ext4: refactor code to read the extent tree block
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
162 {
163 int err;
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
172 }
173 return err;
174 }
175
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
179 {
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
183
184 /*
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
200 */
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
210 }
211
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
216 }
217
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
220 }
221
222 /*
223 * Allocation for a meta data block
224 */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 ext4_fsblk_t goal, newblock;
231
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
236 }
237
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 int size;
241
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
249 }
250
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 int size;
254
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
262 }
263
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 int size;
267
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
276 }
277
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 int size;
281
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
290 }
291
292 /*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 struct ext4_inode_info *ei = EXT4_I(inode);
300 int idxs;
301
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
304
305 /*
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
312 */
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 int num = 0;
316
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
328 }
329
330 /*
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
333 */
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
337 }
338
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 int max;
343
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
354 }
355
356 return max;
357 }
358
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
363
364 if (len == 0)
365 return 0;
366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368
369 static int ext4_valid_extent_idx(struct inode *inode,
370 struct ext4_extent_idx *ext_idx)
371 {
372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376
377 static int ext4_valid_extent_entries(struct inode *inode,
378 struct ext4_extent_header *eh,
379 int depth)
380 {
381 unsigned short entries;
382 if (eh->eh_entries == 0)
383 return 1;
384
385 entries = le16_to_cpu(eh->eh_entries);
386
387 if (depth == 0) {
388 /* leaf entries */
389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 while (entries) {
391 if (!ext4_valid_extent(inode, ext))
392 return 0;
393 ext++;
394 entries--;
395 }
396 } else {
397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 while (entries) {
399 if (!ext4_valid_extent_idx(inode, ext_idx))
400 return 0;
401 ext_idx++;
402 entries--;
403 }
404 }
405 return 1;
406 }
407
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 struct inode *inode, struct ext4_extent_header *eh,
410 int depth)
411 {
412 const char *error_msg;
413 int max = 0;
414
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
417 goto corrupted;
418 }
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
421 goto corrupted;
422 }
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
425 goto corrupted;
426 }
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
430 goto corrupted;
431 }
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
434 goto corrupted;
435 }
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
438 goto corrupted;
439 }
440 /* Verify checksum on non-root extent tree nodes */
441 if (ext_depth(inode) != depth &&
442 !ext4_extent_block_csum_verify(inode, eh)) {
443 error_msg = "extent tree corrupted";
444 goto corrupted;
445 }
446 return 0;
447
448 corrupted:
449 ext4_error_inode(inode, function, line, 0,
450 "bad header/extent: %s - magic %x, "
451 "entries %u, max %u(%u), depth %u(%u)",
452 error_msg, le16_to_cpu(eh->eh_magic),
453 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
454 max, le16_to_cpu(eh->eh_depth), depth);
455
456 return -EIO;
457 }
458
459 #define ext4_ext_check(inode, eh, depth) \
460 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
461
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
465 }
466
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 struct inode *inode, ext4_fsblk_t pblk, int depth)
470 {
471 struct buffer_head *bh;
472 int err;
473
474 bh = sb_getblk(inode->i_sb, pblk);
475 if (unlikely(!bh))
476 return ERR_PTR(-ENOMEM);
477
478 if (!bh_uptodate_or_lock(bh)) {
479 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
480 err = bh_submit_read(bh);
481 if (err < 0)
482 goto errout;
483 }
484 if (buffer_verified(bh))
485 return bh;
486 err = __ext4_ext_check(function, line, inode,
487 ext_block_hdr(bh), depth);
488 if (err)
489 goto errout;
490 set_buffer_verified(bh);
491 return bh;
492 errout:
493 put_bh(bh);
494 return ERR_PTR(err);
495
496 }
497
498 #define read_extent_tree_block(inode, pblk, depth) \
499 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), (depth))
500
501 #ifdef EXT_DEBUG
502 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
503 {
504 int k, l = path->p_depth;
505
506 ext_debug("path:");
507 for (k = 0; k <= l; k++, path++) {
508 if (path->p_idx) {
509 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
510 ext4_idx_pblock(path->p_idx));
511 } else if (path->p_ext) {
512 ext_debug(" %d:[%d]%d:%llu ",
513 le32_to_cpu(path->p_ext->ee_block),
514 ext4_ext_is_uninitialized(path->p_ext),
515 ext4_ext_get_actual_len(path->p_ext),
516 ext4_ext_pblock(path->p_ext));
517 } else
518 ext_debug(" []");
519 }
520 ext_debug("\n");
521 }
522
523 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
524 {
525 int depth = ext_depth(inode);
526 struct ext4_extent_header *eh;
527 struct ext4_extent *ex;
528 int i;
529
530 if (!path)
531 return;
532
533 eh = path[depth].p_hdr;
534 ex = EXT_FIRST_EXTENT(eh);
535
536 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
537
538 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
539 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
540 ext4_ext_is_uninitialized(ex),
541 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
542 }
543 ext_debug("\n");
544 }
545
546 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
547 ext4_fsblk_t newblock, int level)
548 {
549 int depth = ext_depth(inode);
550 struct ext4_extent *ex;
551
552 if (depth != level) {
553 struct ext4_extent_idx *idx;
554 idx = path[level].p_idx;
555 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
556 ext_debug("%d: move %d:%llu in new index %llu\n", level,
557 le32_to_cpu(idx->ei_block),
558 ext4_idx_pblock(idx),
559 newblock);
560 idx++;
561 }
562
563 return;
564 }
565
566 ex = path[depth].p_ext;
567 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
568 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
569 le32_to_cpu(ex->ee_block),
570 ext4_ext_pblock(ex),
571 ext4_ext_is_uninitialized(ex),
572 ext4_ext_get_actual_len(ex),
573 newblock);
574 ex++;
575 }
576 }
577
578 #else
579 #define ext4_ext_show_path(inode, path)
580 #define ext4_ext_show_leaf(inode, path)
581 #define ext4_ext_show_move(inode, path, newblock, level)
582 #endif
583
584 void ext4_ext_drop_refs(struct ext4_ext_path *path)
585 {
586 int depth = path->p_depth;
587 int i;
588
589 for (i = 0; i <= depth; i++, path++)
590 if (path->p_bh) {
591 brelse(path->p_bh);
592 path->p_bh = NULL;
593 }
594 }
595
596 /*
597 * ext4_ext_binsearch_idx:
598 * binary search for the closest index of the given block
599 * the header must be checked before calling this
600 */
601 static void
602 ext4_ext_binsearch_idx(struct inode *inode,
603 struct ext4_ext_path *path, ext4_lblk_t block)
604 {
605 struct ext4_extent_header *eh = path->p_hdr;
606 struct ext4_extent_idx *r, *l, *m;
607
608
609 ext_debug("binsearch for %u(idx): ", block);
610
611 l = EXT_FIRST_INDEX(eh) + 1;
612 r = EXT_LAST_INDEX(eh);
613 while (l <= r) {
614 m = l + (r - l) / 2;
615 if (block < le32_to_cpu(m->ei_block))
616 r = m - 1;
617 else
618 l = m + 1;
619 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
620 m, le32_to_cpu(m->ei_block),
621 r, le32_to_cpu(r->ei_block));
622 }
623
624 path->p_idx = l - 1;
625 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
626 ext4_idx_pblock(path->p_idx));
627
628 #ifdef CHECK_BINSEARCH
629 {
630 struct ext4_extent_idx *chix, *ix;
631 int k;
632
633 chix = ix = EXT_FIRST_INDEX(eh);
634 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
635 if (k != 0 &&
636 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
637 printk(KERN_DEBUG "k=%d, ix=0x%p, "
638 "first=0x%p\n", k,
639 ix, EXT_FIRST_INDEX(eh));
640 printk(KERN_DEBUG "%u <= %u\n",
641 le32_to_cpu(ix->ei_block),
642 le32_to_cpu(ix[-1].ei_block));
643 }
644 BUG_ON(k && le32_to_cpu(ix->ei_block)
645 <= le32_to_cpu(ix[-1].ei_block));
646 if (block < le32_to_cpu(ix->ei_block))
647 break;
648 chix = ix;
649 }
650 BUG_ON(chix != path->p_idx);
651 }
652 #endif
653
654 }
655
656 /*
657 * ext4_ext_binsearch:
658 * binary search for closest extent of the given block
659 * the header must be checked before calling this
660 */
661 static void
662 ext4_ext_binsearch(struct inode *inode,
663 struct ext4_ext_path *path, ext4_lblk_t block)
664 {
665 struct ext4_extent_header *eh = path->p_hdr;
666 struct ext4_extent *r, *l, *m;
667
668 if (eh->eh_entries == 0) {
669 /*
670 * this leaf is empty:
671 * we get such a leaf in split/add case
672 */
673 return;
674 }
675
676 ext_debug("binsearch for %u: ", block);
677
678 l = EXT_FIRST_EXTENT(eh) + 1;
679 r = EXT_LAST_EXTENT(eh);
680
681 while (l <= r) {
682 m = l + (r - l) / 2;
683 if (block < le32_to_cpu(m->ee_block))
684 r = m - 1;
685 else
686 l = m + 1;
687 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
688 m, le32_to_cpu(m->ee_block),
689 r, le32_to_cpu(r->ee_block));
690 }
691
692 path->p_ext = l - 1;
693 ext_debug(" -> %d:%llu:[%d]%d ",
694 le32_to_cpu(path->p_ext->ee_block),
695 ext4_ext_pblock(path->p_ext),
696 ext4_ext_is_uninitialized(path->p_ext),
697 ext4_ext_get_actual_len(path->p_ext));
698
699 #ifdef CHECK_BINSEARCH
700 {
701 struct ext4_extent *chex, *ex;
702 int k;
703
704 chex = ex = EXT_FIRST_EXTENT(eh);
705 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
706 BUG_ON(k && le32_to_cpu(ex->ee_block)
707 <= le32_to_cpu(ex[-1].ee_block));
708 if (block < le32_to_cpu(ex->ee_block))
709 break;
710 chex = ex;
711 }
712 BUG_ON(chex != path->p_ext);
713 }
714 #endif
715
716 }
717
718 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
719 {
720 struct ext4_extent_header *eh;
721
722 eh = ext_inode_hdr(inode);
723 eh->eh_depth = 0;
724 eh->eh_entries = 0;
725 eh->eh_magic = EXT4_EXT_MAGIC;
726 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
727 ext4_mark_inode_dirty(handle, inode);
728 return 0;
729 }
730
731 struct ext4_ext_path *
732 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
733 struct ext4_ext_path *path)
734 {
735 struct ext4_extent_header *eh;
736 struct buffer_head *bh;
737 short int depth, i, ppos = 0, alloc = 0;
738 int ret;
739
740 eh = ext_inode_hdr(inode);
741 depth = ext_depth(inode);
742
743 /* account possible depth increase */
744 if (!path) {
745 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
746 GFP_NOFS);
747 if (!path)
748 return ERR_PTR(-ENOMEM);
749 alloc = 1;
750 }
751 path[0].p_hdr = eh;
752 path[0].p_bh = NULL;
753
754 i = depth;
755 /* walk through the tree */
756 while (i) {
757 ext_debug("depth %d: num %d, max %d\n",
758 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
759
760 ext4_ext_binsearch_idx(inode, path + ppos, block);
761 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
762 path[ppos].p_depth = i;
763 path[ppos].p_ext = NULL;
764
765 bh = read_extent_tree_block(inode, path[ppos].p_block, --i);
766 if (IS_ERR(bh)) {
767 ret = PTR_ERR(bh);
768 goto err;
769 }
770
771 eh = ext_block_hdr(bh);
772 ppos++;
773 if (unlikely(ppos > depth)) {
774 put_bh(bh);
775 EXT4_ERROR_INODE(inode,
776 "ppos %d > depth %d", ppos, depth);
777 ret = -EIO;
778 goto err;
779 }
780 path[ppos].p_bh = bh;
781 path[ppos].p_hdr = eh;
782 }
783
784 path[ppos].p_depth = i;
785 path[ppos].p_ext = NULL;
786 path[ppos].p_idx = NULL;
787
788 /* find extent */
789 ext4_ext_binsearch(inode, path + ppos, block);
790 /* if not an empty leaf */
791 if (path[ppos].p_ext)
792 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
793
794 ext4_ext_show_path(inode, path);
795
796 return path;
797
798 err:
799 ext4_ext_drop_refs(path);
800 if (alloc)
801 kfree(path);
802 return ERR_PTR(ret);
803 }
804
805 /*
806 * ext4_ext_insert_index:
807 * insert new index [@logical;@ptr] into the block at @curp;
808 * check where to insert: before @curp or after @curp
809 */
810 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
811 struct ext4_ext_path *curp,
812 int logical, ext4_fsblk_t ptr)
813 {
814 struct ext4_extent_idx *ix;
815 int len, err;
816
817 err = ext4_ext_get_access(handle, inode, curp);
818 if (err)
819 return err;
820
821 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
822 EXT4_ERROR_INODE(inode,
823 "logical %d == ei_block %d!",
824 logical, le32_to_cpu(curp->p_idx->ei_block));
825 return -EIO;
826 }
827
828 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
829 >= le16_to_cpu(curp->p_hdr->eh_max))) {
830 EXT4_ERROR_INODE(inode,
831 "eh_entries %d >= eh_max %d!",
832 le16_to_cpu(curp->p_hdr->eh_entries),
833 le16_to_cpu(curp->p_hdr->eh_max));
834 return -EIO;
835 }
836
837 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
838 /* insert after */
839 ext_debug("insert new index %d after: %llu\n", logical, ptr);
840 ix = curp->p_idx + 1;
841 } else {
842 /* insert before */
843 ext_debug("insert new index %d before: %llu\n", logical, ptr);
844 ix = curp->p_idx;
845 }
846
847 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
848 BUG_ON(len < 0);
849 if (len > 0) {
850 ext_debug("insert new index %d: "
851 "move %d indices from 0x%p to 0x%p\n",
852 logical, len, ix, ix + 1);
853 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
854 }
855
856 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
857 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
858 return -EIO;
859 }
860
861 ix->ei_block = cpu_to_le32(logical);
862 ext4_idx_store_pblock(ix, ptr);
863 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
864
865 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
866 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
867 return -EIO;
868 }
869
870 err = ext4_ext_dirty(handle, inode, curp);
871 ext4_std_error(inode->i_sb, err);
872
873 return err;
874 }
875
876 /*
877 * ext4_ext_split:
878 * inserts new subtree into the path, using free index entry
879 * at depth @at:
880 * - allocates all needed blocks (new leaf and all intermediate index blocks)
881 * - makes decision where to split
882 * - moves remaining extents and index entries (right to the split point)
883 * into the newly allocated blocks
884 * - initializes subtree
885 */
886 static int ext4_ext_split(handle_t *handle, struct inode *inode,
887 unsigned int flags,
888 struct ext4_ext_path *path,
889 struct ext4_extent *newext, int at)
890 {
891 struct buffer_head *bh = NULL;
892 int depth = ext_depth(inode);
893 struct ext4_extent_header *neh;
894 struct ext4_extent_idx *fidx;
895 int i = at, k, m, a;
896 ext4_fsblk_t newblock, oldblock;
897 __le32 border;
898 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
899 int err = 0;
900
901 /* make decision: where to split? */
902 /* FIXME: now decision is simplest: at current extent */
903
904 /* if current leaf will be split, then we should use
905 * border from split point */
906 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
907 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
908 return -EIO;
909 }
910 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
911 border = path[depth].p_ext[1].ee_block;
912 ext_debug("leaf will be split."
913 " next leaf starts at %d\n",
914 le32_to_cpu(border));
915 } else {
916 border = newext->ee_block;
917 ext_debug("leaf will be added."
918 " next leaf starts at %d\n",
919 le32_to_cpu(border));
920 }
921
922 /*
923 * If error occurs, then we break processing
924 * and mark filesystem read-only. index won't
925 * be inserted and tree will be in consistent
926 * state. Next mount will repair buffers too.
927 */
928
929 /*
930 * Get array to track all allocated blocks.
931 * We need this to handle errors and free blocks
932 * upon them.
