2dcd4fed96ec43c5d295eb72b50779462bdf7c17
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 trace_ext4_begin_ordered_truncate(inode, new_size);
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77 * Test whether an inode is a fast symlink.
78 */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 int nblocks)
94 {
95 int ret;
96
97 /*
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 jbd_debug(2, "restarting handle %p\n", handle);
105 up_write(&EXT4_I(inode)->i_data_sem);
106 ret = ext4_journal_restart(handle, nblocks);
107 down_write(&EXT4_I(inode)->i_data_sem);
108 ext4_discard_preallocations(inode);
109
110 return ret;
111 }
112
113 /*
114 * Called at the last iput() if i_nlink is zero.
115 */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 handle_t *handle;
119 int err;
120
121 trace_ext4_evict_inode(inode);
122
123 ext4_ioend_wait(inode);
124
125 if (inode->i_nlink) {
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
157 if (!is_bad_inode(inode))
158 dquot_initialize(inode);
159
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 if (IS_ERR(handle)) {
169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
175 ext4_orphan_del(NULL, inode);
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
180 ext4_handle_sync(handle);
181 inode->i_size = 0;
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
184 ext4_warning(inode->i_sb,
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
188 if (inode->i_blocks)
189 ext4_truncate(inode);
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
197 if (!ext4_handle_has_enough_credits(handle, 3)) {
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
202 ext4_warning(inode->i_sb,
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
208 }
209 }
210
211 /*
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
218 */
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
229 if (ext4_mark_inode_dirty(handle, inode))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode);
232 else
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
235 return;
236 no_delete:
237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
250 */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256 return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
265 {
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 struct ext4_inode_info *ei = EXT4_I(inode);
268
269 spin_lock(&ei->i_block_reservation_lock);
270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
279
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 used + ei->i_allocated_meta_blocks);
285 ei->i_allocated_meta_blocks = 0;
286
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 ei->i_reserved_meta_blocks);
295 ei->i_reserved_meta_blocks = 0;
296 ei->i_da_metadata_calc_len = 0;
297 }
298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 else {
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
308 */
309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 }
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
319 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323 unsigned int line,
324 struct ext4_map_blocks *map)
325 {
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
332 return -EIO;
333 }
334 return 0;
335 }
336
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
343 */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346 {
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
390 if (num >= max_pages) {
391 done = 1;
392 break;
393 }
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398 }
399
400 /*
401 * The ext4_map_blocks() function tries to look up the requested blocks,
402 * and returns if the blocks are already mapped.
403 *
404 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
405 * and store the allocated blocks in the result buffer head and mark it
406 * mapped.
407 *
408 * If file type is extents based, it will call ext4_ext_map_blocks(),
409 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
410 * based files
411 *
412 * On success, it returns the number of blocks being mapped or allocate.
413 * if create==0 and the blocks are pre-allocated and uninitialized block,
414 * the result buffer head is unmapped. If the create ==1, it will make sure
415 * the buffer head is mapped.
416 *
417 * It returns 0 if plain look up failed (blocks have not been allocated), in
418 * that casem, buffer head is unmapped
419 *
420 * It returns the error in case of allocation failure.
421 */
422 int ext4_map_blocks(handle_t *handle, struct inode *inode,
423 struct ext4_map_blocks *map, int flags)
424 {
425 int retval;
426
427 map->m_flags = 0;
428 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
429 "logical block %lu\n", inode->i_ino, flags, map->m_len,
430 (unsigned long) map->m_lblk);
431 /*
432 * Try to see if we can get the block without requesting a new
433 * file system block.
434 */
435 down_read((&EXT4_I(inode)->i_data_sem));
436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 } else {
439 retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 }
441 up_read((&EXT4_I(inode)->i_data_sem));
442
443 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
444 int ret = check_block_validity(inode, map);
445 if (ret != 0)
446 return ret;
447 }
448
449 /* If it is only a block(s) look up */
450 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
451 return retval;
452
453 /*
454 * Returns if the blocks have already allocated
455 *
456 * Note that if blocks have been preallocated
457 * ext4_ext_get_block() returns th create = 0
458 * with buffer head unmapped.
459 */
460 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
461 return retval;
462
463 /*
464 * When we call get_blocks without the create flag, the
465 * BH_Unwritten flag could have gotten set if the blocks
466 * requested were part of a uninitialized extent. We need to
467 * clear this flag now that we are committed to convert all or
468 * part of the uninitialized extent to be an initialized
469 * extent. This is because we need to avoid the combination
470 * of BH_Unwritten and BH_Mapped flags being simultaneously
471 * set on the buffer_head.
472 */
473 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
474
475 /*
476 * New blocks allocate and/or writing to uninitialized extent
477 * will possibly result in updating i_data, so we take
478 * the write lock of i_data_sem, and call get_blocks()
479 * with create == 1 flag.
480 */
481 down_write((&EXT4_I(inode)->i_data_sem));
482
483 /*
484 * if the caller is from delayed allocation writeout path
485 * we have already reserved fs blocks for allocation
486 * let the underlying get_block() function know to
487 * avoid double accounting
488 */
489 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
490 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
491 /*
492 * We need to check for EXT4 here because migrate
493 * could have changed the inode type in between
494 */
495 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
496 retval = ext4_ext_map_blocks(handle, inode, map, flags);
497 } else {
498 retval = ext4_ind_map_blocks(handle, inode, map, flags);
499
500 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
501 /*
502 * We allocated new blocks which will result in
503 * i_data's format changing. Force the migrate
504 * to fail by clearing migrate flags
505 */
506 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
507 }
508
509 /*
510 * Update reserved blocks/metadata blocks after successful
511 * block allocation which had been deferred till now. We don't
512 * support fallocate for non extent files. So we can update
513 * reserve space here.
514 */
515 if ((retval > 0) &&
516 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
517 ext4_da_update_reserve_space(inode, retval, 1);
518 }
519 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
520 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
521
522 up_write((&EXT4_I(inode)->i_data_sem));
523 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
524 int ret = check_block_validity(inode, map);
525 if (ret != 0)
526 return ret;
527 }
528 return retval;
529 }
530
531 /* Maximum number of blocks we map for direct IO at once. */
532 #define DIO_MAX_BLOCKS 4096
533
534 static int _ext4_get_block(struct inode *inode, sector_t iblock,
535 struct buffer_head *bh, int flags)
536 {
537 handle_t *handle = ext4_journal_current_handle();
538 struct ext4_map_blocks map;
539 int ret = 0, started = 0;
540 int dio_credits;
541
542 map.m_lblk = iblock;
543 map.m_len = bh->b_size >> inode->i_blkbits;
544
545 if (flags && !handle) {
546 /* Direct IO write... */
547 if (map.m_len > DIO_MAX_BLOCKS)
548 map.m_len = DIO_MAX_BLOCKS;
549 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
550 handle = ext4_journal_start(inode, dio_credits);
551 if (IS_ERR(handle)) {
552 ret = PTR_ERR(handle);
553 return ret;
554 }
555 started = 1;
556 }
557
558 ret = ext4_map_blocks(handle, inode, &map, flags);
559 if (ret > 0) {
560 map_bh(bh, inode->i_sb, map.m_pblk);
561 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
562 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
563 ret = 0;
564 }
565 if (started)
566 ext4_journal_stop(handle);
567 return ret;
568 }
569
570 int ext4_get_block(struct inode *inode, sector_t iblock,
571 struct buffer_head *bh, int create)
572 {
573 return _ext4_get_block(inode, iblock, bh,
574 create ? EXT4_GET_BLOCKS_CREATE : 0);
575 }
576
577 /*
578 * `handle' can be NULL if create is zero
579 */
580 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
581 ext4_lblk_t block, int create, int *errp)
582 {
583 struct ext4_map_blocks map;
584 struct buffer_head *bh;
585 int fatal = 0, err;
586
587 J_ASSERT(handle != NULL || create == 0);
588
589 map.m_lblk = block;
590 map.m_len = 1;
591 err = ext4_map_blocks(handle, inode, &map,
592 create ? EXT4_GET_BLOCKS_CREATE : 0);
593
594 if (err < 0)
595 *errp = err;
596 if (err <= 0)
597 return NULL;
598 *errp = 0;
599
600 bh = sb_getblk(inode->i_sb, map.m_pblk);
601 if (!bh) {
602 *errp = -EIO;
603 return NULL;
604 }
605 if (map.m_flags & EXT4_MAP_NEW) {
606 J_ASSERT(create != 0);
607 J_ASSERT(handle != NULL);
608
609 /*
610 * Now that we do not always journal data, we should
611 * keep in mind whether this should always journal the
612 * new buffer as metadata. For now, regular file
613 * writes use ext4_get_block instead, so it's not a
614 * problem.
615 */
616 lock_buffer(bh);
617 BUFFER_TRACE(bh, "call get_create_access");
618 fatal = ext4_journal_get_create_access(handle, bh);
619 if (!fatal && !buffer_uptodate(bh)) {
620 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
621 set_buffer_uptodate(bh);
622 }
623 unlock_buffer(bh);
624 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
625 err = ext4_handle_dirty_metadata(handle, inode, bh);
626 if (!fatal)
627 fatal = err;
628 } else {
629 BUFFER_TRACE(bh, "not a new buffer");
630 }
631 if (fatal) {
632 *errp = fatal;
633 brelse(bh);
634 bh = NULL;
635 }
636 return bh;
637 }
638
639 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
640 ext4_lblk_t block, int create, int *err)
641 {
642 struct buffer_head *bh;
643
644 bh = ext4_getblk(handle, inode, block, create, err);
645 if (!bh)
646 return bh;
647 if (buffer_uptodate(bh))
648 return bh;
649 ll_rw_block(READ_META, 1, &bh);
650 wait_on_buffer(bh);
651 if (buffer_uptodate(bh))
652 return bh;
653 put_bh(bh);
654 *err = -EIO;
655 return NULL;
656 }
657
658 static int walk_page_buffers(handle_t *handle,
659 struct buffer_head *head,
660 unsigned from,
661 unsigned to,
662 int *partial,
663 int (*fn)(handle_t *handle,
664 struct buffer_head *bh))
665 {
666 struct buffer_head *bh;
667 unsigned block_start, block_end;
668 unsigned blocksize = head->b_size;
669 int err, ret = 0;
670 struct buffer_head *next;
671
672 for (bh = head, block_start = 0;
673 ret == 0 && (bh != head || !block_start);
674 block_start = block_end, bh = next) {
675 next = bh->b_this_page;
676 block_end = block_start + blocksize;
677 if (block_end <= from || block_start >= to) {
678 if (partial && !buffer_uptodate(bh))
679 *partial = 1;
680 continue;
681 }
682 err = (*fn)(handle, bh);
683 if (!ret)
684 ret = err;
685 }
686 return ret;
687 }
688
689 /*
690 * To preserve ordering, it is essential that the hole instantiation and
691 * the data write be encapsulated in a single transaction. We cannot
692 * close off a transaction and start a new one between the ext4_get_block()
693 * and the commit_write(). So doing the jbd2_journal_start at the start of
694 * prepare_write() is the right place.
695 *
696 * Also, this function can nest inside ext4_writepage() ->
697 * block_write_full_page(). In that case, we *know* that ext4_writepage()
698 * has generated enough buffer credits to do the whole page. So we won't
699 * block on the journal in that case, which is good, because the caller may
700 * be PF_MEMALLOC.
701 *
702 * By accident, ext4 can be reentered when a transaction is open via
703 * quota file writes. If we were to commit the transaction while thus
704 * reentered, there can be a deadlock - we would be holding a quota
705 * lock, and the commit would never complete if another thread had a
706 * transaction open and was blocking on the quota lock - a ranking
707 * violation.
708 *
709 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
710 * will _not_ run commit under these circumstances because handle->h_ref
711 * is elevated. We'll still have enough credits for the tiny quotafile
712 * write.
713 */
714 static int do_journal_get_write_access(handle_t *handle,
715 struct buffer_head *bh)
716 {
717 int dirty = buffer_dirty(bh);
718 int ret;
719
720 if (!buffer_mapped(bh) || buffer_freed(bh))
721 return 0;
722 /*
723 * __block_write_begin() could have dirtied some buffers. Clean
724 * the dirty bit as jbd2_journal_get_write_access() could complain
725 * otherwise about fs integrity issues. Setting of the dirty bit
726 * by __block_write_begin() isn't a real problem here as we clear
727 * the bit before releasing a page lock and thus writeback cannot
728 * ever write the buffer.
729 */
730 if (dirty)
731 clear_buffer_dirty(bh);
732 ret = ext4_journal_get_write_access(handle, bh);
733 if (!ret && dirty)
734 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
735 return ret;
736 }
737
738 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
739 struct buffer_head *bh_result, int create);
740 static int ext4_write_begin(struct file *file, struct address_space *mapping,
741 loff_t pos, unsigned len, unsigned flags,
742 struct page **pagep, void **fsdata)
743 {
744 struct inode *inode = mapping->host;
745 int ret, needed_blocks;
746 handle_t *handle;
747 int retries = 0;
748 struct page *page;
749 pgoff_t index;
750 unsigned from, to;
751
752 trace_ext4_write_begin(inode, pos, len, flags);
753 /*
754 * Reserve one block more for addition to orphan list in case
755 * we allocate blocks but write fails for some reason
756 */
757 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
758 index = pos >> PAGE_CACHE_SHIFT;
759 from = pos & (PAGE_CACHE_SIZE - 1);
760 to = from + len;
761
762 retry:
763 handle = ext4_journal_start(inode, needed_blocks);
764 if (IS_ERR(handle)) {
765 ret = PTR_ERR(handle);
766 goto out;
767 }
768
769 /* We cannot recurse into the filesystem as the transaction is already
770 * started */
771 flags |= AOP_FLAG_NOFS;
772
773 page = grab_cache_page_write_begin(mapping, index, flags);
774 if (!page) {
775 ext4_journal_stop(handle);
776 ret = -ENOMEM;
777 goto out;
778 }
779 *pagep = page;
780
781 if (ext4_should_dioread_nolock(inode))
782 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
783 else
784 ret = __block_write_begin(page, pos, len, ext4_get_block);
785
786 if (!ret && ext4_should_journal_data(inode)) {
787 ret = walk_page_buffers(handle, page_buffers(page),
788 from, to, NULL, do_journal_get_write_access);
789 }
790
791 if (ret) {
792 unlock_page(page);
793 page_cache_release(page);
794 /*
795 * __block_write_begin may have instantiated a few blocks
796 * outside i_size. Trim these off again. Don't need
797 * i_size_read because we hold i_mutex.
798 *
799 * Add inode to orphan list in case we crash before
800 * truncate finishes
801 */
802 if (pos + len > inode->i_size && ext4_can_truncate(inode))
803 ext4_orphan_add(handle, inode);
804
805 ext4_journal_stop(handle);
806 if (pos + len > inode->i_size) {
807 ext4_truncate_failed_write(inode);
808 /*
809 * If truncate failed early the inode might
810 * still be on the orphan list; we need to
811 * make sure the inode is removed from the
812 * orphan list in that case.
813 */
814 if (inode->i_nlink)
815 ext4_orphan_del(NULL, inode);
816 }
817 }
818
819 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
820 goto retry;
821 out:
822 return ret;
823 }
824
825 /* For write_end() in data=journal mode */
826 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
827 {
828 if (!buffer_mapped(bh) || buffer_freed(bh))
829 return 0;
830 set_buffer_uptodate(bh);
831 return ext4_handle_dirty_metadata(handle, NULL, bh);
832 }
833
834 static int ext4_generic_write_end(struct file *file,
835 struct address_space *mapping,
836 loff_t pos, unsigned len, unsigned copied,
837 struct page *page, void *fsdata)
838 {
839 int i_size_changed = 0;
840 struct inode *inode = mapping->host;
841 handle_t *handle = ext4_journal_current_handle();
842
843 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
844
845 /*
846 * No need to use i_size_read() here, the i_size
847 * cannot change under us because we hold i_mutex.
848 *
849 * But it's important to update i_size while still holding page lock:
850 * page writeout could otherwise come in and zero beyond i_size.
851 */
852 if (pos + copied > inode->i_size) {
853 i_size_write(inode, pos + copied);
854 i_size_changed = 1;
855 }
856
857 if (pos + copied > EXT4_I(inode)->i_disksize) {
858 /* We need to mark inode dirty even if
859 * new_i_size is less that inode->i_size
860 * bu greater than i_disksize.(hint delalloc)
861 */
862 ext4_update_i_disksize(inode, (pos + copied));
863 i_size_changed = 1;
864 }
865 unlock_page(page);
866 page_cache_release(page);
867
868 /*
869 * Don't mark the inode dirty under page lock. First, it unnecessarily
870 * makes the holding time of page lock longer. Second, it forces lock
871 * ordering of page lock and transaction start for journaling
872 * filesystems.
873 */
874 if (i_size_changed)
875 ext4_mark_inode_dirty(handle, inode);
876
877 return copied;
878 }
879
880 /*
881 * We need to pick up the new inode size which generic_commit_write gave us
882 * `file' can be NULL - eg, when called from page_symlink().
883 *
884 * ext4 never places buffers on inode->i_mapping->private_list. metadata
885 * buffers are managed internally.
