Merge branch 'for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / ext4 / ialloc.c
1 /*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30
31 #include <trace/events/ext4.h>
32
33 /*
34 * ialloc.c contains the inodes allocation and deallocation routines
35 */
36
37 /*
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
41 *
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
45 */
46
47 /*
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
51 */
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 int i;
55
56 if (start_bit >= end_bit)
57 return;
58
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65
66 /* Initializes an uninitialized inode bitmap */
67 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
71 {
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
75
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 ext4_error(sb, "Checksum bad for group %u", block_group);
80 grp = ext4_get_group_info(sb, block_group);
81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 percpu_counter_sub(&sbi->s_freeclusters_counter,
83 grp->bb_free);
84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
86 int count;
87 count = ext4_free_inodes_count(sb, gdp);
88 percpu_counter_sub(&sbi->s_freeinodes_counter,
89 count);
90 }
91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
92 return 0;
93 }
94
95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
97 bh->b_data);
98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 EXT4_INODES_PER_GROUP(sb) / 8);
100 ext4_group_desc_csum_set(sb, block_group, gdp);
101
102 return EXT4_INODES_PER_GROUP(sb);
103 }
104
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
106 {
107 if (uptodate) {
108 set_buffer_uptodate(bh);
109 set_bitmap_uptodate(bh);
110 }
111 unlock_buffer(bh);
112 put_bh(bh);
113 }
114
115 /*
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
118 *
119 * Return buffer_head of bitmap on success or NULL.
120 */
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
123 {
124 struct ext4_group_desc *desc;
125 struct buffer_head *bh = NULL;
126 ext4_fsblk_t bitmap_blk;
127 struct ext4_group_info *grp;
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
129
130 desc = ext4_get_group_desc(sb, block_group, NULL);
131 if (!desc)
132 return NULL;
133
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 bh = sb_getblk(sb, bitmap_blk);
136 if (unlikely(!bh)) {
137 ext4_error(sb, "Cannot read inode bitmap - "
138 "block_group = %u, inode_bitmap = %llu",
139 block_group, bitmap_blk);
140 return NULL;
141 }
142 if (bitmap_uptodate(bh))
143 goto verify;
144
145 lock_buffer(bh);
146 if (bitmap_uptodate(bh)) {
147 unlock_buffer(bh);
148 goto verify;
149 }
150
151 ext4_lock_group(sb, block_group);
152 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
153 ext4_init_inode_bitmap(sb, bh, block_group, desc);
154 set_bitmap_uptodate(bh);
155 set_buffer_uptodate(bh);
156 set_buffer_verified(bh);
157 ext4_unlock_group(sb, block_group);
158 unlock_buffer(bh);
159 return bh;
160 }
161 ext4_unlock_group(sb, block_group);
162
163 if (buffer_uptodate(bh)) {
164 /*
165 * if not uninit if bh is uptodate,
166 * bitmap is also uptodate
167 */
168 set_bitmap_uptodate(bh);
169 unlock_buffer(bh);
170 goto verify;
171 }
172 /*
173 * submit the buffer_head for reading
174 */
175 trace_ext4_load_inode_bitmap(sb, block_group);
176 bh->b_end_io = ext4_end_bitmap_read;
177 get_bh(bh);
178 submit_bh(READ | REQ_META | REQ_PRIO, bh);
179 wait_on_buffer(bh);
180 if (!buffer_uptodate(bh)) {
181 put_bh(bh);
182 ext4_error(sb, "Cannot read inode bitmap - "
183 "block_group = %u, inode_bitmap = %llu",
184 block_group, bitmap_blk);
185 return NULL;
186 }
187
188 verify:
189 ext4_lock_group(sb, block_group);
190 if (!buffer_verified(bh) &&
191 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
192 EXT4_INODES_PER_GROUP(sb) / 8)) {
193 ext4_unlock_group(sb, block_group);
194 put_bh(bh);
195 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
196 "inode_bitmap = %llu", block_group, bitmap_blk);
197 grp = ext4_get_group_info(sb, block_group);
198 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
199 int count;
200 count = ext4_free_inodes_count(sb, desc);
201 percpu_counter_sub(&sbi->s_freeinodes_counter,
202 count);
203 }
204 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
205 return NULL;
206 }
207 ext4_unlock_group(sb, block_group);
208 set_buffer_verified(bh);
209 return bh;
210 }
211
212 /*
213 * NOTE! When we get the inode, we're the only people
214 * that have access to it, and as such there are no
215 * race conditions we have to worry about. The inode
216 * is not on the hash-lists, and it cannot be reached
217 * through the filesystem because the directory entry
218 * has been deleted earlier.
219 *
220 * HOWEVER: we must make sure that we get no aliases,
221 * which means that we have to call "clear_inode()"
222 * _before_ we mark the inode not in use in the inode
223 * bitmaps. Otherwise a newly created file might use
224 * the same inode number (not actually the same pointer
225 * though), and then we'd have two inodes sharing the
226 * same inode number and space on the harddisk.
