ext4: Invert the locking order of page_lock and transaction start
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include "ext4_jbd2.h"
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43 * Test whether an inode is a fast symlink.
44 */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __func__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100 }
101
102 /*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108 ext4_lblk_t needed;
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
125
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141 handle_t *result;
142
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
146
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
149 }
150
151 /*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178 * Called at the last iput() if i_nlink is zero.
179 */
180 void ext4_delete_inode (struct inode * inode)
181 {
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
205 /*
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
212 */
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242 p->key = *(p->p = v);
243 p->bh = bh;
244 }
245
246 /**
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
253 *
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267 /*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
280 {
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318 }
319
320 /**
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
346 *
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
349 */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
353 {
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
378 }
379
380 /**
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
385 * This function returns the preferred place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_fsblk_t last_block;
407 ext4_grpblk_t colour;
408
409 /* Try to find previous block */
410 for (p = ind->p - 1; p >= start; p--) {
411 if (*p)
412 return le32_to_cpu(*p);
413 }
414
415 /* No such thing, so let's try location of indirect block */
416 if (ind->bh)
417 return ind->bh->b_blocknr;
418
419 /*
420 * It is going to be referred to from the inode itself? OK, just put it
421 * into the same cylinder group then.
422 */
423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425
426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427 colour = (current->pid % 16) *
428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 else
430 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 return bg_start + colour;
432 }
433
434 /**
435 * ext4_find_goal - find a preferred place for allocation.
436 * @inode: owner
437 * @block: block we want
438 * @partial: pointer to the last triple within a chain
439 *
440 * Normally this function find the preferred place for block allocation,
441 * returns it.
442 */
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444 Indirect *partial)
445 {
446 struct ext4_block_alloc_info *block_i;
447
448 block_i = EXT4_I(inode)->i_block_alloc_info;
449
450 /*
451 * try the heuristic for sequential allocation,
452 * failing that at least try to get decent locality.
453 */
454 if (block_i && (block == block_i->last_alloc_logical_block + 1)
455 && (block_i->last_alloc_physical_block != 0)) {
456 return block_i->last_alloc_physical_block + 1;
457 }
458
459 return ext4_find_near(inode, partial);
460 }
461
462 /**
463 * ext4_blks_to_allocate: Look up the block map and count the number
464 * of direct blocks need to be allocated for the given branch.
465 *
466 * @branch: chain of indirect blocks
467 * @k: number of blocks need for indirect blocks
468 * @blks: number of data blocks to be mapped.
469 * @blocks_to_boundary: the offset in the indirect block
470 *
471 * return the total number of blocks to be allocate, including the
472 * direct and indirect blocks.
473 */
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 int blocks_to_boundary)
476 {
477 unsigned long count = 0;
478
479 /*
480 * Simple case, [t,d]Indirect block(s) has not allocated yet
481 * then it's clear blocks on that path have not allocated
482 */
483 if (k > 0) {
484 /* right now we don't handle cross boundary allocation */
485 if (blks < blocks_to_boundary + 1)
486 count += blks;
487 else
488 count += blocks_to_boundary + 1;
489 return count;
490 }
491
492 count++;
493 while (count < blks && count <= blocks_to_boundary &&
494 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 count++;
496 }
497 return count;
498 }
499
500 /**
501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 * @indirect_blks: the number of blocks need to allocate for indirect
503 * blocks
504 *
505 * @new_blocks: on return it will store the new block numbers for
506 * the indirect blocks(if needed) and the first direct block,
507 * @blks: on return it will store the total number of allocated
508 * direct blocks
509 */
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511 ext4_lblk_t iblock, ext4_fsblk_t goal,
512 int indirect_blks, int blks,
513 ext4_fsblk_t new_blocks[4], int *err)
514 {
515 int target, i;
516 unsigned long count = 0, blk_allocated = 0;
517 int index = 0;
518 ext4_fsblk_t current_block = 0;
519 int ret = 0;
520
521 /*
522 * Here we try to allocate the requested multiple blocks at once,
523 * on a best-effort basis.