886 */
887 static int ext4_ordered_write_end(struct file *file,
888 struct address_space *mapping,
889 loff_t pos, unsigned len, unsigned copied,
890 struct page *page, void *fsdata)
891 {
892 handle_t *handle = ext4_journal_current_handle();
893 struct inode *inode = mapping->host;
894 int ret = 0, ret2;
895
896 trace_ext4_ordered_write_end(inode, pos, len, copied);
897 ret = ext4_jbd2_file_inode(handle, inode);
898
899 if (ret == 0) {
900 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
901 page, fsdata);
902 copied = ret2;
903 if (pos + len > inode->i_size && ext4_can_truncate(inode))
904 /* if we have allocated more blocks and copied
905 * less. We will have blocks allocated outside
906 * inode->i_size. So truncate them
907 */
908 ext4_orphan_add(handle, inode);
909 if (ret2 < 0)
910 ret = ret2;
911 }
912 ret2 = ext4_journal_stop(handle);
913 if (!ret)
914 ret = ret2;
915
916 if (pos + len > inode->i_size) {
917 ext4_truncate_failed_write(inode);
918 /*
919 * If truncate failed early the inode might still be
920 * on the orphan list; we need to make sure the inode
921 * is removed from the orphan list in that case.
922 */
923 if (inode->i_nlink)
924 ext4_orphan_del(NULL, inode);
925 }
926
927
928 return ret ? ret : copied;
929 }
930
931 static int ext4_writeback_write_end(struct file *file,
932 struct address_space *mapping,
933 loff_t pos, unsigned len, unsigned copied,
934 struct page *page, void *fsdata)
935 {
936 handle_t *handle = ext4_journal_current_handle();
937 struct inode *inode = mapping->host;
938 int ret = 0, ret2;
939
940 trace_ext4_writeback_write_end(inode, pos, len, copied);
941 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
942 page, fsdata);
943 copied = ret2;
944 if (pos + len > inode->i_size && ext4_can_truncate(inode))
945 /* if we have allocated more blocks and copied
946 * less. We will have blocks allocated outside
947 * inode->i_size. So truncate them
948 */
949 ext4_orphan_add(handle, inode);
950
951 if (ret2 < 0)
952 ret = ret2;
953
954 ret2 = ext4_journal_stop(handle);
955 if (!ret)
956 ret = ret2;
957
958 if (pos + len > inode->i_size) {
959 ext4_truncate_failed_write(inode);
960 /*
961 * If truncate failed early the inode might still be
962 * on the orphan list; we need to make sure the inode
963 * is removed from the orphan list in that case.
964 */
965 if (inode->i_nlink)
966 ext4_orphan_del(NULL, inode);
967 }
968
969 return ret ? ret : copied;
970 }
971
972 static int ext4_journalled_write_end(struct file *file,
973 struct address_space *mapping,
974 loff_t pos, unsigned len, unsigned copied,
975 struct page *page, void *fsdata)
976 {
977 handle_t *handle = ext4_journal_current_handle();
978 struct inode *inode = mapping->host;
979 int ret = 0, ret2;
980 int partial = 0;
981 unsigned from, to;
982 loff_t new_i_size;
983
984 trace_ext4_journalled_write_end(inode, pos, len, copied);
985 from = pos & (PAGE_CACHE_SIZE - 1);
986 to = from + len;
987
988 BUG_ON(!ext4_handle_valid(handle));
989
990 if (copied < len) {
991 if (!PageUptodate(page))
992 copied = 0;
993 page_zero_new_buffers(page, from+copied, to);
994 }
995
996 ret = walk_page_buffers(handle, page_buffers(page), from,
997 to, &partial, write_end_fn);
998 if (!partial)
999 SetPageUptodate(page);
1000 new_i_size = pos + copied;
1001 if (new_i_size > inode->i_size)
1002 i_size_write(inode, pos+copied);
1003 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1004 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1005 if (new_i_size > EXT4_I(inode)->i_disksize) {
1006 ext4_update_i_disksize(inode, new_i_size);
1007 ret2 = ext4_mark_inode_dirty(handle, inode);
1008 if (!ret)
1009 ret = ret2;
1010 }
1011
1012 unlock_page(page);
1013 page_cache_release(page);
1014 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1015 /* if we have allocated more blocks and copied
1016 * less. We will have blocks allocated outside
1017 * inode->i_size. So truncate them
1018 */
1019 ext4_orphan_add(handle, inode);
1020
1021 ret2 = ext4_journal_stop(handle);
1022 if (!ret)
1023 ret = ret2;
1024 if (pos + len > inode->i_size) {
1025 ext4_truncate_failed_write(inode);
1026 /*
1027 * If truncate failed early the inode might still be
1028 * on the orphan list; we need to make sure the inode
1029 * is removed from the orphan list in that case.
1030 */
1031 if (inode->i_nlink)
1032 ext4_orphan_del(NULL, inode);
1033 }
1034
1035 return ret ? ret : copied;
1036 }
1037
1038 /*
1039 * Reserve a single cluster located at lblock
1040 */
1041 int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1042 {
1043 int retries = 0;
1044 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1045 struct ext4_inode_info *ei = EXT4_I(inode);
1046 unsigned int md_needed;
1047 int ret;
1048
1049 /*
1050 * recalculate the amount of metadata blocks to reserve
1051 * in order to allocate nrblocks
1052 * worse case is one extent per block
1053 */
1054 repeat:
1055 spin_lock(&ei->i_block_reservation_lock);
1056 md_needed = EXT4_NUM_B2C(sbi,
1057 ext4_calc_metadata_amount(inode, lblock));
1058 trace_ext4_da_reserve_space(inode, md_needed);
1059 spin_unlock(&ei->i_block_reservation_lock);
1060
1061 /*
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
1065 */
1066 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1067 if (ret)
1068 return ret;
1069 /*
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1072 */
1073 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1074 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1078 }
1079 return -ENOSPC;
1080 }
1081 spin_lock(&ei->i_block_reservation_lock);
1082 ei->i_reserved_data_blocks++;
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
1085
1086 return 0; /* success */
1087 }
1088
1089 static void ext4_da_release_space(struct inode *inode, int to_free)
1090 {
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1096
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099 trace_ext4_da_release_space(inode, to_free);
1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101 /*
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
1106 */
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
1113 }
1114 ei->i_reserved_data_blocks -= to_free;
1115
1116 if (ei->i_reserved_data_blocks == 0) {
1117 /*
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1121 * Note that in case of bigalloc, i_reserved_meta_blocks,
1122 * i_reserved_data_blocks, etc. refer to number of clusters.
1123 */
1124 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1125 ei->i_reserved_meta_blocks);
1126 ei->i_reserved_meta_blocks = 0;
1127 ei->i_da_metadata_calc_len = 0;
1128 }
1129
1130 /* update fs dirty data blocks counter */
1131 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1132
1133 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1134
1135 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1136 }
1137
1138 static void ext4_da_page_release_reservation(struct page *page,
1139 unsigned long offset)
1140 {
1141 int to_release = 0;
1142 struct buffer_head *head, *bh;
1143 unsigned int curr_off = 0;
1144 struct inode *inode = page->mapping->host;
1145 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1146 int num_clusters;
1147
1148 head = page_buffers(page);
1149 bh = head;
1150 do {
1151 unsigned int next_off = curr_off + bh->b_size;
1152
1153 if ((offset <= curr_off) && (buffer_delay(bh))) {
1154 to_release++;
1155 clear_buffer_delay(bh);
1156 }
1157 curr_off = next_off;
1158 } while ((bh = bh->b_this_page) != head);
1159
1160 /* If we have released all the blocks belonging to a cluster, then we
1161 * need to release the reserved space for that cluster. */
1162 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1163 while (num_clusters > 0) {
1164 ext4_fsblk_t lblk;
1165 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1166 ((num_clusters - 1) << sbi->s_cluster_bits);
1167 if (sbi->s_cluster_ratio == 1 ||
1168 !ext4_find_delalloc_cluster(inode, lblk, 1))
1169 ext4_da_release_space(inode, 1);
1170
1171 num_clusters--;
1172 }
1173 }
1174
1175 /*
1176 * Delayed allocation stuff
1177 */
1178
1179 /*
1180 * mpage_da_submit_io - walks through extent of pages and try to write
1181 * them with writepage() call back
1182 *
1183 * @mpd->inode: inode
1184 * @mpd->first_page: first page of the extent
1185 * @mpd->next_page: page after the last page of the extent
1186 *
1187 * By the time mpage_da_submit_io() is called we expect all blocks
1188 * to be allocated. this may be wrong if allocation failed.
1189 *
1190 * As pages are already locked by write_cache_pages(), we can't use it
1191 */
1192 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1193 struct ext4_map_blocks *map)
1194 {
1195 struct pagevec pvec;
1196 unsigned long index, end;
1197 int ret = 0, err, nr_pages, i;
1198 struct inode *inode = mpd->inode;
1199 struct address_space *mapping = inode->i_mapping;
1200 loff_t size = i_size_read(inode);
1201 unsigned int len, block_start;
1202 struct buffer_head *bh, *page_bufs = NULL;
1203 int journal_data = ext4_should_journal_data(inode);
1204 sector_t pblock = 0, cur_logical = 0;
1205 struct ext4_io_submit io_submit;
1206
1207 BUG_ON(mpd->next_page <= mpd->first_page);
1208 memset(&io_submit, 0, sizeof(io_submit));
1209 /*
1210 * We need to start from the first_page to the next_page - 1
1211 * to make sure we also write the mapped dirty buffer_heads.
1212 * If we look at mpd->b_blocknr we would only be looking
1213 * at the currently mapped buffer_heads.
1214 */
1215 index = mpd->first_page;
1216 end = mpd->next_page - 1;
1217
1218 pagevec_init(&pvec, 0);
1219 while (index <= end) {
1220 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1221 if (nr_pages == 0)
1222 break;
1223 for (i = 0; i < nr_pages; i++) {
1224 int commit_write = 0, skip_page = 0;
1225 struct page *page = pvec.pages[i];
1226
1227 index = page->index;
1228 if (index > end)
1229 break;
1230
1231 if (index == size >> PAGE_CACHE_SHIFT)
1232 len = size & ~PAGE_CACHE_MASK;
1233 else
1234 len = PAGE_CACHE_SIZE;
1235 if (map) {
1236 cur_logical = index << (PAGE_CACHE_SHIFT -
1237 inode->i_blkbits);
1238 pblock = map->m_pblk + (cur_logical -
1239 map->m_lblk);
1240 }
1241 index++;
1242
1243 BUG_ON(!PageLocked(page));
1244 BUG_ON(PageWriteback(page));
1245
1246 /*
1247 * If the page does not have buffers (for
1248 * whatever reason), try to create them using
1249 * __block_write_begin. If this fails,
1250 * skip the page and move on.
1251 */
1252 if (!page_has_buffers(page)) {
1253 if (__block_write_begin(page, 0, len,
1254 noalloc_get_block_write)) {
1255 skip_page:
1256 unlock_page(page);
1257 continue;
1258 }
1259 commit_write = 1;
1260 }
1261
1262 bh = page_bufs = page_buffers(page);
1263 block_start = 0;
1264 do {
1265 if (!bh)
1266 goto skip_page;
1267 if (map && (cur_logical >= map->m_lblk) &&
1268 (cur_logical <= (map->m_lblk +
1269 (map->m_len - 1)))) {
1270 if (buffer_delay(bh)) {
1271 clear_buffer_delay(bh);
1272 bh->b_blocknr = pblock;
1273 }
1274 if (buffer_unwritten(bh) ||
1275 buffer_mapped(bh))
1276 BUG_ON(bh->b_blocknr != pblock);
1277 if (map->m_flags & EXT4_MAP_UNINIT)
1278 set_buffer_uninit(bh);
1279 clear_buffer_unwritten(bh);
1280 }
1281
1282 /* skip page if block allocation undone */
1283 if (buffer_delay(bh) || buffer_unwritten(bh))
1284 skip_page = 1;
1285 bh = bh->b_this_page;
1286 block_start += bh->b_size;
1287 cur_logical++;
1288 pblock++;
1289 } while (bh != page_bufs);
1290
1291 if (skip_page)
1292 goto skip_page;
1293
1294 if (commit_write)
1295 /* mark the buffer_heads as dirty & uptodate */
1296 block_commit_write(page, 0, len);
1297
1298 clear_page_dirty_for_io(page);
1299 /*
1300 * Delalloc doesn't support data journalling,
1301 * but eventually maybe we'll lift this
1302 * restriction.
1303 */
1304 if (unlikely(journal_data && PageChecked(page)))
1305 err = __ext4_journalled_writepage(page, len);
1306 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1307 err = ext4_bio_write_page(&io_submit, page,
1308 len, mpd->wbc);
1309 else if (buffer_uninit(page_bufs)) {
1310 ext4_set_bh_endio(page_bufs, inode);
1311 err = block_write_full_page_endio(page,
1312 noalloc_get_block_write,
1313 mpd->wbc, ext4_end_io_buffer_write);
1314 } else
1315 err = block_write_full_page(page,
1316 noalloc_get_block_write, mpd->wbc);
1317
1318 if (!err)
1319 mpd->pages_written++;
1320 /*
1321 * In error case, we have to continue because
1322 * remaining pages are still locked
1323 */
1324 if (ret == 0)
1325 ret = err;
1326 }
1327 pagevec_release(&pvec);
1328 }
1329 ext4_io_submit(&io_submit);
1330 return ret;
1331 }
1332
1333 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1334 {
1335 int nr_pages, i;
1336 pgoff_t index, end;
1337 struct pagevec pvec;
1338 struct inode *inode = mpd->inode;
1339 struct address_space *mapping = inode->i_mapping;
1340
1341 index = mpd->first_page;
1342 end = mpd->next_page - 1;
1343 while (index <= end) {
1344 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1345 if (nr_pages == 0)
1346 break;
1347 for (i = 0; i < nr_pages; i++) {
1348 struct page *page = pvec.pages[i];
1349 if (page->index > end)
1350 break;
1351 BUG_ON(!PageLocked(page));
1352 BUG_ON(PageWriteback(page));
1353 block_invalidatepage(page, 0);
1354 ClearPageUptodate(page);
1355 unlock_page(page);
1356 }
1357 index = pvec.pages[nr_pages - 1]->index + 1;
1358 pagevec_release(&pvec);
1359 }
1360 return;
1361 }
1362
1363 static void ext4_print_free_blocks(struct inode *inode)
1364 {
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366 printk(KERN_CRIT "Total free blocks count %lld\n",
1367 EXT4_C2B(EXT4_SB(inode->i_sb),
1368 ext4_count_free_clusters(inode->i_sb)));
1369 printk(KERN_CRIT "Free/Dirty block details\n");
1370 printk(KERN_CRIT "free_blocks=%lld\n",
1371 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1372 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1373 printk(KERN_CRIT "dirty_blocks=%lld\n",
1374 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1375 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1376 printk(KERN_CRIT "Block reservation details\n");
1377 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1378 EXT4_I(inode)->i_reserved_data_blocks);
1379 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1380 EXT4_I(inode)->i_reserved_meta_blocks);
1381 return;
1382 }
1383
1384 /*
1385 * mpage_da_map_and_submit - go through given space, map them
1386 * if necessary, and then submit them for I/O
1387 *
1388 * @mpd - bh describing space
1389 *
1390 * The function skips space we know is already mapped to disk blocks.
1391 *
1392 */
1393 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1394 {
1395 int err, blks, get_blocks_flags;
1396 struct ext4_map_blocks map, *mapp = NULL;
1397 sector_t next = mpd->b_blocknr;
1398 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1399 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1400 handle_t *handle = NULL;
1401
1402 /*
1403 * If the blocks are mapped already, or we couldn't accumulate
1404 * any blocks, then proceed immediately to the submission stage.
1405 */
1406 if ((mpd->b_size == 0) ||
1407 ((mpd->b_state & (1 << BH_Mapped)) &&
1408 !(mpd->b_state & (1 << BH_Delay)) &&
1409 !(mpd->b_state & (1 << BH_Unwritten))))
1410 goto submit_io;
1411
1412 handle = ext4_journal_current_handle();
1413 BUG_ON(!handle);
1414
1415 /*
1416 * Call ext4_map_blocks() to allocate any delayed allocation
1417 * blocks, or to convert an uninitialized extent to be
1418 * initialized (in the case where we have written into
1419 * one or more preallocated blocks).
1420 *
1421 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1422 * indicate that we are on the delayed allocation path. This
1423 * affects functions in many different parts of the allocation
1424 * call path. This flag exists primarily because we don't
1425 * want to change *many* call functions, so ext4_map_blocks()
1426 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1427 * inode's allocation semaphore is taken.
1428 *
1429 * If the blocks in questions were delalloc blocks, set
1430 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1431 * variables are updated after the blocks have been allocated.
1432 */
1433 map.m_lblk = next;
1434 map.m_len = max_blocks;
1435 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1436 if (ext4_should_dioread_nolock(mpd->inode))
1437 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1438 if (mpd->b_state & (1 << BH_Delay))
1439 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1440
1441 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1442 if (blks < 0) {
1443 struct super_block *sb = mpd->inode->i_sb;
1444
1445 err = blks;
1446 /*
1447 * If get block returns EAGAIN or ENOSPC and there
1448 * appears to be free blocks we will just let
1449 * mpage_da_submit_io() unlock all of the pages.