227 */
228 void ext4_free_inode(handle_t *handle, struct inode *inode)
229 {
230 struct super_block *sb = inode->i_sb;
231 int is_directory;
232 unsigned long ino;
233 struct buffer_head *bitmap_bh = NULL;
234 struct buffer_head *bh2;
235 ext4_group_t block_group;
236 unsigned long bit;
237 struct ext4_group_desc *gdp;
238 struct ext4_super_block *es;
239 struct ext4_sb_info *sbi;
240 int fatal = 0, err, count, cleared;
241 struct ext4_group_info *grp;
242
243 if (!sb) {
244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
245 "nonexistent device\n", __func__, __LINE__);
246 return;
247 }
248 if (atomic_read(&inode->i_count) > 1) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
250 __func__, __LINE__, inode->i_ino,
251 atomic_read(&inode->i_count));
252 return;
253 }
254 if (inode->i_nlink) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
256 __func__, __LINE__, inode->i_ino, inode->i_nlink);
257 return;
258 }
259 sbi = EXT4_SB(sb);
260
261 ino = inode->i_ino;
262 ext4_debug("freeing inode %lu\n", ino);
263 trace_ext4_free_inode(inode);
264
265 /*
266 * Note: we must free any quota before locking the superblock,
267 * as writing the quota to disk may need the lock as well.
268 */
269 dquot_initialize(inode);
270 ext4_xattr_delete_inode(handle, inode);
271 dquot_free_inode(inode);
272 dquot_drop(inode);
273
274 is_directory = S_ISDIR(inode->i_mode);
275
276 /* Do this BEFORE marking the inode not in use or returning an error */
277 ext4_clear_inode(inode);
278
279 es = EXT4_SB(sb)->s_es;
280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 goto error_return;
283 }
284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 /* Don't bother if the inode bitmap is corrupt. */
288 grp = ext4_get_group_info(sb, block_group);
289 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
290 goto error_return;
291
292 BUFFER_TRACE(bitmap_bh, "get_write_access");
293 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
294 if (fatal)
295 goto error_return;
296
297 fatal = -ESRCH;
298 gdp = ext4_get_group_desc(sb, block_group, &bh2);
299 if (gdp) {
300 BUFFER_TRACE(bh2, "get_write_access");
301 fatal = ext4_journal_get_write_access(handle, bh2);
302 }
303 ext4_lock_group(sb, block_group);
304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 if (fatal || !cleared) {
306 ext4_unlock_group(sb, block_group);
307 goto out;
308 }
309
310 count = ext4_free_inodes_count(sb, gdp) + 1;
311 ext4_free_inodes_set(sb, gdp, count);
312 if (is_directory) {
313 count = ext4_used_dirs_count(sb, gdp) - 1;
314 ext4_used_dirs_set(sb, gdp, count);
315 percpu_counter_dec(&sbi->s_dirs_counter);
316 }
317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 EXT4_INODES_PER_GROUP(sb) / 8);
319 ext4_group_desc_csum_set(sb, block_group, gdp);
320 ext4_unlock_group(sb, block_group);
321
322 percpu_counter_inc(&sbi->s_freeinodes_counter);
323 if (sbi->s_log_groups_per_flex) {
324 ext4_group_t f = ext4_flex_group(sbi, block_group);
325
326 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
327 if (is_directory)
328 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
329 }
330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
332 out:
333 if (cleared) {
334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
336 if (!fatal)
337 fatal = err;
338 } else {
339 ext4_error(sb, "bit already cleared for inode %lu", ino);
340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
341 int count;
342 count = ext4_free_inodes_count(sb, gdp);
343 percpu_counter_sub(&sbi->s_freeinodes_counter,
344 count);
345 }
346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
347 }
348
349 error_return:
350 brelse(bitmap_bh);
351 ext4_std_error(sb, fatal);
352 }
353
354 struct orlov_stats {
355 __u64 free_clusters;
356 __u32 free_inodes;
357 __u32 used_dirs;
358 };
359
360 /*
361 * Helper function for Orlov's allocator; returns critical information
362 * for a particular block group or flex_bg. If flex_size is 1, then g
363 * is a block group number; otherwise it is flex_bg number.
364 */
365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 int flex_size, struct orlov_stats *stats)
367 {
368 struct ext4_group_desc *desc;
369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
370
371 if (flex_size > 1) {
372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
375 return;
376 }
377
378 desc = ext4_get_group_desc(sb, g, NULL);
379 if (desc) {
380 stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 stats->used_dirs = ext4_used_dirs_count(sb, desc);
383 } else {
384 stats->free_inodes = 0;
385 stats->free_clusters = 0;
386 stats->used_dirs = 0;
387 }
388 }
389
390 /*
391 * Orlov's allocator for directories.
392 *
393 * We always try to spread first-level directories.
