Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / fs / ext4 / ialloc.c
1 /*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30
31 #include <trace/events/ext4.h>
32
33 /*
34 * ialloc.c contains the inodes allocation and deallocation routines
35 */
36
37 /*
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
41 *
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
45 */
46
47 /*
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
51 */
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 int i;
55
56 if (start_bit >= end_bit)
57 return;
58
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65
66 /* Initializes an uninitialized inode bitmap */
67 static int ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
71 {
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
75
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 ext4_error(sb, "Checksum bad for group %u", block_group);
80 grp = ext4_get_group_info(sb, block_group);
81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 percpu_counter_sub(&sbi->s_freeclusters_counter,
83 grp->bb_free);
84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
86 int count;
87 count = ext4_free_inodes_count(sb, gdp);
88 percpu_counter_sub(&sbi->s_freeinodes_counter,
89 count);
90 }
91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
92 return -EFSBADCRC;
93 }
94
95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
97 bh->b_data);
98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 EXT4_INODES_PER_GROUP(sb) / 8);
100 ext4_group_desc_csum_set(sb, block_group, gdp);
101
102 return 0;
103 }
104
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
106 {
107 if (uptodate) {
108 set_buffer_uptodate(bh);
109 set_bitmap_uptodate(bh);
110 }
111 unlock_buffer(bh);
112 put_bh(bh);
113 }
114
115 static int ext4_validate_inode_bitmap(struct super_block *sb,
116 struct ext4_group_desc *desc,
117 ext4_group_t block_group,
118 struct buffer_head *bh)
119 {
120 ext4_fsblk_t blk;
121 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
123
124 if (buffer_verified(bh))
125 return 0;
126 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
127 return -EFSCORRUPTED;
128
129 ext4_lock_group(sb, block_group);
130 blk = ext4_inode_bitmap(sb, desc);
131 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
132 EXT4_INODES_PER_GROUP(sb) / 8)) {
133 ext4_unlock_group(sb, block_group);
134 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
135 "inode_bitmap = %llu", block_group, blk);
136 grp = ext4_get_group_info(sb, block_group);
137 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
138 int count;
139 count = ext4_free_inodes_count(sb, desc);
140 percpu_counter_sub(&sbi->s_freeinodes_counter,
141 count);
142 }
143 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
144 return -EFSBADCRC;
145 }
146 set_buffer_verified(bh);
147 ext4_unlock_group(sb, block_group);
148 return 0;
149 }
150
151 /*
152 * Read the inode allocation bitmap for a given block_group, reading
153 * into the specified slot in the superblock's bitmap cache.
154 *
155 * Return buffer_head of bitmap on success or NULL.
156 */
157 static struct buffer_head *
158 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
159 {
160 struct ext4_group_desc *desc;
161 struct buffer_head *bh = NULL;
162 ext4_fsblk_t bitmap_blk;
163 int err;
164
165 desc = ext4_get_group_desc(sb, block_group, NULL);
166 if (!desc)
167 return ERR_PTR(-EFSCORRUPTED);
168
169 bitmap_blk = ext4_inode_bitmap(sb, desc);
170 bh = sb_getblk(sb, bitmap_blk);
171 if (unlikely(!bh)) {
172 ext4_error(sb, "Cannot read inode bitmap - "
173 "block_group = %u, inode_bitmap = %llu",
174 block_group, bitmap_blk);
175 return ERR_PTR(-EIO);
176 }
177 if (bitmap_uptodate(bh))
178 goto verify;
179
180 lock_buffer(bh);
181 if (bitmap_uptodate(bh)) {
182 unlock_buffer(bh);
183 goto verify;
184 }
185
186 ext4_lock_group(sb, block_group);
187 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
188 err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
189 set_bitmap_uptodate(bh);
190 set_buffer_uptodate(bh);
191 set_buffer_verified(bh);
192 ext4_unlock_group(sb, block_group);
193 unlock_buffer(bh);
194 if (err)
195 goto out;
196 return bh;
197 }
198 ext4_unlock_group(sb, block_group);
199
200 if (buffer_uptodate(bh)) {
201 /*
202 * if not uninit if bh is uptodate,
203 * bitmap is also uptodate
204 */
205 set_bitmap_uptodate(bh);
206 unlock_buffer(bh);
207 goto verify;
208 }
209 /*
210 * submit the buffer_head for reading
211 */
212 trace_ext4_load_inode_bitmap(sb, block_group);
213 bh->b_end_io = ext4_end_bitmap_read;
214 get_bh(bh);
215 submit_bh(READ | REQ_META | REQ_PRIO, bh);
216 wait_on_buffer(bh);
217 if (!buffer_uptodate(bh)) {
218 put_bh(bh);
219 ext4_error(sb, "Cannot read inode bitmap - "
220 "block_group = %u, inode_bitmap = %llu",
221 block_group, bitmap_blk);
222 return ERR_PTR(-EIO);
223 }
224
225 verify:
226 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
227 if (err)
228 goto out;
229 return bh;
230 out:
231 put_bh(bh);
232 return ERR_PTR(err);
233 }
234
235 /*
236 * NOTE! When we get the inode, we're the only people
237 * that have access to it, and as such there are no
238 * race conditions we have to worry about. The inode
239 * is not on the hash-lists, and it cannot be reached
240 * through the filesystem because the directory entry
241 * has been deleted earlier.