1450 */
1451 if (err == -EAGAIN)
1452 goto submit_io;
1453
1454 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1455 mpd->retval = err;
1456 goto submit_io;
1457 }
1458
1459 /*
1460 * get block failure will cause us to loop in
1461 * writepages, because a_ops->writepage won't be able
1462 * to make progress. The page will be redirtied by
1463 * writepage and writepages will again try to write
1464 * the same.
1465 */
1466 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1467 ext4_msg(sb, KERN_CRIT,
1468 "delayed block allocation failed for inode %lu "
1469 "at logical offset %llu with max blocks %zd "
1470 "with error %d", mpd->inode->i_ino,
1471 (unsigned long long) next,
1472 mpd->b_size >> mpd->inode->i_blkbits, err);
1473 ext4_msg(sb, KERN_CRIT,
1474 "This should not happen!! Data will be lost\n");
1475 if (err == -ENOSPC)
1476 ext4_print_free_blocks(mpd->inode);
1477 }
1478 /* invalidate all the pages */
1479 ext4_da_block_invalidatepages(mpd);
1480
1481 /* Mark this page range as having been completed */
1482 mpd->io_done = 1;
1483 return;
1484 }
1485 BUG_ON(blks == 0);
1486
1487 mapp = &map;
1488 if (map.m_flags & EXT4_MAP_NEW) {
1489 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1490 int i;
1491
1492 for (i = 0; i < map.m_len; i++)
1493 unmap_underlying_metadata(bdev, map.m_pblk + i);
1494
1495 if (ext4_should_order_data(mpd->inode)) {
1496 err = ext4_jbd2_file_inode(handle, mpd->inode);
1497 if (err)
1498 /* Only if the journal is aborted */
1499 return;
1500 }
1501 }
1502
1503 /*
1504 * Update on-disk size along with block allocation.
1505 */
1506 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1507 if (disksize > i_size_read(mpd->inode))
1508 disksize = i_size_read(mpd->inode);
1509 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1510 ext4_update_i_disksize(mpd->inode, disksize);
1511 err = ext4_mark_inode_dirty(handle, mpd->inode);
1512 if (err)
1513 ext4_error(mpd->inode->i_sb,
1514 "Failed to mark inode %lu dirty",
1515 mpd->inode->i_ino);
1516 }
1517
1518 submit_io:
1519 mpage_da_submit_io(mpd, mapp);
1520 mpd->io_done = 1;
1521 }
1522
1523 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1524 (1 << BH_Delay) | (1 << BH_Unwritten))
1525
1526 /*
1527 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1528 *
1529 * @mpd->lbh - extent of blocks
1530 * @logical - logical number of the block in the file
1531 * @bh - bh of the block (used to access block's state)
1532 *
1533 * the function is used to collect contig. blocks in same state
1534 */
1535 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1536 sector_t logical, size_t b_size,
1537 unsigned long b_state)
1538 {
1539 sector_t next;
1540 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1541
1542 /*
1543 * XXX Don't go larger than mballoc is willing to allocate
1544 * This is a stopgap solution. We eventually need to fold
1545 * mpage_da_submit_io() into this function and then call
1546 * ext4_map_blocks() multiple times in a loop
1547 */
1548 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1549 goto flush_it;
1550
1551 /* check if thereserved journal credits might overflow */
1552 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1553 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1554 /*
1555 * With non-extent format we are limited by the journal
1556 * credit available. Total credit needed to insert
1557 * nrblocks contiguous blocks is dependent on the
1558 * nrblocks. So limit nrblocks.
1559 */
1560 goto flush_it;
1561 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1562 EXT4_MAX_TRANS_DATA) {
1563 /*
1564 * Adding the new buffer_head would make it cross the
1565 * allowed limit for which we have journal credit
1566 * reserved. So limit the new bh->b_size
1567 */
1568 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1569 mpd->inode->i_blkbits;
1570 /* we will do mpage_da_submit_io in the next loop */
1571 }
1572 }
1573 /*
1574 * First block in the extent
1575 */
1576 if (mpd->b_size == 0) {
1577 mpd->b_blocknr = logical;
1578 mpd->b_size = b_size;
1579 mpd->b_state = b_state & BH_FLAGS;
1580 return;
1581 }
1582
1583 next = mpd->b_blocknr + nrblocks;
1584 /*
1585 * Can we merge the block to our big extent?
1586 */
1587 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1588 mpd->b_size += b_size;
1589 return;
1590 }
1591
1592 flush_it:
1593 /*
1594 * We couldn't merge the block to our extent, so we
1595 * need to flush current extent and start new one
1596 */
1597 mpage_da_map_and_submit(mpd);
1598 return;
1599 }
1600
1601 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1602 {
1603 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1604 }
1605
1606 /*
1607 * This is a special get_blocks_t callback which is used by
1608 * ext4_da_write_begin(). It will either return mapped block or
1609 * reserve space for a single block.
1610 *
1611 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1612 * We also have b_blocknr = -1 and b_bdev initialized properly
1613 *
1614 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1615 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1616 * initialized properly.
1617 */
1618 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1619 struct buffer_head *bh, int create)
1620 {
1621 struct ext4_map_blocks map;
1622 int ret = 0;
1623 sector_t invalid_block = ~((sector_t) 0xffff);
1624
1625 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1626 invalid_block = ~0;
1627
1628 BUG_ON(create == 0);
1629 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1630
1631 map.m_lblk = iblock;
1632 map.m_len = 1;
1633
1634 /*
1635 * first, we need to know whether the block is allocated already
1636 * preallocated blocks are unmapped but should treated
1637 * the same as allocated blocks.
1638 */
1639 ret = ext4_map_blocks(NULL, inode, &map, 0);
1640 if (ret < 0)
1641 return ret;
1642 if (ret == 0) {
1643 if (buffer_delay(bh))
1644 return 0; /* Not sure this could or should happen */
1645 /*
1646 * XXX: __block_write_begin() unmaps passed block, is it OK?
1647 */
1648 /* If the block was allocated from previously allocated cluster,
1649 * then we dont need to reserve it again. */
1650 if (!(map.m_flags & EXT4_MAP_FROM_CLUSTER)) {
1651 ret = ext4_da_reserve_space(inode, iblock);
1652 if (ret)
1653 /* not enough space to reserve */
1654 return ret;
1655 }
1656
1657 map_bh(bh, inode->i_sb, invalid_block);
1658 set_buffer_new(bh);
1659 set_buffer_delay(bh);
1660 return 0;
1661 }
1662
1663 map_bh(bh, inode->i_sb, map.m_pblk);
1664 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1665
1666 if (buffer_unwritten(bh)) {
1667 /* A delayed write to unwritten bh should be marked
1668 * new and mapped. Mapped ensures that we don't do
1669 * get_block multiple times when we write to the same
1670 * offset and new ensures that we do proper zero out
1671 * for partial write.
1672 */
1673 set_buffer_new(bh);
1674 set_buffer_mapped(bh);
1675 }
1676 return 0;
1677 }
1678
1679 /*
1680 * This function is used as a standard get_block_t calback function
1681 * when there is no desire to allocate any blocks. It is used as a
1682 * callback function for block_write_begin() and block_write_full_page().
1683 * These functions should only try to map a single block at a time.
1684 *
1685 * Since this function doesn't do block allocations even if the caller
1686 * requests it by passing in create=1, it is critically important that
1687 * any caller checks to make sure that any buffer heads are returned
1688 * by this function are either all already mapped or marked for
1689 * delayed allocation before calling block_write_full_page(). Otherwise,
1690 * b_blocknr could be left unitialized, and the page write functions will
1691 * be taken by surprise.
1692 */
1693 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1694 struct buffer_head *bh_result, int create)
1695 {
1696 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1697 return _ext4_get_block(inode, iblock, bh_result, 0);
1698 }
1699
1700 static int bget_one(handle_t *handle, struct buffer_head *bh)
1701 {
1702 get_bh(bh);
1703 return 0;
1704 }
1705
1706 static int bput_one(handle_t *handle, struct buffer_head *bh)
1707 {
1708 put_bh(bh);
1709 return 0;
1710 }
1711
1712 static int __ext4_journalled_writepage(struct page *page,
1713 unsigned int len)
1714 {
1715 struct address_space *mapping = page->mapping;
1716 struct inode *inode = mapping->host;
1717 struct buffer_head *page_bufs;
1718 handle_t *handle = NULL;
1719 int ret = 0;
1720 int err;
1721
1722 ClearPageChecked(page);
1723 page_bufs = page_buffers(page);
1724 BUG_ON(!page_bufs);
1725 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1726 /* As soon as we unlock the page, it can go away, but we have
1727 * references to buffers so we are safe */
1728 unlock_page(page);
1729
1730 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1731 if (IS_ERR(handle)) {
1732 ret = PTR_ERR(handle);
1733 goto out;
1734 }
1735
1736 BUG_ON(!ext4_handle_valid(handle));
1737
1738 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1739 do_journal_get_write_access);
1740
1741 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1742 write_end_fn);
1743 if (ret == 0)
1744 ret = err;
1745 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1746 err = ext4_journal_stop(handle);
1747 if (!ret)
1748 ret = err;
1749
1750 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1751 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1752 out:
1753 return ret;
1754 }
1755
1756 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1757 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1758
1759 /*
1760 * Note that we don't need to start a transaction unless we're journaling data
1761 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1762 * need to file the inode to the transaction's list in ordered mode because if
1763 * we are writing back data added by write(), the inode is already there and if
1764 * we are writing back data modified via mmap(), no one guarantees in which
1765 * transaction the data will hit the disk. In case we are journaling data, we
1766 * cannot start transaction directly because transaction start ranks above page
1767 * lock so we have to do some magic.
1768 *
1769 * This function can get called via...
1770 * - ext4_da_writepages after taking page lock (have journal handle)
1771 * - journal_submit_inode_data_buffers (no journal handle)
1772 * - shrink_page_list via pdflush (no journal handle)
1773 * - grab_page_cache when doing write_begin (have journal handle)
1774 *
1775 * We don't do any block allocation in this function. If we have page with
1776 * multiple blocks we need to write those buffer_heads that are mapped. This
1777 * is important for mmaped based write. So if we do with blocksize 1K
1778 * truncate(f, 1024);
1779 * a = mmap(f, 0, 4096);
1780 * a[0] = 'a';
1781 * truncate(f, 4096);
1782 * we have in the page first buffer_head mapped via page_mkwrite call back
1783 * but other bufer_heads would be unmapped but dirty(dirty done via the
1784 * do_wp_page). So writepage should write the first block. If we modify
1785 * the mmap area beyond 1024 we will again get a page_fault and the
1786 * page_mkwrite callback will do the block allocation and mark the
1787 * buffer_heads mapped.
1788 *
1789 * We redirty the page if we have any buffer_heads that is either delay or
1790 * unwritten in the page.
1791 *
1792 * We can get recursively called as show below.
1793 *
1794 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1795 * ext4_writepage()
1796 *
1797 * But since we don't do any block allocation we should not deadlock.
1798 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1799 */
1800 static int ext4_writepage(struct page *page,
1801 struct writeback_control *wbc)
1802 {
1803 int ret = 0, commit_write = 0;
1804 loff_t size;
1805 unsigned int len;
1806 struct buffer_head *page_bufs = NULL;
1807 struct inode *inode = page->mapping->host;
1808
1809 trace_ext4_writepage(page);
1810 size = i_size_read(inode);
1811 if (page->index == size >> PAGE_CACHE_SHIFT)
1812 len = size & ~PAGE_CACHE_MASK;
1813 else
1814 len = PAGE_CACHE_SIZE;
1815
1816 /*
1817 * If the page does not have buffers (for whatever reason),
1818 * try to create them using __block_write_begin. If this
1819 * fails, redirty the page and move on.
1820 */
1821 if (!page_has_buffers(page)) {
1822 if (__block_write_begin(page, 0, len,
1823 noalloc_get_block_write)) {
1824 redirty_page:
1825 redirty_page_for_writepage(wbc, page);
1826 unlock_page(page);
1827 return 0;
1828 }
1829 commit_write = 1;
1830 }
1831 page_bufs = page_buffers(page);
1832 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1833 ext4_bh_delay_or_unwritten)) {
1834 /*
1835 * We don't want to do block allocation, so redirty
1836 * the page and return. We may reach here when we do
1837 * a journal commit via journal_submit_inode_data_buffers.
1838 * We can also reach here via shrink_page_list
1839 */
1840 goto redirty_page;
1841 }
1842 if (commit_write)
1843 /* now mark the buffer_heads as dirty and uptodate */
1844 block_commit_write(page, 0, len);
1845
1846 if (PageChecked(page) && ext4_should_journal_data(inode))
1847 /*
1848 * It's mmapped pagecache. Add buffers and journal it. There
1849 * doesn't seem much point in redirtying the page here.
1850 */
1851 return __ext4_journalled_writepage(page, len);
1852
1853 if (buffer_uninit(page_bufs)) {
1854 ext4_set_bh_endio(page_bufs, inode);
1855 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1856 wbc, ext4_end_io_buffer_write);
1857 } else
1858 ret = block_write_full_page(page, noalloc_get_block_write,
1859 wbc);
1860
1861 return ret;
1862 }
1863
1864 /*
1865 * This is called via ext4_da_writepages() to
1866 * calculate the total number of credits to reserve to fit
1867 * a single extent allocation into a single transaction,
1868 * ext4_da_writpeages() will loop calling this before
1869 * the block allocation.
1870 */
1871
1872 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1873 {
1874 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1875
1876 /*
1877 * With non-extent format the journal credit needed to
1878 * insert nrblocks contiguous block is dependent on
1879 * number of contiguous block. So we will limit
1880 * number of contiguous block to a sane value
1881 */
1882 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1883 (max_blocks > EXT4_MAX_TRANS_DATA))
1884 max_blocks = EXT4_MAX_TRANS_DATA;
1885
1886 return ext4_chunk_trans_blocks(inode, max_blocks);
1887 }
1888
1889 /*
1890 * write_cache_pages_da - walk the list of dirty pages of the given
1891 * address space and accumulate pages that need writing, and call
1892 * mpage_da_map_and_submit to map a single contiguous memory region
1893 * and then write them.
1894 */
1895 static int write_cache_pages_da(struct address_space *mapping,
1896 struct writeback_control *wbc,
1897 struct mpage_da_data *mpd,
1898 pgoff_t *done_index)
1899 {
1900 struct buffer_head *bh, *head;
1901 struct inode *inode = mapping->host;
1902 struct pagevec pvec;
1903 unsigned int nr_pages;
1904 sector_t logical;
1905 pgoff_t index, end;
1906 long nr_to_write = wbc->nr_to_write;
1907 int i, tag, ret = 0;
1908
1909 memset(mpd, 0, sizeof(struct mpage_da_data));
1910 mpd->wbc = wbc;
1911 mpd->inode = inode;
1912 pagevec_init(&pvec, 0);
1913 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1914 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1915
1916 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1917 tag = PAGECACHE_TAG_TOWRITE;
1918 else
1919 tag = PAGECACHE_TAG_DIRTY;
1920
1921 *done_index = index;
1922 while (index <= end) {
1923 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1924 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1925 if (nr_pages == 0)
1926 return 0;
1927
1928 for (i = 0; i < nr_pages; i++) {
1929 struct page *page = pvec.pages[i];
1930
1931 /*
1932 * At this point, the page may be truncated or
1933 * invalidated (changing page->mapping to NULL), or
1934 * even swizzled back from swapper_space to tmpfs file
1935 * mapping. However, page->index will not change
1936 * because we have a reference on the page.
1937 */
1938 if (page->index > end)
1939 goto out;
1940
1941 *done_index = page->index + 1;
1942
1943 /*
1944 * If we can't merge this page, and we have
1945 * accumulated an contiguous region, write it
1946 */
1947 if ((mpd->next_page != page->index) &&
1948 (mpd->next_page != mpd->first_page)) {
1949 mpage_da_map_and_submit(mpd);
1950 goto ret_extent_tail;
1951 }
1952
1953 lock_page(page);
1954
1955 /*
1956 * If the page is no longer dirty, or its
1957 * mapping no longer corresponds to inode we
1958 * are writing (which means it has been
1959 * truncated or invalidated), or the page is
1960 * already under writeback and we are not
1961 * doing a data integrity writeback, skip the page
1962 */
1963 if (!PageDirty(page) ||
1964 (PageWriteback(page) &&
1965 (wbc->sync_mode == WB_SYNC_NONE)) ||
1966 unlikely(page->mapping != mapping)) {
1967 unlock_page(page);
1968 continue;
1969 }
1970
1971 wait_on_page_writeback(page);
1972 BUG_ON(PageWriteback(page));
1973
1974 if (mpd->next_page != page->index)
1975 mpd->first_page = page->index;
1976 mpd->next_page = page->index + 1;
1977 logical = (sector_t) page->index <<
1978 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1979
1980 if (!page_has_buffers(page)) {
1981 mpage_add_bh_to_extent(mpd, logical,
1982 PAGE_CACHE_SIZE,
1983 (1 << BH_Dirty) | (1 << BH_Uptodate));
1984 if (mpd->io_done)
1985 goto ret_extent_tail;
1986 } else {
1987 /*
1988 * Page with regular buffer heads,
1989 * just add all dirty ones
1990 */
1991 head = page_buffers(page);
1992 bh = head;
1993 do {
1994 BUG_ON(buffer_locked(bh));
1995 /*
1996 * We need to try to allocate
1997 * unmapped blocks in the same page.
