
5681 if (unlikely(*erp))
5682 goto finish;
5683 lblk1 += len;
5684 lblk2 += len;
5685 replaced_count += len;
5686 count -= len;
5687
5688 repeat:
5689 ext4_ext_drop_refs(path1);
5690 kfree(path1);
5691 ext4_ext_drop_refs(path2);
5692 kfree(path2);
5693 path1 = path2 = NULL;
5694 }
5695 return replaced_count;
5696 }
This page took 0.188225 seconds and 4 git commands to generate.