394 *
395 * If there are blockgroups with both free inodes and free blocks counts
396 * not worse than average we return one with smallest directory count.
397 * Otherwise we simply return a random group.
398 *
399 * For the rest rules look so:
400 *
401 * It's OK to put directory into a group unless
402 * it has too many directories already (max_dirs) or
403 * it has too few free inodes left (min_inodes) or
404 * it has too few free blocks left (min_blocks) or
405 * Parent's group is preferred, if it doesn't satisfy these
406 * conditions we search cyclically through the rest. If none
407 * of the groups look good we just look for a group with more
408 * free inodes than average (starting at parent's group).
409 */
410
411 static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 ext4_group_t *group, umode_t mode,
413 const struct qstr *qstr)
414 {
415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 struct ext4_sb_info *sbi = EXT4_SB(sb);
417 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 unsigned int freei, avefreei, grp_free;
420 ext4_fsblk_t freeb, avefreec;
421 unsigned int ndirs;
422 int max_dirs, min_inodes;
423 ext4_grpblk_t min_clusters;
424 ext4_group_t i, grp, g, ngroups;
425 struct ext4_group_desc *desc;
426 struct orlov_stats stats;
427 int flex_size = ext4_flex_bg_size(sbi);
428 struct dx_hash_info hinfo;
429
430 ngroups = real_ngroups;
431 if (flex_size > 1) {
432 ngroups = (real_ngroups + flex_size - 1) >>
433 sbi->s_log_groups_per_flex;
434 parent_group >>= sbi->s_log_groups_per_flex;
435 }
436
437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 avefreei = freei / ngroups;
439 freeb = EXT4_C2B(sbi,
440 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
441 avefreec = freeb;
442 do_div(avefreec, ngroups);
443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
444
445 if (S_ISDIR(mode) &&
446 ((parent == d_inode(sb->s_root)) ||
447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 int best_ndir = inodes_per_group;
449 int ret = -1;
450
451 if (qstr) {
452 hinfo.hash_version = DX_HASH_HALF_MD4;
453 hinfo.seed = sbi->s_hash_seed;
454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
455 grp = hinfo.hash;
456 } else
457 grp = prandom_u32();
458 parent_group = (unsigned)grp % ngroups;
459 for (i = 0; i < ngroups; i++) {
460 g = (parent_group + i) % ngroups;
461 get_orlov_stats(sb, g, flex_size, &stats);
462 if (!stats.free_inodes)
463 continue;
464 if (stats.used_dirs >= best_ndir)
465 continue;
466 if (stats.free_inodes < avefreei)
467 continue;
468 if (stats.free_clusters < avefreec)
469 continue;
470 grp = g;
471 ret = 0;
472 best_ndir = stats.used_dirs;
473 }
474 if (ret)
475 goto fallback;
476 found_flex_bg:
477 if (flex_size == 1) {
478 *group = grp;
479 return 0;
480 }
481
482 /*
483 * We pack inodes at the beginning of the flexgroup's
484 * inode tables. Block allocation decisions will do
485 * something similar, although regular files will
486 * start at 2nd block group of the flexgroup. See
487 * ext4_ext_find_goal() and ext4_find_near().
488 */
489 grp *= flex_size;
490 for (i = 0; i < flex_size; i++) {
491 if (grp+i >= real_ngroups)
492 break;
493 desc = ext4_get_group_desc(sb, grp+i, NULL);
494 if (desc && ext4_free_inodes_count(sb, desc)) {
495 *group = grp+i;
496 return 0;
497 }
498 }
499 goto fallback;
500 }
501
502 max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 min_inodes = avefreei - inodes_per_group*flex_size / 4;
504 if (min_inodes < 1)
505 min_inodes = 1;
506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
507
508 /*
509 * Start looking in the flex group where we last allocated an
510 * inode for this parent directory
511 */
512 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 parent_group = EXT4_I(parent)->i_last_alloc_group;
514 if (flex_size > 1)
515 parent_group >>= sbi->s_log_groups_per_flex;
516 }
517
518 for (i = 0; i < ngroups; i++) {
519 grp = (parent_group + i) % ngroups;
520 get_orlov_stats(sb, grp, flex_size, &stats);
521 if (stats.used_dirs >= max_dirs)
522 continue;
523 if (stats.free_inodes < min_inodes)
524 continue;
525 if (stats.free_clusters < min_clusters)
526 continue;
527 goto found_flex_bg;
528 }
529
530 fallback:
531 ngroups = real_ngroups;
532 avefreei = freei / ngroups;
533 fallback_retry:
534 parent_group = EXT4_I(parent)->i_block_group;
535 for (i = 0; i < ngroups; i++) {
536 grp = (parent_group + i) % ngroups;
537 desc = ext4_get_group_desc(sb, grp, NULL);
538 if (desc) {
539 grp_free = ext4_free_inodes_count(sb, desc);
540 if (grp_free && grp_free >= avefreei) {
541 *group = grp;
542 return 0;
543 }
544 }
545 }
546
547 if (avefreei) {
548 /*
549 * The free-inodes counter is approximate, and for really small
550 * filesystems the above test can fail to find any blockgroups
551 */
552 avefreei = 0;
553 goto fallback_retry;
554 }
555
556 return -1;
557 }
558
559 static int find_group_other(struct super_block *sb, struct inode *parent,
560 ext4_group_t *group, umode_t mode)
561 {
562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 struct ext4_group_desc *desc;
565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
566
567 /*
568 * Try to place the inode is the same flex group as its
569 * parent. If we can't find space, use the Orlov algorithm to
570 * find another flex group, and store that information in the
571 * parent directory's inode information so that use that flex
572 * group for future allocations.