1998 * Otherwise we won't make progress
1999 * with the page in ext4_writepage
2000 */
2001 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2002 mpage_add_bh_to_extent(mpd, logical,
2003 bh->b_size,
2004 bh->b_state);
2005 if (mpd->io_done)
2006 goto ret_extent_tail;
2007 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2008 /*
2009 * mapped dirty buffer. We need
2010 * to update the b_state
2011 * because we look at b_state
2012 * in mpage_da_map_blocks. We
2013 * don't update b_size because
2014 * if we find an unmapped
2015 * buffer_head later we need to
2016 * use the b_state flag of that
2017 * buffer_head.
2018 */
2019 if (mpd->b_size == 0)
2020 mpd->b_state = bh->b_state & BH_FLAGS;
2021 }
2022 logical++;
2023 } while ((bh = bh->b_this_page) != head);
2024 }
2025
2026 if (nr_to_write > 0) {
2027 nr_to_write--;
2028 if (nr_to_write == 0 &&
2029 wbc->sync_mode == WB_SYNC_NONE)
2030 /*
2031 * We stop writing back only if we are
2032 * not doing integrity sync. In case of
2033 * integrity sync we have to keep going
2034 * because someone may be concurrently
2035 * dirtying pages, and we might have
2036 * synced a lot of newly appeared dirty
2037 * pages, but have not synced all of the
2038 * old dirty pages.
2039 */
2040 goto out;
2041 }
2042 }
2043 pagevec_release(&pvec);
2044 cond_resched();
2045 }
2046 return 0;
2047 ret_extent_tail:
2048 ret = MPAGE_DA_EXTENT_TAIL;
2049 out:
2050 pagevec_release(&pvec);
2051 cond_resched();
2052 return ret;
2053 }
2054
2055
2056 static int ext4_da_writepages(struct address_space *mapping,
2057 struct writeback_control *wbc)
2058 {
2059 pgoff_t index;
2060 int range_whole = 0;
2061 handle_t *handle = NULL;
2062 struct mpage_da_data mpd;
2063 struct inode *inode = mapping->host;
2064 int pages_written = 0;
2065 unsigned int max_pages;
2066 int range_cyclic, cycled = 1, io_done = 0;
2067 int needed_blocks, ret = 0;
2068 long desired_nr_to_write, nr_to_writebump = 0;
2069 loff_t range_start = wbc->range_start;
2070 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2071 pgoff_t done_index = 0;
2072 pgoff_t end;
2073
2074 trace_ext4_da_writepages(inode, wbc);
2075
2076 /*
2077 * No pages to write? This is mainly a kludge to avoid starting
2078 * a transaction for special inodes like journal inode on last iput()
2079 * because that could violate lock ordering on umount
2080 */
2081 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2082 return 0;
2083
2084 /*
2085 * If the filesystem has aborted, it is read-only, so return
2086 * right away instead of dumping stack traces later on that
2087 * will obscure the real source of the problem. We test
2088 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2089 * the latter could be true if the filesystem is mounted
2090 * read-only, and in that case, ext4_da_writepages should
2091 * *never* be called, so if that ever happens, we would want
2092 * the stack trace.
2093 */
2094 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2095 return -EROFS;
2096
2097 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2098 range_whole = 1;
2099
2100 range_cyclic = wbc->range_cyclic;
2101 if (wbc->range_cyclic) {
2102 index = mapping->writeback_index;
2103 if (index)
2104 cycled = 0;
2105 wbc->range_start = index << PAGE_CACHE_SHIFT;
2106 wbc->range_end = LLONG_MAX;
2107 wbc->range_cyclic = 0;
2108 end = -1;
2109 } else {
2110 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2111 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2112 }
2113
2114 /*
2115 * This works around two forms of stupidity. The first is in
2116 * the writeback code, which caps the maximum number of pages
2117 * written to be 1024 pages. This is wrong on multiple
2118 * levels; different architectues have a different page size,
2119 * which changes the maximum amount of data which gets
2120 * written. Secondly, 4 megabytes is way too small. XFS
2121 * forces this value to be 16 megabytes by multiplying
2122 * nr_to_write parameter by four, and then relies on its
2123 * allocator to allocate larger extents to make them
2124 * contiguous. Unfortunately this brings us to the second
2125 * stupidity, which is that ext4's mballoc code only allocates
2126 * at most 2048 blocks. So we force contiguous writes up to
2127 * the number of dirty blocks in the inode, or
2128 * sbi->max_writeback_mb_bump whichever is smaller.
2129 */
2130 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2131 if (!range_cyclic && range_whole) {
2132 if (wbc->nr_to_write == LONG_MAX)
2133 desired_nr_to_write = wbc->nr_to_write;
2134 else
2135 desired_nr_to_write = wbc->nr_to_write * 8;
2136 } else
2137 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2138 max_pages);
2139 if (desired_nr_to_write > max_pages)
2140 desired_nr_to_write = max_pages;
2141
2142 if (wbc->nr_to_write < desired_nr_to_write) {
2143 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2144 wbc->nr_to_write = desired_nr_to_write;
2145 }
2146
2147 retry:
2148 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2149 tag_pages_for_writeback(mapping, index, end);
2150
2151 while (!ret && wbc->nr_to_write > 0) {
2152
2153 /*
2154 * we insert one extent at a time. So we need
2155 * credit needed for single extent allocation.
2156 * journalled mode is currently not supported
2157 * by delalloc
2158 */
2159 BUG_ON(ext4_should_journal_data(inode));
2160 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2161
2162 /* start a new transaction*/
2163 handle = ext4_journal_start(inode, needed_blocks);
2164 if (IS_ERR(handle)) {
2165 ret = PTR_ERR(handle);
2166 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2167 "%ld pages, ino %lu; err %d", __func__,
2168 wbc->nr_to_write, inode->i_ino, ret);
2169 goto out_writepages;
2170 }
2171
2172 /*
2173 * Now call write_cache_pages_da() to find the next
2174 * contiguous region of logical blocks that need
2175 * blocks to be allocated by ext4 and submit them.
2176 */
2177 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2178 /*
2179 * If we have a contiguous extent of pages and we
2180 * haven't done the I/O yet, map the blocks and submit
2181 * them for I/O.
2182 */
2183 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2184 mpage_da_map_and_submit(&mpd);
2185 ret = MPAGE_DA_EXTENT_TAIL;
2186 }
2187 trace_ext4_da_write_pages(inode, &mpd);
2188 wbc->nr_to_write -= mpd.pages_written;
2189
2190 ext4_journal_stop(handle);
2191
2192 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2193 /* commit the transaction which would
2194 * free blocks released in the transaction
2195 * and try again
2196 */
2197 jbd2_journal_force_commit_nested(sbi->s_journal);
2198 ret = 0;
2199 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2200 /*
2201 * got one extent now try with
2202 * rest of the pages
2203 */
2204 pages_written += mpd.pages_written;
2205 ret = 0;
2206 io_done = 1;
2207 } else if (wbc->nr_to_write)
2208 /*
2209 * There is no more writeout needed
2210 * or we requested for a noblocking writeout
2211 * and we found the device congested
2212 */
2213 break;
2214 }
2215 if (!io_done && !cycled) {
2216 cycled = 1;
2217 index = 0;
2218 wbc->range_start = index << PAGE_CACHE_SHIFT;
2219 wbc->range_end = mapping->writeback_index - 1;
2220 goto retry;
2221 }
2222
2223 /* Update index */
2224 wbc->range_cyclic = range_cyclic;
2225 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2226 /*
2227 * set the writeback_index so that range_cyclic
2228 * mode will write it back later
2229 */
2230 mapping->writeback_index = done_index;
2231
2232 out_writepages:
2233 wbc->nr_to_write -= nr_to_writebump;
2234 wbc->range_start = range_start;
2235 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2236 return ret;
2237 }
2238
2239 #define FALL_BACK_TO_NONDELALLOC 1
2240 static int ext4_nonda_switch(struct super_block *sb)
2241 {
2242 s64 free_blocks, dirty_blocks;
2243 struct ext4_sb_info *sbi = EXT4_SB(sb);
2244
2245 /*
2246 * switch to non delalloc mode if we are running low
2247 * on free block. The free block accounting via percpu
2248 * counters can get slightly wrong with percpu_counter_batch getting
2249 * accumulated on each CPU without updating global counters
2250 * Delalloc need an accurate free block accounting. So switch
2251 * to non delalloc when we are near to error range.
2252 */
2253 free_blocks = EXT4_C2B(sbi,
2254 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2255 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2256 if (2 * free_blocks < 3 * dirty_blocks ||
2257 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2258 /*
2259 * free block count is less than 150% of dirty blocks
2260 * or free blocks is less than watermark
2261 */
2262 return 1;
2263 }
2264 /*
2265 * Even if we don't switch but are nearing capacity,
2266 * start pushing delalloc when 1/2 of free blocks are dirty.
2267 */
2268 if (free_blocks < 2 * dirty_blocks)
2269 writeback_inodes_sb_if_idle(sb);
2270
2271 return 0;
2272 }
2273
2274 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2275 loff_t pos, unsigned len, unsigned flags,
2276 struct page **pagep, void **fsdata)
2277 {
2278 int ret, retries = 0;
2279 struct page *page;
2280 pgoff_t index;
2281 struct inode *inode = mapping->host;
2282 handle_t *handle;
2283 loff_t page_len;
2284
2285 index = pos >> PAGE_CACHE_SHIFT;
2286
2287 if (ext4_nonda_switch(inode->i_sb)) {
2288 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2289 return ext4_write_begin(file, mapping, pos,
2290 len, flags, pagep, fsdata);
2291 }
2292 *fsdata = (void *)0;
2293 trace_ext4_da_write_begin(inode, pos, len, flags);
2294 retry:
2295 /*
2296 * With delayed allocation, we don't log the i_disksize update
2297 * if there is delayed block allocation. But we still need
2298 * to journalling the i_disksize update if writes to the end
2299 * of file which has an already mapped buffer.
2300 */
2301 handle = ext4_journal_start(inode, 1);
2302 if (IS_ERR(handle)) {
2303 ret = PTR_ERR(handle);
2304 goto out;
2305 }
2306 /* We cannot recurse into the filesystem as the transaction is already
2307 * started */
2308 flags |= AOP_FLAG_NOFS;
2309
2310 page = grab_cache_page_write_begin(mapping, index, flags);
2311 if (!page) {
2312 ext4_journal_stop(handle);
2313 ret = -ENOMEM;
2314 goto out;
2315 }
2316 *pagep = page;
2317
2318 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2319 if (ret < 0) {
2320 unlock_page(page);
2321 ext4_journal_stop(handle);
2322 page_cache_release(page);
2323 /*
2324 * block_write_begin may have instantiated a few blocks
2325 * outside i_size. Trim these off again. Don't need
2326 * i_size_read because we hold i_mutex.
2327 */
2328 if (pos + len > inode->i_size)
2329 ext4_truncate_failed_write(inode);
2330 } else {
2331 page_len = pos & (PAGE_CACHE_SIZE - 1);
2332 if (page_len > 0) {
2333 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2334 inode, page, pos - page_len, page_len,
2335 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2336 }
2337 }
2338
2339 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2340 goto retry;
2341 out:
2342 return ret;
2343 }
2344
2345 /*
2346 * Check if we should update i_disksize
2347 * when write to the end of file but not require block allocation
2348 */
2349 static int ext4_da_should_update_i_disksize(struct page *page,
2350 unsigned long offset)
2351 {
2352 struct buffer_head *bh;
2353 struct inode *inode = page->mapping->host;
2354 unsigned int idx;
2355 int i;
2356
2357 bh = page_buffers(page);
2358 idx = offset >> inode->i_blkbits;
2359
2360 for (i = 0; i < idx; i++)
2361 bh = bh->b_this_page;
2362
2363 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2364 return 0;
2365 return 1;
2366 }
2367
2368 static int ext4_da_write_end(struct file *file,
2369 struct address_space *mapping,
2370 loff_t pos, unsigned len, unsigned copied,
2371 struct page *page, void *fsdata)
2372 {
2373 struct inode *inode = mapping->host;
2374 int ret = 0, ret2;
2375 handle_t *handle = ext4_journal_current_handle();
2376 loff_t new_i_size;
2377 unsigned long start, end;
2378 int write_mode = (int)(unsigned long)fsdata;
2379 loff_t page_len;
2380
2381 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2382 if (ext4_should_order_data(inode)) {
2383 return ext4_ordered_write_end(file, mapping, pos,
2384 len, copied, page, fsdata);
2385 } else if (ext4_should_writeback_data(inode)) {
2386 return ext4_writeback_write_end(file, mapping, pos,
2387 len, copied, page, fsdata);
2388 } else {
2389 BUG();
2390 }
2391 }
2392
2393 trace_ext4_da_write_end(inode, pos, len, copied);
2394 start = pos & (PAGE_CACHE_SIZE - 1);
2395 end = start + copied - 1;
2396
2397 /*
2398 * generic_write_end() will run mark_inode_dirty() if i_size
2399 * changes. So let's piggyback the i_disksize mark_inode_dirty
2400 * into that.
2401 */
2402
2403 new_i_size = pos + copied;
2404 if (new_i_size > EXT4_I(inode)->i_disksize) {
2405 if (ext4_da_should_update_i_disksize(page, end)) {
2406 down_write(&EXT4_I(inode)->i_data_sem);
2407 if (new_i_size > EXT4_I(inode)->i_disksize) {
2408 /*
2409 * Updating i_disksize when extending file
2410 * without needing block allocation
2411 */
2412 if (ext4_should_order_data(inode))
2413 ret = ext4_jbd2_file_inode(handle,
2414 inode);
2415
2416 EXT4_I(inode)->i_disksize = new_i_size;
2417 }
2418 up_write(&EXT4_I(inode)->i_data_sem);
2419 /* We need to mark inode dirty even if
2420 * new_i_size is less that inode->i_size
2421 * bu greater than i_disksize.(hint delalloc)
2422 */
2423 ext4_mark_inode_dirty(handle, inode);
2424 }
2425 }
2426 ret2 = generic_write_end(file, mapping, pos, len, copied,
2427 page, fsdata);
2428
2429 page_len = PAGE_CACHE_SIZE -
2430 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2431
2432 if (page_len > 0) {
2433 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2434 inode, page, pos + copied - 1, page_len,
2435 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2436 }
2437
2438 copied = ret2;
2439 if (ret2 < 0)
2440 ret = ret2;
2441 ret2 = ext4_journal_stop(handle);
2442 if (!ret)
2443 ret = ret2;
2444
2445 return ret ? ret : copied;
2446 }
2447
2448 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2449 {
2450 /*
2451 * Drop reserved blocks
2452 */
2453 BUG_ON(!PageLocked(page));
2454 if (!page_has_buffers(page))
2455 goto out;
2456
2457 ext4_da_page_release_reservation(page, offset);
2458
2459 out:
2460 ext4_invalidatepage(page, offset);
2461
2462 return;
2463 }
2464
2465 /*
2466 * Force all delayed allocation blocks to be allocated for a given inode.
2467 */
2468 int ext4_alloc_da_blocks(struct inode *inode)
2469 {
2470 trace_ext4_alloc_da_blocks(inode);
2471
2472 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2473 !EXT4_I(inode)->i_reserved_meta_blocks)
2474 return 0;
2475
2476 /*
2477 * We do something simple for now. The filemap_flush() will
2478 * also start triggering a write of the data blocks, which is
2479 * not strictly speaking necessary (and for users of
2480 * laptop_mode, not even desirable). However, to do otherwise
2481 * would require replicating code paths in:
2482 *
2483 * ext4_da_writepages() ->
2484 * write_cache_pages() ---> (via passed in callback function)
2485 * __mpage_da_writepage() -->
2486 * mpage_add_bh_to_extent()
2487 * mpage_da_map_blocks()
2488 *
2489 * The problem is that write_cache_pages(), located in
2490 * mm/page-writeback.c, marks pages clean in preparation for
2491 * doing I/O, which is not desirable if we're not planning on
2492 * doing I/O at all.
2493 *
2494 * We could call write_cache_pages(), and then redirty all of
2495 * the pages by calling redirty_page_for_writepage() but that
2496 * would be ugly in the extreme. So instead we would need to
2497 * replicate parts of the code in the above functions,
2498 * simplifying them because we wouldn't actually intend to
2499 * write out the pages, but rather only collect contiguous
2500 * logical block extents, call the multi-block allocator, and
2501 * then update the buffer heads with the block allocations.
2502 *
2503 * For now, though, we'll cheat by calling filemap_flush(),
2504 * which will map the blocks, and start the I/O, but not
2505 * actually wait for the I/O to complete.
2506 */
2507 return filemap_flush(inode->i_mapping);
2508 }
2509
2510 /*
2511 * bmap() is special. It gets used by applications such as lilo and by
2512 * the swapper to find the on-disk block of a specific piece of data.
2513 *
2514 * Naturally, this is dangerous if the block concerned is still in the
2515 * journal. If somebody makes a swapfile on an ext4 data-journaling
2516 * filesystem and enables swap, then they may get a nasty shock when the
2517 * data getting swapped to that swapfile suddenly gets overwritten by
2518 * the original zero's written out previously to the journal and
2519 * awaiting writeback in the kernel's buffer cache.
2520 *
2521 * So, if we see any bmap calls here on a modified, data-journaled file,
2522 * take extra steps to flush any blocks which might be in the cache.
