9ac89b67104730f630c885ebe00b9e565da605a0
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48 * used by extent splitting.
49 */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54
55 static int ext4_split_extent(handle_t *handle,
56 struct inode *inode,
57 struct ext4_ext_path *path,
58 struct ext4_map_blocks *map,
59 int split_flag,
60 int flags);
61
62 static int ext4_split_extent_at(handle_t *handle,
63 struct inode *inode,
64 struct ext4_ext_path *path,
65 ext4_lblk_t split,
66 int split_flag,
67 int flags);
68
69 static int ext4_ext_truncate_extend_restart(handle_t *handle,
70 struct inode *inode,
71 int needed)
72 {
73 int err;
74
75 if (!ext4_handle_valid(handle))
76 return 0;
77 if (handle->h_buffer_credits > needed)
78 return 0;
79 err = ext4_journal_extend(handle, needed);
80 if (err <= 0)
81 return err;
82 err = ext4_truncate_restart_trans(handle, inode, needed);
83 if (err == 0)
84 err = -EAGAIN;
85
86 return err;
87 }
88
89 /*
90 * could return:
91 * - EROFS
92 * - ENOMEM
93 */
94 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
95 struct ext4_ext_path *path)
96 {
97 if (path->p_bh) {
98 /* path points to block */
99 return ext4_journal_get_write_access(handle, path->p_bh);
100 }
101 /* path points to leaf/index in inode body */
102 /* we use in-core data, no need to protect them */
103 return 0;
104 }
105
106 /*
107 * could return:
108 * - EROFS
109 * - ENOMEM
110 * - EIO
111 */
112 #define ext4_ext_dirty(handle, inode, path) \
113 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
114 static int __ext4_ext_dirty(const char *where, unsigned int line,
115 handle_t *handle, struct inode *inode,
116 struct ext4_ext_path *path)
117 {
118 int err;
119 if (path->p_bh) {
120 /* path points to block */
121 err = __ext4_handle_dirty_metadata(where, line, handle,
122 inode, path->p_bh);
123 } else {
124 /* path points to leaf/index in inode body */
125 err = ext4_mark_inode_dirty(handle, inode);
126 }
127 return err;
128 }
129
130 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
131 struct ext4_ext_path *path,
132 ext4_lblk_t block)
133 {
134 if (path) {
135 int depth = path->p_depth;
136 struct ext4_extent *ex;
137
138 /*
139 * Try to predict block placement assuming that we are
140 * filling in a file which will eventually be
141 * non-sparse --- i.e., in the case of libbfd writing
142 * an ELF object sections out-of-order but in a way
143 * the eventually results in a contiguous object or
144 * executable file, or some database extending a table
145 * space file. However, this is actually somewhat
146 * non-ideal if we are writing a sparse file such as
147 * qemu or KVM writing a raw image file that is going
148 * to stay fairly sparse, since it will end up
149 * fragmenting the file system's free space. Maybe we
150 * should have some hueristics or some way to allow
151 * userspace to pass a hint to file system,
152 * especially if the latter case turns out to be
153 * common.
154 */
155 ex = path[depth].p_ext;
156 if (ex) {
157 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
158 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
159
160 if (block > ext_block)
161 return ext_pblk + (block - ext_block);
162 else
163 return ext_pblk - (ext_block - block);
164 }
165
166 /* it looks like index is empty;
167 * try to find starting block from index itself */
168 if (path[depth].p_bh)
169 return path[depth].p_bh->b_blocknr;
170 }
171
172 /* OK. use inode's group */
173 return ext4_inode_to_goal_block(inode);
174 }
175
176 /*
177 * Allocation for a meta data block
178 */
179 static ext4_fsblk_t
180 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
181 struct ext4_ext_path *path,
182 struct ext4_extent *ex, int *err, unsigned int flags)
183 {
184 ext4_fsblk_t goal, newblock;
185
186 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
187 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
188 NULL, err);
189 return newblock;
190 }
191
192 static inline int ext4_ext_space_block(struct inode *inode, int check)
193 {
194 int size;
195
196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197 / sizeof(struct ext4_extent);
198 #ifdef AGGRESSIVE_TEST
199 if (!check && size > 6)
200 size = 6;
201 #endif
202 return size;
203 }
204
205 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
206 {
207 int size;
208
209 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
210 / sizeof(struct ext4_extent_idx);
211 #ifdef AGGRESSIVE_TEST
212 if (!check && size > 5)
213 size = 5;
214 #endif
215 return size;
216 }
217
218 static inline int ext4_ext_space_root(struct inode *inode, int check)
219 {
220 int size;
221
222 size = sizeof(EXT4_I(inode)->i_data);
223 size -= sizeof(struct ext4_extent_header);
224 size /= sizeof(struct ext4_extent);
225 #ifdef AGGRESSIVE_TEST
226 if (!check && size > 3)
227 size = 3;
228 #endif
229 return size;
230 }
231
232 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
233 {
234 int size;
235
236 size = sizeof(EXT4_I(inode)->i_data);
237 size -= sizeof(struct ext4_extent_header);
238 size /= sizeof(struct ext4_extent_idx);
239 #ifdef AGGRESSIVE_TEST
240 if (!check && size > 4)
241 size = 4;
242 #endif
243 return size;
244 }
245
246 /*
247 * Calculate the number of metadata blocks needed
248 * to allocate @blocks
249 * Worse case is one block per extent
250 */
251 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 struct ext4_inode_info *ei = EXT4_I(inode);
254 int idxs;
255
256 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
257 / sizeof(struct ext4_extent_idx));
258
259 /*
260 * If the new delayed allocation block is contiguous with the
261 * previous da block, it can share index blocks with the
262 * previous block, so we only need to allocate a new index
263 * block every idxs leaf blocks. At ldxs**2 blocks, we need
264 * an additional index block, and at ldxs**3 blocks, yet
265 * another index blocks.
266 */
267 if (ei->i_da_metadata_calc_len &&
268 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
269 int num = 0;
270
271 if ((ei->i_da_metadata_calc_len % idxs) == 0)
272 num++;
273 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
274 num++;
275 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
276 num++;
277 ei->i_da_metadata_calc_len = 0;
278 } else
279 ei->i_da_metadata_calc_len++;
280 ei->i_da_metadata_calc_last_lblock++;
281 return num;
282 }
283
284 /*
285 * In the worst case we need a new set of index blocks at
286 * every level of the inode's extent tree.
287 */
288 ei->i_da_metadata_calc_len = 1;
289 ei->i_da_metadata_calc_last_lblock = lblock;
290 return ext_depth(inode) + 1;
291 }
292
293 static int
294 ext4_ext_max_entries(struct inode *inode, int depth)
295 {
296 int max;
297
298 if (depth == ext_depth(inode)) {
299 if (depth == 0)
300 max = ext4_ext_space_root(inode, 1);
301 else
302 max = ext4_ext_space_root_idx(inode, 1);
303 } else {
304 if (depth == 0)
305 max = ext4_ext_space_block(inode, 1);
306 else
307 max = ext4_ext_space_block_idx(inode, 1);
308 }
309
310 return max;
311 }
312
313 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
314 {
315 ext4_fsblk_t block = ext4_ext_pblock(ext);
316 int len = ext4_ext_get_actual_len(ext);
317
318 if (len == 0)
319 return 0;
320 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
321 }
322
323 static int ext4_valid_extent_idx(struct inode *inode,
324 struct ext4_extent_idx *ext_idx)
325 {
326 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
327
328 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
329 }
330
331 static int ext4_valid_extent_entries(struct inode *inode,
332 struct ext4_extent_header *eh,
333 int depth)
334 {
335 unsigned short entries;
336 if (eh->eh_entries == 0)
337 return 1;
338
339 entries = le16_to_cpu(eh->eh_entries);
340
341 if (depth == 0) {
342 /* leaf entries */
343 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
344 while (entries) {
345 if (!ext4_valid_extent(inode, ext))
346 return 0;
347 ext++;
348 entries--;
349 }
350 } else {
351 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
352 while (entries) {
353 if (!ext4_valid_extent_idx(inode, ext_idx))
354 return 0;
355 ext_idx++;
356 entries--;
357 }
358 }
359 return 1;
360 }
361
362 static int __ext4_ext_check(const char *function, unsigned int line,
363 struct inode *inode, struct ext4_extent_header *eh,
364 int depth)
365 {
366 const char *error_msg;
367 int max = 0;
368
369 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
370 error_msg = "invalid magic";
371 goto corrupted;
372 }
373 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
374 error_msg = "unexpected eh_depth";
375 goto corrupted;
376 }
377 if (unlikely(eh->eh_max == 0)) {
378 error_msg = "invalid eh_max";
379 goto corrupted;
380 }
381 max = ext4_ext_max_entries(inode, depth);
382 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
383 error_msg = "too large eh_max";
384 goto corrupted;
385 }
386 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
387 error_msg = "invalid eh_entries";
388 goto corrupted;
389 }
390 if (!ext4_valid_extent_entries(inode, eh, depth)) {
391 error_msg = "invalid extent entries";
392 goto corrupted;
393 }
394 return 0;
395
396 corrupted:
397 ext4_error_inode(inode, function, line, 0,
398 "bad header/extent: %s - magic %x, "
399 "entries %u, max %u(%u), depth %u(%u)",
400 error_msg, le16_to_cpu(eh->eh_magic),
401 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
402 max, le16_to_cpu(eh->eh_depth), depth);
403
404 return -EIO;
405 }
406
407 #define ext4_ext_check(inode, eh, depth) \
408 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
409
410 int ext4_ext_check_inode(struct inode *inode)
411 {
412 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
413 }
414
415 #ifdef EXT_DEBUG
416 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
417 {
418 int k, l = path->p_depth;
419
420 ext_debug("path:");
421 for (k = 0; k <= l; k++, path++) {
422 if (path->p_idx) {
423 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
424 ext4_idx_pblock(path->p_idx));
425 } else if (path->p_ext) {
426 ext_debug(" %d:[%d]%d:%llu ",
427 le32_to_cpu(path->p_ext->ee_block),
428 ext4_ext_is_uninitialized(path->p_ext),
429 ext4_ext_get_actual_len(path->p_ext),
430 ext4_ext_pblock(path->p_ext));
431 } else
432 ext_debug(" []");
433 }
434 ext_debug("\n");
435 }
436
437 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
438 {
439 int depth = ext_depth(inode);
440 struct ext4_extent_header *eh;
441 struct ext4_extent *ex;
442 int i;
443
444 if (!path)
445 return;
446
447 eh = path[depth].p_hdr;
448 ex = EXT_FIRST_EXTENT(eh);
449
450 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
451
452 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
453 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
454 ext4_ext_is_uninitialized(ex),
455 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
456 }
457 ext_debug("\n");
458 }
459
460 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
461 ext4_fsblk_t newblock, int level)
462 {
463 int depth = ext_depth(inode);
464 struct ext4_extent *ex;
465
466 if (depth != level) {
467 struct ext4_extent_idx *idx;
468 idx = path[level].p_idx;
469 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
470 ext_debug("%d: move %d:%llu in new index %llu\n", level,
471 le32_to_cpu(idx->ei_block),
472 ext4_idx_pblock(idx),
473 newblock);
474 idx++;
475 }
476
477 return;
478 }
479
480 ex = path[depth].p_ext;
481 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
482 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
483 le32_to_cpu(ex->ee_block),
484 ext4_ext_pblock(ex),
485 ext4_ext_is_uninitialized(ex),
486 ext4_ext_get_actual_len(ex),
487 newblock);
488 ex++;
489 }
490 }
491
492 #else
493 #define ext4_ext_show_path(inode, path)
494 #define ext4_ext_show_leaf(inode, path)
495 #define ext4_ext_show_move(inode, path, newblock, level)
496 #endif
497
498 void ext4_ext_drop_refs(struct ext4_ext_path *path)
499 {
500 int depth = path->p_depth;
501 int i;
502
503 for (i = 0; i <= depth; i++, path++)
504 if (path->p_bh) {
505 brelse(path->p_bh);
506 path->p_bh = NULL;
507 }
508 }
509
510 /*
511 * ext4_ext_binsearch_idx:
512 * binary search for the closest index of the given block
513 * the header must be checked before calling this
514 */
515 static void
516 ext4_ext_binsearch_idx(struct inode *inode,
517 struct ext4_ext_path *path, ext4_lblk_t block)
518 {
519 struct ext4_extent_header *eh = path->p_hdr;
520 struct ext4_extent_idx *r, *l, *m;
521
522
523 ext_debug("binsearch for %u(idx): ", block);
524
525 l = EXT_FIRST_INDEX(eh) + 1;
526 r = EXT_LAST_INDEX(eh);
527 while (l <= r) {
528 m = l + (r - l) / 2;
529 if (block < le32_to_cpu(m->ei_block))
530 r = m - 1;
531 else
532 l = m + 1;
533 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
534 m, le32_to_cpu(m->ei_block),
535 r, le32_to_cpu(r->ei_block));
536 }
537
538 path->p_idx = l - 1;
539 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
540 ext4_idx_pblock(path->p_idx));
541
542 #ifdef CHECK_BINSEARCH
543 {
544 struct ext4_extent_idx *chix, *ix;
545 int k;
546
547 chix = ix = EXT_FIRST_INDEX(eh);
548 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
549 if (k != 0 &&
550 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
551 printk(KERN_DEBUG "k=%d, ix=0x%p, "
552 "first=0x%p\n", k,
553 ix, EXT_FIRST_INDEX(eh));
554 printk(KERN_DEBUG "%u <= %u\n",
555 le32_to_cpu(ix->ei_block),
556 le32_to_cpu(ix[-1].ei_block));
557 }
558 BUG_ON(k && le32_to_cpu(ix->ei_block)
559 <= le32_to_cpu(ix[-1].ei_block));
560 if (block < le32_to_cpu(ix->ei_block))
561 break;
562 chix = ix;
563 }
564 BUG_ON(chix != path->p_idx);
565 }
566 #endif
567
568 }
569
570 /*
571 * ext4_ext_binsearch:
572 * binary search for closest extent of the given block
573 * the header must be checked before calling this
574 */
575 static void
576 ext4_ext_binsearch(struct inode *inode,
577 struct ext4_ext_path *path, ext4_lblk_t block)
578 {
579 struct ext4_extent_header *eh = path->p_hdr;
580 struct ext4_extent *r, *l, *m;
581
582 if (eh->eh_entries == 0) {
583 /*
584 * this leaf is empty:
585 * we get such a leaf in split/add case
586 */
587 return;
588 }
589
590 ext_debug("binsearch for %u: ", block);
591
592 l = EXT_FIRST_EXTENT(eh) + 1;
593 r = EXT_LAST_EXTENT(eh);
594
595 while (l <= r) {
596 m = l + (r - l) / 2;
597 if (block < le32_to_cpu(m->ee_block))
598 r = m - 1;
599 else
600 l = m + 1;
601 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
602 m, le32_to_cpu(m->ee_block),
603 r, le32_to_cpu(r->ee_block));
604 }
605
606 path->p_ext = l - 1;
607 ext_debug(" -> %d:%llu:[%d]%d ",
608 le32_to_cpu(path->p_ext->ee_block),
609 ext4_ext_pblock(path->p_ext),
610 ext4_ext_is_uninitialized(path->p_ext),
611 ext4_ext_get_actual_len(path->p_ext));
612
613 #ifdef CHECK_BINSEARCH
614 {
615 struct ext4_extent *chex, *ex;
616 int k;
617
618 chex = ex = EXT_FIRST_EXTENT(eh);
619 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
620 BUG_ON(k && le32_to_cpu(ex->ee_block)
621 <= le32_to_cpu(ex[-1].ee_block));
622 if (block < le32_to_cpu(ex->ee_block))
623 break;
624 chex = ex;
625 }
626 BUG_ON(chex != path->p_ext);
627 }
628 #endif
629
630 }
631
632 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
633 {
634 struct ext4_extent_header *eh;
635
636 eh = ext_inode_hdr(inode);
637 eh->eh_depth = 0;
638 eh->eh_entries = 0;
639 eh->eh_magic = EXT4_EXT_MAGIC;
640 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
641 ext4_mark_inode_dirty(handle, inode);
642 ext4_ext_invalidate_cache(inode);
643 return 0;
644 }
645
646 struct ext4_ext_path *
647 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
648 struct ext4_ext_path *path)
649 {
650 struct ext4_extent_header *eh;
651 struct buffer_head *bh;
652 short int depth, i, ppos = 0, alloc = 0;
653
654 eh = ext_inode_hdr(inode);
655 depth = ext_depth(inode);
656
657 /* account possible depth increase */
658 if (!path) {
659 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
660 GFP_NOFS);
661 if (!path)
662 return ERR_PTR(-ENOMEM);
663 alloc = 1;
664 }
665 path[0].p_hdr = eh;
666 path[0].p_bh = NULL;
667
668 i = depth;
669 /* walk through the tree */
670 while (i) {
671 int need_to_validate = 0;
672
673 ext_debug("depth %d: num %d, max %d\n",
674 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
675
676 ext4_ext_binsearch_idx(inode, path + ppos, block);
677 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
678 path[ppos].p_depth = i;
679 path[ppos].p_ext = NULL;
680
681 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
682 if (unlikely(!bh))
683 goto err;
684 if (!bh_uptodate_or_lock(bh)) {
685 trace_ext4_ext_load_extent(inode, block,
686 path[ppos].p_block);
687 if (bh_submit_read(bh) < 0) {
688 put_bh(bh);
689 goto err;
690 }
691 /* validate the extent entries */
692 need_to_validate = 1;
693 }
694 eh = ext_block_hdr(bh);
695 ppos++;
696 if (unlikely(ppos > depth)) {
697 put_bh(bh);
698 EXT4_ERROR_INODE(inode,
699 "ppos %d > depth %d", ppos, depth);
700 goto err;
701 }
702 path[ppos].p_bh = bh;
703 path[ppos].p_hdr = eh;
704 i--;
705
706 if (need_to_validate && ext4_ext_check(inode, eh, i))
707 goto err;
708 }
709
710 path[ppos].p_depth = i;
711 path[ppos].p_ext = NULL;
712 path[ppos].p_idx = NULL;
713
714 /* find extent */
715 ext4_ext_binsearch(inode, path + ppos, block);
716 /* if not an empty leaf */
717 if (path[ppos].p_ext)
718 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
719
720 ext4_ext_show_path(inode, path);
721
722 return path;
723
724 err:
725 ext4_ext_drop_refs(path);
726 if (alloc)
727 kfree(path);
728 return ERR_PTR(-EIO);
729 }
730
731 /*
732 * ext4_ext_insert_index:
733 * insert new index [@logical;@ptr] into the block at @curp;
734 * check where to insert: before @curp or after @curp
735 */
736 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
737 struct ext4_ext_path *curp,
738 int logical, ext4_fsblk_t ptr)
739 {
740 struct ext4_extent_idx *ix;
741 int len, err;
742
743 err = ext4_ext_get_access(handle, inode, curp);
744 if (err)
745 return err;
746
747 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
748 EXT4_ERROR_INODE(inode,
749 "logical %d == ei_block %d!",
750 logical, le32_to_cpu(curp->p_idx->ei_block));
751 return -EIO;
752 }
753
754 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
755 >= le16_to_cpu(curp->p_hdr->eh_max))) {
756 EXT4_ERROR_INODE(inode,
757 "eh_entries %d >= eh_max %d!",
758 le16_to_cpu(curp->p_hdr->eh_entries),
759 le16_to_cpu(curp->p_hdr->eh_max));
760 return -EIO;
761 }
762
763 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
764 /* insert after */
765 ext_debug("insert new index %d after: %llu\n", logical, ptr);
766 ix = curp->p_idx + 1;
767 } else {
768 /* insert before */
769 ext_debug("insert new index %d before: %llu\n", logical, ptr);
770 ix = curp->p_idx;
771 }
772
773 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
774 BUG_ON(len < 0);
775 if (len > 0) {
776 ext_debug("insert new index %d: "
777 "move %d indices from 0x%p to 0x%p\n",
778 logical, len, ix, ix + 1);
779 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
780 }
781
782 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
783 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
784 return -EIO;
785 }
786
787 ix->ei_block = cpu_to_le32(logical);
788 ext4_idx_store_pblock(ix, ptr);
789 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
790
791 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
792 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
793 return -EIO;
794 }
795
796 err = ext4_ext_dirty(handle, inode, curp);
797 ext4_std_error(inode->i_sb, err);
798
799 return err;
800 }
801
802 /*
803 * ext4_ext_split:
804 * inserts new subtree into the path, using free index entry
805 * at depth @at:
806 * - allocates all needed blocks (new leaf and all intermediate index blocks)
807 * - makes decision where to split
808 * - moves remaining extents and index entries (right to the split point)
809 * into the newly allocated blocks
810 * - initializes subtree
811 */
812 static int ext4_ext_split(handle_t *handle, struct inode *inode,
813 unsigned int flags,
814 struct ext4_ext_path *path,
815 struct ext4_extent *newext, int at)
816 {
817 struct buffer_head *bh = NULL;
818 int depth = ext_depth(inode);
819 struct ext4_extent_header *neh;
820 struct ext4_extent_idx *fidx;
821 int i = at, k, m, a;
822 ext4_fsblk_t newblock, oldblock;
823 __le32 border;
824 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
825 int err = 0;
826
827 /* make decision: where to split? */
828 /* FIXME: now decision is simplest: at current extent */
829
830 /* if current leaf will be split, then we should use
831 * border from split point */
832 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
833 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
834 return -EIO;
835 }
836 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
837 border = path[depth].p_ext[1].ee_block;
838 ext_debug("leaf will be split."