933 */
934 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
935 if (!ablocks)
936 return -ENOMEM;
937
938 /* allocate all needed blocks */
939 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
940 for (a = 0; a < depth - at; a++) {
941 newblock = ext4_ext_new_meta_block(handle, inode, path,
942 newext, &err, flags);
943 if (newblock == 0)
944 goto cleanup;
945 ablocks[a] = newblock;
946 }
947
948 /* initialize new leaf */
949 newblock = ablocks[--a];
950 if (unlikely(newblock == 0)) {
951 EXT4_ERROR_INODE(inode, "newblock == 0!");
952 err = -EIO;
953 goto cleanup;
954 }
955 bh = sb_getblk(inode->i_sb, newblock);
956 if (unlikely(!bh)) {
957 err = -ENOMEM;
958 goto cleanup;
959 }
960 lock_buffer(bh);
961
962 err = ext4_journal_get_create_access(handle, bh);
963 if (err)
964 goto cleanup;
965
966 neh = ext_block_hdr(bh);
967 neh->eh_entries = 0;
968 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
969 neh->eh_magic = EXT4_EXT_MAGIC;
970 neh->eh_depth = 0;
971
972 /* move remainder of path[depth] to the new leaf */
973 if (unlikely(path[depth].p_hdr->eh_entries !=
974 path[depth].p_hdr->eh_max)) {
975 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
976 path[depth].p_hdr->eh_entries,
977 path[depth].p_hdr->eh_max);
978 err = -EIO;
979 goto cleanup;
980 }
981 /* start copy from next extent */
982 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
983 ext4_ext_show_move(inode, path, newblock, depth);
984 if (m) {
985 struct ext4_extent *ex;
986 ex = EXT_FIRST_EXTENT(neh);
987 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
988 le16_add_cpu(&neh->eh_entries, m);
989 }
990
991 ext4_extent_block_csum_set(inode, neh);
992 set_buffer_uptodate(bh);
993 unlock_buffer(bh);
994
995 err = ext4_handle_dirty_metadata(handle, inode, bh);
996 if (err)
997 goto cleanup;
998 brelse(bh);
999 bh = NULL;
1000
1001 /* correct old leaf */
1002 if (m) {
1003 err = ext4_ext_get_access(handle, inode, path + depth);
1004 if (err)
1005 goto cleanup;
1006 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1007 err = ext4_ext_dirty(handle, inode, path + depth);
1008 if (err)
1009 goto cleanup;
1010
1011 }
1012
1013 /* create intermediate indexes */
1014 k = depth - at - 1;
1015 if (unlikely(k < 0)) {
1016 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1017 err = -EIO;
1018 goto cleanup;
1019 }
1020 if (k)
1021 ext_debug("create %d intermediate indices\n", k);
1022 /* insert new index into current index block */
1023 /* current depth stored in i var */
1024 i = depth - 1;
1025 while (k--) {
1026 oldblock = newblock;
1027 newblock = ablocks[--a];
1028 bh = sb_getblk(inode->i_sb, newblock);
1029 if (unlikely(!bh)) {
1030 err = -ENOMEM;
1031 goto cleanup;
1032 }
1033 lock_buffer(bh);
1034
1035 err = ext4_journal_get_create_access(handle, bh);
1036 if (err)
1037 goto cleanup;
1038
1039 neh = ext_block_hdr(bh);
1040 neh->eh_entries = cpu_to_le16(1);
1041 neh->eh_magic = EXT4_EXT_MAGIC;
1042 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1043 neh->eh_depth = cpu_to_le16(depth - i);
1044 fidx = EXT_FIRST_INDEX(neh);
1045 fidx->ei_block = border;
1046 ext4_idx_store_pblock(fidx, oldblock);
1047
1048 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1049 i, newblock, le32_to_cpu(border), oldblock);
1050
1051 /* move remainder of path[i] to the new index block */
1052 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1053 EXT_LAST_INDEX(path[i].p_hdr))) {
1054 EXT4_ERROR_INODE(inode,
1055 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1056 le32_to_cpu(path[i].p_ext->ee_block));
1057 err = -EIO;
1058 goto cleanup;
1059 }
1060 /* start copy indexes */
1061 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1062 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1063 EXT_MAX_INDEX(path[i].p_hdr));
1064 ext4_ext_show_move(inode, path, newblock, i);
1065 if (m) {
1066 memmove(++fidx, path[i].p_idx,
1067 sizeof(struct ext4_extent_idx) * m);
1068 le16_add_cpu(&neh->eh_entries, m);
1069 }
1070 ext4_extent_block_csum_set(inode, neh);
1071 set_buffer_uptodate(bh);
1072 unlock_buffer(bh);
1073
1074 err = ext4_handle_dirty_metadata(handle, inode, bh);
1075 if (err)
1076 goto cleanup;
1077 brelse(bh);
1078 bh = NULL;
1079
1080 /* correct old index */
1081 if (m) {
1082 err = ext4_ext_get_access(handle, inode, path + i);
1083 if (err)
1084 goto cleanup;
1085 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1086 err = ext4_ext_dirty(handle, inode, path + i);
1087 if (err)
1088 goto cleanup;
1089 }
1090
1091 i--;
1092 }
1093
1094 /* insert new index */
1095 err = ext4_ext_insert_index(handle, inode, path + at,
1096 le32_to_cpu(border), newblock);
1097
1098 cleanup:
1099 if (bh) {
1100 if (buffer_locked(bh))
1101 unlock_buffer(bh);
1102 brelse(bh);
1103 }
1104
1105 if (err) {
1106 /* free all allocated blocks in error case */
1107 for (i = 0; i < depth; i++) {
1108 if (!ablocks[i])
1109 continue;
1110 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1111 EXT4_FREE_BLOCKS_METADATA);
1112 }
1113 }
1114 kfree(ablocks);
1115
1116 return err;
1117 }
1118
1119 /*
1120 * ext4_ext_grow_indepth:
1121 * implements tree growing procedure:
1122 * - allocates new block
1123 * - moves top-level data (index block or leaf) into the new block
1124 * - initializes new top-level, creating index that points to the
1125 * just created block
1126 */
1127 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1128 unsigned int flags,
1129 struct ext4_extent *newext)
1130 {
1131 struct ext4_extent_header *neh;
1132 struct buffer_head *bh;
1133 ext4_fsblk_t newblock;
1134 int err = 0;
1135
1136 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1137 newext, &err, flags);
1138 if (newblock == 0)
1139 return err;
1140
1141 bh = sb_getblk(inode->i_sb, newblock);
1142 if (unlikely(!bh))
1143 return -ENOMEM;
1144 lock_buffer(bh);
1145
1146 err = ext4_journal_get_create_access(handle, bh);
1147 if (err) {
1148 unlock_buffer(bh);
1149 goto out;
1150 }
1151
1152 /* move top-level index/leaf into new block */
1153 memmove(bh->b_data, EXT4_I(inode)->i_data,
1154 sizeof(EXT4_I(inode)->i_data));
1155
1156 /* set size of new block */
1157 neh = ext_block_hdr(bh);
1158 /* old root could have indexes or leaves
1159 * so calculate e_max right way */
1160 if (ext_depth(inode))
1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1162 else
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1164 neh->eh_magic = EXT4_EXT_MAGIC;
1165 ext4_extent_block_csum_set(inode, neh);
1166 set_buffer_uptodate(bh);
1167 unlock_buffer(bh);
1168
1169 err = ext4_handle_dirty_metadata(handle, inode, bh);
1170 if (err)
1171 goto out;
1172
1173 /* Update top-level index: num,max,pointer */
1174 neh = ext_inode_hdr(inode);
1175 neh->eh_entries = cpu_to_le16(1);
1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1177 if (neh->eh_depth == 0) {
1178 /* Root extent block becomes index block */
1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1180 EXT_FIRST_INDEX(neh)->ei_block =
1181 EXT_FIRST_EXTENT(neh)->ee_block;
1182 }
1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1187
1188 le16_add_cpu(&neh->eh_depth, 1);
1189 ext4_mark_inode_dirty(handle, inode);
1190 out:
1191 brelse(bh);
1192
1193 return err;
1194 }
1195
1196 /*
1197 * ext4_ext_create_new_leaf:
1198 * finds empty index and adds new leaf.
1199 * if no free index is found, then it requests in-depth growing.
1200 */
1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1202 unsigned int flags,
1203 struct ext4_ext_path *path,
1204 struct ext4_extent *newext)
1205 {
1206 struct ext4_ext_path *curp;
1207 int depth, i, err = 0;
1208
1209 repeat:
1210 i = depth = ext_depth(inode);
1211
1212 /* walk up to the tree and look for free index entry */
1213 curp = path + depth;
1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1215 i--;
1216 curp--;
1217 }
1218
1219 /* we use already allocated block for index block,
1220 * so subsequent data blocks should be contiguous */
1221 if (EXT_HAS_FREE_INDEX(curp)) {
1222 /* if we found index with free entry, then use that
1223 * entry: create all needed subtree and add new leaf */
1224 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1225 if (err)
1226 goto out;
1227
1228 /* refill path */
1229 ext4_ext_drop_refs(path);
1230 path = ext4_ext_find_extent(inode,
1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1232 path);
1233 if (IS_ERR(path))
1234 err = PTR_ERR(path);
1235 } else {
1236 /* tree is full, time to grow in depth */
1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1238 if (err)
1239 goto out;
1240
1241 /* refill path */
1242 ext4_ext_drop_refs(path);
1243 path = ext4_ext_find_extent(inode,
1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1245 path);
1246 if (IS_ERR(path)) {
1247 err = PTR_ERR(path);
1248 goto out;
1249 }
1250
1251 /*
1252 * only first (depth 0 -> 1) produces free space;
1253 * in all other cases we have to split the grown tree
1254 */
1255 depth = ext_depth(inode);
1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1257 /* now we need to split */
1258 goto repeat;
1259 }
1260 }
1261
1262 out:
1263 return err;
1264 }
1265
1266 /*
1267 * search the closest allocated block to the left for *logical
1268 * and returns it at @logical + it's physical address at @phys
1269 * if *logical is the smallest allocated block, the function
1270 * returns 0 at @phys
1271 * return value contains 0 (success) or error code
1272 */
1273 static int ext4_ext_search_left(struct inode *inode,
1274 struct ext4_ext_path *path,
1275 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1276 {
1277 struct ext4_extent_idx *ix;
1278 struct ext4_extent *ex;
1279 int depth, ee_len;
1280
1281 if (unlikely(path == NULL)) {
1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1283 return -EIO;
1284 }
1285 depth = path->p_depth;
1286 *phys = 0;
1287
1288 if (depth == 0 && path->p_ext == NULL)
1289 return 0;
1290
1291 /* usually extent in the path covers blocks smaller
1292 * then *logical, but it can be that extent is the
1293 * first one in the file */
1294
1295 ex = path[depth].p_ext;
1296 ee_len = ext4_ext_get_actual_len(ex);
1297 if (*logical < le32_to_cpu(ex->ee_block)) {
1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1299 EXT4_ERROR_INODE(inode,
1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1301 *logical, le32_to_cpu(ex->ee_block));
1302 return -EIO;
1303 }
1304 while (--depth >= 0) {
1305 ix = path[depth].p_idx;
1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1307 EXT4_ERROR_INODE(inode,
1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1312 depth);
1313 return -EIO;
1314 }
1315 }
1316 return 0;
1317 }
1318
1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320 EXT4_ERROR_INODE(inode,
1321 "logical %d < ee_block %d + ee_len %d!",
1322 *logical, le32_to_cpu(ex->ee_block), ee_len);
1323 return -EIO;
1324 }
1325
1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1327 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1328 return 0;
1329 }
1330
1331 /*
1332 * search the closest allocated block to the right for *logical
1333 * and returns it at @logical + it's physical address at @phys
1334 * if *logical is the largest allocated block, the function
1335 * returns 0 at @phys
1336 * return value contains 0 (success) or error code
1337 */
1338 static int ext4_ext_search_right(struct inode *inode,
1339 struct ext4_ext_path *path,
1340 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1341 struct ext4_extent **ret_ex)
1342 {
1343 struct buffer_head *bh = NULL;
1344 struct ext4_extent_header *eh;
1345 struct ext4_extent_idx *ix;
1346 struct ext4_extent *ex;
1347 ext4_fsblk_t block;
1348 int depth; /* Note, NOT eh_depth; depth from top of tree */
1349 int ee_len;
1350
1351 if (unlikely(path == NULL)) {
1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1353 return -EIO;
1354 }
1355 depth = path->p_depth;
1356 *phys = 0;
1357
1358 if (depth == 0 && path->p_ext == NULL)
1359 return 0;
1360
1361 /* usually extent in the path covers blocks smaller
1362 * then *logical, but it can be that extent is the
1363 * first one in the file */
1364
1365 ex = path[depth].p_ext;
1366 ee_len = ext4_ext_get_actual_len(ex);
1367 if (*logical < le32_to_cpu(ex->ee_block)) {
1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1369 EXT4_ERROR_INODE(inode,
1370 "first_extent(path[%d].p_hdr) != ex",
1371 depth);
1372 return -EIO;
1373 }
1374 while (--depth >= 0) {
1375 ix = path[depth].p_idx;
1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1377 EXT4_ERROR_INODE(inode,
1378 "ix != EXT_FIRST_INDEX *logical %d!",
1379 *logical);
1380 return -EIO;
1381 }
1382 }
1383 goto found_extent;
1384 }
1385
1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1387 EXT4_ERROR_INODE(inode,
1388 "logical %d < ee_block %d + ee_len %d!",
1389 *logical, le32_to_cpu(ex->ee_block), ee_len);
1390 return -EIO;
1391 }
1392
1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1394 /* next allocated block in this leaf */
1395 ex++;
1396 goto found_extent;
1397 }
1398
1399 /* go up and search for index to the right */
1400 while (--depth >= 0) {
1401 ix = path[depth].p_idx;
1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1403 goto got_index;
1404 }
1405
1406 /* we've gone up to the root and found no index to the right */
1407 return 0;
1408
1409 got_index:
1410 /* we've found index to the right, let's
1411 * follow it and find the closest allocated
1412 * block to the right */
1413 ix++;
1414 block = ext4_idx_pblock(ix);
1415 while (++depth < path->p_depth) {
1416 /* subtract from p_depth to get proper eh_depth */
1417 bh = read_extent_tree_block(inode, block,
1418 path->p_depth - depth);
1419 if (IS_ERR(bh))
1420 return PTR_ERR(bh);
1421 eh = ext_block_hdr(bh);
1422 ix = EXT_FIRST_INDEX(eh);
1423 block = ext4_idx_pblock(ix);
1424 put_bh(bh);
1425 }
1426
1427 bh = read_extent_tree_block(inode, block, path->p_depth - depth);
1428 if (IS_ERR(bh))
1429 return PTR_ERR(bh);
1430 eh = ext_block_hdr(bh);
1431 ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433 *logical = le32_to_cpu(ex->ee_block);
1434 *phys = ext4_ext_pblock(ex);
1435 *ret_ex = ex;
1436 if (bh)
1437 put_bh(bh);
1438 return 0;
1439 }
1440
1441 /*
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1446 * with leaves.
1447 */
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450 {
1451 int depth;
1452
1453 BUG_ON(path == NULL);
1454 depth = path->p_depth;
1455
1456 if (depth == 0 && path->p_ext == NULL)
1457 return EXT_MAX_BLOCKS;
1458
1459 while (depth >= 0) {
1460 if (depth == path->p_depth) {
1461 /* leaf */
1462 if (path[depth].p_ext &&
1463 path[depth].p_ext !=
1464 EXT_LAST_EXTENT(path[depth].p_hdr))
1465 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466 } else {
1467 /* index */
1468 if (path[depth].p_idx !=
1469 EXT_LAST_INDEX(path[depth].p_hdr))
1470 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 }
1472 depth--;
1473 }
1474
1475 return EXT_MAX_BLOCKS;
1476 }
1477
1478 /*
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481 */
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483 {
1484 int depth;
1485
1486 BUG_ON(path == NULL);
1487 depth = path->p_depth;
1488
1489 /* zero-tree has no leaf blocks at all */
1490 if (depth == 0)
1491 return EXT_MAX_BLOCKS;
1492
1493 /* go to index block */
1494 depth--;
1495
1496 while (depth >= 0) {
1497 if (path[depth].p_idx !=
1498 EXT_LAST_INDEX(path[depth].p_hdr))
1499 return (ext4_lblk_t)
1500 le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 depth--;
1502 }
1503
1504 return EXT_MAX_BLOCKS;
1505 }
1506
1507 /*
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1512 */
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514 struct ext4_ext_path *path)
1515 {
1516 struct ext4_extent_header *eh;
1517 int depth = ext_depth(inode);
1518 struct ext4_extent *ex;
1519 __le32 border;
1520 int k, err = 0;
1521
1522 eh = path[depth].p_hdr;
1523 ex = path[depth].p_ext;
1524
1525 if (unlikely(ex == NULL || eh == NULL)) {
1526 EXT4_ERROR_INODE(inode,
1527 "ex %p == NULL or eh %p == NULL", ex, eh);
1528 return -EIO;
1529 }
1530
1531 if (depth == 0) {
1532 /* there is no tree at all */
1533 return 0;
1534 }
1535
1536 if (ex != EXT_FIRST_EXTENT(eh)) {
1537 /* we correct tree if first leaf got modified only */
1538 return 0;
1539 }
1540
1541 /*
1542 * TODO: we need correction if border is smaller than current one
1543 */
1544 k = depth - 1;
1545 border = path[depth].p_ext->ee_block;
1546 err = ext4_ext_get_access(handle, inode, path + k);
1547 if (err)
1548 return err;
1549 path[k].p_idx->ei_block = border;
1550 err = ext4_ext_dirty(handle, inode, path + k);
1551 if (err)
1552 return err;
1553
1554 while (k--) {
1555 /* change all left-side indexes */
1556 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557 break;
1558 err = ext4_ext_get_access(handle, inode, path + k);
1559 if (err)
1560 break;
1561 path[k].p_idx->ei_block = border;
1562 err = ext4_ext_dirty(handle, inode, path + k);
1563 if (err)
1564 break;
1565 }
1566
1567 return err;
1568 }
1569
1570 int
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572 struct ext4_extent *ex2)
1573 {
1574 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575
1576 /*
1577 * Make sure that both extents are initialized. We don't merge
1578 * uninitialized extents so that we can be sure that end_io code has
1579 * the extent that was written properly split out and conversion to
1580 * initialized is trivial.