2523 */
2524 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2525 {
2526 struct inode *inode = mapping->host;
2527 journal_t *journal;
2528 int err;
2529
2530 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2531 test_opt(inode->i_sb, DELALLOC)) {
2532 /*
2533 * With delalloc we want to sync the file
2534 * so that we can make sure we allocate
2535 * blocks for file
2536 */
2537 filemap_write_and_wait(mapping);
2538 }
2539
2540 if (EXT4_JOURNAL(inode) &&
2541 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2542 /*
2543 * This is a REALLY heavyweight approach, but the use of
2544 * bmap on dirty files is expected to be extremely rare:
2545 * only if we run lilo or swapon on a freshly made file
2546 * do we expect this to happen.
2547 *
2548 * (bmap requires CAP_SYS_RAWIO so this does not
2549 * represent an unprivileged user DOS attack --- we'd be
2550 * in trouble if mortal users could trigger this path at
2551 * will.)
2552 *
2553 * NB. EXT4_STATE_JDATA is not set on files other than
2554 * regular files. If somebody wants to bmap a directory
2555 * or symlink and gets confused because the buffer
2556 * hasn't yet been flushed to disk, they deserve
2557 * everything they get.
2558 */
2559
2560 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2561 journal = EXT4_JOURNAL(inode);
2562 jbd2_journal_lock_updates(journal);
2563 err = jbd2_journal_flush(journal);
2564 jbd2_journal_unlock_updates(journal);
2565
2566 if (err)
2567 return 0;
2568 }
2569
2570 return generic_block_bmap(mapping, block, ext4_get_block);
2571 }
2572
2573 static int ext4_readpage(struct file *file, struct page *page)
2574 {
2575 trace_ext4_readpage(page);
2576 return mpage_readpage(page, ext4_get_block);
2577 }
2578
2579 static int
2580 ext4_readpages(struct file *file, struct address_space *mapping,
2581 struct list_head *pages, unsigned nr_pages)
2582 {
2583 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2584 }
2585
2586 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2587 {
2588 struct buffer_head *head, *bh;
2589 unsigned int curr_off = 0;
2590
2591 if (!page_has_buffers(page))
2592 return;
2593 head = bh = page_buffers(page);
2594 do {
2595 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2596 && bh->b_private) {
2597 ext4_free_io_end(bh->b_private);
2598 bh->b_private = NULL;
2599 bh->b_end_io = NULL;
2600 }
2601 curr_off = curr_off + bh->b_size;
2602 bh = bh->b_this_page;
2603 } while (bh != head);
2604 }
2605
2606 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2607 {
2608 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2609
2610 trace_ext4_invalidatepage(page, offset);
2611
2612 /*
2613 * free any io_end structure allocated for buffers to be discarded
2614 */
2615 if (ext4_should_dioread_nolock(page->mapping->host))
2616 ext4_invalidatepage_free_endio(page, offset);
2617 /*
2618 * If it's a full truncate we just forget about the pending dirtying
2619 */
2620 if (offset == 0)
2621 ClearPageChecked(page);
2622
2623 if (journal)
2624 jbd2_journal_invalidatepage(journal, page, offset);
2625 else
2626 block_invalidatepage(page, offset);
2627 }
2628
2629 static int ext4_releasepage(struct page *page, gfp_t wait)
2630 {
2631 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2632
2633 trace_ext4_releasepage(page);
2634
2635 WARN_ON(PageChecked(page));
2636 if (!page_has_buffers(page))
2637 return 0;
2638 if (journal)
2639 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2640 else
2641 return try_to_free_buffers(page);
2642 }
2643
2644 /*
2645 * ext4_get_block used when preparing for a DIO write or buffer write.
2646 * We allocate an uinitialized extent if blocks haven't been allocated.
2647 * The extent will be converted to initialized after the IO is complete.
2648 */
2649 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2650 struct buffer_head *bh_result, int create)
2651 {
2652 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2653 inode->i_ino, create);
2654 return _ext4_get_block(inode, iblock, bh_result,
2655 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2656 }
2657
2658 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2659 ssize_t size, void *private, int ret,
2660 bool is_async)
2661 {
2662 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2663 ext4_io_end_t *io_end = iocb->private;
2664 struct workqueue_struct *wq;
2665 unsigned long flags;
2666 struct ext4_inode_info *ei;
2667
2668 /* if not async direct IO or dio with 0 bytes write, just return */
2669 if (!io_end || !size)
2670 goto out;
2671
2672 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2673 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2674 iocb->private, io_end->inode->i_ino, iocb, offset,
2675 size);
2676
2677 /* if not aio dio with unwritten extents, just free io and return */
2678 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2679 ext4_free_io_end(io_end);
2680 iocb->private = NULL;
2681 out:
2682 if (is_async)
2683 aio_complete(iocb, ret, 0);
2684 inode_dio_done(inode);
2685 return;
2686 }
2687
2688 io_end->offset = offset;
2689 io_end->size = size;
2690 if (is_async) {
2691 io_end->iocb = iocb;
2692 io_end->result = ret;
2693 }
2694 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2695
2696 /* Add the io_end to per-inode completed aio dio list*/
2697 ei = EXT4_I(io_end->inode);
2698 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2699 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2700 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2701
2702 /* queue the work to convert unwritten extents to written */
2703 queue_work(wq, &io_end->work);
2704 iocb->private = NULL;
2705
2706 /* XXX: probably should move into the real I/O completion handler */
2707 inode_dio_done(inode);
2708 }
2709
2710 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2711 {
2712 ext4_io_end_t *io_end = bh->b_private;
2713 struct workqueue_struct *wq;
2714 struct inode *inode;
2715 unsigned long flags;
2716
2717 if (!test_clear_buffer_uninit(bh) || !io_end)
2718 goto out;
2719
2720 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2721 printk("sb umounted, discard end_io request for inode %lu\n",
2722 io_end->inode->i_ino);
2723 ext4_free_io_end(io_end);
2724 goto out;
2725 }
2726
2727 /*
2728 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2729 * but being more careful is always safe for the future change.
2730 */
2731 inode = io_end->inode;
2732 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2733 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2734 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2735 }
2736
2737 /* Add the io_end to per-inode completed io list*/
2738 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2739 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2740 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2741
2742 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2743 /* queue the work to convert unwritten extents to written */
2744 queue_work(wq, &io_end->work);
2745 out:
2746 bh->b_private = NULL;
2747 bh->b_end_io = NULL;
2748 clear_buffer_uninit(bh);
2749 end_buffer_async_write(bh, uptodate);
2750 }
2751
2752 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2753 {
2754 ext4_io_end_t *io_end;
2755 struct page *page = bh->b_page;
2756 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2757 size_t size = bh->b_size;
2758
2759 retry:
2760 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2761 if (!io_end) {
2762 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2763 schedule();
2764 goto retry;
2765 }
2766 io_end->offset = offset;
2767 io_end->size = size;
2768 /*
2769 * We need to hold a reference to the page to make sure it
2770 * doesn't get evicted before ext4_end_io_work() has a chance
2771 * to convert the extent from written to unwritten.
2772 */
2773 io_end->page = page;
2774 get_page(io_end->page);
2775
2776 bh->b_private = io_end;
2777 bh->b_end_io = ext4_end_io_buffer_write;
2778 return 0;
2779 }
2780
2781 /*
2782 * For ext4 extent files, ext4 will do direct-io write to holes,
2783 * preallocated extents, and those write extend the file, no need to
2784 * fall back to buffered IO.
2785 *
2786 * For holes, we fallocate those blocks, mark them as uninitialized
2787 * If those blocks were preallocated, we mark sure they are splited, but
2788 * still keep the range to write as uninitialized.
2789 *
2790 * The unwrritten extents will be converted to written when DIO is completed.
2791 * For async direct IO, since the IO may still pending when return, we
2792 * set up an end_io call back function, which will do the conversion
2793 * when async direct IO completed.
2794 *
2795 * If the O_DIRECT write will extend the file then add this inode to the
2796 * orphan list. So recovery will truncate it back to the original size
2797 * if the machine crashes during the write.
2798 *
2799 */
2800 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2801 const struct iovec *iov, loff_t offset,
2802 unsigned long nr_segs)
2803 {
2804 struct file *file = iocb->ki_filp;
2805 struct inode *inode = file->f_mapping->host;
2806 ssize_t ret;
2807 size_t count = iov_length(iov, nr_segs);
2808
2809 loff_t final_size = offset + count;
2810 if (rw == WRITE && final_size <= inode->i_size) {
2811 /*
2812 * We could direct write to holes and fallocate.
2813 *
2814 * Allocated blocks to fill the hole are marked as uninitialized
2815 * to prevent parallel buffered read to expose the stale data
2816 * before DIO complete the data IO.
2817 *
2818 * As to previously fallocated extents, ext4 get_block
2819 * will just simply mark the buffer mapped but still
2820 * keep the extents uninitialized.
2821 *
2822 * for non AIO case, we will convert those unwritten extents
2823 * to written after return back from blockdev_direct_IO.
2824 *
2825 * for async DIO, the conversion needs to be defered when
2826 * the IO is completed. The ext4 end_io callback function
2827 * will be called to take care of the conversion work.
2828 * Here for async case, we allocate an io_end structure to
2829 * hook to the iocb.
2830 */
2831 iocb->private = NULL;
2832 EXT4_I(inode)->cur_aio_dio = NULL;
2833 if (!is_sync_kiocb(iocb)) {
2834 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2835 if (!iocb->private)
2836 return -ENOMEM;
2837 /*
2838 * we save the io structure for current async
2839 * direct IO, so that later ext4_map_blocks()
2840 * could flag the io structure whether there
2841 * is a unwritten extents needs to be converted
2842 * when IO is completed.
2843 */
2844 EXT4_I(inode)->cur_aio_dio = iocb->private;
2845 }
2846
2847 ret = __blockdev_direct_IO(rw, iocb, inode,
2848 inode->i_sb->s_bdev, iov,
2849 offset, nr_segs,
2850 ext4_get_block_write,
2851 ext4_end_io_dio,
2852 NULL,
2853 DIO_LOCKING | DIO_SKIP_HOLES);
2854 if (iocb->private)
2855 EXT4_I(inode)->cur_aio_dio = NULL;
2856 /*
2857 * The io_end structure takes a reference to the inode,
2858 * that structure needs to be destroyed and the
2859 * reference to the inode need to be dropped, when IO is
2860 * complete, even with 0 byte write, or failed.
2861 *
2862 * In the successful AIO DIO case, the io_end structure will be
2863 * desctroyed and the reference to the inode will be dropped
2864 * after the end_io call back function is called.
2865 *
2866 * In the case there is 0 byte write, or error case, since
2867 * VFS direct IO won't invoke the end_io call back function,
2868 * we need to free the end_io structure here.
2869 */
2870 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2871 ext4_free_io_end(iocb->private);
2872 iocb->private = NULL;
2873 } else if (ret > 0 && ext4_test_inode_state(inode,
2874 EXT4_STATE_DIO_UNWRITTEN)) {
2875 int err;
2876 /*
2877 * for non AIO case, since the IO is already
2878 * completed, we could do the conversion right here
2879 */
2880 err = ext4_convert_unwritten_extents(inode,
2881 offset, ret);
2882 if (err < 0)
2883 ret = err;
2884 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2885 }
2886 return ret;
2887 }
2888
2889 /* for write the the end of file case, we fall back to old way */
2890 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2891 }
2892
2893 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2894 const struct iovec *iov, loff_t offset,
2895 unsigned long nr_segs)
2896 {
2897 struct file *file = iocb->ki_filp;
2898 struct inode *inode = file->f_mapping->host;
2899 ssize_t ret;
2900
2901 /*
2902 * If we are doing data journalling we don't support O_DIRECT
2903 */
2904 if (ext4_should_journal_data(inode))
2905 return 0;
2906
2907 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2908 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2909 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2910 else
2911 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2912 trace_ext4_direct_IO_exit(inode, offset,
2913 iov_length(iov, nr_segs), rw, ret);
2914 return ret;
2915 }
2916
2917 /*
2918 * Pages can be marked dirty completely asynchronously from ext4's journalling
2919 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2920 * much here because ->set_page_dirty is called under VFS locks. The page is
2921 * not necessarily locked.
2922 *
2923 * We cannot just dirty the page and leave attached buffers clean, because the
2924 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2925 * or jbddirty because all the journalling code will explode.
2926 *
2927 * So what we do is to mark the page "pending dirty" and next time writepage
2928 * is called, propagate that into the buffers appropriately.
2929 */
2930 static int ext4_journalled_set_page_dirty(struct page *page)
2931 {
2932 SetPageChecked(page);
2933 return __set_page_dirty_nobuffers(page);
2934 }
2935
2936 static const struct address_space_operations ext4_ordered_aops = {
2937 .readpage = ext4_readpage,
2938 .readpages = ext4_readpages,
2939 .writepage = ext4_writepage,
2940 .write_begin = ext4_write_begin,
2941 .write_end = ext4_ordered_write_end,
2942 .bmap = ext4_bmap,
2943 .invalidatepage = ext4_invalidatepage,
2944 .releasepage = ext4_releasepage,
2945 .direct_IO = ext4_direct_IO,
2946 .migratepage = buffer_migrate_page,
2947 .is_partially_uptodate = block_is_partially_uptodate,
2948 .error_remove_page = generic_error_remove_page,
2949 };
2950
2951 static const struct address_space_operations ext4_writeback_aops = {
2952 .readpage = ext4_readpage,
2953 .readpages = ext4_readpages,
2954 .writepage = ext4_writepage,
2955 .write_begin = ext4_write_begin,
2956 .write_end = ext4_writeback_write_end,
2957 .bmap = ext4_bmap,
2958 .invalidatepage = ext4_invalidatepage,
2959 .releasepage = ext4_releasepage,
2960 .direct_IO = ext4_direct_IO,
2961 .migratepage = buffer_migrate_page,
2962 .is_partially_uptodate = block_is_partially_uptodate,
2963 .error_remove_page = generic_error_remove_page,
2964 };
2965
2966 static const struct address_space_operations ext4_journalled_aops = {
2967 .readpage = ext4_readpage,
2968 .readpages = ext4_readpages,
2969 .writepage = ext4_writepage,
2970 .write_begin = ext4_write_begin,
2971 .write_end = ext4_journalled_write_end,
2972 .set_page_dirty = ext4_journalled_set_page_dirty,
2973 .bmap = ext4_bmap,
2974 .invalidatepage = ext4_invalidatepage,
2975 .releasepage = ext4_releasepage,
2976 .direct_IO = ext4_direct_IO,
2977 .is_partially_uptodate = block_is_partially_uptodate,
2978 .error_remove_page = generic_error_remove_page,
2979 };
2980
2981 static const struct address_space_operations ext4_da_aops = {
2982 .readpage = ext4_readpage,
2983 .readpages = ext4_readpages,
2984 .writepage = ext4_writepage,
2985 .writepages = ext4_da_writepages,
2986 .write_begin = ext4_da_write_begin,
2987 .write_end = ext4_da_write_end,
2988 .bmap = ext4_bmap,
2989 .invalidatepage = ext4_da_invalidatepage,
2990 .releasepage = ext4_releasepage,
2991 .direct_IO = ext4_direct_IO,
2992 .migratepage = buffer_migrate_page,
2993 .is_partially_uptodate = block_is_partially_uptodate,
2994 .error_remove_page = generic_error_remove_page,
2995 };
2996
2997 void ext4_set_aops(struct inode *inode)
2998 {
2999 if (ext4_should_order_data(inode) &&
3000 test_opt(inode->i_sb, DELALLOC))
3001 inode->i_mapping->a_ops = &ext4_da_aops;
3002 else if (ext4_should_order_data(inode))
3003 inode->i_mapping->a_ops = &ext4_ordered_aops;
3004 else if (ext4_should_writeback_data(inode) &&
3005 test_opt(inode->i_sb, DELALLOC))
3006 inode->i_mapping->a_ops = &ext4_da_aops;
3007 else if (ext4_should_writeback_data(inode))
3008 inode->i_mapping->a_ops = &ext4_writeback_aops;
3009 else
3010 inode->i_mapping->a_ops = &ext4_journalled_aops;
3011 }
3012
3013
3014 /*
3015 * ext4_discard_partial_page_buffers()
3016 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3017 * This function finds and locks the page containing the offset
3018 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3019 * Calling functions that already have the page locked should call
3020 * ext4_discard_partial_page_buffers_no_lock directly.
3021 */
3022 int ext4_discard_partial_page_buffers(handle_t *handle,
3023 struct address_space *mapping, loff_t from,
3024 loff_t length, int flags)
3025 {
3026 struct inode *inode = mapping->host;
3027 struct page *page;
3028 int err = 0;
3029
3030 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3031 mapping_gfp_mask(mapping) & ~__GFP_FS);
3032 if (!page)
3033 return -EINVAL;
3034
3035 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3036 from, length, flags);
3037
3038 unlock_page(page);
3039 page_cache_release(page);
3040 return err;
3041 }
3042
3043 /*
3044 * ext4_discard_partial_page_buffers_no_lock()
3045 * Zeros a page range of length 'length' starting from offset 'from'.
3046 * Buffer heads that correspond to the block aligned regions of the
3047 * zeroed range will be unmapped. Unblock aligned regions
3048 * will have the corresponding buffer head mapped if needed so that
3049 * that region of the page can be updated with the partial zero out.
3050 *
3051 * This function assumes that the page has already been locked. The
3052 * The range to be discarded must be contained with in the given page.