839 " next leaf starts at %d\n",
840 le32_to_cpu(border));
841 } else {
842 border = newext->ee_block;
843 ext_debug("leaf will be added."
844 " next leaf starts at %d\n",
845 le32_to_cpu(border));
846 }
847
848 /*
849 * If error occurs, then we break processing
850 * and mark filesystem read-only. index won't
851 * be inserted and tree will be in consistent
852 * state. Next mount will repair buffers too.
853 */
854
855 /*
856 * Get array to track all allocated blocks.
857 * We need this to handle errors and free blocks
858 * upon them.
859 */
860 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
861 if (!ablocks)
862 return -ENOMEM;
863
864 /* allocate all needed blocks */
865 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
866 for (a = 0; a < depth - at; a++) {
867 newblock = ext4_ext_new_meta_block(handle, inode, path,
868 newext, &err, flags);
869 if (newblock == 0)
870 goto cleanup;
871 ablocks[a] = newblock;
872 }
873
874 /* initialize new leaf */
875 newblock = ablocks[--a];
876 if (unlikely(newblock == 0)) {
877 EXT4_ERROR_INODE(inode, "newblock == 0!");
878 err = -EIO;
879 goto cleanup;
880 }
881 bh = sb_getblk(inode->i_sb, newblock);
882 if (!bh) {
883 err = -EIO;
884 goto cleanup;
885 }
886 lock_buffer(bh);
887
888 err = ext4_journal_get_create_access(handle, bh);
889 if (err)
890 goto cleanup;
891
892 neh = ext_block_hdr(bh);
893 neh->eh_entries = 0;
894 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
895 neh->eh_magic = EXT4_EXT_MAGIC;
896 neh->eh_depth = 0;
897
898 /* move remainder of path[depth] to the new leaf */
899 if (unlikely(path[depth].p_hdr->eh_entries !=
900 path[depth].p_hdr->eh_max)) {
901 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
902 path[depth].p_hdr->eh_entries,
903 path[depth].p_hdr->eh_max);
904 err = -EIO;
905 goto cleanup;
906 }
907 /* start copy from next extent */
908 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
909 ext4_ext_show_move(inode, path, newblock, depth);
910 if (m) {
911 struct ext4_extent *ex;
912 ex = EXT_FIRST_EXTENT(neh);
913 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
914 le16_add_cpu(&neh->eh_entries, m);
915 }
916
917 set_buffer_uptodate(bh);
918 unlock_buffer(bh);
919
920 err = ext4_handle_dirty_metadata(handle, inode, bh);
921 if (err)
922 goto cleanup;
923 brelse(bh);
924 bh = NULL;
925
926 /* correct old leaf */
927 if (m) {
928 err = ext4_ext_get_access(handle, inode, path + depth);
929 if (err)
930 goto cleanup;
931 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
932 err = ext4_ext_dirty(handle, inode, path + depth);
933 if (err)
934 goto cleanup;
935
936 }
937
938 /* create intermediate indexes */
939 k = depth - at - 1;
940 if (unlikely(k < 0)) {
941 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
942 err = -EIO;
943 goto cleanup;
944 }
945 if (k)
946 ext_debug("create %d intermediate indices\n", k);
947 /* insert new index into current index block */
948 /* current depth stored in i var */
949 i = depth - 1;
950 while (k--) {
951 oldblock = newblock;
952 newblock = ablocks[--a];
953 bh = sb_getblk(inode->i_sb, newblock);
954 if (!bh) {
955 err = -EIO;
956 goto cleanup;
957 }
958 lock_buffer(bh);
959
960 err = ext4_journal_get_create_access(handle, bh);
961 if (err)
962 goto cleanup;
963
964 neh = ext_block_hdr(bh);
965 neh->eh_entries = cpu_to_le16(1);
966 neh->eh_magic = EXT4_EXT_MAGIC;
967 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
968 neh->eh_depth = cpu_to_le16(depth - i);
969 fidx = EXT_FIRST_INDEX(neh);
970 fidx->ei_block = border;
971 ext4_idx_store_pblock(fidx, oldblock);
972
973 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
974 i, newblock, le32_to_cpu(border), oldblock);
975
976 /* move remainder of path[i] to the new index block */
977 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
978 EXT_LAST_INDEX(path[i].p_hdr))) {
979 EXT4_ERROR_INODE(inode,
980 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
981 le32_to_cpu(path[i].p_ext->ee_block));
982 err = -EIO;
983 goto cleanup;
984 }
985 /* start copy indexes */
986 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
987 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
988 EXT_MAX_INDEX(path[i].p_hdr));
989 ext4_ext_show_move(inode, path, newblock, i);
990 if (m) {
991 memmove(++fidx, path[i].p_idx,
992 sizeof(struct ext4_extent_idx) * m);
993 le16_add_cpu(&neh->eh_entries, m);
994 }
995 set_buffer_uptodate(bh);
996 unlock_buffer(bh);
997
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
999 if (err)
1000 goto cleanup;
1001 brelse(bh);
1002 bh = NULL;
1003
1004 /* correct old index */
1005 if (m) {
1006 err = ext4_ext_get_access(handle, inode, path + i);
1007 if (err)
1008 goto cleanup;
1009 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1010 err = ext4_ext_dirty(handle, inode, path + i);
1011 if (err)
1012 goto cleanup;
1013 }
1014
1015 i--;
1016 }
1017
1018 /* insert new index */
1019 err = ext4_ext_insert_index(handle, inode, path + at,
1020 le32_to_cpu(border), newblock);
1021
1022 cleanup:
1023 if (bh) {
1024 if (buffer_locked(bh))
1025 unlock_buffer(bh);
1026 brelse(bh);
1027 }
1028
1029 if (err) {
1030 /* free all allocated blocks in error case */
1031 for (i = 0; i < depth; i++) {
1032 if (!ablocks[i])
1033 continue;
1034 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1035 EXT4_FREE_BLOCKS_METADATA);
1036 }
1037 }
1038 kfree(ablocks);
1039
1040 return err;
1041 }
1042
1043 /*
1044 * ext4_ext_grow_indepth:
1045 * implements tree growing procedure:
1046 * - allocates new block
1047 * - moves top-level data (index block or leaf) into the new block
1048 * - initializes new top-level, creating index that points to the
1049 * just created block
1050 */
1051 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1052 unsigned int flags,
1053 struct ext4_extent *newext)
1054 {
1055 struct ext4_extent_header *neh;
1056 struct buffer_head *bh;
1057 ext4_fsblk_t newblock;
1058 int err = 0;
1059
1060 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1061 newext, &err, flags);
1062 if (newblock == 0)
1063 return err;
1064
1065 bh = sb_getblk(inode->i_sb, newblock);
1066 if (!bh) {
1067 err = -EIO;
1068 ext4_std_error(inode->i_sb, err);
1069 return err;
1070 }
1071 lock_buffer(bh);
1072
1073 err = ext4_journal_get_create_access(handle, bh);
1074 if (err) {
1075 unlock_buffer(bh);
1076 goto out;
1077 }
1078
1079 /* move top-level index/leaf into new block */
1080 memmove(bh->b_data, EXT4_I(inode)->i_data,
1081 sizeof(EXT4_I(inode)->i_data));
1082
1083 /* set size of new block */
1084 neh = ext_block_hdr(bh);
1085 /* old root could have indexes or leaves
1086 * so calculate e_max right way */
1087 if (ext_depth(inode))
1088 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1089 else
1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1091 neh->eh_magic = EXT4_EXT_MAGIC;
1092 set_buffer_uptodate(bh);
1093 unlock_buffer(bh);
1094
1095 err = ext4_handle_dirty_metadata(handle, inode, bh);
1096 if (err)
1097 goto out;
1098
1099 /* Update top-level index: num,max,pointer */
1100 neh = ext_inode_hdr(inode);
1101 neh->eh_entries = cpu_to_le16(1);
1102 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1103 if (neh->eh_depth == 0) {
1104 /* Root extent block becomes index block */
1105 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1106 EXT_FIRST_INDEX(neh)->ei_block =
1107 EXT_FIRST_EXTENT(neh)->ee_block;
1108 }
1109 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1110 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1111 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1112 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1113
1114 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1115 ext4_mark_inode_dirty(handle, inode);
1116 out:
1117 brelse(bh);
1118
1119 return err;
1120 }
1121
1122 /*
1123 * ext4_ext_create_new_leaf:
1124 * finds empty index and adds new leaf.
1125 * if no free index is found, then it requests in-depth growing.
1126 */
1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128 unsigned int flags,
1129 struct ext4_ext_path *path,
1130 struct ext4_extent *newext)
1131 {
1132 struct ext4_ext_path *curp;
1133 int depth, i, err = 0;
1134
1135 repeat:
1136 i = depth = ext_depth(inode);
1137
1138 /* walk up to the tree and look for free index entry */
1139 curp = path + depth;
1140 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1141 i--;
1142 curp--;
1143 }
1144
1145 /* we use already allocated block for index block,
1146 * so subsequent data blocks should be contiguous */
1147 if (EXT_HAS_FREE_INDEX(curp)) {
1148 /* if we found index with free entry, then use that
1149 * entry: create all needed subtree and add new leaf */
1150 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1151 if (err)
1152 goto out;
1153
1154 /* refill path */
1155 ext4_ext_drop_refs(path);
1156 path = ext4_ext_find_extent(inode,
1157 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1158 path);
1159 if (IS_ERR(path))
1160 err = PTR_ERR(path);
1161 } else {
1162 /* tree is full, time to grow in depth */
1163 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1164 if (err)
1165 goto out;
1166
1167 /* refill path */
1168 ext4_ext_drop_refs(path);
1169 path = ext4_ext_find_extent(inode,
1170 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1171 path);
1172 if (IS_ERR(path)) {
1173 err = PTR_ERR(path);
1174 goto out;
1175 }
1176
1177 /*
1178 * only first (depth 0 -> 1) produces free space;
1179 * in all other cases we have to split the grown tree
1180 */
1181 depth = ext_depth(inode);
1182 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1183 /* now we need to split */
1184 goto repeat;
1185 }
1186 }
1187
1188 out:
1189 return err;
1190 }
1191
1192 /*
1193 * search the closest allocated block to the left for *logical
1194 * and returns it at @logical + it's physical address at @phys
1195 * if *logical is the smallest allocated block, the function
1196 * returns 0 at @phys
1197 * return value contains 0 (success) or error code
1198 */
1199 static int ext4_ext_search_left(struct inode *inode,
1200 struct ext4_ext_path *path,
1201 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1202 {
1203 struct ext4_extent_idx *ix;
1204 struct ext4_extent *ex;
1205 int depth, ee_len;
1206
1207 if (unlikely(path == NULL)) {
1208 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1209 return -EIO;
1210 }
1211 depth = path->p_depth;
1212 *phys = 0;
1213
1214 if (depth == 0 && path->p_ext == NULL)
1215 return 0;
1216
1217 /* usually extent in the path covers blocks smaller
1218 * then *logical, but it can be that extent is the
1219 * first one in the file */
1220
1221 ex = path[depth].p_ext;
1222 ee_len = ext4_ext_get_actual_len(ex);
1223 if (*logical < le32_to_cpu(ex->ee_block)) {
1224 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1225 EXT4_ERROR_INODE(inode,
1226 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1227 *logical, le32_to_cpu(ex->ee_block));
1228 return -EIO;
1229 }
1230 while (--depth >= 0) {
1231 ix = path[depth].p_idx;
1232 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1233 EXT4_ERROR_INODE(inode,
1234 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1235 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1236 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1237 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1238 depth);
1239 return -EIO;
1240 }
1241 }
1242 return 0;
1243 }
1244
1245 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1246 EXT4_ERROR_INODE(inode,
1247 "logical %d < ee_block %d + ee_len %d!",
1248 *logical, le32_to_cpu(ex->ee_block), ee_len);
1249 return -EIO;
1250 }
1251
1252 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1253 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1254 return 0;
1255 }
1256
1257 /*
1258 * search the closest allocated block to the right for *logical
1259 * and returns it at @logical + it's physical address at @phys
1260 * if *logical is the largest allocated block, the function
1261 * returns 0 at @phys
1262 * return value contains 0 (success) or error code
1263 */
1264 static int ext4_ext_search_right(struct inode *inode,
1265 struct ext4_ext_path *path,
1266 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1267 struct ext4_extent **ret_ex)
1268 {
1269 struct buffer_head *bh = NULL;
1270 struct ext4_extent_header *eh;
1271 struct ext4_extent_idx *ix;
1272 struct ext4_extent *ex;
1273 ext4_fsblk_t block;
1274 int depth; /* Note, NOT eh_depth; depth from top of tree */
1275 int ee_len;
1276
1277 if (unlikely(path == NULL)) {
1278 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1279 return -EIO;
1280 }
1281 depth = path->p_depth;
1282 *phys = 0;
1283
1284 if (depth == 0 && path->p_ext == NULL)
1285 return 0;
1286
1287 /* usually extent in the path covers blocks smaller
1288 * then *logical, but it can be that extent is the
1289 * first one in the file */
1290
1291 ex = path[depth].p_ext;
1292 ee_len = ext4_ext_get_actual_len(ex);
1293 if (*logical < le32_to_cpu(ex->ee_block)) {
1294 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1295 EXT4_ERROR_INODE(inode,
1296 "first_extent(path[%d].p_hdr) != ex",
1297 depth);
1298 return -EIO;
1299 }
1300 while (--depth >= 0) {
1301 ix = path[depth].p_idx;
1302 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1303 EXT4_ERROR_INODE(inode,
1304 "ix != EXT_FIRST_INDEX *logical %d!",
1305 *logical);
1306 return -EIO;
1307 }
1308 }
1309 goto found_extent;
1310 }
1311
1312 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1313 EXT4_ERROR_INODE(inode,
1314 "logical %d < ee_block %d + ee_len %d!",
1315 *logical, le32_to_cpu(ex->ee_block), ee_len);
1316 return -EIO;
1317 }
1318
1319 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1320 /* next allocated block in this leaf */
1321 ex++;
1322 goto found_extent;
1323 }
1324
1325 /* go up and search for index to the right */
1326 while (--depth >= 0) {
1327 ix = path[depth].p_idx;
1328 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1329 goto got_index;
1330 }
1331
1332 /* we've gone up to the root and found no index to the right */
1333 return 0;
1334
1335 got_index:
1336 /* we've found index to the right, let's
1337 * follow it and find the closest allocated
1338 * block to the right */
1339 ix++;
1340 block = ext4_idx_pblock(ix);
1341 while (++depth < path->p_depth) {
1342 bh = sb_bread(inode->i_sb, block);
1343 if (bh == NULL)
1344 return -EIO;
1345 eh = ext_block_hdr(bh);
1346 /* subtract from p_depth to get proper eh_depth */
1347 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1348 put_bh(bh);
1349 return -EIO;
1350 }
1351 ix = EXT_FIRST_INDEX(eh);
1352 block = ext4_idx_pblock(ix);
1353 put_bh(bh);
1354 }
1355
1356 bh = sb_bread(inode->i_sb, block);
1357 if (bh == NULL)
1358 return -EIO;
1359 eh = ext_block_hdr(bh);
1360 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361 put_bh(bh);
1362 return -EIO;
1363 }
1364 ex = EXT_FIRST_EXTENT(eh);
1365 found_extent:
1366 *logical = le32_to_cpu(ex->ee_block);
1367 *phys = ext4_ext_pblock(ex);
1368 *ret_ex = ex;
1369 if (bh)
1370 put_bh(bh);
1371 return 0;
1372 }
1373
1374 /*
1375 * ext4_ext_next_allocated_block:
1376 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1377 * NOTE: it considers block number from index entry as
1378 * allocated block. Thus, index entries have to be consistent
1379 * with leaves.
