ext4: rename ext4_ext_find_extent() to ext4_find_extent()
[deliverable/linux.git] / fs / ext4 / extents_status.c
1 /*
2 * fs/ext4/extents_status.c
3 *
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5 * Modified by
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
9 *
10 * Ext4 extents status tree core functions.
11 */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include "ext4.h"
15 #include "extents_status.h"
16
17 #include <trace/events/ext4.h>
18
19 /*
20 * According to previous discussion in Ext4 Developer Workshop, we
21 * will introduce a new structure called io tree to track all extent
22 * status in order to solve some problems that we have met
23 * (e.g. Reservation space warning), and provide extent-level locking.
24 * Delay extent tree is the first step to achieve this goal. It is
25 * original built by Yongqiang Yang. At that time it is called delay
26 * extent tree, whose goal is only track delayed extents in memory to
27 * simplify the implementation of fiemap and bigalloc, and introduce
28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
29 * delay extent tree at the first commit. But for better understand
30 * what it does, it has been rename to extent status tree.
31 *
32 * Step1:
33 * Currently the first step has been done. All delayed extents are
34 * tracked in the tree. It maintains the delayed extent when a delayed
35 * allocation is issued, and the delayed extent is written out or
36 * invalidated. Therefore the implementation of fiemap and bigalloc
37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
38 *
39 * The following comment describes the implemenmtation of extent
40 * status tree and future works.
41 *
42 * Step2:
43 * In this step all extent status are tracked by extent status tree.
44 * Thus, we can first try to lookup a block mapping in this tree before
45 * finding it in extent tree. Hence, single extent cache can be removed
46 * because extent status tree can do a better job. Extents in status
47 * tree are loaded on-demand. Therefore, the extent status tree may not
48 * contain all of the extents in a file. Meanwhile we define a shrinker
49 * to reclaim memory from extent status tree because fragmented extent
50 * tree will make status tree cost too much memory. written/unwritten/-
51 * hole extents in the tree will be reclaimed by this shrinker when we
52 * are under high memory pressure. Delayed extents will not be
53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
54 */
55
56 /*
57 * Extent status tree implementation for ext4.
58 *
59 *
60 * ==========================================================================
61 * Extent status tree tracks all extent status.
62 *
63 * 1. Why we need to implement extent status tree?
64 *
65 * Without extent status tree, ext4 identifies a delayed extent by looking
66 * up page cache, this has several deficiencies - complicated, buggy,
67 * and inefficient code.
68 *
69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70 * block or a range of blocks are belonged to a delayed extent.
71 *
72 * Let us have a look at how they do without extent status tree.
73 * -- FIEMAP
74 * FIEMAP looks up page cache to identify delayed allocations from holes.
75 *
76 * -- SEEK_HOLE/DATA
77 * SEEK_HOLE/DATA has the same problem as FIEMAP.
78 *
79 * -- bigalloc
80 * bigalloc looks up page cache to figure out if a block is
81 * already under delayed allocation or not to determine whether
82 * quota reserving is needed for the cluster.
83 *
84 * -- writeout
85 * Writeout looks up whole page cache to see if a buffer is
86 * mapped, If there are not very many delayed buffers, then it is
87 * time comsuming.
88 *
89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90 * bigalloc and writeout can figure out if a block or a range of
91 * blocks is under delayed allocation(belonged to a delayed extent) or
92 * not by searching the extent tree.
93 *
94 *
95 * ==========================================================================
96 * 2. Ext4 extent status tree impelmentation
97 *
98 * -- extent
99 * A extent is a range of blocks which are contiguous logically and
100 * physically. Unlike extent in extent tree, this extent in ext4 is
101 * a in-memory struct, there is no corresponding on-disk data. There
102 * is no limit on length of extent, so an extent can contain as many
103 * blocks as they are contiguous logically and physically.
104 *
105 * -- extent status tree
106 * Every inode has an extent status tree and all allocation blocks
107 * are added to the tree with different status. The extent in the
108 * tree are ordered by logical block no.
109 *
110 * -- operations on a extent status tree
111 * There are three important operations on a delayed extent tree: find
112 * next extent, adding a extent(a range of blocks) and removing a extent.
113 *
114 * -- race on a extent status tree
115 * Extent status tree is protected by inode->i_es_lock.