242 *
243 * HOWEVER: we must make sure that we get no aliases,
244 * which means that we have to call "clear_inode()"
245 * _before_ we mark the inode not in use in the inode
246 * bitmaps. Otherwise a newly created file might use
247 * the same inode number (not actually the same pointer
248 * though), and then we'd have two inodes sharing the
249 * same inode number and space on the harddisk.
250 */
251 void ext4_free_inode(handle_t *handle, struct inode *inode)
252 {
253 struct super_block *sb = inode->i_sb;
254 int is_directory;
255 unsigned long ino;
256 struct buffer_head *bitmap_bh = NULL;
257 struct buffer_head *bh2;
258 ext4_group_t block_group;
259 unsigned long bit;
260 struct ext4_group_desc *gdp;
261 struct ext4_super_block *es;
262 struct ext4_sb_info *sbi;
263 int fatal = 0, err, count, cleared;
264 struct ext4_group_info *grp;
265
266 if (!sb) {
267 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
268 "nonexistent device\n", __func__, __LINE__);
269 return;
270 }
271 if (atomic_read(&inode->i_count) > 1) {
272 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
273 __func__, __LINE__, inode->i_ino,
274 atomic_read(&inode->i_count));
275 return;
276 }
277 if (inode->i_nlink) {
278 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
279 __func__, __LINE__, inode->i_ino, inode->i_nlink);
280 return;
281 }
282 sbi = EXT4_SB(sb);
283
284 ino = inode->i_ino;
285 ext4_debug("freeing inode %lu\n", ino);
286 trace_ext4_free_inode(inode);
287
288 /*
289 * Note: we must free any quota before locking the superblock,
290 * as writing the quota to disk may need the lock as well.
291 */
292 dquot_initialize(inode);
293 ext4_xattr_delete_inode(handle, inode);
294 dquot_free_inode(inode);
295 dquot_drop(inode);
296
297 is_directory = S_ISDIR(inode->i_mode);
298
299 /* Do this BEFORE marking the inode not in use or returning an error */
300 ext4_clear_inode(inode);
301
302 es = EXT4_SB(sb)->s_es;
303 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
304 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
305 goto error_return;
306 }
307 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
308 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
309 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
310 /* Don't bother if the inode bitmap is corrupt. */
311 grp = ext4_get_group_info(sb, block_group);
312 if (IS_ERR(bitmap_bh)) {
313 fatal = PTR_ERR(bitmap_bh);
314 bitmap_bh = NULL;
315 goto error_return;
316 }
317 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
318 fatal = -EFSCORRUPTED;
319 goto error_return;
320 }
321
322 BUFFER_TRACE(bitmap_bh, "get_write_access");
323 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
324 if (fatal)
325 goto error_return;
326
327 fatal = -ESRCH;
328 gdp = ext4_get_group_desc(sb, block_group, &bh2);
329 if (gdp) {
330 BUFFER_TRACE(bh2, "get_write_access");
331 fatal = ext4_journal_get_write_access(handle, bh2);
332 }
333 ext4_lock_group(sb, block_group);
334 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
335 if (fatal || !cleared) {
336 ext4_unlock_group(sb, block_group);
337 goto out;
338 }
339
340 count = ext4_free_inodes_count(sb, gdp) + 1;
341 ext4_free_inodes_set(sb, gdp, count);
342 if (is_directory) {
343 count = ext4_used_dirs_count(sb, gdp) - 1;
344 ext4_used_dirs_set(sb, gdp, count);
345 percpu_counter_dec(&sbi->s_dirs_counter);
346 }
347 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
348 EXT4_INODES_PER_GROUP(sb) / 8);
349 ext4_group_desc_csum_set(sb, block_group, gdp);
350 ext4_unlock_group(sb, block_group);
351
352 percpu_counter_inc(&sbi->s_freeinodes_counter);
353 if (sbi->s_log_groups_per_flex) {
354 ext4_group_t f = ext4_flex_group(sbi, block_group);
355
356 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
357 if (is_directory)
358 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
359 }
360 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
361 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
362 out:
363 if (cleared) {
364 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
365 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
366 if (!fatal)
367 fatal = err;
368 } else {
369 ext4_error(sb, "bit already cleared for inode %lu", ino);
370 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
371 int count;
372 count = ext4_free_inodes_count(sb, gdp);
373 percpu_counter_sub(&sbi->s_freeinodes_counter,
374 count);
375 }
376 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
377 }
378
379 error_return:
380 brelse(bitmap_bh);
381 ext4_std_error(sb, fatal);
382 }
383
384 struct orlov_stats {
385 __u64 free_clusters;
386 __u32 free_inodes;
387 __u32 used_dirs;
388 };
389
390 /*
391 * Helper function for Orlov's allocator; returns critical information
392 * for a particular block group or flex_bg. If flex_size is 1, then g
393 * is a block group number; otherwise it is flex_bg number.