573 */
574 if (flex_size > 1) {
575 int retry = 0;
576
577 try_again:
578 parent_group &= ~(flex_size-1);
579 last = parent_group + flex_size;
580 if (last > ngroups)
581 last = ngroups;
582 for (i = parent_group; i < last; i++) {
583 desc = ext4_get_group_desc(sb, i, NULL);
584 if (desc && ext4_free_inodes_count(sb, desc)) {
585 *group = i;
586 return 0;
587 }
588 }
589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
590 retry = 1;
591 parent_group = EXT4_I(parent)->i_last_alloc_group;
592 goto try_again;
593 }
594 /*
595 * If this didn't work, use the Orlov search algorithm
596 * to find a new flex group; we pass in the mode to
597 * avoid the topdir algorithms.
598 */
599 *group = parent_group + flex_size;
600 if (*group > ngroups)
601 *group = 0;
602 return find_group_orlov(sb, parent, group, mode, NULL);
603 }
604
605 /*
606 * Try to place the inode in its parent directory
607 */
608 *group = parent_group;
609 desc = ext4_get_group_desc(sb, *group, NULL);
610 if (desc && ext4_free_inodes_count(sb, desc) &&
611 ext4_free_group_clusters(sb, desc))
612 return 0;
613
614 /*
615 * We're going to place this inode in a different blockgroup from its
616 * parent. We want to cause files in a common directory to all land in
617 * the same blockgroup. But we want files which are in a different
618 * directory which shares a blockgroup with our parent to land in a
619 * different blockgroup.
620 *
621 * So add our directory's i_ino into the starting point for the hash.
622 */
623 *group = (*group + parent->i_ino) % ngroups;
624
625 /*
626 * Use a quadratic hash to find a group with a free inode and some free
627 * blocks.
628 */
629 for (i = 1; i < ngroups; i <<= 1) {
630 *group += i;
631 if (*group >= ngroups)
632 *group -= ngroups;
633 desc = ext4_get_group_desc(sb, *group, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc) &&
635 ext4_free_group_clusters(sb, desc))
636 return 0;
637 }
638
639 /*
640 * That failed: try linear search for a free inode, even if that group
641 * has no free blocks.
642 */
643 *group = parent_group;
644 for (i = 0; i < ngroups; i++) {
645 if (++*group >= ngroups)
646 *group = 0;
647 desc = ext4_get_group_desc(sb, *group, NULL);
648 if (desc && ext4_free_inodes_count(sb, desc))
649 return 0;
650 }
651
652 return -1;
653 }
654
655 /*
656 * In no journal mode, if an inode has recently been deleted, we want
657 * to avoid reusing it until we're reasonably sure the inode table
658 * block has been written back to disk. (Yes, these values are
659 * somewhat arbitrary...)
660 */
661 #define RECENTCY_MIN 5
662 #define RECENTCY_DIRTY 30
663
664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
665 {
666 struct ext4_group_desc *gdp;
667 struct ext4_inode *raw_inode;
668 struct buffer_head *bh;
669 unsigned long dtime, now;
670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
671 int offset, ret = 0, recentcy = RECENTCY_MIN;
672
673 gdp = ext4_get_group_desc(sb, group, NULL);
674 if (unlikely(!gdp))
675 return 0;
676
677 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
678 (ino / inodes_per_block));
679 if (unlikely(!bh) || !buffer_uptodate(bh))
680 /*
681 * If the block is not in the buffer cache, then it
682 * must have been written out.
683 */
684 goto out;
685
686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
687 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
688 dtime = le32_to_cpu(raw_inode->i_dtime);
689 now = get_seconds();
690 if (buffer_dirty(bh))
691 recentcy += RECENTCY_DIRTY;
692
693 if (dtime && (dtime < now) && (now < dtime + recentcy))
694 ret = 1;
695 out:
696 brelse(bh);
697 return ret;
698 }
699
700 /*
701 * There are two policies for allocating an inode. If the new inode is
702 * a directory, then a forward search is made for a block group with both
703 * free space and a low directory-to-inode ratio; if that fails, then of
704 * the groups with above-average free space, that group with the fewest
705 * directories already is chosen.