1581 */
1582 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1583 return 0;
1584
1585 if (ext4_ext_is_uninitialized(ex1))
1586 max_len = EXT_UNINIT_MAX_LEN;
1587 else
1588 max_len = EXT_INIT_MAX_LEN;
1589
1590 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1591 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1592
1593 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1594 le32_to_cpu(ex2->ee_block))
1595 return 0;
1596
1597 /*
1598 * To allow future support for preallocated extents to be added
1599 * as an RO_COMPAT feature, refuse to merge to extents if
1600 * this can result in the top bit of ee_len being set.
1601 */
1602 if (ext1_ee_len + ext2_ee_len > max_len)
1603 return 0;
1604 #ifdef AGGRESSIVE_TEST
1605 if (ext1_ee_len >= 4)
1606 return 0;
1607 #endif
1608
1609 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1610 return 1;
1611 return 0;
1612 }
1613
1614 /*
1615 * This function tries to merge the "ex" extent to the next extent in the tree.
1616 * It always tries to merge towards right. If you want to merge towards
1617 * left, pass "ex - 1" as argument instead of "ex".
1618 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1619 * 1 if they got merged.
1620 */
1621 static int ext4_ext_try_to_merge_right(struct inode *inode,
1622 struct ext4_ext_path *path,
1623 struct ext4_extent *ex)
1624 {
1625 struct ext4_extent_header *eh;
1626 unsigned int depth, len;
1627 int merge_done = 0;
1628 int uninitialized = 0;
1629
1630 depth = ext_depth(inode);
1631 BUG_ON(path[depth].p_hdr == NULL);
1632 eh = path[depth].p_hdr;
1633
1634 while (ex < EXT_LAST_EXTENT(eh)) {
1635 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1636 break;
1637 /* merge with next extent! */
1638 if (ext4_ext_is_uninitialized(ex))
1639 uninitialized = 1;
1640 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1641 + ext4_ext_get_actual_len(ex + 1));
1642 if (uninitialized)
1643 ext4_ext_mark_uninitialized(ex);
1644
1645 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1646 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1647 * sizeof(struct ext4_extent);
1648 memmove(ex + 1, ex + 2, len);
1649 }
1650 le16_add_cpu(&eh->eh_entries, -1);
1651 merge_done = 1;
1652 WARN_ON(eh->eh_entries == 0);
1653 if (!eh->eh_entries)
1654 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1655 }
1656
1657 return merge_done;
1658 }
1659
1660 /*
1661 * This function does a very simple check to see if we can collapse
1662 * an extent tree with a single extent tree leaf block into the inode.
1663 */
1664 static void ext4_ext_try_to_merge_up(handle_t *handle,
1665 struct inode *inode,
1666 struct ext4_ext_path *path)
1667 {
1668 size_t s;
1669 unsigned max_root = ext4_ext_space_root(inode, 0);
1670 ext4_fsblk_t blk;
1671
1672 if ((path[0].p_depth != 1) ||
1673 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1674 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1675 return;
1676
1677 /*
1678 * We need to modify the block allocation bitmap and the block
1679 * group descriptor to release the extent tree block. If we
1680 * can't get the journal credits, give up.
1681 */
1682 if (ext4_journal_extend(handle, 2))
1683 return;
1684
1685 /*
1686 * Copy the extent data up to the inode
1687 */
1688 blk = ext4_idx_pblock(path[0].p_idx);
1689 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1690 sizeof(struct ext4_extent_idx);
1691 s += sizeof(struct ext4_extent_header);
1692
1693 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1694 path[0].p_depth = 0;
1695 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1696 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1697 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1698
1699 brelse(path[1].p_bh);
1700 ext4_free_blocks(handle, inode, NULL, blk, 1,
1701 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1702 }
1703
1704 /*
1705 * This function tries to merge the @ex extent to neighbours in the tree.
1706 * return 1 if merge left else 0.
1707 */
1708 static void ext4_ext_try_to_merge(handle_t *handle,
1709 struct inode *inode,
1710 struct ext4_ext_path *path,
1711 struct ext4_extent *ex) {
1712 struct ext4_extent_header *eh;
1713 unsigned int depth;
1714 int merge_done = 0;
1715
1716 depth = ext_depth(inode);
1717 BUG_ON(path[depth].p_hdr == NULL);
1718 eh = path[depth].p_hdr;
1719
1720 if (ex > EXT_FIRST_EXTENT(eh))
1721 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1722
1723 if (!merge_done)
1724 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1725
1726 ext4_ext_try_to_merge_up(handle, inode, path);
1727 }
1728
1729 /*
1730 * check if a portion of the "newext" extent overlaps with an
1731 * existing extent.
1732 *
1733 * If there is an overlap discovered, it updates the length of the newext
1734 * such that there will be no overlap, and then returns 1.
1735 * If there is no overlap found, it returns 0.
1736 */
1737 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1738 struct inode *inode,
1739 struct ext4_extent *newext,
1740 struct ext4_ext_path *path)
1741 {
1742 ext4_lblk_t b1, b2;
1743 unsigned int depth, len1;
1744 unsigned int ret = 0;
1745
1746 b1 = le32_to_cpu(newext->ee_block);
1747 len1 = ext4_ext_get_actual_len(newext);
1748 depth = ext_depth(inode);
1749 if (!path[depth].p_ext)
1750 goto out;
1751 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1752 b2 &= ~(sbi->s_cluster_ratio - 1);
1753
1754 /*
1755 * get the next allocated block if the extent in the path
1756 * is before the requested block(s)
1757 */
1758 if (b2 < b1) {
1759 b2 = ext4_ext_next_allocated_block(path);
1760 if (b2 == EXT_MAX_BLOCKS)
1761 goto out;
1762 b2 &= ~(sbi->s_cluster_ratio - 1);
1763 }
1764
1765 /* check for wrap through zero on extent logical start block*/
1766 if (b1 + len1 < b1) {
1767 len1 = EXT_MAX_BLOCKS - b1;
1768 newext->ee_len = cpu_to_le16(len1);
1769 ret = 1;
1770 }
1771
1772 /* check for overlap */
1773 if (b1 + len1 > b2) {
1774 newext->ee_len = cpu_to_le16(b2 - b1);
1775 ret = 1;
1776 }
1777 out:
1778 return ret;
1779 }
1780
1781 /*
1782 * ext4_ext_insert_extent:
1783 * tries to merge requsted extent into the existing extent or
1784 * inserts requested extent as new one into the tree,
1785 * creating new leaf in the no-space case.
1786 */
1787 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1788 struct ext4_ext_path *path,
1789 struct ext4_extent *newext, int flag)
1790 {
1791 struct ext4_extent_header *eh;
1792 struct ext4_extent *ex, *fex;
1793 struct ext4_extent *nearex; /* nearest extent */
1794 struct ext4_ext_path *npath = NULL;
1795 int depth, len, err;
1796 ext4_lblk_t next;
1797 unsigned uninitialized = 0;
1798 int flags = 0;
1799
1800 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1801 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1802 return -EIO;
1803 }
1804 depth = ext_depth(inode);
1805 ex = path[depth].p_ext;
1806 eh = path[depth].p_hdr;
1807 if (unlikely(path[depth].p_hdr == NULL)) {
1808 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1809 return -EIO;
1810 }
1811
1812 /* try to insert block into found extent and return */
1813 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1814
1815 /*
1816 * Try to see whether we should rather test the extent on
1817 * right from ex, or from the left of ex. This is because
1818 * ext4_ext_find_extent() can return either extent on the
1819 * left, or on the right from the searched position. This
1820 * will make merging more effective.
1821 */
1822 if (ex < EXT_LAST_EXTENT(eh) &&
1823 (le32_to_cpu(ex->ee_block) +
1824 ext4_ext_get_actual_len(ex) <
1825 le32_to_cpu(newext->ee_block))) {
1826 ex += 1;
1827 goto prepend;
1828 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1829 (le32_to_cpu(newext->ee_block) +
1830 ext4_ext_get_actual_len(newext) <
1831 le32_to_cpu(ex->ee_block)))
1832 ex -= 1;
1833
1834 /* Try to append newex to the ex */
1835 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1836 ext_debug("append [%d]%d block to %u:[%d]%d"
1837 "(from %llu)\n",
1838 ext4_ext_is_uninitialized(newext),
1839 ext4_ext_get_actual_len(newext),
1840 le32_to_cpu(ex->ee_block),
1841 ext4_ext_is_uninitialized(ex),
1842 ext4_ext_get_actual_len(ex),
1843 ext4_ext_pblock(ex));
1844 err = ext4_ext_get_access(handle, inode,
1845 path + depth);
1846 if (err)
1847 return err;
1848
1849 /*
1850 * ext4_can_extents_be_merged should have checked
1851 * that either both extents are uninitialized, or
1852 * both aren't. Thus we need to check only one of
1853 * them here.
1854 */
1855 if (ext4_ext_is_uninitialized(ex))
1856 uninitialized = 1;
1857 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1858 + ext4_ext_get_actual_len(newext));
1859 if (uninitialized)
1860 ext4_ext_mark_uninitialized(ex);
1861 eh = path[depth].p_hdr;
1862 nearex = ex;
1863 goto merge;
1864 }
1865
1866 prepend:
1867 /* Try to prepend newex to the ex */
1868 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1869 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1870 "(from %llu)\n",
1871 le32_to_cpu(newext->ee_block),
1872 ext4_ext_is_uninitialized(newext),
1873 ext4_ext_get_actual_len(newext),
1874 le32_to_cpu(ex->ee_block),
1875 ext4_ext_is_uninitialized(ex),
1876 ext4_ext_get_actual_len(ex),
1877 ext4_ext_pblock(ex));
1878 err = ext4_ext_get_access(handle, inode,
1879 path + depth);
1880 if (err)
1881 return err;
1882
1883 /*
1884 * ext4_can_extents_be_merged should have checked
1885 * that either both extents are uninitialized, or
1886 * both aren't. Thus we need to check only one of
1887 * them here.
1888 */
1889 if (ext4_ext_is_uninitialized(ex))
1890 uninitialized = 1;
1891 ex->ee_block = newext->ee_block;
1892 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1893 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1894 + ext4_ext_get_actual_len(newext));
1895 if (uninitialized)
1896 ext4_ext_mark_uninitialized(ex);
1897 eh = path[depth].p_hdr;
1898 nearex = ex;
1899 goto merge;
1900 }
1901 }
1902
1903 depth = ext_depth(inode);
1904 eh = path[depth].p_hdr;
1905 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1906 goto has_space;
1907
1908 /* probably next leaf has space for us? */
1909 fex = EXT_LAST_EXTENT(eh);
1910 next = EXT_MAX_BLOCKS;
1911 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1912 next = ext4_ext_next_leaf_block(path);
1913 if (next != EXT_MAX_BLOCKS) {
1914 ext_debug("next leaf block - %u\n", next);
1915 BUG_ON(npath != NULL);
1916 npath = ext4_ext_find_extent(inode, next, NULL);
1917 if (IS_ERR(npath))
1918 return PTR_ERR(npath);
1919 BUG_ON(npath->p_depth != path->p_depth);
1920 eh = npath[depth].p_hdr;
1921 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1922 ext_debug("next leaf isn't full(%d)\n",
1923 le16_to_cpu(eh->eh_entries));
1924 path = npath;
1925 goto has_space;
1926 }
1927 ext_debug("next leaf has no free space(%d,%d)\n",
1928 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1929 }
1930
1931 /*
1932 * There is no free space in the found leaf.
1933 * We're gonna add a new leaf in the tree.
1934 */
1935 if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1936 flags = EXT4_MB_USE_RESERVED;
1937 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1938 if (err)
1939 goto cleanup;
1940 depth = ext_depth(inode);
1941 eh = path[depth].p_hdr;
1942
1943 has_space:
1944 nearex = path[depth].p_ext;
1945
1946 err = ext4_ext_get_access(handle, inode, path + depth);
1947 if (err)
1948 goto cleanup;
1949
1950 if (!nearex) {
1951 /* there is no extent in this leaf, create first one */
1952 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1953 le32_to_cpu(newext->ee_block),
1954 ext4_ext_pblock(newext),
1955 ext4_ext_is_uninitialized(newext),
1956 ext4_ext_get_actual_len(newext));
1957 nearex = EXT_FIRST_EXTENT(eh);
1958 } else {
1959 if (le32_to_cpu(newext->ee_block)
1960 > le32_to_cpu(nearex->ee_block)) {
1961 /* Insert after */
1962 ext_debug("insert %u:%llu:[%d]%d before: "
1963 "nearest %p\n",
1964 le32_to_cpu(newext->ee_block),
1965 ext4_ext_pblock(newext),
1966 ext4_ext_is_uninitialized(newext),
1967 ext4_ext_get_actual_len(newext),
1968 nearex);
1969 nearex++;
1970 } else {
1971 /* Insert before */
1972 BUG_ON(newext->ee_block == nearex->ee_block);
1973 ext_debug("insert %u:%llu:[%d]%d after: "
1974 "nearest %p\n",
1975 le32_to_cpu(newext->ee_block),
1976 ext4_ext_pblock(newext),
1977 ext4_ext_is_uninitialized(newext),
1978 ext4_ext_get_actual_len(newext),
1979 nearex);
1980 }
1981 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1982 if (len > 0) {
1983 ext_debug("insert %u:%llu:[%d]%d: "
1984 "move %d extents from 0x%p to 0x%p\n",
1985 le32_to_cpu(newext->ee_block),
1986 ext4_ext_pblock(newext),
1987 ext4_ext_is_uninitialized(newext),
1988 ext4_ext_get_actual_len(newext),
1989 len, nearex, nearex + 1);
1990 memmove(nearex + 1, nearex,
1991 len * sizeof(struct ext4_extent));
1992 }
1993 }
1994
1995 le16_add_cpu(&eh->eh_entries, 1);
1996 path[depth].p_ext = nearex;
1997 nearex->ee_block = newext->ee_block;
1998 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1999 nearex->ee_len = newext->ee_len;
2000
2001 merge:
2002 /* try to merge extents */
2003 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2004 ext4_ext_try_to_merge(handle, inode, path, nearex);
2005
2006
2007 /* time to correct all indexes above */
2008 err = ext4_ext_correct_indexes(handle, inode, path);
2009 if (err)
2010 goto cleanup;
2011
2012 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2013
2014 cleanup:
2015 if (npath) {
2016 ext4_ext_drop_refs(npath);
2017 kfree(npath);
2018 }
2019 return err;
2020 }
2021
2022 static int ext4_fill_fiemap_extents(struct inode *inode,
2023 ext4_lblk_t block, ext4_lblk_t num,
2024 struct fiemap_extent_info *fieinfo)
2025 {
2026 struct ext4_ext_path *path = NULL;
2027 struct ext4_extent *ex;
2028 struct extent_status es;
2029 ext4_lblk_t next, next_del, start = 0, end = 0;
2030 ext4_lblk_t last = block + num;
2031 int exists, depth = 0, err = 0;
2032 unsigned int flags = 0;
2033 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2034
2035 while (block < last && block != EXT_MAX_BLOCKS) {
2036 num = last - block;
2037 /* find extent for this block */
2038 down_read(&EXT4_I(inode)->i_data_sem);
2039
2040 if (path && ext_depth(inode) != depth) {
2041 /* depth was changed. we have to realloc path */
2042 kfree(path);
2043 path = NULL;
2044 }
2045
2046 path = ext4_ext_find_extent(inode, block, path);
2047 if (IS_ERR(path)) {
2048 up_read(&EXT4_I(inode)->i_data_sem);
2049 err = PTR_ERR(path);
2050 path = NULL;
2051 break;
2052 }
2053
2054 depth = ext_depth(inode);
2055 if (unlikely(path[depth].p_hdr == NULL)) {
2056 up_read(&EXT4_I(inode)->i_data_sem);
2057 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2058 err = -EIO;
2059 break;
2060 }
2061 ex = path[depth].p_ext;
2062 next = ext4_ext_next_allocated_block(path);
2063 ext4_ext_drop_refs(path);
2064
2065 flags = 0;
2066 exists = 0;
2067 if (!ex) {
2068 /* there is no extent yet, so try to allocate
2069 * all requested space */
2070 start = block;
2071 end = block + num;
2072 } else if (le32_to_cpu(ex->ee_block) > block) {
2073 /* need to allocate space before found extent */
2074 start = block;
2075 end = le32_to_cpu(ex->ee_block);
2076 if (block + num < end)
2077 end = block + num;
2078 } else if (block >= le32_to_cpu(ex->ee_block)
2079 + ext4_ext_get_actual_len(ex)) {
2080 /* need to allocate space after found extent */
2081 start = block;
2082 end = block + num;
2083 if (end >= next)
2084 end = next;
2085 } else if (block >= le32_to_cpu(ex->ee_block)) {
2086 /*
2087 * some part of requested space is covered
2088 * by found extent
2089 */
2090 start = block;
2091 end = le32_to_cpu(ex->ee_block)
2092 + ext4_ext_get_actual_len(ex);
2093 if (block + num < end)
2094 end = block + num;
2095 exists = 1;
2096 } else {
2097 BUG();
2098 }
2099 BUG_ON(end <= start);
2100
2101 if (!exists) {
2102 es.es_lblk = start;
2103 es.es_len = end - start;
2104 es.es_pblk = 0;
2105 } else {
2106 es.es_lblk = le32_to_cpu(ex->ee_block);
2107 es.es_len = ext4_ext_get_actual_len(ex);
2108 es.es_pblk = ext4_ext_pblock(ex);
2109 if (ext4_ext_is_uninitialized(ex))
2110 flags |= FIEMAP_EXTENT_UNWRITTEN;
2111 }
2112
2113 /*
2114 * Find delayed extent and update es accordingly. We call
2115 * it even in !exists case to find out whether es is the
2116 * last existing extent or not.