394 */
395 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
396 int flex_size, struct orlov_stats *stats)
397 {
398 struct ext4_group_desc *desc;
399 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
400
401 if (flex_size > 1) {
402 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
403 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
404 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
405 return;
406 }
407
408 desc = ext4_get_group_desc(sb, g, NULL);
409 if (desc) {
410 stats->free_inodes = ext4_free_inodes_count(sb, desc);
411 stats->free_clusters = ext4_free_group_clusters(sb, desc);
412 stats->used_dirs = ext4_used_dirs_count(sb, desc);
413 } else {
414 stats->free_inodes = 0;
415 stats->free_clusters = 0;
416 stats->used_dirs = 0;
417 }
418 }
419
420 /*
421 * Orlov's allocator for directories.
422 *
423 * We always try to spread first-level directories.
424 *
425 * If there are blockgroups with both free inodes and free blocks counts
426 * not worse than average we return one with smallest directory count.
427 * Otherwise we simply return a random group.
428 *
429 * For the rest rules look so:
430 *
431 * It's OK to put directory into a group unless
432 * it has too many directories already (max_dirs) or
433 * it has too few free inodes left (min_inodes) or
434 * it has too few free blocks left (min_blocks) or
435 * Parent's group is preferred, if it doesn't satisfy these
436 * conditions we search cyclically through the rest. If none
437 * of the groups look good we just look for a group with more
438 * free inodes than average (starting at parent's group).
439 */
440
441 static int find_group_orlov(struct super_block *sb, struct inode *parent,
442 ext4_group_t *group, umode_t mode,
443 const struct qstr *qstr)
444 {
445 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
446 struct ext4_sb_info *sbi = EXT4_SB(sb);
447 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
448 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
449 unsigned int freei, avefreei, grp_free;
450 ext4_fsblk_t freeb, avefreec;
451 unsigned int ndirs;
452 int max_dirs, min_inodes;
453 ext4_grpblk_t min_clusters;
454 ext4_group_t i, grp, g, ngroups;
455 struct ext4_group_desc *desc;
456 struct orlov_stats stats;
457 int flex_size = ext4_flex_bg_size(sbi);
458 struct dx_hash_info hinfo;
459
460 ngroups = real_ngroups;
461 if (flex_size > 1) {
462 ngroups = (real_ngroups + flex_size - 1) >>
463 sbi->s_log_groups_per_flex;
464 parent_group >>= sbi->s_log_groups_per_flex;
465 }
466
467 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
468 avefreei = freei / ngroups;
469 freeb = EXT4_C2B(sbi,
470 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
471 avefreec = freeb;
472 do_div(avefreec, ngroups);
473 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
474
475 if (S_ISDIR(mode) &&
476 ((parent == d_inode(sb->s_root)) ||
477 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
478 int best_ndir = inodes_per_group;
479 int ret = -1;
480
481 if (qstr) {
482 hinfo.hash_version = DX_HASH_HALF_MD4;
483 hinfo.seed = sbi->s_hash_seed;
484 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
485 grp = hinfo.hash;
486 } else
487 grp = prandom_u32();
488 parent_group = (unsigned)grp % ngroups;
489 for (i = 0; i < ngroups; i++) {
490 g = (parent_group + i) % ngroups;
491 get_orlov_stats(sb, g, flex_size, &stats);
492 if (!stats.free_inodes)
493 continue;
494 if (stats.used_dirs >= best_ndir)
495 continue;
496 if (stats.free_inodes < avefreei)
497 continue;
498 if (stats.free_clusters < avefreec)
499 continue;
500 grp = g;
501 ret = 0;
502 best_ndir = stats.used_dirs;
503 }
504 if (ret)
505 goto fallback;
506 found_flex_bg:
507 if (flex_size == 1) {
508 *group = grp;
509 return 0;
510 }
511
512 /*
513 * We pack inodes at the beginning of the flexgroup's
514 * inode tables. Block allocation decisions will do
515 * something similar, although regular files will
516 * start at 2nd block group of the flexgroup. See
517 * ext4_ext_find_goal() and ext4_find_near().