3053 * If the specified range exceeds the end of the page it will be shortened
3054 * to the end of the page that corresponds to 'from'. This function is
3055 * appropriate for updating a page and it buffer heads to be unmapped and
3056 * zeroed for blocks that have been either released, or are going to be
3057 * released.
3058 *
3059 * handle: The journal handle
3060 * inode: The files inode
3061 * page: A locked page that contains the offset "from"
3062 * from: The starting byte offset (from the begining of the file)
3063 * to begin discarding
3064 * len: The length of bytes to discard
3065 * flags: Optional flags that may be used:
3066 *
3067 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3068 * Only zero the regions of the page whose buffer heads
3069 * have already been unmapped. This flag is appropriate
3070 * for updateing the contents of a page whose blocks may
3071 * have already been released, and we only want to zero
3072 * out the regions that correspond to those released blocks.
3073 *
3074 * Returns zero on sucess or negative on failure.
3075 */
3076 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3077 struct inode *inode, struct page *page, loff_t from,
3078 loff_t length, int flags)
3079 {
3080 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3081 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3082 unsigned int blocksize, max, pos;
3083 unsigned int end_of_block, range_to_discard;
3084 ext4_lblk_t iblock;
3085 struct buffer_head *bh;
3086 int err = 0;
3087
3088 blocksize = inode->i_sb->s_blocksize;
3089 max = PAGE_CACHE_SIZE - offset;
3090
3091 if (index != page->index)
3092 return -EINVAL;
3093
3094 /*
3095 * correct length if it does not fall between
3096 * 'from' and the end of the page
3097 */
3098 if (length > max || length < 0)
3099 length = max;
3100
3101 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3102
3103 if (!page_has_buffers(page)) {
3104 /*
3105 * If the range to be discarded covers a partial block
3106 * we need to get the page buffers. This is because
3107 * partial blocks cannot be released and the page needs
3108 * to be updated with the contents of the block before
3109 * we write the zeros on top of it.
3110 */
3111 if (!(from & (blocksize - 1)) ||
3112 !((from + length) & (blocksize - 1))) {
3113 create_empty_buffers(page, blocksize, 0);
3114 } else {
3115 /*
3116 * If there are no partial blocks,
3117 * there is nothing to update,
3118 * so we can return now
3119 */
3120 return 0;
3121 }
3122 }
3123
3124 /* Find the buffer that contains "offset" */
3125 bh = page_buffers(page);
3126 pos = blocksize;
3127 while (offset >= pos) {
3128 bh = bh->b_this_page;
3129 iblock++;
3130 pos += blocksize;
3131 }
3132
3133 pos = offset;
3134 while (pos < offset + length) {
3135 err = 0;
3136
3137 /* The length of space left to zero and unmap */
3138 range_to_discard = offset + length - pos;
3139
3140 /* The length of space until the end of the block */
3141 end_of_block = blocksize - (pos & (blocksize-1));
3142
3143 /*
3144 * Do not unmap or zero past end of block
3145 * for this buffer head
3146 */
3147 if (range_to_discard > end_of_block)
3148 range_to_discard = end_of_block;
3149
3150
3151 /*
3152 * Skip this buffer head if we are only zeroing unampped
3153 * regions of the page
3154 */
3155 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3156 buffer_mapped(bh))
3157 goto next;
3158
3159 /* If the range is block aligned, unmap */
3160 if (range_to_discard == blocksize) {
3161 clear_buffer_dirty(bh);
3162 bh->b_bdev = NULL;
3163 clear_buffer_mapped(bh);
3164 clear_buffer_req(bh);
3165 clear_buffer_new(bh);
3166 clear_buffer_delay(bh);
3167 clear_buffer_unwritten(bh);
3168 clear_buffer_uptodate(bh);
3169 zero_user(page, pos, range_to_discard);
3170 BUFFER_TRACE(bh, "Buffer discarded");
3171 goto next;
3172 }
3173
3174 /*
3175 * If this block is not completely contained in the range
3176 * to be discarded, then it is not going to be released. Because
3177 * we need to keep this block, we need to make sure this part
3178 * of the page is uptodate before we modify it by writeing
3179 * partial zeros on it.
3180 */
3181 if (!buffer_mapped(bh)) {
3182 /*
3183 * Buffer head must be mapped before we can read
3184 * from the block
3185 */
3186 BUFFER_TRACE(bh, "unmapped");
3187 ext4_get_block(inode, iblock, bh, 0);
3188 /* unmapped? It's a hole - nothing to do */
3189 if (!buffer_mapped(bh)) {
3190 BUFFER_TRACE(bh, "still unmapped");
3191 goto next;
3192 }
3193 }
3194
3195 /* Ok, it's mapped. Make sure it's up-to-date */
3196 if (PageUptodate(page))
3197 set_buffer_uptodate(bh);
3198
3199 if (!buffer_uptodate(bh)) {
3200 err = -EIO;
3201 ll_rw_block(READ, 1, &bh);
3202 wait_on_buffer(bh);
3203 /* Uhhuh. Read error. Complain and punt.*/
3204 if (!buffer_uptodate(bh))
3205 goto next;
3206 }
3207
3208 if (ext4_should_journal_data(inode)) {
3209 BUFFER_TRACE(bh, "get write access");
3210 err = ext4_journal_get_write_access(handle, bh);
3211 if (err)
3212 goto next;
3213 }
3214
3215 zero_user(page, pos, range_to_discard);
3216
3217 err = 0;
3218 if (ext4_should_journal_data(inode)) {
3219 err = ext4_handle_dirty_metadata(handle, inode, bh);
3220 } else
3221 mark_buffer_dirty(bh);
3222
3223 BUFFER_TRACE(bh, "Partial buffer zeroed");
3224 next:
3225 bh = bh->b_this_page;
3226 iblock++;
3227 pos += range_to_discard;
3228 }
3229
3230 return err;
3231 }
3232
3233 /*
3234 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3235 * up to the end of the block which corresponds to `from'.
3236 * This required during truncate. We need to physically zero the tail end
3237 * of that block so it doesn't yield old data if the file is later grown.
3238 */
3239 int ext4_block_truncate_page(handle_t *handle,
3240 struct address_space *mapping, loff_t from)
3241 {
3242 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3243 unsigned length;
3244 unsigned blocksize;
3245 struct inode *inode = mapping->host;
3246
3247 blocksize = inode->i_sb->s_blocksize;
3248 length = blocksize - (offset & (blocksize - 1));
3249
3250 return ext4_block_zero_page_range(handle, mapping, from, length);
3251 }
3252
3253 /*
3254 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3255 * starting from file offset 'from'. The range to be zero'd must
3256 * be contained with in one block. If the specified range exceeds
3257 * the end of the block it will be shortened to end of the block
3258 * that cooresponds to 'from'
3259 */
3260 int ext4_block_zero_page_range(handle_t *handle,
3261 struct address_space *mapping, loff_t from, loff_t length)
3262 {
3263 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3264 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3265 unsigned blocksize, max, pos;
3266 ext4_lblk_t iblock;
3267 struct inode *inode = mapping->host;
3268 struct buffer_head *bh;
3269 struct page *page;
3270 int err = 0;
3271
3272 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3273 mapping_gfp_mask(mapping) & ~__GFP_FS);
3274 if (!page)
3275 return -EINVAL;
3276
3277 blocksize = inode->i_sb->s_blocksize;
3278 max = blocksize - (offset & (blocksize - 1));
3279
3280 /*
3281 * correct length if it does not fall between
3282 * 'from' and the end of the block
3283 */
3284 if (length > max || length < 0)
3285 length = max;
3286
3287 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3288
3289 if (!page_has_buffers(page))
3290 create_empty_buffers(page, blocksize, 0);
3291
3292 /* Find the buffer that contains "offset" */
3293 bh = page_buffers(page);
3294 pos = blocksize;
3295 while (offset >= pos) {
3296 bh = bh->b_this_page;
3297 iblock++;
3298 pos += blocksize;
3299 }
3300
3301 err = 0;
3302 if (buffer_freed(bh)) {
3303 BUFFER_TRACE(bh, "freed: skip");
3304 goto unlock;
3305 }
3306
3307 if (!buffer_mapped(bh)) {
3308 BUFFER_TRACE(bh, "unmapped");
3309 ext4_get_block(inode, iblock, bh, 0);
3310 /* unmapped? It's a hole - nothing to do */
3311 if (!buffer_mapped(bh)) {
3312 BUFFER_TRACE(bh, "still unmapped");
3313 goto unlock;
3314 }
3315 }
3316
3317 /* Ok, it's mapped. Make sure it's up-to-date */
3318 if (PageUptodate(page))
3319 set_buffer_uptodate(bh);
3320
3321 if (!buffer_uptodate(bh)) {
3322 err = -EIO;
3323 ll_rw_block(READ, 1, &bh);
3324 wait_on_buffer(bh);
3325 /* Uhhuh. Read error. Complain and punt. */
3326 if (!buffer_uptodate(bh))
3327 goto unlock;
3328 }
3329
3330 if (ext4_should_journal_data(inode)) {
3331 BUFFER_TRACE(bh, "get write access");
3332 err = ext4_journal_get_write_access(handle, bh);
3333 if (err)
3334 goto unlock;
3335 }
3336
3337 zero_user(page, offset, length);
3338
3339 BUFFER_TRACE(bh, "zeroed end of block");
3340
3341 err = 0;
3342 if (ext4_should_journal_data(inode)) {
3343 err = ext4_handle_dirty_metadata(handle, inode, bh);
3344 } else
3345 mark_buffer_dirty(bh);
3346
3347 unlock:
3348 unlock_page(page);
3349 page_cache_release(page);
3350 return err;
3351 }
3352
3353 int ext4_can_truncate(struct inode *inode)
3354 {
3355 if (S_ISREG(inode->i_mode))
3356 return 1;
3357 if (S_ISDIR(inode->i_mode))
3358 return 1;
3359 if (S_ISLNK(inode->i_mode))
3360 return !ext4_inode_is_fast_symlink(inode);
3361 return 0;
3362 }
3363
3364 /*
3365 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3366 * associated with the given offset and length
3367 *
3368 * @inode: File inode
3369 * @offset: The offset where the hole will begin
3370 * @len: The length of the hole
3371 *
3372 * Returns: 0 on sucess or negative on failure
3373 */
3374
3375 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3376 {
3377 struct inode *inode = file->f_path.dentry->d_inode;
3378 if (!S_ISREG(inode->i_mode))
3379 return -ENOTSUPP;
3380
3381 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3382 /* TODO: Add support for non extent hole punching */
3383 return -ENOTSUPP;
3384 }
3385
3386 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3387 /* TODO: Add support for bigalloc file systems */
3388 return -ENOTSUPP;
3389 }
3390
3391 return ext4_ext_punch_hole(file, offset, length);
3392 }
3393
3394 /*
3395 * ext4_truncate()
3396 *
3397 * We block out ext4_get_block() block instantiations across the entire
3398 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3399 * simultaneously on behalf of the same inode.
3400 *
3401 * As we work through the truncate and commmit bits of it to the journal there
3402 * is one core, guiding principle: the file's tree must always be consistent on
3403 * disk. We must be able to restart the truncate after a crash.
3404 *
3405 * The file's tree may be transiently inconsistent in memory (although it
3406 * probably isn't), but whenever we close off and commit a journal transaction,
3407 * the contents of (the filesystem + the journal) must be consistent and
3408 * restartable. It's pretty simple, really: bottom up, right to left (although
3409 * left-to-right works OK too).
3410 *
3411 * Note that at recovery time, journal replay occurs *before* the restart of
3412 * truncate against the orphan inode list.
3413 *
3414 * The committed inode has the new, desired i_size (which is the same as
3415 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3416 * that this inode's truncate did not complete and it will again call
3417 * ext4_truncate() to have another go. So there will be instantiated blocks
3418 * to the right of the truncation point in a crashed ext4 filesystem. But
3419 * that's fine - as long as they are linked from the inode, the post-crash
3420 * ext4_truncate() run will find them and release them.
3421 */
3422 void ext4_truncate(struct inode *inode)
3423 {
3424 trace_ext4_truncate_enter(inode);
3425
3426 if (!ext4_can_truncate(inode))
3427 return;
3428
3429 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3430
3431 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3432 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3433
3434 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3435 ext4_ext_truncate(inode);
3436 else
3437 ext4_ind_truncate(inode);
3438
3439 trace_ext4_truncate_exit(inode);
3440 }
3441
3442 /*
3443 * ext4_get_inode_loc returns with an extra refcount against the inode's
3444 * underlying buffer_head on success. If 'in_mem' is true, we have all
3445 * data in memory that is needed to recreate the on-disk version of this
3446 * inode.
3447 */
3448 static int __ext4_get_inode_loc(struct inode *inode,
3449 struct ext4_iloc *iloc, int in_mem)
3450 {
3451 struct ext4_group_desc *gdp;
3452 struct buffer_head *bh;
3453 struct super_block *sb = inode->i_sb;
3454 ext4_fsblk_t block;
3455 int inodes_per_block, inode_offset;
3456
3457 iloc->bh = NULL;
3458 if (!ext4_valid_inum(sb, inode->i_ino))
3459 return -EIO;
3460
3461 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3462 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3463 if (!gdp)
3464 return -EIO;
3465
3466 /*
3467 * Figure out the offset within the block group inode table
3468 */
3469 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3470 inode_offset = ((inode->i_ino - 1) %
3471 EXT4_INODES_PER_GROUP(sb));
3472 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3473 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3474
3475 bh = sb_getblk(sb, block);
3476 if (!bh) {
3477 EXT4_ERROR_INODE_BLOCK(inode, block,
3478 "unable to read itable block");
3479 return -EIO;
3480 }
3481 if (!buffer_uptodate(bh)) {
3482 lock_buffer(bh);
3483
3484 /*
3485 * If the buffer has the write error flag, we have failed
3486 * to write out another inode in the same block. In this
3487 * case, we don't have to read the block because we may
3488 * read the old inode data successfully.
3489 */
3490 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3491 set_buffer_uptodate(bh);
3492
3493 if (buffer_uptodate(bh)) {
3494 /* someone brought it uptodate while we waited */
3495 unlock_buffer(bh);
3496 goto has_buffer;
3497 }
3498
3499 /*
3500 * If we have all information of the inode in memory and this
3501 * is the only valid inode in the block, we need not read the
3502 * block.
3503 */
3504 if (in_mem) {
3505 struct buffer_head *bitmap_bh;
3506 int i, start;
3507
3508 start = inode_offset & ~(inodes_per_block - 1);
3509
3510 /* Is the inode bitmap in cache? */
3511 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3512 if (!bitmap_bh)
3513 goto make_io;
3514
3515 /*
3516 * If the inode bitmap isn't in cache then the
3517 * optimisation may end up performing two reads instead
3518 * of one, so skip it.
3519 */
3520 if (!buffer_uptodate(bitmap_bh)) {
3521 brelse(bitmap_bh);
3522 goto make_io;
3523 }
3524 for (i = start; i < start + inodes_per_block; i++) {
3525 if (i == inode_offset)
3526 continue;
3527 if (ext4_test_bit(i, bitmap_bh->b_data))
3528 break;
3529 }
3530 brelse(bitmap_bh);
3531 if (i == start + inodes_per_block) {
3532 /* all other inodes are free, so skip I/O */
3533 memset(bh->b_data, 0, bh->b_size);
3534 set_buffer_uptodate(bh);
3535 unlock_buffer(bh);
3536 goto has_buffer;
3537 }
3538 }
3539
3540 make_io:
3541 /*
3542 * If we need to do any I/O, try to pre-readahead extra
3543 * blocks from the inode table.
3544 */
3545 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3546 ext4_fsblk_t b, end, table;
3547 unsigned num;
3548
3549 table = ext4_inode_table(sb, gdp);
3550 /* s_inode_readahead_blks is always a power of 2 */
3551 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3552 if (table > b)
3553 b = table;
3554 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3555 num = EXT4_INODES_PER_GROUP(sb);
3556 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3557 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3558 num -= ext4_itable_unused_count(sb, gdp);
3559 table += num / inodes_per_block;
3560 if (end > table)
3561 end = table;
3562 while (b <= end)
3563 sb_breadahead(sb, b++);
3564 }
3565
3566 /*
3567 * There are other valid inodes in the buffer, this inode
3568 * has in-inode xattrs, or we don't have this inode in memory.
3569 * Read the block from disk.
