tracing/function-graph-tracer: make arch generic push pop functions
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49 {
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
52 }
53
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
56 /*
57 * Test whether an inode is a fast symlink.
58 */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 (inode->i_sb->s_blocksize >> 9) : 0;
63
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66
67 /*
68 * The ext4 forget function must perform a revoke if we are freeing data
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
71 *
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
75 *
76 * If the handle isn't valid we're not journaling so there's nothing to do.
77 */
78 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
79 struct buffer_head *bh, ext4_fsblk_t blocknr)
80 {
81 int err;
82
83 if (!ext4_handle_valid(handle))
84 return 0;
85
86 might_sleep();
87
88 BUFFER_TRACE(bh, "enter");
89
90 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
91 "data mode %lx\n",
92 bh, is_metadata, inode->i_mode,
93 test_opt(inode->i_sb, DATA_FLAGS));
94
95 /* Never use the revoke function if we are doing full data
96 * journaling: there is no need to, and a V1 superblock won't
97 * support it. Otherwise, only skip the revoke on un-journaled
98 * data blocks. */
99
100 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
101 (!is_metadata && !ext4_should_journal_data(inode))) {
102 if (bh) {
103 BUFFER_TRACE(bh, "call jbd2_journal_forget");
104 return ext4_journal_forget(handle, bh);
105 }
106 return 0;
107 }
108
109 /*
110 * data!=journal && (is_metadata || should_journal_data(inode))
111 */
112 BUFFER_TRACE(bh, "call ext4_journal_revoke");
113 err = ext4_journal_revoke(handle, blocknr, bh);
114 if (err)
115 ext4_abort(inode->i_sb, __func__,
116 "error %d when attempting revoke", err);
117 BUFFER_TRACE(bh, "exit");
118 return err;
119 }
120
121 /*
122 * Work out how many blocks we need to proceed with the next chunk of a
123 * truncate transaction.
124 */
125 static unsigned long blocks_for_truncate(struct inode *inode)
126 {
127 ext4_lblk_t needed;
128
129 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
130
131 /* Give ourselves just enough room to cope with inodes in which
132 * i_blocks is corrupt: we've seen disk corruptions in the past
133 * which resulted in random data in an inode which looked enough
134 * like a regular file for ext4 to try to delete it. Things
135 * will go a bit crazy if that happens, but at least we should
136 * try not to panic the whole kernel. */
137 if (needed < 2)
138 needed = 2;
139
140 /* But we need to bound the transaction so we don't overflow the
141 * journal. */
142 if (needed > EXT4_MAX_TRANS_DATA)
143 needed = EXT4_MAX_TRANS_DATA;
144
145 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
146 }
147
148 /*
149 * Truncate transactions can be complex and absolutely huge. So we need to
150 * be able to restart the transaction at a conventient checkpoint to make
151 * sure we don't overflow the journal.
152 *
153 * start_transaction gets us a new handle for a truncate transaction,
154 * and extend_transaction tries to extend the existing one a bit. If
155 * extend fails, we need to propagate the failure up and restart the
156 * transaction in the top-level truncate loop. --sct
157 */
158 static handle_t *start_transaction(struct inode *inode)
159 {
160 handle_t *result;
161
162 result = ext4_journal_start(inode, blocks_for_truncate(inode));
163 if (!IS_ERR(result))
164 return result;
165
166 ext4_std_error(inode->i_sb, PTR_ERR(result));
167 return result;
168 }
169
170 /*
171 * Try to extend this transaction for the purposes of truncation.
172 *
173 * Returns 0 if we managed to create more room. If we can't create more
174 * room, and the transaction must be restarted we return 1.
175 */
176 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
177 {
178 if (!ext4_handle_valid(handle))
179 return 0;
180 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
181 return 0;
182 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
183 return 0;
184 return 1;
185 }
186
187 /*
188 * Restart the transaction associated with *handle. This does a commit,
189 * so before we call here everything must be consistently dirtied against
190 * this transaction.
191 */
192 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
193 {
194 BUG_ON(EXT4_JOURNAL(inode) == NULL);
195 jbd_debug(2, "restarting handle %p\n", handle);
196 return ext4_journal_restart(handle, blocks_for_truncate(inode));
197 }
198
199 /*
200 * Called at the last iput() if i_nlink is zero.
201 */
202 void ext4_delete_inode(struct inode *inode)
203 {
204 handle_t *handle;
205 int err;
206
207 if (ext4_should_order_data(inode))
208 ext4_begin_ordered_truncate(inode, 0);
209 truncate_inode_pages(&inode->i_data, 0);
210
211 if (is_bad_inode(inode))
212 goto no_delete;
213
214 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
215 if (IS_ERR(handle)) {
216 ext4_std_error(inode->i_sb, PTR_ERR(handle));
217 /*
218 * If we're going to skip the normal cleanup, we still need to
219 * make sure that the in-core orphan linked list is properly
220 * cleaned up.
221 */
222 ext4_orphan_del(NULL, inode);
223 goto no_delete;
224 }
225
226 if (IS_SYNC(inode))
227 ext4_handle_sync(handle);
228 inode->i_size = 0;
229 err = ext4_mark_inode_dirty(handle, inode);
230 if (err) {
231 ext4_warning(inode->i_sb, __func__,
232 "couldn't mark inode dirty (err %d)", err);
233 goto stop_handle;
234 }
235 if (inode->i_blocks)
236 ext4_truncate(inode);
237
238 /*
239 * ext4_ext_truncate() doesn't reserve any slop when it
240 * restarts journal transactions; therefore there may not be
241 * enough credits left in the handle to remove the inode from
242 * the orphan list and set the dtime field.
243 */
244 if (!ext4_handle_has_enough_credits(handle, 3)) {
245 err = ext4_journal_extend(handle, 3);
246 if (err > 0)
247 err = ext4_journal_restart(handle, 3);
248 if (err != 0) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't extend journal (err %d)", err);
251 stop_handle:
252 ext4_journal_stop(handle);
253 goto no_delete;
254 }
255 }
256
257 /*
258 * Kill off the orphan record which ext4_truncate created.
259 * AKPM: I think this can be inside the above `if'.
260 * Note that ext4_orphan_del() has to be able to cope with the
261 * deletion of a non-existent orphan - this is because we don't
262 * know if ext4_truncate() actually created an orphan record.
263 * (Well, we could do this if we need to, but heck - it works)
264 */
265 ext4_orphan_del(handle, inode);
266 EXT4_I(inode)->i_dtime = get_seconds();
267
268 /*
269 * One subtle ordering requirement: if anything has gone wrong
270 * (transaction abort, IO errors, whatever), then we can still
271 * do these next steps (the fs will already have been marked as
272 * having errors), but we can't free the inode if the mark_dirty
273 * fails.
274 */
275 if (ext4_mark_inode_dirty(handle, inode))
276 /* If that failed, just do the required in-core inode clear. */
277 clear_inode(inode);
278 else
279 ext4_free_inode(handle, inode);
280 ext4_journal_stop(handle);
281 return;
282 no_delete:
283 clear_inode(inode); /* We must guarantee clearing of inode... */
284 }
285
286 typedef struct {
287 __le32 *p;
288 __le32 key;
289 struct buffer_head *bh;
290 } Indirect;
291
292 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
293 {
294 p->key = *(p->p = v);
295 p->bh = bh;
296 }
297
298 /**
299 * ext4_block_to_path - parse the block number into array of offsets
300 * @inode: inode in question (we are only interested in its superblock)
301 * @i_block: block number to be parsed
302 * @offsets: array to store the offsets in
303 * @boundary: set this non-zero if the referred-to block is likely to be
304 * followed (on disk) by an indirect block.
305 *
306 * To store the locations of file's data ext4 uses a data structure common
307 * for UNIX filesystems - tree of pointers anchored in the inode, with
308 * data blocks at leaves and indirect blocks in intermediate nodes.
309 * This function translates the block number into path in that tree -
310 * return value is the path length and @offsets[n] is the offset of
311 * pointer to (n+1)th node in the nth one. If @block is out of range
312 * (negative or too large) warning is printed and zero returned.
313 *
314 * Note: function doesn't find node addresses, so no IO is needed. All
315 * we need to know is the capacity of indirect blocks (taken from the
316 * inode->i_sb).
317 */
318
319 /*
320 * Portability note: the last comparison (check that we fit into triple
321 * indirect block) is spelled differently, because otherwise on an
322 * architecture with 32-bit longs and 8Kb pages we might get into trouble
323 * if our filesystem had 8Kb blocks. We might use long long, but that would
324 * kill us on x86. Oh, well, at least the sign propagation does not matter -
325 * i_block would have to be negative in the very beginning, so we would not
326 * get there at all.
327 */
328
329 static int ext4_block_to_path(struct inode *inode,
330 ext4_lblk_t i_block,
331 ext4_lblk_t offsets[4], int *boundary)
332 {
333 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
334 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
335 const long direct_blocks = EXT4_NDIR_BLOCKS,
336 indirect_blocks = ptrs,
337 double_blocks = (1 << (ptrs_bits * 2));
338 int n = 0;
339 int final = 0;
340
341 if (i_block < 0) {
342 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
343 } else if (i_block < direct_blocks) {
344 offsets[n++] = i_block;
345 final = direct_blocks;
346 } else if ((i_block -= direct_blocks) < indirect_blocks) {
347 offsets[n++] = EXT4_IND_BLOCK;
348 offsets[n++] = i_block;
349 final = ptrs;
350 } else if ((i_block -= indirect_blocks) < double_blocks) {
351 offsets[n++] = EXT4_DIND_BLOCK;
352 offsets[n++] = i_block >> ptrs_bits;
353 offsets[n++] = i_block & (ptrs - 1);
354 final = ptrs;
355 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
356 offsets[n++] = EXT4_TIND_BLOCK;
357 offsets[n++] = i_block >> (ptrs_bits * 2);
358 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
359 offsets[n++] = i_block & (ptrs - 1);
360 final = ptrs;
361 } else {
362 ext4_warning(inode->i_sb, "ext4_block_to_path",
363 "block %lu > max in inode %lu",
364 i_block + direct_blocks +
365 indirect_blocks + double_blocks, inode->i_ino);
366 }
367 if (boundary)
368 *boundary = final - 1 - (i_block & (ptrs - 1));
369 return n;
370 }
371
372 /**
373 * ext4_get_branch - read the chain of indirect blocks leading to data
374 * @inode: inode in question
375 * @depth: depth of the chain (1 - direct pointer, etc.)
376 * @offsets: offsets of pointers in inode/indirect blocks
377 * @chain: place to store the result
378 * @err: here we store the error value
379 *
380 * Function fills the array of triples <key, p, bh> and returns %NULL
381 * if everything went OK or the pointer to the last filled triple
382 * (incomplete one) otherwise. Upon the return chain[i].key contains
383 * the number of (i+1)-th block in the chain (as it is stored in memory,
384 * i.e. little-endian 32-bit), chain[i].p contains the address of that
385 * number (it points into struct inode for i==0 and into the bh->b_data
386 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
387 * block for i>0 and NULL for i==0. In other words, it holds the block
388 * numbers of the chain, addresses they were taken from (and where we can
389 * verify that chain did not change) and buffer_heads hosting these
390 * numbers.
391 *
392 * Function stops when it stumbles upon zero pointer (absent block)
393 * (pointer to last triple returned, *@err == 0)
394 * or when it gets an IO error reading an indirect block
395 * (ditto, *@err == -EIO)
396 * or when it reads all @depth-1 indirect blocks successfully and finds
397 * the whole chain, all way to the data (returns %NULL, *err == 0).
398 *
399 * Need to be called with
400 * down_read(&EXT4_I(inode)->i_data_sem)
401 */
402 static Indirect *ext4_get_branch(struct inode *inode, int depth,
403 ext4_lblk_t *offsets,
404 Indirect chain[4], int *err)
405 {
406 struct super_block *sb = inode->i_sb;
407 Indirect *p = chain;
408 struct buffer_head *bh;
409
410 *err = 0;
411 /* i_data is not going away, no lock needed */
412 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
413 if (!p->key)
414 goto no_block;
415 while (--depth) {
416 bh = sb_bread(sb, le32_to_cpu(p->key));
417 if (!bh)
418 goto failure;
419 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
420 /* Reader: end */
421 if (!p->key)
422 goto no_block;
423 }
424 return NULL;
425
426 failure:
427 *err = -EIO;
428 no_block:
429 return p;
430 }
431
432 /**
433 * ext4_find_near - find a place for allocation with sufficient locality
434 * @inode: owner
435 * @ind: descriptor of indirect block.
436 *
437 * This function returns the preferred place for block allocation.
438 * It is used when heuristic for sequential allocation fails.
439 * Rules are:
440 * + if there is a block to the left of our position - allocate near it.
441 * + if pointer will live in indirect block - allocate near that block.
442 * + if pointer will live in inode - allocate in the same
443 * cylinder group.
444 *
445 * In the latter case we colour the starting block by the callers PID to
446 * prevent it from clashing with concurrent allocations for a different inode
447 * in the same block group. The PID is used here so that functionally related
448 * files will be close-by on-disk.
449 *
450 * Caller must make sure that @ind is valid and will stay that way.
451 */
452 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
453 {
454 struct ext4_inode_info *ei = EXT4_I(inode);
455 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
456 __le32 *p;
457 ext4_fsblk_t bg_start;
458 ext4_fsblk_t last_block;
459 ext4_grpblk_t colour;
460
461 /* Try to find previous block */
462 for (p = ind->p - 1; p >= start; p--) {
463 if (*p)
464 return le32_to_cpu(*p);
465 }
466
467 /* No such thing, so let's try location of indirect block */
468 if (ind->bh)
469 return ind->bh->b_blocknr;
470
471 /*
472 * It is going to be referred to from the inode itself? OK, just put it
473 * into the same cylinder group then.
474 */
475 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
476 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
477
478 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
479 colour = (current->pid % 16) *
480 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
481 else
482 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
483 return bg_start + colour;
484 }
485
486 /**
487 * ext4_find_goal - find a preferred place for allocation.
488 * @inode: owner
489 * @block: block we want
490 * @partial: pointer to the last triple within a chain
491 *
492 * Normally this function find the preferred place for block allocation,
493 * returns it.
494 */
495 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
496 Indirect *partial)
497 {
498 /*
499 * XXX need to get goal block from mballoc's data structures
500 */
501
502 return ext4_find_near(inode, partial);
503 }
504
505 /**
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
518 int blocks_to_boundary)
519 {
520 unsigned int count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541 }
542
543 /**
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
557 {
558 struct ext4_allocation_request ar;
559 int target, i;
560 unsigned long count = 0, blk_allocated = 0;
561 int index = 0;
562 ext4_fsblk_t current_block = 0;
563 int ret = 0;
564
565 /*
566 * Here we try to allocate the requested multiple blocks at once,
567 * on a best-effort basis.
568 * To build a branch, we should allocate blocks for
569 * the indirect blocks(if not allocated yet), and at least
570 * the first direct block of this branch. That's the
571 * minimum number of blocks need to allocate(required)
572 */
573 /* first we try to allocate the indirect blocks */
574 target = indirect_blks;
575 while (target > 0) {
576 count = target;
577 /* allocating blocks for indirect blocks and direct blocks */
578 current_block = ext4_new_meta_blocks(handle, inode,
579 goal, &count, err);
580 if (*err)
581 goto failed_out;
582
583 target -= count;
584 /* allocate blocks for indirect blocks */
585 while (index < indirect_blks && count) {
586 new_blocks[index++] = current_block++;
587 count--;
588 }
589 if (count > 0) {
590 /*
591 * save the new block number
592 * for the first direct block
593 */
594 new_blocks[index] = current_block;
595 printk(KERN_INFO "%s returned more blocks than "
596 "requested\n", __func__);
597 WARN_ON(1);
598 break;
599 }
600 }
601
602 target = blks - count ;
603 blk_allocated = count;
604 if (!target)
605 goto allocated;
606 /* Now allocate data blocks */
607 memset(&ar, 0, sizeof(ar));
608 ar.inode = inode;
609 ar.goal = goal;
610 ar.len = target;
611 ar.logical = iblock;
612 if (S_ISREG(inode->i_mode))
613 /* enable in-core preallocation only for regular files */
614 ar.flags = EXT4_MB_HINT_DATA;
615
616 current_block = ext4_mb_new_blocks(handle, &ar, err);
617
618 if (*err && (target == blks)) {
619 /*
620 * if the allocation failed and we didn't allocate
621 * any blocks before
622 */
623 goto failed_out;
624 }
625 if (!*err) {
626 if (target == blks) {
627 /*
628 * save the new block number
629 * for the first direct block
630 */
631 new_blocks[index] = current_block;
632 }
633 blk_allocated += ar.len;
634 }
635 allocated:
636 /* total number of blocks allocated for direct blocks */
637 ret = blk_allocated;
638 *err = 0;
639 return ret;
640 failed_out:
641 for (i = 0; i < index; i++)
642 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
643 return ret;
644 }
645
646 /**
647 * ext4_alloc_branch - allocate and set up a chain of blocks.
648 * @inode: owner
649 * @indirect_blks: number of allocated indirect blocks
650 * @blks: number of allocated direct blocks
651 * @offsets: offsets (in the blocks) to store the pointers to next.
652 * @branch: place to store the chain in.
653 *
654 * This function allocates blocks, zeroes out all but the last one,
655 * links them into chain and (if we are synchronous) writes them to disk.
656 * In other words, it prepares a branch that can be spliced onto the
657 * inode. It stores the information about that chain in the branch[], in
658 * the same format as ext4_get_branch() would do. We are calling it after
659 * we had read the existing part of chain and partial points to the last
660 * triple of that (one with zero ->key). Upon the exit we have the same
661 * picture as after the successful ext4_get_block(), except that in one
662 * place chain is disconnected - *branch->p is still zero (we did not
663 * set the last link), but branch->key contains the number that should
664 * be placed into *branch->p to fill that gap.
665 *
666 * If allocation fails we free all blocks we've allocated (and forget
667 * their buffer_heads) and return the error value the from failed
668 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
669 * as described above and return 0.
670 */
671 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
672 ext4_lblk_t iblock, int indirect_blks,
673 int *blks, ext4_fsblk_t goal,
674 ext4_lblk_t *offsets, Indirect *branch)
675 {
676 int blocksize = inode->i_sb->s_blocksize;
677 int i, n = 0;
678 int err = 0;
679 struct buffer_head *bh;
680 int num;
681 ext4_fsblk_t new_blocks[4];
682 ext4_fsblk_t current_block;
683
684 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
685 *blks, new_blocks, &err);
686 if (err)
687 return err;
688
689 branch[0].key = cpu_to_le32(new_blocks[0]);
690 /*
691 * metadata blocks and data blocks are allocated.
692 */
693 for (n = 1; n <= indirect_blks; n++) {
694 /*
695 * Get buffer_head for parent block, zero it out
696 * and set the pointer to new one, then send
697 * parent to disk.
698 */
699 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
700 branch[n].bh = bh;
701 lock_buffer(bh);
702 BUFFER_TRACE(bh, "call get_create_access");
703 err = ext4_journal_get_create_access(handle, bh);
704 if (err) {
705 unlock_buffer(bh);
706 brelse(bh);
707 goto failed;
708 }
709
710 memset(bh->b_data, 0, blocksize);
711 branch[n].p = (__le32 *) bh->b_data + offsets[n];
712 branch[n].key = cpu_to_le32(new_blocks[n]);
713 *branch[n].p = branch[n].key;
714 if (n == indirect_blks) {
715 current_block = new_blocks[n];
716 /*
717 * End of chain, update the last new metablock of
718 * the chain to point to the new allocated
719 * data blocks numbers
720 */
721 for (i=1; i < num; i++)
722 *(branch[n].p + i) = cpu_to_le32(++current_block);
723 }
724 BUFFER_TRACE(bh, "marking uptodate");
725 set_buffer_uptodate(bh);
726 unlock_buffer(bh);
727
728 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
729 err = ext4_handle_dirty_metadata(handle, inode, bh);
730 if (err)
731 goto failed;
732 }
733 *blks = num;
734 return err;
735 failed:
736 /* Allocation failed, free what we already allocated */
737 for (i = 1; i <= n ; i++) {
738 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
739 ext4_journal_forget(handle, branch[i].bh);
740 }
741 for (i = 0; i < indirect_blks; i++)
742 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
743
744 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
745
746 return err;
747 }
748
749 /**
750 * ext4_splice_branch - splice the allocated branch onto inode.