706 *
707 * For other inodes, search forward from the parent directory's block
708 * group to find a free inode.
709 */
710 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
711 umode_t mode, const struct qstr *qstr,
712 __u32 goal, uid_t *owner, int handle_type,
713 unsigned int line_no, int nblocks)
714 {
715 struct super_block *sb;
716 struct buffer_head *inode_bitmap_bh = NULL;
717 struct buffer_head *group_desc_bh;
718 ext4_group_t ngroups, group = 0;
719 unsigned long ino = 0;
720 struct inode *inode;
721 struct ext4_group_desc *gdp = NULL;
722 struct ext4_inode_info *ei;
723 struct ext4_sb_info *sbi;
724 int ret2, err = 0;
725 struct inode *ret;
726 ext4_group_t i;
727 ext4_group_t flex_group;
728 struct ext4_group_info *grp;
729 int encrypt = 0;
730
731 /* Cannot create files in a deleted directory */
732 if (!dir || !dir->i_nlink)
733 return ERR_PTR(-EPERM);
734
735 if ((ext4_encrypted_inode(dir) ||
736 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
737 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
738 err = ext4_get_encryption_info(dir);
739 if (err)
740 return ERR_PTR(err);
741 if (ext4_encryption_info(dir) == NULL)
742 return ERR_PTR(-EPERM);
743 if (!handle)
744 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
745 encrypt = 1;
746 }
747
748 sb = dir->i_sb;
749 ngroups = ext4_get_groups_count(sb);
750 trace_ext4_request_inode(dir, mode);
751 inode = new_inode(sb);
752 if (!inode)
753 return ERR_PTR(-ENOMEM);
754 ei = EXT4_I(inode);
755 sbi = EXT4_SB(sb);
756
757 /*
758 * Initalize owners and quota early so that we don't have to account
759 * for quota initialization worst case in standard inode creating
760 * transaction
761 */
762 if (owner) {
763 inode->i_mode = mode;
764 i_uid_write(inode, owner[0]);
765 i_gid_write(inode, owner[1]);
766 } else if (test_opt(sb, GRPID)) {
767 inode->i_mode = mode;
768 inode->i_uid = current_fsuid();
769 inode->i_gid = dir->i_gid;
770 } else
771 inode_init_owner(inode, dir, mode);
772 dquot_initialize(inode);
773
774 if (!goal)
775 goal = sbi->s_inode_goal;
776
777 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
778 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
779 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
780 ret2 = 0;
781 goto got_group;
782 }
783
784 if (S_ISDIR(mode))
785 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
786 else
787 ret2 = find_group_other(sb, dir, &group, mode);
788
789 got_group:
790 EXT4_I(dir)->i_last_alloc_group = group;
791 err = -ENOSPC;
792 if (ret2 == -1)
793 goto out;
794
795 /*
796 * Normally we will only go through one pass of this loop,
797 * unless we get unlucky and it turns out the group we selected
798 * had its last inode grabbed by someone else.
799 */
800 for (i = 0; i < ngroups; i++, ino = 0) {
801 err = -EIO;
802
803 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
804 if (!gdp)
805 goto out;
806
807 /*
808 * Check free inodes count before loading bitmap.
809 */
810 if (ext4_free_inodes_count(sb, gdp) == 0) {
811 if (++group == ngroups)
812 group = 0;
813 continue;
814 }
815
816 grp = ext4_get_group_info(sb, group);
817 /* Skip groups with already-known suspicious inode tables */
818 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
819 if (++group == ngroups)
820 group = 0;
821 continue;
822 }
823
824 brelse(inode_bitmap_bh);
825 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
826 /* Skip groups with suspicious inode tables */
827 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
828 if (++group == ngroups)
829 group = 0;
830 continue;
831 }
832
833 repeat_in_this_group:
834 ino = ext4_find_next_zero_bit((unsigned long *)
835 inode_bitmap_bh->b_data,
836 EXT4_INODES_PER_GROUP(sb), ino);
837 if (ino >= EXT4_INODES_PER_GROUP(sb))
838 goto next_group;
839 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
840 ext4_error(sb, "reserved inode found cleared - "
841 "inode=%lu", ino + 1);
842 continue;
843 }
844 if ((EXT4_SB(sb)->s_journal == NULL) &&
845 recently_deleted(sb, group, ino)) {
846 ino++;
847 goto next_inode;
848 }
849 if (!handle) {
850 BUG_ON(nblocks <= 0);
851 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
852 handle_type, nblocks,
853 0);
854 if (IS_ERR(handle)) {
855 err = PTR_ERR(handle);
856 ext4_std_error(sb, err);
857 goto out;
858 }
859 }
860 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
862 if (err) {
863 ext4_std_error(sb, err);
864 goto out;
865 }
866 ext4_lock_group(sb, group);
867 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
868 ext4_unlock_group(sb, group);
869 ino++; /* the inode bitmap is zero-based */