116 *
117 * -- memory consumption
118 * Fragmented extent tree will make extent status tree cost too much
119 * memory. Hence, we will reclaim written/unwritten/hole extents from
120 * the tree under a heavy memory pressure.
121 *
122 *
123 * ==========================================================================
124 * 3. Performance analysis
125 *
126 * -- overhead
127 * 1. There is a cache extent for write access, so if writes are
128 * not very random, adding space operaions are in O(1) time.
129 *
130 * -- gain
131 * 2. Code is much simpler, more readable, more maintainable and
132 * more efficient.
133 *
134 *
135 * ==========================================================================
136 * 4. TODO list
137 *
138 * -- Refactor delayed space reservation
139 *
140 * -- Extent-level locking
141 */
142
143 static struct kmem_cache *ext4_es_cachep;
144
145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
147 ext4_lblk_t end);
148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
149 int nr_to_scan);
150 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
151 struct ext4_inode_info *locked_ei);
152
153 int __init ext4_init_es(void)
154 {
155 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
156 sizeof(struct extent_status),
157 0, (SLAB_RECLAIM_ACCOUNT), NULL);
158 if (ext4_es_cachep == NULL)
159 return -ENOMEM;
160 return 0;
161 }
162
163 void ext4_exit_es(void)
164 {
165 if (ext4_es_cachep)
166 kmem_cache_destroy(ext4_es_cachep);
167 }
168
169 void ext4_es_init_tree(struct ext4_es_tree *tree)
170 {
171 tree->root = RB_ROOT;
172 tree->cache_es = NULL;
173 }
174
175 #ifdef ES_DEBUG__
176 static void ext4_es_print_tree(struct inode *inode)
177 {
178 struct ext4_es_tree *tree;
179 struct rb_node *node;
180
181 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
182 tree = &EXT4_I(inode)->i_es_tree;
183 node = rb_first(&tree->root);
184 while (node) {
185 struct extent_status *es;
186 es = rb_entry(node, struct extent_status, rb_node);
187 printk(KERN_DEBUG " [%u/%u) %llu %x",
188 es->es_lblk, es->es_len,
189 ext4_es_pblock(es), ext4_es_status(es));
190 node = rb_next(node);
191 }
192 printk(KERN_DEBUG "\n");
193 }
194 #else
195 #define ext4_es_print_tree(inode)
196 #endif
197
198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
199 {
200 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
201 return es->es_lblk + es->es_len - 1;
202 }
203
204 /*
205 * search through the tree for an delayed extent with a given offset. If
206 * it can't be found, try to find next extent.
207 */
208 static struct extent_status *__es_tree_search(struct rb_root *root,
209 ext4_lblk_t lblk)
210 {
211 struct rb_node *node = root->rb_node;
212 struct extent_status *es = NULL;
213
214 while (node) {
215 es = rb_entry(node, struct extent_status, rb_node);
216 if (lblk < es->es_lblk)
217 node = node->rb_left;
218 else if (lblk > ext4_es_end(es))
219 node = node->rb_right;
220 else
221 return es;
222 }
223
224 if (es && lblk < es->es_lblk)
225 return es;
226
227 if (es && lblk > ext4_es_end(es)) {
228 node = rb_next(&es->rb_node);
229 return node ? rb_entry(node, struct extent_status, rb_node) :
230 NULL;
231 }
232
233 return NULL;
234 }
235
236 /*
237 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
238 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
239 *
240 * @inode: the inode which owns delayed extents
241 * @lblk: the offset where we start to search
242 * @end: the offset where we stop to search
243 * @es: delayed extent that we found
244 */
245 void ext4_es_find_delayed_extent_range(struct inode *inode,
246 ext4_lblk_t lblk, ext4_lblk_t end,
247 struct extent_status *es)
248 {
249 struct ext4_es_tree *tree = NULL;
250 struct extent_status *es1 = NULL;
251 struct rb_node *node;
252
253 BUG_ON(es == NULL);
254 BUG_ON(end < lblk);
255 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
256
257 read_lock(&EXT4_I(inode)->i_es_lock);
258 tree = &EXT4_I(inode)->i_es_tree;
259
260 /* find extent in cache firstly */
261 es->es_lblk = es->es_len = es->es_pblk = 0;
262 if (tree->cache_es) {
263 es1 = tree->cache_es;
264 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
265 es_debug("%u cached by [%u/%u) %llu %x\n",
266 lblk, es1->es_lblk, es1->es_len,
267 ext4_es_pblock(es1), ext4_es_status(es1));
268 goto out;
269 }
270 }
271
272 es1 = __es_tree_search(&tree->root, lblk);
273
274 out:
275 if (es1 && !ext4_es_is_delayed(es1)) {
276 while ((node = rb_next(&es1->rb_node)) != NULL) {