751 * @inode: owner
752 * @block: (logical) number of block we are adding
753 * @chain: chain of indirect blocks (with a missing link - see
754 * ext4_alloc_branch)
755 * @where: location of missing link
756 * @num: number of indirect blocks we are adding
757 * @blks: number of direct blocks we are adding
758 *
759 * This function fills the missing link and does all housekeeping needed in
760 * inode (->i_blocks, etc.). In case of success we end up with the full
761 * chain to new block and return 0.
762 */
763 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
764 ext4_lblk_t block, Indirect *where, int num, int blks)
765 {
766 int i;
767 int err = 0;
768 ext4_fsblk_t current_block;
769
770 /*
771 * If we're splicing into a [td]indirect block (as opposed to the
772 * inode) then we need to get write access to the [td]indirect block
773 * before the splice.
774 */
775 if (where->bh) {
776 BUFFER_TRACE(where->bh, "get_write_access");
777 err = ext4_journal_get_write_access(handle, where->bh);
778 if (err)
779 goto err_out;
780 }
781 /* That's it */
782
783 *where->p = where->key;
784
785 /*
786 * Update the host buffer_head or inode to point to more just allocated
787 * direct blocks blocks
788 */
789 if (num == 0 && blks > 1) {
790 current_block = le32_to_cpu(where->key) + 1;
791 for (i = 1; i < blks; i++)
792 *(where->p + i) = cpu_to_le32(current_block++);
793 }
794
795 /* We are done with atomic stuff, now do the rest of housekeeping */
796
797 inode->i_ctime = ext4_current_time(inode);
798 ext4_mark_inode_dirty(handle, inode);
799
800 /* had we spliced it onto indirect block? */
801 if (where->bh) {
802 /*
803 * If we spliced it onto an indirect block, we haven't
804 * altered the inode. Note however that if it is being spliced
805 * onto an indirect block at the very end of the file (the
806 * file is growing) then we *will* alter the inode to reflect
807 * the new i_size. But that is not done here - it is done in
808 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
809 */
810 jbd_debug(5, "splicing indirect only\n");
811 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
813 if (err)
814 goto err_out;
815 } else {
816 /*
817 * OK, we spliced it into the inode itself on a direct block.
818 * Inode was dirtied above.
819 */
820 jbd_debug(5, "splicing direct\n");
821 }
822 return err;
823
824 err_out:
825 for (i = 1; i <= num; i++) {
826 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
827 ext4_journal_forget(handle, where[i].bh);
828 ext4_free_blocks(handle, inode,
829 le32_to_cpu(where[i-1].key), 1, 0);
830 }
831 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
832
833 return err;
834 }
835
836 /*
837 * Allocation strategy is simple: if we have to allocate something, we will
838 * have to go the whole way to leaf. So let's do it before attaching anything
839 * to tree, set linkage between the newborn blocks, write them if sync is
840 * required, recheck the path, free and repeat if check fails, otherwise
841 * set the last missing link (that will protect us from any truncate-generated
842 * removals - all blocks on the path are immune now) and possibly force the
843 * write on the parent block.
844 * That has a nice additional property: no special recovery from the failed
845 * allocations is needed - we simply release blocks and do not touch anything
846 * reachable from inode.
847 *
848 * `handle' can be NULL if create == 0.
849 *
850 * return > 0, # of blocks mapped or allocated.
851 * return = 0, if plain lookup failed.
852 * return < 0, error case.
853 *
854 *
855 * Need to be called with
856 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
857 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
858 */
859 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
860 ext4_lblk_t iblock, unsigned int maxblocks,
861 struct buffer_head *bh_result,
862 int create, int extend_disksize)
863 {
864 int err = -EIO;
865 ext4_lblk_t offsets[4];
866 Indirect chain[4];
867 Indirect *partial;
868 ext4_fsblk_t goal;
869 int indirect_blks;
870 int blocks_to_boundary = 0;
871 int depth;
872 struct ext4_inode_info *ei = EXT4_I(inode);
873 int count = 0;
874 ext4_fsblk_t first_block = 0;
875 loff_t disksize;
876
877
878 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
879 J_ASSERT(handle != NULL || create == 0);
880 depth = ext4_block_to_path(inode, iblock, offsets,
881 &blocks_to_boundary);
882
883 if (depth == 0)
884 goto out;
885
886 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
887
888 /* Simplest case - block found, no allocation needed */
889 if (!partial) {
890 first_block = le32_to_cpu(chain[depth - 1].key);
891 clear_buffer_new(bh_result);
892 count++;
893 /*map more blocks*/
894 while (count < maxblocks && count <= blocks_to_boundary) {
895 ext4_fsblk_t blk;
896
897 blk = le32_to_cpu(*(chain[depth-1].p + count));
898
899 if (blk == first_block + count)
900 count++;
901 else
902 break;
903 }
904 goto got_it;
905 }
906
907 /* Next simple case - plain lookup or failed read of indirect block */
908 if (!create || err == -EIO)
909 goto cleanup;
910
911 /*
912 * Okay, we need to do block allocation.
913 */
914 goal = ext4_find_goal(inode, iblock, partial);
915
916 /* the number of blocks need to allocate for [d,t]indirect blocks */
917 indirect_blks = (chain + depth) - partial - 1;
918
919 /*
920 * Next look up the indirect map to count the totoal number of
921 * direct blocks to allocate for this branch.
922 */
923 count = ext4_blks_to_allocate(partial, indirect_blks,
924 maxblocks, blocks_to_boundary);
925 /*
926 * Block out ext4_truncate while we alter the tree
927 */
928 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
929 &count, goal,
930 offsets + (partial - chain), partial);
931
932 /*
933 * The ext4_splice_branch call will free and forget any buffers
934 * on the new chain if there is a failure, but that risks using
935 * up transaction credits, especially for bitmaps where the
936 * credits cannot be returned. Can we handle this somehow? We
937 * may need to return -EAGAIN upwards in the worst case. --sct
938 */
939 if (!err)
940 err = ext4_splice_branch(handle, inode, iblock,
941 partial, indirect_blks, count);
942 /*
943 * i_disksize growing is protected by i_data_sem. Don't forget to
944 * protect it if you're about to implement concurrent
945 * ext4_get_block() -bzzz
946 */
947 if (!err && extend_disksize) {
948 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
949 if (disksize > i_size_read(inode))
950 disksize = i_size_read(inode);
951 if (disksize > ei->i_disksize)
952 ei->i_disksize = disksize;
953 }
954 if (err)
955 goto cleanup;
956
957 set_buffer_new(bh_result);
958 got_it:
959 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 if (count > blocks_to_boundary)
961 set_buffer_boundary(bh_result);
962 err = count;
963 /* Clean up and exit */
964 partial = chain + depth - 1; /* the whole chain */
965 cleanup:
966 while (partial > chain) {
967 BUFFER_TRACE(partial->bh, "call brelse");
968 brelse(partial->bh);
969 partial--;
970 }
971 BUFFER_TRACE(bh_result, "returned");
972 out:
973 return err;
974 }
975
976 /*
977 * Calculate the number of metadata blocks need to reserve
978 * to allocate @blocks for non extent file based file
979 */
980 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
981 {
982 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
983 int ind_blks, dind_blks, tind_blks;
984
985 /* number of new indirect blocks needed */
986 ind_blks = (blocks + icap - 1) / icap;
987
988 dind_blks = (ind_blks + icap - 1) / icap;
989
990 tind_blks = 1;
991
992 return ind_blks + dind_blks + tind_blks;
993 }
994
995 /*
996 * Calculate the number of metadata blocks need to reserve
997 * to allocate given number of blocks
998 */
999 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1000 {
1001 if (!blocks)
1002 return 0;
1003
1004 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1005 return ext4_ext_calc_metadata_amount(inode, blocks);
1006
1007 return ext4_indirect_calc_metadata_amount(inode, blocks);
1008 }
1009
1010 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1011 {
1012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1013 int total, mdb, mdb_free;
1014
1015 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1016 /* recalculate the number of metablocks still need to be reserved */
1017 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1018 mdb = ext4_calc_metadata_amount(inode, total);
1019
1020 /* figure out how many metablocks to release */
1021 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1022 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1023
1024 if (mdb_free) {
1025 /* Account for allocated meta_blocks */
1026 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1027
1028 /* update fs dirty blocks counter */
1029 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1030 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1031 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1032 }
1033
1034 /* update per-inode reservations */
1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1036 EXT4_I(inode)->i_reserved_data_blocks -= used;
1037
1038 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1039 }
1040
1041 /*
1042 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1043 * and returns if the blocks are already mapped.
1044 *
1045 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1046 * and store the allocated blocks in the result buffer head and mark it
1047 * mapped.
1048 *
1049 * If file type is extents based, it will call ext4_ext_get_blocks(),
1050 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1051 * based files
1052 *
1053 * On success, it returns the number of blocks being mapped or allocate.
1054 * if create==0 and the blocks are pre-allocated and uninitialized block,
1055 * the result buffer head is unmapped. If the create ==1, it will make sure
1056 * the buffer head is mapped.
1057 *
1058 * It returns 0 if plain look up failed (blocks have not been allocated), in
1059 * that casem, buffer head is unmapped
1060 *
1061 * It returns the error in case of allocation failure.
1062 */
1063 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1064 unsigned int max_blocks, struct buffer_head *bh,
1065 int create, int extend_disksize, int flag)
1066 {
1067 int retval;
1068
1069 clear_buffer_mapped(bh);
1070
1071 /*
1072 * Try to see if we can get the block without requesting
1073 * for new file system block.
1074 */
1075 down_read((&EXT4_I(inode)->i_data_sem));
1076 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1077 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1078 bh, 0, 0);
1079 } else {
1080 retval = ext4_get_blocks_handle(handle,
1081 inode, block, max_blocks, bh, 0, 0);
1082 }
1083 up_read((&EXT4_I(inode)->i_data_sem));
1084
1085 /* If it is only a block(s) look up */
1086 if (!create)
1087 return retval;
1088
1089 /*
1090 * Returns if the blocks have already allocated
1091 *
1092 * Note that if blocks have been preallocated
1093 * ext4_ext_get_block() returns th create = 0
1094 * with buffer head unmapped.
1095 */
1096 if (retval > 0 && buffer_mapped(bh))
1097 return retval;
1098
1099 /*
1100 * New blocks allocate and/or writing to uninitialized extent
1101 * will possibly result in updating i_data, so we take
1102 * the write lock of i_data_sem, and call get_blocks()
1103 * with create == 1 flag.
1104 */
1105 down_write((&EXT4_I(inode)->i_data_sem));
1106
1107 /*
1108 * if the caller is from delayed allocation writeout path
1109 * we have already reserved fs blocks for allocation
1110 * let the underlying get_block() function know to
1111 * avoid double accounting
1112 */
1113 if (flag)
1114 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1115 /*
1116 * We need to check for EXT4 here because migrate
1117 * could have changed the inode type in between
1118 */
1119 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1120 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1121 bh, create, extend_disksize);
1122 } else {
1123 retval = ext4_get_blocks_handle(handle, inode, block,
1124 max_blocks, bh, create, extend_disksize);
1125
1126 if (retval > 0 && buffer_new(bh)) {
1127 /*
1128 * We allocated new blocks which will result in
1129 * i_data's format changing. Force the migrate
1130 * to fail by clearing migrate flags
1131 */
1132 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1133 ~EXT4_EXT_MIGRATE;
1134 }
1135 }
1136
1137 if (flag) {
1138 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1139 /*
1140 * Update reserved blocks/metadata blocks
1141 * after successful block allocation
1142 * which were deferred till now
1143 */
1144 if ((retval > 0) && buffer_delay(bh))
1145 ext4_da_update_reserve_space(inode, retval);
1146 }
1147
1148 up_write((&EXT4_I(inode)->i_data_sem));
1149 return retval;
1150 }
1151
1152 /* Maximum number of blocks we map for direct IO at once. */
1153 #define DIO_MAX_BLOCKS 4096
1154
1155 int ext4_get_block(struct inode *inode, sector_t iblock,
1156 struct buffer_head *bh_result, int create)
1157 {
1158 handle_t *handle = ext4_journal_current_handle();
1159 int ret = 0, started = 0;
1160 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1161 int dio_credits;
1162
1163 if (create && !handle) {
1164 /* Direct IO write... */
1165 if (max_blocks > DIO_MAX_BLOCKS)
1166 max_blocks = DIO_MAX_BLOCKS;
1167 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1168 handle = ext4_journal_start(inode, dio_credits);
1169 if (IS_ERR(handle)) {
1170 ret = PTR_ERR(handle);
1171 goto out;
1172 }
1173 started = 1;
1174 }
1175
1176 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1177 max_blocks, bh_result, create, 0, 0);
1178 if (ret > 0) {
1179 bh_result->b_size = (ret << inode->i_blkbits);
1180 ret = 0;
1181 }
1182 if (started)
1183 ext4_journal_stop(handle);
1184 out:
1185 return ret;
1186 }
1187
1188 /*
1189 * `handle' can be NULL if create is zero
1190 */
1191 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1192 ext4_lblk_t block, int create, int *errp)
1193 {
1194 struct buffer_head dummy;
1195 int fatal = 0, err;
1196
1197 J_ASSERT(handle != NULL || create == 0);
1198
1199 dummy.b_state = 0;
1200 dummy.b_blocknr = -1000;
1201 buffer_trace_init(&dummy.b_history);
1202 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1203 &dummy, create, 1, 0);
1204 /*
1205 * ext4_get_blocks_handle() returns number of blocks
1206 * mapped. 0 in case of a HOLE.
1207 */
1208 if (err > 0) {
1209 if (err > 1)
1210 WARN_ON(1);
1211 err = 0;
1212 }
1213 *errp = err;
1214 if (!err && buffer_mapped(&dummy)) {
1215 struct buffer_head *bh;
1216 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1217 if (!bh) {
1218 *errp = -EIO;
1219 goto err;
1220 }
1221 if (buffer_new(&dummy)) {
1222 J_ASSERT(create != 0);
1223 J_ASSERT(handle != NULL);
1224
1225 /*
1226 * Now that we do not always journal data, we should
1227 * keep in mind whether this should always journal the
1228 * new buffer as metadata. For now, regular file
1229 * writes use ext4_get_block instead, so it's not a
1230 * problem.
1231 */
1232 lock_buffer(bh);
1233 BUFFER_TRACE(bh, "call get_create_access");
1234 fatal = ext4_journal_get_create_access(handle, bh);
1235 if (!fatal && !buffer_uptodate(bh)) {
1236 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1237 set_buffer_uptodate(bh);
1238 }
1239 unlock_buffer(bh);
1240 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1241 err = ext4_handle_dirty_metadata(handle, inode, bh);
1242 if (!fatal)
1243 fatal = err;
1244 } else {
1245 BUFFER_TRACE(bh, "not a new buffer");
1246 }
1247 if (fatal) {
1248 *errp = fatal;
1249 brelse(bh);
1250 bh = NULL;
1251 }
1252 return bh;
1253 }
1254 err:
1255 return NULL;
1256 }
1257
1258 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1259 ext4_lblk_t block, int create, int *err)
1260 {
1261 struct buffer_head *bh;
1262
1263 bh = ext4_getblk(handle, inode, block, create, err);
1264 if (!bh)
1265 return bh;
1266 if (buffer_uptodate(bh))
1267 return bh;
1268 ll_rw_block(READ_META, 1, &bh);
1269 wait_on_buffer(bh);
1270 if (buffer_uptodate(bh))
1271 return bh;
1272 put_bh(bh);
1273 *err = -EIO;
1274 return NULL;
1275 }
1276
1277 static int walk_page_buffers(handle_t *handle,
1278 struct buffer_head *head,
1279 unsigned from,
1280 unsigned to,
1281 int *partial,
1282 int (*fn)(handle_t *handle,
1283 struct buffer_head *bh))
1284 {
1285 struct buffer_head *bh;
1286 unsigned block_start, block_end;
1287 unsigned blocksize = head->b_size;
1288 int err, ret = 0;
1289 struct buffer_head *next;
1290
1291 for (bh = head, block_start = 0;
1292 ret == 0 && (bh != head || !block_start);
1293 block_start = block_end, bh = next)
1294 {
1295 next = bh->b_this_page;
1296 block_end = block_start + blocksize;
1297 if (block_end <= from || block_start >= to) {
1298 if (partial && !buffer_uptodate(bh))
1299 *partial = 1;
1300 continue;
1301 }
1302 err = (*fn)(handle, bh);
1303 if (!ret)
1304 ret = err;
1305 }
1306 return ret;
1307 }
1308
1309 /*
1310 * To preserve ordering, it is essential that the hole instantiation and
1311 * the data write be encapsulated in a single transaction. We cannot
1312 * close off a transaction and start a new one between the ext4_get_block()
1313 * and the commit_write(). So doing the jbd2_journal_start at the start of
1314 * prepare_write() is the right place.
1315 *
1316 * Also, this function can nest inside ext4_writepage() ->
1317 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1318 * has generated enough buffer credits to do the whole page. So we won't
1319 * block on the journal in that case, which is good, because the caller may
1320 * be PF_MEMALLOC.
1321 *
1322 * By accident, ext4 can be reentered when a transaction is open via
1323 * quota file writes. If we were to commit the transaction while thus
1324 * reentered, there can be a deadlock - we would be holding a quota
1325 * lock, and the commit would never complete if another thread had a
1326 * transaction open and was blocking on the quota lock - a ranking
1327 * violation.
1328 *
1329 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1330 * will _not_ run commit under these circumstances because handle->h_ref
1331 * is elevated. We'll still have enough credits for the tiny quotafile
1332 * write.
1333 */
1334 static int do_journal_get_write_access(handle_t *handle,
1335 struct buffer_head *bh)
1336 {
1337 if (!buffer_mapped(bh) || buffer_freed(bh))
1338 return 0;
1339 return ext4_journal_get_write_access(handle, bh);
1340 }
1341
1342 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1343 loff_t pos, unsigned len, unsigned flags,
1344 struct page **pagep, void **fsdata)
1345 {
1346 struct inode *inode = mapping->host;
1347 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1348 handle_t *handle;
1349 int retries = 0;
1350 struct page *page;
1351 pgoff_t index;
1352 unsigned from, to;
1353
1354 trace_mark(ext4_write_begin,
1355 "dev %s ino %lu pos %llu len %u flags %u",
1356 inode->i_sb->s_id, inode->i_ino,
1357 (unsigned long long) pos, len, flags);
1358 index = pos >> PAGE_CACHE_SHIFT;
1359 from = pos & (PAGE_CACHE_SIZE - 1);
1360 to = from + len;
1361
1362 retry:
1363 handle = ext4_journal_start(inode, needed_blocks);
1364 if (IS_ERR(handle)) {
1365 ret = PTR_ERR(handle);
1366 goto out;
1367 }
1368
1369 page = grab_cache_page_write_begin(mapping, index, flags);
1370 if (!page) {
1371 ext4_journal_stop(handle);
1372 ret = -ENOMEM;
1373 goto out;
1374 }
1375 *pagep = page;
1376
1377 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1378 ext4_get_block);
1379
1380 if (!ret && ext4_should_journal_data(inode)) {
1381 ret = walk_page_buffers(handle, page_buffers(page),
1382 from, to, NULL, do_journal_get_write_access);
1383 }
1384
1385 if (ret) {
1386 unlock_page(page);
1387 ext4_journal_stop(handle);
1388 page_cache_release(page);
1389 /*
1390 * block_write_begin may have instantiated a few blocks
1391 * outside i_size. Trim these off again. Don't need
1392 * i_size_read because we hold i_mutex.