524 * To build a branch, we should allocate blocks for
525 * the indirect blocks(if not allocated yet), and at least
526 * the first direct block of this branch. That's the
527 * minimum number of blocks need to allocate(required)
528 */
529 /* first we try to allocate the indirect blocks */
530 target = indirect_blks;
531 while (target > 0) {
532 count = target;
533 /* allocating blocks for indirect blocks and direct blocks */
534 current_block = ext4_new_meta_blocks(handle, inode,
535 goal, &count, err);
536 if (*err)
537 goto failed_out;
538
539 target -= count;
540 /* allocate blocks for indirect blocks */
541 while (index < indirect_blks && count) {
542 new_blocks[index++] = current_block++;
543 count--;
544 }
545 if (count > 0) {
546 /*
547 * save the new block number
548 * for the first direct block
549 */
550 new_blocks[index] = current_block;
551 printk(KERN_INFO "%s returned more blocks than "
552 "requested\n", __func__);
553 WARN_ON(1);
554 break;
555 }
556 }
557
558 target = blks - count ;
559 blk_allocated = count;
560 if (!target)
561 goto allocated;
562 /* Now allocate data blocks */
563 count = target;
564 /* allocating blocks for data blocks */
565 current_block = ext4_new_blocks(handle, inode, iblock,
566 goal, &count, err);
567 if (*err && (target == blks)) {
568 /*
569 * if the allocation failed and we didn't allocate
570 * any blocks before
571 */
572 goto failed_out;
573 }
574 if (!*err) {
575 if (target == blks) {
576 /*
577 * save the new block number
578 * for the first direct block
579 */
580 new_blocks[index] = current_block;
581 }
582 blk_allocated += count;
583 }
584 allocated:
585 /* total number of blocks allocated for direct blocks */
586 ret = blk_allocated;
587 *err = 0;
588 return ret;
589 failed_out:
590 for (i = 0; i <index; i++)
591 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
592 return ret;
593 }
594
595 /**
596 * ext4_alloc_branch - allocate and set up a chain of blocks.
597 * @inode: owner
598 * @indirect_blks: number of allocated indirect blocks
599 * @blks: number of allocated direct blocks
600 * @offsets: offsets (in the blocks) to store the pointers to next.
601 * @branch: place to store the chain in.
602 *
603 * This function allocates blocks, zeroes out all but the last one,
604 * links them into chain and (if we are synchronous) writes them to disk.
605 * In other words, it prepares a branch that can be spliced onto the
606 * inode. It stores the information about that chain in the branch[], in
607 * the same format as ext4_get_branch() would do. We are calling it after
608 * we had read the existing part of chain and partial points to the last
609 * triple of that (one with zero ->key). Upon the exit we have the same
610 * picture as after the successful ext4_get_block(), except that in one
611 * place chain is disconnected - *branch->p is still zero (we did not
612 * set the last link), but branch->key contains the number that should
613 * be placed into *branch->p to fill that gap.
614 *
615 * If allocation fails we free all blocks we've allocated (and forget
616 * their buffer_heads) and return the error value the from failed
617 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
618 * as described above and return 0.
619 */
620 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
621 ext4_lblk_t iblock, int indirect_blks,
622 int *blks, ext4_fsblk_t goal,
623 ext4_lblk_t *offsets, Indirect *branch)
624 {
625 int blocksize = inode->i_sb->s_blocksize;
626 int i, n = 0;
627 int err = 0;
628 struct buffer_head *bh;
629 int num;
630 ext4_fsblk_t new_blocks[4];
631 ext4_fsblk_t current_block;
632
633 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
634 *blks, new_blocks, &err);
635 if (err)
636 return err;
637
638 branch[0].key = cpu_to_le32(new_blocks[0]);
639 /*
640 * metadata blocks and data blocks are allocated.
641 */
642 for (n = 1; n <= indirect_blks; n++) {
643 /*
644 * Get buffer_head for parent block, zero it out
645 * and set the pointer to new one, then send
646 * parent to disk.