277 es1 = rb_entry(node, struct extent_status, rb_node);
278 if (es1->es_lblk > end) {
279 es1 = NULL;
280 break;
281 }
282 if (ext4_es_is_delayed(es1))
283 break;
284 }
285 }
286
287 if (es1 && ext4_es_is_delayed(es1)) {
288 tree->cache_es = es1;
289 es->es_lblk = es1->es_lblk;
290 es->es_len = es1->es_len;
291 es->es_pblk = es1->es_pblk;
292 }
293
294 read_unlock(&EXT4_I(inode)->i_es_lock);
295
296 trace_ext4_es_find_delayed_extent_range_exit(inode, es);
297 }
298
299 static struct extent_status *
300 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
301 ext4_fsblk_t pblk)
302 {
303 struct extent_status *es;
304 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
305 if (es == NULL)
306 return NULL;
307 es->es_lblk = lblk;
308 es->es_len = len;
309 es->es_pblk = pblk;
310
311 /*
312 * We don't count delayed extent because we never try to reclaim them
313 */
314 if (!ext4_es_is_delayed(es)) {
315 EXT4_I(inode)->i_es_lru_nr++;
316 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
317 }
318
319 return es;
320 }
321
322 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
323 {
324 /* Decrease the lru counter when this es is not delayed */
325 if (!ext4_es_is_delayed(es)) {
326 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
327 EXT4_I(inode)->i_es_lru_nr--;
328 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
329 }
330
331 kmem_cache_free(ext4_es_cachep, es);
332 }
333
334 /*
335 * Check whether or not two extents can be merged
336 * Condition:
337 * - logical block number is contiguous
338 * - physical block number is contiguous
339 * - status is equal
340 */
341 static int ext4_es_can_be_merged(struct extent_status *es1,
342 struct extent_status *es2)
343 {
344 if (ext4_es_status(es1) != ext4_es_status(es2))
345 return 0;
346
347 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
348 pr_warn("ES assertion failed when merging extents. "
349 "The sum of lengths of es1 (%d) and es2 (%d) "
350 "is bigger than allowed file size (%d)\n",
351 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
352 WARN_ON(1);
353 return 0;
354 }
355
356 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
357 return 0;
358
359 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
360 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
361 return 1;
362
363 if (ext4_es_is_hole(es1))
364 return 1;
365
366 /* we need to check delayed extent is without unwritten status */
367 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
368 return 1;
369
370 return 0;
371 }
372
373 static struct extent_status *
374 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
375 {
376 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
377 struct extent_status *es1;
378 struct rb_node *node;
379
380 node = rb_prev(&es->rb_node);
381 if (!node)
382 return es;
383
384 es1 = rb_entry(node, struct extent_status, rb_node);
385 if (ext4_es_can_be_merged(es1, es)) {
386 es1->es_len += es->es_len;
387 rb_erase(&es->rb_node, &tree->root);
388 ext4_es_free_extent(inode, es);
389 es = es1;
390 }
391
392 return es;
393 }
394
395 static struct extent_status *
396 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
397 {
398 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
399 struct extent_status *es1;
400 struct rb_node *node;
401
402 node = rb_next(&es->rb_node);
403 if (!node)
404 return es;
405
406 es1 = rb_entry(node, struct extent_status, rb_node);
407 if (ext4_es_can_be_merged(es, es1)) {
408 es->es_len += es1->es_len;
409 rb_erase(node, &tree->root);
410 ext4_es_free_extent(inode, es1);
411 }
412
413 return es;
414 }
415
416 #ifdef ES_AGGRESSIVE_TEST
417 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
418
419 static void ext4_es_insert_extent_ext_check(struct inode *inode,
420 struct extent_status *es)
421 {
422 struct ext4_ext_path *path = NULL;
423 struct ext4_extent *ex;
424 ext4_lblk_t ee_block;
425 ext4_fsblk_t ee_start;
426 unsigned short ee_len;
427 int depth, ee_status, es_status;
428
429 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
430 if (IS_ERR(path))
431 return;
432
433 depth = ext_depth(inode);
434 ex = path[depth].p_ext;
435
436 if (ex) {
437
438 ee_block = le32_to_cpu(ex->ee_block);
439 ee_start = ext4_ext_pblock(ex);
440 ee_len = ext4_ext_get_actual_len(ex);
441
442 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
443 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
444
445 /*
446 * Make sure ex and es are not overlap when we try to insert
447 * a delayed/hole extent.