1393 */
1394 if (pos + len > inode->i_size)
1395 vmtruncate(inode, inode->i_size);
1396 }
1397
1398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399 goto retry;
1400 out:
1401 return ret;
1402 }
1403
1404 /* For write_end() in data=journal mode */
1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1406 {
1407 if (!buffer_mapped(bh) || buffer_freed(bh))
1408 return 0;
1409 set_buffer_uptodate(bh);
1410 return ext4_handle_dirty_metadata(handle, NULL, bh);
1411 }
1412
1413 /*
1414 * We need to pick up the new inode size which generic_commit_write gave us
1415 * `file' can be NULL - eg, when called from page_symlink().
1416 *
1417 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1418 * buffers are managed internally.
1419 */
1420 static int ext4_ordered_write_end(struct file *file,
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
1424 {
1425 handle_t *handle = ext4_journal_current_handle();
1426 struct inode *inode = mapping->host;
1427 int ret = 0, ret2;
1428
1429 trace_mark(ext4_ordered_write_end,
1430 "dev %s ino %lu pos %llu len %u copied %u",
1431 inode->i_sb->s_id, inode->i_ino,
1432 (unsigned long long) pos, len, copied);
1433 ret = ext4_jbd2_file_inode(handle, inode);
1434
1435 if (ret == 0) {
1436 loff_t new_i_size;
1437
1438 new_i_size = pos + copied;
1439 if (new_i_size > EXT4_I(inode)->i_disksize) {
1440 ext4_update_i_disksize(inode, new_i_size);
1441 /* We need to mark inode dirty even if
1442 * new_i_size is less that inode->i_size
1443 * bu greater than i_disksize.(hint delalloc)
1444 */
1445 ext4_mark_inode_dirty(handle, inode);
1446 }
1447
1448 ret2 = generic_write_end(file, mapping, pos, len, copied,
1449 page, fsdata);
1450 copied = ret2;
1451 if (ret2 < 0)
1452 ret = ret2;
1453 }
1454 ret2 = ext4_journal_stop(handle);
1455 if (!ret)
1456 ret = ret2;
1457
1458 return ret ? ret : copied;
1459 }
1460
1461 static int ext4_writeback_write_end(struct file *file,
1462 struct address_space *mapping,
1463 loff_t pos, unsigned len, unsigned copied,
1464 struct page *page, void *fsdata)
1465 {
1466 handle_t *handle = ext4_journal_current_handle();
1467 struct inode *inode = mapping->host;
1468 int ret = 0, ret2;
1469 loff_t new_i_size;
1470
1471 trace_mark(ext4_writeback_write_end,
1472 "dev %s ino %lu pos %llu len %u copied %u",
1473 inode->i_sb->s_id, inode->i_ino,
1474 (unsigned long long) pos, len, copied);
1475 new_i_size = pos + copied;
1476 if (new_i_size > EXT4_I(inode)->i_disksize) {
1477 ext4_update_i_disksize(inode, new_i_size);
1478 /* We need to mark inode dirty even if
1479 * new_i_size is less that inode->i_size
1480 * bu greater than i_disksize.(hint delalloc)
1481 */
1482 ext4_mark_inode_dirty(handle, inode);
1483 }
1484
1485 ret2 = generic_write_end(file, mapping, pos, len, copied,
1486 page, fsdata);
1487 copied = ret2;
1488 if (ret2 < 0)
1489 ret = ret2;
1490
1491 ret2 = ext4_journal_stop(handle);
1492 if (!ret)
1493 ret = ret2;
1494
1495 return ret ? ret : copied;
1496 }
1497
1498 static int ext4_journalled_write_end(struct file *file,
1499 struct address_space *mapping,
1500 loff_t pos, unsigned len, unsigned copied,
1501 struct page *page, void *fsdata)
1502 {
1503 handle_t *handle = ext4_journal_current_handle();
1504 struct inode *inode = mapping->host;
1505 int ret = 0, ret2;
1506 int partial = 0;
1507 unsigned from, to;
1508 loff_t new_i_size;
1509
1510 trace_mark(ext4_journalled_write_end,
1511 "dev %s ino %lu pos %llu len %u copied %u",
1512 inode->i_sb->s_id, inode->i_ino,
1513 (unsigned long long) pos, len, copied);
1514 from = pos & (PAGE_CACHE_SIZE - 1);
1515 to = from + len;
1516
1517 if (copied < len) {
1518 if (!PageUptodate(page))
1519 copied = 0;
1520 page_zero_new_buffers(page, from+copied, to);
1521 }
1522
1523 ret = walk_page_buffers(handle, page_buffers(page), from,
1524 to, &partial, write_end_fn);
1525 if (!partial)
1526 SetPageUptodate(page);
1527 new_i_size = pos + copied;
1528 if (new_i_size > inode->i_size)
1529 i_size_write(inode, pos+copied);
1530 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1531 if (new_i_size > EXT4_I(inode)->i_disksize) {
1532 ext4_update_i_disksize(inode, new_i_size);
1533 ret2 = ext4_mark_inode_dirty(handle, inode);
1534 if (!ret)
1535 ret = ret2;
1536 }
1537
1538 unlock_page(page);
1539 ret2 = ext4_journal_stop(handle);
1540 if (!ret)
1541 ret = ret2;
1542 page_cache_release(page);
1543
1544 return ret ? ret : copied;
1545 }
1546
1547 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1548 {
1549 int retries = 0;
1550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1551 unsigned long md_needed, mdblocks, total = 0;
1552
1553 /*
1554 * recalculate the amount of metadata blocks to reserve
1555 * in order to allocate nrblocks
1556 * worse case is one extent per block
1557 */
1558 repeat:
1559 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1560 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1561 mdblocks = ext4_calc_metadata_amount(inode, total);
1562 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1563
1564 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1565 total = md_needed + nrblocks;
1566
1567 if (ext4_claim_free_blocks(sbi, total)) {
1568 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1569 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1570 yield();
1571 goto repeat;
1572 }
1573 return -ENOSPC;
1574 }
1575 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1576 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1577
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return 0; /* success */
1580 }
1581
1582 static void ext4_da_release_space(struct inode *inode, int to_free)
1583 {
1584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1585 int total, mdb, mdb_free, release;
1586
1587 if (!to_free)
1588 return; /* Nothing to release, exit */
1589
1590 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1591
1592 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1593 /*
1594 * if there is no reserved blocks, but we try to free some
1595 * then the counter is messed up somewhere.
1596 * but since this function is called from invalidate
1597 * page, it's harmless to return without any action
1598 */
1599 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1600 "blocks for inode %lu, but there is no reserved "
1601 "data blocks\n", to_free, inode->i_ino);
1602 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1603 return;
1604 }
1605
1606 /* recalculate the number of metablocks still need to be reserved */
1607 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1608 mdb = ext4_calc_metadata_amount(inode, total);
1609
1610 /* figure out how many metablocks to release */
1611 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1612 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1613
1614 release = to_free + mdb_free;
1615
1616 /* update fs dirty blocks counter for truncate case */
1617 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1618
1619 /* update per-inode reservations */
1620 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1621 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1622
1623 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1624 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1625 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626 }
1627
1628 static void ext4_da_page_release_reservation(struct page *page,
1629 unsigned long offset)
1630 {
1631 int to_release = 0;
1632 struct buffer_head *head, *bh;
1633 unsigned int curr_off = 0;
1634
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 unsigned int next_off = curr_off + bh->b_size;
1639
1640 if ((offset <= curr_off) && (buffer_delay(bh))) {
1641 to_release++;
1642 clear_buffer_delay(bh);
1643 }
1644 curr_off = next_off;
1645 } while ((bh = bh->b_this_page) != head);
1646 ext4_da_release_space(page->mapping->host, to_release);
1647 }
1648
1649 /*
1650 * Delayed allocation stuff
1651 */
1652
1653 struct mpage_da_data {
1654 struct inode *inode;
1655 struct buffer_head lbh; /* extent of blocks */
1656 unsigned long first_page, next_page; /* extent of pages */
1657 get_block_t *get_block;
1658 struct writeback_control *wbc;
1659 int io_done;
1660 int pages_written;
1661 int retval;
1662 };
1663
1664 /*
1665 * mpage_da_submit_io - walks through extent of pages and try to write
1666 * them with writepage() call back
1667 *
1668 * @mpd->inode: inode
1669 * @mpd->first_page: first page of the extent
1670 * @mpd->next_page: page after the last page of the extent
1671 * @mpd->get_block: the filesystem's block mapper function
1672 *
1673 * By the time mpage_da_submit_io() is called we expect all blocks
1674 * to be allocated. this may be wrong if allocation failed.
1675 *
1676 * As pages are already locked by write_cache_pages(), we can't use it
1677 */
1678 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1679 {
1680 long pages_skipped;
1681 struct pagevec pvec;
1682 unsigned long index, end;
1683 int ret = 0, err, nr_pages, i;
1684 struct inode *inode = mpd->inode;
1685 struct address_space *mapping = inode->i_mapping;
1686
1687 BUG_ON(mpd->next_page <= mpd->first_page);
1688 /*
1689 * We need to start from the first_page to the next_page - 1
1690 * to make sure we also write the mapped dirty buffer_heads.
1691 * If we look at mpd->lbh.b_blocknr we would only be looking
1692 * at the currently mapped buffer_heads.
1693 */
1694 index = mpd->first_page;
1695 end = mpd->next_page - 1;
1696
1697 pagevec_init(&pvec, 0);
1698 while (index <= end) {
1699 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1700 if (nr_pages == 0)
1701 break;
1702 for (i = 0; i < nr_pages; i++) {
1703 struct page *page = pvec.pages[i];
1704
1705 index = page->index;
1706 if (index > end)
1707 break;
1708 index++;
1709
1710 BUG_ON(!PageLocked(page));
1711 BUG_ON(PageWriteback(page));
1712
1713 pages_skipped = mpd->wbc->pages_skipped;
1714 err = mapping->a_ops->writepage(page, mpd->wbc);
1715 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1716 /*
1717 * have successfully written the page
1718 * without skipping the same
1719 */
1720 mpd->pages_written++;
1721 /*
1722 * In error case, we have to continue because
1723 * remaining pages are still locked
1724 * XXX: unlock and re-dirty them?
1725 */
1726 if (ret == 0)
1727 ret = err;
1728 }
1729 pagevec_release(&pvec);
1730 }
1731 return ret;
1732 }
1733
1734 /*
1735 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1736 *
1737 * @mpd->inode - inode to walk through
1738 * @exbh->b_blocknr - first block on a disk
1739 * @exbh->b_size - amount of space in bytes
1740 * @logical - first logical block to start assignment with
1741 *
1742 * the function goes through all passed space and put actual disk
1743 * block numbers into buffer heads, dropping BH_Delay
1744 */
1745 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1746 struct buffer_head *exbh)
1747 {
1748 struct inode *inode = mpd->inode;
1749 struct address_space *mapping = inode->i_mapping;
1750 int blocks = exbh->b_size >> inode->i_blkbits;
1751 sector_t pblock = exbh->b_blocknr, cur_logical;
1752 struct buffer_head *head, *bh;
1753 pgoff_t index, end;
1754 struct pagevec pvec;
1755 int nr_pages, i;
1756
1757 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1758 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1759 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1760
1761 pagevec_init(&pvec, 0);
1762
1763 while (index <= end) {
1764 /* XXX: optimize tail */
1765 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1766 if (nr_pages == 0)
1767 break;
1768 for (i = 0; i < nr_pages; i++) {
1769 struct page *page = pvec.pages[i];
1770
1771 index = page->index;
1772 if (index > end)
1773 break;
1774 index++;
1775
1776 BUG_ON(!PageLocked(page));
1777 BUG_ON(PageWriteback(page));
1778 BUG_ON(!page_has_buffers(page));
1779
1780 bh = page_buffers(page);
1781 head = bh;
1782
1783 /* skip blocks out of the range */
1784 do {
1785 if (cur_logical >= logical)
1786 break;
1787 cur_logical++;
1788 } while ((bh = bh->b_this_page) != head);
1789
1790 do {
1791 if (cur_logical >= logical + blocks)
1792 break;
1793 if (buffer_delay(bh)) {
1794 bh->b_blocknr = pblock;
1795 clear_buffer_delay(bh);
1796 bh->b_bdev = inode->i_sb->s_bdev;
1797 } else if (buffer_unwritten(bh)) {
1798 bh->b_blocknr = pblock;
1799 clear_buffer_unwritten(bh);
1800 set_buffer_mapped(bh);
1801 set_buffer_new(bh);
1802 bh->b_bdev = inode->i_sb->s_bdev;
1803 } else if (buffer_mapped(bh))
1804 BUG_ON(bh->b_blocknr != pblock);
1805
1806 cur_logical++;
1807 pblock++;
1808 } while ((bh = bh->b_this_page) != head);
1809 }
1810 pagevec_release(&pvec);
1811 }
1812 }
1813
1814
1815 /*
1816 * __unmap_underlying_blocks - just a helper function to unmap
1817 * set of blocks described by @bh
1818 */
1819 static inline void __unmap_underlying_blocks(struct inode *inode,
1820 struct buffer_head *bh)
1821 {
1822 struct block_device *bdev = inode->i_sb->s_bdev;
1823 int blocks, i;
1824
1825 blocks = bh->b_size >> inode->i_blkbits;
1826 for (i = 0; i < blocks; i++)
1827 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1828 }
1829
1830 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1831 sector_t logical, long blk_cnt)
1832 {
1833 int nr_pages, i;
1834 pgoff_t index, end;
1835 struct pagevec pvec;
1836 struct inode *inode = mpd->inode;
1837 struct address_space *mapping = inode->i_mapping;
1838
1839 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1840 end = (logical + blk_cnt - 1) >>
1841 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1842 while (index <= end) {
1843 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1844 if (nr_pages == 0)
1845 break;
1846 for (i = 0; i < nr_pages; i++) {
1847 struct page *page = pvec.pages[i];
1848 index = page->index;
1849 if (index > end)
1850 break;
1851 index++;
1852
1853 BUG_ON(!PageLocked(page));
1854 BUG_ON(PageWriteback(page));
1855 block_invalidatepage(page, 0);
1856 ClearPageUptodate(page);
1857 unlock_page(page);
1858 }
1859 }
1860 return;
1861 }
1862
1863 static void ext4_print_free_blocks(struct inode *inode)
1864 {
1865 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1866 printk(KERN_EMERG "Total free blocks count %lld\n",
1867 ext4_count_free_blocks(inode->i_sb));
1868 printk(KERN_EMERG "Free/Dirty block details\n");
1869 printk(KERN_EMERG "free_blocks=%lld\n",
1870 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1871 printk(KERN_EMERG "dirty_blocks=%lld\n",
1872 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1873 printk(KERN_EMERG "Block reservation details\n");
1874 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1875 EXT4_I(inode)->i_reserved_data_blocks);
1876 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1877 EXT4_I(inode)->i_reserved_meta_blocks);
1878 return;
1879 }
1880
1881 /*
1882 * mpage_da_map_blocks - go through given space
1883 *
1884 * @mpd->lbh - bh describing space
1885 * @mpd->get_block - the filesystem's block mapper function
1886 *
1887 * The function skips space we know is already mapped to disk blocks.
1888 *
1889 */
1890 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1891 {
1892 int err = 0;
1893 struct buffer_head new;
1894 struct buffer_head *lbh = &mpd->lbh;
1895 sector_t next;
1896
1897 /*
1898 * We consider only non-mapped and non-allocated blocks
1899 */
1900 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1901 return 0;
1902 new.b_state = lbh->b_state;
1903 new.b_blocknr = 0;
1904 new.b_size = lbh->b_size;
1905 next = lbh->b_blocknr;
1906 /*
1907 * If we didn't accumulate anything
1908 * to write simply return
1909 */
1910 if (!new.b_size)
1911 return 0;
1912 err = mpd->get_block(mpd->inode, next, &new, 1);
1913 if (err) {
1914
1915 /* If get block returns with error
1916 * we simply return. Later writepage
1917 * will redirty the page and writepages
1918 * will find the dirty page again
1919 */
1920 if (err == -EAGAIN)
1921 return 0;
1922
1923 if (err == -ENOSPC &&
1924 ext4_count_free_blocks(mpd->inode->i_sb)) {
1925 mpd->retval = err;
1926 return 0;
1927 }
1928
1929 /*
1930 * get block failure will cause us
1931 * to loop in writepages. Because
1932 * a_ops->writepage won't be able to
1933 * make progress. The page will be redirtied
1934 * by writepage and writepages will again
1935 * try to write the same.
1936 */
1937 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1938 "at logical offset %llu with max blocks "
1939 "%zd with error %d\n",
1940 __func__, mpd->inode->i_ino,
1941 (unsigned long long)next,
1942 lbh->b_size >> mpd->inode->i_blkbits, err);
1943 printk(KERN_EMERG "This should not happen.!! "
1944 "Data will be lost\n");
1945 if (err == -ENOSPC) {
1946 ext4_print_free_blocks(mpd->inode);
1947 }
1948 /* invlaidate all the pages */
1949 ext4_da_block_invalidatepages(mpd, next,
1950 lbh->b_size >> mpd->inode->i_blkbits);
1951 return err;
1952 }
1953 BUG_ON(new.b_size == 0);
1954
1955 if (buffer_new(&new))
1956 __unmap_underlying_blocks(mpd->inode, &new);
1957
1958 /*
1959 * If blocks are delayed marked, we need to
1960 * put actual blocknr and drop delayed bit
1961 */
1962 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1963 mpage_put_bnr_to_bhs(mpd, next, &new);
1964
1965 return 0;
1966 }
1967
1968 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1969 (1 << BH_Delay) | (1 << BH_Unwritten))
1970
1971 /*
1972 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1973 *
1974 * @mpd->lbh - extent of blocks
1975 * @logical - logical number of the block in the file
1976 * @bh - bh of the block (used to access block's state)
1977 *
1978 * the function is used to collect contig. blocks in same state
1979 */
1980 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1981 sector_t logical, struct buffer_head *bh)
1982 {
1983 sector_t next;
1984 size_t b_size = bh->b_size;
1985 struct buffer_head *lbh = &mpd->lbh;
1986 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1987
1988 /* check if thereserved journal credits might overflow */
1989 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1990 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1991 /*
1992 * With non-extent format we are limited by the journal
1993 * credit available. Total credit needed to insert
1994 * nrblocks contiguous blocks is dependent on the
1995 * nrblocks. So limit nrblocks.
1996 */
1997 goto flush_it;
1998 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1999 EXT4_MAX_TRANS_DATA) {
2000 /*
2001 * Adding the new buffer_head would make it cross the
2002 * allowed limit for which we have journal credit
2003 * reserved. So limit the new bh->b_size
2004 */
2005 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2006 mpd->inode->i_blkbits;
2007 /* we will do mpage_da_submit_io in the next loop */
2008 }
2009 }
2010 /*
2011 * First block in the extent
2012 */
2013 if (lbh->b_size == 0) {
2014 lbh->b_blocknr = logical;
2015 lbh->b_size = b_size;
2016 lbh->b_state = bh->b_state & BH_FLAGS;
2017 return;
2018 }
2019
2020 next = lbh->b_blocknr + nrblocks;
2021 /*
2022 * Can we merge the block to our big extent?
2023 */
2024 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2025 lbh->b_size += b_size;
2026 return;
2027 }
2028
2029 flush_it:
2030 /*
2031 * We couldn't merge the block to our extent, so we
2032 * need to flush current extent and start new one
2033 */
2034 if (mpage_da_map_blocks(mpd) == 0)
2035 mpage_da_submit_io(mpd);
2036 mpd->io_done = 1;
2037 return;
2038 }
2039
2040 /*
2041 * __mpage_da_writepage - finds extent of pages and blocks
2042 *
2043 * @page: page to consider
2044 * @wbc: not used, we just follow rules
2045 * @data: context
2046 *
2047 * The function finds extents of pages and scan them for all blocks.