518 */
519 grp *= flex_size;
520 for (i = 0; i < flex_size; i++) {
521 if (grp+i >= real_ngroups)
522 break;
523 desc = ext4_get_group_desc(sb, grp+i, NULL);
524 if (desc && ext4_free_inodes_count(sb, desc)) {
525 *group = grp+i;
526 return 0;
527 }
528 }
529 goto fallback;
530 }
531
532 max_dirs = ndirs / ngroups + inodes_per_group / 16;
533 min_inodes = avefreei - inodes_per_group*flex_size / 4;
534 if (min_inodes < 1)
535 min_inodes = 1;
536 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
537
538 /*
539 * Start looking in the flex group where we last allocated an
540 * inode for this parent directory
541 */
542 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
543 parent_group = EXT4_I(parent)->i_last_alloc_group;
544 if (flex_size > 1)
545 parent_group >>= sbi->s_log_groups_per_flex;
546 }
547
548 for (i = 0; i < ngroups; i++) {
549 grp = (parent_group + i) % ngroups;
550 get_orlov_stats(sb, grp, flex_size, &stats);
551 if (stats.used_dirs >= max_dirs)
552 continue;
553 if (stats.free_inodes < min_inodes)
554 continue;
555 if (stats.free_clusters < min_clusters)
556 continue;
557 goto found_flex_bg;
558 }
559
560 fallback:
561 ngroups = real_ngroups;
562 avefreei = freei / ngroups;
563 fallback_retry:
564 parent_group = EXT4_I(parent)->i_block_group;
565 for (i = 0; i < ngroups; i++) {
566 grp = (parent_group + i) % ngroups;
567 desc = ext4_get_group_desc(sb, grp, NULL);
568 if (desc) {
569 grp_free = ext4_free_inodes_count(sb, desc);
570 if (grp_free && grp_free >= avefreei) {
571 *group = grp;
572 return 0;
573 }
574 }
575 }
576
577 if (avefreei) {
578 /*
579 * The free-inodes counter is approximate, and for really small
580 * filesystems the above test can fail to find any blockgroups
581 */
582 avefreei = 0;
583 goto fallback_retry;
584 }
585
586 return -1;
587 }
588
589 static int find_group_other(struct super_block *sb, struct inode *parent,
590 ext4_group_t *group, umode_t mode)
591 {
592 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
593 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
594 struct ext4_group_desc *desc;
595 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
596
597 /*
598 * Try to place the inode is the same flex group as its
599 * parent. If we can't find space, use the Orlov algorithm to
600 * find another flex group, and store that information in the
601 * parent directory's inode information so that use that flex
602 * group for future allocations.
603 */
604 if (flex_size > 1) {
605 int retry = 0;
606
607 try_again:
608 parent_group &= ~(flex_size-1);
609 last = parent_group + flex_size;
610 if (last > ngroups)
611 last = ngroups;
612 for (i = parent_group; i < last; i++) {
613 desc = ext4_get_group_desc(sb, i, NULL);
614 if (desc && ext4_free_inodes_count(sb, desc)) {
615 *group = i;
616 return 0;
617 }
618 }
619 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
620 retry = 1;
621 parent_group = EXT4_I(parent)->i_last_alloc_group;
622 goto try_again;
623 }
624 /*
625 * If this didn't work, use the Orlov search algorithm
626 * to find a new flex group; we pass in the mode to
627 * avoid the topdir algorithms.
628 */
629 *group = parent_group + flex_size;
630 if (*group > ngroups)
631 *group = 0;
632 return find_group_orlov(sb, parent, group, mode, NULL);
633 }
634
635 /*
636 * Try to place the inode in its parent directory
637 */
638 *group = parent_group;
639 desc = ext4_get_group_desc(sb, *group, NULL);
640 if (desc && ext4_free_inodes_count(sb, desc) &&
641 ext4_free_group_clusters(sb, desc))
642 return 0;
643
644 /*
645 * We're going to place this inode in a different blockgroup from its
646 * parent. We want to cause files in a common directory to all land in
647 * the same blockgroup. But we want files which are in a different
648 * directory which shares a blockgroup with our parent to land in a
649 * different blockgroup.
650 *
651 * So add our directory's i_ino into the starting point for the hash.
652 */
653 *group = (*group + parent->i_ino) % ngroups;
654
655 /*
656 * Use a quadratic hash to find a group with a free inode and some free
657 * blocks.
658 */
659 for (i = 1; i < ngroups; i <<= 1) {
660 *group += i;
661 if (*group >= ngroups)
662 *group -= ngroups;
663 desc = ext4_get_group_desc(sb, *group, NULL);
664 if (desc && ext4_free_inodes_count(sb, desc) &&
665 ext4_free_group_clusters(sb, desc))
666 return 0;
667 }
668
669 /*
670 * That failed: try linear search for a free inode, even if that group
671 * has no free blocks.
672 */
673 *group = parent_group;
674 for (i = 0; i < ngroups; i++) {
675 if (++*group >= ngroups)
676 *group = 0;
677 desc = ext4_get_group_desc(sb, *group, NULL);
678 if (desc && ext4_free_inodes_count(sb, desc))
679 return 0;
680 }
681
682 return -1;
683 }
684
685 /*
686 * In no journal mode, if an inode has recently been deleted, we want
687 * to avoid reusing it until we're reasonably sure the inode table
688 * block has been written back to disk. (Yes, these values are
689 * somewhat arbitrary...)
690 */
691 #define RECENTCY_MIN 5
692 #define RECENTCY_DIRTY 30
693
694 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
695 {
696 struct ext4_group_desc *gdp;
697 struct ext4_inode *raw_inode;
698 struct buffer_head *bh;
699 unsigned long dtime, now;
700 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
701 int offset, ret = 0, recentcy = RECENTCY_MIN;
702
703 gdp = ext4_get_group_desc(sb, group, NULL);
704 if (unlikely(!gdp))
705 return 0;
706
707 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
708 (ino / inodes_per_block));
709 if (unlikely(!bh) || !buffer_uptodate(bh))
710 /*
711 * If the block is not in the buffer cache, then it
712 * must have been written out.