448 */
449 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
450 if (in_range(es->es_lblk, ee_block, ee_len)) {
451 pr_warn("ES insert assertion failed for "
452 "inode: %lu we can find an extent "
453 "at block [%d/%d/%llu/%c], but we "
454 "want to add a delayed/hole extent "
455 "[%d/%d/%llu/%x]\n",
456 inode->i_ino, ee_block, ee_len,
457 ee_start, ee_status ? 'u' : 'w',
458 es->es_lblk, es->es_len,
459 ext4_es_pblock(es), ext4_es_status(es));
460 }
461 goto out;
462 }
463
464 /*
465 * We don't check ee_block == es->es_lblk, etc. because es
466 * might be a part of whole extent, vice versa.
467 */
468 if (es->es_lblk < ee_block ||
469 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
470 pr_warn("ES insert assertion failed for inode: %lu "
471 "ex_status [%d/%d/%llu/%c] != "
472 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
473 ee_block, ee_len, ee_start,
474 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
475 ext4_es_pblock(es), es_status ? 'u' : 'w');
476 goto out;
477 }
478
479 if (ee_status ^ es_status) {
480 pr_warn("ES insert assertion failed for inode: %lu "
481 "ex_status [%d/%d/%llu/%c] != "
482 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 ee_block, ee_len, ee_start,
484 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 ext4_es_pblock(es), es_status ? 'u' : 'w');
486 }
487 } else {
488 /*
489 * We can't find an extent on disk. So we need to make sure
490 * that we don't want to add an written/unwritten extent.
491 */
492 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
493 pr_warn("ES insert assertion failed for inode: %lu "
494 "can't find an extent at block %d but we want "
495 "to add a written/unwritten extent "
496 "[%d/%d/%llu/%x]\n", inode->i_ino,
497 es->es_lblk, es->es_lblk, es->es_len,
498 ext4_es_pblock(es), ext4_es_status(es));
499 }
500 }
501 out:
502 ext4_ext_drop_refs(path);
503 kfree(path);
504 }
505
506 static void ext4_es_insert_extent_ind_check(struct inode *inode,
507 struct extent_status *es)
508 {
509 struct ext4_map_blocks map;
510 int retval;
511
512 /*
513 * Here we call ext4_ind_map_blocks to lookup a block mapping because
514 * 'Indirect' structure is defined in indirect.c. So we couldn't
515 * access direct/indirect tree from outside. It is too dirty to define
516 * this function in indirect.c file.
517 */
518
519 map.m_lblk = es->es_lblk;
520 map.m_len = es->es_len;
521
522 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
523 if (retval > 0) {
524 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
525 /*
526 * We want to add a delayed/hole extent but this
527 * block has been allocated.
528 */
529 pr_warn("ES insert assertion failed for inode: %lu "
530 "We can find blocks but we want to add a "
531 "delayed/hole extent [%d/%d/%llu/%x]\n",
532 inode->i_ino, es->es_lblk, es->es_len,
533 ext4_es_pblock(es), ext4_es_status(es));
534 return;
535 } else if (ext4_es_is_written(es)) {
536 if (retval != es->es_len) {
537 pr_warn("ES insert assertion failed for "
538 "inode: %lu retval %d != es_len %d\n",
539 inode->i_ino, retval, es->es_len);
540 return;
541 }
542 if (map.m_pblk != ext4_es_pblock(es)) {
543 pr_warn("ES insert assertion failed for "
544 "inode: %lu m_pblk %llu != "
545 "es_pblk %llu\n",
546 inode->i_ino, map.m_pblk,
547 ext4_es_pblock(es));
548 return;
549 }
550 } else {
551 /*
552 * We don't need to check unwritten extent because
553 * indirect-based file doesn't have it.