2048 */
2049 static int __mpage_da_writepage(struct page *page,
2050 struct writeback_control *wbc, void *data)
2051 {
2052 struct mpage_da_data *mpd = data;
2053 struct inode *inode = mpd->inode;
2054 struct buffer_head *bh, *head, fake;
2055 sector_t logical;
2056
2057 if (mpd->io_done) {
2058 /*
2059 * Rest of the page in the page_vec
2060 * redirty then and skip then. We will
2061 * try to to write them again after
2062 * starting a new transaction
2063 */
2064 redirty_page_for_writepage(wbc, page);
2065 unlock_page(page);
2066 return MPAGE_DA_EXTENT_TAIL;
2067 }
2068 /*
2069 * Can we merge this page to current extent?
2070 */
2071 if (mpd->next_page != page->index) {
2072 /*
2073 * Nope, we can't. So, we map non-allocated blocks
2074 * and start IO on them using writepage()
2075 */
2076 if (mpd->next_page != mpd->first_page) {
2077 if (mpage_da_map_blocks(mpd) == 0)
2078 mpage_da_submit_io(mpd);
2079 /*
2080 * skip rest of the page in the page_vec
2081 */
2082 mpd->io_done = 1;
2083 redirty_page_for_writepage(wbc, page);
2084 unlock_page(page);
2085 return MPAGE_DA_EXTENT_TAIL;
2086 }
2087
2088 /*
2089 * Start next extent of pages ...
2090 */
2091 mpd->first_page = page->index;
2092
2093 /*
2094 * ... and blocks
2095 */
2096 mpd->lbh.b_size = 0;
2097 mpd->lbh.b_state = 0;
2098 mpd->lbh.b_blocknr = 0;
2099 }
2100
2101 mpd->next_page = page->index + 1;
2102 logical = (sector_t) page->index <<
2103 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2104
2105 if (!page_has_buffers(page)) {
2106 /*
2107 * There is no attached buffer heads yet (mmap?)
2108 * we treat the page asfull of dirty blocks
2109 */
2110 bh = &fake;
2111 bh->b_size = PAGE_CACHE_SIZE;
2112 bh->b_state = 0;
2113 set_buffer_dirty(bh);
2114 set_buffer_uptodate(bh);
2115 mpage_add_bh_to_extent(mpd, logical, bh);
2116 if (mpd->io_done)
2117 return MPAGE_DA_EXTENT_TAIL;
2118 } else {
2119 /*
2120 * Page with regular buffer heads, just add all dirty ones
2121 */
2122 head = page_buffers(page);
2123 bh = head;
2124 do {
2125 BUG_ON(buffer_locked(bh));
2126 /*
2127 * We need to try to allocate
2128 * unmapped blocks in the same page.
2129 * Otherwise we won't make progress
2130 * with the page in ext4_da_writepage
2131 */
2132 if (buffer_dirty(bh) &&
2133 (!buffer_mapped(bh) || buffer_delay(bh))) {
2134 mpage_add_bh_to_extent(mpd, logical, bh);
2135 if (mpd->io_done)
2136 return MPAGE_DA_EXTENT_TAIL;
2137 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2138 /*
2139 * mapped dirty buffer. We need to update
2140 * the b_state because we look at
2141 * b_state in mpage_da_map_blocks. We don't
2142 * update b_size because if we find an
2143 * unmapped buffer_head later we need to
2144 * use the b_state flag of that buffer_head.
2145 */
2146 if (mpd->lbh.b_size == 0)
2147 mpd->lbh.b_state =
2148 bh->b_state & BH_FLAGS;
2149 }
2150 logical++;
2151 } while ((bh = bh->b_this_page) != head);
2152 }
2153
2154 return 0;
2155 }
2156
2157 /*
2158 * mpage_da_writepages - walk the list of dirty pages of the given
2159 * address space, allocates non-allocated blocks, maps newly-allocated
2160 * blocks to existing bhs and issue IO them
2161 *
2162 * @mapping: address space structure to write
2163 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2164 * @get_block: the filesystem's block mapper function.
2165 *
2166 * This is a library function, which implements the writepages()
2167 * address_space_operation.
2168 */
2169 static int mpage_da_writepages(struct address_space *mapping,
2170 struct writeback_control *wbc,
2171 struct mpage_da_data *mpd)
2172 {
2173 int ret;
2174
2175 if (!mpd->get_block)
2176 return generic_writepages(mapping, wbc);
2177
2178 mpd->lbh.b_size = 0;
2179 mpd->lbh.b_state = 0;
2180 mpd->lbh.b_blocknr = 0;
2181 mpd->first_page = 0;
2182 mpd->next_page = 0;
2183 mpd->io_done = 0;
2184 mpd->pages_written = 0;
2185 mpd->retval = 0;
2186
2187 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2188 /*
2189 * Handle last extent of pages
2190 */
2191 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2192 if (mpage_da_map_blocks(mpd) == 0)
2193 mpage_da_submit_io(mpd);
2194
2195 mpd->io_done = 1;
2196 ret = MPAGE_DA_EXTENT_TAIL;
2197 }
2198 wbc->nr_to_write -= mpd->pages_written;
2199 return ret;
2200 }
2201
2202 /*
2203 * this is a special callback for ->write_begin() only
2204 * it's intention is to return mapped block or reserve space
2205 */
2206 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2207 struct buffer_head *bh_result, int create)
2208 {
2209 int ret = 0;
2210
2211 BUG_ON(create == 0);
2212 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2213
2214 /*
2215 * first, we need to know whether the block is allocated already
2216 * preallocated blocks are unmapped but should treated
2217 * the same as allocated blocks.
2218 */
2219 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2220 if ((ret == 0) && !buffer_delay(bh_result)) {
2221 /* the block isn't (pre)allocated yet, let's reserve space */
2222 /*
2223 * XXX: __block_prepare_write() unmaps passed block,
2224 * is it OK?
2225 */
2226 ret = ext4_da_reserve_space(inode, 1);
2227 if (ret)
2228 /* not enough space to reserve */
2229 return ret;
2230
2231 map_bh(bh_result, inode->i_sb, 0);
2232 set_buffer_new(bh_result);
2233 set_buffer_delay(bh_result);
2234 } else if (ret > 0) {
2235 bh_result->b_size = (ret << inode->i_blkbits);
2236 ret = 0;
2237 }
2238
2239 return ret;
2240 }
2241 #define EXT4_DELALLOC_RSVED 1
2242 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2243 struct buffer_head *bh_result, int create)
2244 {
2245 int ret;
2246 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2247 loff_t disksize = EXT4_I(inode)->i_disksize;
2248 handle_t *handle = NULL;
2249
2250 handle = ext4_journal_current_handle();
2251 BUG_ON(!handle);
2252 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2253 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2254 if (ret > 0) {
2255
2256 bh_result->b_size = (ret << inode->i_blkbits);
2257
2258 if (ext4_should_order_data(inode)) {
2259 int retval;
2260 retval = ext4_jbd2_file_inode(handle, inode);
2261 if (retval)
2262 /*
2263 * Failed to add inode for ordered
2264 * mode. Don't update file size
2265 */
2266 return retval;
2267 }
2268
2269 /*
2270 * Update on-disk size along with block allocation
2271 * we don't use 'extend_disksize' as size may change
2272 * within already allocated block -bzzz
2273 */
2274 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2275 if (disksize > i_size_read(inode))
2276 disksize = i_size_read(inode);
2277 if (disksize > EXT4_I(inode)->i_disksize) {
2278 ext4_update_i_disksize(inode, disksize);
2279 ret = ext4_mark_inode_dirty(handle, inode);
2280 return ret;
2281 }
2282 ret = 0;
2283 }
2284 return ret;
2285 }
2286
2287 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2288 {
2289 /*
2290 * unmapped buffer is possible for holes.
2291 * delay buffer is possible with delayed allocation
2292 */
2293 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2294 }
2295
2296 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2297 struct buffer_head *bh_result, int create)
2298 {
2299 int ret = 0;
2300 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2301
2302 /*
2303 * we don't want to do block allocation in writepage
2304 * so call get_block_wrap with create = 0
2305 */
2306 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2307 bh_result, 0, 0, 0);
2308 if (ret > 0) {
2309 bh_result->b_size = (ret << inode->i_blkbits);
2310 ret = 0;
2311 }
2312 return ret;
2313 }
2314
2315 /*
2316 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2317 * get called via journal_submit_inode_data_buffers (no journal handle)
2318 * get called via shrink_page_list via pdflush (no journal handle)
2319 * or grab_page_cache when doing write_begin (have journal handle)
2320 */
2321 static int ext4_da_writepage(struct page *page,
2322 struct writeback_control *wbc)
2323 {
2324 int ret = 0;
2325 loff_t size;
2326 unsigned int len;
2327 struct buffer_head *page_bufs;
2328 struct inode *inode = page->mapping->host;
2329
2330 trace_mark(ext4_da_writepage,
2331 "dev %s ino %lu page_index %lu",
2332 inode->i_sb->s_id, inode->i_ino, page->index);
2333 size = i_size_read(inode);
2334 if (page->index == size >> PAGE_CACHE_SHIFT)
2335 len = size & ~PAGE_CACHE_MASK;
2336 else
2337 len = PAGE_CACHE_SIZE;
2338
2339 if (page_has_buffers(page)) {
2340 page_bufs = page_buffers(page);
2341 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2342 ext4_bh_unmapped_or_delay)) {
2343 /*
2344 * We don't want to do block allocation
2345 * So redirty the page and return
2346 * We may reach here when we do a journal commit
2347 * via journal_submit_inode_data_buffers.
2348 * If we don't have mapping block we just ignore
2349 * them. We can also reach here via shrink_page_list
2350 */
2351 redirty_page_for_writepage(wbc, page);
2352 unlock_page(page);
2353 return 0;
2354 }
2355 } else {
2356 /*
2357 * The test for page_has_buffers() is subtle:
2358 * We know the page is dirty but it lost buffers. That means
2359 * that at some moment in time after write_begin()/write_end()
2360 * has been called all buffers have been clean and thus they
2361 * must have been written at least once. So they are all
2362 * mapped and we can happily proceed with mapping them
2363 * and writing the page.
2364 *
2365 * Try to initialize the buffer_heads and check whether
2366 * all are mapped and non delay. We don't want to
2367 * do block allocation here.
2368 */
2369 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2370 ext4_normal_get_block_write);
2371 if (!ret) {
2372 page_bufs = page_buffers(page);
2373 /* check whether all are mapped and non delay */
2374 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2375 ext4_bh_unmapped_or_delay)) {
2376 redirty_page_for_writepage(wbc, page);
2377 unlock_page(page);
2378 return 0;
2379 }
2380 } else {
2381 /*
2382 * We can't do block allocation here
2383 * so just redity the page and unlock
2384 * and return
2385 */
2386 redirty_page_for_writepage(wbc, page);
2387 unlock_page(page);
2388 return 0;
2389 }
2390 /* now mark the buffer_heads as dirty and uptodate */
2391 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2392 }
2393
2394 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2395 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2396 else
2397 ret = block_write_full_page(page,
2398 ext4_normal_get_block_write,
2399 wbc);
2400
2401 return ret;
2402 }
2403
2404 /*
2405 * This is called via ext4_da_writepages() to
2406 * calulate the total number of credits to reserve to fit
2407 * a single extent allocation into a single transaction,
2408 * ext4_da_writpeages() will loop calling this before
2409 * the block allocation.
2410 */
2411
2412 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2413 {
2414 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2415
2416 /*
2417 * With non-extent format the journal credit needed to
2418 * insert nrblocks contiguous block is dependent on
2419 * number of contiguous block. So we will limit
2420 * number of contiguous block to a sane value
2421 */
2422 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2423 (max_blocks > EXT4_MAX_TRANS_DATA))
2424 max_blocks = EXT4_MAX_TRANS_DATA;
2425
2426 return ext4_chunk_trans_blocks(inode, max_blocks);
2427 }
2428
2429 static int ext4_da_writepages(struct address_space *mapping,
2430 struct writeback_control *wbc)
2431 {
2432 pgoff_t index;
2433 int range_whole = 0;
2434 handle_t *handle = NULL;
2435 struct mpage_da_data mpd;
2436 struct inode *inode = mapping->host;
2437 int no_nrwrite_index_update;
2438 int pages_written = 0;
2439 long pages_skipped;
2440 int needed_blocks, ret = 0, nr_to_writebump = 0;
2441 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2442
2443 trace_mark(ext4_da_writepages,
2444 "dev %s ino %lu nr_t_write %ld "
2445 "pages_skipped %ld range_start %llu "
2446 "range_end %llu nonblocking %d "
2447 "for_kupdate %d for_reclaim %d "
2448 "for_writepages %d range_cyclic %d",
2449 inode->i_sb->s_id, inode->i_ino,
2450 wbc->nr_to_write, wbc->pages_skipped,
2451 (unsigned long long) wbc->range_start,
2452 (unsigned long long) wbc->range_end,
2453 wbc->nonblocking, wbc->for_kupdate,
2454 wbc->for_reclaim, wbc->for_writepages,
2455 wbc->range_cyclic);
2456
2457 /*
2458 * No pages to write? This is mainly a kludge to avoid starting
2459 * a transaction for special inodes like journal inode on last iput()
2460 * because that could violate lock ordering on umount
2461 */
2462 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2463 return 0;
2464
2465 /*
2466 * If the filesystem has aborted, it is read-only, so return
2467 * right away instead of dumping stack traces later on that
2468 * will obscure the real source of the problem. We test
2469 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2470 * the latter could be true if the filesystem is mounted
2471 * read-only, and in that case, ext4_da_writepages should
2472 * *never* be called, so if that ever happens, we would want
2473 * the stack trace.
2474 */
2475 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2476 return -EROFS;
2477
2478 /*
2479 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2480 * This make sure small files blocks are allocated in
2481 * single attempt. This ensure that small files
2482 * get less fragmented.
2483 */
2484 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2485 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2486 wbc->nr_to_write = sbi->s_mb_stream_request;
2487 }
2488 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2489 range_whole = 1;
2490
2491 if (wbc->range_cyclic)
2492 index = mapping->writeback_index;
2493 else
2494 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2495
2496 mpd.wbc = wbc;
2497 mpd.inode = mapping->host;
2498
2499 /*
2500 * we don't want write_cache_pages to update
2501 * nr_to_write and writeback_index
2502 */
2503 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2504 wbc->no_nrwrite_index_update = 1;
2505 pages_skipped = wbc->pages_skipped;
2506
2507 while (!ret && wbc->nr_to_write > 0) {
2508
2509 /*
2510 * we insert one extent at a time. So we need
2511 * credit needed for single extent allocation.
2512 * journalled mode is currently not supported
2513 * by delalloc
2514 */
2515 BUG_ON(ext4_should_journal_data(inode));
2516 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517
2518 /* start a new transaction*/
2519 handle = ext4_journal_start(inode, needed_blocks);
2520 if (IS_ERR(handle)) {
2521 ret = PTR_ERR(handle);
2522 printk(KERN_CRIT "%s: jbd2_start: "
2523 "%ld pages, ino %lu; err %d\n", __func__,
2524 wbc->nr_to_write, inode->i_ino, ret);
2525 dump_stack();
2526 goto out_writepages;
2527 }
2528 mpd.get_block = ext4_da_get_block_write;
2529 ret = mpage_da_writepages(mapping, wbc, &mpd);
2530
2531 ext4_journal_stop(handle);
2532
2533 if (mpd.retval == -ENOSPC) {
2534 /* commit the transaction which would
2535 * free blocks released in the transaction
2536 * and try again
2537 */
2538 jbd2_journal_force_commit_nested(sbi->s_journal);
2539 wbc->pages_skipped = pages_skipped;
2540 ret = 0;
2541 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2542 /*
2543 * got one extent now try with
2544 * rest of the pages
2545 */
2546 pages_written += mpd.pages_written;
2547 wbc->pages_skipped = pages_skipped;
2548 ret = 0;
2549 } else if (wbc->nr_to_write)
2550 /*
2551 * There is no more writeout needed
2552 * or we requested for a noblocking writeout
2553 * and we found the device congested
2554 */
2555 break;
2556 }
2557 if (pages_skipped != wbc->pages_skipped)
2558 printk(KERN_EMERG "This should not happen leaving %s "
2559 "with nr_to_write = %ld ret = %d\n",
2560 __func__, wbc->nr_to_write, ret);
2561
2562 /* Update index */
2563 index += pages_written;
2564 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2565 /*
2566 * set the writeback_index so that range_cyclic
2567 * mode will write it back later
2568 */
2569 mapping->writeback_index = index;
2570
2571 out_writepages:
2572 if (!no_nrwrite_index_update)
2573 wbc->no_nrwrite_index_update = 0;
2574 wbc->nr_to_write -= nr_to_writebump;
2575 trace_mark(ext4_da_writepage_result,
2576 "dev %s ino %lu ret %d pages_written %d "
2577 "pages_skipped %ld congestion %d "
2578 "more_io %d no_nrwrite_index_update %d",
2579 inode->i_sb->s_id, inode->i_ino, ret,
2580 pages_written, wbc->pages_skipped,
2581 wbc->encountered_congestion, wbc->more_io,
2582 wbc->no_nrwrite_index_update);
2583 return ret;
2584 }
2585
2586 #define FALL_BACK_TO_NONDELALLOC 1
2587 static int ext4_nonda_switch(struct super_block *sb)
2588 {
2589 s64 free_blocks, dirty_blocks;
2590 struct ext4_sb_info *sbi = EXT4_SB(sb);
2591
2592 /*
2593 * switch to non delalloc mode if we are running low
2594 * on free block. The free block accounting via percpu
2595 * counters can get slightly wrong with percpu_counter_batch getting
2596 * accumulated on each CPU without updating global counters
2597 * Delalloc need an accurate free block accounting. So switch
2598 * to non delalloc when we are near to error range.
2599 */
2600 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2601 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2602 if (2 * free_blocks < 3 * dirty_blocks ||
2603 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2604 /*
2605 * free block count is less that 150% of dirty blocks
2606 * or free blocks is less that watermark
2607 */
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 loff_t pos, unsigned len, unsigned flags,
2615 struct page **pagep, void **fsdata)
2616 {
2617 int ret, retries = 0;
2618 struct page *page;
2619 pgoff_t index;
2620 unsigned from, to;
2621 struct inode *inode = mapping->host;
2622 handle_t *handle;
2623
2624 index = pos >> PAGE_CACHE_SHIFT;
2625 from = pos & (PAGE_CACHE_SIZE - 1);
2626 to = from + len;
2627
2628 if (ext4_nonda_switch(inode->i_sb)) {
2629 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2630 return ext4_write_begin(file, mapping, pos,
2631 len, flags, pagep, fsdata);
2632 }
2633 *fsdata = (void *)0;
2634
2635 trace_mark(ext4_da_write_begin,
2636 "dev %s ino %lu pos %llu len %u flags %u",
2637 inode->i_sb->s_id, inode->i_ino,
2638 (unsigned long long) pos, len, flags);
2639 retry:
2640 /*
2641 * With delayed allocation, we don't log the i_disksize update
2642 * if there is delayed block allocation. But we still need
2643 * to journalling the i_disksize update if writes to the end
2644 * of file which has an already mapped buffer.
2645 */
2646 handle = ext4_journal_start(inode, 1);
2647 if (IS_ERR(handle)) {
2648 ret = PTR_ERR(handle);
2649 goto out;
2650 }
2651
2652 page = grab_cache_page_write_begin(mapping, index, flags);
2653 if (!page) {
2654 ext4_journal_stop(handle);
2655 ret = -ENOMEM;
2656 goto out;
2657 }
2658 *pagep = page;
2659
2660 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2661 ext4_da_get_block_prep);
2662 if (ret < 0) {
2663 unlock_page(page);
2664 ext4_journal_stop(handle);
2665 page_cache_release(page);
2666 /*
2667 * block_write_begin may have instantiated a few blocks
2668 * outside i_size. Trim these off again. Don't need
2669 * i_size_read because we hold i_mutex.