870 if (!ret2)
871 goto got; /* we grabbed the inode! */
872 next_inode:
873 if (ino < EXT4_INODES_PER_GROUP(sb))
874 goto repeat_in_this_group;
875 next_group:
876 if (++group == ngroups)
877 group = 0;
878 }
879 err = -ENOSPC;
880 goto out;
881
882 got:
883 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
884 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
885 if (err) {
886 ext4_std_error(sb, err);
887 goto out;
888 }
889
890 BUFFER_TRACE(group_desc_bh, "get_write_access");
891 err = ext4_journal_get_write_access(handle, group_desc_bh);
892 if (err) {
893 ext4_std_error(sb, err);
894 goto out;
895 }
896
897 /* We may have to initialize the block bitmap if it isn't already */
898 if (ext4_has_group_desc_csum(sb) &&
899 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
900 struct buffer_head *block_bitmap_bh;
901
902 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
903 if (!block_bitmap_bh) {
904 err = -EIO;
905 goto out;
906 }
907 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
908 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
909 if (err) {
910 brelse(block_bitmap_bh);
911 ext4_std_error(sb, err);
912 goto out;
913 }
914
915 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
916 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
917
918 /* recheck and clear flag under lock if we still need to */
919 ext4_lock_group(sb, group);
920 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
921 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
922 ext4_free_group_clusters_set(sb, gdp,
923 ext4_free_clusters_after_init(sb, group, gdp));
924 ext4_block_bitmap_csum_set(sb, group, gdp,
925 block_bitmap_bh);
926 ext4_group_desc_csum_set(sb, group, gdp);
927 }
928 ext4_unlock_group(sb, group);
929 brelse(block_bitmap_bh);
930
931 if (err) {
932 ext4_std_error(sb, err);
933 goto out;
934 }
935 }
936
937 /* Update the relevant bg descriptor fields */
938 if (ext4_has_group_desc_csum(sb)) {
939 int free;
940 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
941
942 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
943 ext4_lock_group(sb, group); /* while we modify the bg desc */
944 free = EXT4_INODES_PER_GROUP(sb) -
945 ext4_itable_unused_count(sb, gdp);
946 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
947 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
948 free = 0;
949 }
950 /*
951 * Check the relative inode number against the last used
952 * relative inode number in this group. if it is greater
953 * we need to update the bg_itable_unused count
954 */
955 if (ino > free)
956 ext4_itable_unused_set(sb, gdp,
957 (EXT4_INODES_PER_GROUP(sb) - ino));
958 up_read(&grp->alloc_sem);
959 } else {
960 ext4_lock_group(sb, group);
961 }
962
963 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
964 if (S_ISDIR(mode)) {
965 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
966 if (sbi->s_log_groups_per_flex) {
967 ext4_group_t f = ext4_flex_group(sbi, group);
968
969 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
970 }
971 }
972 if (ext4_has_group_desc_csum(sb)) {
973 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
974 EXT4_INODES_PER_GROUP(sb) / 8);
975 ext4_group_desc_csum_set(sb, group, gdp);
976 }
977 ext4_unlock_group(sb, group);
978
979 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
980 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
981 if (err) {
982 ext4_std_error(sb, err);
983 goto out;
984 }
985
986 percpu_counter_dec(&sbi->s_freeinodes_counter);
987 if (S_ISDIR(mode))
988 percpu_counter_inc(&sbi->s_dirs_counter);
989
990 if (sbi->s_log_groups_per_flex) {
991 flex_group = ext4_flex_group(sbi, group);
992 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
993 }
994
995 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
996 /* This is the optimal IO size (for stat), not the fs block size */
997 inode->i_blocks = 0;
998 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
999 ext4_current_time(inode);
1000
1001 memset(ei->i_data, 0, sizeof(ei->i_data));
1002 ei->i_dir_start_lookup = 0;
1003 ei->i_disksize = 0;
1004
1005 /* Don't inherit extent flag from directory, amongst others. */
1006 ei->i_flags =
1007 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1008 ei->i_file_acl = 0;
1009 ei->i_dtime = 0;
1010 ei->i_block_group = group;
1011 ei->i_last_alloc_group = ~0;
1012
1013 ext4_set_inode_flags(inode);
1014 if (IS_DIRSYNC(inode))
1015 ext4_handle_sync(handle);
1016 if (insert_inode_locked(inode) < 0) {
1017 /*
1018 * Likely a bitmap corruption causing inode to be allocated
1019 * twice.