554 */
555 BUG_ON(1);
556 }
557 } else if (retval == 0) {
558 if (ext4_es_is_written(es)) {
559 pr_warn("ES insert assertion failed for inode: %lu "
560 "We can't find the block but we want to add "
561 "a written extent [%d/%d/%llu/%x]\n",
562 inode->i_ino, es->es_lblk, es->es_len,
563 ext4_es_pblock(es), ext4_es_status(es));
564 return;
565 }
566 }
567 }
568
569 static inline void ext4_es_insert_extent_check(struct inode *inode,
570 struct extent_status *es)
571 {
572 /*
573 * We don't need to worry about the race condition because
574 * caller takes i_data_sem locking.
575 */
576 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
577 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
578 ext4_es_insert_extent_ext_check(inode, es);
579 else
580 ext4_es_insert_extent_ind_check(inode, es);
581 }
582 #else
583 static inline void ext4_es_insert_extent_check(struct inode *inode,
584 struct extent_status *es)
585 {
586 }
587 #endif
588
589 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
590 {
591 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
592 struct rb_node **p = &tree->root.rb_node;
593 struct rb_node *parent = NULL;
594 struct extent_status *es;
595
596 while (*p) {
597 parent = *p;
598 es = rb_entry(parent, struct extent_status, rb_node);
599
600 if (newes->es_lblk < es->es_lblk) {
601 if (ext4_es_can_be_merged(newes, es)) {
602 /*
603 * Here we can modify es_lblk directly
604 * because it isn't overlapped.
605 */
606 es->es_lblk = newes->es_lblk;
607 es->es_len += newes->es_len;
608 if (ext4_es_is_written(es) ||
609 ext4_es_is_unwritten(es))
610 ext4_es_store_pblock(es,
611 newes->es_pblk);
612 es = ext4_es_try_to_merge_left(inode, es);
613 goto out;
614 }
615 p = &(*p)->rb_left;
616 } else if (newes->es_lblk > ext4_es_end(es)) {
617 if (ext4_es_can_be_merged(es, newes)) {
618 es->es_len += newes->es_len;
619 es = ext4_es_try_to_merge_right(inode, es);
620 goto out;
621 }
622 p = &(*p)->rb_right;
623 } else {
624 BUG_ON(1);
625 return -EINVAL;
626 }
627 }
628
629 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
630 newes->es_pblk);
631 if (!es)
632 return -ENOMEM;
633 rb_link_node(&es->rb_node, parent, p);
634 rb_insert_color(&es->rb_node, &tree->root);
635
636 out:
637 tree->cache_es = es;
638 return 0;
639 }
640
641 /*
642 * ext4_es_insert_extent() adds information to an inode's extent
643 * status tree.
644 *
645 * Return 0 on success, error code on failure.
646 */
647 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
648 ext4_lblk_t len, ext4_fsblk_t pblk,
649 unsigned int status)
650 {
651 struct extent_status newes;
652 ext4_lblk_t end = lblk + len - 1;
653 int err = 0;
654
655 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
656 lblk, len, pblk, status, inode->i_ino);
657
658 if (!len)
659 return 0;
660
661 BUG_ON(end < lblk);
662
663 newes.es_lblk = lblk;
664 newes.es_len = len;
665 ext4_es_store_pblock_status(&newes, pblk, status);
666 trace_ext4_es_insert_extent(inode, &newes);
667
668 ext4_es_insert_extent_check(inode, &newes);
669
670 write_lock(&EXT4_I(inode)->i_es_lock);
671 err = __es_remove_extent(inode, lblk, end);
672 if (err != 0)
673 goto error;
674 retry:
675 err = __es_insert_extent(inode, &newes);
676 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
677 EXT4_I(inode)))
678 goto retry;
679 if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
680 err = 0;
681
682 error:
683 write_unlock(&EXT4_I(inode)->i_es_lock);
684
685 ext4_es_print_tree(inode);
686
687 return err;
688 }
689
690 /*
691 * ext4_es_cache_extent() inserts information into the extent status
692 * tree if and only if there isn't information about the range in
693 * question already.