2117 */
2118 next_del = ext4_find_delayed_extent(inode, &es);
2119 if (!exists && next_del) {
2120 exists = 1;
2121 flags |= (FIEMAP_EXTENT_DELALLOC |
2122 FIEMAP_EXTENT_UNKNOWN);
2123 }
2124 up_read(&EXT4_I(inode)->i_data_sem);
2125
2126 if (unlikely(es.es_len == 0)) {
2127 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2128 err = -EIO;
2129 break;
2130 }
2131
2132 /*
2133 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2134 * we need to check next == EXT_MAX_BLOCKS because it is
2135 * possible that an extent is with unwritten and delayed
2136 * status due to when an extent is delayed allocated and
2137 * is allocated by fallocate status tree will track both of
2138 * them in a extent.
2139 *
2140 * So we could return a unwritten and delayed extent, and
2141 * its block is equal to 'next'.
2142 */
2143 if (next == next_del && next == EXT_MAX_BLOCKS) {
2144 flags |= FIEMAP_EXTENT_LAST;
2145 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2146 next != EXT_MAX_BLOCKS)) {
2147 EXT4_ERROR_INODE(inode,
2148 "next extent == %u, next "
2149 "delalloc extent = %u",
2150 next, next_del);
2151 err = -EIO;
2152 break;
2153 }
2154 }
2155
2156 if (exists) {
2157 err = fiemap_fill_next_extent(fieinfo,
2158 (__u64)es.es_lblk << blksize_bits,
2159 (__u64)es.es_pblk << blksize_bits,
2160 (__u64)es.es_len << blksize_bits,
2161 flags);
2162 if (err < 0)
2163 break;
2164 if (err == 1) {
2165 err = 0;
2166 break;
2167 }
2168 }
2169
2170 block = es.es_lblk + es.es_len;
2171 }
2172
2173 if (path) {
2174 ext4_ext_drop_refs(path);
2175 kfree(path);
2176 }
2177
2178 return err;
2179 }
2180
2181 /*
2182 * ext4_ext_put_gap_in_cache:
2183 * calculate boundaries of the gap that the requested block fits into
2184 * and cache this gap
2185 */
2186 static void
2187 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2188 ext4_lblk_t block)
2189 {
2190 int depth = ext_depth(inode);
2191 unsigned long len;
2192 ext4_lblk_t lblock;
2193 struct ext4_extent *ex;
2194
2195 ex = path[depth].p_ext;
2196 if (ex == NULL) {
2197 /*
2198 * there is no extent yet, so gap is [0;-] and we
2199 * don't cache it
2200 */
2201 ext_debug("cache gap(whole file):");
2202 } else if (block < le32_to_cpu(ex->ee_block)) {
2203 lblock = block;
2204 len = le32_to_cpu(ex->ee_block) - block;
2205 ext_debug("cache gap(before): %u [%u:%u]",
2206 block,
2207 le32_to_cpu(ex->ee_block),
2208 ext4_ext_get_actual_len(ex));
2209 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2210 ext4_es_insert_extent(inode, lblock, len, ~0,
2211 EXTENT_STATUS_HOLE);
2212 } else if (block >= le32_to_cpu(ex->ee_block)
2213 + ext4_ext_get_actual_len(ex)) {
2214 ext4_lblk_t next;
2215 lblock = le32_to_cpu(ex->ee_block)
2216 + ext4_ext_get_actual_len(ex);
2217
2218 next = ext4_ext_next_allocated_block(path);
2219 ext_debug("cache gap(after): [%u:%u] %u",
2220 le32_to_cpu(ex->ee_block),
2221 ext4_ext_get_actual_len(ex),
2222 block);
2223 BUG_ON(next == lblock);
2224 len = next - lblock;
2225 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2226 ext4_es_insert_extent(inode, lblock, len, ~0,
2227 EXTENT_STATUS_HOLE);
2228 } else {
2229 lblock = len = 0;
2230 BUG();
2231 }
2232
2233 ext_debug(" -> %u:%lu\n", lblock, len);
2234 }
2235
2236 /*
2237 * ext4_ext_rm_idx:
2238 * removes index from the index block.
2239 */
2240 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2241 struct ext4_ext_path *path, int depth)
2242 {
2243 int err;
2244 ext4_fsblk_t leaf;
2245
2246 /* free index block */
2247 depth--;
2248 path = path + depth;
2249 leaf = ext4_idx_pblock(path->p_idx);
2250 if (unlikely(path->p_hdr->eh_entries == 0)) {
2251 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2252 return -EIO;
2253 }
2254 err = ext4_ext_get_access(handle, inode, path);
2255 if (err)
2256 return err;
2257
2258 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2259 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2260 len *= sizeof(struct ext4_extent_idx);
2261 memmove(path->p_idx, path->p_idx + 1, len);
2262 }
2263
2264 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2265 err = ext4_ext_dirty(handle, inode, path);
2266 if (err)
2267 return err;
2268 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2269 trace_ext4_ext_rm_idx(inode, leaf);
2270
2271 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2272 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2273
2274 while (--depth >= 0) {
2275 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2276 break;
2277 path--;
2278 err = ext4_ext_get_access(handle, inode, path);
2279 if (err)
2280 break;
2281 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2282 err = ext4_ext_dirty(handle, inode, path);
2283 if (err)
2284 break;
2285 }
2286 return err;
2287 }
2288
2289 /*
2290 * ext4_ext_calc_credits_for_single_extent:
2291 * This routine returns max. credits that needed to insert an extent
2292 * to the extent tree.
2293 * When pass the actual path, the caller should calculate credits
2294 * under i_data_sem.
2295 */
2296 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2297 struct ext4_ext_path *path)
2298 {
2299 if (path) {
2300 int depth = ext_depth(inode);
2301 int ret = 0;
2302
2303 /* probably there is space in leaf? */
2304 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2305 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2306
2307 /*
2308 * There are some space in the leaf tree, no
2309 * need to account for leaf block credit
2310 *
2311 * bitmaps and block group descriptor blocks
2312 * and other metadata blocks still need to be
2313 * accounted.
2314 */
2315 /* 1 bitmap, 1 block group descriptor */
2316 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2317 return ret;
2318 }
2319 }
2320
2321 return ext4_chunk_trans_blocks(inode, nrblocks);
2322 }
2323
2324 /*
2325 * How many index/leaf blocks need to change/allocate to add @extents extents?
2326 *
2327 * If we add a single extent, then in the worse case, each tree level
2328 * index/leaf need to be changed in case of the tree split.
2329 *
2330 * If more extents are inserted, they could cause the whole tree split more
2331 * than once, but this is really rare.
2332 */
2333 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2334 {
2335 int index;
2336 int depth;
2337
2338 /* If we are converting the inline data, only one is needed here. */
2339 if (ext4_has_inline_data(inode))
2340 return 1;
2341
2342 depth = ext_depth(inode);
2343
2344 if (extents <= 1)
2345 index = depth * 2;
2346 else
2347 index = depth * 3;
2348
2349 return index;
2350 }
2351
2352 static inline int get_default_free_blocks_flags(struct inode *inode)
2353 {
2354 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2355 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2356 else if (ext4_should_journal_data(inode))
2357 return EXT4_FREE_BLOCKS_FORGET;
2358 return 0;
2359 }
2360
2361 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2362 struct ext4_extent *ex,
2363 long long *partial_cluster,
2364 ext4_lblk_t from, ext4_lblk_t to)
2365 {
2366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2367 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2368 ext4_fsblk_t pblk;
2369 int flags = get_default_free_blocks_flags(inode);
2370
2371 /*
2372 * For bigalloc file systems, we never free a partial cluster
2373 * at the beginning of the extent. Instead, we make a note
2374 * that we tried freeing the cluster, and check to see if we
2375 * need to free it on a subsequent call to ext4_remove_blocks,
2376 * or at the end of the ext4_truncate() operation.
2377 */
2378 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2379
2380 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2381 /*
2382 * If we have a partial cluster, and it's different from the
2383 * cluster of the last block, we need to explicitly free the
2384 * partial cluster here.
2385 */
2386 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2387 if ((*partial_cluster > 0) &&
2388 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2389 ext4_free_blocks(handle, inode, NULL,
2390 EXT4_C2B(sbi, *partial_cluster),
2391 sbi->s_cluster_ratio, flags);
2392 *partial_cluster = 0;
2393 }
2394
2395 #ifdef EXTENTS_STATS
2396 {
2397 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2398 spin_lock(&sbi->s_ext_stats_lock);
2399 sbi->s_ext_blocks += ee_len;
2400 sbi->s_ext_extents++;
2401 if (ee_len < sbi->s_ext_min)
2402 sbi->s_ext_min = ee_len;
2403 if (ee_len > sbi->s_ext_max)
2404 sbi->s_ext_max = ee_len;
2405 if (ext_depth(inode) > sbi->s_depth_max)
2406 sbi->s_depth_max = ext_depth(inode);
2407 spin_unlock(&sbi->s_ext_stats_lock);
2408 }
2409 #endif
2410 if (from >= le32_to_cpu(ex->ee_block)
2411 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2412 /* tail removal */
2413 ext4_lblk_t num;
2414 unsigned int unaligned;
2415
2416 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2417 pblk = ext4_ext_pblock(ex) + ee_len - num;
2418 /*
2419 * Usually we want to free partial cluster at the end of the
2420 * extent, except for the situation when the cluster is still
2421 * used by any other extent (partial_cluster is negative).
2422 */
2423 if (*partial_cluster < 0 &&
2424 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2425 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2426
2427 ext_debug("free last %u blocks starting %llu partial %lld\n",
2428 num, pblk, *partial_cluster);
2429 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2430 /*
2431 * If the block range to be freed didn't start at the
2432 * beginning of a cluster, and we removed the entire
2433 * extent and the cluster is not used by any other extent,
2434 * save the partial cluster here, since we might need to
2435 * delete if we determine that the truncate operation has
2436 * removed all of the blocks in the cluster.
2437 *
2438 * On the other hand, if we did not manage to free the whole
2439 * extent, we have to mark the cluster as used (store negative
2440 * cluster number in partial_cluster).
2441 */
2442 unaligned = pblk & (sbi->s_cluster_ratio - 1);
2443 if (unaligned && (ee_len == num) &&
2444 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2445 *partial_cluster = EXT4_B2C(sbi, pblk);
2446 else if (unaligned)
2447 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2448 else if (*partial_cluster > 0)
2449 *partial_cluster = 0;
2450 } else
2451 ext4_error(sbi->s_sb, "strange request: removal(2) "
2452 "%u-%u from %u:%u\n",
2453 from, to, le32_to_cpu(ex->ee_block), ee_len);
2454 return 0;
2455 }
2456
2457
2458 /*
2459 * ext4_ext_rm_leaf() Removes the extents associated with the
2460 * blocks appearing between "start" and "end", and splits the extents
2461 * if "start" and "end" appear in the same extent
2462 *
2463 * @handle: The journal handle
2464 * @inode: The files inode
2465 * @path: The path to the leaf
2466 * @partial_cluster: The cluster which we'll have to free if all extents
2467 * has been released from it. It gets negative in case
2468 * that the cluster is still used.
2469 * @start: The first block to remove
2470 * @end: The last block to remove
2471 */
2472 static int
2473 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2474 struct ext4_ext_path *path,
2475 long long *partial_cluster,
2476 ext4_lblk_t start, ext4_lblk_t end)
2477 {
2478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2479 int err = 0, correct_index = 0;
2480 int depth = ext_depth(inode), credits;
2481 struct ext4_extent_header *eh;
2482 ext4_lblk_t a, b;
2483 unsigned num;
2484 ext4_lblk_t ex_ee_block;
2485 unsigned short ex_ee_len;
2486 unsigned uninitialized = 0;
2487 struct ext4_extent *ex;
2488 ext4_fsblk_t pblk;
2489
2490 /* the header must be checked already in ext4_ext_remove_space() */
2491 ext_debug("truncate since %u in leaf to %u\n", start, end);
2492 if (!path[depth].p_hdr)
2493 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2494 eh = path[depth].p_hdr;
2495 if (unlikely(path[depth].p_hdr == NULL)) {
2496 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2497 return -EIO;
2498 }
2499 /* find where to start removing */
2500 ex = path[depth].p_ext;
2501 if (!ex)
2502 ex = EXT_LAST_EXTENT(eh);
2503
2504 ex_ee_block = le32_to_cpu(ex->ee_block);
2505 ex_ee_len = ext4_ext_get_actual_len(ex);
2506
2507 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2508
2509 while (ex >= EXT_FIRST_EXTENT(eh) &&
2510 ex_ee_block + ex_ee_len > start) {
2511
2512 if (ext4_ext_is_uninitialized(ex))
2513 uninitialized = 1;
2514 else
2515 uninitialized = 0;
2516
2517 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2518 uninitialized, ex_ee_len);
2519 path[depth].p_ext = ex;
2520
2521 a = ex_ee_block > start ? ex_ee_block : start;
2522 b = ex_ee_block+ex_ee_len - 1 < end ?
2523 ex_ee_block+ex_ee_len - 1 : end;
2524
2525 ext_debug(" border %u:%u\n", a, b);
2526
2527 /* If this extent is beyond the end of the hole, skip it */
2528 if (end < ex_ee_block) {
2529 /*
2530 * We're going to skip this extent and move to another,
2531 * so if this extent is not cluster aligned we have
2532 * to mark the current cluster as used to avoid
2533 * accidentally freeing it later on
2534 */
2535 pblk = ext4_ext_pblock(ex);
2536 if (pblk & (sbi->s_cluster_ratio - 1))
2537 *partial_cluster =
2538 -((long long)EXT4_B2C(sbi, pblk));
2539 ex--;
2540 ex_ee_block = le32_to_cpu(ex->ee_block);
2541 ex_ee_len = ext4_ext_get_actual_len(ex);
2542 continue;
2543 } else if (b != ex_ee_block + ex_ee_len - 1) {
2544 EXT4_ERROR_INODE(inode,
2545 "can not handle truncate %u:%u "
2546 "on extent %u:%u",
2547 start, end, ex_ee_block,
2548 ex_ee_block + ex_ee_len - 1);
2549 err = -EIO;
2550 goto out;
2551 } else if (a != ex_ee_block) {
2552 /* remove tail of the extent */
2553 num = a - ex_ee_block;
2554 } else {
2555 /* remove whole extent: excellent! */
2556 num = 0;
2557 }
2558 /*
2559 * 3 for leaf, sb, and inode plus 2 (bmap and group
2560 * descriptor) for each block group; assume two block
2561 * groups plus ex_ee_len/blocks_per_block_group for
2562 * the worst case
2563 */
2564 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2565 if (ex == EXT_FIRST_EXTENT(eh)) {
2566 correct_index = 1;
2567 credits += (ext_depth(inode)) + 1;
2568 }
2569 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2570
2571 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2572 if (err)
2573 goto out;
2574
2575 err = ext4_ext_get_access(handle, inode, path + depth);
2576 if (err)
2577 goto out;
2578
2579 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2580 a, b);
2581 if (err)
2582 goto out;
2583
2584 if (num == 0)
2585 /* this extent is removed; mark slot entirely unused */
2586 ext4_ext_store_pblock(ex, 0);
2587
2588 ex->ee_len = cpu_to_le16(num);
2589 /*
2590 * Do not mark uninitialized if all the blocks in the
2591 * extent have been removed.
2592 */
2593 if (uninitialized && num)
2594 ext4_ext_mark_uninitialized(ex);
2595 /*
2596 * If the extent was completely released,
2597 * we need to remove it from the leaf
2598 */
2599 if (num == 0) {
2600 if (end != EXT_MAX_BLOCKS - 1) {
2601 /*
2602 * For hole punching, we need to scoot all the
2603 * extents up when an extent is removed so that
2604 * we dont have blank extents in the middle
2605 */
2606 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2607 sizeof(struct ext4_extent));
2608
2609 /* Now get rid of the one at the end */
2610 memset(EXT_LAST_EXTENT(eh), 0,
2611 sizeof(struct ext4_extent));
2612 }
2613 le16_add_cpu(&eh->eh_entries, -1);
2614 } else if (*partial_cluster > 0)
2615 *partial_cluster = 0;
2616
2617 err = ext4_ext_dirty(handle, inode, path + depth);
2618 if (err)
2619 goto out;
2620
2621 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2622 ext4_ext_pblock(ex));
2623 ex--;
2624 ex_ee_block = le32_to_cpu(ex->ee_block);
2625 ex_ee_len = ext4_ext_get_actual_len(ex);
2626 }
2627
2628 if (correct_index && eh->eh_entries)
2629 err = ext4_ext_correct_indexes(handle, inode, path);
2630
2631 /*
2632 * Free the partial cluster only if the current extent does not
2633 * reference it. Otherwise we might free used cluster.