3570 */
3571 trace_ext4_load_inode(inode);
3572 get_bh(bh);
3573 bh->b_end_io = end_buffer_read_sync;
3574 submit_bh(READ_META, bh);
3575 wait_on_buffer(bh);
3576 if (!buffer_uptodate(bh)) {
3577 EXT4_ERROR_INODE_BLOCK(inode, block,
3578 "unable to read itable block");
3579 brelse(bh);
3580 return -EIO;
3581 }
3582 }
3583 has_buffer:
3584 iloc->bh = bh;
3585 return 0;
3586 }
3587
3588 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3589 {
3590 /* We have all inode data except xattrs in memory here. */
3591 return __ext4_get_inode_loc(inode, iloc,
3592 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3593 }
3594
3595 void ext4_set_inode_flags(struct inode *inode)
3596 {
3597 unsigned int flags = EXT4_I(inode)->i_flags;
3598
3599 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3600 if (flags & EXT4_SYNC_FL)
3601 inode->i_flags |= S_SYNC;
3602 if (flags & EXT4_APPEND_FL)
3603 inode->i_flags |= S_APPEND;
3604 if (flags & EXT4_IMMUTABLE_FL)
3605 inode->i_flags |= S_IMMUTABLE;
3606 if (flags & EXT4_NOATIME_FL)
3607 inode->i_flags |= S_NOATIME;
3608 if (flags & EXT4_DIRSYNC_FL)
3609 inode->i_flags |= S_DIRSYNC;
3610 }
3611
3612 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3613 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3614 {
3615 unsigned int vfs_fl;
3616 unsigned long old_fl, new_fl;
3617
3618 do {
3619 vfs_fl = ei->vfs_inode.i_flags;
3620 old_fl = ei->i_flags;
3621 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3622 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3623 EXT4_DIRSYNC_FL);
3624 if (vfs_fl & S_SYNC)
3625 new_fl |= EXT4_SYNC_FL;
3626 if (vfs_fl & S_APPEND)
3627 new_fl |= EXT4_APPEND_FL;
3628 if (vfs_fl & S_IMMUTABLE)
3629 new_fl |= EXT4_IMMUTABLE_FL;
3630 if (vfs_fl & S_NOATIME)
3631 new_fl |= EXT4_NOATIME_FL;
3632 if (vfs_fl & S_DIRSYNC)
3633 new_fl |= EXT4_DIRSYNC_FL;
3634 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3635 }
3636
3637 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3638 struct ext4_inode_info *ei)
3639 {
3640 blkcnt_t i_blocks ;
3641 struct inode *inode = &(ei->vfs_inode);
3642 struct super_block *sb = inode->i_sb;
3643
3644 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3645 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3646 /* we are using combined 48 bit field */
3647 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3648 le32_to_cpu(raw_inode->i_blocks_lo);
3649 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3650 /* i_blocks represent file system block size */
3651 return i_blocks << (inode->i_blkbits - 9);
3652 } else {
3653 return i_blocks;
3654 }
3655 } else {
3656 return le32_to_cpu(raw_inode->i_blocks_lo);
3657 }
3658 }
3659
3660 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3661 {
3662 struct ext4_iloc iloc;
3663 struct ext4_inode *raw_inode;
3664 struct ext4_inode_info *ei;
3665 struct inode *inode;
3666 journal_t *journal = EXT4_SB(sb)->s_journal;
3667 long ret;
3668 int block;
3669
3670 inode = iget_locked(sb, ino);
3671 if (!inode)
3672 return ERR_PTR(-ENOMEM);
3673 if (!(inode->i_state & I_NEW))
3674 return inode;
3675
3676 ei = EXT4_I(inode);
3677 iloc.bh = NULL;
3678
3679 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3680 if (ret < 0)
3681 goto bad_inode;
3682 raw_inode = ext4_raw_inode(&iloc);
3683 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3684 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3685 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3686 if (!(test_opt(inode->i_sb, NO_UID32))) {
3687 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3688 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3689 }
3690 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3691
3692 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3693 ei->i_dir_start_lookup = 0;
3694 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3695 /* We now have enough fields to check if the inode was active or not.
3696 * This is needed because nfsd might try to access dead inodes
3697 * the test is that same one that e2fsck uses
3698 * NeilBrown 1999oct15
3699 */
3700 if (inode->i_nlink == 0) {
3701 if (inode->i_mode == 0 ||
3702 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3703 /* this inode is deleted */
3704 ret = -ESTALE;
3705 goto bad_inode;
3706 }
3707 /* The only unlinked inodes we let through here have
3708 * valid i_mode and are being read by the orphan
3709 * recovery code: that's fine, we're about to complete
3710 * the process of deleting those. */
3711 }
3712 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3713 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3714 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3715 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3716 ei->i_file_acl |=
3717 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3718 inode->i_size = ext4_isize(raw_inode);
3719 ei->i_disksize = inode->i_size;
3720 #ifdef CONFIG_QUOTA
3721 ei->i_reserved_quota = 0;
3722 #endif
3723 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3724 ei->i_block_group = iloc.block_group;
3725 ei->i_last_alloc_group = ~0;
3726 /*
3727 * NOTE! The in-memory inode i_data array is in little-endian order
3728 * even on big-endian machines: we do NOT byteswap the block numbers!
3729 */
3730 for (block = 0; block < EXT4_N_BLOCKS; block++)
3731 ei->i_data[block] = raw_inode->i_block[block];
3732 INIT_LIST_HEAD(&ei->i_orphan);
3733
3734 /*
3735 * Set transaction id's of transactions that have to be committed
3736 * to finish f[data]sync. We set them to currently running transaction
3737 * as we cannot be sure that the inode or some of its metadata isn't
3738 * part of the transaction - the inode could have been reclaimed and
3739 * now it is reread from disk.
3740 */
3741 if (journal) {
3742 transaction_t *transaction;
3743 tid_t tid;
3744
3745 read_lock(&journal->j_state_lock);
3746 if (journal->j_running_transaction)
3747 transaction = journal->j_running_transaction;
3748 else
3749 transaction = journal->j_committing_transaction;
3750 if (transaction)
3751 tid = transaction->t_tid;
3752 else
3753 tid = journal->j_commit_sequence;
3754 read_unlock(&journal->j_state_lock);
3755 ei->i_sync_tid = tid;
3756 ei->i_datasync_tid = tid;
3757 }
3758
3759 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3760 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3761 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3762 EXT4_INODE_SIZE(inode->i_sb)) {
3763 ret = -EIO;
3764 goto bad_inode;
3765 }
3766 if (ei->i_extra_isize == 0) {
3767 /* The extra space is currently unused. Use it. */
3768 ei->i_extra_isize = sizeof(struct ext4_inode) -
3769 EXT4_GOOD_OLD_INODE_SIZE;
3770 } else {
3771 __le32 *magic = (void *)raw_inode +
3772 EXT4_GOOD_OLD_INODE_SIZE +
3773 ei->i_extra_isize;
3774 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3775 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3776 }
3777 } else
3778 ei->i_extra_isize = 0;
3779
3780 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3781 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3782 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3783 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3784
3785 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3787 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3788 inode->i_version |=
3789 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3790 }
3791
3792 ret = 0;
3793 if (ei->i_file_acl &&
3794 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3795 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3796 ei->i_file_acl);
3797 ret = -EIO;
3798 goto bad_inode;
3799 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3800 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3801 (S_ISLNK(inode->i_mode) &&
3802 !ext4_inode_is_fast_symlink(inode)))
3803 /* Validate extent which is part of inode */
3804 ret = ext4_ext_check_inode(inode);
3805 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3806 (S_ISLNK(inode->i_mode) &&
3807 !ext4_inode_is_fast_symlink(inode))) {
3808 /* Validate block references which are part of inode */
3809 ret = ext4_ind_check_inode(inode);
3810 }
3811 if (ret)
3812 goto bad_inode;
3813
3814 if (S_ISREG(inode->i_mode)) {
3815 inode->i_op = &ext4_file_inode_operations;
3816 inode->i_fop = &ext4_file_operations;
3817 ext4_set_aops(inode);
3818 } else if (S_ISDIR(inode->i_mode)) {
3819 inode->i_op = &ext4_dir_inode_operations;
3820 inode->i_fop = &ext4_dir_operations;
3821 } else if (S_ISLNK(inode->i_mode)) {
3822 if (ext4_inode_is_fast_symlink(inode)) {
3823 inode->i_op = &ext4_fast_symlink_inode_operations;
3824 nd_terminate_link(ei->i_data, inode->i_size,
3825 sizeof(ei->i_data) - 1);
3826 } else {
3827 inode->i_op = &ext4_symlink_inode_operations;
3828 ext4_set_aops(inode);
3829 }
3830 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3831 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3832 inode->i_op = &ext4_special_inode_operations;
3833 if (raw_inode->i_block[0])
3834 init_special_inode(inode, inode->i_mode,
3835 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3836 else
3837 init_special_inode(inode, inode->i_mode,
3838 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3839 } else {
3840 ret = -EIO;
3841 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3842 goto bad_inode;
3843 }
3844 brelse(iloc.bh);
3845 ext4_set_inode_flags(inode);
3846 unlock_new_inode(inode);
3847 return inode;
3848
3849 bad_inode:
3850 brelse(iloc.bh);
3851 iget_failed(inode);
3852 return ERR_PTR(ret);
3853 }
3854
3855 static int ext4_inode_blocks_set(handle_t *handle,
3856 struct ext4_inode *raw_inode,
3857 struct ext4_inode_info *ei)
3858 {
3859 struct inode *inode = &(ei->vfs_inode);
3860 u64 i_blocks = inode->i_blocks;
3861 struct super_block *sb = inode->i_sb;
3862
3863 if (i_blocks <= ~0U) {
3864 /*
3865 * i_blocks can be represnted in a 32 bit variable
3866 * as multiple of 512 bytes
3867 */
3868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3869 raw_inode->i_blocks_high = 0;
3870 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3871 return 0;
3872 }
3873 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3874 return -EFBIG;
3875
3876 if (i_blocks <= 0xffffffffffffULL) {
3877 /*
3878 * i_blocks can be represented in a 48 bit variable
3879 * as multiple of 512 bytes
3880 */
3881 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3882 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3883 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3884 } else {
3885 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3886 /* i_block is stored in file system block size */
3887 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3888 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3889 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3890 }
3891 return 0;
3892 }
3893
3894 /*
3895 * Post the struct inode info into an on-disk inode location in the
3896 * buffer-cache. This gobbles the caller's reference to the
3897 * buffer_head in the inode location struct.
3898 *
3899 * The caller must have write access to iloc->bh.
3900 */
3901 static int ext4_do_update_inode(handle_t *handle,
3902 struct inode *inode,
3903 struct ext4_iloc *iloc)
3904 {
3905 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3906 struct ext4_inode_info *ei = EXT4_I(inode);
3907 struct buffer_head *bh = iloc->bh;
3908 int err = 0, rc, block;
3909
3910 /* For fields not not tracking in the in-memory inode,
3911 * initialise them to zero for new inodes. */
3912 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3913 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3914
3915 ext4_get_inode_flags(ei);
3916 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3917 if (!(test_opt(inode->i_sb, NO_UID32))) {
3918 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3919 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3920 /*
3921 * Fix up interoperability with old kernels. Otherwise, old inodes get
3922 * re-used with the upper 16 bits of the uid/gid intact
3923 */
3924 if (!ei->i_dtime) {
3925 raw_inode->i_uid_high =
3926 cpu_to_le16(high_16_bits(inode->i_uid));
3927 raw_inode->i_gid_high =
3928 cpu_to_le16(high_16_bits(inode->i_gid));
3929 } else {
3930 raw_inode->i_uid_high = 0;
3931 raw_inode->i_gid_high = 0;
3932 }
3933 } else {
3934 raw_inode->i_uid_low =
3935 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3936 raw_inode->i_gid_low =
3937 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3938 raw_inode->i_uid_high = 0;
3939 raw_inode->i_gid_high = 0;
3940 }
3941 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3942
3943 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3944 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3945 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3946 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3947
3948 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3949 goto out_brelse;
3950 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3951 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3952 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3953 cpu_to_le32(EXT4_OS_HURD))
3954 raw_inode->i_file_acl_high =
3955 cpu_to_le16(ei->i_file_acl >> 32);
3956 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3957 ext4_isize_set(raw_inode, ei->i_disksize);
3958 if (ei->i_disksize > 0x7fffffffULL) {
3959 struct super_block *sb = inode->i_sb;
3960 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3961 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3962 EXT4_SB(sb)->s_es->s_rev_level ==
3963 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3964 /* If this is the first large file
3965 * created, add a flag to the superblock.
3966 */
3967 err = ext4_journal_get_write_access(handle,
3968 EXT4_SB(sb)->s_sbh);
3969 if (err)
3970 goto out_brelse;
3971 ext4_update_dynamic_rev(sb);
3972 EXT4_SET_RO_COMPAT_FEATURE(sb,
3973 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3974 sb->s_dirt = 1;
3975 ext4_handle_sync(handle);
3976 err = ext4_handle_dirty_metadata(handle, NULL,
3977 EXT4_SB(sb)->s_sbh);
3978 }
3979 }
3980 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3981 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3982 if (old_valid_dev(inode->i_rdev)) {
3983 raw_inode->i_block[0] =
3984 cpu_to_le32(old_encode_dev(inode->i_rdev));
3985 raw_inode->i_block[1] = 0;
3986 } else {
3987 raw_inode->i_block[0] = 0;
3988 raw_inode->i_block[1] =
3989 cpu_to_le32(new_encode_dev(inode->i_rdev));
3990 raw_inode->i_block[2] = 0;
3991 }
3992 } else
3993 for (block = 0; block < EXT4_N_BLOCKS; block++)
3994 raw_inode->i_block[block] = ei->i_data[block];
3995
3996 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3997 if (ei->i_extra_isize) {
3998 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3999 raw_inode->i_version_hi =
4000 cpu_to_le32(inode->i_version >> 32);
4001 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4002 }
4003
4004 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4005 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4006 if (!err)
4007 err = rc;
4008 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4009
4010 ext4_update_inode_fsync_trans(handle, inode, 0);
4011 out_brelse:
4012 brelse(bh);
4013 ext4_std_error(inode->i_sb, err);
4014 return err;
4015 }
4016
4017 /*
4018 * ext4_write_inode()
4019 *
4020 * We are called from a few places:
4021 *
4022 * - Within generic_file_write() for O_SYNC files.
4023 * Here, there will be no transaction running. We wait for any running
4024 * trasnaction to commit.
4025 *
4026 * - Within sys_sync(), kupdate and such.
4027 * We wait on commit, if tol to.
4028 *
4029 * - Within prune_icache() (PF_MEMALLOC == true)
4030 * Here we simply return. We can't afford to block kswapd on the
4031 * journal commit.
4032 *
4033 * In all cases it is actually safe for us to return without doing anything,
4034 * because the inode has been copied into a raw inode buffer in
4035 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4036 * knfsd.
4037 *
4038 * Note that we are absolutely dependent upon all inode dirtiers doing the
4039 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4040 * which we are interested.
4041 *
4042 * It would be a bug for them to not do this. The code:
4043 *
4044 * mark_inode_dirty(inode)
4045 * stuff();
4046 * inode->i_size = expr;
4047 *
4048 * is in error because a kswapd-driven write_inode() could occur while
4049 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4050 * will no longer be on the superblock's dirty inode list.
4051 */
4052 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4053 {
4054 int err;
4055
4056 if (current->flags & PF_MEMALLOC)
4057 return 0;
4058
4059 if (EXT4_SB(inode->i_sb)->s_journal) {
4060 if (ext4_journal_current_handle()) {
4061 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4062 dump_stack();
4063 return -EIO;
4064 }
4065
4066 if (wbc->sync_mode != WB_SYNC_ALL)
4067 return 0;
4068
4069 err = ext4_force_commit(inode->i_sb);
4070 } else {
4071 struct ext4_iloc iloc;
4072
4073 err = __ext4_get_inode_loc(inode, &iloc, 0);
4074 if (err)
4075 return err;
4076 if (wbc->sync_mode == WB_SYNC_ALL)
4077 sync_dirty_buffer(iloc.bh);
4078 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4079 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4080 "IO error syncing inode");
4081 err = -EIO;
4082 }
4083 brelse(iloc.bh);
4084 }
4085 return err;
4086 }
4087
4088 /*
4089 * ext4_setattr()
4090 *
4091 * Called from notify_change.
4092 *
4093 * We want to trap VFS attempts to truncate the file as soon as
4094 * possible. In particular, we want to make sure that when the VFS
4095 * shrinks i_size, we put the inode on the orphan list and modify
4096 * i_disksize immediately, so that during the subsequent flushing of
4097 * dirty pages and freeing of disk blocks, we can guarantee that any
4098 * commit will leave the blocks being flushed in an unused state on
4099 * disk. (On recovery, the inode will get truncated and the blocks will
4100 * be freed, so we have a strong guarantee that no future commit will
4101 * leave these blocks visible to the user.)
4102 *
4103 * Another thing we have to assure is that if we are in ordered mode
4104 * and inode is still attached to the committing transaction, we must
4105 * we start writeout of all the dirty pages which are being truncated.
4106 * This way we are sure that all the data written in the previous
4107 * transaction are already on disk (truncate waits for pages under
4108 * writeback).
4109 *
4110 * Called with inode->i_mutex down.