2670 */
2671 if (pos + len > inode->i_size)
2672 vmtruncate(inode, inode->i_size);
2673 }
2674
2675 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2676 goto retry;
2677 out:
2678 return ret;
2679 }
2680
2681 /*
2682 * Check if we should update i_disksize
2683 * when write to the end of file but not require block allocation
2684 */
2685 static int ext4_da_should_update_i_disksize(struct page *page,
2686 unsigned long offset)
2687 {
2688 struct buffer_head *bh;
2689 struct inode *inode = page->mapping->host;
2690 unsigned int idx;
2691 int i;
2692
2693 bh = page_buffers(page);
2694 idx = offset >> inode->i_blkbits;
2695
2696 for (i = 0; i < idx; i++)
2697 bh = bh->b_this_page;
2698
2699 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2700 return 0;
2701 return 1;
2702 }
2703
2704 static int ext4_da_write_end(struct file *file,
2705 struct address_space *mapping,
2706 loff_t pos, unsigned len, unsigned copied,
2707 struct page *page, void *fsdata)
2708 {
2709 struct inode *inode = mapping->host;
2710 int ret = 0, ret2;
2711 handle_t *handle = ext4_journal_current_handle();
2712 loff_t new_i_size;
2713 unsigned long start, end;
2714 int write_mode = (int)(unsigned long)fsdata;
2715
2716 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2717 if (ext4_should_order_data(inode)) {
2718 return ext4_ordered_write_end(file, mapping, pos,
2719 len, copied, page, fsdata);
2720 } else if (ext4_should_writeback_data(inode)) {
2721 return ext4_writeback_write_end(file, mapping, pos,
2722 len, copied, page, fsdata);
2723 } else {
2724 BUG();
2725 }
2726 }
2727
2728 trace_mark(ext4_da_write_end,
2729 "dev %s ino %lu pos %llu len %u copied %u",
2730 inode->i_sb->s_id, inode->i_ino,
2731 (unsigned long long) pos, len, copied);
2732 start = pos & (PAGE_CACHE_SIZE - 1);
2733 end = start + copied - 1;
2734
2735 /*
2736 * generic_write_end() will run mark_inode_dirty() if i_size
2737 * changes. So let's piggyback the i_disksize mark_inode_dirty
2738 * into that.
2739 */
2740
2741 new_i_size = pos + copied;
2742 if (new_i_size > EXT4_I(inode)->i_disksize) {
2743 if (ext4_da_should_update_i_disksize(page, end)) {
2744 down_write(&EXT4_I(inode)->i_data_sem);
2745 if (new_i_size > EXT4_I(inode)->i_disksize) {
2746 /*
2747 * Updating i_disksize when extending file
2748 * without needing block allocation
2749 */
2750 if (ext4_should_order_data(inode))
2751 ret = ext4_jbd2_file_inode(handle,
2752 inode);
2753
2754 EXT4_I(inode)->i_disksize = new_i_size;
2755 }
2756 up_write(&EXT4_I(inode)->i_data_sem);
2757 /* We need to mark inode dirty even if
2758 * new_i_size is less that inode->i_size
2759 * bu greater than i_disksize.(hint delalloc)
2760 */
2761 ext4_mark_inode_dirty(handle, inode);
2762 }
2763 }
2764 ret2 = generic_write_end(file, mapping, pos, len, copied,
2765 page, fsdata);
2766 copied = ret2;
2767 if (ret2 < 0)
2768 ret = ret2;
2769 ret2 = ext4_journal_stop(handle);
2770 if (!ret)
2771 ret = ret2;
2772
2773 return ret ? ret : copied;
2774 }
2775
2776 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2777 {
2778 /*
2779 * Drop reserved blocks
2780 */
2781 BUG_ON(!PageLocked(page));
2782 if (!page_has_buffers(page))
2783 goto out;
2784
2785 ext4_da_page_release_reservation(page, offset);
2786
2787 out:
2788 ext4_invalidatepage(page, offset);
2789
2790 return;
2791 }
2792
2793
2794 /*
2795 * bmap() is special. It gets used by applications such as lilo and by
2796 * the swapper to find the on-disk block of a specific piece of data.
2797 *
2798 * Naturally, this is dangerous if the block concerned is still in the
2799 * journal. If somebody makes a swapfile on an ext4 data-journaling
2800 * filesystem and enables swap, then they may get a nasty shock when the
2801 * data getting swapped to that swapfile suddenly gets overwritten by
2802 * the original zero's written out previously to the journal and
2803 * awaiting writeback in the kernel's buffer cache.
2804 *
2805 * So, if we see any bmap calls here on a modified, data-journaled file,
2806 * take extra steps to flush any blocks which might be in the cache.
2807 */
2808 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2809 {
2810 struct inode *inode = mapping->host;
2811 journal_t *journal;
2812 int err;
2813
2814 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2815 test_opt(inode->i_sb, DELALLOC)) {
2816 /*
2817 * With delalloc we want to sync the file
2818 * so that we can make sure we allocate
2819 * blocks for file
2820 */
2821 filemap_write_and_wait(mapping);
2822 }
2823
2824 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2825 /*
2826 * This is a REALLY heavyweight approach, but the use of
2827 * bmap on dirty files is expected to be extremely rare:
2828 * only if we run lilo or swapon on a freshly made file
2829 * do we expect this to happen.
2830 *
2831 * (bmap requires CAP_SYS_RAWIO so this does not
2832 * represent an unprivileged user DOS attack --- we'd be
2833 * in trouble if mortal users could trigger this path at
2834 * will.)
2835 *
2836 * NB. EXT4_STATE_JDATA is not set on files other than
2837 * regular files. If somebody wants to bmap a directory
2838 * or symlink and gets confused because the buffer
2839 * hasn't yet been flushed to disk, they deserve
2840 * everything they get.
2841 */
2842
2843 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2844 journal = EXT4_JOURNAL(inode);
2845 jbd2_journal_lock_updates(journal);
2846 err = jbd2_journal_flush(journal);
2847 jbd2_journal_unlock_updates(journal);
2848
2849 if (err)
2850 return 0;
2851 }
2852
2853 return generic_block_bmap(mapping, block, ext4_get_block);
2854 }
2855
2856 static int bget_one(handle_t *handle, struct buffer_head *bh)
2857 {
2858 get_bh(bh);
2859 return 0;
2860 }
2861
2862 static int bput_one(handle_t *handle, struct buffer_head *bh)
2863 {
2864 put_bh(bh);
2865 return 0;
2866 }
2867
2868 /*
2869 * Note that we don't need to start a transaction unless we're journaling data
2870 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2871 * need to file the inode to the transaction's list in ordered mode because if
2872 * we are writing back data added by write(), the inode is already there and if
2873 * we are writing back data modified via mmap(), noone guarantees in which
2874 * transaction the data will hit the disk. In case we are journaling data, we
2875 * cannot start transaction directly because transaction start ranks above page
2876 * lock so we have to do some magic.
2877 *
2878 * In all journaling modes block_write_full_page() will start the I/O.
2879 *
2880 * Problem:
2881 *
2882 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2883 * ext4_writepage()
2884 *
2885 * Similar for:
2886 *
2887 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2888 *
2889 * Same applies to ext4_get_block(). We will deadlock on various things like
2890 * lock_journal and i_data_sem
2891 *
2892 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2893 * allocations fail.
2894 *
2895 * 16May01: If we're reentered then journal_current_handle() will be
2896 * non-zero. We simply *return*.
2897 *
2898 * 1 July 2001: @@@ FIXME:
2899 * In journalled data mode, a data buffer may be metadata against the
2900 * current transaction. But the same file is part of a shared mapping
2901 * and someone does a writepage() on it.
2902 *
2903 * We will move the buffer onto the async_data list, but *after* it has
2904 * been dirtied. So there's a small window where we have dirty data on
2905 * BJ_Metadata.
2906 *
2907 * Note that this only applies to the last partial page in the file. The
2908 * bit which block_write_full_page() uses prepare/commit for. (That's
2909 * broken code anyway: it's wrong for msync()).
2910 *
2911 * It's a rare case: affects the final partial page, for journalled data
2912 * where the file is subject to bith write() and writepage() in the same
2913 * transction. To fix it we'll need a custom block_write_full_page().
2914 * We'll probably need that anyway for journalling writepage() output.
2915 *
2916 * We don't honour synchronous mounts for writepage(). That would be
2917 * disastrous. Any write() or metadata operation will sync the fs for
2918 * us.
2919 *
2920 */
2921 static int __ext4_normal_writepage(struct page *page,
2922 struct writeback_control *wbc)
2923 {
2924 struct inode *inode = page->mapping->host;
2925
2926 if (test_opt(inode->i_sb, NOBH))
2927 return nobh_writepage(page,
2928 ext4_normal_get_block_write, wbc);
2929 else
2930 return block_write_full_page(page,
2931 ext4_normal_get_block_write,
2932 wbc);
2933 }
2934
2935 static int ext4_normal_writepage(struct page *page,
2936 struct writeback_control *wbc)
2937 {
2938 struct inode *inode = page->mapping->host;
2939 loff_t size = i_size_read(inode);
2940 loff_t len;
2941
2942 trace_mark(ext4_normal_writepage,
2943 "dev %s ino %lu page_index %lu",
2944 inode->i_sb->s_id, inode->i_ino, page->index);
2945 J_ASSERT(PageLocked(page));
2946 if (page->index == size >> PAGE_CACHE_SHIFT)
2947 len = size & ~PAGE_CACHE_MASK;
2948 else
2949 len = PAGE_CACHE_SIZE;
2950
2951 if (page_has_buffers(page)) {
2952 /* if page has buffers it should all be mapped
2953 * and allocated. If there are not buffers attached
2954 * to the page we know the page is dirty but it lost
2955 * buffers. That means that at some moment in time
2956 * after write_begin() / write_end() has been called
2957 * all buffers have been clean and thus they must have been
2958 * written at least once. So they are all mapped and we can
2959 * happily proceed with mapping them and writing the page.
2960 */
2961 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2962 ext4_bh_unmapped_or_delay));
2963 }
2964
2965 if (!ext4_journal_current_handle())
2966 return __ext4_normal_writepage(page, wbc);
2967
2968 redirty_page_for_writepage(wbc, page);
2969 unlock_page(page);
2970 return 0;
2971 }
2972
2973 static int __ext4_journalled_writepage(struct page *page,
2974 struct writeback_control *wbc)
2975 {
2976 struct address_space *mapping = page->mapping;
2977 struct inode *inode = mapping->host;
2978 struct buffer_head *page_bufs;
2979 handle_t *handle = NULL;
2980 int ret = 0;
2981 int err;
2982
2983 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2984 ext4_normal_get_block_write);
2985 if (ret != 0)
2986 goto out_unlock;
2987
2988 page_bufs = page_buffers(page);
2989 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2990 bget_one);
2991 /* As soon as we unlock the page, it can go away, but we have
2992 * references to buffers so we are safe */
2993 unlock_page(page);
2994
2995 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2996 if (IS_ERR(handle)) {
2997 ret = PTR_ERR(handle);
2998 goto out;
2999 }
3000
3001 ret = walk_page_buffers(handle, page_bufs, 0,
3002 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3003
3004 err = walk_page_buffers(handle, page_bufs, 0,
3005 PAGE_CACHE_SIZE, NULL, write_end_fn);
3006 if (ret == 0)
3007 ret = err;
3008 err = ext4_journal_stop(handle);
3009 if (!ret)
3010 ret = err;
3011
3012 walk_page_buffers(handle, page_bufs, 0,
3013 PAGE_CACHE_SIZE, NULL, bput_one);
3014 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3015 goto out;
3016
3017 out_unlock:
3018 unlock_page(page);
3019 out:
3020 return ret;
3021 }
3022
3023 static int ext4_journalled_writepage(struct page *page,
3024 struct writeback_control *wbc)
3025 {
3026 struct inode *inode = page->mapping->host;
3027 loff_t size = i_size_read(inode);
3028 loff_t len;
3029
3030 trace_mark(ext4_journalled_writepage,
3031 "dev %s ino %lu page_index %lu",
3032 inode->i_sb->s_id, inode->i_ino, page->index);
3033 J_ASSERT(PageLocked(page));
3034 if (page->index == size >> PAGE_CACHE_SHIFT)
3035 len = size & ~PAGE_CACHE_MASK;
3036 else
3037 len = PAGE_CACHE_SIZE;
3038
3039 if (page_has_buffers(page)) {
3040 /* if page has buffers it should all be mapped
3041 * and allocated. If there are not buffers attached
3042 * to the page we know the page is dirty but it lost
3043 * buffers. That means that at some moment in time
3044 * after write_begin() / write_end() has been called
3045 * all buffers have been clean and thus they must have been
3046 * written at least once. So they are all mapped and we can
3047 * happily proceed with mapping them and writing the page.
3048 */
3049 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3050 ext4_bh_unmapped_or_delay));
3051 }
3052
3053 if (ext4_journal_current_handle())
3054 goto no_write;
3055
3056 if (PageChecked(page)) {
3057 /*
3058 * It's mmapped pagecache. Add buffers and journal it. There
3059 * doesn't seem much point in redirtying the page here.
3060 */
3061 ClearPageChecked(page);
3062 return __ext4_journalled_writepage(page, wbc);
3063 } else {
3064 /*
3065 * It may be a page full of checkpoint-mode buffers. We don't
3066 * really know unless we go poke around in the buffer_heads.
3067 * But block_write_full_page will do the right thing.
3068 */
3069 return block_write_full_page(page,
3070 ext4_normal_get_block_write,
3071 wbc);
3072 }
3073 no_write:
3074 redirty_page_for_writepage(wbc, page);
3075 unlock_page(page);
3076 return 0;
3077 }
3078
3079 static int ext4_readpage(struct file *file, struct page *page)
3080 {
3081 return mpage_readpage(page, ext4_get_block);
3082 }
3083
3084 static int
3085 ext4_readpages(struct file *file, struct address_space *mapping,
3086 struct list_head *pages, unsigned nr_pages)
3087 {
3088 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3089 }
3090
3091 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3092 {
3093 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3094
3095 /*
3096 * If it's a full truncate we just forget about the pending dirtying
3097 */
3098 if (offset == 0)
3099 ClearPageChecked(page);
3100
3101 if (journal)
3102 jbd2_journal_invalidatepage(journal, page, offset);
3103 else
3104 block_invalidatepage(page, offset);
3105 }
3106
3107 static int ext4_releasepage(struct page *page, gfp_t wait)
3108 {
3109 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3110
3111 WARN_ON(PageChecked(page));
3112 if (!page_has_buffers(page))
3113 return 0;
3114 if (journal)
3115 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3116 else
3117 return try_to_free_buffers(page);
3118 }
3119
3120 /*
3121 * If the O_DIRECT write will extend the file then add this inode to the
3122 * orphan list. So recovery will truncate it back to the original size
3123 * if the machine crashes during the write.
3124 *
3125 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3126 * crashes then stale disk data _may_ be exposed inside the file. But current
3127 * VFS code falls back into buffered path in that case so we are safe.
3128 */
3129 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3130 const struct iovec *iov, loff_t offset,
3131 unsigned long nr_segs)
3132 {
3133 struct file *file = iocb->ki_filp;
3134 struct inode *inode = file->f_mapping->host;
3135 struct ext4_inode_info *ei = EXT4_I(inode);
3136 handle_t *handle;
3137 ssize_t ret;
3138 int orphan = 0;
3139 size_t count = iov_length(iov, nr_segs);
3140
3141 if (rw == WRITE) {
3142 loff_t final_size = offset + count;
3143
3144 if (final_size > inode->i_size) {
3145 /* Credits for sb + inode write */
3146 handle = ext4_journal_start(inode, 2);
3147 if (IS_ERR(handle)) {
3148 ret = PTR_ERR(handle);
3149 goto out;
3150 }
3151 ret = ext4_orphan_add(handle, inode);
3152 if (ret) {
3153 ext4_journal_stop(handle);
3154 goto out;
3155 }
3156 orphan = 1;
3157 ei->i_disksize = inode->i_size;
3158 ext4_journal_stop(handle);
3159 }
3160 }
3161
3162 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3163 offset, nr_segs,
3164 ext4_get_block, NULL);
3165
3166 if (orphan) {
3167 int err;
3168
3169 /* Credits for sb + inode write */
3170 handle = ext4_journal_start(inode, 2);
3171 if (IS_ERR(handle)) {
3172 /* This is really bad luck. We've written the data
3173 * but cannot extend i_size. Bail out and pretend
3174 * the write failed... */
3175 ret = PTR_ERR(handle);
3176 goto out;
3177 }
3178 if (inode->i_nlink)
3179 ext4_orphan_del(handle, inode);
3180 if (ret > 0) {
3181 loff_t end = offset + ret;
3182 if (end > inode->i_size) {
3183 ei->i_disksize = end;
3184 i_size_write(inode, end);
3185 /*
3186 * We're going to return a positive `ret'
3187 * here due to non-zero-length I/O, so there's
3188 * no way of reporting error returns from
3189 * ext4_mark_inode_dirty() to userspace. So
3190 * ignore it.
3191 */
3192 ext4_mark_inode_dirty(handle, inode);
3193 }
3194 }
3195 err = ext4_journal_stop(handle);
3196 if (ret == 0)
3197 ret = err;
3198 }
3199 out:
3200 return ret;
3201 }
3202
3203 /*
3204 * Pages can be marked dirty completely asynchronously from ext4's journalling
3205 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3206 * much here because ->set_page_dirty is called under VFS locks. The page is
3207 * not necessarily locked.
3208 *
3209 * We cannot just dirty the page and leave attached buffers clean, because the
3210 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3211 * or jbddirty because all the journalling code will explode.
3212 *
3213 * So what we do is to mark the page "pending dirty" and next time writepage
3214 * is called, propagate that into the buffers appropriately.
3215 */
3216 static int ext4_journalled_set_page_dirty(struct page *page)
3217 {
3218 SetPageChecked(page);
3219 return __set_page_dirty_nobuffers(page);
3220 }
3221
3222 static const struct address_space_operations ext4_ordered_aops = {
3223 .readpage = ext4_readpage,
3224 .readpages = ext4_readpages,
3225 .writepage = ext4_normal_writepage,
3226 .sync_page = block_sync_page,
3227 .write_begin = ext4_write_begin,
3228 .write_end = ext4_ordered_write_end,
3229 .bmap = ext4_bmap,
3230 .invalidatepage = ext4_invalidatepage,
3231 .releasepage = ext4_releasepage,
3232 .direct_IO = ext4_direct_IO,
3233 .migratepage = buffer_migrate_page,
3234 .is_partially_uptodate = block_is_partially_uptodate,
3235 };
3236
3237 static const struct address_space_operations ext4_writeback_aops = {
3238 .readpage = ext4_readpage,
3239 .readpages = ext4_readpages,
3240 .writepage = ext4_normal_writepage,
3241 .sync_page = block_sync_page,
3242 .write_begin = ext4_write_begin,
3243 .write_end = ext4_writeback_write_end,
3244 .bmap = ext4_bmap,
3245 .invalidatepage = ext4_invalidatepage,
3246 .releasepage = ext4_releasepage,
3247 .direct_IO = ext4_direct_IO,
3248 .migratepage = buffer_migrate_page,
3249 .is_partially_uptodate = block_is_partially_uptodate,
3250 };
3251
3252 static const struct address_space_operations ext4_journalled_aops = {
3253 .readpage = ext4_readpage,
3254 .readpages = ext4_readpages,
3255 .writepage = ext4_journalled_writepage,
3256 .sync_page = block_sync_page,
3257 .write_begin = ext4_write_begin,
3258 .write_end = ext4_journalled_write_end,
3259 .set_page_dirty = ext4_journalled_set_page_dirty,
3260 .bmap = ext4_bmap,
3261 .invalidatepage = ext4_invalidatepage,
3262 .releasepage = ext4_releasepage,
3263 .is_partially_uptodate = block_is_partially_uptodate,
3264 };
3265
3266 static const struct address_space_operations ext4_da_aops = {
3267 .readpage = ext4_readpage,
3268 .readpages = ext4_readpages,
3269 .writepage = ext4_da_writepage,
3270 .writepages = ext4_da_writepages,
3271 .sync_page = block_sync_page,
3272 .write_begin = ext4_da_write_begin,
3273 .write_end = ext4_da_write_end,
3274 .bmap = ext4_bmap,
3275 .invalidatepage = ext4_da_invalidatepage,
3276 .releasepage = ext4_releasepage,
3277 .direct_IO = ext4_direct_IO,
3278 .migratepage = buffer_migrate_page,
3279 .is_partially_uptodate = block_is_partially_uptodate,
3280 };
3281
3282 void ext4_set_aops(struct inode *inode)
3283 {
3284 if (ext4_should_order_data(inode) &&
3285 test_opt(inode->i_sb, DELALLOC))
3286 inode->i_mapping->a_ops = &ext4_da_aops;
3287 else if (ext4_should_order_data(inode))
3288 inode->i_mapping->a_ops = &ext4_ordered_aops;
3289 else if (ext4_should_writeback_data(inode) &&
3290 test_opt(inode->i_sb, DELALLOC))
3291 inode->i_mapping->a_ops = &ext4_da_aops;
3292 else if (ext4_should_writeback_data(inode))
3293 inode->i_mapping->a_ops = &ext4_writeback_aops;
3294 else
3295 inode->i_mapping->a_ops = &ext4_journalled_aops;
3296 }
3297
3298 /*
3299 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3300 * up to the end of the block which corresponds to `from'.