1380 */
1381 static ext4_lblk_t
1382 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1383 {
1384 int depth;
1385
1386 BUG_ON(path == NULL);
1387 depth = path->p_depth;
1388
1389 if (depth == 0 && path->p_ext == NULL)
1390 return EXT_MAX_BLOCKS;
1391
1392 while (depth >= 0) {
1393 if (depth == path->p_depth) {
1394 /* leaf */
1395 if (path[depth].p_ext &&
1396 path[depth].p_ext !=
1397 EXT_LAST_EXTENT(path[depth].p_hdr))
1398 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1399 } else {
1400 /* index */
1401 if (path[depth].p_idx !=
1402 EXT_LAST_INDEX(path[depth].p_hdr))
1403 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1404 }
1405 depth--;
1406 }
1407
1408 return EXT_MAX_BLOCKS;
1409 }
1410
1411 /*
1412 * ext4_ext_next_leaf_block:
1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1414 */
1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1416 {
1417 int depth;
1418
1419 BUG_ON(path == NULL);
1420 depth = path->p_depth;
1421
1422 /* zero-tree has no leaf blocks at all */
1423 if (depth == 0)
1424 return EXT_MAX_BLOCKS;
1425
1426 /* go to index block */
1427 depth--;
1428
1429 while (depth >= 0) {
1430 if (path[depth].p_idx !=
1431 EXT_LAST_INDEX(path[depth].p_hdr))
1432 return (ext4_lblk_t)
1433 le32_to_cpu(path[depth].p_idx[1].ei_block);
1434 depth--;
1435 }
1436
1437 return EXT_MAX_BLOCKS;
1438 }
1439
1440 /*
1441 * ext4_ext_correct_indexes:
1442 * if leaf gets modified and modified extent is first in the leaf,
1443 * then we have to correct all indexes above.
1444 * TODO: do we need to correct tree in all cases?
1445 */
1446 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1447 struct ext4_ext_path *path)
1448 {
1449 struct ext4_extent_header *eh;
1450 int depth = ext_depth(inode);
1451 struct ext4_extent *ex;
1452 __le32 border;
1453 int k, err = 0;
1454
1455 eh = path[depth].p_hdr;
1456 ex = path[depth].p_ext;
1457
1458 if (unlikely(ex == NULL || eh == NULL)) {
1459 EXT4_ERROR_INODE(inode,
1460 "ex %p == NULL or eh %p == NULL", ex, eh);
1461 return -EIO;
1462 }
1463
1464 if (depth == 0) {
1465 /* there is no tree at all */
1466 return 0;
1467 }
1468
1469 if (ex != EXT_FIRST_EXTENT(eh)) {
1470 /* we correct tree if first leaf got modified only */
1471 return 0;
1472 }
1473
1474 /*
1475 * TODO: we need correction if border is smaller than current one
1476 */
1477 k = depth - 1;
1478 border = path[depth].p_ext->ee_block;
1479 err = ext4_ext_get_access(handle, inode, path + k);
1480 if (err)
1481 return err;
1482 path[k].p_idx->ei_block = border;
1483 err = ext4_ext_dirty(handle, inode, path + k);
1484 if (err)
1485 return err;
1486
1487 while (k--) {
1488 /* change all left-side indexes */
1489 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1490 break;
1491 err = ext4_ext_get_access(handle, inode, path + k);
1492 if (err)
1493 break;
1494 path[k].p_idx->ei_block = border;
1495 err = ext4_ext_dirty(handle, inode, path + k);
1496 if (err)
1497 break;
1498 }
1499
1500 return err;
1501 }
1502
1503 int
1504 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1505 struct ext4_extent *ex2)
1506 {
1507 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1508
1509 /*
1510 * Make sure that either both extents are uninitialized, or
1511 * both are _not_.
1512 */
1513 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1514 return 0;
1515
1516 if (ext4_ext_is_uninitialized(ex1))
1517 max_len = EXT_UNINIT_MAX_LEN;
1518 else
1519 max_len = EXT_INIT_MAX_LEN;
1520
1521 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1522 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1523
1524 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1525 le32_to_cpu(ex2->ee_block))
1526 return 0;
1527
1528 /*
1529 * To allow future support for preallocated extents to be added
1530 * as an RO_COMPAT feature, refuse to merge to extents if
1531 * this can result in the top bit of ee_len being set.
1532 */
1533 if (ext1_ee_len + ext2_ee_len > max_len)
1534 return 0;
1535 #ifdef AGGRESSIVE_TEST
1536 if (ext1_ee_len >= 4)
1537 return 0;
1538 #endif
1539
1540 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1541 return 1;
1542 return 0;
1543 }
1544
1545 /*
1546 * This function tries to merge the "ex" extent to the next extent in the tree.
1547 * It always tries to merge towards right. If you want to merge towards
1548 * left, pass "ex - 1" as argument instead of "ex".
1549 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1550 * 1 if they got merged.
1551 */
1552 static int ext4_ext_try_to_merge_right(struct inode *inode,
1553 struct ext4_ext_path *path,
1554 struct ext4_extent *ex)
1555 {
1556 struct ext4_extent_header *eh;
1557 unsigned int depth, len;
1558 int merge_done = 0;
1559 int uninitialized = 0;
1560
1561 depth = ext_depth(inode);
1562 BUG_ON(path[depth].p_hdr == NULL);
1563 eh = path[depth].p_hdr;
1564
1565 while (ex < EXT_LAST_EXTENT(eh)) {
1566 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1567 break;
1568 /* merge with next extent! */
1569 if (ext4_ext_is_uninitialized(ex))
1570 uninitialized = 1;
1571 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1572 + ext4_ext_get_actual_len(ex + 1));
1573 if (uninitialized)
1574 ext4_ext_mark_uninitialized(ex);
1575
1576 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1577 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1578 * sizeof(struct ext4_extent);
1579 memmove(ex + 1, ex + 2, len);
1580 }
1581 le16_add_cpu(&eh->eh_entries, -1);
1582 merge_done = 1;
1583 WARN_ON(eh->eh_entries == 0);
1584 if (!eh->eh_entries)
1585 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1586 }
1587
1588 return merge_done;
1589 }
1590
1591 /*
1592 * This function tries to merge the @ex extent to neighbours in the tree.
1593 * return 1 if merge left else 0.
1594 */
1595 static int ext4_ext_try_to_merge(struct inode *inode,
1596 struct ext4_ext_path *path,
1597 struct ext4_extent *ex) {
1598 struct ext4_extent_header *eh;
1599 unsigned int depth;
1600 int merge_done = 0;
1601 int ret = 0;
1602
1603 depth = ext_depth(inode);
1604 BUG_ON(path[depth].p_hdr == NULL);
1605 eh = path[depth].p_hdr;
1606
1607 if (ex > EXT_FIRST_EXTENT(eh))
1608 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1609
1610 if (!merge_done)
1611 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1612
1613 return ret;
1614 }
1615
1616 /*
1617 * check if a portion of the "newext" extent overlaps with an
1618 * existing extent.
1619 *
1620 * If there is an overlap discovered, it updates the length of the newext
1621 * such that there will be no overlap, and then returns 1.
1622 * If there is no overlap found, it returns 0.
1623 */
1624 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1625 struct inode *inode,
1626 struct ext4_extent *newext,
1627 struct ext4_ext_path *path)
1628 {
1629 ext4_lblk_t b1, b2;
1630 unsigned int depth, len1;
1631 unsigned int ret = 0;
1632
1633 b1 = le32_to_cpu(newext->ee_block);
1634 len1 = ext4_ext_get_actual_len(newext);
1635 depth = ext_depth(inode);
1636 if (!path[depth].p_ext)
1637 goto out;
1638 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1639 b2 &= ~(sbi->s_cluster_ratio - 1);
1640
1641 /*
1642 * get the next allocated block if the extent in the path
1643 * is before the requested block(s)
1644 */
1645 if (b2 < b1) {
1646 b2 = ext4_ext_next_allocated_block(path);
1647 if (b2 == EXT_MAX_BLOCKS)
1648 goto out;
1649 b2 &= ~(sbi->s_cluster_ratio - 1);
1650 }
1651
1652 /* check for wrap through zero on extent logical start block*/
1653 if (b1 + len1 < b1) {
1654 len1 = EXT_MAX_BLOCKS - b1;
1655 newext->ee_len = cpu_to_le16(len1);
1656 ret = 1;
1657 }
1658
1659 /* check for overlap */
1660 if (b1 + len1 > b2) {
1661 newext->ee_len = cpu_to_le16(b2 - b1);
1662 ret = 1;
1663 }
1664 out:
1665 return ret;
1666 }
1667
1668 /*
1669 * ext4_ext_insert_extent:
1670 * tries to merge requsted extent into the existing extent or
1671 * inserts requested extent as new one into the tree,
1672 * creating new leaf in the no-space case.
1673 */
1674 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1675 struct ext4_ext_path *path,
1676 struct ext4_extent *newext, int flag)
1677 {
1678 struct ext4_extent_header *eh;
1679 struct ext4_extent *ex, *fex;
1680 struct ext4_extent *nearex; /* nearest extent */
1681 struct ext4_ext_path *npath = NULL;
1682 int depth, len, err;
1683 ext4_lblk_t next;
1684 unsigned uninitialized = 0;
1685 int flags = 0;
1686
1687 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1688 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1689 return -EIO;
1690 }
1691 depth = ext_depth(inode);
1692 ex = path[depth].p_ext;
1693 if (unlikely(path[depth].p_hdr == NULL)) {
1694 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1695 return -EIO;
1696 }
1697
1698 /* try to insert block into found extent and return */
1699 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1700 && ext4_can_extents_be_merged(inode, ex, newext)) {
1701 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1702 ext4_ext_is_uninitialized(newext),
1703 ext4_ext_get_actual_len(newext),
1704 le32_to_cpu(ex->ee_block),
1705 ext4_ext_is_uninitialized(ex),
1706 ext4_ext_get_actual_len(ex),
1707 ext4_ext_pblock(ex));
1708 err = ext4_ext_get_access(handle, inode, path + depth);
1709 if (err)
1710 return err;
1711
1712 /*
1713 * ext4_can_extents_be_merged should have checked that either
1714 * both extents are uninitialized, or both aren't. Thus we
1715 * need to check only one of them here.
1716 */
1717 if (ext4_ext_is_uninitialized(ex))
1718 uninitialized = 1;
1719 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1720 + ext4_ext_get_actual_len(newext));
1721 if (uninitialized)
1722 ext4_ext_mark_uninitialized(ex);
1723 eh = path[depth].p_hdr;
1724 nearex = ex;
1725 goto merge;
1726 }
1727
1728 depth = ext_depth(inode);
1729 eh = path[depth].p_hdr;
1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1731 goto has_space;
1732
1733 /* probably next leaf has space for us? */
1734 fex = EXT_LAST_EXTENT(eh);
1735 next = EXT_MAX_BLOCKS;
1736 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1737 next = ext4_ext_next_leaf_block(path);
1738 if (next != EXT_MAX_BLOCKS) {
1739 ext_debug("next leaf block - %u\n", next);
1740 BUG_ON(npath != NULL);
1741 npath = ext4_ext_find_extent(inode, next, NULL);
1742 if (IS_ERR(npath))
1743 return PTR_ERR(npath);
1744 BUG_ON(npath->p_depth != path->p_depth);
1745 eh = npath[depth].p_hdr;
1746 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1747 ext_debug("next leaf isn't full(%d)\n",
1748 le16_to_cpu(eh->eh_entries));
1749 path = npath;
1750 goto has_space;
1751 }
1752 ext_debug("next leaf has no free space(%d,%d)\n",
1753 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1754 }
1755
1756 /*
1757 * There is no free space in the found leaf.
1758 * We're gonna add a new leaf in the tree.
1759 */
1760 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1761 flags = EXT4_MB_USE_ROOT_BLOCKS;
1762 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1763 if (err)
1764 goto cleanup;
1765 depth = ext_depth(inode);
1766 eh = path[depth].p_hdr;
1767
1768 has_space:
1769 nearex = path[depth].p_ext;
1770
1771 err = ext4_ext_get_access(handle, inode, path + depth);
1772 if (err)
1773 goto cleanup;
1774
1775 if (!nearex) {
1776 /* there is no extent in this leaf, create first one */
1777 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1778 le32_to_cpu(newext->ee_block),
1779 ext4_ext_pblock(newext),
1780 ext4_ext_is_uninitialized(newext),
1781 ext4_ext_get_actual_len(newext));
1782 nearex = EXT_FIRST_EXTENT(eh);
1783 } else {
1784 if (le32_to_cpu(newext->ee_block)
1785 > le32_to_cpu(nearex->ee_block)) {
1786 /* Insert after */
1787 ext_debug("insert %u:%llu:[%d]%d before: "
1788 "nearest %p\n",
1789 le32_to_cpu(newext->ee_block),
1790 ext4_ext_pblock(newext),
1791 ext4_ext_is_uninitialized(newext),
1792 ext4_ext_get_actual_len(newext),
1793 nearex);
1794 nearex++;
1795 } else {
1796 /* Insert before */
1797 BUG_ON(newext->ee_block == nearex->ee_block);
1798 ext_debug("insert %u:%llu:[%d]%d after: "
1799 "nearest %p\n",
1800 le32_to_cpu(newext->ee_block),
1801 ext4_ext_pblock(newext),
1802 ext4_ext_is_uninitialized(newext),
1803 ext4_ext_get_actual_len(newext),
1804 nearex);
1805 }
1806 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1807 if (len > 0) {
1808 ext_debug("insert %u:%llu:[%d]%d: "
1809 "move %d extents from 0x%p to 0x%p\n",
1810 le32_to_cpu(newext->ee_block),
1811 ext4_ext_pblock(newext),
1812 ext4_ext_is_uninitialized(newext),
1813 ext4_ext_get_actual_len(newext),
1814 len, nearex, nearex + 1);
1815 memmove(nearex + 1, nearex,
1816 len * sizeof(struct ext4_extent));
1817 }
1818 }
1819
1820 le16_add_cpu(&eh->eh_entries, 1);
1821 path[depth].p_ext = nearex;
1822 nearex->ee_block = newext->ee_block;
1823 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1824 nearex->ee_len = newext->ee_len;
1825
1826 merge:
1827 /* try to merge extents to the right */
1828 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1829 ext4_ext_try_to_merge(inode, path, nearex);
1830
1831 /* try to merge extents to the left */
1832
1833 /* time to correct all indexes above */
1834 err = ext4_ext_correct_indexes(handle, inode, path);
1835 if (err)
1836 goto cleanup;
1837
1838 err = ext4_ext_dirty(handle, inode, path + depth);
1839
1840 cleanup:
1841 if (npath) {
1842 ext4_ext_drop_refs(npath);
1843 kfree(npath);
1844 }
1845 ext4_ext_invalidate_cache(inode);
1846 return err;
1847 }
1848
1849 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1850 ext4_lblk_t num, ext_prepare_callback func,
1851 void *cbdata)
1852 {
1853 struct ext4_ext_path *path = NULL;
1854 struct ext4_ext_cache cbex;
1855 struct ext4_extent *ex;
1856 ext4_lblk_t next, start = 0, end = 0;
1857 ext4_lblk_t last = block + num;
1858 int depth, exists, err = 0;
1859
1860 BUG_ON(func == NULL);
1861 BUG_ON(inode == NULL);
1862
1863 while (block < last && block != EXT_MAX_BLOCKS) {
1864 num = last - block;
1865 /* find extent for this block */
1866 down_read(&EXT4_I(inode)->i_data_sem);
1867 path = ext4_ext_find_extent(inode, block, path);
1868 up_read(&EXT4_I(inode)->i_data_sem);
1869 if (IS_ERR(path)) {
1870 err = PTR_ERR(path);
1871 path = NULL;
1872 break;
1873 }
1874
1875 depth = ext_depth(inode);
1876 if (unlikely(path[depth].p_hdr == NULL)) {
1877 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1878 err = -EIO;
1879 break;
1880 }
1881 ex = path[depth].p_ext;
1882 next = ext4_ext_next_allocated_block(path);
1883
1884 exists = 0;
1885 if (!ex) {
1886 /* there is no extent yet, so try to allocate
1887 * all requested space */
1888 start = block;
1889 end = block + num;
1890 } else if (le32_to_cpu(ex->ee_block) > block) {
1891 /* need to allocate space before found extent */
1892 start = block;
1893 end = le32_to_cpu(ex->ee_block);
1894 if (block + num < end)
1895 end = block + num;
1896 } else if (block >= le32_to_cpu(ex->ee_block)
1897 + ext4_ext_get_actual_len(ex)) {
1898 /* need to allocate space after found extent */
1899 start = block;
1900 end = block + num;
1901 if (end >= next)
1902 end = next;
1903 } else if (block >= le32_to_cpu(ex->ee_block)) {
1904 /*
1905 * some part of requested space is covered
1906 * by found extent
1907 */
1908 start = block;
1909 end = le32_to_cpu(ex->ee_block)
1910 + ext4_ext_get_actual_len(ex);
1911 if (block + num < end)
1912 end = block + num;
1913 exists = 1;
1914 } else {
1915 BUG();
1916 }
1917 BUG_ON(end <= start);
1918
1919 if (!exists) {
1920 cbex.ec_block = start;
1921 cbex.ec_len = end - start;
1922 cbex.ec_start = 0;
1923 } else {
1924 cbex.ec_block = le32_to_cpu(ex->ee_block);
1925 cbex.ec_len = ext4_ext_get_actual_len(ex);
1926 cbex.ec_start = ext4_ext_pblock(ex);
1927 }
1928
1929 if (unlikely(cbex.ec_len == 0)) {
1930 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1931 err = -EIO;
1932 break;
1933 }
1934 err = func(inode, next, &cbex, ex, cbdata);
1935 ext4_ext_drop_refs(path);
1936
1937 if (err < 0)
1938 break;
1939
1940 if (err == EXT_REPEAT)
1941 continue;
1942 else if (err == EXT_BREAK) {
1943 err = 0;
1944 break;
1945 }
1946
1947 if (ext_depth(inode) != depth) {
1948 /* depth was changed. we have to realloc path */
1949 kfree(path);
1950 path = NULL;
1951 }
1952
1953 block = cbex.ec_block + cbex.ec_len;
1954 }
1955
1956 if (path) {
1957 ext4_ext_drop_refs(path);
1958 kfree(path);
1959 }
1960
1961 return err;
1962 }
1963
1964 static void
1965 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1966 __u32 len, ext4_fsblk_t start)
1967 {
1968 struct ext4_ext_cache *cex;
1969 BUG_ON(len == 0);
1970 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1971 trace_ext4_ext_put_in_cache(inode, block, len, start);
1972 cex = &EXT4_I(inode)->i_cached_extent;
1973 cex->ec_block = block;
1974 cex->ec_len = len;
1975 cex->ec_start = start;
1976 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1977 }
1978
1979 /*
1980 * ext4_ext_put_gap_in_cache:
1981 * calculate boundaries of the gap that the requested block fits into
1982 * and cache this gap
1983 */
1984 static void
1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1986 ext4_lblk_t block)
1987 {
1988 int depth = ext_depth(inode);
1989 unsigned long len;
1990 ext4_lblk_t lblock;
1991 struct ext4_extent *ex;
1992
1993 ex = path[depth].p_ext;
1994 if (ex == NULL) {
1995 /* there is no extent yet, so gap is [0;-] */
1996 lblock = 0;
1997 len = EXT_MAX_BLOCKS;
1998 ext_debug("cache gap(whole file):");
1999 } else if (block < le32_to_cpu(ex->ee_block)) {
2000 lblock = block;
2001 len = le32_to_cpu(ex->ee_block) - block;
2002 ext_debug("cache gap(before): %u [%u:%u]",
2003 block,
2004 le32_to_cpu(ex->ee_block),
2005 ext4_ext_get_actual_len(ex));
2006 } else if (block >= le32_to_cpu(ex->ee_block)
2007 + ext4_ext_get_actual_len(ex)) {
2008 ext4_lblk_t next;
2009 lblock = le32_to_cpu(ex->ee_block)
2010 + ext4_ext_get_actual_len(ex);
2011
2012 next = ext4_ext_next_allocated_block(path);
2013 ext_debug("cache gap(after): [%u:%u] %u",
2014 le32_to_cpu(ex->ee_block),
2015 ext4_ext_get_actual_len(ex),
2016 block);
2017 BUG_ON(next == lblock);
2018 len = next - lblock;
2019 } else {
2020 lblock = len = 0;
2021 BUG();
2022 }
2023
2024 ext_debug(" -> %u:%lu\n", lblock, len);
2025 ext4_ext_put_in_cache(inode, lblock, len, 0);
2026 }
2027
2028 /*
2029 * ext4_ext_check_cache()
2030 * Checks to see if the given block is in the cache.