4111 */
4112 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4113 {
4114 struct inode *inode = dentry->d_inode;
4115 int error, rc = 0;
4116 int orphan = 0;
4117 const unsigned int ia_valid = attr->ia_valid;
4118
4119 error = inode_change_ok(inode, attr);
4120 if (error)
4121 return error;
4122
4123 if (is_quota_modification(inode, attr))
4124 dquot_initialize(inode);
4125 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4126 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4127 handle_t *handle;
4128
4129 /* (user+group)*(old+new) structure, inode write (sb,
4130 * inode block, ? - but truncate inode update has it) */
4131 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4132 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4133 if (IS_ERR(handle)) {
4134 error = PTR_ERR(handle);
4135 goto err_out;
4136 }
4137 error = dquot_transfer(inode, attr);
4138 if (error) {
4139 ext4_journal_stop(handle);
4140 return error;
4141 }
4142 /* Update corresponding info in inode so that everything is in
4143 * one transaction */
4144 if (attr->ia_valid & ATTR_UID)
4145 inode->i_uid = attr->ia_uid;
4146 if (attr->ia_valid & ATTR_GID)
4147 inode->i_gid = attr->ia_gid;
4148 error = ext4_mark_inode_dirty(handle, inode);
4149 ext4_journal_stop(handle);
4150 }
4151
4152 if (attr->ia_valid & ATTR_SIZE) {
4153 inode_dio_wait(inode);
4154
4155 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4156 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4157
4158 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4159 return -EFBIG;
4160 }
4161 }
4162
4163 if (S_ISREG(inode->i_mode) &&
4164 attr->ia_valid & ATTR_SIZE &&
4165 (attr->ia_size < inode->i_size)) {
4166 handle_t *handle;
4167
4168 handle = ext4_journal_start(inode, 3);
4169 if (IS_ERR(handle)) {
4170 error = PTR_ERR(handle);
4171 goto err_out;
4172 }
4173 if (ext4_handle_valid(handle)) {
4174 error = ext4_orphan_add(handle, inode);
4175 orphan = 1;
4176 }
4177 EXT4_I(inode)->i_disksize = attr->ia_size;
4178 rc = ext4_mark_inode_dirty(handle, inode);
4179 if (!error)
4180 error = rc;
4181 ext4_journal_stop(handle);
4182
4183 if (ext4_should_order_data(inode)) {
4184 error = ext4_begin_ordered_truncate(inode,
4185 attr->ia_size);
4186 if (error) {
4187 /* Do as much error cleanup as possible */
4188 handle = ext4_journal_start(inode, 3);
4189 if (IS_ERR(handle)) {
4190 ext4_orphan_del(NULL, inode);
4191 goto err_out;
4192 }
4193 ext4_orphan_del(handle, inode);
4194 orphan = 0;
4195 ext4_journal_stop(handle);
4196 goto err_out;
4197 }
4198 }
4199 }
4200
4201 if (attr->ia_valid & ATTR_SIZE) {
4202 if (attr->ia_size != i_size_read(inode)) {
4203 truncate_setsize(inode, attr->ia_size);
4204 ext4_truncate(inode);
4205 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4206 ext4_truncate(inode);
4207 }
4208
4209 if (!rc) {
4210 setattr_copy(inode, attr);
4211 mark_inode_dirty(inode);
4212 }
4213
4214 /*
4215 * If the call to ext4_truncate failed to get a transaction handle at
4216 * all, we need to clean up the in-core orphan list manually.
4217 */
4218 if (orphan && inode->i_nlink)
4219 ext4_orphan_del(NULL, inode);
4220
4221 if (!rc && (ia_valid & ATTR_MODE))
4222 rc = ext4_acl_chmod(inode);
4223
4224 err_out:
4225 ext4_std_error(inode->i_sb, error);
4226 if (!error)
4227 error = rc;
4228 return error;
4229 }
4230
4231 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4232 struct kstat *stat)
4233 {
4234 struct inode *inode;
4235 unsigned long delalloc_blocks;
4236
4237 inode = dentry->d_inode;
4238 generic_fillattr(inode, stat);
4239
4240 /*
4241 * We can't update i_blocks if the block allocation is delayed
4242 * otherwise in the case of system crash before the real block
4243 * allocation is done, we will have i_blocks inconsistent with
4244 * on-disk file blocks.
4245 * We always keep i_blocks updated together with real
4246 * allocation. But to not confuse with user, stat
4247 * will return the blocks that include the delayed allocation
4248 * blocks for this file.
4249 */
4250 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4251
4252 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4253 return 0;
4254 }
4255
4256 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4257 {
4258 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4259 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4260 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4261 }
4262
4263 /*
4264 * Account for index blocks, block groups bitmaps and block group
4265 * descriptor blocks if modify datablocks and index blocks
4266 * worse case, the indexs blocks spread over different block groups
4267 *
4268 * If datablocks are discontiguous, they are possible to spread over
4269 * different block groups too. If they are contiuguous, with flexbg,
4270 * they could still across block group boundary.
4271 *
4272 * Also account for superblock, inode, quota and xattr blocks
4273 */
4274 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4275 {
4276 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4277 int gdpblocks;
4278 int idxblocks;
4279 int ret = 0;
4280
4281 /*
4282 * How many index blocks need to touch to modify nrblocks?
4283 * The "Chunk" flag indicating whether the nrblocks is
4284 * physically contiguous on disk
4285 *
4286 * For Direct IO and fallocate, they calls get_block to allocate
4287 * one single extent at a time, so they could set the "Chunk" flag
4288 */
4289 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4290
4291 ret = idxblocks;
4292
4293 /*
4294 * Now let's see how many group bitmaps and group descriptors need
4295 * to account
4296 */
4297 groups = idxblocks;
4298 if (chunk)
4299 groups += 1;
4300 else
4301 groups += nrblocks;
4302
4303 gdpblocks = groups;
4304 if (groups > ngroups)
4305 groups = ngroups;
4306 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4307 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4308
4309 /* bitmaps and block group descriptor blocks */
4310 ret += groups + gdpblocks;
4311
4312 /* Blocks for super block, inode, quota and xattr blocks */
4313 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4314
4315 return ret;
4316 }
4317
4318 /*
4319 * Calculate the total number of credits to reserve to fit
4320 * the modification of a single pages into a single transaction,
4321 * which may include multiple chunks of block allocations.
4322 *
4323 * This could be called via ext4_write_begin()
4324 *
4325 * We need to consider the worse case, when
4326 * one new block per extent.
4327 */
4328 int ext4_writepage_trans_blocks(struct inode *inode)
4329 {
4330 int bpp = ext4_journal_blocks_per_page(inode);
4331 int ret;
4332
4333 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4334
4335 /* Account for data blocks for journalled mode */
4336 if (ext4_should_journal_data(inode))
4337 ret += bpp;
4338 return ret;
4339 }
4340
4341 /*
4342 * Calculate the journal credits for a chunk of data modification.
4343 *
4344 * This is called from DIO, fallocate or whoever calling
4345 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4346 *
4347 * journal buffers for data blocks are not included here, as DIO
4348 * and fallocate do no need to journal data buffers.
4349 */
4350 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4351 {
4352 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4353 }
4354
4355 /*
4356 * The caller must have previously called ext4_reserve_inode_write().
4357 * Give this, we know that the caller already has write access to iloc->bh.
4358 */
4359 int ext4_mark_iloc_dirty(handle_t *handle,
4360 struct inode *inode, struct ext4_iloc *iloc)
4361 {
4362 int err = 0;
4363
4364 if (test_opt(inode->i_sb, I_VERSION))
4365 inode_inc_iversion(inode);
4366
4367 /* the do_update_inode consumes one bh->b_count */
4368 get_bh(iloc->bh);
4369
4370 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4371 err = ext4_do_update_inode(handle, inode, iloc);
4372 put_bh(iloc->bh);
4373 return err;
4374 }
4375
4376 /*
4377 * On success, We end up with an outstanding reference count against
4378 * iloc->bh. This _must_ be cleaned up later.
4379 */
4380
4381 int
4382 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4383 struct ext4_iloc *iloc)
4384 {
4385 int err;
4386
4387 err = ext4_get_inode_loc(inode, iloc);
4388 if (!err) {
4389 BUFFER_TRACE(iloc->bh, "get_write_access");
4390 err = ext4_journal_get_write_access(handle, iloc->bh);
4391 if (err) {
4392 brelse(iloc->bh);
4393 iloc->bh = NULL;
4394 }
4395 }
4396 ext4_std_error(inode->i_sb, err);
4397 return err;
4398 }
4399
4400 /*
4401 * Expand an inode by new_extra_isize bytes.
4402 * Returns 0 on success or negative error number on failure.
4403 */
4404 static int ext4_expand_extra_isize(struct inode *inode,
4405 unsigned int new_extra_isize,
4406 struct ext4_iloc iloc,
4407 handle_t *handle)
4408 {
4409 struct ext4_inode *raw_inode;
4410 struct ext4_xattr_ibody_header *header;
4411
4412 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4413 return 0;
4414
4415 raw_inode = ext4_raw_inode(&iloc);
4416
4417 header = IHDR(inode, raw_inode);
4418
4419 /* No extended attributes present */
4420 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4421 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4422 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4423 new_extra_isize);
4424 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4425 return 0;
4426 }
4427
4428 /* try to expand with EAs present */
4429 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4430 raw_inode, handle);
4431 }
4432
4433 /*
4434 * What we do here is to mark the in-core inode as clean with respect to inode
4435 * dirtiness (it may still be data-dirty).
4436 * This means that the in-core inode may be reaped by prune_icache
4437 * without having to perform any I/O. This is a very good thing,
4438 * because *any* task may call prune_icache - even ones which
4439 * have a transaction open against a different journal.
4440 *
4441 * Is this cheating? Not really. Sure, we haven't written the
4442 * inode out, but prune_icache isn't a user-visible syncing function.
4443 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4444 * we start and wait on commits.
4445 *
4446 * Is this efficient/effective? Well, we're being nice to the system
4447 * by cleaning up our inodes proactively so they can be reaped
4448 * without I/O. But we are potentially leaving up to five seconds'
4449 * worth of inodes floating about which prune_icache wants us to
4450 * write out. One way to fix that would be to get prune_icache()
4451 * to do a write_super() to free up some memory. It has the desired
4452 * effect.
4453 */
4454 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4455 {
4456 struct ext4_iloc iloc;
4457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4458 static unsigned int mnt_count;
4459 int err, ret;
4460
4461 might_sleep();
4462 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4463 err = ext4_reserve_inode_write(handle, inode, &iloc);
4464 if (ext4_handle_valid(handle) &&
4465 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4466 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4467 /*
4468 * We need extra buffer credits since we may write into EA block
4469 * with this same handle. If journal_extend fails, then it will
4470 * only result in a minor loss of functionality for that inode.
4471 * If this is felt to be critical, then e2fsck should be run to
4472 * force a large enough s_min_extra_isize.
4473 */
4474 if ((jbd2_journal_extend(handle,
4475 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4476 ret = ext4_expand_extra_isize(inode,
4477 sbi->s_want_extra_isize,
4478 iloc, handle);
4479 if (ret) {
4480 ext4_set_inode_state(inode,
4481 EXT4_STATE_NO_EXPAND);
4482 if (mnt_count !=
4483 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4484 ext4_warning(inode->i_sb,
4485 "Unable to expand inode %lu. Delete"
4486 " some EAs or run e2fsck.",
4487 inode->i_ino);
4488 mnt_count =
4489 le16_to_cpu(sbi->s_es->s_mnt_count);
4490 }
4491 }
4492 }
4493 }
4494 if (!err)
4495 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4496 return err;
4497 }
4498
4499 /*
4500 * ext4_dirty_inode() is called from __mark_inode_dirty()
4501 *
4502 * We're really interested in the case where a file is being extended.
4503 * i_size has been changed by generic_commit_write() and we thus need
4504 * to include the updated inode in the current transaction.
4505 *
4506 * Also, dquot_alloc_block() will always dirty the inode when blocks
4507 * are allocated to the file.
4508 *
4509 * If the inode is marked synchronous, we don't honour that here - doing
4510 * so would cause a commit on atime updates, which we don't bother doing.
4511 * We handle synchronous inodes at the highest possible level.
4512 */
4513 void ext4_dirty_inode(struct inode *inode, int flags)
4514 {
4515 handle_t *handle;
4516
4517 handle = ext4_journal_start(inode, 2);
4518 if (IS_ERR(handle))
4519 goto out;
4520
4521 ext4_mark_inode_dirty(handle, inode);
4522
4523 ext4_journal_stop(handle);
4524 out:
4525 return;
4526 }
4527
4528 #if 0
4529 /*
4530 * Bind an inode's backing buffer_head into this transaction, to prevent
4531 * it from being flushed to disk early. Unlike
4532 * ext4_reserve_inode_write, this leaves behind no bh reference and
4533 * returns no iloc structure, so the caller needs to repeat the iloc
4534 * lookup to mark the inode dirty later.
4535 */
4536 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4537 {
4538 struct ext4_iloc iloc;
4539
4540 int err = 0;
4541 if (handle) {
4542 err = ext4_get_inode_loc(inode, &iloc);
4543 if (!err) {
4544 BUFFER_TRACE(iloc.bh, "get_write_access");
4545 err = jbd2_journal_get_write_access(handle, iloc.bh);
4546 if (!err)
4547 err = ext4_handle_dirty_metadata(handle,
4548 NULL,
4549 iloc.bh);
4550 brelse(iloc.bh);
4551 }
4552 }
4553 ext4_std_error(inode->i_sb, err);
4554 return err;
4555 }
4556 #endif
4557
4558 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4559 {
4560 journal_t *journal;
4561 handle_t *handle;
4562 int err;
4563
4564 /*
4565 * We have to be very careful here: changing a data block's
4566 * journaling status dynamically is dangerous. If we write a
4567 * data block to the journal, change the status and then delete
4568 * that block, we risk forgetting to revoke the old log record
4569 * from the journal and so a subsequent replay can corrupt data.
4570 * So, first we make sure that the journal is empty and that
4571 * nobody is changing anything.
4572 */
4573
4574 journal = EXT4_JOURNAL(inode);
4575 if (!journal)
4576 return 0;
4577 if (is_journal_aborted(journal))
4578 return -EROFS;
4579
4580 jbd2_journal_lock_updates(journal);
4581 jbd2_journal_flush(journal);
4582
4583 /*
4584 * OK, there are no updates running now, and all cached data is
4585 * synced to disk. We are now in a completely consistent state
4586 * which doesn't have anything in the journal, and we know that
4587 * no filesystem updates are running, so it is safe to modify
4588 * the inode's in-core data-journaling state flag now.
4589 */
4590
4591 if (val)
4592 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4593 else
4594 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4595 ext4_set_aops(inode);
4596
4597 jbd2_journal_unlock_updates(journal);
4598
4599 /* Finally we can mark the inode as dirty. */
4600
4601 handle = ext4_journal_start(inode, 1);
4602 if (IS_ERR(handle))
4603 return PTR_ERR(handle);
4604
4605 err = ext4_mark_inode_dirty(handle, inode);
4606 ext4_handle_sync(handle);
4607 ext4_journal_stop(handle);
4608 ext4_std_error(inode->i_sb, err);
4609
4610 return err;
4611 }
4612
4613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4614 {
4615 return !buffer_mapped(bh);
4616 }
4617
4618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4619 {
4620 struct page *page = vmf->page;
4621 loff_t size;
4622 unsigned long len;
4623 int ret;
4624 struct file *file = vma->vm_file;
4625 struct inode *inode = file->f_path.dentry->d_inode;
4626 struct address_space *mapping = inode->i_mapping;
4627 handle_t *handle;
4628 get_block_t *get_block;
4629 int retries = 0;
4630
4631 /*
4632 * This check is racy but catches the common case. We rely on
4633 * __block_page_mkwrite() to do a reliable check.
4634 */
4635 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4636 /* Delalloc case is easy... */
4637 if (test_opt(inode->i_sb, DELALLOC) &&
4638 !ext4_should_journal_data(inode) &&
4639 !ext4_nonda_switch(inode->i_sb)) {
4640 do {
4641 ret = __block_page_mkwrite(vma, vmf,
4642 ext4_da_get_block_prep);
4643 } while (ret == -ENOSPC &&
4644 ext4_should_retry_alloc(inode->i_sb, &retries));
4645 goto out_ret;
4646 }
4647
4648 lock_page(page);
4649 size = i_size_read(inode);
4650 /* Page got truncated from under us? */
4651 if (page->mapping != mapping || page_offset(page) > size) {
4652 unlock_page(page);
4653 ret = VM_FAULT_NOPAGE;
4654 goto out;
4655 }
4656
4657 if (page->index == size >> PAGE_CACHE_SHIFT)
4658 len = size & ~PAGE_CACHE_MASK;
4659 else
4660 len = PAGE_CACHE_SIZE;
4661 /*
4662 * Return if we have all the buffers mapped. This avoids the need to do
4663 * journal_start/journal_stop which can block and take a long time
4664 */
4665 if (page_has_buffers(page)) {
4666 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4667 ext4_bh_unmapped)) {
4668 /* Wait so that we don't change page under IO */
4669 wait_on_page_writeback(page);
4670 ret = VM_FAULT_LOCKED;
4671 goto out;
4672 }
4673 }
4674 unlock_page(page);
4675 /* OK, we need to fill the hole... */
4676 if (ext4_should_dioread_nolock(inode))
4677 get_block = ext4_get_block_write;
4678 else
4679 get_block = ext4_get_block;
4680 retry_alloc:
4681 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4682 if (IS_ERR(handle)) {
4683 ret = VM_FAULT_SIGBUS;
4684 goto out;
4685 }
4686 ret = __block_page_mkwrite(vma, vmf, get_block);
4687 if (!ret && ext4_should_journal_data(inode)) {
4688 if (walk_page_buffers(handle, page_buffers(page), 0,
4689 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4690 unlock_page(page);
4691 ret = VM_FAULT_SIGBUS;
4692 goto out;
4693 }
4694 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4695 }
4696 ext4_journal_stop(handle);
4697 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4698 goto retry_alloc;
4699 out_ret:
4700 ret = block_page_mkwrite_return(ret);
4701 out:
4702 return ret;
4703 }
This page took 0.182538 seconds and 4 git commands to generate.