713 */
714 goto out;
715
716 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
717 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
718 dtime = le32_to_cpu(raw_inode->i_dtime);
719 now = get_seconds();
720 if (buffer_dirty(bh))
721 recentcy += RECENTCY_DIRTY;
722
723 if (dtime && (dtime < now) && (now < dtime + recentcy))
724 ret = 1;
725 out:
726 brelse(bh);
727 return ret;
728 }
729
730 /*
731 * There are two policies for allocating an inode. If the new inode is
732 * a directory, then a forward search is made for a block group with both
733 * free space and a low directory-to-inode ratio; if that fails, then of
734 * the groups with above-average free space, that group with the fewest
735 * directories already is chosen.
736 *
737 * For other inodes, search forward from the parent directory's block
738 * group to find a free inode.
739 */
740 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
741 umode_t mode, const struct qstr *qstr,
742 __u32 goal, uid_t *owner, int handle_type,
743 unsigned int line_no, int nblocks)
744 {
745 struct super_block *sb;
746 struct buffer_head *inode_bitmap_bh = NULL;
747 struct buffer_head *group_desc_bh;
748 ext4_group_t ngroups, group = 0;
749 unsigned long ino = 0;
750 struct inode *inode;
751 struct ext4_group_desc *gdp = NULL;
752 struct ext4_inode_info *ei;
753 struct ext4_sb_info *sbi;
754 int ret2, err;
755 struct inode *ret;
756 ext4_group_t i;
757 ext4_group_t flex_group;
758 struct ext4_group_info *grp;
759 int encrypt = 0;
760
761 /* Cannot create files in a deleted directory */
762 if (!dir || !dir->i_nlink)
763 return ERR_PTR(-EPERM);
764
765 if ((ext4_encrypted_inode(dir) ||
766 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
767 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
768 err = ext4_get_encryption_info(dir);
769 if (err)
770 return ERR_PTR(err);
771 if (ext4_encryption_info(dir) == NULL)
772 return ERR_PTR(-EPERM);
773 if (!handle)
774 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
775 encrypt = 1;
776 }
777
778 sb = dir->i_sb;
779 ngroups = ext4_get_groups_count(sb);
780 trace_ext4_request_inode(dir, mode);
781 inode = new_inode(sb);
782 if (!inode)
783 return ERR_PTR(-ENOMEM);
784 ei = EXT4_I(inode);
785 sbi = EXT4_SB(sb);
786
787 /*
788 * Initalize owners and quota early so that we don't have to account
789 * for quota initialization worst case in standard inode creating
790 * transaction
791 */
792 if (owner) {
793 inode->i_mode = mode;
794 i_uid_write(inode, owner[0]);
795 i_gid_write(inode, owner[1]);
796 } else if (test_opt(sb, GRPID)) {
797 inode->i_mode = mode;
798 inode->i_uid = current_fsuid();
799 inode->i_gid = dir->i_gid;
800 } else
801 inode_init_owner(inode, dir, mode);
802
803 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
804 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
805 ei->i_projid = EXT4_I(dir)->i_projid;
806 else
807 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
808
809 err = dquot_initialize(inode);
810 if (err)
811 goto out;
812
813 if (!goal)
814 goal = sbi->s_inode_goal;
815
816 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
817 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
818 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
819 ret2 = 0;
820 goto got_group;
821 }
822
823 if (S_ISDIR(mode))
824 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
825 else
826 ret2 = find_group_other(sb, dir, &group, mode);
827
828 got_group:
829 EXT4_I(dir)->i_last_alloc_group = group;
830 err = -ENOSPC;
831 if (ret2 == -1)
832 goto out;
833
834 /*
835 * Normally we will only go through one pass of this loop,
836 * unless we get unlucky and it turns out the group we selected
837 * had its last inode grabbed by someone else.
838 */
839 for (i = 0; i < ngroups; i++, ino = 0) {
840 err = -EIO;
841
842 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
843 if (!gdp)
844 goto out;
845
846 /*
847 * Check free inodes count before loading bitmap.