2634 */
2635 if (*partial_cluster > 0 &&
2636 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2637 *partial_cluster)) {
2638 int flags = get_default_free_blocks_flags(inode);
2639
2640 ext4_free_blocks(handle, inode, NULL,
2641 EXT4_C2B(sbi, *partial_cluster),
2642 sbi->s_cluster_ratio, flags);
2643 *partial_cluster = 0;
2644 }
2645
2646 /* if this leaf is free, then we should
2647 * remove it from index block above */
2648 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2649 err = ext4_ext_rm_idx(handle, inode, path, depth);
2650
2651 out:
2652 return err;
2653 }
2654
2655 /*
2656 * ext4_ext_more_to_rm:
2657 * returns 1 if current index has to be freed (even partial)
2658 */
2659 static int
2660 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2661 {
2662 BUG_ON(path->p_idx == NULL);
2663
2664 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2665 return 0;
2666
2667 /*
2668 * if truncate on deeper level happened, it wasn't partial,
2669 * so we have to consider current index for truncation
2670 */
2671 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2672 return 0;
2673 return 1;
2674 }
2675
2676 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2677 ext4_lblk_t end)
2678 {
2679 struct super_block *sb = inode->i_sb;
2680 int depth = ext_depth(inode);
2681 struct ext4_ext_path *path = NULL;
2682 long long partial_cluster = 0;
2683 handle_t *handle;
2684 int i = 0, err = 0;
2685
2686 ext_debug("truncate since %u to %u\n", start, end);
2687
2688 /* probably first extent we're gonna free will be last in block */
2689 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2690 if (IS_ERR(handle))
2691 return PTR_ERR(handle);
2692
2693 again:
2694 trace_ext4_ext_remove_space(inode, start, end, depth);
2695
2696 /*
2697 * Check if we are removing extents inside the extent tree. If that
2698 * is the case, we are going to punch a hole inside the extent tree
2699 * so we have to check whether we need to split the extent covering
2700 * the last block to remove so we can easily remove the part of it
2701 * in ext4_ext_rm_leaf().
2702 */
2703 if (end < EXT_MAX_BLOCKS - 1) {
2704 struct ext4_extent *ex;
2705 ext4_lblk_t ee_block;
2706
2707 /* find extent for this block */
2708 path = ext4_ext_find_extent(inode, end, NULL);
2709 if (IS_ERR(path)) {
2710 ext4_journal_stop(handle);
2711 return PTR_ERR(path);
2712 }
2713 depth = ext_depth(inode);
2714 /* Leaf not may not exist only if inode has no blocks at all */
2715 ex = path[depth].p_ext;
2716 if (!ex) {
2717 if (depth) {
2718 EXT4_ERROR_INODE(inode,
2719 "path[%d].p_hdr == NULL",
2720 depth);
2721 err = -EIO;
2722 }
2723 goto out;
2724 }
2725
2726 ee_block = le32_to_cpu(ex->ee_block);
2727
2728 /*
2729 * See if the last block is inside the extent, if so split
2730 * the extent at 'end' block so we can easily remove the
2731 * tail of the first part of the split extent in
2732 * ext4_ext_rm_leaf().
2733 */
2734 if (end >= ee_block &&
2735 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2736 int split_flag = 0;
2737
2738 if (ext4_ext_is_uninitialized(ex))
2739 split_flag = EXT4_EXT_MARK_UNINIT1 |
2740 EXT4_EXT_MARK_UNINIT2;
2741
2742 /*
2743 * Split the extent in two so that 'end' is the last
2744 * block in the first new extent. Also we should not
2745 * fail removing space due to ENOSPC so try to use
2746 * reserved block if that happens.
2747 */
2748 err = ext4_split_extent_at(handle, inode, path,
2749 end + 1, split_flag,
2750 EXT4_GET_BLOCKS_PRE_IO |
2751 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2752
2753 if (err < 0)
2754 goto out;
2755 }
2756 }
2757 /*
2758 * We start scanning from right side, freeing all the blocks
2759 * after i_size and walking into the tree depth-wise.
2760 */
2761 depth = ext_depth(inode);
2762 if (path) {
2763 int k = i = depth;
2764 while (--k > 0)
2765 path[k].p_block =
2766 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2767 } else {
2768 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2769 GFP_NOFS);
2770 if (path == NULL) {
2771 ext4_journal_stop(handle);
2772 return -ENOMEM;
2773 }
2774 path[0].p_depth = depth;
2775 path[0].p_hdr = ext_inode_hdr(inode);
2776 i = 0;
2777
2778 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2779 err = -EIO;
2780 goto out;
2781 }
2782 }
2783 err = 0;
2784
2785 while (i >= 0 && err == 0) {
2786 if (i == depth) {
2787 /* this is leaf block */
2788 err = ext4_ext_rm_leaf(handle, inode, path,
2789 &partial_cluster, start,
2790 end);
2791 /* root level has p_bh == NULL, brelse() eats this */
2792 brelse(path[i].p_bh);
2793 path[i].p_bh = NULL;
2794 i--;
2795 continue;
2796 }
2797
2798 /* this is index block */
2799 if (!path[i].p_hdr) {
2800 ext_debug("initialize header\n");
2801 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2802 }
2803
2804 if (!path[i].p_idx) {
2805 /* this level hasn't been touched yet */
2806 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2807 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2808 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2809 path[i].p_hdr,
2810 le16_to_cpu(path[i].p_hdr->eh_entries));
2811 } else {
2812 /* we were already here, see at next index */
2813 path[i].p_idx--;
2814 }
2815
2816 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2817 i, EXT_FIRST_INDEX(path[i].p_hdr),
2818 path[i].p_idx);
2819 if (ext4_ext_more_to_rm(path + i)) {
2820 struct buffer_head *bh;
2821 /* go to the next level */
2822 ext_debug("move to level %d (block %llu)\n",
2823 i + 1, ext4_idx_pblock(path[i].p_idx));
2824 memset(path + i + 1, 0, sizeof(*path));
2825 bh = read_extent_tree_block(inode,
2826 ext4_idx_pblock(path[i].p_idx), depth - i - 1);
2827 if (IS_ERR(bh)) {
2828 /* should we reset i_size? */
2829 err = PTR_ERR(bh);
2830 break;
2831 }
2832 /* Yield here to deal with large extent trees.
2833 * Should be a no-op if we did IO above. */
2834 cond_resched();
2835 if (WARN_ON(i + 1 > depth)) {
2836 err = -EIO;
2837 break;
2838 }
2839 path[i + 1].p_bh = bh;
2840
2841 /* save actual number of indexes since this
2842 * number is changed at the next iteration */
2843 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2844 i++;
2845 } else {
2846 /* we finished processing this index, go up */
2847 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2848 /* index is empty, remove it;
2849 * handle must be already prepared by the
2850 * truncatei_leaf() */
2851 err = ext4_ext_rm_idx(handle, inode, path, i);
2852 }
2853 /* root level has p_bh == NULL, brelse() eats this */
2854 brelse(path[i].p_bh);
2855 path[i].p_bh = NULL;
2856 i--;
2857 ext_debug("return to level %d\n", i);
2858 }
2859 }
2860
2861 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2862 partial_cluster, path->p_hdr->eh_entries);
2863
2864 /* If we still have something in the partial cluster and we have removed
2865 * even the first extent, then we should free the blocks in the partial
2866 * cluster as well. */
2867 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2868 int flags = get_default_free_blocks_flags(inode);
2869
2870 ext4_free_blocks(handle, inode, NULL,
2871 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2872 EXT4_SB(sb)->s_cluster_ratio, flags);
2873 partial_cluster = 0;
2874 }
2875
2876 /* TODO: flexible tree reduction should be here */
2877 if (path->p_hdr->eh_entries == 0) {
2878 /*
2879 * truncate to zero freed all the tree,
2880 * so we need to correct eh_depth
2881 */
2882 err = ext4_ext_get_access(handle, inode, path);
2883 if (err == 0) {
2884 ext_inode_hdr(inode)->eh_depth = 0;
2885 ext_inode_hdr(inode)->eh_max =
2886 cpu_to_le16(ext4_ext_space_root(inode, 0));
2887 err = ext4_ext_dirty(handle, inode, path);
2888 }
2889 }
2890 out:
2891 ext4_ext_drop_refs(path);
2892 kfree(path);
2893 if (err == -EAGAIN) {
2894 path = NULL;
2895 goto again;
2896 }
2897 ext4_journal_stop(handle);
2898
2899 return err;
2900 }
2901
2902 /*
2903 * called at mount time
2904 */
2905 void ext4_ext_init(struct super_block *sb)
2906 {
2907 /*
2908 * possible initialization would be here
2909 */
2910
2911 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2912 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2913 printk(KERN_INFO "EXT4-fs: file extents enabled"
2914 #ifdef AGGRESSIVE_TEST
2915 ", aggressive tests"
2916 #endif
2917 #ifdef CHECK_BINSEARCH
2918 ", check binsearch"
2919 #endif
2920 #ifdef EXTENTS_STATS
2921 ", stats"
2922 #endif
2923 "\n");
2924 #endif
2925 #ifdef EXTENTS_STATS
2926 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2927 EXT4_SB(sb)->s_ext_min = 1 << 30;
2928 EXT4_SB(sb)->s_ext_max = 0;
2929 #endif
2930 }
2931 }
2932
2933 /*
2934 * called at umount time
2935 */
2936 void ext4_ext_release(struct super_block *sb)
2937 {
2938 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2939 return;
2940
2941 #ifdef EXTENTS_STATS
2942 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2943 struct ext4_sb_info *sbi = EXT4_SB(sb);
2944 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2945 sbi->s_ext_blocks, sbi->s_ext_extents,
2946 sbi->s_ext_blocks / sbi->s_ext_extents);
2947 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2948 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2949 }
2950 #endif
2951 }
2952
2953 /* FIXME!! we need to try to merge to left or right after zero-out */
2954 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2955 {
2956 ext4_fsblk_t ee_pblock;
2957 unsigned int ee_len;
2958 int ret;
2959
2960 ee_len = ext4_ext_get_actual_len(ex);
2961 ee_pblock = ext4_ext_pblock(ex);
2962
2963 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2964 if (ret > 0)
2965 ret = 0;
2966
2967 return ret;
2968 }
2969
2970 /*
2971 * ext4_split_extent_at() splits an extent at given block.
2972 *
2973 * @handle: the journal handle
2974 * @inode: the file inode
2975 * @path: the path to the extent
2976 * @split: the logical block where the extent is splitted.
2977 * @split_flags: indicates if the extent could be zeroout if split fails, and
2978 * the states(init or uninit) of new extents.
2979 * @flags: flags used to insert new extent to extent tree.
2980 *
2981 *
2982 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2983 * of which are deterimined by split_flag.
2984 *
2985 * There are two cases:
2986 * a> the extent are splitted into two extent.
2987 * b> split is not needed, and just mark the extent.
2988 *
2989 * return 0 on success.
2990 */
2991 static int ext4_split_extent_at(handle_t *handle,
2992 struct inode *inode,
2993 struct ext4_ext_path *path,
2994 ext4_lblk_t split,
2995 int split_flag,
2996 int flags)
2997 {
2998 ext4_fsblk_t newblock;
2999 ext4_lblk_t ee_block;
3000 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3001 struct ext4_extent *ex2 = NULL;
3002 unsigned int ee_len, depth;
3003 int err = 0;
3004
3005 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3006 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3007
3008 ext_debug("ext4_split_extents_at: inode %lu, logical"
3009 "block %llu\n", inode->i_ino, (unsigned long long)split);
3010
3011 ext4_ext_show_leaf(inode, path);
3012
3013 depth = ext_depth(inode);
3014 ex = path[depth].p_ext;
3015 ee_block = le32_to_cpu(ex->ee_block);
3016 ee_len = ext4_ext_get_actual_len(ex);
3017 newblock = split - ee_block + ext4_ext_pblock(ex);
3018
3019 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3020 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3021 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3022 EXT4_EXT_MARK_UNINIT1 |
3023 EXT4_EXT_MARK_UNINIT2));
3024
3025 err = ext4_ext_get_access(handle, inode, path + depth);
3026 if (err)
3027 goto out;
3028
3029 if (split == ee_block) {
3030 /*
3031 * case b: block @split is the block that the extent begins with
3032 * then we just change the state of the extent, and splitting
3033 * is not needed.
3034 */
3035 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3036 ext4_ext_mark_uninitialized(ex);
3037 else
3038 ext4_ext_mark_initialized(ex);
3039
3040 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3041 ext4_ext_try_to_merge(handle, inode, path, ex);
3042
3043 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3044 goto out;
3045 }
3046
3047 /* case a */
3048 memcpy(&orig_ex, ex, sizeof(orig_ex));
3049 ex->ee_len = cpu_to_le16(split - ee_block);
3050 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3051 ext4_ext_mark_uninitialized(ex);
3052
3053 /*
3054 * path may lead to new leaf, not to original leaf any more
3055 * after ext4_ext_insert_extent() returns,
3056 */
3057 err = ext4_ext_dirty(handle, inode, path + depth);
3058 if (err)
3059 goto fix_extent_len;
3060
3061 ex2 = &newex;
3062 ex2->ee_block = cpu_to_le32(split);
3063 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3064 ext4_ext_store_pblock(ex2, newblock);
3065 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3066 ext4_ext_mark_uninitialized(ex2);
3067
3068 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3069 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3070 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3071 if (split_flag & EXT4_EXT_DATA_VALID1) {
3072 err = ext4_ext_zeroout(inode, ex2);
3073 zero_ex.ee_block = ex2->ee_block;
3074 zero_ex.ee_len = cpu_to_le16(
3075 ext4_ext_get_actual_len(ex2));
3076 ext4_ext_store_pblock(&zero_ex,
3077 ext4_ext_pblock(ex2));
3078 } else {
3079 err = ext4_ext_zeroout(inode, ex);
3080 zero_ex.ee_block = ex->ee_block;
3081 zero_ex.ee_len = cpu_to_le16(
3082 ext4_ext_get_actual_len(ex));
3083 ext4_ext_store_pblock(&zero_ex,
3084 ext4_ext_pblock(ex));
3085 }
3086 } else {
3087 err = ext4_ext_zeroout(inode, &orig_ex);
3088 zero_ex.ee_block = orig_ex.ee_block;
3089 zero_ex.ee_len = cpu_to_le16(
3090 ext4_ext_get_actual_len(&orig_ex));
3091 ext4_ext_store_pblock(&zero_ex,
3092 ext4_ext_pblock(&orig_ex));
3093 }
3094
3095 if (err)
3096 goto fix_extent_len;
3097 /* update the extent length and mark as initialized */
3098 ex->ee_len = cpu_to_le16(ee_len);
3099 ext4_ext_try_to_merge(handle, inode, path, ex);
3100 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3101 if (err)
3102 goto fix_extent_len;
3103
3104 /* update extent status tree */
3105 err = ext4_es_zeroout(inode, &zero_ex);
3106
3107 goto out;
3108 } else if (err)
3109 goto fix_extent_len;
3110
3111 out:
3112 ext4_ext_show_leaf(inode, path);
3113 return err;
3114
3115 fix_extent_len:
3116 ex->ee_len = orig_ex.ee_len;
3117 ext4_ext_dirty(handle, inode, path + depth);
3118 return err;
3119 }
3120
3121 /*
3122 * ext4_split_extents() splits an extent and mark extent which is covered
3123 * by @map as split_flags indicates
3124 *
3125 * It may result in splitting the extent into multiple extents (upto three)
3126 * There are three possibilities:
3127 * a> There is no split required
3128 * b> Splits in two extents: Split is happening at either end of the extent
3129 * c> Splits in three extents: Somone is splitting in middle of the extent
3130 *
3131 */
3132 static int ext4_split_extent(handle_t *handle,
3133 struct inode *inode,
3134 struct ext4_ext_path *path,
3135 struct ext4_map_blocks *map,
3136 int split_flag,
3137 int flags)
3138 {
3139 ext4_lblk_t ee_block;
3140 struct ext4_extent *ex;
3141 unsigned int ee_len, depth;
3142 int err = 0;
3143 int uninitialized;
3144 int split_flag1, flags1;
3145 int allocated = map->m_len;
3146
3147 depth = ext_depth(inode);
3148 ex = path[depth].p_ext;
3149 ee_block = le32_to_cpu(ex->ee_block);
3150 ee_len = ext4_ext_get_actual_len(ex);
3151 uninitialized = ext4_ext_is_uninitialized(ex);
3152
3153 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3154 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3155 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3156 if (uninitialized)
3157 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3158 EXT4_EXT_MARK_UNINIT2;
3159 if (split_flag & EXT4_EXT_DATA_VALID2)
3160 split_flag1 |= EXT4_EXT_DATA_VALID1;
3161 err = ext4_split_extent_at(handle, inode, path,
3162 map->m_lblk + map->m_len, split_flag1, flags1);
3163 if (err)
3164 goto out;
3165 } else {
3166 allocated = ee_len - (map->m_lblk - ee_block);
3167 }
3168 /*
3169 * Update path is required because previous ext4_split_extent_at() may
3170 * result in split of original leaf or extent zeroout.