2031 * If it is, the cached extent is stored in the given
2032 * cache extent pointer. If the cached extent is a hole,
2033 * this routine should be used instead of
2034 * ext4_ext_in_cache if the calling function needs to
2035 * know the size of the hole.
2036 *
2037 * @inode: The files inode
2038 * @block: The block to look for in the cache
2039 * @ex: Pointer where the cached extent will be stored
2040 * if it contains block
2041 *
2042 * Return 0 if cache is invalid; 1 if the cache is valid
2043 */
2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2045 struct ext4_ext_cache *ex){
2046 struct ext4_ext_cache *cex;
2047 struct ext4_sb_info *sbi;
2048 int ret = 0;
2049
2050 /*
2051 * We borrow i_block_reservation_lock to protect i_cached_extent
2052 */
2053 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2054 cex = &EXT4_I(inode)->i_cached_extent;
2055 sbi = EXT4_SB(inode->i_sb);
2056
2057 /* has cache valid data? */
2058 if (cex->ec_len == 0)
2059 goto errout;
2060
2061 if (in_range(block, cex->ec_block, cex->ec_len)) {
2062 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2063 ext_debug("%u cached by %u:%u:%llu\n",
2064 block,
2065 cex->ec_block, cex->ec_len, cex->ec_start);
2066 ret = 1;
2067 }
2068 errout:
2069 if (!ret)
2070 sbi->extent_cache_misses++;
2071 else
2072 sbi->extent_cache_hits++;
2073 trace_ext4_ext_in_cache(inode, block, ret);
2074 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2075 return ret;
2076 }
2077
2078 /*
2079 * ext4_ext_in_cache()
2080 * Checks to see if the given block is in the cache.
2081 * If it is, the cached extent is stored in the given
2082 * extent pointer.
2083 *
2084 * @inode: The files inode
2085 * @block: The block to look for in the cache
2086 * @ex: Pointer where the cached extent will be stored
2087 * if it contains block
2088 *
2089 * Return 0 if cache is invalid; 1 if the cache is valid
2090 */
2091 static int
2092 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2093 struct ext4_extent *ex)
2094 {
2095 struct ext4_ext_cache cex;
2096 int ret = 0;
2097
2098 if (ext4_ext_check_cache(inode, block, &cex)) {
2099 ex->ee_block = cpu_to_le32(cex.ec_block);
2100 ext4_ext_store_pblock(ex, cex.ec_start);
2101 ex->ee_len = cpu_to_le16(cex.ec_len);
2102 ret = 1;
2103 }
2104
2105 return ret;
2106 }
2107
2108
2109 /*
2110 * ext4_ext_rm_idx:
2111 * removes index from the index block.
2112 */
2113 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2114 struct ext4_ext_path *path)
2115 {
2116 int err;
2117 ext4_fsblk_t leaf;
2118
2119 /* free index block */
2120 path--;
2121 leaf = ext4_idx_pblock(path->p_idx);
2122 if (unlikely(path->p_hdr->eh_entries == 0)) {
2123 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2124 return -EIO;
2125 }
2126 err = ext4_ext_get_access(handle, inode, path);
2127 if (err)
2128 return err;
2129
2130 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2131 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2132 len *= sizeof(struct ext4_extent_idx);
2133 memmove(path->p_idx, path->p_idx + 1, len);
2134 }
2135
2136 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2137 err = ext4_ext_dirty(handle, inode, path);
2138 if (err)
2139 return err;
2140 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2141 trace_ext4_ext_rm_idx(inode, leaf);
2142
2143 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2144 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2145 return err;
2146 }
2147
2148 /*
2149 * ext4_ext_calc_credits_for_single_extent:
2150 * This routine returns max. credits that needed to insert an extent
2151 * to the extent tree.
2152 * When pass the actual path, the caller should calculate credits
2153 * under i_data_sem.
2154 */
2155 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2156 struct ext4_ext_path *path)
2157 {
2158 if (path) {
2159 int depth = ext_depth(inode);
2160 int ret = 0;
2161
2162 /* probably there is space in leaf? */
2163 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2164 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2165
2166 /*
2167 * There are some space in the leaf tree, no
2168 * need to account for leaf block credit
2169 *
2170 * bitmaps and block group descriptor blocks
2171 * and other metadata blocks still need to be
2172 * accounted.
2173 */
2174 /* 1 bitmap, 1 block group descriptor */
2175 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2176 return ret;
2177 }
2178 }
2179
2180 return ext4_chunk_trans_blocks(inode, nrblocks);
2181 }
2182
2183 /*
2184 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2185 *
2186 * if nrblocks are fit in a single extent (chunk flag is 1), then
2187 * in the worse case, each tree level index/leaf need to be changed
2188 * if the tree split due to insert a new extent, then the old tree
2189 * index/leaf need to be updated too
2190 *
2191 * If the nrblocks are discontiguous, they could cause
2192 * the whole tree split more than once, but this is really rare.
2193 */
2194 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2195 {
2196 int index;
2197 int depth = ext_depth(inode);
2198
2199 if (chunk)
2200 index = depth * 2;
2201 else
2202 index = depth * 3;
2203
2204 return index;
2205 }
2206
2207 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2208 struct ext4_extent *ex,
2209 ext4_fsblk_t *partial_cluster,
2210 ext4_lblk_t from, ext4_lblk_t to)
2211 {
2212 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2213 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2214 ext4_fsblk_t pblk;
2215 int flags = EXT4_FREE_BLOCKS_FORGET;
2216
2217 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2218 flags |= EXT4_FREE_BLOCKS_METADATA;
2219 /*
2220 * For bigalloc file systems, we never free a partial cluster
2221 * at the beginning of the extent. Instead, we make a note
2222 * that we tried freeing the cluster, and check to see if we
2223 * need to free it on a subsequent call to ext4_remove_blocks,
2224 * or at the end of the ext4_truncate() operation.
2225 */
2226 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2227
2228 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2229 /*
2230 * If we have a partial cluster, and it's different from the
2231 * cluster of the last block, we need to explicitly free the
2232 * partial cluster here.
2233 */
2234 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2235 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2236 ext4_free_blocks(handle, inode, NULL,
2237 EXT4_C2B(sbi, *partial_cluster),
2238 sbi->s_cluster_ratio, flags);
2239 *partial_cluster = 0;
2240 }
2241
2242 #ifdef EXTENTS_STATS
2243 {
2244 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2245 spin_lock(&sbi->s_ext_stats_lock);
2246 sbi->s_ext_blocks += ee_len;
2247 sbi->s_ext_extents++;
2248 if (ee_len < sbi->s_ext_min)
2249 sbi->s_ext_min = ee_len;
2250 if (ee_len > sbi->s_ext_max)
2251 sbi->s_ext_max = ee_len;
2252 if (ext_depth(inode) > sbi->s_depth_max)
2253 sbi->s_depth_max = ext_depth(inode);
2254 spin_unlock(&sbi->s_ext_stats_lock);
2255 }
2256 #endif
2257 if (from >= le32_to_cpu(ex->ee_block)
2258 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2259 /* tail removal */
2260 ext4_lblk_t num;
2261
2262 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2263 pblk = ext4_ext_pblock(ex) + ee_len - num;
2264 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2265 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2266 /*
2267 * If the block range to be freed didn't start at the
2268 * beginning of a cluster, and we removed the entire
2269 * extent, save the partial cluster here, since we
2270 * might need to delete if we determine that the
2271 * truncate operation has removed all of the blocks in
2272 * the cluster.
2273 */
2274 if (pblk & (sbi->s_cluster_ratio - 1) &&
2275 (ee_len == num))
2276 *partial_cluster = EXT4_B2C(sbi, pblk);
2277 else
2278 *partial_cluster = 0;
2279 } else if (from == le32_to_cpu(ex->ee_block)
2280 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2281 /* head removal */
2282 ext4_lblk_t num;
2283 ext4_fsblk_t start;
2284
2285 num = to - from;
2286 start = ext4_ext_pblock(ex);
2287
2288 ext_debug("free first %u blocks starting %llu\n", num, start);
2289 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2290
2291 } else {
2292 printk(KERN_INFO "strange request: removal(2) "
2293 "%u-%u from %u:%u\n",
2294 from, to, le32_to_cpu(ex->ee_block), ee_len);
2295 }
2296 return 0;
2297 }
2298
2299
2300 /*
2301 * ext4_ext_rm_leaf() Removes the extents associated with the
2302 * blocks appearing between "start" and "end", and splits the extents
2303 * if "start" and "end" appear in the same extent
2304 *
2305 * @handle: The journal handle
2306 * @inode: The files inode
2307 * @path: The path to the leaf
2308 * @start: The first block to remove
2309 * @end: The last block to remove
2310 */
2311 static int
2312 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2313 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2314 ext4_lblk_t start, ext4_lblk_t end)
2315 {
2316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2317 int err = 0, correct_index = 0;
2318 int depth = ext_depth(inode), credits;
2319 struct ext4_extent_header *eh;
2320 ext4_lblk_t a, b;
2321 unsigned num;
2322 ext4_lblk_t ex_ee_block;
2323 unsigned short ex_ee_len;
2324 unsigned uninitialized = 0;
2325 struct ext4_extent *ex;
2326
2327 /* the header must be checked already in ext4_ext_remove_space() */
2328 ext_debug("truncate since %u in leaf to %u\n", start, end);
2329 if (!path[depth].p_hdr)
2330 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2331 eh = path[depth].p_hdr;
2332 if (unlikely(path[depth].p_hdr == NULL)) {
2333 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2334 return -EIO;
2335 }
2336 /* find where to start removing */
2337 ex = EXT_LAST_EXTENT(eh);
2338
2339 ex_ee_block = le32_to_cpu(ex->ee_block);
2340 ex_ee_len = ext4_ext_get_actual_len(ex);
2341
2342 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2343
2344 while (ex >= EXT_FIRST_EXTENT(eh) &&
2345 ex_ee_block + ex_ee_len > start) {
2346
2347 if (ext4_ext_is_uninitialized(ex))
2348 uninitialized = 1;
2349 else
2350 uninitialized = 0;
2351
2352 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2353 uninitialized, ex_ee_len);
2354 path[depth].p_ext = ex;
2355
2356 a = ex_ee_block > start ? ex_ee_block : start;
2357 b = ex_ee_block+ex_ee_len - 1 < end ?
2358 ex_ee_block+ex_ee_len - 1 : end;
2359
2360 ext_debug(" border %u:%u\n", a, b);
2361
2362 /* If this extent is beyond the end of the hole, skip it */
2363 if (end < ex_ee_block) {
2364 ex--;
2365 ex_ee_block = le32_to_cpu(ex->ee_block);
2366 ex_ee_len = ext4_ext_get_actual_len(ex);
2367 continue;
2368 } else if (b != ex_ee_block + ex_ee_len - 1) {
2369 EXT4_ERROR_INODE(inode," bad truncate %u:%u\n",
2370 start, end);
2371 err = -EIO;
2372 goto out;
2373 } else if (a != ex_ee_block) {
2374 /* remove tail of the extent */
2375 num = a - ex_ee_block;
2376 } else {
2377 /* remove whole extent: excellent! */
2378 num = 0;
2379 }
2380 /*
2381 * 3 for leaf, sb, and inode plus 2 (bmap and group
2382 * descriptor) for each block group; assume two block
2383 * groups plus ex_ee_len/blocks_per_block_group for
2384 * the worst case
2385 */
2386 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2387 if (ex == EXT_FIRST_EXTENT(eh)) {
2388 correct_index = 1;
2389 credits += (ext_depth(inode)) + 1;
2390 }
2391 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2392
2393 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2394 if (err)
2395 goto out;
2396
2397 err = ext4_ext_get_access(handle, inode, path + depth);
2398 if (err)
2399 goto out;
2400
2401 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2402 a, b);
2403 if (err)
2404 goto out;
2405
2406 if (num == 0)
2407 /* this extent is removed; mark slot entirely unused */
2408 ext4_ext_store_pblock(ex, 0);
2409
2410 ex->ee_len = cpu_to_le16(num);
2411 /*
2412 * Do not mark uninitialized if all the blocks in the
2413 * extent have been removed.
2414 */
2415 if (uninitialized && num)
2416 ext4_ext_mark_uninitialized(ex);
2417 /*
2418 * If the extent was completely released,
2419 * we need to remove it from the leaf
2420 */
2421 if (num == 0) {
2422 if (end != EXT_MAX_BLOCKS - 1) {
2423 /*
2424 * For hole punching, we need to scoot all the
2425 * extents up when an extent is removed so that
2426 * we dont have blank extents in the middle
2427 */
2428 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2429 sizeof(struct ext4_extent));
2430
2431 /* Now get rid of the one at the end */
2432 memset(EXT_LAST_EXTENT(eh), 0,
2433 sizeof(struct ext4_extent));
2434 }
2435 le16_add_cpu(&eh->eh_entries, -1);
2436 } else
2437 *partial_cluster = 0;
2438
2439 err = ext4_ext_dirty(handle, inode, path + depth);
2440 if (err)
2441 goto out;
2442
2443 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2444 ext4_ext_pblock(ex));
2445 ex--;
2446 ex_ee_block = le32_to_cpu(ex->ee_block);
2447 ex_ee_len = ext4_ext_get_actual_len(ex);
2448 }
2449
2450 if (correct_index && eh->eh_entries)
2451 err = ext4_ext_correct_indexes(handle, inode, path);
2452
2453 /*
2454 * If there is still a entry in the leaf node, check to see if
2455 * it references the partial cluster. This is the only place
2456 * where it could; if it doesn't, we can free the cluster.
2457 */
2458 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2459 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2460 *partial_cluster)) {
2461 int flags = EXT4_FREE_BLOCKS_FORGET;
2462
2463 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2464 flags |= EXT4_FREE_BLOCKS_METADATA;
2465
2466 ext4_free_blocks(handle, inode, NULL,
2467 EXT4_C2B(sbi, *partial_cluster),
2468 sbi->s_cluster_ratio, flags);
2469 *partial_cluster = 0;
2470 }
2471
2472 /* if this leaf is free, then we should
2473 * remove it from index block above */
2474 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2475 err = ext4_ext_rm_idx(handle, inode, path + depth);
2476
2477 out:
2478 return err;
2479 }
2480
2481 /*
2482 * ext4_ext_more_to_rm:
2483 * returns 1 if current index has to be freed (even partial)
2484 */
2485 static int
2486 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2487 {
2488 BUG_ON(path->p_idx == NULL);
2489
2490 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2491 return 0;
2492
2493 /*
2494 * if truncate on deeper level happened, it wasn't partial,
2495 * so we have to consider current index for truncation
2496 */
2497 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2498 return 0;
2499 return 1;
2500 }
2501
2502 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2503 ext4_lblk_t end)
2504 {
2505 struct super_block *sb = inode->i_sb;
2506 int depth = ext_depth(inode);
2507 struct ext4_ext_path *path;
2508 ext4_fsblk_t partial_cluster = 0;
2509 handle_t *handle;
2510 int i, err;
2511
2512 ext_debug("truncate since %u to %u\n", start, end);
2513
2514 /* probably first extent we're gonna free will be last in block */
2515 handle = ext4_journal_start(inode, depth + 1);
2516 if (IS_ERR(handle))
2517 return PTR_ERR(handle);
2518
2519 again:
2520 ext4_ext_invalidate_cache(inode);
2521
2522 trace_ext4_ext_remove_space(inode, start, depth);
2523
2524 /*
2525 * Check if we are removing extents inside the extent tree. If that
2526 * is the case, we are going to punch a hole inside the extent tree
2527 * so we have to check whether we need to split the extent covering
2528 * the last block to remove so we can easily remove the part of it
2529 * in ext4_ext_rm_leaf().