647 */
648 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
649 branch[n].bh = bh;
650 lock_buffer(bh);
651 BUFFER_TRACE(bh, "call get_create_access");
652 err = ext4_journal_get_create_access(handle, bh);
653 if (err) {
654 unlock_buffer(bh);
655 brelse(bh);
656 goto failed;
657 }
658
659 memset(bh->b_data, 0, blocksize);
660 branch[n].p = (__le32 *) bh->b_data + offsets[n];
661 branch[n].key = cpu_to_le32(new_blocks[n]);
662 *branch[n].p = branch[n].key;
663 if ( n == indirect_blks) {
664 current_block = new_blocks[n];
665 /*
666 * End of chain, update the last new metablock of
667 * the chain to point to the new allocated
668 * data blocks numbers
669 */
670 for (i=1; i < num; i++)
671 *(branch[n].p + i) = cpu_to_le32(++current_block);
672 }
673 BUFFER_TRACE(bh, "marking uptodate");
674 set_buffer_uptodate(bh);
675 unlock_buffer(bh);
676
677 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
678 err = ext4_journal_dirty_metadata(handle, bh);
679 if (err)
680 goto failed;
681 }
682 *blks = num;
683 return err;
684 failed:
685 /* Allocation failed, free what we already allocated */
686 for (i = 1; i <= n ; i++) {
687 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
688 ext4_journal_forget(handle, branch[i].bh);
689 }
690 for (i = 0; i <indirect_blks; i++)
691 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
692
693 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
694
695 return err;
696 }
697
698 /**
699 * ext4_splice_branch - splice the allocated branch onto inode.
700 * @inode: owner
701 * @block: (logical) number of block we are adding
702 * @chain: chain of indirect blocks (with a missing link - see
703 * ext4_alloc_branch)
704 * @where: location of missing link
705 * @num: number of indirect blocks we are adding
706 * @blks: number of direct blocks we are adding
707 *
708 * This function fills the missing link and does all housekeeping needed in
709 * inode (->i_blocks, etc.). In case of success we end up with the full
710 * chain to new block and return 0.
711 */
712 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
713 ext4_lblk_t block, Indirect *where, int num, int blks)
714 {
715 int i;
716 int err = 0;
717 struct ext4_block_alloc_info *block_i;
718 ext4_fsblk_t current_block;
719
720 block_i = EXT4_I(inode)->i_block_alloc_info;
721 /*
722 * If we're splicing into a [td]indirect block (as opposed to the
723 * inode) then we need to get write access to the [td]indirect block
724 * before the splice.
725 */
726 if (where->bh) {
727 BUFFER_TRACE(where->bh, "get_write_access");
728 err = ext4_journal_get_write_access(handle, where->bh);
729 if (err)
730 goto err_out;
731 }
732 /* That's it */
733
734 *where->p = where->key;
735
736 /*
737 * Update the host buffer_head or inode to point to more just allocated
738 * direct blocks blocks
739 */
740 if (num == 0 && blks > 1) {
741 current_block = le32_to_cpu(where->key) + 1;
742 for (i = 1; i < blks; i++)
743 *(where->p + i ) = cpu_to_le32(current_block++);
744 }
745
746 /*
747 * update the most recently allocated logical & physical block
748 * in i_block_alloc_info, to assist find the proper goal block for next
749 * allocation
750 */
751 if (block_i) {
752 block_i->last_alloc_logical_block = block + blks - 1;
753 block_i->last_alloc_physical_block =
754 le32_to_cpu(where[num].key) + blks - 1;
755 }
756
757 /* We are done with atomic stuff, now do the rest of housekeeping */
758
759 inode->i_ctime = ext4_current_time(inode);
760 ext4_mark_inode_dirty(handle, inode);
761
762 /* had we spliced it onto indirect block? */
763 if (where->bh) {
764 /*
765 * If we spliced it onto an indirect block, we haven't
766 * altered the inode. Note however that if it is being spliced
767 * onto an indirect block at the very end of the file (the
768 * file is growing) then we *will* alter the inode to reflect
769 * the new i_size. But that is not done here - it is done in
770 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
771 */
772 jbd_debug(5, "splicing indirect only\n");
773 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
774 err = ext4_journal_dirty_metadata(handle, where->bh);
775 if (err)
776 goto err_out;
777 } else {
778 /*
779 * OK, we spliced it into the inode itself on a direct block.