3301 * This required during truncate. We need to physically zero the tail end
3302 * of that block so it doesn't yield old data if the file is later grown.
3303 */
3304 int ext4_block_truncate_page(handle_t *handle,
3305 struct address_space *mapping, loff_t from)
3306 {
3307 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3308 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3309 unsigned blocksize, length, pos;
3310 ext4_lblk_t iblock;
3311 struct inode *inode = mapping->host;
3312 struct buffer_head *bh;
3313 struct page *page;
3314 int err = 0;
3315
3316 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3317 if (!page)
3318 return -EINVAL;
3319
3320 blocksize = inode->i_sb->s_blocksize;
3321 length = blocksize - (offset & (blocksize - 1));
3322 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3323
3324 /*
3325 * For "nobh" option, we can only work if we don't need to
3326 * read-in the page - otherwise we create buffers to do the IO.
3327 */
3328 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3329 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3330 zero_user(page, offset, length);
3331 set_page_dirty(page);
3332 goto unlock;
3333 }
3334
3335 if (!page_has_buffers(page))
3336 create_empty_buffers(page, blocksize, 0);
3337
3338 /* Find the buffer that contains "offset" */
3339 bh = page_buffers(page);
3340 pos = blocksize;
3341 while (offset >= pos) {
3342 bh = bh->b_this_page;
3343 iblock++;
3344 pos += blocksize;
3345 }
3346
3347 err = 0;
3348 if (buffer_freed(bh)) {
3349 BUFFER_TRACE(bh, "freed: skip");
3350 goto unlock;
3351 }
3352
3353 if (!buffer_mapped(bh)) {
3354 BUFFER_TRACE(bh, "unmapped");
3355 ext4_get_block(inode, iblock, bh, 0);
3356 /* unmapped? It's a hole - nothing to do */
3357 if (!buffer_mapped(bh)) {
3358 BUFFER_TRACE(bh, "still unmapped");
3359 goto unlock;
3360 }
3361 }
3362
3363 /* Ok, it's mapped. Make sure it's up-to-date */
3364 if (PageUptodate(page))
3365 set_buffer_uptodate(bh);
3366
3367 if (!buffer_uptodate(bh)) {
3368 err = -EIO;
3369 ll_rw_block(READ, 1, &bh);
3370 wait_on_buffer(bh);
3371 /* Uhhuh. Read error. Complain and punt. */
3372 if (!buffer_uptodate(bh))
3373 goto unlock;
3374 }
3375
3376 if (ext4_should_journal_data(inode)) {
3377 BUFFER_TRACE(bh, "get write access");
3378 err = ext4_journal_get_write_access(handle, bh);
3379 if (err)
3380 goto unlock;
3381 }
3382
3383 zero_user(page, offset, length);
3384
3385 BUFFER_TRACE(bh, "zeroed end of block");
3386
3387 err = 0;
3388 if (ext4_should_journal_data(inode)) {
3389 err = ext4_handle_dirty_metadata(handle, inode, bh);
3390 } else {
3391 if (ext4_should_order_data(inode))
3392 err = ext4_jbd2_file_inode(handle, inode);
3393 mark_buffer_dirty(bh);
3394 }
3395
3396 unlock:
3397 unlock_page(page);
3398 page_cache_release(page);
3399 return err;
3400 }
3401
3402 /*
3403 * Probably it should be a library function... search for first non-zero word
3404 * or memcmp with zero_page, whatever is better for particular architecture.
3405 * Linus?
3406 */
3407 static inline int all_zeroes(__le32 *p, __le32 *q)
3408 {
3409 while (p < q)
3410 if (*p++)
3411 return 0;
3412 return 1;
3413 }
3414
3415 /**
3416 * ext4_find_shared - find the indirect blocks for partial truncation.
3417 * @inode: inode in question
3418 * @depth: depth of the affected branch
3419 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3420 * @chain: place to store the pointers to partial indirect blocks
3421 * @top: place to the (detached) top of branch
3422 *
3423 * This is a helper function used by ext4_truncate().
3424 *
3425 * When we do truncate() we may have to clean the ends of several
3426 * indirect blocks but leave the blocks themselves alive. Block is
3427 * partially truncated if some data below the new i_size is refered
3428 * from it (and it is on the path to the first completely truncated
3429 * data block, indeed). We have to free the top of that path along
3430 * with everything to the right of the path. Since no allocation
3431 * past the truncation point is possible until ext4_truncate()
3432 * finishes, we may safely do the latter, but top of branch may
3433 * require special attention - pageout below the truncation point
3434 * might try to populate it.
3435 *
3436 * We atomically detach the top of branch from the tree, store the
3437 * block number of its root in *@top, pointers to buffer_heads of
3438 * partially truncated blocks - in @chain[].bh and pointers to
3439 * their last elements that should not be removed - in
3440 * @chain[].p. Return value is the pointer to last filled element
3441 * of @chain.
3442 *
3443 * The work left to caller to do the actual freeing of subtrees:
3444 * a) free the subtree starting from *@top
3445 * b) free the subtrees whose roots are stored in
3446 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3447 * c) free the subtrees growing from the inode past the @chain[0].
3448 * (no partially truncated stuff there). */
3449
3450 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3451 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3452 {
3453 Indirect *partial, *p;
3454 int k, err;
3455
3456 *top = 0;
3457 /* Make k index the deepest non-null offest + 1 */
3458 for (k = depth; k > 1 && !offsets[k-1]; k--)
3459 ;
3460 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3461 /* Writer: pointers */
3462 if (!partial)
3463 partial = chain + k-1;
3464 /*
3465 * If the branch acquired continuation since we've looked at it -
3466 * fine, it should all survive and (new) top doesn't belong to us.
3467 */
3468 if (!partial->key && *partial->p)
3469 /* Writer: end */
3470 goto no_top;
3471 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3472 ;
3473 /*
3474 * OK, we've found the last block that must survive. The rest of our
3475 * branch should be detached before unlocking. However, if that rest
3476 * of branch is all ours and does not grow immediately from the inode
3477 * it's easier to cheat and just decrement partial->p.
3478 */
3479 if (p == chain + k - 1 && p > chain) {
3480 p->p--;
3481 } else {
3482 *top = *p->p;
3483 /* Nope, don't do this in ext4. Must leave the tree intact */
3484 #if 0
3485 *p->p = 0;
3486 #endif
3487 }
3488 /* Writer: end */
3489
3490 while (partial > p) {
3491 brelse(partial->bh);
3492 partial--;
3493 }
3494 no_top:
3495 return partial;
3496 }
3497
3498 /*
3499 * Zero a number of block pointers in either an inode or an indirect block.
3500 * If we restart the transaction we must again get write access to the
3501 * indirect block for further modification.
3502 *
3503 * We release `count' blocks on disk, but (last - first) may be greater
3504 * than `count' because there can be holes in there.
3505 */
3506 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3507 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3508 unsigned long count, __le32 *first, __le32 *last)
3509 {
3510 __le32 *p;
3511 if (try_to_extend_transaction(handle, inode)) {
3512 if (bh) {
3513 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3514 ext4_handle_dirty_metadata(handle, inode, bh);
3515 }
3516 ext4_mark_inode_dirty(handle, inode);
3517 ext4_journal_test_restart(handle, inode);
3518 if (bh) {
3519 BUFFER_TRACE(bh, "retaking write access");
3520 ext4_journal_get_write_access(handle, bh);
3521 }
3522 }
3523
3524 /*
3525 * Any buffers which are on the journal will be in memory. We find
3526 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3527 * on them. We've already detached each block from the file, so
3528 * bforget() in jbd2_journal_forget() should be safe.
3529 *
3530 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3531 */
3532 for (p = first; p < last; p++) {
3533 u32 nr = le32_to_cpu(*p);
3534 if (nr) {
3535 struct buffer_head *tbh;
3536
3537 *p = 0;
3538 tbh = sb_find_get_block(inode->i_sb, nr);
3539 ext4_forget(handle, 0, inode, tbh, nr);
3540 }
3541 }
3542
3543 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3544 }
3545
3546 /**
3547 * ext4_free_data - free a list of data blocks
3548 * @handle: handle for this transaction
3549 * @inode: inode we are dealing with
3550 * @this_bh: indirect buffer_head which contains *@first and *@last
3551 * @first: array of block numbers
3552 * @last: points immediately past the end of array
3553 *
3554 * We are freeing all blocks refered from that array (numbers are stored as
3555 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3556 *
3557 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3558 * blocks are contiguous then releasing them at one time will only affect one
3559 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3560 * actually use a lot of journal space.
3561 *
3562 * @this_bh will be %NULL if @first and @last point into the inode's direct
3563 * block pointers.
3564 */
3565 static void ext4_free_data(handle_t *handle, struct inode *inode,
3566 struct buffer_head *this_bh,
3567 __le32 *first, __le32 *last)
3568 {
3569 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3570 unsigned long count = 0; /* Number of blocks in the run */
3571 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3572 corresponding to
3573 block_to_free */
3574 ext4_fsblk_t nr; /* Current block # */
3575 __le32 *p; /* Pointer into inode/ind
3576 for current block */
3577 int err;
3578
3579 if (this_bh) { /* For indirect block */
3580 BUFFER_TRACE(this_bh, "get_write_access");
3581 err = ext4_journal_get_write_access(handle, this_bh);
3582 /* Important: if we can't update the indirect pointers
3583 * to the blocks, we can't free them. */
3584 if (err)
3585 return;
3586 }
3587
3588 for (p = first; p < last; p++) {
3589 nr = le32_to_cpu(*p);
3590 if (nr) {
3591 /* accumulate blocks to free if they're contiguous */
3592 if (count == 0) {
3593 block_to_free = nr;
3594 block_to_free_p = p;
3595 count = 1;
3596 } else if (nr == block_to_free + count) {
3597 count++;
3598 } else {
3599 ext4_clear_blocks(handle, inode, this_bh,
3600 block_to_free,
3601 count, block_to_free_p, p);
3602 block_to_free = nr;
3603 block_to_free_p = p;
3604 count = 1;
3605 }
3606 }
3607 }
3608
3609 if (count > 0)
3610 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3611 count, block_to_free_p, p);
3612
3613 if (this_bh) {
3614 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3615
3616 /*
3617 * The buffer head should have an attached journal head at this
3618 * point. However, if the data is corrupted and an indirect
3619 * block pointed to itself, it would have been detached when
3620 * the block was cleared. Check for this instead of OOPSing.
3621 */
3622 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3623 ext4_handle_dirty_metadata(handle, inode, this_bh);
3624 else
3625 ext4_error(inode->i_sb, __func__,
3626 "circular indirect block detected, "
3627 "inode=%lu, block=%llu",
3628 inode->i_ino,
3629 (unsigned long long) this_bh->b_blocknr);
3630 }
3631 }
3632
3633 /**
3634 * ext4_free_branches - free an array of branches
3635 * @handle: JBD handle for this transaction
3636 * @inode: inode we are dealing with
3637 * @parent_bh: the buffer_head which contains *@first and *@last
3638 * @first: array of block numbers
3639 * @last: pointer immediately past the end of array
3640 * @depth: depth of the branches to free
3641 *
3642 * We are freeing all blocks refered from these branches (numbers are
3643 * stored as little-endian 32-bit) and updating @inode->i_blocks
3644 * appropriately.
3645 */
3646 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3647 struct buffer_head *parent_bh,
3648 __le32 *first, __le32 *last, int depth)
3649 {
3650 ext4_fsblk_t nr;
3651 __le32 *p;
3652
3653 if (ext4_handle_is_aborted(handle))
3654 return;
3655
3656 if (depth--) {
3657 struct buffer_head *bh;
3658 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3659 p = last;
3660 while (--p >= first) {
3661 nr = le32_to_cpu(*p);
3662 if (!nr)
3663 continue; /* A hole */
3664
3665 /* Go read the buffer for the next level down */
3666 bh = sb_bread(inode->i_sb, nr);
3667
3668 /*
3669 * A read failure? Report error and clear slot
3670 * (should be rare).
3671 */
3672 if (!bh) {
3673 ext4_error(inode->i_sb, "ext4_free_branches",
3674 "Read failure, inode=%lu, block=%llu",
3675 inode->i_ino, nr);
3676 continue;
3677 }
3678
3679 /* This zaps the entire block. Bottom up. */
3680 BUFFER_TRACE(bh, "free child branches");
3681 ext4_free_branches(handle, inode, bh,
3682 (__le32 *) bh->b_data,
3683 (__le32 *) bh->b_data + addr_per_block,
3684 depth);
3685
3686 /*
3687 * We've probably journalled the indirect block several
3688 * times during the truncate. But it's no longer
3689 * needed and we now drop it from the transaction via
3690 * jbd2_journal_revoke().
3691 *
3692 * That's easy if it's exclusively part of this
3693 * transaction. But if it's part of the committing
3694 * transaction then jbd2_journal_forget() will simply
3695 * brelse() it. That means that if the underlying
3696 * block is reallocated in ext4_get_block(),
3697 * unmap_underlying_metadata() will find this block
3698 * and will try to get rid of it. damn, damn.
3699 *
3700 * If this block has already been committed to the
3701 * journal, a revoke record will be written. And
3702 * revoke records must be emitted *before* clearing
3703 * this block's bit in the bitmaps.
3704 */
3705 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3706
3707 /*
3708 * Everything below this this pointer has been
3709 * released. Now let this top-of-subtree go.
3710 *
3711 * We want the freeing of this indirect block to be
3712 * atomic in the journal with the updating of the
3713 * bitmap block which owns it. So make some room in
3714 * the journal.
3715 *
3716 * We zero the parent pointer *after* freeing its
3717 * pointee in the bitmaps, so if extend_transaction()
3718 * for some reason fails to put the bitmap changes and
3719 * the release into the same transaction, recovery
3720 * will merely complain about releasing a free block,
3721 * rather than leaking blocks.
3722 */
3723 if (ext4_handle_is_aborted(handle))
3724 return;
3725 if (try_to_extend_transaction(handle, inode)) {
3726 ext4_mark_inode_dirty(handle, inode);
3727 ext4_journal_test_restart(handle, inode);
3728 }
3729
3730 ext4_free_blocks(handle, inode, nr, 1, 1);
3731
3732 if (parent_bh) {
3733 /*
3734 * The block which we have just freed is
3735 * pointed to by an indirect block: journal it
3736 */
3737 BUFFER_TRACE(parent_bh, "get_write_access");
3738 if (!ext4_journal_get_write_access(handle,
3739 parent_bh)){
3740 *p = 0;
3741 BUFFER_TRACE(parent_bh,
3742 "call ext4_handle_dirty_metadata");
3743 ext4_handle_dirty_metadata(handle,
3744 inode,
3745 parent_bh);
3746 }
3747 }
3748 }
3749 } else {
3750 /* We have reached the bottom of the tree. */
3751 BUFFER_TRACE(parent_bh, "free data blocks");
3752 ext4_free_data(handle, inode, parent_bh, first, last);
3753 }
3754 }
3755
3756 int ext4_can_truncate(struct inode *inode)
3757 {
3758 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3759 return 0;
3760 if (S_ISREG(inode->i_mode))
3761 return 1;
3762 if (S_ISDIR(inode->i_mode))
3763 return 1;
3764 if (S_ISLNK(inode->i_mode))
3765 return !ext4_inode_is_fast_symlink(inode);
3766 return 0;
3767 }
3768
3769 /*
3770 * ext4_truncate()
3771 *
3772 * We block out ext4_get_block() block instantiations across the entire
3773 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3774 * simultaneously on behalf of the same inode.
3775 *
3776 * As we work through the truncate and commmit bits of it to the journal there
3777 * is one core, guiding principle: the file's tree must always be consistent on
3778 * disk. We must be able to restart the truncate after a crash.
3779 *
3780 * The file's tree may be transiently inconsistent in memory (although it
3781 * probably isn't), but whenever we close off and commit a journal transaction,
3782 * the contents of (the filesystem + the journal) must be consistent and
3783 * restartable. It's pretty simple, really: bottom up, right to left (although
3784 * left-to-right works OK too).
3785 *
3786 * Note that at recovery time, journal replay occurs *before* the restart of
3787 * truncate against the orphan inode list.
3788 *
3789 * The committed inode has the new, desired i_size (which is the same as
3790 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3791 * that this inode's truncate did not complete and it will again call
3792 * ext4_truncate() to have another go. So there will be instantiated blocks
3793 * to the right of the truncation point in a crashed ext4 filesystem. But
3794 * that's fine - as long as they are linked from the inode, the post-crash
3795 * ext4_truncate() run will find them and release them.
3796 */
3797 void ext4_truncate(struct inode *inode)
3798 {
3799 handle_t *handle;
3800 struct ext4_inode_info *ei = EXT4_I(inode);
3801 __le32 *i_data = ei->i_data;
3802 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3803 struct address_space *mapping = inode->i_mapping;
3804 ext4_lblk_t offsets[4];
3805 Indirect chain[4];
3806 Indirect *partial;
3807 __le32 nr = 0;
3808 int n;
3809 ext4_lblk_t last_block;
3810 unsigned blocksize = inode->i_sb->s_blocksize;
3811
3812 if (!ext4_can_truncate(inode))
3813 return;
3814
3815 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3816 ext4_ext_truncate(inode);
3817 return;
3818 }
3819
3820 handle = start_transaction(inode);
3821 if (IS_ERR(handle))
3822 return; /* AKPM: return what? */
3823
3824 last_block = (inode->i_size + blocksize-1)
3825 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3826
3827 if (inode->i_size & (blocksize - 1))
3828 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3829 goto out_stop;
3830
3831 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3832 if (n == 0)
3833 goto out_stop; /* error */
3834
3835 /*
3836 * OK. This truncate is going to happen. We add the inode to the
3837 * orphan list, so that if this truncate spans multiple transactions,
3838 * and we crash, we will resume the truncate when the filesystem
3839 * recovers. It also marks the inode dirty, to catch the new size.
3840 *
3841 * Implication: the file must always be in a sane, consistent
3842 * truncatable state while each transaction commits.
3843 */
3844 if (ext4_orphan_add(handle, inode))
3845 goto out_stop;
3846
3847 /*
3848 * From here we block out all ext4_get_block() callers who want to
3849 * modify the block allocation tree.
3850 */
3851 down_write(&ei->i_data_sem);
3852
3853 ext4_discard_preallocations(inode);
3854
3855 /*
3856 * The orphan list entry will now protect us from any crash which
3857 * occurs before the truncate completes, so it is now safe to propagate
3858 * the new, shorter inode size (held for now in i_size) into the
3859 * on-disk inode. We do this via i_disksize, which is the value which
3860 * ext4 *really* writes onto the disk inode.