848 */
849 if (ext4_free_inodes_count(sb, gdp) == 0) {
850 if (++group == ngroups)
851 group = 0;
852 continue;
853 }
854
855 grp = ext4_get_group_info(sb, group);
856 /* Skip groups with already-known suspicious inode tables */
857 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
858 if (++group == ngroups)
859 group = 0;
860 continue;
861 }
862
863 brelse(inode_bitmap_bh);
864 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
865 /* Skip groups with suspicious inode tables */
866 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
867 IS_ERR(inode_bitmap_bh)) {
868 inode_bitmap_bh = NULL;
869 if (++group == ngroups)
870 group = 0;
871 continue;
872 }
873
874 repeat_in_this_group:
875 ino = ext4_find_next_zero_bit((unsigned long *)
876 inode_bitmap_bh->b_data,
877 EXT4_INODES_PER_GROUP(sb), ino);
878 if (ino >= EXT4_INODES_PER_GROUP(sb))
879 goto next_group;
880 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
881 ext4_error(sb, "reserved inode found cleared - "
882 "inode=%lu", ino + 1);
883 continue;
884 }
885 if ((EXT4_SB(sb)->s_journal == NULL) &&
886 recently_deleted(sb, group, ino)) {
887 ino++;
888 goto next_inode;
889 }
890 if (!handle) {
891 BUG_ON(nblocks <= 0);
892 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
893 handle_type, nblocks,
894 0);
895 if (IS_ERR(handle)) {
896 err = PTR_ERR(handle);
897 ext4_std_error(sb, err);
898 goto out;
899 }
900 }
901 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
902 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
903 if (err) {
904 ext4_std_error(sb, err);
905 goto out;
906 }
907 ext4_lock_group(sb, group);
908 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
909 ext4_unlock_group(sb, group);
910 ino++; /* the inode bitmap is zero-based */
911 if (!ret2)
912 goto got; /* we grabbed the inode! */
913 next_inode:
914 if (ino < EXT4_INODES_PER_GROUP(sb))
915 goto repeat_in_this_group;
916 next_group:
917 if (++group == ngroups)
918 group = 0;
919 }
920 err = -ENOSPC;
921 goto out;
922
923 got:
924 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
925 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
926 if (err) {
927 ext4_std_error(sb, err);
928 goto out;
929 }
930
931 BUFFER_TRACE(group_desc_bh, "get_write_access");
932 err = ext4_journal_get_write_access(handle, group_desc_bh);
933 if (err) {
934 ext4_std_error(sb, err);
935 goto out;
936 }
937
938 /* We may have to initialize the block bitmap if it isn't already */
939 if (ext4_has_group_desc_csum(sb) &&
940 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
941 struct buffer_head *block_bitmap_bh;
942
943 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
944 if (IS_ERR(block_bitmap_bh)) {
945 err = PTR_ERR(block_bitmap_bh);
946 goto out;
947 }
948 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
949 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
950 if (err) {
951 brelse(block_bitmap_bh);
952 ext4_std_error(sb, err);
953 goto out;
954 }
955
956 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
957 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
958
959 /* recheck and clear flag under lock if we still need to */
960 ext4_lock_group(sb, group);
961 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
962 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
963 ext4_free_group_clusters_set(sb, gdp,
964 ext4_free_clusters_after_init(sb, group, gdp));
965 ext4_block_bitmap_csum_set(sb, group, gdp,
966 block_bitmap_bh);
967 ext4_group_desc_csum_set(sb, group, gdp);
968 }
969 ext4_unlock_group(sb, group);
970 brelse(block_bitmap_bh);
971
972 if (err) {
973 ext4_std_error(sb, err);
974 goto out;
975 }
976 }
977
978 /* Update the relevant bg descriptor fields */
979 if (ext4_has_group_desc_csum(sb)) {
980 int free;
981 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
982
983 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
984 ext4_lock_group(sb, group); /* while we modify the bg desc */
985 free = EXT4_INODES_PER_GROUP(sb) -
986 ext4_itable_unused_count(sb, gdp);
987 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
988 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
989 free = 0;
990 }
991 /*
992 * Check the relative inode number against the last used
993 * relative inode number in this group. if it is greater
994 * we need to update the bg_itable_unused count
995 */
996 if (ino > free)
997 ext4_itable_unused_set(sb, gdp,
998 (EXT4_INODES_PER_GROUP(sb) - ino));
999 up_read(&grp->alloc_sem);
1000 } else {
1001 ext4_lock_group(sb, group);
1002 }
1003
1004 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1005 if (S_ISDIR(mode)) {
1006 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1007 if (sbi->s_log_groups_per_flex) {
1008 ext4_group_t f = ext4_flex_group(sbi, group);
1009
1010 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1011 }
1012 }
1013 if (ext4_has_group_desc_csum(sb)) {
1014 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1015 EXT4_INODES_PER_GROUP(sb) / 8);
1016 ext4_group_desc_csum_set(sb, group, gdp);
1017 }
1018 ext4_unlock_group(sb, group);
1019
1020 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1021 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1022 if (err) {
1023 ext4_std_error(sb, err);
1024 goto out;
1025 }
1026
1027 percpu_counter_dec(&sbi->s_freeinodes_counter);
1028 if (S_ISDIR(mode))
1029 percpu_counter_inc(&sbi->s_dirs_counter);
1030
1031 if (sbi->s_log_groups_per_flex) {
1032 flex_group = ext4_flex_group(sbi, group);
1033 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1034 }
1035
1036 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1037 /* This is the optimal IO size (for stat), not the fs block size */
1038 inode->i_blocks = 0;
1039 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1040 ext4_current_time(inode);
1041
1042 memset(ei->i_data, 0, sizeof(ei->i_data));
1043 ei->i_dir_start_lookup = 0;
1044 ei->i_disksize = 0;
1045
1046 /* Don't inherit extent flag from directory, amongst others. */
1047 ei->i_flags =
1048 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1049 ei->i_file_acl = 0;
1050 ei->i_dtime = 0;
1051 ei->i_block_group = group;
1052 ei->i_last_alloc_group = ~0;
1053
1054 ext4_set_inode_flags(inode);
1055 if (IS_DIRSYNC(inode))
1056 ext4_handle_sync(handle);
1057 if (insert_inode_locked(inode) < 0) {
1058 /*
1059 * Likely a bitmap corruption causing inode to be allocated
1060 * twice.