780 * Inode was dirtied above.
781 */
782 jbd_debug(5, "splicing direct\n");
783 }
784 return err;
785
786 err_out:
787 for (i = 1; i <= num; i++) {
788 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
789 ext4_journal_forget(handle, where[i].bh);
790 ext4_free_blocks(handle, inode,
791 le32_to_cpu(where[i-1].key), 1, 0);
792 }
793 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
794
795 return err;
796 }
797
798 /*
799 * Allocation strategy is simple: if we have to allocate something, we will
800 * have to go the whole way to leaf. So let's do it before attaching anything
801 * to tree, set linkage between the newborn blocks, write them if sync is
802 * required, recheck the path, free and repeat if check fails, otherwise
803 * set the last missing link (that will protect us from any truncate-generated
804 * removals - all blocks on the path are immune now) and possibly force the
805 * write on the parent block.
806 * That has a nice additional property: no special recovery from the failed
807 * allocations is needed - we simply release blocks and do not touch anything
808 * reachable from inode.
809 *
810 * `handle' can be NULL if create == 0.
811 *
812 * return > 0, # of blocks mapped or allocated.
813 * return = 0, if plain lookup failed.
814 * return < 0, error case.
815 *
816 *
817 * Need to be called with
818 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
819 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
820 */
821 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
822 ext4_lblk_t iblock, unsigned long maxblocks,
823 struct buffer_head *bh_result,
824 int create, int extend_disksize)
825 {
826 int err = -EIO;
827 ext4_lblk_t offsets[4];
828 Indirect chain[4];
829 Indirect *partial;
830 ext4_fsblk_t goal;
831 int indirect_blks;
832 int blocks_to_boundary = 0;
833 int depth;
834 struct ext4_inode_info *ei = EXT4_I(inode);
835 int count = 0;
836 ext4_fsblk_t first_block = 0;
837
838
839 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
840 J_ASSERT(handle != NULL || create == 0);
841 depth = ext4_block_to_path(inode, iblock, offsets,
842 &blocks_to_boundary);
843
844 if (depth == 0)
845 goto out;
846
847 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
848
849 /* Simplest case - block found, no allocation needed */
850 if (!partial) {
851 first_block = le32_to_cpu(chain[depth - 1].key);
852 clear_buffer_new(bh_result);
853 count++;
854 /*map more blocks*/
855 while (count < maxblocks && count <= blocks_to_boundary) {
856 ext4_fsblk_t blk;
857
858 blk = le32_to_cpu(*(chain[depth-1].p + count));
859
860 if (blk == first_block + count)
861 count++;
862 else
863 break;
864 }
865 goto got_it;
866 }
867
868 /* Next simple case - plain lookup or failed read of indirect block */
869 if (!create || err == -EIO)
870 goto cleanup;
871
872 /*
873 * Okay, we need to do block allocation. Lazily initialize the block
874 * allocation info here if necessary
875 */
876 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
877 ext4_init_block_alloc_info(inode);
878
879 goal = ext4_find_goal(inode, iblock, partial);
880
881 /* the number of blocks need to allocate for [d,t]indirect blocks */
882 indirect_blks = (chain + depth) - partial - 1;
883
884 /*
885 * Next look up the indirect map to count the totoal number of
886 * direct blocks to allocate for this branch.