2530 */
2531 if (end < EXT_MAX_BLOCKS - 1) {
2532 struct ext4_extent *ex;
2533 ext4_lblk_t ee_block;
2534
2535 /* find extent for this block */
2536 path = ext4_ext_find_extent(inode, end, NULL);
2537 if (IS_ERR(path)) {
2538 ext4_journal_stop(handle);
2539 return PTR_ERR(path);
2540 }
2541 depth = ext_depth(inode);
2542 ex = path[depth].p_ext;
2543 if (!ex)
2544 goto cont;
2545
2546 ee_block = le32_to_cpu(ex->ee_block);
2547
2548 /*
2549 * See if the last block is inside the extent, if so split
2550 * the extent at 'end' block so we can easily remove the
2551 * tail of the first part of the split extent in
2552 * ext4_ext_rm_leaf().
2553 */
2554 if (end >= ee_block &&
2555 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2556 int split_flag = 0;
2557
2558 if (ext4_ext_is_uninitialized(ex))
2559 split_flag = EXT4_EXT_MARK_UNINIT1 |
2560 EXT4_EXT_MARK_UNINIT2;
2561
2562 /*
2563 * Split the extent in two so that 'end' is the last
2564 * block in the first new extent
2565 */
2566 err = ext4_split_extent_at(handle, inode, path,
2567 end + 1, split_flag,
2568 EXT4_GET_BLOCKS_PRE_IO |
2569 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2570
2571 if (err < 0)
2572 goto out;
2573 }
2574 ext4_ext_drop_refs(path);
2575 kfree(path);
2576 }
2577 cont:
2578
2579 /*
2580 * We start scanning from right side, freeing all the blocks
2581 * after i_size and walking into the tree depth-wise.
2582 */
2583 depth = ext_depth(inode);
2584 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2585 if (path == NULL) {
2586 ext4_journal_stop(handle);
2587 return -ENOMEM;
2588 }
2589 path[0].p_depth = depth;
2590 path[0].p_hdr = ext_inode_hdr(inode);
2591
2592 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2593 err = -EIO;
2594 goto out;
2595 }
2596 i = err = 0;
2597
2598 while (i >= 0 && err == 0) {
2599 if (i == depth) {
2600 /* this is leaf block */
2601 err = ext4_ext_rm_leaf(handle, inode, path,
2602 &partial_cluster, start,
2603 end);
2604 /* root level has p_bh == NULL, brelse() eats this */
2605 brelse(path[i].p_bh);
2606 path[i].p_bh = NULL;
2607 i--;
2608 continue;
2609 }
2610
2611 /* this is index block */
2612 if (!path[i].p_hdr) {
2613 ext_debug("initialize header\n");
2614 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2615 }
2616
2617 if (!path[i].p_idx) {
2618 /* this level hasn't been touched yet */
2619 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2620 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2621 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2622 path[i].p_hdr,
2623 le16_to_cpu(path[i].p_hdr->eh_entries));
2624 } else {
2625 /* we were already here, see at next index */
2626 path[i].p_idx--;
2627 }
2628
2629 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2630 i, EXT_FIRST_INDEX(path[i].p_hdr),
2631 path[i].p_idx);
2632 if (ext4_ext_more_to_rm(path + i)) {
2633 struct buffer_head *bh;
2634 /* go to the next level */
2635 ext_debug("move to level %d (block %llu)\n",
2636 i + 1, ext4_idx_pblock(path[i].p_idx));
2637 memset(path + i + 1, 0, sizeof(*path));
2638 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2639 if (!bh) {
2640 /* should we reset i_size? */
2641 err = -EIO;
2642 break;
2643 }
2644 if (WARN_ON(i + 1 > depth)) {
2645 err = -EIO;
2646 break;
2647 }
2648 if (ext4_ext_check(inode, ext_block_hdr(bh),
2649 depth - i - 1)) {
2650 err = -EIO;
2651 break;
2652 }
2653 path[i + 1].p_bh = bh;
2654
2655 /* save actual number of indexes since this
2656 * number is changed at the next iteration */
2657 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2658 i++;
2659 } else {
2660 /* we finished processing this index, go up */
2661 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2662 /* index is empty, remove it;
2663 * handle must be already prepared by the
2664 * truncatei_leaf() */
2665 err = ext4_ext_rm_idx(handle, inode, path + i);
2666 }
2667 /* root level has p_bh == NULL, brelse() eats this */
2668 brelse(path[i].p_bh);
2669 path[i].p_bh = NULL;
2670 i--;
2671 ext_debug("return to level %d\n", i);
2672 }
2673 }
2674
2675 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2676 path->p_hdr->eh_entries);
2677
2678 /* If we still have something in the partial cluster and we have removed
2679 * even the first extent, then we should free the blocks in the partial
2680 * cluster as well. */
2681 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2682 int flags = EXT4_FREE_BLOCKS_FORGET;
2683
2684 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2685 flags |= EXT4_FREE_BLOCKS_METADATA;
2686
2687 ext4_free_blocks(handle, inode, NULL,
2688 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2689 EXT4_SB(sb)->s_cluster_ratio, flags);
2690 partial_cluster = 0;
2691 }
2692
2693 /* TODO: flexible tree reduction should be here */
2694 if (path->p_hdr->eh_entries == 0) {
2695 /*
2696 * truncate to zero freed all the tree,
2697 * so we need to correct eh_depth
2698 */
2699 err = ext4_ext_get_access(handle, inode, path);
2700 if (err == 0) {
2701 ext_inode_hdr(inode)->eh_depth = 0;
2702 ext_inode_hdr(inode)->eh_max =
2703 cpu_to_le16(ext4_ext_space_root(inode, 0));
2704 err = ext4_ext_dirty(handle, inode, path);
2705 }
2706 }
2707 out:
2708 ext4_ext_drop_refs(path);
2709 kfree(path);
2710 if (err == -EAGAIN)
2711 goto again;
2712 ext4_journal_stop(handle);
2713
2714 return err;
2715 }
2716
2717 /*
2718 * called at mount time
2719 */
2720 void ext4_ext_init(struct super_block *sb)
2721 {
2722 /*
2723 * possible initialization would be here
2724 */
2725
2726 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2727 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2728 printk(KERN_INFO "EXT4-fs: file extents enabled");
2729 #ifdef AGGRESSIVE_TEST
2730 printk(", aggressive tests");
2731 #endif
2732 #ifdef CHECK_BINSEARCH
2733 printk(", check binsearch");
2734 #endif
2735 #ifdef EXTENTS_STATS
2736 printk(", stats");
2737 #endif
2738 printk("\n");
2739 #endif
2740 #ifdef EXTENTS_STATS
2741 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2742 EXT4_SB(sb)->s_ext_min = 1 << 30;
2743 EXT4_SB(sb)->s_ext_max = 0;
2744 #endif
2745 }
2746 }
2747
2748 /*
2749 * called at umount time
2750 */
2751 void ext4_ext_release(struct super_block *sb)
2752 {
2753 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2754 return;
2755
2756 #ifdef EXTENTS_STATS
2757 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2758 struct ext4_sb_info *sbi = EXT4_SB(sb);
2759 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2760 sbi->s_ext_blocks, sbi->s_ext_extents,
2761 sbi->s_ext_blocks / sbi->s_ext_extents);
2762 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2763 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2764 }
2765 #endif
2766 }
2767
2768 /* FIXME!! we need to try to merge to left or right after zero-out */
2769 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2770 {
2771 ext4_fsblk_t ee_pblock;
2772 unsigned int ee_len;
2773 int ret;
2774
2775 ee_len = ext4_ext_get_actual_len(ex);
2776 ee_pblock = ext4_ext_pblock(ex);
2777
2778 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2779 if (ret > 0)
2780 ret = 0;
2781
2782 return ret;
2783 }
2784
2785 /*
2786 * ext4_split_extent_at() splits an extent at given block.
2787 *
2788 * @handle: the journal handle
2789 * @inode: the file inode
2790 * @path: the path to the extent
2791 * @split: the logical block where the extent is splitted.
2792 * @split_flags: indicates if the extent could be zeroout if split fails, and
2793 * the states(init or uninit) of new extents.
2794 * @flags: flags used to insert new extent to extent tree.
2795 *
2796 *
2797 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2798 * of which are deterimined by split_flag.
2799 *
2800 * There are two cases:
2801 * a> the extent are splitted into two extent.
2802 * b> split is not needed, and just mark the extent.
2803 *
2804 * return 0 on success.
2805 */
2806 static int ext4_split_extent_at(handle_t *handle,
2807 struct inode *inode,
2808 struct ext4_ext_path *path,
2809 ext4_lblk_t split,
2810 int split_flag,
2811 int flags)
2812 {
2813 ext4_fsblk_t newblock;
2814 ext4_lblk_t ee_block;
2815 struct ext4_extent *ex, newex, orig_ex;
2816 struct ext4_extent *ex2 = NULL;
2817 unsigned int ee_len, depth;
2818 int err = 0;
2819
2820 ext_debug("ext4_split_extents_at: inode %lu, logical"
2821 "block %llu\n", inode->i_ino, (unsigned long long)split);
2822
2823 ext4_ext_show_leaf(inode, path);
2824
2825 depth = ext_depth(inode);
2826 ex = path[depth].p_ext;
2827 ee_block = le32_to_cpu(ex->ee_block);
2828 ee_len = ext4_ext_get_actual_len(ex);
2829 newblock = split - ee_block + ext4_ext_pblock(ex);
2830
2831 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2832
2833 err = ext4_ext_get_access(handle, inode, path + depth);
2834 if (err)
2835 goto out;
2836
2837 if (split == ee_block) {
2838 /*
2839 * case b: block @split is the block that the extent begins with
2840 * then we just change the state of the extent, and splitting
2841 * is not needed.
2842 */
2843 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2844 ext4_ext_mark_uninitialized(ex);
2845 else
2846 ext4_ext_mark_initialized(ex);
2847
2848 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2849 ext4_ext_try_to_merge(inode, path, ex);
2850
2851 err = ext4_ext_dirty(handle, inode, path + depth);
2852 goto out;
2853 }
2854
2855 /* case a */
2856 memcpy(&orig_ex, ex, sizeof(orig_ex));
2857 ex->ee_len = cpu_to_le16(split - ee_block);
2858 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2859 ext4_ext_mark_uninitialized(ex);
2860
2861 /*
2862 * path may lead to new leaf, not to original leaf any more
2863 * after ext4_ext_insert_extent() returns,
2864 */
2865 err = ext4_ext_dirty(handle, inode, path + depth);
2866 if (err)
2867 goto fix_extent_len;
2868
2869 ex2 = &newex;
2870 ex2->ee_block = cpu_to_le32(split);
2871 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2872 ext4_ext_store_pblock(ex2, newblock);
2873 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2874 ext4_ext_mark_uninitialized(ex2);
2875
2876 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2877 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2878 err = ext4_ext_zeroout(inode, &orig_ex);
2879 if (err)
2880 goto fix_extent_len;
2881 /* update the extent length and mark as initialized */
2882 ex->ee_len = cpu_to_le32(ee_len);
2883 ext4_ext_try_to_merge(inode, path, ex);
2884 err = ext4_ext_dirty(handle, inode, path + depth);
2885 goto out;
2886 } else if (err)
2887 goto fix_extent_len;
2888
2889 out:
2890 ext4_ext_show_leaf(inode, path);
2891 return err;
2892
2893 fix_extent_len:
2894 ex->ee_len = orig_ex.ee_len;
2895 ext4_ext_dirty(handle, inode, path + depth);
2896 return err;
2897 }
2898
2899 /*
2900 * ext4_split_extents() splits an extent and mark extent which is covered
2901 * by @map as split_flags indicates
2902 *
2903 * It may result in splitting the extent into multiple extents (upto three)
2904 * There are three possibilities:
2905 * a> There is no split required
2906 * b> Splits in two extents: Split is happening at either end of the extent
2907 * c> Splits in three extents: Somone is splitting in middle of the extent
2908 *
2909 */
2910 static int ext4_split_extent(handle_t *handle,
2911 struct inode *inode,
2912 struct ext4_ext_path *path,
2913 struct ext4_map_blocks *map,
2914 int split_flag,
2915 int flags)
2916 {
2917 ext4_lblk_t ee_block;
2918 struct ext4_extent *ex;
2919 unsigned int ee_len, depth;
2920 int err = 0;
2921 int uninitialized;
2922 int split_flag1, flags1;
2923
2924 depth = ext_depth(inode);
2925 ex = path[depth].p_ext;
2926 ee_block = le32_to_cpu(ex->ee_block);
2927 ee_len = ext4_ext_get_actual_len(ex);
2928 uninitialized = ext4_ext_is_uninitialized(ex);
2929
2930 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2931 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2932 EXT4_EXT_MAY_ZEROOUT : 0;
2933 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2934 if (uninitialized)
2935 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2936 EXT4_EXT_MARK_UNINIT2;
2937 err = ext4_split_extent_at(handle, inode, path,
2938 map->m_lblk + map->m_len, split_flag1, flags1);
2939 if (err)
2940 goto out;
2941 }
2942
2943 ext4_ext_drop_refs(path);
2944 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2945 if (IS_ERR(path))
2946 return PTR_ERR(path);
2947
2948 if (map->m_lblk >= ee_block) {
2949 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2950 EXT4_EXT_MAY_ZEROOUT : 0;
2951 if (uninitialized)
2952 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2953 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2954 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2955 err = ext4_split_extent_at(handle, inode, path,
2956 map->m_lblk, split_flag1, flags);
2957 if (err)
2958 goto out;
2959 }
2960
2961 ext4_ext_show_leaf(inode, path);
2962 out:
2963 return err ? err : map->m_len;
2964 }
2965
2966 #define EXT4_EXT_ZERO_LEN 7
2967 /*
2968 * This function is called by ext4_ext_map_blocks() if someone tries to write
2969 * to an uninitialized extent. It may result in splitting the uninitialized
2970 * extent into multiple extents (up to three - one initialized and two
2971 * uninitialized).
2972 * There are three possibilities:
2973 * a> There is no split required: Entire extent should be initialized
2974 * b> Splits in two extents: Write is happening at either end of the extent
2975 * c> Splits in three extents: Somone is writing in middle of the extent
2976 *
2977 * Pre-conditions:
2978 * - The extent pointed to by 'path' is uninitialized.
2979 * - The extent pointed to by 'path' contains a superset
2980 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2981 *
2982 * Post-conditions on success:
2983 * - the returned value is the number of blocks beyond map->l_lblk
2984 * that are allocated and initialized.
2985 * It is guaranteed to be >= map->m_len.
2986 */
2987 static int ext4_ext_convert_to_initialized(handle_t *handle,
2988 struct inode *inode,
2989 struct ext4_map_blocks *map,
2990 struct ext4_ext_path *path)
2991 {
2992 struct ext4_extent_header *eh;
2993 struct ext4_map_blocks split_map;
2994 struct ext4_extent zero_ex;
2995 struct ext4_extent *ex;
2996 ext4_lblk_t ee_block, eof_block;
2997 unsigned int ee_len, depth;
2998 int allocated;
2999 int err = 0;
3000 int split_flag = 0;
3001
3002 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3003 "block %llu, max_blocks %u\n", inode->i_ino,
3004 (unsigned long long)map->m_lblk, map->m_len);
3005
3006 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3007 inode->i_sb->s_blocksize_bits;
3008 if (eof_block < map->m_lblk + map->m_len)
3009 eof_block = map->m_lblk + map->m_len;
3010
3011 depth = ext_depth(inode);
3012 eh = path[depth].p_hdr;
3013 ex = path[depth].p_ext;
3014 ee_block = le32_to_cpu(ex->ee_block);
3015 ee_len = ext4_ext_get_actual_len(ex);
3016 allocated = ee_len - (map->m_lblk - ee_block);
3017
3018 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3019
3020 /* Pre-conditions */
3021 BUG_ON(!ext4_ext_is_uninitialized(ex));
3022 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3023
3024 /*
3025 * Attempt to transfer newly initialized blocks from the currently
3026 * uninitialized extent to its left neighbor. This is much cheaper
3027 * than an insertion followed by a merge as those involve costly
3028 * memmove() calls. This is the common case in steady state for
3029 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3030 * writes.
3031 *
3032 * Limitations of the current logic:
3033 * - L1: we only deal with writes at the start of the extent.
3034 * The approach could be extended to writes at the end
3035 * of the extent but this scenario was deemed less common.
3036 * - L2: we do not deal with writes covering the whole extent.
3037 * This would require removing the extent if the transfer
3038 * is possible.
3039 * - L3: we only attempt to merge with an extent stored in the
3040 * same extent tree node.
3041 */
3042 if ((map->m_lblk == ee_block) && /*L1*/
3043 (map->m_len < ee_len) && /*L2*/
3044 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3045 struct ext4_extent *prev_ex;
3046 ext4_lblk_t prev_lblk;
3047 ext4_fsblk_t prev_pblk, ee_pblk;
3048 unsigned int prev_len, write_len;
3049
3050 prev_ex = ex - 1;
3051 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3052 prev_len = ext4_ext_get_actual_len(prev_ex);
3053 prev_pblk = ext4_ext_pblock(prev_ex);
3054 ee_pblk = ext4_ext_pblock(ex);
3055 write_len = map->m_len;
3056
3057 /*
3058 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3059 * upon those conditions:
3060 * - C1: prev_ex is initialized,
3061 * - C2: prev_ex is logically abutting ex,
3062 * - C3: prev_ex is physically abutting ex,
3063 * - C4: prev_ex can receive the additional blocks without
3064 * overflowing the (initialized) length limit.
3065 */
3066 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3067 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3068 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3069 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3070 err = ext4_ext_get_access(handle, inode, path + depth);
3071 if (err)
3072 goto out;
3073
3074 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3075 map, ex, prev_ex);
3076
3077 /* Shift the start of ex by 'write_len' blocks */
3078 ex->ee_block = cpu_to_le32(ee_block + write_len);
3079 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3080 ex->ee_len = cpu_to_le16(ee_len - write_len);
3081 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3082
3083 /* Extend prev_ex by 'write_len' blocks */
3084 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3085
3086 /* Mark the block containing both extents as dirty */
3087 ext4_ext_dirty(handle, inode, path + depth);
3088
3089 /* Update path to point to the right extent */
3090 path[depth].p_ext = prev_ex;
3091
3092 /* Result: number of initialized blocks past m_lblk */
3093 allocated = write_len;
3094 goto out;
3095 }
3096 }
3097
3098 WARN_ON(map->m_lblk < ee_block);
3099 /*
3100 * It is safe to convert extent to initialized via explicit
3101 * zeroout only if extent is fully insde i_size or new_size.