1061 */
1062 err = -EIO;
1063 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1064 inode->i_ino);
1065 goto out;
1066 }
1067 spin_lock(&sbi->s_next_gen_lock);
1068 inode->i_generation = sbi->s_next_generation++;
1069 spin_unlock(&sbi->s_next_gen_lock);
1070
1071 /* Precompute checksum seed for inode metadata */
1072 if (ext4_has_metadata_csum(sb)) {
1073 __u32 csum;
1074 __le32 inum = cpu_to_le32(inode->i_ino);
1075 __le32 gen = cpu_to_le32(inode->i_generation);
1076 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1077 sizeof(inum));
1078 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1079 sizeof(gen));
1080 }
1081
1082 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1083 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1084
1085 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1086 ei->i_inline_off = 0;
1087 if (ext4_has_feature_inline_data(sb))
1088 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1089 ret = inode;
1090 err = dquot_alloc_inode(inode);
1091 if (err)
1092 goto fail_drop;
1093
1094 err = ext4_init_acl(handle, inode, dir);
1095 if (err)
1096 goto fail_free_drop;
1097
1098 err = ext4_init_security(handle, inode, dir, qstr);
1099 if (err)
1100 goto fail_free_drop;
1101
1102 if (ext4_has_feature_extents(sb)) {
1103 /* set extent flag only for directory, file and normal symlink*/
1104 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1105 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1106 ext4_ext_tree_init(handle, inode);
1107 }
1108 }
1109
1110 if (ext4_handle_valid(handle)) {
1111 ei->i_sync_tid = handle->h_transaction->t_tid;
1112 ei->i_datasync_tid = handle->h_transaction->t_tid;
1113 }
1114
1115 if (encrypt) {
1116 err = ext4_inherit_context(dir, inode);
1117 if (err)
1118 goto fail_free_drop;
1119 }
1120
1121 err = ext4_mark_inode_dirty(handle, inode);
1122 if (err) {
1123 ext4_std_error(sb, err);
1124 goto fail_free_drop;
1125 }
1126
1127 ext4_debug("allocating inode %lu\n", inode->i_ino);
1128 trace_ext4_allocate_inode(inode, dir, mode);
1129 brelse(inode_bitmap_bh);
1130 return ret;
1131
1132 fail_free_drop:
1133 dquot_free_inode(inode);
1134 fail_drop:
1135 clear_nlink(inode);
1136 unlock_new_inode(inode);
1137 out:
1138 dquot_drop(inode);
1139 inode->i_flags |= S_NOQUOTA;
1140 iput(inode);
1141 brelse(inode_bitmap_bh);
1142 return ERR_PTR(err);
1143 }
1144
1145 /* Verify that we are loading a valid orphan from disk */
1146 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1147 {
1148 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1149 ext4_group_t block_group;
1150 int bit;
1151 struct buffer_head *bitmap_bh;
1152 struct inode *inode = NULL;
1153 long err = -EIO;
1154
1155 /* Error cases - e2fsck has already cleaned up for us */
1156 if (ino > max_ino) {
1157 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1158 err = -EFSCORRUPTED;
1159 goto error;
1160 }
1161
1162 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1163 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1164 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1165 if (IS_ERR(bitmap_bh)) {
1166 err = PTR_ERR(bitmap_bh);
1167 ext4_warning(sb, "inode bitmap error %ld for orphan %lu",
1168 ino, err);
1169 goto error;
1170 }
1171
1172 /* Having the inode bit set should be a 100% indicator that this
1173 * is a valid orphan (no e2fsck run on fs). Orphans also include
1174 * inodes that were being truncated, so we can't check i_nlink==0.
1175 */
1176 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1177 goto bad_orphan;
1178
1179 inode = ext4_iget(sb, ino);
1180 if (IS_ERR(inode))
1181 goto iget_failed;
1182
1183 /*
1184 * If the orphans has i_nlinks > 0 then it should be able to be
1185 * truncated, otherwise it won't be removed from the orphan list
1186 * during processing and an infinite loop will result.