3861 */
3862 ei->i_disksize = inode->i_size;
3863
3864 if (n == 1) { /* direct blocks */
3865 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3866 i_data + EXT4_NDIR_BLOCKS);
3867 goto do_indirects;
3868 }
3869
3870 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3871 /* Kill the top of shared branch (not detached) */
3872 if (nr) {
3873 if (partial == chain) {
3874 /* Shared branch grows from the inode */
3875 ext4_free_branches(handle, inode, NULL,
3876 &nr, &nr+1, (chain+n-1) - partial);
3877 *partial->p = 0;
3878 /*
3879 * We mark the inode dirty prior to restart,
3880 * and prior to stop. No need for it here.
3881 */
3882 } else {
3883 /* Shared branch grows from an indirect block */
3884 BUFFER_TRACE(partial->bh, "get_write_access");
3885 ext4_free_branches(handle, inode, partial->bh,
3886 partial->p,
3887 partial->p+1, (chain+n-1) - partial);
3888 }
3889 }
3890 /* Clear the ends of indirect blocks on the shared branch */
3891 while (partial > chain) {
3892 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3893 (__le32*)partial->bh->b_data+addr_per_block,
3894 (chain+n-1) - partial);
3895 BUFFER_TRACE(partial->bh, "call brelse");
3896 brelse (partial->bh);
3897 partial--;
3898 }
3899 do_indirects:
3900 /* Kill the remaining (whole) subtrees */
3901 switch (offsets[0]) {
3902 default:
3903 nr = i_data[EXT4_IND_BLOCK];
3904 if (nr) {
3905 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3906 i_data[EXT4_IND_BLOCK] = 0;
3907 }
3908 case EXT4_IND_BLOCK:
3909 nr = i_data[EXT4_DIND_BLOCK];
3910 if (nr) {
3911 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3912 i_data[EXT4_DIND_BLOCK] = 0;
3913 }
3914 case EXT4_DIND_BLOCK:
3915 nr = i_data[EXT4_TIND_BLOCK];
3916 if (nr) {
3917 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3918 i_data[EXT4_TIND_BLOCK] = 0;
3919 }
3920 case EXT4_TIND_BLOCK:
3921 ;
3922 }
3923
3924 up_write(&ei->i_data_sem);
3925 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3926 ext4_mark_inode_dirty(handle, inode);
3927
3928 /*
3929 * In a multi-transaction truncate, we only make the final transaction
3930 * synchronous
3931 */
3932 if (IS_SYNC(inode))
3933 ext4_handle_sync(handle);
3934 out_stop:
3935 /*
3936 * If this was a simple ftruncate(), and the file will remain alive
3937 * then we need to clear up the orphan record which we created above.
3938 * However, if this was a real unlink then we were called by
3939 * ext4_delete_inode(), and we allow that function to clean up the
3940 * orphan info for us.
3941 */
3942 if (inode->i_nlink)
3943 ext4_orphan_del(handle, inode);
3944
3945 ext4_journal_stop(handle);
3946 }
3947
3948 /*
3949 * ext4_get_inode_loc returns with an extra refcount against the inode's
3950 * underlying buffer_head on success. If 'in_mem' is true, we have all
3951 * data in memory that is needed to recreate the on-disk version of this
3952 * inode.
3953 */
3954 static int __ext4_get_inode_loc(struct inode *inode,
3955 struct ext4_iloc *iloc, int in_mem)
3956 {
3957 struct ext4_group_desc *gdp;
3958 struct buffer_head *bh;
3959 struct super_block *sb = inode->i_sb;
3960 ext4_fsblk_t block;
3961 int inodes_per_block, inode_offset;
3962
3963 iloc->bh = NULL;
3964 if (!ext4_valid_inum(sb, inode->i_ino))
3965 return -EIO;
3966
3967 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3968 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3969 if (!gdp)
3970 return -EIO;
3971
3972 /*
3973 * Figure out the offset within the block group inode table
3974 */
3975 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3976 inode_offset = ((inode->i_ino - 1) %
3977 EXT4_INODES_PER_GROUP(sb));
3978 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3979 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3980
3981 bh = sb_getblk(sb, block);
3982 if (!bh) {
3983 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3984 "inode block - inode=%lu, block=%llu",
3985 inode->i_ino, block);
3986 return -EIO;
3987 }
3988 if (!buffer_uptodate(bh)) {
3989 lock_buffer(bh);
3990
3991 /*
3992 * If the buffer has the write error flag, we have failed
3993 * to write out another inode in the same block. In this
3994 * case, we don't have to read the block because we may
3995 * read the old inode data successfully.
3996 */
3997 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3998 set_buffer_uptodate(bh);
3999
4000 if (buffer_uptodate(bh)) {
4001 /* someone brought it uptodate while we waited */
4002 unlock_buffer(bh);
4003 goto has_buffer;
4004 }
4005
4006 /*
4007 * If we have all information of the inode in memory and this
4008 * is the only valid inode in the block, we need not read the
4009 * block.
4010 */
4011 if (in_mem) {
4012 struct buffer_head *bitmap_bh;
4013 int i, start;
4014
4015 start = inode_offset & ~(inodes_per_block - 1);
4016
4017 /* Is the inode bitmap in cache? */
4018 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4019 if (!bitmap_bh)
4020 goto make_io;
4021
4022 /*
4023 * If the inode bitmap isn't in cache then the
4024 * optimisation may end up performing two reads instead
4025 * of one, so skip it.
4026 */
4027 if (!buffer_uptodate(bitmap_bh)) {
4028 brelse(bitmap_bh);
4029 goto make_io;
4030 }
4031 for (i = start; i < start + inodes_per_block; i++) {
4032 if (i == inode_offset)
4033 continue;
4034 if (ext4_test_bit(i, bitmap_bh->b_data))
4035 break;
4036 }
4037 brelse(bitmap_bh);
4038 if (i == start + inodes_per_block) {
4039 /* all other inodes are free, so skip I/O */
4040 memset(bh->b_data, 0, bh->b_size);
4041 set_buffer_uptodate(bh);
4042 unlock_buffer(bh);
4043 goto has_buffer;
4044 }
4045 }
4046
4047 make_io:
4048 /*
4049 * If we need to do any I/O, try to pre-readahead extra
4050 * blocks from the inode table.
4051 */
4052 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4053 ext4_fsblk_t b, end, table;
4054 unsigned num;
4055
4056 table = ext4_inode_table(sb, gdp);
4057 /* Make sure s_inode_readahead_blks is a power of 2 */
4058 while (EXT4_SB(sb)->s_inode_readahead_blks &
4059 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4060 EXT4_SB(sb)->s_inode_readahead_blks =
4061 (EXT4_SB(sb)->s_inode_readahead_blks &
4062 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4063 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4064 if (table > b)
4065 b = table;
4066 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4067 num = EXT4_INODES_PER_GROUP(sb);
4068 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4070 num -= ext4_itable_unused_count(sb, gdp);
4071 table += num / inodes_per_block;
4072 if (end > table)
4073 end = table;
4074 while (b <= end)
4075 sb_breadahead(sb, b++);
4076 }
4077
4078 /*
4079 * There are other valid inodes in the buffer, this inode
4080 * has in-inode xattrs, or we don't have this inode in memory.
4081 * Read the block from disk.
4082 */
4083 get_bh(bh);
4084 bh->b_end_io = end_buffer_read_sync;
4085 submit_bh(READ_META, bh);
4086 wait_on_buffer(bh);
4087 if (!buffer_uptodate(bh)) {
4088 ext4_error(sb, __func__,
4089 "unable to read inode block - inode=%lu, "
4090 "block=%llu", inode->i_ino, block);
4091 brelse(bh);
4092 return -EIO;
4093 }
4094 }
4095 has_buffer:
4096 iloc->bh = bh;
4097 return 0;
4098 }
4099
4100 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4101 {
4102 /* We have all inode data except xattrs in memory here. */
4103 return __ext4_get_inode_loc(inode, iloc,
4104 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4105 }
4106
4107 void ext4_set_inode_flags(struct inode *inode)
4108 {
4109 unsigned int flags = EXT4_I(inode)->i_flags;
4110
4111 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4112 if (flags & EXT4_SYNC_FL)
4113 inode->i_flags |= S_SYNC;
4114 if (flags & EXT4_APPEND_FL)
4115 inode->i_flags |= S_APPEND;
4116 if (flags & EXT4_IMMUTABLE_FL)
4117 inode->i_flags |= S_IMMUTABLE;
4118 if (flags & EXT4_NOATIME_FL)
4119 inode->i_flags |= S_NOATIME;
4120 if (flags & EXT4_DIRSYNC_FL)
4121 inode->i_flags |= S_DIRSYNC;
4122 }
4123
4124 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4125 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4126 {
4127 unsigned int flags = ei->vfs_inode.i_flags;
4128
4129 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4130 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4131 if (flags & S_SYNC)
4132 ei->i_flags |= EXT4_SYNC_FL;
4133 if (flags & S_APPEND)
4134 ei->i_flags |= EXT4_APPEND_FL;
4135 if (flags & S_IMMUTABLE)
4136 ei->i_flags |= EXT4_IMMUTABLE_FL;
4137 if (flags & S_NOATIME)
4138 ei->i_flags |= EXT4_NOATIME_FL;
4139 if (flags & S_DIRSYNC)
4140 ei->i_flags |= EXT4_DIRSYNC_FL;
4141 }
4142 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4143 struct ext4_inode_info *ei)
4144 {
4145 blkcnt_t i_blocks ;
4146 struct inode *inode = &(ei->vfs_inode);
4147 struct super_block *sb = inode->i_sb;
4148
4149 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4150 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4151 /* we are using combined 48 bit field */
4152 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4153 le32_to_cpu(raw_inode->i_blocks_lo);
4154 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4155 /* i_blocks represent file system block size */
4156 return i_blocks << (inode->i_blkbits - 9);
4157 } else {
4158 return i_blocks;
4159 }
4160 } else {
4161 return le32_to_cpu(raw_inode->i_blocks_lo);
4162 }
4163 }
4164
4165 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4166 {
4167 struct ext4_iloc iloc;
4168 struct ext4_inode *raw_inode;
4169 struct ext4_inode_info *ei;
4170 struct buffer_head *bh;
4171 struct inode *inode;
4172 long ret;
4173 int block;
4174
4175 inode = iget_locked(sb, ino);
4176 if (!inode)
4177 return ERR_PTR(-ENOMEM);
4178 if (!(inode->i_state & I_NEW))
4179 return inode;
4180
4181 ei = EXT4_I(inode);
4182 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4183 ei->i_acl = EXT4_ACL_NOT_CACHED;
4184 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4185 #endif
4186
4187 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4188 if (ret < 0)
4189 goto bad_inode;
4190 bh = iloc.bh;
4191 raw_inode = ext4_raw_inode(&iloc);
4192 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4193 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4194 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4195 if (!(test_opt(inode->i_sb, NO_UID32))) {
4196 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4197 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4198 }
4199 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4200
4201 ei->i_state = 0;
4202 ei->i_dir_start_lookup = 0;
4203 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4204 /* We now have enough fields to check if the inode was active or not.
4205 * This is needed because nfsd might try to access dead inodes
4206 * the test is that same one that e2fsck uses
4207 * NeilBrown 1999oct15
4208 */
4209 if (inode->i_nlink == 0) {
4210 if (inode->i_mode == 0 ||
4211 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4212 /* this inode is deleted */
4213 brelse(bh);
4214 ret = -ESTALE;
4215 goto bad_inode;
4216 }
4217 /* The only unlinked inodes we let through here have
4218 * valid i_mode and are being read by the orphan
4219 * recovery code: that's fine, we're about to complete
4220 * the process of deleting those. */
4221 }
4222 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4223 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4224 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4225 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4226 cpu_to_le32(EXT4_OS_HURD)) {
4227 ei->i_file_acl |=
4228 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4229 }
4230 inode->i_size = ext4_isize(raw_inode);
4231 ei->i_disksize = inode->i_size;
4232 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4233 ei->i_block_group = iloc.block_group;
4234 /*
4235 * NOTE! The in-memory inode i_data array is in little-endian order
4236 * even on big-endian machines: we do NOT byteswap the block numbers!
4237 */
4238 for (block = 0; block < EXT4_N_BLOCKS; block++)
4239 ei->i_data[block] = raw_inode->i_block[block];
4240 INIT_LIST_HEAD(&ei->i_orphan);
4241
4242 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4243 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4244 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4245 EXT4_INODE_SIZE(inode->i_sb)) {
4246 brelse(bh);
4247 ret = -EIO;
4248 goto bad_inode;
4249 }
4250 if (ei->i_extra_isize == 0) {
4251 /* The extra space is currently unused. Use it. */
4252 ei->i_extra_isize = sizeof(struct ext4_inode) -
4253 EXT4_GOOD_OLD_INODE_SIZE;
4254 } else {
4255 __le32 *magic = (void *)raw_inode +
4256 EXT4_GOOD_OLD_INODE_SIZE +
4257 ei->i_extra_isize;
4258 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4259 ei->i_state |= EXT4_STATE_XATTR;
4260 }
4261 } else
4262 ei->i_extra_isize = 0;
4263
4264 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4265 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4266 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4267 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4268
4269 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4270 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4271 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4272 inode->i_version |=
4273 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4274 }
4275
4276 if (S_ISREG(inode->i_mode)) {
4277 inode->i_op = &ext4_file_inode_operations;
4278 inode->i_fop = &ext4_file_operations;
4279 ext4_set_aops(inode);
4280 } else if (S_ISDIR(inode->i_mode)) {
4281 inode->i_op = &ext4_dir_inode_operations;
4282 inode->i_fop = &ext4_dir_operations;
4283 } else if (S_ISLNK(inode->i_mode)) {
4284 if (ext4_inode_is_fast_symlink(inode)) {
4285 inode->i_op = &ext4_fast_symlink_inode_operations;
4286 nd_terminate_link(ei->i_data, inode->i_size,
4287 sizeof(ei->i_data) - 1);
4288 } else {
4289 inode->i_op = &ext4_symlink_inode_operations;
4290 ext4_set_aops(inode);
4291 }
4292 } else {
4293 inode->i_op = &ext4_special_inode_operations;
4294 if (raw_inode->i_block[0])
4295 init_special_inode(inode, inode->i_mode,
4296 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4297 else
4298 init_special_inode(inode, inode->i_mode,
4299 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4300 }
4301 brelse(iloc.bh);
4302 ext4_set_inode_flags(inode);
4303 unlock_new_inode(inode);
4304 return inode;
4305
4306 bad_inode:
4307 iget_failed(inode);
4308 return ERR_PTR(ret);
4309 }
4310
4311 static int ext4_inode_blocks_set(handle_t *handle,
4312 struct ext4_inode *raw_inode,
4313 struct ext4_inode_info *ei)
4314 {
4315 struct inode *inode = &(ei->vfs_inode);
4316 u64 i_blocks = inode->i_blocks;
4317 struct super_block *sb = inode->i_sb;
4318
4319 if (i_blocks <= ~0U) {
4320 /*
4321 * i_blocks can be represnted in a 32 bit variable
4322 * as multiple of 512 bytes
4323 */
4324 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4325 raw_inode->i_blocks_high = 0;
4326 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4327 return 0;
4328 }
4329 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4330 return -EFBIG;
4331
4332 if (i_blocks <= 0xffffffffffffULL) {
4333 /*
4334 * i_blocks can be represented in a 48 bit variable
4335 * as multiple of 512 bytes
4336 */
4337 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4338 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4339 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4340 } else {
4341 ei->i_flags |= EXT4_HUGE_FILE_FL;
4342 /* i_block is stored in file system block size */
4343 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4344 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4345 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4346 }
4347 return 0;
4348 }
4349
4350 /*
4351 * Post the struct inode info into an on-disk inode location in the
4352 * buffer-cache. This gobbles the caller's reference to the
4353 * buffer_head in the inode location struct.
4354 *
4355 * The caller must have write access to iloc->bh.
4356 */
4357 static int ext4_do_update_inode(handle_t *handle,
4358 struct inode *inode,
4359 struct ext4_iloc *iloc)
4360 {
4361 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4362 struct ext4_inode_info *ei = EXT4_I(inode);
4363 struct buffer_head *bh = iloc->bh;
4364 int err = 0, rc, block;
4365
4366 /* For fields not not tracking in the in-memory inode,
4367 * initialise them to zero for new inodes. */
4368 if (ei->i_state & EXT4_STATE_NEW)
4369 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4370
4371 ext4_get_inode_flags(ei);
4372 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4373 if (!(test_opt(inode->i_sb, NO_UID32))) {
4374 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4375 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4376 /*
4377 * Fix up interoperability with old kernels. Otherwise, old inodes get
4378 * re-used with the upper 16 bits of the uid/gid intact
4379 */
4380 if (!ei->i_dtime) {
4381 raw_inode->i_uid_high =
4382 cpu_to_le16(high_16_bits(inode->i_uid));
4383 raw_inode->i_gid_high =
4384 cpu_to_le16(high_16_bits(inode->i_gid));
4385 } else {
4386 raw_inode->i_uid_high = 0;
4387 raw_inode->i_gid_high = 0;
4388 }
4389 } else {
4390 raw_inode->i_uid_low =
4391 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4392 raw_inode->i_gid_low =
4393 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4394 raw_inode->i_uid_high = 0;
4395 raw_inode->i_gid_high = 0;
4396 }
4397 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4398
4399 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4400 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4401 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4402 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4403
4404 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4405 goto out_brelse;
4406 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4407 /* clear the migrate flag in the raw_inode */
4408 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4409 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4410 cpu_to_le32(EXT4_OS_HURD))
4411 raw_inode->i_file_acl_high =
4412 cpu_to_le16(ei->i_file_acl >> 32);
4413 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4414 ext4_isize_set(raw_inode, ei->i_disksize);
4415 if (ei->i_disksize > 0x7fffffffULL) {
4416 struct super_block *sb = inode->i_sb;
4417 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4418 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4419 EXT4_SB(sb)->s_es->s_rev_level ==
4420 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4421 /* If this is the first large file
4422 * created, add a flag to the superblock.
4423 */
4424 err = ext4_journal_get_write_access(handle,
4425 EXT4_SB(sb)->s_sbh);
4426 if (err)
4427 goto out_brelse;
4428 ext4_update_dynamic_rev(sb);
4429 EXT4_SET_RO_COMPAT_FEATURE(sb,
4430 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4431 sb->s_dirt = 1;
4432 ext4_handle_sync(handle);
4433 err = ext4_handle_dirty_metadata(handle, inode,
4434 EXT4_SB(sb)->s_sbh);
4435 }
4436 }
4437 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4438 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4439 if (old_valid_dev(inode->i_rdev)) {
4440 raw_inode->i_block[0] =
4441 cpu_to_le32(old_encode_dev(inode->i_rdev));
4442 raw_inode->i_block[1] = 0;
4443 } else {
4444 raw_inode->i_block[0] = 0;
4445 raw_inode->i_block[1] =
4446 cpu_to_le32(new_encode_dev(inode->i_rdev));
4447 raw_inode->i_block[2] = 0;
4448 }
4449 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4450 raw_inode->i_block[block] = ei->i_data[block];
4451
4452 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4453 if (ei->i_extra_isize) {
4454 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4455 raw_inode->i_version_hi =
4456 cpu_to_le32(inode->i_version >> 32);
4457 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4458 }
4459
4460 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4461 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4462 if (!err)
4463 err = rc;
4464 ei->i_state &= ~EXT4_STATE_NEW;
4465
4466 out_brelse:
4467 brelse(bh);
4468 ext4_std_error(inode->i_sb, err);
4469 return err;
4470 }
4471
4472 /*
4473 * ext4_write_inode()
4474 *
4475 * We are called from a few places:
4476 *
4477 * - Within generic_file_write() for O_SYNC files.
4478 * Here, there will be no transaction running. We wait for any running
4479 * trasnaction to commit.
4480 *
4481 * - Within sys_sync(), kupdate and such.
4482 * We wait on commit, if tol to.
4483 *
4484 * - Within prune_icache() (PF_MEMALLOC == true)
4485 * Here we simply return. We can't afford to block kswapd on the
4486 * journal commit.