3102 */
3103 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3104
3105 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3106 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3107 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3108 err = ext4_ext_zeroout(inode, ex);
3109 if (err)
3110 goto out;
3111
3112 err = ext4_ext_get_access(handle, inode, path + depth);
3113 if (err)
3114 goto out;
3115 ext4_ext_mark_initialized(ex);
3116 ext4_ext_try_to_merge(inode, path, ex);
3117 err = ext4_ext_dirty(handle, inode, path + depth);
3118 goto out;
3119 }
3120
3121 /*
3122 * four cases:
3123 * 1. split the extent into three extents.
3124 * 2. split the extent into two extents, zeroout the first half.
3125 * 3. split the extent into two extents, zeroout the second half.
3126 * 4. split the extent into two extents with out zeroout.
3127 */
3128 split_map.m_lblk = map->m_lblk;
3129 split_map.m_len = map->m_len;
3130
3131 if (allocated > map->m_len) {
3132 if (allocated <= EXT4_EXT_ZERO_LEN &&
3133 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3134 /* case 3 */
3135 zero_ex.ee_block =
3136 cpu_to_le32(map->m_lblk);
3137 zero_ex.ee_len = cpu_to_le16(allocated);
3138 ext4_ext_store_pblock(&zero_ex,
3139 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3140 err = ext4_ext_zeroout(inode, &zero_ex);
3141 if (err)
3142 goto out;
3143 split_map.m_lblk = map->m_lblk;
3144 split_map.m_len = allocated;
3145 } else if ((map->m_lblk - ee_block + map->m_len <
3146 EXT4_EXT_ZERO_LEN) &&
3147 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3148 /* case 2 */
3149 if (map->m_lblk != ee_block) {
3150 zero_ex.ee_block = ex->ee_block;
3151 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3152 ee_block);
3153 ext4_ext_store_pblock(&zero_ex,
3154 ext4_ext_pblock(ex));
3155 err = ext4_ext_zeroout(inode, &zero_ex);
3156 if (err)
3157 goto out;
3158 }
3159
3160 split_map.m_lblk = ee_block;
3161 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3162 allocated = map->m_len;
3163 }
3164 }
3165
3166 allocated = ext4_split_extent(handle, inode, path,
3167 &split_map, split_flag, 0);
3168 if (allocated < 0)
3169 err = allocated;
3170
3171 out:
3172 return err ? err : allocated;
3173 }
3174
3175 /*
3176 * This function is called by ext4_ext_map_blocks() from
3177 * ext4_get_blocks_dio_write() when DIO to write
3178 * to an uninitialized extent.
3179 *
3180 * Writing to an uninitialized extent may result in splitting the uninitialized
3181 * extent into multiple /initialized uninitialized extents (up to three)
3182 * There are three possibilities:
3183 * a> There is no split required: Entire extent should be uninitialized
3184 * b> Splits in two extents: Write is happening at either end of the extent
3185 * c> Splits in three extents: Somone is writing in middle of the extent
3186 *
3187 * One of more index blocks maybe needed if the extent tree grow after
3188 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3189 * complete, we need to split the uninitialized extent before DIO submit
3190 * the IO. The uninitialized extent called at this time will be split
3191 * into three uninitialized extent(at most). After IO complete, the part
3192 * being filled will be convert to initialized by the end_io callback function
3193 * via ext4_convert_unwritten_extents().
3194 *
3195 * Returns the size of uninitialized extent to be written on success.
3196 */
3197 static int ext4_split_unwritten_extents(handle_t *handle,
3198 struct inode *inode,
3199 struct ext4_map_blocks *map,
3200 struct ext4_ext_path *path,
3201 int flags)
3202 {
3203 ext4_lblk_t eof_block;
3204 ext4_lblk_t ee_block;
3205 struct ext4_extent *ex;
3206 unsigned int ee_len;
3207 int split_flag = 0, depth;
3208
3209 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3210 "block %llu, max_blocks %u\n", inode->i_ino,
3211 (unsigned long long)map->m_lblk, map->m_len);
3212
3213 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3214 inode->i_sb->s_blocksize_bits;
3215 if (eof_block < map->m_lblk + map->m_len)
3216 eof_block = map->m_lblk + map->m_len;
3217 /*
3218 * It is safe to convert extent to initialized via explicit
3219 * zeroout only if extent is fully insde i_size or new_size.
3220 */
3221 depth = ext_depth(inode);
3222 ex = path[depth].p_ext;
3223 ee_block = le32_to_cpu(ex->ee_block);
3224 ee_len = ext4_ext_get_actual_len(ex);
3225
3226 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3227 split_flag |= EXT4_EXT_MARK_UNINIT2;
3228
3229 flags |= EXT4_GET_BLOCKS_PRE_IO;
3230 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3231 }
3232
3233 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3234 struct inode *inode,
3235 struct ext4_ext_path *path)
3236 {
3237 struct ext4_extent *ex;
3238 int depth;
3239 int err = 0;
3240
3241 depth = ext_depth(inode);
3242 ex = path[depth].p_ext;
3243
3244 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3245 "block %llu, max_blocks %u\n", inode->i_ino,
3246 (unsigned long long)le32_to_cpu(ex->ee_block),
3247 ext4_ext_get_actual_len(ex));
3248
3249 err = ext4_ext_get_access(handle, inode, path + depth);
3250 if (err)
3251 goto out;
3252 /* first mark the extent as initialized */
3253 ext4_ext_mark_initialized(ex);
3254
3255 /* note: ext4_ext_correct_indexes() isn't needed here because
3256 * borders are not changed
3257 */
3258 ext4_ext_try_to_merge(inode, path, ex);
3259
3260 /* Mark modified extent as dirty */
3261 err = ext4_ext_dirty(handle, inode, path + depth);
3262 out:
3263 ext4_ext_show_leaf(inode, path);
3264 return err;
3265 }
3266
3267 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3268 sector_t block, int count)
3269 {
3270 int i;
3271 for (i = 0; i < count; i++)
3272 unmap_underlying_metadata(bdev, block + i);
3273 }
3274
3275 /*
3276 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3277 */
3278 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3279 ext4_lblk_t lblk,
3280 struct ext4_ext_path *path,
3281 unsigned int len)
3282 {
3283 int i, depth;
3284 struct ext4_extent_header *eh;
3285 struct ext4_extent *last_ex;
3286
3287 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3288 return 0;
3289
3290 depth = ext_depth(inode);
3291 eh = path[depth].p_hdr;
3292
3293 if (unlikely(!eh->eh_entries)) {
3294 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3295 "EOFBLOCKS_FL set");
3296 return -EIO;
3297 }
3298 last_ex = EXT_LAST_EXTENT(eh);
3299 /*
3300 * We should clear the EOFBLOCKS_FL flag if we are writing the
3301 * last block in the last extent in the file. We test this by
3302 * first checking to see if the caller to
3303 * ext4_ext_get_blocks() was interested in the last block (or
3304 * a block beyond the last block) in the current extent. If
3305 * this turns out to be false, we can bail out from this
3306 * function immediately.
3307 */
3308 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3309 ext4_ext_get_actual_len(last_ex))
3310 return 0;
3311 /*
3312 * If the caller does appear to be planning to write at or
3313 * beyond the end of the current extent, we then test to see
3314 * if the current extent is the last extent in the file, by
3315 * checking to make sure it was reached via the rightmost node
3316 * at each level of the tree.
3317 */
3318 for (i = depth-1; i >= 0; i--)
3319 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3320 return 0;
3321 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3322 return ext4_mark_inode_dirty(handle, inode);
3323 }
3324
3325 /**
3326 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3327 *
3328 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3329 * whether there are any buffers marked for delayed allocation. It returns '1'
3330 * on the first delalloc'ed buffer head found. If no buffer head in the given
3331 * range is marked for delalloc, it returns 0.
3332 * lblk_start should always be <= lblk_end.
3333 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3334 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3335 * block sooner). This is useful when blocks are truncated sequentially from
3336 * lblk_start towards lblk_end.
3337 */
3338 static int ext4_find_delalloc_range(struct inode *inode,
3339 ext4_lblk_t lblk_start,
3340 ext4_lblk_t lblk_end,
3341 int search_hint_reverse)
3342 {
3343 struct address_space *mapping = inode->i_mapping;
3344 struct buffer_head *head, *bh = NULL;
3345 struct page *page;
3346 ext4_lblk_t i, pg_lblk;
3347 pgoff_t index;
3348
3349 if (!test_opt(inode->i_sb, DELALLOC))
3350 return 0;
3351
3352 /* reverse search wont work if fs block size is less than page size */
3353 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3354 search_hint_reverse = 0;
3355
3356 if (search_hint_reverse)
3357 i = lblk_end;
3358 else
3359 i = lblk_start;
3360
3361 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3362
3363 while ((i >= lblk_start) && (i <= lblk_end)) {
3364 page = find_get_page(mapping, index);
3365 if (!page)
3366 goto nextpage;
3367
3368 if (!page_has_buffers(page))
3369 goto nextpage;
3370
3371 head = page_buffers(page);
3372 if (!head)
3373 goto nextpage;
3374
3375 bh = head;
3376 pg_lblk = index << (PAGE_CACHE_SHIFT -
3377 inode->i_blkbits);
3378 do {
3379 if (unlikely(pg_lblk < lblk_start)) {
3380 /*
3381 * This is possible when fs block size is less
3382 * than page size and our cluster starts/ends in
3383 * middle of the page. So we need to skip the
3384 * initial few blocks till we reach the 'lblk'
3385 */
3386 pg_lblk++;
3387 continue;
3388 }
3389
3390 /* Check if the buffer is delayed allocated and that it
3391 * is not yet mapped. (when da-buffers are mapped during
3392 * their writeout, their da_mapped bit is set.)
3393 */
3394 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3395 page_cache_release(page);
3396 trace_ext4_find_delalloc_range(inode,
3397 lblk_start, lblk_end,
3398 search_hint_reverse,
3399 1, i);
3400 return 1;
3401 }
3402 if (search_hint_reverse)
3403 i--;
3404 else
3405 i++;
3406 } while ((i >= lblk_start) && (i <= lblk_end) &&
3407 ((bh = bh->b_this_page) != head));
3408 nextpage:
3409 if (page)
3410 page_cache_release(page);
3411 /*
3412 * Move to next page. 'i' will be the first lblk in the next
3413 * page.
3414 */
3415 if (search_hint_reverse)
3416 index--;
3417 else
3418 index++;
3419 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3420 }
3421
3422 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3423 search_hint_reverse, 0, 0);
3424 return 0;
3425 }
3426
3427 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3428 int search_hint_reverse)
3429 {
3430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3431 ext4_lblk_t lblk_start, lblk_end;
3432 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3433 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3434
3435 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3436 search_hint_reverse);
3437 }
3438
3439 /**
3440 * Determines how many complete clusters (out of those specified by the 'map')
3441 * are under delalloc and were reserved quota for.
3442 * This function is called when we are writing out the blocks that were
3443 * originally written with their allocation delayed, but then the space was
3444 * allocated using fallocate() before the delayed allocation could be resolved.
3445 * The cases to look for are:
3446 * ('=' indicated delayed allocated blocks
3447 * '-' indicates non-delayed allocated blocks)
3448 * (a) partial clusters towards beginning and/or end outside of allocated range
3449 * are not delalloc'ed.
3450 * Ex:
3451 * |----c---=|====c====|====c====|===-c----|
3452 * |++++++ allocated ++++++|
3453 * ==> 4 complete clusters in above example
3454 *
3455 * (b) partial cluster (outside of allocated range) towards either end is
3456 * marked for delayed allocation. In this case, we will exclude that
3457 * cluster.
3458 * Ex:
3459 * |----====c========|========c========|
3460 * |++++++ allocated ++++++|
3461 * ==> 1 complete clusters in above example
3462 *
3463 * Ex:
3464 * |================c================|
3465 * |++++++ allocated ++++++|
3466 * ==> 0 complete clusters in above example
3467 *
3468 * The ext4_da_update_reserve_space will be called only if we
3469 * determine here that there were some "entire" clusters that span
3470 * this 'allocated' range.
3471 * In the non-bigalloc case, this function will just end up returning num_blks
3472 * without ever calling ext4_find_delalloc_range.
3473 */
3474 static unsigned int
3475 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3476 unsigned int num_blks)
3477 {
3478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3479 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3480 ext4_lblk_t lblk_from, lblk_to, c_offset;
3481 unsigned int allocated_clusters = 0;
3482
3483 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3484 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3485
3486 /* max possible clusters for this allocation */
3487 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3488
3489 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3490
3491 /* Check towards left side */
3492 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3493 if (c_offset) {
3494 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3495 lblk_to = lblk_from + c_offset - 1;
3496
3497 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3498 allocated_clusters--;
3499 }
3500
3501 /* Now check towards right. */
3502 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3503 if (allocated_clusters && c_offset) {
3504 lblk_from = lblk_start + num_blks;
3505 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3506
3507 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3508 allocated_clusters--;
3509 }
3510
3511 return allocated_clusters;
3512 }
3513
3514 static int
3515 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3516 struct ext4_map_blocks *map,
3517 struct ext4_ext_path *path, int flags,
3518 unsigned int allocated, ext4_fsblk_t newblock)
3519 {
3520 int ret = 0;
3521 int err = 0;
3522 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3523
3524 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3525 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3526 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3527 flags, allocated);
3528 ext4_ext_show_leaf(inode, path);
3529
3530 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3531 newblock);
3532
3533 /* get_block() before submit the IO, split the extent */
3534 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3535 ret = ext4_split_unwritten_extents(handle, inode, map,
3536 path, flags);
3537 /*
3538 * Flag the inode(non aio case) or end_io struct (aio case)
3539 * that this IO needs to conversion to written when IO is
3540 * completed
3541 */
3542 if (io)
3543 ext4_set_io_unwritten_flag(inode, io);
3544 else
3545 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3546 if (ext4_should_dioread_nolock(inode))
3547 map->m_flags |= EXT4_MAP_UNINIT;
3548 goto out;
3549 }
3550 /* IO end_io complete, convert the filled extent to written */
3551 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3552 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3553 path);
3554 if (ret >= 0) {
3555 ext4_update_inode_fsync_trans(handle, inode, 1);
3556 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3557 path, map->m_len);
3558 } else
3559 err = ret;
3560 goto out2;
3561 }
3562 /* buffered IO case */
3563 /*
3564 * repeat fallocate creation request
3565 * we already have an unwritten extent
3566 */
3567 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3568 goto map_out;
3569
3570 /* buffered READ or buffered write_begin() lookup */
3571 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3572 /*
3573 * We have blocks reserved already. We
3574 * return allocated blocks so that delalloc
3575 * won't do block reservation for us. But
3576 * the buffer head will be unmapped so that
3577 * a read from the block returns 0s.
3578 */
3579 map->m_flags |= EXT4_MAP_UNWRITTEN;
3580 goto out1;
3581 }
3582
3583 /* buffered write, writepage time, convert*/
3584 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3585 if (ret >= 0)
3586 ext4_update_inode_fsync_trans(handle, inode, 1);
3587 out:
3588 if (ret <= 0) {
3589 err = ret;
3590 goto out2;
3591 } else
3592 allocated = ret;
3593 map->m_flags |= EXT4_MAP_NEW;
3594 /*
3595 * if we allocated more blocks than requested
3596 * we need to make sure we unmap the extra block
3597 * allocated. The actual needed block will get
3598 * unmapped later when we find the buffer_head marked
3599 * new.
3600 */
3601 if (allocated > map->m_len) {
3602 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3603 newblock + map->m_len,
3604 allocated - map->m_len);
3605 allocated = map->m_len;
3606 }
3607
3608 /*
3609 * If we have done fallocate with the offset that is already
3610 * delayed allocated, we would have block reservation
3611 * and quota reservation done in the delayed write path.
3612 * But fallocate would have already updated quota and block
3613 * count for this offset. So cancel these reservation
3614 */
3615 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3616 unsigned int reserved_clusters;
3617 reserved_clusters = get_reserved_cluster_alloc(inode,
3618 map->m_lblk, map->m_len);
3619 if (reserved_clusters)
3620 ext4_da_update_reserve_space(inode,
3621 reserved_clusters,
3622 0);
3623 }
3624
3625 map_out:
3626 map->m_flags |= EXT4_MAP_MAPPED;
3627 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3628 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3629 map->m_len);
3630 if (err < 0)
3631 goto out2;
3632 }
3633 out1:
3634 if (allocated > map->m_len)
3635 allocated = map->m_len;
3636 ext4_ext_show_leaf(inode, path);
3637 map->m_pblk = newblock;
3638 map->m_len = allocated;
3639 out2:
3640 if (path) {
3641 ext4_ext_drop_refs(path);
3642 kfree(path);
3643 }
3644 return err ? err : allocated;
3645 }
3646
3647 /*
3648 * get_implied_cluster_alloc - check to see if the requested
3649 * allocation (in the map structure) overlaps with a cluster already
3650 * allocated in an extent.
3651 * @sb The filesystem superblock structure
3652 * @map The requested lblk->pblk mapping
3653 * @ex The extent structure which might contain an implied
3654 * cluster allocation
3655 *
3656 * This function is called by ext4_ext_map_blocks() after we failed to
3657 * find blocks that were already in the inode's extent tree. Hence,
3658 * we know that the beginning of the requested region cannot overlap
3659 * the extent from the inode's extent tree. There are three cases we
3660 * want to catch. The first is this case:
3661 *
3662 * |--- cluster # N--|
3663 * |--- extent ---| |---- requested region ---|
3664 * |==========|
3665 *
3666 * The second case that we need to test for is this one:
3667 *
3668 * |--------- cluster # N ----------------|
3669 * |--- requested region --| |------- extent ----|
3670 * |=======================|
3671 *
3672 * The third case is when the requested region lies between two extents
3673 * within the same cluster:
3674 * |------------- cluster # N-------------|
3675 * |----- ex -----| |---- ex_right ----|
3676 * |------ requested region ------|
3677 * |================|
3678 *
3679 * In each of the above cases, we need to set the map->m_pblk and
3680 * map->m_len so it corresponds to the return the extent labelled as
3681 * "|====|" from cluster #N, since it is already in use for data in
3682 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3683 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3684 * as a new "allocated" block region. Otherwise, we will return 0 and
3685 * ext4_ext_map_blocks() will then allocate one or more new clusters
3686 * by calling ext4_mb_new_blocks().