1187 */
1188 if (inode->i_nlink && !ext4_can_truncate(inode))
1189 goto bad_orphan;
1190
1191 if (NEXT_ORPHAN(inode) > max_ino)
1192 goto bad_orphan;
1193 brelse(bitmap_bh);
1194 return inode;
1195
1196 iget_failed:
1197 err = PTR_ERR(inode);
1198 inode = NULL;
1199 bad_orphan:
1200 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1201 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1202 bit, (unsigned long long)bitmap_bh->b_blocknr,
1203 ext4_test_bit(bit, bitmap_bh->b_data));
1204 printk(KERN_WARNING "inode=%p\n", inode);
1205 if (inode) {
1206 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1207 is_bad_inode(inode));
1208 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1209 NEXT_ORPHAN(inode));
1210 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1211 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1212 /* Avoid freeing blocks if we got a bad deleted inode */
1213 if (inode->i_nlink == 0)
1214 inode->i_blocks = 0;
1215 iput(inode);
1216 }
1217 brelse(bitmap_bh);
1218 error:
1219 return ERR_PTR(err);
1220 }
1221
1222 unsigned long ext4_count_free_inodes(struct super_block *sb)
1223 {
1224 unsigned long desc_count;
1225 struct ext4_group_desc *gdp;
1226 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1227 #ifdef EXT4FS_DEBUG
1228 struct ext4_super_block *es;
1229 unsigned long bitmap_count, x;
1230 struct buffer_head *bitmap_bh = NULL;
1231
1232 es = EXT4_SB(sb)->s_es;
1233 desc_count = 0;
1234 bitmap_count = 0;
1235 gdp = NULL;
1236 for (i = 0; i < ngroups; i++) {
1237 gdp = ext4_get_group_desc(sb, i, NULL);
1238 if (!gdp)
1239 continue;
1240 desc_count += ext4_free_inodes_count(sb, gdp);
1241 brelse(bitmap_bh);
1242 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1243 if (IS_ERR(bitmap_bh)) {
1244 bitmap_bh = NULL;
1245 continue;
1246 }
1247
1248 x = ext4_count_free(bitmap_bh->b_data,
1249 EXT4_INODES_PER_GROUP(sb) / 8);
1250 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1251 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1252 bitmap_count += x;
1253 }
1254 brelse(bitmap_bh);
1255 printk(KERN_DEBUG "ext4_count_free_inodes: "
1256 "stored = %u, computed = %lu, %lu\n",
1257 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1258 return desc_count;
1259 #else
1260 desc_count = 0;
1261 for (i = 0; i < ngroups; i++) {
1262 gdp = ext4_get_group_desc(sb, i, NULL);
1263 if (!gdp)
1264 continue;
1265 desc_count += ext4_free_inodes_count(sb, gdp);
1266 cond_resched();
1267 }
1268 return desc_count;
1269 #endif
1270 }
1271
1272 /* Called at mount-time, super-block is locked */
1273 unsigned long ext4_count_dirs(struct super_block * sb)
1274 {
1275 unsigned long count = 0;
1276 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1277
1278 for (i = 0; i < ngroups; i++) {
1279 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1280 if (!gdp)
1281 continue;
1282 count += ext4_used_dirs_count(sb, gdp);
1283 }
1284 return count;
1285 }
1286
1287 /*
1288 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1289 * inode table. Must be called without any spinlock held. The only place
1290 * where it is called from on active part of filesystem is ext4lazyinit
1291 * thread, so we do not need any special locks, however we have to prevent
1292 * inode allocation from the current group, so we take alloc_sem lock, to
1293 * block ext4_new_inode() until we are finished.
1294 */
1295 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1296 int barrier)
1297 {
1298 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1299 struct ext4_sb_info *sbi = EXT4_SB(sb);
1300 struct ext4_group_desc *gdp = NULL;
1301 struct buffer_head *group_desc_bh;
1302 handle_t *handle;
1303 ext4_fsblk_t blk;
1304 int num, ret = 0, used_blks = 0;
1305
1306 /* This should not happen, but just to be sure check this */
1307 if (sb->s_flags & MS_RDONLY) {
1308 ret = 1;
1309 goto out;
1310 }
1311
1312 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1313 if (!gdp)
1314 goto out;
1315
1316 /*
1317 * We do not need to lock this, because we are the only one
1318 * handling this flag.
1319 */
1320 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1321 goto out;
1322
1323 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1324 if (IS_ERR(handle)) {
1325 ret = PTR_ERR(handle);
1326 goto out;
1327 }
1328
1329 down_write(&grp->alloc_sem);
1330 /*
1331 * If inode bitmap was already initialized there may be some
1332 * used inodes so we need to skip blocks with used inodes in
1333 * inode table.
1334 */
1335 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1336 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1337 ext4_itable_unused_count(sb, gdp)),
1338 sbi->s_inodes_per_block);
1339
1340 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1341 ext4_error(sb, "Something is wrong with group %u: "
1342 "used itable blocks: %d; "
1343 "itable unused count: %u",
1344 group, used_blks,
1345 ext4_itable_unused_count(sb, gdp));
1346 ret = 1;
1347 goto err_out;
1348 }
1349
1350 blk = ext4_inode_table(sb, gdp) + used_blks;
1351 num = sbi->s_itb_per_group - used_blks;
1352
1353 BUFFER_TRACE(group_desc_bh, "get_write_access");
1354 ret = ext4_journal_get_write_access(handle,
1355 group_desc_bh);
1356 if (ret)
1357 goto err_out;
1358
1359 /*
1360 * Skip zeroout if the inode table is full. But we set the ZEROED
1361 * flag anyway, because obviously, when it is full it does not need
1362 * further zeroing.
1363 */
1364 if (unlikely(num == 0))
1365 goto skip_zeroout;
1366
1367 ext4_debug("going to zero out inode table in group %d\n",
1368 group);
1369 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1370 if (ret < 0)
1371 goto err_out;
1372 if (barrier)
1373 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1374
1375 skip_zeroout:
1376 ext4_lock_group(sb, group);
1377 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1378 ext4_group_desc_csum_set(sb, group, gdp);
1379 ext4_unlock_group(sb, group);
1380
1381 BUFFER_TRACE(group_desc_bh,
1382 "call ext4_handle_dirty_metadata");
1383 ret = ext4_handle_dirty_metadata(handle, NULL,
1384 group_desc_bh);
1385
1386 err_out:
1387 up_write(&grp->alloc_sem);
1388 ext4_journal_stop(handle);
1389 out:
1390 return ret;
1391 }
This page took 0.088571 seconds and 6 git commands to generate.