1020 */
1021 err = -EIO;
1022 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1023 inode->i_ino);
1024 goto out;
1025 }
1026 spin_lock(&sbi->s_next_gen_lock);
1027 inode->i_generation = sbi->s_next_generation++;
1028 spin_unlock(&sbi->s_next_gen_lock);
1029
1030 /* Precompute checksum seed for inode metadata */
1031 if (ext4_has_metadata_csum(sb)) {
1032 __u32 csum;
1033 __le32 inum = cpu_to_le32(inode->i_ino);
1034 __le32 gen = cpu_to_le32(inode->i_generation);
1035 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1036 sizeof(inum));
1037 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1038 sizeof(gen));
1039 }
1040
1041 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1042 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1043
1044 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1045 ei->i_inline_off = 0;
1046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1047 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1048 ret = inode;
1049 err = dquot_alloc_inode(inode);
1050 if (err)
1051 goto fail_drop;
1052
1053 err = ext4_init_acl(handle, inode, dir);
1054 if (err)
1055 goto fail_free_drop;
1056
1057 err = ext4_init_security(handle, inode, dir, qstr);
1058 if (err)
1059 goto fail_free_drop;
1060
1061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1062 /* set extent flag only for directory, file and normal symlink*/
1063 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1064 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1065 ext4_ext_tree_init(handle, inode);
1066 }
1067 }
1068
1069 if (ext4_handle_valid(handle)) {
1070 ei->i_sync_tid = handle->h_transaction->t_tid;
1071 ei->i_datasync_tid = handle->h_transaction->t_tid;
1072 }
1073
1074 if (encrypt) {
1075 err = ext4_inherit_context(dir, inode);
1076 if (err)
1077 goto fail_free_drop;
1078 }
1079
1080 err = ext4_mark_inode_dirty(handle, inode);
1081 if (err) {
1082 ext4_std_error(sb, err);
1083 goto fail_free_drop;
1084 }
1085
1086 ext4_debug("allocating inode %lu\n", inode->i_ino);
1087 trace_ext4_allocate_inode(inode, dir, mode);
1088 brelse(inode_bitmap_bh);
1089 return ret;
1090
1091 fail_free_drop:
1092 dquot_free_inode(inode);
1093 fail_drop:
1094 clear_nlink(inode);
1095 unlock_new_inode(inode);
1096 out:
1097 dquot_drop(inode);
1098 inode->i_flags |= S_NOQUOTA;
1099 iput(inode);
1100 brelse(inode_bitmap_bh);
1101 return ERR_PTR(err);
1102 }
1103
1104 /* Verify that we are loading a valid orphan from disk */
1105 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1106 {
1107 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1108 ext4_group_t block_group;
1109 int bit;
1110 struct buffer_head *bitmap_bh;
1111 struct inode *inode = NULL;
1112 long err = -EIO;
1113
1114 /* Error cases - e2fsck has already cleaned up for us */
1115 if (ino > max_ino) {
1116 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1117 goto error;
1118 }
1119
1120 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1121 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1122 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1123 if (!bitmap_bh) {
1124 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1125 goto error;
1126 }
1127
1128 /* Having the inode bit set should be a 100% indicator that this
1129 * is a valid orphan (no e2fsck run on fs). Orphans also include
1130 * inodes that were being truncated, so we can't check i_nlink==0.
1131 */
1132 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1133 goto bad_orphan;
1134
1135 inode = ext4_iget(sb, ino);
1136 if (IS_ERR(inode))
1137 goto iget_failed;
1138
1139 /*
1140 * If the orphans has i_nlinks > 0 then it should be able to be
1141 * truncated, otherwise it won't be removed from the orphan list
1142 * during processing and an infinite loop will result.
1143 */
1144 if (inode->i_nlink && !ext4_can_truncate(inode))
1145 goto bad_orphan;
1146
1147 if (NEXT_ORPHAN(inode) > max_ino)
1148 goto bad_orphan;
1149 brelse(bitmap_bh);
1150 return inode;
1151
1152 iget_failed:
1153 err = PTR_ERR(inode);
1154 inode = NULL;
1155 bad_orphan:
1156 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1157 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1158 bit, (unsigned long long)bitmap_bh->b_blocknr,
1159 ext4_test_bit(bit, bitmap_bh->b_data));
1160 printk(KERN_WARNING "inode=%p\n", inode);
1161 if (inode) {
1162 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1163 is_bad_inode(inode));
1164 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1165 NEXT_ORPHAN(inode));
1166 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1167 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1168 /* Avoid freeing blocks if we got a bad deleted inode */
1169 if (inode->i_nlink == 0)
1170 inode->i_blocks = 0;
1171 iput(inode);
1172 }
1173 brelse(bitmap_bh);
1174 error:
1175 return ERR_PTR(err);
1176 }
1177
1178 unsigned long ext4_count_free_inodes(struct super_block *sb)
1179 {
1180 unsigned long desc_count;
1181 struct ext4_group_desc *gdp;