3687 */
3688 static int get_implied_cluster_alloc(struct super_block *sb,
3689 struct ext4_map_blocks *map,
3690 struct ext4_extent *ex,
3691 struct ext4_ext_path *path)
3692 {
3693 struct ext4_sb_info *sbi = EXT4_SB(sb);
3694 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3695 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3696 ext4_lblk_t rr_cluster_start;
3697 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3698 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3699 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3700
3701 /* The extent passed in that we are trying to match */
3702 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3703 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3704
3705 /* The requested region passed into ext4_map_blocks() */
3706 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3707
3708 if ((rr_cluster_start == ex_cluster_end) ||
3709 (rr_cluster_start == ex_cluster_start)) {
3710 if (rr_cluster_start == ex_cluster_end)
3711 ee_start += ee_len - 1;
3712 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3713 c_offset;
3714 map->m_len = min(map->m_len,
3715 (unsigned) sbi->s_cluster_ratio - c_offset);
3716 /*
3717 * Check for and handle this case:
3718 *
3719 * |--------- cluster # N-------------|
3720 * |------- extent ----|
3721 * |--- requested region ---|
3722 * |===========|
3723 */
3724
3725 if (map->m_lblk < ee_block)
3726 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3727
3728 /*
3729 * Check for the case where there is already another allocated
3730 * block to the right of 'ex' but before the end of the cluster.
3731 *
3732 * |------------- cluster # N-------------|
3733 * |----- ex -----| |---- ex_right ----|
3734 * |------ requested region ------|
3735 * |================|
3736 */
3737 if (map->m_lblk > ee_block) {
3738 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3739 map->m_len = min(map->m_len, next - map->m_lblk);
3740 }
3741
3742 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3743 return 1;
3744 }
3745
3746 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3747 return 0;
3748 }
3749
3750
3751 /*
3752 * Block allocation/map/preallocation routine for extents based files
3753 *
3754 *
3755 * Need to be called with
3756 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3757 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3758 *
3759 * return > 0, number of of blocks already mapped/allocated
3760 * if create == 0 and these are pre-allocated blocks
3761 * buffer head is unmapped
3762 * otherwise blocks are mapped
3763 *
3764 * return = 0, if plain look up failed (blocks have not been allocated)
3765 * buffer head is unmapped
3766 *
3767 * return < 0, error case.
3768 */
3769 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3770 struct ext4_map_blocks *map, int flags)
3771 {
3772 struct ext4_ext_path *path = NULL;
3773 struct ext4_extent newex, *ex, *ex2;
3774 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3775 ext4_fsblk_t newblock = 0;
3776 int free_on_err = 0, err = 0, depth, ret;
3777 unsigned int allocated = 0, offset = 0;
3778 unsigned int allocated_clusters = 0;
3779 struct ext4_allocation_request ar;
3780 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3781 ext4_lblk_t cluster_offset;
3782
3783 ext_debug("blocks %u/%u requested for inode %lu\n",
3784 map->m_lblk, map->m_len, inode->i_ino);
3785 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3786
3787 /* check in cache */
3788 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3789 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3790 if ((sbi->s_cluster_ratio > 1) &&
3791 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3792 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3793
3794 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3795 /*
3796 * block isn't allocated yet and
3797 * user doesn't want to allocate it
3798 */
3799 goto out2;
3800 }
3801 /* we should allocate requested block */
3802 } else {
3803 /* block is already allocated */
3804 if (sbi->s_cluster_ratio > 1)
3805 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3806 newblock = map->m_lblk
3807 - le32_to_cpu(newex.ee_block)
3808 + ext4_ext_pblock(&newex);
3809 /* number of remaining blocks in the extent */
3810 allocated = ext4_ext_get_actual_len(&newex) -
3811 (map->m_lblk - le32_to_cpu(newex.ee_block));
3812 goto out;
3813 }
3814 }
3815
3816 /* find extent for this block */
3817 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3818 if (IS_ERR(path)) {
3819 err = PTR_ERR(path);
3820 path = NULL;
3821 goto out2;
3822 }
3823
3824 depth = ext_depth(inode);
3825
3826 /*
3827 * consistent leaf must not be empty;
3828 * this situation is possible, though, _during_ tree modification;
3829 * this is why assert can't be put in ext4_ext_find_extent()
3830 */
3831 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3832 EXT4_ERROR_INODE(inode, "bad extent address "
3833 "lblock: %lu, depth: %d pblock %lld",
3834 (unsigned long) map->m_lblk, depth,
3835 path[depth].p_block);
3836 err = -EIO;
3837 goto out2;
3838 }
3839
3840 ex = path[depth].p_ext;
3841 if (ex) {
3842 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3843 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3844 unsigned short ee_len;
3845
3846 /*
3847 * Uninitialized extents are treated as holes, except that
3848 * we split out initialized portions during a write.
3849 */
3850 ee_len = ext4_ext_get_actual_len(ex);
3851
3852 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3853
3854 /* if found extent covers block, simply return it */
3855 if (in_range(map->m_lblk, ee_block, ee_len)) {
3856 newblock = map->m_lblk - ee_block + ee_start;
3857 /* number of remaining blocks in the extent */
3858 allocated = ee_len - (map->m_lblk - ee_block);
3859 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3860 ee_block, ee_len, newblock);
3861
3862 /*
3863 * Do not put uninitialized extent
3864 * in the cache
3865 */
3866 if (!ext4_ext_is_uninitialized(ex)) {
3867 ext4_ext_put_in_cache(inode, ee_block,
3868 ee_len, ee_start);
3869 goto out;
3870 }
3871 ret = ext4_ext_handle_uninitialized_extents(
3872 handle, inode, map, path, flags,
3873 allocated, newblock);
3874 return ret;
3875 }
3876 }
3877
3878 if ((sbi->s_cluster_ratio > 1) &&
3879 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3880 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3881
3882 /*
3883 * requested block isn't allocated yet;
3884 * we couldn't try to create block if create flag is zero
3885 */
3886 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3887 /*
3888 * put just found gap into cache to speed up
3889 * subsequent requests
3890 */
3891 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3892 goto out2;
3893 }
3894
3895 /*
3896 * Okay, we need to do block allocation.
3897 */
3898 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3899 newex.ee_block = cpu_to_le32(map->m_lblk);
3900 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3901
3902 /*
3903 * If we are doing bigalloc, check to see if the extent returned
3904 * by ext4_ext_find_extent() implies a cluster we can use.
3905 */
3906 if (cluster_offset && ex &&
3907 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3908 ar.len = allocated = map->m_len;
3909 newblock = map->m_pblk;
3910 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3911 goto got_allocated_blocks;
3912 }
3913
3914 /* find neighbour allocated blocks */
3915 ar.lleft = map->m_lblk;
3916 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3917 if (err)
3918 goto out2;
3919 ar.lright = map->m_lblk;
3920 ex2 = NULL;
3921 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3922 if (err)
3923 goto out2;
3924
3925 /* Check if the extent after searching to the right implies a
3926 * cluster we can use. */
3927 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3928 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3929 ar.len = allocated = map->m_len;
3930 newblock = map->m_pblk;
3931 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3932 goto got_allocated_blocks;
3933 }
3934
3935 /*
3936 * See if request is beyond maximum number of blocks we can have in
3937 * a single extent. For an initialized extent this limit is
3938 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3939 * EXT_UNINIT_MAX_LEN.
3940 */
3941 if (map->m_len > EXT_INIT_MAX_LEN &&
3942 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3943 map->m_len = EXT_INIT_MAX_LEN;
3944 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3945 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3946 map->m_len = EXT_UNINIT_MAX_LEN;
3947
3948 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3949 newex.ee_len = cpu_to_le16(map->m_len);
3950 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3951 if (err)
3952 allocated = ext4_ext_get_actual_len(&newex);
3953 else
3954 allocated = map->m_len;
3955
3956 /* allocate new block */
3957 ar.inode = inode;
3958 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3959 ar.logical = map->m_lblk;
3960 /*
3961 * We calculate the offset from the beginning of the cluster
3962 * for the logical block number, since when we allocate a
3963 * physical cluster, the physical block should start at the
3964 * same offset from the beginning of the cluster. This is
3965 * needed so that future calls to get_implied_cluster_alloc()
3966 * work correctly.
3967 */
3968 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3969 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3970 ar.goal -= offset;
3971 ar.logical -= offset;
3972 if (S_ISREG(inode->i_mode))
3973 ar.flags = EXT4_MB_HINT_DATA;
3974 else
3975 /* disable in-core preallocation for non-regular files */
3976 ar.flags = 0;
3977 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3978 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3979 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3980 if (!newblock)
3981 goto out2;
3982 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3983 ar.goal, newblock, allocated);
3984 free_on_err = 1;
3985 allocated_clusters = ar.len;
3986 ar.len = EXT4_C2B(sbi, ar.len) - offset;
3987 if (ar.len > allocated)
3988 ar.len = allocated;
3989
3990 got_allocated_blocks:
3991 /* try to insert new extent into found leaf and return */
3992 ext4_ext_store_pblock(&newex, newblock + offset);
3993 newex.ee_len = cpu_to_le16(ar.len);
3994 /* Mark uninitialized */
3995 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3996 ext4_ext_mark_uninitialized(&newex);
3997 /*
3998 * io_end structure was created for every IO write to an
3999 * uninitialized extent. To avoid unnecessary conversion,
4000 * here we flag the IO that really needs the conversion.
4001 * For non asycn direct IO case, flag the inode state
4002 * that we need to perform conversion when IO is done.
4003 */
4004 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4005 if (io)
4006 ext4_set_io_unwritten_flag(inode, io);
4007 else
4008 ext4_set_inode_state(inode,
4009 EXT4_STATE_DIO_UNWRITTEN);
4010 }
4011 if (ext4_should_dioread_nolock(inode))
4012 map->m_flags |= EXT4_MAP_UNINIT;
4013 }
4014
4015 err = 0;
4016 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4017 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4018 path, ar.len);
4019 if (!err)
4020 err = ext4_ext_insert_extent(handle, inode, path,
4021 &newex, flags);
4022 if (err && free_on_err) {
4023 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4024 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4025 /* free data blocks we just allocated */
4026 /* not a good idea to call discard here directly,
4027 * but otherwise we'd need to call it every free() */
4028 ext4_discard_preallocations(inode);
4029 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4030 ext4_ext_get_actual_len(&newex), fb_flags);
4031 goto out2;
4032 }
4033
4034 /* previous routine could use block we allocated */
4035 newblock = ext4_ext_pblock(&newex);
4036 allocated = ext4_ext_get_actual_len(&newex);
4037 if (allocated > map->m_len)
4038 allocated = map->m_len;
4039 map->m_flags |= EXT4_MAP_NEW;
4040
4041 /*
4042 * Update reserved blocks/metadata blocks after successful
4043 * block allocation which had been deferred till now.
4044 */
4045 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4046 unsigned int reserved_clusters;
4047 /*
4048 * Check how many clusters we had reserved this allocated range
4049 */
4050 reserved_clusters = get_reserved_cluster_alloc(inode,
4051 map->m_lblk, allocated);
4052 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4053 if (reserved_clusters) {
4054 /*
4055 * We have clusters reserved for this range.
4056 * But since we are not doing actual allocation
4057 * and are simply using blocks from previously
4058 * allocated cluster, we should release the
4059 * reservation and not claim quota.
4060 */
4061 ext4_da_update_reserve_space(inode,
4062 reserved_clusters, 0);
4063 }
4064 } else {
4065 BUG_ON(allocated_clusters < reserved_clusters);
4066 /* We will claim quota for all newly allocated blocks.*/
4067 ext4_da_update_reserve_space(inode, allocated_clusters,
4068 1);
4069 if (reserved_clusters < allocated_clusters) {
4070 struct ext4_inode_info *ei = EXT4_I(inode);
4071 int reservation = allocated_clusters -
4072 reserved_clusters;
4073 /*
4074 * It seems we claimed few clusters outside of
4075 * the range of this allocation. We should give
4076 * it back to the reservation pool. This can
4077 * happen in the following case:
4078 *
4079 * * Suppose s_cluster_ratio is 4 (i.e., each
4080 * cluster has 4 blocks. Thus, the clusters
4081 * are [0-3],[4-7],[8-11]...
4082 * * First comes delayed allocation write for
4083 * logical blocks 10 & 11. Since there were no
4084 * previous delayed allocated blocks in the
4085 * range [8-11], we would reserve 1 cluster
4086 * for this write.
4087 * * Next comes write for logical blocks 3 to 8.
4088 * In this case, we will reserve 2 clusters
4089 * (for [0-3] and [4-7]; and not for [8-11] as
4090 * that range has a delayed allocated blocks.
4091 * Thus total reserved clusters now becomes 3.
4092 * * Now, during the delayed allocation writeout
4093 * time, we will first write blocks [3-8] and
4094 * allocate 3 clusters for writing these
4095 * blocks. Also, we would claim all these
4096 * three clusters above.
4097 * * Now when we come here to writeout the
4098 * blocks [10-11], we would expect to claim
4099 * the reservation of 1 cluster we had made
4100 * (and we would claim it since there are no
4101 * more delayed allocated blocks in the range
4102 * [8-11]. But our reserved cluster count had
4103 * already gone to 0.
4104 *
4105 * Thus, at the step 4 above when we determine
4106 * that there are still some unwritten delayed
4107 * allocated blocks outside of our current
4108 * block range, we should increment the
4109 * reserved clusters count so that when the
4110 * remaining blocks finally gets written, we
4111 * could claim them.
4112 */
4113 dquot_reserve_block(inode,
4114 EXT4_C2B(sbi, reservation));
4115 spin_lock(&ei->i_block_reservation_lock);
4116 ei->i_reserved_data_blocks += reservation;
4117 spin_unlock(&ei->i_block_reservation_lock);
4118 }
4119 }
4120 }
4121
4122 /*
4123 * Cache the extent and update transaction to commit on fdatasync only
4124 * when it is _not_ an uninitialized extent.
4125 */
4126 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4127 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4128 ext4_update_inode_fsync_trans(handle, inode, 1);
4129 } else
4130 ext4_update_inode_fsync_trans(handle, inode, 0);
4131 out:
4132 if (allocated > map->m_len)
4133 allocated = map->m_len;
4134 ext4_ext_show_leaf(inode, path);
4135 map->m_flags |= EXT4_MAP_MAPPED;
4136 map->m_pblk = newblock;
4137 map->m_len = allocated;
4138 out2:
4139 if (path) {
4140 ext4_ext_drop_refs(path);
4141 kfree(path);
4142 }
4143
4144 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4145 newblock, map->m_len, err ? err : allocated);
4146
4147 return err ? err : allocated;
4148 }
4149
4150 void ext4_ext_truncate(struct inode *inode)
4151 {
4152 struct address_space *mapping = inode->i_mapping;
4153 struct super_block *sb = inode->i_sb;
4154 ext4_lblk_t last_block;
4155 handle_t *handle;
4156 loff_t page_len;
4157 int err = 0;
4158
4159 /*
4160 * finish any pending end_io work so we won't run the risk of
4161 * converting any truncated blocks to initialized later
4162 */
4163 ext4_flush_completed_IO(inode);
4164
4165 /*
4166 * probably first extent we're gonna free will be last in block
4167 */
4168 err = ext4_writepage_trans_blocks(inode);
4169 handle = ext4_journal_start(inode, err);
4170 if (IS_ERR(handle))
4171 return;
4172
4173 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4174 page_len = PAGE_CACHE_SIZE -
4175 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4176
4177 err = ext4_discard_partial_page_buffers(handle,
4178 mapping, inode->i_size, page_len, 0);
4179
4180 if (err)
4181 goto out_stop;
4182 }
4183
4184 if (ext4_orphan_add(handle, inode))
4185 goto out_stop;
4186
4187 down_write(&EXT4_I(inode)->i_data_sem);
4188 ext4_ext_invalidate_cache(inode);
4189
4190 ext4_discard_preallocations(inode);
4191
4192 /*
4193 * TODO: optimization is possible here.
4194 * Probably we need not scan at all,
4195 * because page truncation is enough.
4196 */
4197
4198 /* we have to know where to truncate from in crash case */
4199 EXT4_I(inode)->i_disksize = inode->i_size;
4200 ext4_mark_inode_dirty(handle, inode);
4201
4202 last_block = (inode->i_size + sb->s_blocksize - 1)
4203 >> EXT4_BLOCK_SIZE_BITS(sb);
4204 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4205
4206 /* In a multi-transaction truncate, we only make the final
4207 * transaction synchronous.
4208 */
4209 if (IS_SYNC(inode))
4210 ext4_handle_sync(handle);
4211
4212 up_write(&EXT4_I(inode)->i_data_sem);
4213
4214 out_stop:
4215 /*
4216 * If this was a simple ftruncate() and the file will remain alive,
4217 * then we need to clear up the orphan record which we created above.
4218 * However, if this was a real unlink then we were called by
4219 * ext4_delete_inode(), and we allow that function to clean up the
4220 * orphan info for us.
4221 */
4222 if (inode->i_nlink)
4223 ext4_orphan_del(handle, inode);
4224
4225 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4226 ext4_mark_inode_dirty(handle, inode);
4227 ext4_journal_stop(handle);
4228 }
4229
4230 static void ext4_falloc_update_inode(struct inode *inode,
4231 int mode, loff_t new_size, int update_ctime)
4232 {
4233 struct timespec now;
4234
4235 if (update_ctime) {
4236 now = current_fs_time(inode->i_sb);
4237 if (!timespec_equal(&inode->i_ctime, &now))
4238 inode->i_ctime = now;
4239 }
4240 /*
4241 * Update only when preallocation was requested beyond
4242 * the file size.
4243 */
4244 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4245 if (new_size > i_size_read(inode))
4246 i_size_write(inode, new_size);
4247 if (new_size > EXT4_I(inode)->i_disksize)
4248 ext4_update_i_disksize(inode, new_size);
4249 } else {
4250 /*
4251 * Mark that we allocate beyond EOF so the subsequent truncate
4252 * can proceed even if the new size is the same as i_size.
4253 */
4254 if (new_size > i_size_read(inode))
4255 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4256 }
4257
4258 }
4259
4260 /*
4261 * preallocate space for a file. This implements ext4's fallocate file
4262 * operation, which gets called from sys_fallocate system call.
4263 * For block-mapped files, posix_fallocate should fall back to the method
4264 * of writing zeroes to the required new blocks (the same behavior which is
4265 * expected for file systems which do not support fallocate() system call).