4487 *
4488 * In all cases it is actually safe for us to return without doing anything,
4489 * because the inode has been copied into a raw inode buffer in
4490 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4491 * knfsd.
4492 *
4493 * Note that we are absolutely dependent upon all inode dirtiers doing the
4494 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4495 * which we are interested.
4496 *
4497 * It would be a bug for them to not do this. The code:
4498 *
4499 * mark_inode_dirty(inode)
4500 * stuff();
4501 * inode->i_size = expr;
4502 *
4503 * is in error because a kswapd-driven write_inode() could occur while
4504 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4505 * will no longer be on the superblock's dirty inode list.
4506 */
4507 int ext4_write_inode(struct inode *inode, int wait)
4508 {
4509 if (current->flags & PF_MEMALLOC)
4510 return 0;
4511
4512 if (ext4_journal_current_handle()) {
4513 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4514 dump_stack();
4515 return -EIO;
4516 }
4517
4518 if (!wait)
4519 return 0;
4520
4521 return ext4_force_commit(inode->i_sb);
4522 }
4523
4524 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4525 {
4526 int err = 0;
4527
4528 mark_buffer_dirty(bh);
4529 if (inode && inode_needs_sync(inode)) {
4530 sync_dirty_buffer(bh);
4531 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4532 ext4_error(inode->i_sb, __func__,
4533 "IO error syncing inode, "
4534 "inode=%lu, block=%llu",
4535 inode->i_ino,
4536 (unsigned long long)bh->b_blocknr);
4537 err = -EIO;
4538 }
4539 }
4540 return err;
4541 }
4542
4543 /*
4544 * ext4_setattr()
4545 *
4546 * Called from notify_change.
4547 *
4548 * We want to trap VFS attempts to truncate the file as soon as
4549 * possible. In particular, we want to make sure that when the VFS
4550 * shrinks i_size, we put the inode on the orphan list and modify
4551 * i_disksize immediately, so that during the subsequent flushing of
4552 * dirty pages and freeing of disk blocks, we can guarantee that any
4553 * commit will leave the blocks being flushed in an unused state on
4554 * disk. (On recovery, the inode will get truncated and the blocks will
4555 * be freed, so we have a strong guarantee that no future commit will
4556 * leave these blocks visible to the user.)
4557 *
4558 * Another thing we have to assure is that if we are in ordered mode
4559 * and inode is still attached to the committing transaction, we must
4560 * we start writeout of all the dirty pages which are being truncated.
4561 * This way we are sure that all the data written in the previous
4562 * transaction are already on disk (truncate waits for pages under
4563 * writeback).
4564 *
4565 * Called with inode->i_mutex down.
4566 */
4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4568 {
4569 struct inode *inode = dentry->d_inode;
4570 int error, rc = 0;
4571 const unsigned int ia_valid = attr->ia_valid;
4572
4573 error = inode_change_ok(inode, attr);
4574 if (error)
4575 return error;
4576
4577 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4578 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4579 handle_t *handle;
4580
4581 /* (user+group)*(old+new) structure, inode write (sb,
4582 * inode block, ? - but truncate inode update has it) */
4583 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4584 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4585 if (IS_ERR(handle)) {
4586 error = PTR_ERR(handle);
4587 goto err_out;
4588 }
4589 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4590 if (error) {
4591 ext4_journal_stop(handle);
4592 return error;
4593 }
4594 /* Update corresponding info in inode so that everything is in
4595 * one transaction */
4596 if (attr->ia_valid & ATTR_UID)
4597 inode->i_uid = attr->ia_uid;
4598 if (attr->ia_valid & ATTR_GID)
4599 inode->i_gid = attr->ia_gid;
4600 error = ext4_mark_inode_dirty(handle, inode);
4601 ext4_journal_stop(handle);
4602 }
4603
4604 if (attr->ia_valid & ATTR_SIZE) {
4605 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4606 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607
4608 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4609 error = -EFBIG;
4610 goto err_out;
4611 }
4612 }
4613 }
4614
4615 if (S_ISREG(inode->i_mode) &&
4616 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4617 handle_t *handle;
4618
4619 handle = ext4_journal_start(inode, 3);
4620 if (IS_ERR(handle)) {
4621 error = PTR_ERR(handle);
4622 goto err_out;
4623 }
4624
4625 error = ext4_orphan_add(handle, inode);
4626 EXT4_I(inode)->i_disksize = attr->ia_size;
4627 rc = ext4_mark_inode_dirty(handle, inode);
4628 if (!error)
4629 error = rc;
4630 ext4_journal_stop(handle);
4631
4632 if (ext4_should_order_data(inode)) {
4633 error = ext4_begin_ordered_truncate(inode,
4634 attr->ia_size);
4635 if (error) {
4636 /* Do as much error cleanup as possible */
4637 handle = ext4_journal_start(inode, 3);
4638 if (IS_ERR(handle)) {
4639 ext4_orphan_del(NULL, inode);
4640 goto err_out;
4641 }
4642 ext4_orphan_del(handle, inode);
4643 ext4_journal_stop(handle);
4644 goto err_out;
4645 }
4646 }
4647 }
4648
4649 rc = inode_setattr(inode, attr);
4650
4651 /* If inode_setattr's call to ext4_truncate failed to get a
4652 * transaction handle at all, we need to clean up the in-core
4653 * orphan list manually. */
4654 if (inode->i_nlink)
4655 ext4_orphan_del(NULL, inode);
4656
4657 if (!rc && (ia_valid & ATTR_MODE))
4658 rc = ext4_acl_chmod(inode);
4659
4660 err_out:
4661 ext4_std_error(inode->i_sb, error);
4662 if (!error)
4663 error = rc;
4664 return error;
4665 }
4666
4667 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4668 struct kstat *stat)
4669 {
4670 struct inode *inode;
4671 unsigned long delalloc_blocks;
4672
4673 inode = dentry->d_inode;
4674 generic_fillattr(inode, stat);
4675
4676 /*
4677 * We can't update i_blocks if the block allocation is delayed
4678 * otherwise in the case of system crash before the real block
4679 * allocation is done, we will have i_blocks inconsistent with
4680 * on-disk file blocks.
4681 * We always keep i_blocks updated together with real
4682 * allocation. But to not confuse with user, stat
4683 * will return the blocks that include the delayed allocation
4684 * blocks for this file.
4685 */
4686 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4687 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4689
4690 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4691 return 0;
4692 }
4693
4694 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4695 int chunk)
4696 {
4697 int indirects;
4698
4699 /* if nrblocks are contiguous */
4700 if (chunk) {
4701 /*
4702 * With N contiguous data blocks, it need at most
4703 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4704 * 2 dindirect blocks
4705 * 1 tindirect block
4706 */
4707 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4708 return indirects + 3;
4709 }
4710 /*
4711 * if nrblocks are not contiguous, worse case, each block touch
4712 * a indirect block, and each indirect block touch a double indirect
4713 * block, plus a triple indirect block
4714 */
4715 indirects = nrblocks * 2 + 1;
4716 return indirects;
4717 }
4718
4719 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4720 {
4721 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4722 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4723 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4724 }
4725
4726 /*
4727 * Account for index blocks, block groups bitmaps and block group
4728 * descriptor blocks if modify datablocks and index blocks
4729 * worse case, the indexs blocks spread over different block groups
4730 *
4731 * If datablocks are discontiguous, they are possible to spread over
4732 * different block groups too. If they are contiugous, with flexbg,
4733 * they could still across block group boundary.
4734 *
4735 * Also account for superblock, inode, quota and xattr blocks
4736 */
4737 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4738 {
4739 int groups, gdpblocks;
4740 int idxblocks;
4741 int ret = 0;
4742
4743 /*
4744 * How many index blocks need to touch to modify nrblocks?
4745 * The "Chunk" flag indicating whether the nrblocks is
4746 * physically contiguous on disk
4747 *
4748 * For Direct IO and fallocate, they calls get_block to allocate
4749 * one single extent at a time, so they could set the "Chunk" flag
4750 */
4751 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4752
4753 ret = idxblocks;
4754
4755 /*
4756 * Now let's see how many group bitmaps and group descriptors need
4757 * to account
4758 */
4759 groups = idxblocks;
4760 if (chunk)
4761 groups += 1;
4762 else
4763 groups += nrblocks;
4764
4765 gdpblocks = groups;
4766 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4767 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4768 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4769 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4770
4771 /* bitmaps and block group descriptor blocks */
4772 ret += groups + gdpblocks;
4773
4774 /* Blocks for super block, inode, quota and xattr blocks */
4775 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4776
4777 return ret;
4778 }
4779
4780 /*
4781 * Calulate the total number of credits to reserve to fit
4782 * the modification of a single pages into a single transaction,
4783 * which may include multiple chunks of block allocations.
4784 *
4785 * This could be called via ext4_write_begin()
4786 *
4787 * We need to consider the worse case, when
4788 * one new block per extent.
4789 */
4790 int ext4_writepage_trans_blocks(struct inode *inode)
4791 {
4792 int bpp = ext4_journal_blocks_per_page(inode);
4793 int ret;
4794
4795 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4796
4797 /* Account for data blocks for journalled mode */
4798 if (ext4_should_journal_data(inode))
4799 ret += bpp;
4800 return ret;
4801 }
4802
4803 /*
4804 * Calculate the journal credits for a chunk of data modification.
4805 *
4806 * This is called from DIO, fallocate or whoever calling
4807 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4808 *
4809 * journal buffers for data blocks are not included here, as DIO
4810 * and fallocate do no need to journal data buffers.
4811 */
4812 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4813 {
4814 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4815 }
4816
4817 /*
4818 * The caller must have previously called ext4_reserve_inode_write().
4819 * Give this, we know that the caller already has write access to iloc->bh.
4820 */
4821 int ext4_mark_iloc_dirty(handle_t *handle,
4822 struct inode *inode, struct ext4_iloc *iloc)
4823 {
4824 int err = 0;
4825
4826 if (test_opt(inode->i_sb, I_VERSION))
4827 inode_inc_iversion(inode);
4828
4829 /* the do_update_inode consumes one bh->b_count */
4830 get_bh(iloc->bh);
4831
4832 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4833 err = ext4_do_update_inode(handle, inode, iloc);
4834 put_bh(iloc->bh);
4835 return err;
4836 }
4837
4838 /*
4839 * On success, We end up with an outstanding reference count against
4840 * iloc->bh. This _must_ be cleaned up later.
4841 */
4842
4843 int
4844 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4845 struct ext4_iloc *iloc)
4846 {
4847 int err;
4848
4849 err = ext4_get_inode_loc(inode, iloc);
4850 if (!err) {
4851 BUFFER_TRACE(iloc->bh, "get_write_access");
4852 err = ext4_journal_get_write_access(handle, iloc->bh);
4853 if (err) {
4854 brelse(iloc->bh);
4855 iloc->bh = NULL;
4856 }
4857 }
4858 ext4_std_error(inode->i_sb, err);
4859 return err;
4860 }
4861
4862 /*
4863 * Expand an inode by new_extra_isize bytes.
4864 * Returns 0 on success or negative error number on failure.
4865 */
4866 static int ext4_expand_extra_isize(struct inode *inode,
4867 unsigned int new_extra_isize,
4868 struct ext4_iloc iloc,
4869 handle_t *handle)
4870 {
4871 struct ext4_inode *raw_inode;
4872 struct ext4_xattr_ibody_header *header;
4873 struct ext4_xattr_entry *entry;
4874
4875 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4876 return 0;
4877
4878 raw_inode = ext4_raw_inode(&iloc);
4879
4880 header = IHDR(inode, raw_inode);
4881 entry = IFIRST(header);
4882
4883 /* No extended attributes present */
4884 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4885 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4886 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4887 new_extra_isize);
4888 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4889 return 0;
4890 }
4891
4892 /* try to expand with EAs present */
4893 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4894 raw_inode, handle);
4895 }
4896
4897 /*
4898 * What we do here is to mark the in-core inode as clean with respect to inode
4899 * dirtiness (it may still be data-dirty).
4900 * This means that the in-core inode may be reaped by prune_icache
4901 * without having to perform any I/O. This is a very good thing,
4902 * because *any* task may call prune_icache - even ones which
4903 * have a transaction open against a different journal.
4904 *
4905 * Is this cheating? Not really. Sure, we haven't written the
4906 * inode out, but prune_icache isn't a user-visible syncing function.
4907 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4908 * we start and wait on commits.
4909 *
4910 * Is this efficient/effective? Well, we're being nice to the system
4911 * by cleaning up our inodes proactively so they can be reaped
4912 * without I/O. But we are potentially leaving up to five seconds'
4913 * worth of inodes floating about which prune_icache wants us to
4914 * write out. One way to fix that would be to get prune_icache()
4915 * to do a write_super() to free up some memory. It has the desired
4916 * effect.
4917 */
4918 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4919 {
4920 struct ext4_iloc iloc;
4921 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4922 static unsigned int mnt_count;
4923 int err, ret;
4924
4925 might_sleep();
4926 err = ext4_reserve_inode_write(handle, inode, &iloc);
4927 if (ext4_handle_valid(handle) &&
4928 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4929 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4930 /*
4931 * We need extra buffer credits since we may write into EA block
4932 * with this same handle. If journal_extend fails, then it will
4933 * only result in a minor loss of functionality for that inode.
4934 * If this is felt to be critical, then e2fsck should be run to
4935 * force a large enough s_min_extra_isize.
4936 */
4937 if ((jbd2_journal_extend(handle,
4938 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4939 ret = ext4_expand_extra_isize(inode,
4940 sbi->s_want_extra_isize,
4941 iloc, handle);
4942 if (ret) {
4943 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4944 if (mnt_count !=
4945 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4946 ext4_warning(inode->i_sb, __func__,
4947 "Unable to expand inode %lu. Delete"
4948 " some EAs or run e2fsck.",
4949 inode->i_ino);
4950 mnt_count =
4951 le16_to_cpu(sbi->s_es->s_mnt_count);
4952 }
4953 }
4954 }
4955 }
4956 if (!err)
4957 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4958 return err;
4959 }
4960
4961 /*
4962 * ext4_dirty_inode() is called from __mark_inode_dirty()
4963 *
4964 * We're really interested in the case where a file is being extended.
4965 * i_size has been changed by generic_commit_write() and we thus need
4966 * to include the updated inode in the current transaction.
4967 *
4968 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4969 * are allocated to the file.
4970 *
4971 * If the inode is marked synchronous, we don't honour that here - doing
4972 * so would cause a commit on atime updates, which we don't bother doing.
4973 * We handle synchronous inodes at the highest possible level.
4974 */
4975 void ext4_dirty_inode(struct inode *inode)
4976 {
4977 handle_t *current_handle = ext4_journal_current_handle();
4978 handle_t *handle;
4979
4980 if (!ext4_handle_valid(current_handle)) {
4981 ext4_mark_inode_dirty(current_handle, inode);
4982 return;
4983 }
4984
4985 handle = ext4_journal_start(inode, 2);
4986 if (IS_ERR(handle))
4987 goto out;
4988 if (current_handle &&
4989 current_handle->h_transaction != handle->h_transaction) {
4990 /* This task has a transaction open against a different fs */
4991 printk(KERN_EMERG "%s: transactions do not match!\n",
4992 __func__);
4993 } else {
4994 jbd_debug(5, "marking dirty. outer handle=%p\n",
4995 current_handle);
4996 ext4_mark_inode_dirty(handle, inode);
4997 }
4998 ext4_journal_stop(handle);
4999 out:
5000 return;
5001 }
5002
5003 #if 0
5004 /*
5005 * Bind an inode's backing buffer_head into this transaction, to prevent
5006 * it from being flushed to disk early. Unlike
5007 * ext4_reserve_inode_write, this leaves behind no bh reference and
5008 * returns no iloc structure, so the caller needs to repeat the iloc
5009 * lookup to mark the inode dirty later.
5010 */
5011 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5012 {
5013 struct ext4_iloc iloc;
5014
5015 int err = 0;
5016 if (handle) {
5017 err = ext4_get_inode_loc(inode, &iloc);
5018 if (!err) {
5019 BUFFER_TRACE(iloc.bh, "get_write_access");
5020 err = jbd2_journal_get_write_access(handle, iloc.bh);
5021 if (!err)
5022 err = ext4_handle_dirty_metadata(handle,
5023 inode,
5024 iloc.bh);
5025 brelse(iloc.bh);
5026 }
5027 }
5028 ext4_std_error(inode->i_sb, err);
5029 return err;
5030 }
5031 #endif
5032
5033 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5034 {
5035 journal_t *journal;
5036 handle_t *handle;
5037 int err;
5038
5039 /*
5040 * We have to be very careful here: changing a data block's
5041 * journaling status dynamically is dangerous. If we write a
5042 * data block to the journal, change the status and then delete
5043 * that block, we risk forgetting to revoke the old log record
5044 * from the journal and so a subsequent replay can corrupt data.
5045 * So, first we make sure that the journal is empty and that
5046 * nobody is changing anything.
5047 */
5048
5049 journal = EXT4_JOURNAL(inode);
5050 if (!journal)
5051 return 0;
5052 if (is_journal_aborted(journal))
5053 return -EROFS;
5054
5055 jbd2_journal_lock_updates(journal);
5056 jbd2_journal_flush(journal);
5057
5058 /*
5059 * OK, there are no updates running now, and all cached data is
5060 * synced to disk. We are now in a completely consistent state
5061 * which doesn't have anything in the journal, and we know that
5062 * no filesystem updates are running, so it is safe to modify
5063 * the inode's in-core data-journaling state flag now.
5064 */
5065
5066 if (val)
5067 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5068 else
5069 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5070 ext4_set_aops(inode);
5071
5072 jbd2_journal_unlock_updates(journal);
5073
5074 /* Finally we can mark the inode as dirty. */
5075
5076 handle = ext4_journal_start(inode, 1);
5077 if (IS_ERR(handle))
5078 return PTR_ERR(handle);
5079
5080 err = ext4_mark_inode_dirty(handle, inode);
5081 ext4_handle_sync(handle);
5082 ext4_journal_stop(handle);
5083 ext4_std_error(inode->i_sb, err);
5084
5085 return err;
5086 }
5087
5088 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5089 {
5090 return !buffer_mapped(bh);
5091 }
5092
5093 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5094 {
5095 loff_t size;
5096 unsigned long len;
5097 int ret = -EINVAL;
5098 void *fsdata;
5099 struct file *file = vma->vm_file;
5100 struct inode *inode = file->f_path.dentry->d_inode;
5101 struct address_space *mapping = inode->i_mapping;
5102
5103 /*
5104 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5105 * get i_mutex because we are already holding mmap_sem.
5106 */
5107 down_read(&inode->i_alloc_sem);
5108 size = i_size_read(inode);
5109 if (page->mapping != mapping || size <= page_offset(page)
5110 || !PageUptodate(page)) {
5111 /* page got truncated from under us? */
5112 goto out_unlock;
5113 }
5114 ret = 0;
5115 if (PageMappedToDisk(page))
5116 goto out_unlock;
5117
5118 if (page->index == size >> PAGE_CACHE_SHIFT)
5119 len = size & ~PAGE_CACHE_MASK;
5120 else
5121 len = PAGE_CACHE_SIZE;
5122
5123 if (page_has_buffers(page)) {
5124 /* return if we have all the buffers mapped */
5125 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5126 ext4_bh_unmapped))
5127 goto out_unlock;
5128 }
5129 /*
5130 * OK, we need to fill the hole... Do write_begin write_end
5131 * to do block allocation/reservation.We are not holding
5132 * inode.i__mutex here. That allow * parallel write_begin,
5133 * write_end call. lock_page prevent this from happening
5134 * on the same page though
5135 */
5136 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5137 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5138 if (ret < 0)
5139 goto out_unlock;
5140 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5141 len, len, page, fsdata);
5142 if (ret < 0)
5143 goto out_unlock;
5144 ret = 0;
5145 out_unlock:
5146 up_read(&inode->i_alloc_sem);
5147 return ret;
5148 }
This page took 0.145832 seconds and 5 git commands to generate.