1182 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1183 #ifdef EXT4FS_DEBUG
1184 struct ext4_super_block *es;
1185 unsigned long bitmap_count, x;
1186 struct buffer_head *bitmap_bh = NULL;
1187
1188 es = EXT4_SB(sb)->s_es;
1189 desc_count = 0;
1190 bitmap_count = 0;
1191 gdp = NULL;
1192 for (i = 0; i < ngroups; i++) {
1193 gdp = ext4_get_group_desc(sb, i, NULL);
1194 if (!gdp)
1195 continue;
1196 desc_count += ext4_free_inodes_count(sb, gdp);
1197 brelse(bitmap_bh);
1198 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1199 if (!bitmap_bh)
1200 continue;
1201
1202 x = ext4_count_free(bitmap_bh->b_data,
1203 EXT4_INODES_PER_GROUP(sb) / 8);
1204 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1205 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1206 bitmap_count += x;
1207 }
1208 brelse(bitmap_bh);
1209 printk(KERN_DEBUG "ext4_count_free_inodes: "
1210 "stored = %u, computed = %lu, %lu\n",
1211 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1212 return desc_count;
1213 #else
1214 desc_count = 0;
1215 for (i = 0; i < ngroups; i++) {
1216 gdp = ext4_get_group_desc(sb, i, NULL);
1217 if (!gdp)
1218 continue;
1219 desc_count += ext4_free_inodes_count(sb, gdp);
1220 cond_resched();
1221 }
1222 return desc_count;
1223 #endif
1224 }
1225
1226 /* Called at mount-time, super-block is locked */
1227 unsigned long ext4_count_dirs(struct super_block * sb)
1228 {
1229 unsigned long count = 0;
1230 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1231
1232 for (i = 0; i < ngroups; i++) {
1233 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1234 if (!gdp)
1235 continue;
1236 count += ext4_used_dirs_count(sb, gdp);
1237 }
1238 return count;
1239 }
1240
1241 /*
1242 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1243 * inode table. Must be called without any spinlock held. The only place
1244 * where it is called from on active part of filesystem is ext4lazyinit
1245 * thread, so we do not need any special locks, however we have to prevent
1246 * inode allocation from the current group, so we take alloc_sem lock, to
1247 * block ext4_new_inode() until we are finished.
1248 */
1249 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1250 int barrier)
1251 {
1252 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1253 struct ext4_sb_info *sbi = EXT4_SB(sb);
1254 struct ext4_group_desc *gdp = NULL;
1255 struct buffer_head *group_desc_bh;
1256 handle_t *handle;
1257 ext4_fsblk_t blk;
1258 int num, ret = 0, used_blks = 0;
1259
1260 /* This should not happen, but just to be sure check this */
1261 if (sb->s_flags & MS_RDONLY) {
1262 ret = 1;
1263 goto out;
1264 }
1265
1266 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1267 if (!gdp)
1268 goto out;
1269
1270 /*
1271 * We do not need to lock this, because we are the only one
1272 * handling this flag.
1273 */
1274 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1275 goto out;
1276
1277 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1278 if (IS_ERR(handle)) {
1279 ret = PTR_ERR(handle);
1280 goto out;
1281 }
1282
1283 down_write(&grp->alloc_sem);
1284 /*
1285 * If inode bitmap was already initialized there may be some
1286 * used inodes so we need to skip blocks with used inodes in
1287 * inode table.
1288 */
1289 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1290 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1291 ext4_itable_unused_count(sb, gdp)),
1292 sbi->s_inodes_per_block);
1293
1294 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1295 ext4_error(sb, "Something is wrong with group %u: "
1296 "used itable blocks: %d; "
1297 "itable unused count: %u",
1298 group, used_blks,
1299 ext4_itable_unused_count(sb, gdp));
1300 ret = 1;
1301 goto err_out;
1302 }
1303
1304 blk = ext4_inode_table(sb, gdp) + used_blks;
1305 num = sbi->s_itb_per_group - used_blks;
1306
1307 BUFFER_TRACE(group_desc_bh, "get_write_access");
1308 ret = ext4_journal_get_write_access(handle,
1309 group_desc_bh);
1310 if (ret)
1311 goto err_out;
1312
1313 /*
1314 * Skip zeroout if the inode table is full. But we set the ZEROED
1315 * flag anyway, because obviously, when it is full it does not need
1316 * further zeroing.
1317 */
1318 if (unlikely(num == 0))
1319 goto skip_zeroout;
1320
1321 ext4_debug("going to zero out inode table in group %d\n",
1322 group);
1323 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1324 if (ret < 0)
1325 goto err_out;
1326 if (barrier)
1327 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1328
1329 skip_zeroout:
1330 ext4_lock_group(sb, group);
1331 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1332 ext4_group_desc_csum_set(sb, group, gdp);
1333 ext4_unlock_group(sb, group);
1334
1335 BUFFER_TRACE(group_desc_bh,
1336 "call ext4_handle_dirty_metadata");
1337 ret = ext4_handle_dirty_metadata(handle, NULL,
1338 group_desc_bh);
1339
1340 err_out:
1341 up_write(&grp->alloc_sem);
1342 ext4_journal_stop(handle);
1343 out:
1344 return ret;
1345 }
This page took 0.081464 seconds and 6 git commands to generate.