3171 */
3172 ext4_ext_drop_refs(path);
3173 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3174 if (IS_ERR(path))
3175 return PTR_ERR(path);
3176 depth = ext_depth(inode);
3177 ex = path[depth].p_ext;
3178 uninitialized = ext4_ext_is_uninitialized(ex);
3179 split_flag1 = 0;
3180
3181 if (map->m_lblk >= ee_block) {
3182 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3183 if (uninitialized) {
3184 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3185 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3186 EXT4_EXT_MARK_UNINIT2);
3187 }
3188 err = ext4_split_extent_at(handle, inode, path,
3189 map->m_lblk, split_flag1, flags);
3190 if (err)
3191 goto out;
3192 }
3193
3194 ext4_ext_show_leaf(inode, path);
3195 out:
3196 return err ? err : allocated;
3197 }
3198
3199 /*
3200 * This function is called by ext4_ext_map_blocks() if someone tries to write
3201 * to an uninitialized extent. It may result in splitting the uninitialized
3202 * extent into multiple extents (up to three - one initialized and two
3203 * uninitialized).
3204 * There are three possibilities:
3205 * a> There is no split required: Entire extent should be initialized
3206 * b> Splits in two extents: Write is happening at either end of the extent
3207 * c> Splits in three extents: Somone is writing in middle of the extent
3208 *
3209 * Pre-conditions:
3210 * - The extent pointed to by 'path' is uninitialized.
3211 * - The extent pointed to by 'path' contains a superset
3212 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3213 *
3214 * Post-conditions on success:
3215 * - the returned value is the number of blocks beyond map->l_lblk
3216 * that are allocated and initialized.
3217 * It is guaranteed to be >= map->m_len.
3218 */
3219 static int ext4_ext_convert_to_initialized(handle_t *handle,
3220 struct inode *inode,
3221 struct ext4_map_blocks *map,
3222 struct ext4_ext_path *path,
3223 int flags)
3224 {
3225 struct ext4_sb_info *sbi;
3226 struct ext4_extent_header *eh;
3227 struct ext4_map_blocks split_map;
3228 struct ext4_extent zero_ex;
3229 struct ext4_extent *ex, *abut_ex;
3230 ext4_lblk_t ee_block, eof_block;
3231 unsigned int ee_len, depth, map_len = map->m_len;
3232 int allocated = 0, max_zeroout = 0;
3233 int err = 0;
3234 int split_flag = 0;
3235
3236 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3237 "block %llu, max_blocks %u\n", inode->i_ino,
3238 (unsigned long long)map->m_lblk, map_len);
3239
3240 sbi = EXT4_SB(inode->i_sb);
3241 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3242 inode->i_sb->s_blocksize_bits;
3243 if (eof_block < map->m_lblk + map_len)
3244 eof_block = map->m_lblk + map_len;
3245
3246 depth = ext_depth(inode);
3247 eh = path[depth].p_hdr;
3248 ex = path[depth].p_ext;
3249 ee_block = le32_to_cpu(ex->ee_block);
3250 ee_len = ext4_ext_get_actual_len(ex);
3251 zero_ex.ee_len = 0;
3252
3253 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3254
3255 /* Pre-conditions */
3256 BUG_ON(!ext4_ext_is_uninitialized(ex));
3257 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3258
3259 /*
3260 * Attempt to transfer newly initialized blocks from the currently
3261 * uninitialized extent to its neighbor. This is much cheaper
3262 * than an insertion followed by a merge as those involve costly
3263 * memmove() calls. Transferring to the left is the common case in
3264 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3265 * followed by append writes.
3266 *
3267 * Limitations of the current logic:
3268 * - L1: we do not deal with writes covering the whole extent.
3269 * This would require removing the extent if the transfer
3270 * is possible.
3271 * - L2: we only attempt to merge with an extent stored in the
3272 * same extent tree node.
3273 */
3274 if ((map->m_lblk == ee_block) &&
3275 /* See if we can merge left */
3276 (map_len < ee_len) && /*L1*/
3277 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3278 ext4_lblk_t prev_lblk;
3279 ext4_fsblk_t prev_pblk, ee_pblk;
3280 unsigned int prev_len;
3281
3282 abut_ex = ex - 1;
3283 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3284 prev_len = ext4_ext_get_actual_len(abut_ex);
3285 prev_pblk = ext4_ext_pblock(abut_ex);
3286 ee_pblk = ext4_ext_pblock(ex);
3287
3288 /*
3289 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3290 * upon those conditions:
3291 * - C1: abut_ex is initialized,
3292 * - C2: abut_ex is logically abutting ex,
3293 * - C3: abut_ex is physically abutting ex,
3294 * - C4: abut_ex can receive the additional blocks without
3295 * overflowing the (initialized) length limit.
3296 */
3297 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3298 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3299 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3300 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3301 err = ext4_ext_get_access(handle, inode, path + depth);
3302 if (err)
3303 goto out;
3304
3305 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3306 map, ex, abut_ex);
3307
3308 /* Shift the start of ex by 'map_len' blocks */
3309 ex->ee_block = cpu_to_le32(ee_block + map_len);
3310 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3311 ex->ee_len = cpu_to_le16(ee_len - map_len);
3312 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3313
3314 /* Extend abut_ex by 'map_len' blocks */
3315 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3316
3317 /* Result: number of initialized blocks past m_lblk */
3318 allocated = map_len;
3319 }
3320 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3321 (map_len < ee_len) && /*L1*/
3322 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3323 /* See if we can merge right */
3324 ext4_lblk_t next_lblk;
3325 ext4_fsblk_t next_pblk, ee_pblk;
3326 unsigned int next_len;
3327
3328 abut_ex = ex + 1;
3329 next_lblk = le32_to_cpu(abut_ex->ee_block);
3330 next_len = ext4_ext_get_actual_len(abut_ex);
3331 next_pblk = ext4_ext_pblock(abut_ex);
3332 ee_pblk = ext4_ext_pblock(ex);
3333
3334 /*
3335 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3336 * upon those conditions:
3337 * - C1: abut_ex is initialized,
3338 * - C2: abut_ex is logically abutting ex,
3339 * - C3: abut_ex is physically abutting ex,
3340 * - C4: abut_ex can receive the additional blocks without
3341 * overflowing the (initialized) length limit.
3342 */
3343 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3344 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3345 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3346 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3347 err = ext4_ext_get_access(handle, inode, path + depth);
3348 if (err)
3349 goto out;
3350
3351 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3352 map, ex, abut_ex);
3353
3354 /* Shift the start of abut_ex by 'map_len' blocks */
3355 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3356 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3357 ex->ee_len = cpu_to_le16(ee_len - map_len);
3358 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3359
3360 /* Extend abut_ex by 'map_len' blocks */
3361 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3362
3363 /* Result: number of initialized blocks past m_lblk */
3364 allocated = map_len;
3365 }
3366 }
3367 if (allocated) {
3368 /* Mark the block containing both extents as dirty */
3369 ext4_ext_dirty(handle, inode, path + depth);
3370
3371 /* Update path to point to the right extent */
3372 path[depth].p_ext = abut_ex;
3373 goto out;
3374 } else
3375 allocated = ee_len - (map->m_lblk - ee_block);
3376
3377 WARN_ON(map->m_lblk < ee_block);
3378 /*
3379 * It is safe to convert extent to initialized via explicit
3380 * zeroout only if extent is fully insde i_size or new_size.
3381 */
3382 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3383
3384 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3385 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3386 (inode->i_sb->s_blocksize_bits - 10);
3387
3388 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3389 if (max_zeroout && (ee_len <= max_zeroout)) {
3390 err = ext4_ext_zeroout(inode, ex);
3391 if (err)
3392 goto out;
3393 zero_ex.ee_block = ex->ee_block;
3394 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3395 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3396
3397 err = ext4_ext_get_access(handle, inode, path + depth);
3398 if (err)
3399 goto out;
3400 ext4_ext_mark_initialized(ex);
3401 ext4_ext_try_to_merge(handle, inode, path, ex);
3402 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3403 goto out;
3404 }
3405
3406 /*
3407 * four cases:
3408 * 1. split the extent into three extents.
3409 * 2. split the extent into two extents, zeroout the first half.
3410 * 3. split the extent into two extents, zeroout the second half.
3411 * 4. split the extent into two extents with out zeroout.
3412 */
3413 split_map.m_lblk = map->m_lblk;
3414 split_map.m_len = map->m_len;
3415
3416 if (max_zeroout && (allocated > map->m_len)) {
3417 if (allocated <= max_zeroout) {
3418 /* case 3 */
3419 zero_ex.ee_block =
3420 cpu_to_le32(map->m_lblk);
3421 zero_ex.ee_len = cpu_to_le16(allocated);
3422 ext4_ext_store_pblock(&zero_ex,
3423 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3424 err = ext4_ext_zeroout(inode, &zero_ex);
3425 if (err)
3426 goto out;
3427 split_map.m_lblk = map->m_lblk;
3428 split_map.m_len = allocated;
3429 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3430 /* case 2 */
3431 if (map->m_lblk != ee_block) {
3432 zero_ex.ee_block = ex->ee_block;
3433 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3434 ee_block);
3435 ext4_ext_store_pblock(&zero_ex,
3436 ext4_ext_pblock(ex));
3437 err = ext4_ext_zeroout(inode, &zero_ex);
3438 if (err)
3439 goto out;
3440 }
3441
3442 split_map.m_lblk = ee_block;
3443 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3444 allocated = map->m_len;
3445 }
3446 }
3447
3448 allocated = ext4_split_extent(handle, inode, path,
3449 &split_map, split_flag, flags);
3450 if (allocated < 0)
3451 err = allocated;
3452
3453 out:
3454 /* If we have gotten a failure, don't zero out status tree */
3455 if (!err)
3456 err = ext4_es_zeroout(inode, &zero_ex);
3457 return err ? err : allocated;
3458 }
3459
3460 /*
3461 * This function is called by ext4_ext_map_blocks() from
3462 * ext4_get_blocks_dio_write() when DIO to write
3463 * to an uninitialized extent.
3464 *
3465 * Writing to an uninitialized extent may result in splitting the uninitialized
3466 * extent into multiple initialized/uninitialized extents (up to three)
3467 * There are three possibilities:
3468 * a> There is no split required: Entire extent should be uninitialized
3469 * b> Splits in two extents: Write is happening at either end of the extent
3470 * c> Splits in three extents: Somone is writing in middle of the extent
3471 *
3472 * One of more index blocks maybe needed if the extent tree grow after
3473 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3474 * complete, we need to split the uninitialized extent before DIO submit
3475 * the IO. The uninitialized extent called at this time will be split
3476 * into three uninitialized extent(at most). After IO complete, the part
3477 * being filled will be convert to initialized by the end_io callback function
3478 * via ext4_convert_unwritten_extents().
3479 *
3480 * Returns the size of uninitialized extent to be written on success.
3481 */
3482 static int ext4_split_unwritten_extents(handle_t *handle,
3483 struct inode *inode,
3484 struct ext4_map_blocks *map,
3485 struct ext4_ext_path *path,
3486 int flags)
3487 {
3488 ext4_lblk_t eof_block;
3489 ext4_lblk_t ee_block;
3490 struct ext4_extent *ex;
3491 unsigned int ee_len;
3492 int split_flag = 0, depth;
3493
3494 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3495 "block %llu, max_blocks %u\n", inode->i_ino,
3496 (unsigned long long)map->m_lblk, map->m_len);
3497
3498 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3499 inode->i_sb->s_blocksize_bits;
3500 if (eof_block < map->m_lblk + map->m_len)
3501 eof_block = map->m_lblk + map->m_len;
3502 /*
3503 * It is safe to convert extent to initialized via explicit
3504 * zeroout only if extent is fully insde i_size or new_size.
3505 */
3506 depth = ext_depth(inode);
3507 ex = path[depth].p_ext;
3508 ee_block = le32_to_cpu(ex->ee_block);
3509 ee_len = ext4_ext_get_actual_len(ex);
3510
3511 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3512 split_flag |= EXT4_EXT_MARK_UNINIT2;
3513 if (flags & EXT4_GET_BLOCKS_CONVERT)
3514 split_flag |= EXT4_EXT_DATA_VALID2;
3515 flags |= EXT4_GET_BLOCKS_PRE_IO;
3516 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3517 }
3518
3519 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3520 struct inode *inode,
3521 struct ext4_map_blocks *map,
3522 struct ext4_ext_path *path)
3523 {
3524 struct ext4_extent *ex;
3525 ext4_lblk_t ee_block;
3526 unsigned int ee_len;
3527 int depth;
3528 int err = 0;
3529
3530 depth = ext_depth(inode);
3531 ex = path[depth].p_ext;
3532 ee_block = le32_to_cpu(ex->ee_block);
3533 ee_len = ext4_ext_get_actual_len(ex);
3534
3535 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3536 "block %llu, max_blocks %u\n", inode->i_ino,
3537 (unsigned long long)ee_block, ee_len);
3538
3539 /* If extent is larger than requested it is a clear sign that we still
3540 * have some extent state machine issues left. So extent_split is still
3541 * required.
3542 * TODO: Once all related issues will be fixed this situation should be
3543 * illegal.
3544 */
3545 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3546 #ifdef EXT4_DEBUG
3547 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3548 " len %u; IO logical block %llu, len %u\n",
3549 inode->i_ino, (unsigned long long)ee_block, ee_len,
3550 (unsigned long long)map->m_lblk, map->m_len);
3551 #endif
3552 err = ext4_split_unwritten_extents(handle, inode, map, path,
3553 EXT4_GET_BLOCKS_CONVERT);
3554 if (err < 0)
3555 goto out;
3556 ext4_ext_drop_refs(path);
3557 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3558 if (IS_ERR(path)) {
3559 err = PTR_ERR(path);
3560 goto out;
3561 }
3562 depth = ext_depth(inode);
3563 ex = path[depth].p_ext;
3564 }
3565
3566 err = ext4_ext_get_access(handle, inode, path + depth);
3567 if (err)
3568 goto out;
3569 /* first mark the extent as initialized */
3570 ext4_ext_mark_initialized(ex);
3571
3572 /* note: ext4_ext_correct_indexes() isn't needed here because
3573 * borders are not changed
3574 */
3575 ext4_ext_try_to_merge(handle, inode, path, ex);
3576
3577 /* Mark modified extent as dirty */
3578 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3579 out:
3580 ext4_ext_show_leaf(inode, path);
3581 return err;
3582 }
3583
3584 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3585 sector_t block, int count)
3586 {
3587 int i;
3588 for (i = 0; i < count; i++)
3589 unmap_underlying_metadata(bdev, block + i);
3590 }
3591
3592 /*
3593 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3594 */
3595 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3596 ext4_lblk_t lblk,
3597 struct ext4_ext_path *path,
3598 unsigned int len)
3599 {
3600 int i, depth;
3601 struct ext4_extent_header *eh;
3602 struct ext4_extent *last_ex;
3603
3604 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3605 return 0;
3606
3607 depth = ext_depth(inode);
3608 eh = path[depth].p_hdr;
3609
3610 /*
3611 * We're going to remove EOFBLOCKS_FL entirely in future so we
3612 * do not care for this case anymore. Simply remove the flag
3613 * if there are no extents.
3614 */
3615 if (unlikely(!eh->eh_entries))
3616 goto out;
3617 last_ex = EXT_LAST_EXTENT(eh);
3618 /*
3619 * We should clear the EOFBLOCKS_FL flag if we are writing the
3620 * last block in the last extent in the file. We test this by
3621 * first checking to see if the caller to
3622 * ext4_ext_get_blocks() was interested in the last block (or
3623 * a block beyond the last block) in the current extent. If
3624 * this turns out to be false, we can bail out from this
3625 * function immediately.
3626 */
3627 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3628 ext4_ext_get_actual_len(last_ex))
3629 return 0;
3630 /*
3631 * If the caller does appear to be planning to write at or
3632 * beyond the end of the current extent, we then test to see
3633 * if the current extent is the last extent in the file, by
3634 * checking to make sure it was reached via the rightmost node
3635 * at each level of the tree.
3636 */
3637 for (i = depth-1; i >= 0; i--)
3638 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3639 return 0;
3640 out:
3641 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3642 return ext4_mark_inode_dirty(handle, inode);
3643 }
3644
3645 /**
3646 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3647 *
3648 * Return 1 if there is a delalloc block in the range, otherwise 0.
3649 */
3650 int ext4_find_delalloc_range(struct inode *inode,
3651 ext4_lblk_t lblk_start,
3652 ext4_lblk_t lblk_end)
3653 {
3654 struct extent_status es;
3655
3656 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3657 if (es.es_len == 0)
3658 return 0; /* there is no delay extent in this tree */
3659 else if (es.es_lblk <= lblk_start &&
3660 lblk_start < es.es_lblk + es.es_len)
3661 return 1;
3662 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3663 return 1;
3664 else
3665 return 0;
3666 }
3667
3668 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3669 {
3670 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3671 ext4_lblk_t lblk_start, lblk_end;
3672 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3673 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3674
3675 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3676 }
3677
3678 /**
3679 * Determines how many complete clusters (out of those specified by the 'map')
3680 * are under delalloc and were reserved quota for.