4266 */
4267 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4268 {
4269 struct inode *inode = file->f_path.dentry->d_inode;
4270 handle_t *handle;
4271 loff_t new_size;
4272 unsigned int max_blocks;
4273 int ret = 0;
4274 int ret2 = 0;
4275 int retries = 0;
4276 int flags;
4277 struct ext4_map_blocks map;
4278 unsigned int credits, blkbits = inode->i_blkbits;
4279
4280 /*
4281 * currently supporting (pre)allocate mode for extent-based
4282 * files _only_
4283 */
4284 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4285 return -EOPNOTSUPP;
4286
4287 /* Return error if mode is not supported */
4288 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4289 return -EOPNOTSUPP;
4290
4291 if (mode & FALLOC_FL_PUNCH_HOLE)
4292 return ext4_punch_hole(file, offset, len);
4293
4294 trace_ext4_fallocate_enter(inode, offset, len, mode);
4295 map.m_lblk = offset >> blkbits;
4296 /*
4297 * We can't just convert len to max_blocks because
4298 * If blocksize = 4096 offset = 3072 and len = 2048
4299 */
4300 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4301 - map.m_lblk;
4302 /*
4303 * credits to insert 1 extent into extent tree
4304 */
4305 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4306 mutex_lock(&inode->i_mutex);
4307 ret = inode_newsize_ok(inode, (len + offset));
4308 if (ret) {
4309 mutex_unlock(&inode->i_mutex);
4310 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4311 return ret;
4312 }
4313 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4314 if (mode & FALLOC_FL_KEEP_SIZE)
4315 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4316 /*
4317 * Don't normalize the request if it can fit in one extent so
4318 * that it doesn't get unnecessarily split into multiple
4319 * extents.
4320 */
4321 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4322 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4323 retry:
4324 while (ret >= 0 && ret < max_blocks) {
4325 map.m_lblk = map.m_lblk + ret;
4326 map.m_len = max_blocks = max_blocks - ret;
4327 handle = ext4_journal_start(inode, credits);
4328 if (IS_ERR(handle)) {
4329 ret = PTR_ERR(handle);
4330 break;
4331 }
4332 ret = ext4_map_blocks(handle, inode, &map, flags);
4333 if (ret <= 0) {
4334 #ifdef EXT4FS_DEBUG
4335 WARN_ON(ret <= 0);
4336 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4337 "returned error inode#%lu, block=%u, "
4338 "max_blocks=%u", __func__,
4339 inode->i_ino, map.m_lblk, max_blocks);
4340 #endif
4341 ext4_mark_inode_dirty(handle, inode);
4342 ret2 = ext4_journal_stop(handle);
4343 break;
4344 }
4345 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4346 blkbits) >> blkbits))
4347 new_size = offset + len;
4348 else
4349 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4350
4351 ext4_falloc_update_inode(inode, mode, new_size,
4352 (map.m_flags & EXT4_MAP_NEW));
4353 ext4_mark_inode_dirty(handle, inode);
4354 ret2 = ext4_journal_stop(handle);
4355 if (ret2)
4356 break;
4357 }
4358 if (ret == -ENOSPC &&
4359 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4360 ret = 0;
4361 goto retry;
4362 }
4363 mutex_unlock(&inode->i_mutex);
4364 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4365 ret > 0 ? ret2 : ret);
4366 return ret > 0 ? ret2 : ret;
4367 }
4368
4369 /*
4370 * This function convert a range of blocks to written extents
4371 * The caller of this function will pass the start offset and the size.
4372 * all unwritten extents within this range will be converted to
4373 * written extents.
4374 *
4375 * This function is called from the direct IO end io call back
4376 * function, to convert the fallocated extents after IO is completed.
4377 * Returns 0 on success.
4378 */
4379 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4380 ssize_t len)
4381 {
4382 handle_t *handle;
4383 unsigned int max_blocks;
4384 int ret = 0;
4385 int ret2 = 0;
4386 struct ext4_map_blocks map;
4387 unsigned int credits, blkbits = inode->i_blkbits;
4388
4389 map.m_lblk = offset >> blkbits;
4390 /*
4391 * We can't just convert len to max_blocks because
4392 * If blocksize = 4096 offset = 3072 and len = 2048
4393 */
4394 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4395 map.m_lblk);
4396 /*
4397 * credits to insert 1 extent into extent tree
4398 */
4399 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4400 while (ret >= 0 && ret < max_blocks) {
4401 map.m_lblk += ret;
4402 map.m_len = (max_blocks -= ret);
4403 handle = ext4_journal_start(inode, credits);
4404 if (IS_ERR(handle)) {
4405 ret = PTR_ERR(handle);
4406 break;
4407 }
4408 ret = ext4_map_blocks(handle, inode, &map,
4409 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4410 if (ret <= 0) {
4411 WARN_ON(ret <= 0);
4412 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4413 "returned error inode#%lu, block=%u, "
4414 "max_blocks=%u", __func__,
4415 inode->i_ino, map.m_lblk, map.m_len);
4416 }
4417 ext4_mark_inode_dirty(handle, inode);
4418 ret2 = ext4_journal_stop(handle);
4419 if (ret <= 0 || ret2 )
4420 break;
4421 }
4422 return ret > 0 ? ret2 : ret;
4423 }
4424
4425 /*
4426 * Callback function called for each extent to gather FIEMAP information.
4427 */
4428 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4429 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4430 void *data)
4431 {
4432 __u64 logical;
4433 __u64 physical;
4434 __u64 length;
4435 __u32 flags = 0;
4436 int ret = 0;
4437 struct fiemap_extent_info *fieinfo = data;
4438 unsigned char blksize_bits;
4439
4440 blksize_bits = inode->i_sb->s_blocksize_bits;
4441 logical = (__u64)newex->ec_block << blksize_bits;
4442
4443 if (newex->ec_start == 0) {
4444 /*
4445 * No extent in extent-tree contains block @newex->ec_start,
4446 * then the block may stay in 1)a hole or 2)delayed-extent.
4447 *
4448 * Holes or delayed-extents are processed as follows.
4449 * 1. lookup dirty pages with specified range in pagecache.
4450 * If no page is got, then there is no delayed-extent and
4451 * return with EXT_CONTINUE.
4452 * 2. find the 1st mapped buffer,
4453 * 3. check if the mapped buffer is both in the request range
4454 * and a delayed buffer. If not, there is no delayed-extent,
4455 * then return.
4456 * 4. a delayed-extent is found, the extent will be collected.
4457 */
4458 ext4_lblk_t end = 0;
4459 pgoff_t last_offset;
4460 pgoff_t offset;
4461 pgoff_t index;
4462 pgoff_t start_index = 0;
4463 struct page **pages = NULL;
4464 struct buffer_head *bh = NULL;
4465 struct buffer_head *head = NULL;
4466 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4467
4468 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4469 if (pages == NULL)
4470 return -ENOMEM;
4471
4472 offset = logical >> PAGE_SHIFT;
4473 repeat:
4474 last_offset = offset;
4475 head = NULL;
4476 ret = find_get_pages_tag(inode->i_mapping, &offset,
4477 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4478
4479 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4480 /* First time, try to find a mapped buffer. */
4481 if (ret == 0) {
4482 out:
4483 for (index = 0; index < ret; index++)
4484 page_cache_release(pages[index]);
4485 /* just a hole. */
4486 kfree(pages);
4487 return EXT_CONTINUE;
4488 }
4489 index = 0;
4490
4491 next_page:
4492 /* Try to find the 1st mapped buffer. */
4493 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4494 blksize_bits;
4495 if (!page_has_buffers(pages[index]))
4496 goto out;
4497 head = page_buffers(pages[index]);
4498 if (!head)
4499 goto out;
4500
4501 index++;
4502 bh = head;
4503 do {
4504 if (end >= newex->ec_block +
4505 newex->ec_len)
4506 /* The buffer is out of
4507 * the request range.
4508 */
4509 goto out;
4510
4511 if (buffer_mapped(bh) &&
4512 end >= newex->ec_block) {
4513 start_index = index - 1;
4514 /* get the 1st mapped buffer. */
4515 goto found_mapped_buffer;
4516 }
4517
4518 bh = bh->b_this_page;
4519 end++;
4520 } while (bh != head);
4521
4522 /* No mapped buffer in the range found in this page,
4523 * We need to look up next page.
4524 */
4525 if (index >= ret) {
4526 /* There is no page left, but we need to limit
4527 * newex->ec_len.
4528 */
4529 newex->ec_len = end - newex->ec_block;
4530 goto out;
4531 }
4532 goto next_page;
4533 } else {
4534 /*Find contiguous delayed buffers. */
4535 if (ret > 0 && pages[0]->index == last_offset)
4536 head = page_buffers(pages[0]);
4537 bh = head;
4538 index = 1;
4539 start_index = 0;
4540 }
4541
4542 found_mapped_buffer:
4543 if (bh != NULL && buffer_delay(bh)) {
4544 /* 1st or contiguous delayed buffer found. */
4545 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4546 /*
4547 * 1st delayed buffer found, record
4548 * the start of extent.
4549 */
4550 flags |= FIEMAP_EXTENT_DELALLOC;
4551 newex->ec_block = end;
4552 logical = (__u64)end << blksize_bits;
4553 }
4554 /* Find contiguous delayed buffers. */
4555 do {
4556 if (!buffer_delay(bh))
4557 goto found_delayed_extent;
4558 bh = bh->b_this_page;
4559 end++;
4560 } while (bh != head);
4561
4562 for (; index < ret; index++) {
4563 if (!page_has_buffers(pages[index])) {
4564 bh = NULL;
4565 break;
4566 }
4567 head = page_buffers(pages[index]);
4568 if (!head) {
4569 bh = NULL;
4570 break;
4571 }
4572
4573 if (pages[index]->index !=
4574 pages[start_index]->index + index
4575 - start_index) {
4576 /* Blocks are not contiguous. */
4577 bh = NULL;
4578 break;
4579 }
4580 bh = head;
4581 do {
4582 if (!buffer_delay(bh))
4583 /* Delayed-extent ends. */
4584 goto found_delayed_extent;
4585 bh = bh->b_this_page;
4586 end++;
4587 } while (bh != head);
4588 }
4589 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4590 /* a hole found. */
4591 goto out;
4592
4593 found_delayed_extent:
4594 newex->ec_len = min(end - newex->ec_block,
4595 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4596 if (ret == nr_pages && bh != NULL &&
4597 newex->ec_len < EXT_INIT_MAX_LEN &&
4598 buffer_delay(bh)) {
4599 /* Have not collected an extent and continue. */
4600 for (index = 0; index < ret; index++)
4601 page_cache_release(pages[index]);
4602 goto repeat;
4603 }
4604
4605 for (index = 0; index < ret; index++)
4606 page_cache_release(pages[index]);
4607 kfree(pages);
4608 }
4609
4610 physical = (__u64)newex->ec_start << blksize_bits;
4611 length = (__u64)newex->ec_len << blksize_bits;
4612
4613 if (ex && ext4_ext_is_uninitialized(ex))
4614 flags |= FIEMAP_EXTENT_UNWRITTEN;
4615
4616 if (next == EXT_MAX_BLOCKS)
4617 flags |= FIEMAP_EXTENT_LAST;
4618
4619 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4620 length, flags);
4621 if (ret < 0)
4622 return ret;
4623 if (ret == 1)
4624 return EXT_BREAK;
4625 return EXT_CONTINUE;
4626 }
4627 /* fiemap flags we can handle specified here */
4628 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4629
4630 static int ext4_xattr_fiemap(struct inode *inode,
4631 struct fiemap_extent_info *fieinfo)
4632 {
4633 __u64 physical = 0;
4634 __u64 length;
4635 __u32 flags = FIEMAP_EXTENT_LAST;
4636 int blockbits = inode->i_sb->s_blocksize_bits;
4637 int error = 0;
4638
4639 /* in-inode? */
4640 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4641 struct ext4_iloc iloc;
4642 int offset; /* offset of xattr in inode */
4643
4644 error = ext4_get_inode_loc(inode, &iloc);
4645 if (error)
4646 return error;
4647 physical = iloc.bh->b_blocknr << blockbits;
4648 offset = EXT4_GOOD_OLD_INODE_SIZE +
4649 EXT4_I(inode)->i_extra_isize;
4650 physical += offset;
4651 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4652 flags |= FIEMAP_EXTENT_DATA_INLINE;
4653 brelse(iloc.bh);
4654 } else { /* external block */
4655 physical = EXT4_I(inode)->i_file_acl << blockbits;
4656 length = inode->i_sb->s_blocksize;
4657 }
4658
4659 if (physical)
4660 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4661 length, flags);
4662 return (error < 0 ? error : 0);
4663 }
4664
4665 /*
4666 * ext4_ext_punch_hole
4667 *
4668 * Punches a hole of "length" bytes in a file starting
4669 * at byte "offset"
4670 *
4671 * @inode: The inode of the file to punch a hole in
4672 * @offset: The starting byte offset of the hole
4673 * @length: The length of the hole
4674 *
4675 * Returns the number of blocks removed or negative on err
4676 */
4677 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4678 {
4679 struct inode *inode = file->f_path.dentry->d_inode;
4680 struct super_block *sb = inode->i_sb;
4681 ext4_lblk_t first_block, stop_block;
4682 struct address_space *mapping = inode->i_mapping;
4683 handle_t *handle;
4684 loff_t first_page, last_page, page_len;
4685 loff_t first_page_offset, last_page_offset;
4686 int credits, err = 0;
4687
4688 /* No need to punch hole beyond i_size */
4689 if (offset >= inode->i_size)
4690 return 0;
4691
4692 /*
4693 * If the hole extends beyond i_size, set the hole
4694 * to end after the page that contains i_size
4695 */
4696 if (offset + length > inode->i_size) {
4697 length = inode->i_size +
4698 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4699 offset;
4700 }
4701
4702 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4703 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4704
4705 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4706 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4707
4708 /*
4709 * Write out all dirty pages to avoid race conditions
4710 * Then release them.
4711 */
4712 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4713 err = filemap_write_and_wait_range(mapping,
4714 offset, offset + length - 1);
4715
4716 if (err)
4717 return err;
4718 }
4719
4720 /* Now release the pages */
4721 if (last_page_offset > first_page_offset) {
4722 truncate_inode_pages_range(mapping, first_page_offset,
4723 last_page_offset-1);
4724 }
4725
4726 /* finish any pending end_io work */
4727 ext4_flush_completed_IO(inode);
4728
4729 credits = ext4_writepage_trans_blocks(inode);
4730 handle = ext4_journal_start(inode, credits);
4731 if (IS_ERR(handle))
4732 return PTR_ERR(handle);
4733
4734 err = ext4_orphan_add(handle, inode);
4735 if (err)
4736 goto out;
4737
4738 /*
4739 * Now we need to zero out the non-page-aligned data in the
4740 * pages at the start and tail of the hole, and unmap the buffer
4741 * heads for the block aligned regions of the page that were
4742 * completely zeroed.
4743 */
4744 if (first_page > last_page) {
4745 /*
4746 * If the file space being truncated is contained within a page
4747 * just zero out and unmap the middle of that page
4748 */
4749 err = ext4_discard_partial_page_buffers(handle,
4750 mapping, offset, length, 0);
4751
4752 if (err)
4753 goto out;
4754 } else {
4755 /*
4756 * zero out and unmap the partial page that contains
4757 * the start of the hole
4758 */
4759 page_len = first_page_offset - offset;
4760 if (page_len > 0) {
4761 err = ext4_discard_partial_page_buffers(handle, mapping,
4762 offset, page_len, 0);
4763 if (err)
4764 goto out;
4765 }
4766
4767 /*
4768 * zero out and unmap the partial page that contains
4769 * the end of the hole
4770 */
4771 page_len = offset + length - last_page_offset;
4772 if (page_len > 0) {
4773 err = ext4_discard_partial_page_buffers(handle, mapping,
4774 last_page_offset, page_len, 0);
4775 if (err)
4776 goto out;
4777 }
4778 }
4779
4780 /*
4781 * If i_size is contained in the last page, we need to
4782 * unmap and zero the partial page after i_size
4783 */
4784 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4785 inode->i_size % PAGE_CACHE_SIZE != 0) {
4786
4787 page_len = PAGE_CACHE_SIZE -
4788 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4789
4790 if (page_len > 0) {
4791 err = ext4_discard_partial_page_buffers(handle,
4792 mapping, inode->i_size, page_len, 0);
4793
4794 if (err)
4795 goto out;
4796 }
4797 }
4798
4799 first_block = (offset + sb->s_blocksize - 1) >>
4800 EXT4_BLOCK_SIZE_BITS(sb);
4801 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4802
4803 /* If there are no blocks to remove, return now */
4804 if (first_block >= stop_block)
4805 goto out;
4806
4807 down_write(&EXT4_I(inode)->i_data_sem);
4808 ext4_ext_invalidate_cache(inode);
4809 ext4_discard_preallocations(inode);
4810
4811 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4812
4813 ext4_ext_invalidate_cache(inode);
4814 ext4_discard_preallocations(inode);
4815
4816 if (IS_SYNC(inode))
4817 ext4_handle_sync(handle);
4818
4819 up_write(&EXT4_I(inode)->i_data_sem);
4820
4821 out:
4822 ext4_orphan_del(handle, inode);
4823 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4824 ext4_mark_inode_dirty(handle, inode);
4825 ext4_journal_stop(handle);
4826 return err;
4827 }
4828 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4829 __u64 start, __u64 len)
4830 {
4831 ext4_lblk_t start_blk;
4832 int error = 0;
4833
4834 /* fallback to generic here if not in extents fmt */
4835 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4836 return generic_block_fiemap(inode, fieinfo, start, len,
4837 ext4_get_block);
4838
4839 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4840 return -EBADR;
4841
4842 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4843 error = ext4_xattr_fiemap(inode, fieinfo);
4844 } else {
4845 ext4_lblk_t len_blks;
4846 __u64 last_blk;
4847
4848 start_blk = start >> inode->i_sb->s_blocksize_bits;
4849 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4850 if (last_blk >= EXT_MAX_BLOCKS)
4851 last_blk = EXT_MAX_BLOCKS-1;
4852 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4853
4854 /*
4855 * Walk the extent tree gathering extent information.
4856 * ext4_ext_fiemap_cb will push extents back to user.
4857 */
4858 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4859 ext4_ext_fiemap_cb, fieinfo);
4860 }
4861
4862 return error;
4863 }
This page took 0.136416 seconds and 4 git commands to generate.