694 */
695 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
696 ext4_lblk_t len, ext4_fsblk_t pblk,
697 unsigned int status)
698 {
699 struct extent_status *es;
700 struct extent_status newes;
701 ext4_lblk_t end = lblk + len - 1;
702
703 newes.es_lblk = lblk;
704 newes.es_len = len;
705 ext4_es_store_pblock_status(&newes, pblk, status);
706 trace_ext4_es_cache_extent(inode, &newes);
707
708 if (!len)
709 return;
710
711 BUG_ON(end < lblk);
712
713 write_lock(&EXT4_I(inode)->i_es_lock);
714
715 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
716 if (!es || es->es_lblk > end)
717 __es_insert_extent(inode, &newes);
718 write_unlock(&EXT4_I(inode)->i_es_lock);
719 }
720
721 /*
722 * ext4_es_lookup_extent() looks up an extent in extent status tree.
723 *
724 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
725 *
726 * Return: 1 on found, 0 on not
727 */
728 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
729 struct extent_status *es)
730 {
731 struct ext4_es_tree *tree;
732 struct extent_status *es1 = NULL;
733 struct rb_node *node;
734 int found = 0;
735
736 trace_ext4_es_lookup_extent_enter(inode, lblk);
737 es_debug("lookup extent in block %u\n", lblk);
738
739 tree = &EXT4_I(inode)->i_es_tree;
740 read_lock(&EXT4_I(inode)->i_es_lock);
741
742 /* find extent in cache firstly */
743 es->es_lblk = es->es_len = es->es_pblk = 0;
744 if (tree->cache_es) {
745 es1 = tree->cache_es;
746 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
747 es_debug("%u cached by [%u/%u)\n",
748 lblk, es1->es_lblk, es1->es_len);
749 found = 1;
750 goto out;
751 }
752 }
753
754 node = tree->root.rb_node;
755 while (node) {
756 es1 = rb_entry(node, struct extent_status, rb_node);
757 if (lblk < es1->es_lblk)
758 node = node->rb_left;
759 else if (lblk > ext4_es_end(es1))
760 node = node->rb_right;
761 else {
762 found = 1;
763 break;
764 }
765 }
766
767 out:
768 if (found) {
769 BUG_ON(!es1);
770 es->es_lblk = es1->es_lblk;
771 es->es_len = es1->es_len;
772 es->es_pblk = es1->es_pblk;
773 }
774
775 read_unlock(&EXT4_I(inode)->i_es_lock);
776
777 trace_ext4_es_lookup_extent_exit(inode, es, found);
778 return found;
779 }
780
781 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
782 ext4_lblk_t end)
783 {
784 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
785 struct rb_node *node;
786 struct extent_status *es;
787 struct extent_status orig_es;
788 ext4_lblk_t len1, len2;
789 ext4_fsblk_t block;
790 int err;
791
792 retry:
793 err = 0;
794 es = __es_tree_search(&tree->root, lblk);
795 if (!es)
796 goto out;
797 if (es->es_lblk > end)
798 goto out;
799
800 /* Simply invalidate cache_es. */
801 tree->cache_es = NULL;
802
803 orig_es.es_lblk = es->es_lblk;
804 orig_es.es_len = es->es_len;
805 orig_es.es_pblk = es->es_pblk;
806
807 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
808 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
809 if (len1 > 0)
810 es->es_len = len1;
811 if (len2 > 0) {
812 if (len1 > 0) {
813 struct extent_status newes;
814
815 newes.es_lblk = end + 1;
816 newes.es_len = len2;
817 block = 0x7FDEADBEEFULL;
818 if (ext4_es_is_written(&orig_es) ||
819 ext4_es_is_unwritten(&orig_es))
820 block = ext4_es_pblock(&orig_es) +
821 orig_es.es_len - len2;
822 ext4_es_store_pblock_status(&newes, block,
823 ext4_es_status(&orig_es));
824 err = __es_insert_extent(inode, &newes);
825 if (err) {
826 es->es_lblk = orig_es.es_lblk;
827 es->es_len = orig_es.es_len;
828 if ((err == -ENOMEM) &&
829 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
830 EXT4_I(inode)))
831 goto retry;
832 goto out;
833 }
834 } else {
835 es->es_lblk = end + 1;
836 es->es_len = len2;
837 if (ext4_es_is_written(es) ||
838 ext4_es_is_unwritten(es)) {
839 block = orig_es.es_pblk + orig_es.es_len - len2;
840 ext4_es_store_pblock(es, block);
841 }
842 }
843 goto out;
844 }
845
846 if (len1 > 0) {
847 node = rb_next(&es->rb_node);
848 if (node)
849 es = rb_entry(node, struct extent_status, rb_node);
850 else
851 es = NULL;
852 }
853
854 while (es && ext4_es_end(es) <= end) {
855 node = rb_next(&es->rb_node);
856 rb_erase(&es->rb_node, &tree->root);
857 ext4_es_free_extent(inode, es);
858 if (!node) {
859 es = NULL;
860 break;
861 }
862 es = rb_entry(node, struct extent_status, rb_node);
863 }
864
865 if (es && es->es_lblk < end + 1) {
866 ext4_lblk_t orig_len = es->es_len;
867
868 len1 = ext4_es_end(es) - end;
869 es->es_lblk = end + 1;
870 es->es_len = len1;
871 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
872 block = es->es_pblk + orig_len - len1;
873 ext4_es_store_pblock(es, block);
874 }
875 }
876
877 out:
878 return err;
879 }
880
881 /*
882 * ext4_es_remove_extent() removes a space from a extent status tree.