3681 * This function is called when we are writing out the blocks that were
3682 * originally written with their allocation delayed, but then the space was
3683 * allocated using fallocate() before the delayed allocation could be resolved.
3684 * The cases to look for are:
3685 * ('=' indicated delayed allocated blocks
3686 * '-' indicates non-delayed allocated blocks)
3687 * (a) partial clusters towards beginning and/or end outside of allocated range
3688 * are not delalloc'ed.
3689 * Ex:
3690 * |----c---=|====c====|====c====|===-c----|
3691 * |++++++ allocated ++++++|
3692 * ==> 4 complete clusters in above example
3693 *
3694 * (b) partial cluster (outside of allocated range) towards either end is
3695 * marked for delayed allocation. In this case, we will exclude that
3696 * cluster.
3697 * Ex:
3698 * |----====c========|========c========|
3699 * |++++++ allocated ++++++|
3700 * ==> 1 complete clusters in above example
3701 *
3702 * Ex:
3703 * |================c================|
3704 * |++++++ allocated ++++++|
3705 * ==> 0 complete clusters in above example
3706 *
3707 * The ext4_da_update_reserve_space will be called only if we
3708 * determine here that there were some "entire" clusters that span
3709 * this 'allocated' range.
3710 * In the non-bigalloc case, this function will just end up returning num_blks
3711 * without ever calling ext4_find_delalloc_range.
3712 */
3713 static unsigned int
3714 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3715 unsigned int num_blks)
3716 {
3717 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3718 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3719 ext4_lblk_t lblk_from, lblk_to, c_offset;
3720 unsigned int allocated_clusters = 0;
3721
3722 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3723 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3724
3725 /* max possible clusters for this allocation */
3726 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3727
3728 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3729
3730 /* Check towards left side */
3731 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3732 if (c_offset) {
3733 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3734 lblk_to = lblk_from + c_offset - 1;
3735
3736 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3737 allocated_clusters--;
3738 }
3739
3740 /* Now check towards right. */
3741 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3742 if (allocated_clusters && c_offset) {
3743 lblk_from = lblk_start + num_blks;
3744 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3745
3746 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3747 allocated_clusters--;
3748 }
3749
3750 return allocated_clusters;
3751 }
3752
3753 static int
3754 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3755 struct ext4_map_blocks *map,
3756 struct ext4_ext_path *path, int flags,
3757 unsigned int allocated, ext4_fsblk_t newblock)
3758 {
3759 int ret = 0;
3760 int err = 0;
3761 ext4_io_end_t *io = ext4_inode_aio(inode);
3762
3763 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3764 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3765 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3766 flags, allocated);
3767 ext4_ext_show_leaf(inode, path);
3768
3769 /*
3770 * When writing into uninitialized space, we should not fail to
3771 * allocate metadata blocks for the new extent block if needed.
3772 */
3773 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3774
3775 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3776 allocated, newblock);
3777
3778 /* get_block() before submit the IO, split the extent */
3779 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3780 ret = ext4_split_unwritten_extents(handle, inode, map,
3781 path, flags);
3782 if (ret <= 0)
3783 goto out;
3784 /*
3785 * Flag the inode(non aio case) or end_io struct (aio case)
3786 * that this IO needs to conversion to written when IO is
3787 * completed
3788 */
3789 if (io)
3790 ext4_set_io_unwritten_flag(inode, io);
3791 else
3792 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3793 map->m_flags |= EXT4_MAP_UNWRITTEN;
3794 if (ext4_should_dioread_nolock(inode))
3795 map->m_flags |= EXT4_MAP_UNINIT;
3796 goto out;
3797 }
3798 /* IO end_io complete, convert the filled extent to written */
3799 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3800 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3801 path);
3802 if (ret >= 0) {
3803 ext4_update_inode_fsync_trans(handle, inode, 1);
3804 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3805 path, map->m_len);
3806 } else
3807 err = ret;
3808 map->m_flags |= EXT4_MAP_MAPPED;
3809 if (allocated > map->m_len)
3810 allocated = map->m_len;
3811 map->m_len = allocated;
3812 goto out2;
3813 }
3814 /* buffered IO case */
3815 /*
3816 * repeat fallocate creation request
3817 * we already have an unwritten extent
3818 */
3819 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3820 map->m_flags |= EXT4_MAP_UNWRITTEN;
3821 goto map_out;
3822 }
3823
3824 /* buffered READ or buffered write_begin() lookup */
3825 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3826 /*
3827 * We have blocks reserved already. We
3828 * return allocated blocks so that delalloc
3829 * won't do block reservation for us. But
3830 * the buffer head will be unmapped so that
3831 * a read from the block returns 0s.
3832 */
3833 map->m_flags |= EXT4_MAP_UNWRITTEN;
3834 goto out1;
3835 }
3836
3837 /* buffered write, writepage time, convert*/
3838 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3839 if (ret >= 0)
3840 ext4_update_inode_fsync_trans(handle, inode, 1);
3841 out:
3842 if (ret <= 0) {
3843 err = ret;
3844 goto out2;
3845 } else
3846 allocated = ret;
3847 map->m_flags |= EXT4_MAP_NEW;
3848 /*
3849 * if we allocated more blocks than requested
3850 * we need to make sure we unmap the extra block
3851 * allocated. The actual needed block will get
3852 * unmapped later when we find the buffer_head marked
3853 * new.
3854 */
3855 if (allocated > map->m_len) {
3856 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3857 newblock + map->m_len,
3858 allocated - map->m_len);
3859 allocated = map->m_len;
3860 }
3861 map->m_len = allocated;
3862
3863 /*
3864 * If we have done fallocate with the offset that is already
3865 * delayed allocated, we would have block reservation
3866 * and quota reservation done in the delayed write path.
3867 * But fallocate would have already updated quota and block
3868 * count for this offset. So cancel these reservation
3869 */
3870 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3871 unsigned int reserved_clusters;
3872 reserved_clusters = get_reserved_cluster_alloc(inode,
3873 map->m_lblk, map->m_len);
3874 if (reserved_clusters)
3875 ext4_da_update_reserve_space(inode,
3876 reserved_clusters,
3877 0);
3878 }
3879
3880 map_out:
3881 map->m_flags |= EXT4_MAP_MAPPED;
3882 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3883 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3884 map->m_len);
3885 if (err < 0)
3886 goto out2;
3887 }
3888 out1:
3889 if (allocated > map->m_len)
3890 allocated = map->m_len;
3891 ext4_ext_show_leaf(inode, path);
3892 map->m_pblk = newblock;
3893 map->m_len = allocated;
3894 out2:
3895 if (path) {
3896 ext4_ext_drop_refs(path);
3897 kfree(path);
3898 }
3899 return err ? err : allocated;
3900 }
3901
3902 /*
3903 * get_implied_cluster_alloc - check to see if the requested
3904 * allocation (in the map structure) overlaps with a cluster already
3905 * allocated in an extent.
3906 * @sb The filesystem superblock structure
3907 * @map The requested lblk->pblk mapping
3908 * @ex The extent structure which might contain an implied
3909 * cluster allocation
3910 *
3911 * This function is called by ext4_ext_map_blocks() after we failed to
3912 * find blocks that were already in the inode's extent tree. Hence,
3913 * we know that the beginning of the requested region cannot overlap
3914 * the extent from the inode's extent tree. There are three cases we
3915 * want to catch. The first is this case:
3916 *
3917 * |--- cluster # N--|
3918 * |--- extent ---| |---- requested region ---|
3919 * |==========|
3920 *
3921 * The second case that we need to test for is this one:
3922 *
3923 * |--------- cluster # N ----------------|
3924 * |--- requested region --| |------- extent ----|
3925 * |=======================|
3926 *
3927 * The third case is when the requested region lies between two extents
3928 * within the same cluster:
3929 * |------------- cluster # N-------------|
3930 * |----- ex -----| |---- ex_right ----|
3931 * |------ requested region ------|
3932 * |================|
3933 *
3934 * In each of the above cases, we need to set the map->m_pblk and
3935 * map->m_len so it corresponds to the return the extent labelled as
3936 * "|====|" from cluster #N, since it is already in use for data in
3937 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3938 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3939 * as a new "allocated" block region. Otherwise, we will return 0 and
3940 * ext4_ext_map_blocks() will then allocate one or more new clusters
3941 * by calling ext4_mb_new_blocks().
3942 */
3943 static int get_implied_cluster_alloc(struct super_block *sb,
3944 struct ext4_map_blocks *map,
3945 struct ext4_extent *ex,
3946 struct ext4_ext_path *path)
3947 {
3948 struct ext4_sb_info *sbi = EXT4_SB(sb);
3949 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3950 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3951 ext4_lblk_t rr_cluster_start;
3952 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3953 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3954 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3955
3956 /* The extent passed in that we are trying to match */
3957 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3958 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3959
3960 /* The requested region passed into ext4_map_blocks() */
3961 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3962
3963 if ((rr_cluster_start == ex_cluster_end) ||
3964 (rr_cluster_start == ex_cluster_start)) {
3965 if (rr_cluster_start == ex_cluster_end)
3966 ee_start += ee_len - 1;
3967 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3968 c_offset;
3969 map->m_len = min(map->m_len,
3970 (unsigned) sbi->s_cluster_ratio - c_offset);
3971 /*
3972 * Check for and handle this case:
3973 *
3974 * |--------- cluster # N-------------|
3975 * |------- extent ----|
3976 * |--- requested region ---|
3977 * |===========|
3978 */
3979
3980 if (map->m_lblk < ee_block)
3981 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3982
3983 /*
3984 * Check for the case where there is already another allocated
3985 * block to the right of 'ex' but before the end of the cluster.
3986 *
3987 * |------------- cluster # N-------------|
3988 * |----- ex -----| |---- ex_right ----|
3989 * |------ requested region ------|
3990 * |================|
3991 */
3992 if (map->m_lblk > ee_block) {
3993 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3994 map->m_len = min(map->m_len, next - map->m_lblk);
3995 }
3996
3997 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3998 return 1;
3999 }
4000
4001 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4002 return 0;
4003 }
4004
4005
4006 /*
4007 * Block allocation/map/preallocation routine for extents based files
4008 *
4009 *
4010 * Need to be called with
4011 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4012 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4013 *
4014 * return > 0, number of of blocks already mapped/allocated
4015 * if create == 0 and these are pre-allocated blocks
4016 * buffer head is unmapped
4017 * otherwise blocks are mapped
4018 *
4019 * return = 0, if plain look up failed (blocks have not been allocated)
4020 * buffer head is unmapped
4021 *
4022 * return < 0, error case.
4023 */
4024 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4025 struct ext4_map_blocks *map, int flags)
4026 {
4027 struct ext4_ext_path *path = NULL;
4028 struct ext4_extent newex, *ex, *ex2;
4029 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4030 ext4_fsblk_t newblock = 0;
4031 int free_on_err = 0, err = 0, depth;
4032 unsigned int allocated = 0, offset = 0;
4033 unsigned int allocated_clusters = 0;
4034 struct ext4_allocation_request ar;
4035 ext4_io_end_t *io = ext4_inode_aio(inode);
4036 ext4_lblk_t cluster_offset;
4037 int set_unwritten = 0;
4038
4039 ext_debug("blocks %u/%u requested for inode %lu\n",
4040 map->m_lblk, map->m_len, inode->i_ino);
4041 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4042
4043 /* find extent for this block */
4044 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4045 if (IS_ERR(path)) {
4046 err = PTR_ERR(path);
4047 path = NULL;
4048 goto out2;
4049 }
4050
4051 depth = ext_depth(inode);
4052
4053 /*
4054 * consistent leaf must not be empty;
4055 * this situation is possible, though, _during_ tree modification;
4056 * this is why assert can't be put in ext4_ext_find_extent()
4057 */
4058 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4059 EXT4_ERROR_INODE(inode, "bad extent address "
4060 "lblock: %lu, depth: %d pblock %lld",
4061 (unsigned long) map->m_lblk, depth,
4062 path[depth].p_block);
4063 err = -EIO;
4064 goto out2;
4065 }
4066
4067 ex = path[depth].p_ext;
4068 if (ex) {
4069 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4070 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4071 unsigned short ee_len;
4072
4073 /*
4074 * Uninitialized extents are treated as holes, except that
4075 * we split out initialized portions during a write.
4076 */
4077 ee_len = ext4_ext_get_actual_len(ex);
4078
4079 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4080
4081 /* if found extent covers block, simply return it */
4082 if (in_range(map->m_lblk, ee_block, ee_len)) {
4083 newblock = map->m_lblk - ee_block + ee_start;
4084 /* number of remaining blocks in the extent */
4085 allocated = ee_len - (map->m_lblk - ee_block);
4086 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4087 ee_block, ee_len, newblock);
4088
4089 if (!ext4_ext_is_uninitialized(ex))
4090 goto out;
4091
4092 allocated = ext4_ext_handle_uninitialized_extents(
4093 handle, inode, map, path, flags,
4094 allocated, newblock);
4095 goto out3;
4096 }
4097 }
4098
4099 if ((sbi->s_cluster_ratio > 1) &&
4100 ext4_find_delalloc_cluster(inode, map->m_lblk))
4101 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4102
4103 /*
4104 * requested block isn't allocated yet;
4105 * we couldn't try to create block if create flag is zero
4106 */
4107 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4108 /*
4109 * put just found gap into cache to speed up
4110 * subsequent requests
4111 */
4112 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4113 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4114 goto out2;
4115 }
4116
4117 /*
4118 * Okay, we need to do block allocation.
4119 */
4120 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4121 newex.ee_block = cpu_to_le32(map->m_lblk);
4122 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4123
4124 /*
4125 * If we are doing bigalloc, check to see if the extent returned
4126 * by ext4_ext_find_extent() implies a cluster we can use.
4127 */
4128 if (cluster_offset && ex &&
4129 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4130 ar.len = allocated = map->m_len;
4131 newblock = map->m_pblk;
4132 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4133 goto got_allocated_blocks;
4134 }
4135
4136 /* find neighbour allocated blocks */
4137 ar.lleft = map->m_lblk;
4138 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4139 if (err)
4140 goto out2;
4141 ar.lright = map->m_lblk;
4142 ex2 = NULL;
4143 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4144 if (err)
4145 goto out2;
4146
4147 /* Check if the extent after searching to the right implies a
4148 * cluster we can use. */
4149 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4150 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4151 ar.len = allocated = map->m_len;
4152 newblock = map->m_pblk;
4153 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4154 goto got_allocated_blocks;
4155 }
4156
4157 /*
4158 * See if request is beyond maximum number of blocks we can have in
4159 * a single extent. For an initialized extent this limit is
4160 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4161 * EXT_UNINIT_MAX_LEN.
4162 */
4163 if (map->m_len > EXT_INIT_MAX_LEN &&
4164 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4165 map->m_len = EXT_INIT_MAX_LEN;
4166 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4167 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4168 map->m_len = EXT_UNINIT_MAX_LEN;
4169
4170 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4171 newex.ee_len = cpu_to_le16(map->m_len);
4172 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4173 if (err)
4174 allocated = ext4_ext_get_actual_len(&newex);
4175 else
4176 allocated = map->m_len;
4177
4178 /* allocate new block */
4179 ar.inode = inode;
4180 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4181 ar.logical = map->m_lblk;
4182 /*
4183 * We calculate the offset from the beginning of the cluster
4184 * for the logical block number, since when we allocate a
4185 * physical cluster, the physical block should start at the
4186 * same offset from the beginning of the cluster. This is
4187 * needed so that future calls to get_implied_cluster_alloc()
4188 * work correctly.
4189 */
4190 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4191 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4192 ar.goal -= offset;
4193 ar.logical -= offset;
4194 if (S_ISREG(inode->i_mode))
4195 ar.flags = EXT4_MB_HINT_DATA;
4196 else
4197 /* disable in-core preallocation for non-regular files */
4198 ar.flags = 0;
4199 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4200 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4201 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4202 if (!newblock)
4203 goto out2;
4204 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4205 ar.goal, newblock, allocated);
4206 free_on_err = 1;
4207 allocated_clusters = ar.len;
4208 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4209 if (ar.len > allocated)
4210 ar.len = allocated;
4211
4212 got_allocated_blocks:
4213 /* try to insert new extent into found leaf and return */
4214 ext4_ext_store_pblock(&newex, newblock + offset);
4215 newex.ee_len = cpu_to_le16(ar.len);
4216 /* Mark uninitialized */
4217 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4218 ext4_ext_mark_uninitialized(&newex);
4219 map->m_flags |= EXT4_MAP_UNWRITTEN;
4220 /*
4221 * io_end structure was created for every IO write to an
4222 * uninitialized extent. To avoid unnecessary conversion,
4223 * here we flag the IO that really needs the conversion.
4224 * For non asycn direct IO case, flag the inode state
4225 * that we need to perform conversion when IO is done.
4226 */
4227 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4228 set_unwritten = 1;
4229 if (ext4_should_dioread_nolock(inode))
4230 map->m_flags |= EXT4_MAP_UNINIT;
4231 }
4232
4233 err = 0;
4234 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4235 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4236 path, ar.len);
4237 if (!err)
4238 err = ext4_ext_insert_extent(handle, inode, path,
4239 &newex, flags);
4240
4241 if (!err && set_unwritten) {
4242 if (io)
4243 ext4_set_io_unwritten_flag(inode, io);
4244 else
4245 ext4_set_inode_state(inode,
4246 EXT4_STATE_DIO_UNWRITTEN);
4247 }
4248
4249 if (err && free_on_err) {
4250 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4251 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4252 /* free data blocks we just allocated */
4253 /* not a good idea to call discard here directly,
4254 * but otherwise we'd need to call it every free() */
4255 ext4_discard_preallocations(inode);
4256 ext4_free_blocks(handle, inode, NULL, newblock,
4257 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4258 goto out2;
4259 }
4260
4261 /* previous routine could use block we allocated */
4262 newblock = ext4_ext_pblock(&newex);
4263 allocated = ext4_ext_get_actual_len(&newex);
4264 if (allocated > map->m_len)
4265 allocated = map->m_len;
4266 map->m_flags |= EXT4_MAP_NEW;
4267
4268 /*
4269 * Update reserved blocks/metadata blocks after successful
4270 * block allocation which had been deferred till now.
4271 */
4272 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4273 unsigned int reserved_clusters;
4274 /*
4275 * Check how many clusters we had reserved this allocated range
4276 */
4277 reserved_clusters = get_reserved_cluster_alloc(inode,
4278 map->m_lblk, allocated);
4279 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4280 if (reserved_clusters) {
4281 /*
4282 * We have clusters reserved for this range.
4283 * But since we are not doing actual allocation
4284 * and are simply using blocks from previously
4285 * allocated cluster, we should release the
4286 * reservation and not claim quota.
4287 */
4288 ext4_da_update_reserve_space(inode,
4289 reserved_clusters, 0);
4290 }
4291 } else {
4292 BUG_ON(allocated_clusters < reserved_clusters);
4293 if (reserved_clusters < allocated_clusters) {
4294 struct ext4_inode_info *ei = EXT4_I(inode);
4295 int reservation = allocated_clusters -
4296 reserved_clusters;
4297 /*
4298 * It seems we claimed few clusters outside of
4299 * the range of this allocation. We should give
4300 * it back to the reservation pool. This can
4301 * happen in the following case:
4302 *
4303 * * Suppose s_cluster_ratio is 4 (i.e., each
4304 * cluster has 4 blocks. Thus, the clusters
4305 * are [0-3],[4-7],[8-11]...
4306 * * First comes delayed allocation write for
4307 * logical blocks 10 & 11. Since there were no
4308 * previous delayed allocated blocks in the
4309 * range [8-11], we would reserve 1 cluster
4310 * for this write.
4311 * * Next comes write for logical blocks 3 to 8.
4312 * In this case, we will reserve 2 clusters
4313 * (for [0-3] and [4-7]; and not for [8-11] as
4314 * that range has a delayed allocated blocks.
4315 * Thus total reserved clusters now becomes 3.
4316 * * Now, during the delayed allocation writeout
4317 * time, we will first write blocks [3-8] and
4318 * allocate 3 clusters for writing these
4319 * blocks. Also, we would claim all these
4320 * three clusters above.
4321 * * Now when we come here to writeout the
4322 * blocks [10-11], we would expect to claim
4323 * the reservation of 1 cluster we had made
4324 * (and we would claim it since there are no
4325 * more delayed allocated blocks in the range
4326 * [8-11]. But our reserved cluster count had
4327 * already gone to 0.
4328 *
4329 * Thus, at the step 4 above when we determine
4330 * that there are still some unwritten delayed
4331 * allocated blocks outside of our current
4332 * block range, we should increment the
4333 * reserved clusters count so that when the
4334 * remaining blocks finally gets written, we
4335 * could claim them.
4336 */
4337 dquot_reserve_block(inode,
4338 EXT4_C2B(sbi, reservation));
4339 spin_lock(&ei->i_block_reservation_lock);
4340 ei->i_reserved_data_blocks += reservation;
4341 spin_unlock(&ei->i_block_reservation_lock);
4342 }
4343 /*
4344 * We will claim quota for all newly allocated blocks.
4345 * We're updating the reserved space *after* the
4346 * correction above so we do not accidentally free
4347 * all the metadata reservation because we might
4348 * actually need it later on.
4349 */
4350 ext4_da_update_reserve_space(inode, allocated_clusters,
4351 1);
4352 }
4353 }
4354
4355 /*
4356 * Cache the extent and update transaction to commit on fdatasync only
4357 * when it is _not_ an uninitialized extent.
4358 */
4359 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4360 ext4_update_inode_fsync_trans(handle, inode, 1);
4361 else
4362 ext4_update_inode_fsync_trans(handle, inode, 0);
4363 out:
4364 if (allocated > map->m_len)
4365 allocated = map->m_len;
4366 ext4_ext_show_leaf(inode, path);
4367 map->m_flags |= EXT4_MAP_MAPPED;
4368 map->m_pblk = newblock;
4369 map->m_len = allocated;
4370 out2:
4371 if (path) {
4372 ext4_ext_drop_refs(path);
4373 kfree(path);
4374 }
4375
4376 out3:
4377 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4378 err ? err : allocated);
4379 ext4_es_lru_add(inode);
4380 return err ? err : allocated;
4381 }
4382
4383 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4384 {
4385 struct super_block *sb = inode->i_sb;
4386 ext4_lblk_t last_block;
4387 int err = 0;
4388
4389 /*
4390 * TODO: optimization is possible here.
4391 * Probably we need not scan at all,
4392 * because page truncation is enough.
4393 */
4394
4395 /* we have to know where to truncate from in crash case */
4396 EXT4_I(inode)->i_disksize = inode->i_size;
4397 ext4_mark_inode_dirty(handle, inode);
4398
4399 last_block = (inode->i_size + sb->s_blocksize - 1)
4400 >> EXT4_BLOCK_SIZE_BITS(sb);
4401 retry:
4402 err = ext4_es_remove_extent(inode, last_block,
4403 EXT_MAX_BLOCKS - last_block);
4404 if (err == -ENOMEM) {
4405 cond_resched();
4406 congestion_wait(BLK_RW_ASYNC, HZ/50);
4407 goto retry;
4408 }
4409 if (err) {
4410 ext4_std_error(inode->i_sb, err);
4411 return;
4412 }
4413 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4414 ext4_std_error(inode->i_sb, err);
4415 }
4416
4417 static void ext4_falloc_update_inode(struct inode *inode,
4418 int mode, loff_t new_size, int update_ctime)
4419 {
4420 struct timespec now;
4421
4422 if (update_ctime) {
4423 now = current_fs_time(inode->i_sb);
4424 if (!timespec_equal(&inode->i_ctime, &now))
4425 inode->i_ctime = now;
4426 }
4427 /*
4428 * Update only when preallocation was requested beyond
4429 * the file size.
4430 */
4431 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4432 if (new_size > i_size_read(inode))
4433 i_size_write(inode, new_size);
4434 if (new_size > EXT4_I(inode)->i_disksize)
4435 ext4_update_i_disksize(inode, new_size);
4436 } else {
4437 /*
4438 * Mark that we allocate beyond EOF so the subsequent truncate
4439 * can proceed even if the new size is the same as i_size.
4440 */
4441 if (new_size > i_size_read(inode))
4442 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4443 }
4444
4445 }
4446
4447 /*
4448 * preallocate space for a file. This implements ext4's fallocate file
4449 * operation, which gets called from sys_fallocate system call.
4450 * For block-mapped files, posix_fallocate should fall back to the method
4451 * of writing zeroes to the required new blocks (the same behavior which is
4452 * expected for file systems which do not support fallocate() system call).
4453 */
4454 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4455 {
4456 struct inode *inode = file_inode(file);
4457 handle_t *handle;
4458 loff_t new_size;
4459 unsigned int max_blocks;
4460 int ret = 0;
4461 int ret2 = 0;
4462 int retries = 0;
4463 int flags;
4464 struct ext4_map_blocks map;
4465 unsigned int credits, blkbits = inode->i_blkbits;
4466
4467 /* Return error if mode is not supported */
4468 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4469 return -EOPNOTSUPP;
4470
4471 if (mode & FALLOC_FL_PUNCH_HOLE)
4472 return ext4_punch_hole(inode, offset, len);
4473
4474 ret = ext4_convert_inline_data(inode);
4475 if (ret)
4476 return ret;
4477
4478 /*
4479 * currently supporting (pre)allocate mode for extent-based
4480 * files _only_
4481 */
4482 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4483 return -EOPNOTSUPP;
4484
4485 trace_ext4_fallocate_enter(inode, offset, len, mode);
4486 map.m_lblk = offset >> blkbits;
4487 /*
4488 * We can't just convert len to max_blocks because
4489 * If blocksize = 4096 offset = 3072 and len = 2048
4490 */
4491 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4492 - map.m_lblk;
4493 /*
4494 * credits to insert 1 extent into extent tree
4495 */
4496 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4497 mutex_lock(&inode->i_mutex);
4498 ret = inode_newsize_ok(inode, (len + offset));
4499 if (ret) {
4500 mutex_unlock(&inode->i_mutex);
4501 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4502 return ret;
4503 }
4504 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4505 if (mode & FALLOC_FL_KEEP_SIZE)
4506 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4507 /*
4508 * Don't normalize the request if it can fit in one extent so
4509 * that it doesn't get unnecessarily split into multiple
4510 * extents.
4511 */
4512 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4513 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4514
4515 retry:
4516 while (ret >= 0 && ret < max_blocks) {
4517 map.m_lblk = map.m_lblk + ret;
4518 map.m_len = max_blocks = max_blocks - ret;
4519 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4520 credits);
4521 if (IS_ERR(handle)) {
4522 ret = PTR_ERR(handle);
4523 break;
4524 }
4525 ret = ext4_map_blocks(handle, inode, &map, flags);
4526 if (ret <= 0) {
4527 #ifdef EXT4FS_DEBUG
4528 ext4_warning(inode->i_sb,
4529 "inode #%lu: block %u: len %u: "
4530 "ext4_ext_map_blocks returned %d",
4531 inode->i_ino, map.m_lblk,
4532 map.m_len, ret);
4533 #endif
4534 ext4_mark_inode_dirty(handle, inode);
4535 ret2 = ext4_journal_stop(handle);
4536 break;
4537 }
4538 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4539 blkbits) >> blkbits))
4540 new_size = offset + len;
4541 else
4542 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4543
4544 ext4_falloc_update_inode(inode, mode, new_size,
4545 (map.m_flags & EXT4_MAP_NEW));
4546 ext4_mark_inode_dirty(handle, inode);
4547 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4548 ext4_handle_sync(handle);
4549 ret2 = ext4_journal_stop(handle);
4550 if (ret2)
4551 break;
4552 }
4553 if (ret == -ENOSPC &&
4554 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4555 ret = 0;
4556 goto retry;
4557 }
4558 mutex_unlock(&inode->i_mutex);
4559 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4560 ret > 0 ? ret2 : ret);
4561 return ret > 0 ? ret2 : ret;
4562 }
4563
4564 /*
4565 * This function convert a range of blocks to written extents
4566 * The caller of this function will pass the start offset and the size.
4567 * all unwritten extents within this range will be converted to
4568 * written extents.
4569 *
4570 * This function is called from the direct IO end io call back
4571 * function, to convert the fallocated extents after IO is completed.
4572 * Returns 0 on success.
4573 */
4574 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4575 loff_t offset, ssize_t len)
4576 {
4577 unsigned int max_blocks;
4578 int ret = 0;
4579 int ret2 = 0;
4580 struct ext4_map_blocks map;
4581 unsigned int credits, blkbits = inode->i_blkbits;
4582
4583 map.m_lblk = offset >> blkbits;
4584 /*
4585 * We can't just convert len to max_blocks because
4586 * If blocksize = 4096 offset = 3072 and len = 2048
4587 */
4588 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4589 map.m_lblk);
4590 /*
4591 * This is somewhat ugly but the idea is clear: When transaction is
4592 * reserved, everything goes into it. Otherwise we rather start several
4593 * smaller transactions for conversion of each extent separately.
4594 */
4595 if (handle) {
4596 handle = ext4_journal_start_reserved(handle,
4597 EXT4_HT_EXT_CONVERT);
4598 if (IS_ERR(handle))
4599 return PTR_ERR(handle);
4600 credits = 0;
4601 } else {
4602 /*
4603 * credits to insert 1 extent into extent tree
4604 */
4605 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4606 }
4607 while (ret >= 0 && ret < max_blocks) {
4608 map.m_lblk += ret;
4609 map.m_len = (max_blocks -= ret);
4610 if (credits) {
4611 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4612 credits);
4613 if (IS_ERR(handle)) {
4614 ret = PTR_ERR(handle);
4615 break;
4616 }
4617 }
4618 ret = ext4_map_blocks(handle, inode, &map,
4619 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4620 if (ret <= 0)
4621 ext4_warning(inode->i_sb,
4622 "inode #%lu: block %u: len %u: "
4623 "ext4_ext_map_blocks returned %d",
4624 inode->i_ino, map.m_lblk,
4625 map.m_len, ret);
4626 ext4_mark_inode_dirty(handle, inode);
4627 if (credits)
4628 ret2 = ext4_journal_stop(handle);
4629 if (ret <= 0 || ret2)
4630 break;
4631 }
4632 if (!credits)
4633 ret2 = ext4_journal_stop(handle);
4634 return ret > 0 ? ret2 : ret;
4635 }
4636
4637 /*
4638 * If newes is not existing extent (newes->ec_pblk equals zero) find
4639 * delayed extent at start of newes and update newes accordingly and
4640 * return start of the next delayed extent.
4641 *
4642 * If newes is existing extent (newes->ec_pblk is not equal zero)
4643 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4644 * extent found. Leave newes unmodified.
4645 */
4646 static int ext4_find_delayed_extent(struct inode *inode,
4647 struct extent_status *newes)
4648 {
4649 struct extent_status es;
4650 ext4_lblk_t block, next_del;
4651
4652 if (newes->es_pblk == 0) {
4653 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4654 newes->es_lblk + newes->es_len - 1, &es);
4655
4656 /*
4657 * No extent in extent-tree contains block @newes->es_pblk,
4658 * then the block may stay in 1)a hole or 2)delayed-extent.
4659 */
4660 if (es.es_len == 0)
4661 /* A hole found. */
4662 return 0;
4663
4664 if (es.es_lblk > newes->es_lblk) {
4665 /* A hole found. */
4666 newes->es_len = min(es.es_lblk - newes->es_lblk,
4667 newes->es_len);
4668 return 0;
4669 }
4670
4671 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4672 }
4673
4674 block = newes->es_lblk + newes->es_len;
4675 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4676 if (es.es_len == 0)
4677 next_del = EXT_MAX_BLOCKS;
4678 else
4679 next_del = es.es_lblk;
4680
4681 return next_del;
4682 }
4683 /* fiemap flags we can handle specified here */
4684 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4685
4686 static int ext4_xattr_fiemap(struct inode *inode,
4687 struct fiemap_extent_info *fieinfo)
4688 {
4689 __u64 physical = 0;
4690 __u64 length;
4691 __u32 flags = FIEMAP_EXTENT_LAST;
4692 int blockbits = inode->i_sb->s_blocksize_bits;
4693 int error = 0;
4694
4695 /* in-inode? */
4696 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4697 struct ext4_iloc iloc;
4698 int offset; /* offset of xattr in inode */
4699
4700 error = ext4_get_inode_loc(inode, &iloc);
4701 if (error)
4702 return error;
4703 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4704 offset = EXT4_GOOD_OLD_INODE_SIZE +
4705 EXT4_I(inode)->i_extra_isize;
4706 physical += offset;
4707 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4708 flags |= FIEMAP_EXTENT_DATA_INLINE;
4709 brelse(iloc.bh);
4710 } else { /* external block */
4711 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4712 length = inode->i_sb->s_blocksize;
4713 }
4714
4715 if (physical)
4716 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4717 length, flags);
4718 return (error < 0 ? error : 0);
4719 }
4720
4721 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4722 __u64 start, __u64 len)
4723 {
4724 ext4_lblk_t start_blk;
4725 int error = 0;
4726
4727 if (ext4_has_inline_data(inode)) {
4728 int has_inline = 1;
4729
4730 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4731
4732 if (has_inline)
4733 return error;
4734 }
4735
4736 /* fallback to generic here if not in extents fmt */
4737 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4738 return generic_block_fiemap(inode, fieinfo, start, len,
4739 ext4_get_block);
4740
4741 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4742 return -EBADR;
4743
4744 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4745 error = ext4_xattr_fiemap(inode, fieinfo);
4746 } else {
4747 ext4_lblk_t len_blks;
4748 __u64 last_blk;
4749
4750 start_blk = start >> inode->i_sb->s_blocksize_bits;
4751 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4752 if (last_blk >= EXT_MAX_BLOCKS)
4753 last_blk = EXT_MAX_BLOCKS-1;
4754 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4755
4756 /*
4757 * Walk the extent tree gathering extent information
4758 * and pushing extents back to the user.
4759 */
4760 error = ext4_fill_fiemap_extents(inode, start_blk,
4761 len_blks, fieinfo);
4762 }
4763
4764 return error;
4765 }
This page took 0.160603 seconds and 5 git commands to generate.