883 *
884 * Return 0 on success, error code on failure.
885 */
886 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
887 ext4_lblk_t len)
888 {
889 ext4_lblk_t end;
890 int err = 0;
891
892 trace_ext4_es_remove_extent(inode, lblk, len);
893 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
894 lblk, len, inode->i_ino);
895
896 if (!len)
897 return err;
898
899 end = lblk + len - 1;
900 BUG_ON(end < lblk);
901
902 write_lock(&EXT4_I(inode)->i_es_lock);
903 err = __es_remove_extent(inode, lblk, end);
904 write_unlock(&EXT4_I(inode)->i_es_lock);
905 ext4_es_print_tree(inode);
906 return err;
907 }
908
909 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
910 struct list_head *b)
911 {
912 struct ext4_inode_info *eia, *eib;
913 eia = list_entry(a, struct ext4_inode_info, i_es_lru);
914 eib = list_entry(b, struct ext4_inode_info, i_es_lru);
915
916 if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
917 !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
918 return 1;
919 if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
920 ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
921 return -1;
922 if (eia->i_touch_when == eib->i_touch_when)
923 return 0;
924 if (time_after(eia->i_touch_when, eib->i_touch_when))
925 return 1;
926 else
927 return -1;
928 }
929
930 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
931 struct ext4_inode_info *locked_ei)
932 {
933 struct ext4_inode_info *ei;
934 struct list_head *cur, *tmp;
935 LIST_HEAD(skipped);
936 int nr_shrunk = 0;
937 int retried = 0, skip_precached = 1, nr_skipped = 0;
938
939 spin_lock(&sbi->s_es_lru_lock);
940
941 retry:
942 list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
943 int shrunk;
944
945 /*
946 * If we have already reclaimed all extents from extent
947 * status tree, just stop the loop immediately.
948 */
949 if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
950 break;
951
952 ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
953
954 /*
955 * Skip the inode that is newer than the last_sorted
956 * time. Normally we try hard to avoid shrinking
957 * precached inodes, but we will as a last resort.
958 */
959 if ((sbi->s_es_last_sorted < ei->i_touch_when) ||
960 (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
961 EXT4_STATE_EXT_PRECACHED))) {
962 nr_skipped++;
963 list_move_tail(cur, &skipped);
964 continue;
965 }
966
967 if (ei->i_es_lru_nr == 0 || ei == locked_ei ||
968 !write_trylock(&ei->i_es_lock))
969 continue;
970
971 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
972 if (ei->i_es_lru_nr == 0)
973 list_del_init(&ei->i_es_lru);
974 write_unlock(&ei->i_es_lock);
975
976 nr_shrunk += shrunk;
977 nr_to_scan -= shrunk;
978 if (nr_to_scan == 0)
979 break;
980 }
981
982 /* Move the newer inodes into the tail of the LRU list. */
983 list_splice_tail(&skipped, &sbi->s_es_lru);
984 INIT_LIST_HEAD(&skipped);
985
986 /*
987 * If we skipped any inodes, and we weren't able to make any
988 * forward progress, sort the list and try again.
989 */
990 if ((nr_shrunk == 0) && nr_skipped && !retried) {
991 retried++;
992 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
993 sbi->s_es_last_sorted = jiffies;
994 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
995 i_es_lru);
996 /*
997 * If there are no non-precached inodes left on the
998 * list, start releasing precached extents.
999 */
1000 if (ext4_test_inode_state(&ei->vfs_inode,
1001 EXT4_STATE_EXT_PRECACHED))
1002 skip_precached = 0;
1003 goto retry;
1004 }
1005
1006 spin_unlock(&sbi->s_es_lru_lock);
1007
1008 if (locked_ei && nr_shrunk == 0)
1009 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1010
1011 return nr_shrunk;
1012 }
1013
1014 static unsigned long ext4_es_count(struct shrinker *shrink,
1015 struct shrink_control *sc)
1016 {
1017 unsigned long nr;
1018 struct ext4_sb_info *sbi;
1019
1020 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1021 nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1022 trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr);
1023 return nr;
1024 }
1025
1026 static unsigned long ext4_es_scan(struct shrinker *shrink,
1027 struct shrink_control *sc)
1028 {
1029 struct ext4_sb_info *sbi = container_of(shrink,
1030 struct ext4_sb_info, s_es_shrinker);
1031 int nr_to_scan = sc->nr_to_scan;
1032 int ret, nr_shrunk;
1033
1034 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1035 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
1036
1037 if (!nr_to_scan)
1038 return ret;
1039
1040 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1041
1042 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
1043 return nr_shrunk;
1044 }
1045
1046 void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1047 {
1048 INIT_LIST_HEAD(&sbi->s_es_lru);
1049 spin_lock_init(&sbi->s_es_lru_lock);
1050 sbi->s_es_last_sorted = 0;
1051 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1052 sbi->s_es_shrinker.count_objects = ext4_es_count;
1053 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1054 register_shrinker(&sbi->s_es_shrinker);
1055 }
1056
1057 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1058 {
1059 unregister_shrinker(&sbi->s_es_shrinker);
1060 }
1061
1062 void ext4_es_lru_add(struct inode *inode)
1063 {
1064 struct ext4_inode_info *ei = EXT4_I(inode);
1065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1066
1067 ei->i_touch_when = jiffies;
1068
1069 if (!list_empty(&ei->i_es_lru))
1070 return;
1071
1072 spin_lock(&sbi->s_es_lru_lock);
1073 if (list_empty(&ei->i_es_lru))
1074 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1075 spin_unlock(&sbi->s_es_lru_lock);
1076 }
1077
1078 void ext4_es_lru_del(struct inode *inode)
1079 {
1080 struct ext4_inode_info *ei = EXT4_I(inode);
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082
1083 spin_lock(&sbi->s_es_lru_lock);
1084 if (!list_empty(&ei->i_es_lru))
1085 list_del_init(&ei->i_es_lru);
1086 spin_unlock(&sbi->s_es_lru_lock);
1087 }
1088
1089 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1090 int nr_to_scan)
1091 {
1092 struct inode *inode = &ei->vfs_inode;
1093 struct ext4_es_tree *tree = &ei->i_es_tree;
1094 struct rb_node *node;
1095 struct extent_status *es;
1096 unsigned long nr_shrunk = 0;
1097 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1098 DEFAULT_RATELIMIT_BURST);
1099
1100 if (ei->i_es_lru_nr == 0)
1101 return 0;
1102
1103 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1104 __ratelimit(&_rs))
1105 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1106
1107 node = rb_first(&tree->root);
1108 while (node != NULL) {
1109 es = rb_entry(node, struct extent_status, rb_node);
1110 node = rb_next(&es->rb_node);
1111 /*
1112 * We can't reclaim delayed extent from status tree because
1113 * fiemap, bigallic, and seek_data/hole need to use it.
1114 */
1115 if (!ext4_es_is_delayed(es)) {
1116 rb_erase(&es->rb_node, &tree->root);
1117 ext4_es_free_extent(inode, es);
1118 nr_shrunk++;
1119 if (--nr_to_scan == 0)
1120 break;
1121 }
1122 }
1123 tree->cache_es = NULL;
1124 return nr_shrunk;
1125 }
This page took 0.083323 seconds and 5 git commands to generate.