887 */
888 count = ext4_blks_to_allocate(partial, indirect_blks,
889 maxblocks, blocks_to_boundary);
890 /*
891 * Block out ext4_truncate while we alter the tree
892 */
893 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
894 &count, goal,
895 offsets + (partial - chain), partial);
896
897 /*
898 * The ext4_splice_branch call will free and forget any buffers
899 * on the new chain if there is a failure, but that risks using
900 * up transaction credits, especially for bitmaps where the
901 * credits cannot be returned. Can we handle this somehow? We
902 * may need to return -EAGAIN upwards in the worst case. --sct
903 */
904 if (!err)
905 err = ext4_splice_branch(handle, inode, iblock,
906 partial, indirect_blks, count);
907 /*
908 * i_disksize growing is protected by i_data_sem. Don't forget to
909 * protect it if you're about to implement concurrent
910 * ext4_get_block() -bzzz
911 */
912 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
913 ei->i_disksize = inode->i_size;
914 if (err)
915 goto cleanup;
916
917 set_buffer_new(bh_result);
918 got_it:
919 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
920 if (count > blocks_to_boundary)
921 set_buffer_boundary(bh_result);
922 err = count;
923 /* Clean up and exit */
924 partial = chain + depth - 1; /* the whole chain */
925 cleanup:
926 while (partial > chain) {
927 BUFFER_TRACE(partial->bh, "call brelse");
928 brelse(partial->bh);
929 partial--;
930 }
931 BUFFER_TRACE(bh_result, "returned");
932 out:
933 return err;
934 }
935
936 /* Maximum number of blocks we map for direct IO at once. */
937 #define DIO_MAX_BLOCKS 4096
938 /*
939 * Number of credits we need for writing DIO_MAX_BLOCKS:
940 * We need sb + group descriptor + bitmap + inode -> 4
941 * For B blocks with A block pointers per block we need:
942 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
943 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
944 */
945 #define DIO_CREDITS 25
946
947
948 /*
949 *
950 *
951 * ext4_ext4 get_block() wrapper function
952 * It will do a look up first, and returns if the blocks already mapped.
953 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
954 * and store the allocated blocks in the result buffer head and mark it
955 * mapped.
956 *
957 * If file type is extents based, it will call ext4_ext_get_blocks(),
958 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
959 * based files
960 *
961 * On success, it returns the number of blocks being mapped or allocate.
962 * if create==0 and the blocks are pre-allocated and uninitialized block,
963 * the result buffer head is unmapped. If the create ==1, it will make sure
964 * the buffer head is mapped.
965 *
966 * It returns 0 if plain look up failed (blocks have not been allocated), in
967 * that casem, buffer head is unmapped
968 *
969 * It returns the error in case of allocation failure.
970 */
971 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
972 unsigned long max_blocks, struct buffer_head *bh,
973 int create, int extend_disksize)
974 {
975 int retval;
976
977 clear_buffer_mapped(bh);
978
979 /*
980 * Try to see if we can get the block without requesting
981 * for new file system block.
982 */
983 down_read((&EXT4_I(inode)->i_data_sem));
984 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
985 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
986 bh, 0, 0);
987 } else {
988 retval = ext4_get_blocks_handle(handle,
989 inode, block, max_blocks, bh, 0, 0);
990 }
991 up_read((&EXT4_I(inode)->i_data_sem));
992
993 /* If it is only a block(s) look up */
994 if (!create)
995 return retval;
996
997 /*
998 * Returns if the blocks have already allocated
999 *
1000 * Note that if blocks have been preallocated
1001 * ext4_ext_get_block() returns th create = 0
1002 * with buffer head unmapped.
1003 */
1004 if (retval > 0 && buffer_mapped(bh))
1005 return retval;
1006
1007 /*
1008 * New blocks allocate and/or writing to uninitialized extent
1009 * will possibly result in updating i_data, so we take
1010 * the write lock of i_data_sem, and call get_blocks()
1011 * with create == 1 flag.
1012 */
1013 down_write((&EXT4_I(inode)->i_data_sem));
1014 /*
1015 * We need to check for EXT4 here because migrate
1016 * could have changed the inode type in between
1017 */
1018 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1019 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1020 bh, create, extend_disksize);
1021 } else {
1022 retval = ext4_get_blocks_handle(handle, inode, block,
1023 max_blocks, bh, create, extend_disksize);
1024
1025 if (retval > 0 && buffer_new(bh)) {
1026 /*
1027 * We allocated new blocks which will result in
1028 * i_data's format changing. Force the migrate
1029 * to fail by clearing migrate flags
1030 */
1031 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1032 ~EXT4_EXT_MIGRATE;
1033 }
1034 }
1035 up_write((&EXT4_I(inode)->i_data_sem));
1036 return retval;
1037 }
1038
1039 static int ext4_get_block(struct inode *inode, sector_t iblock,
1040 struct buffer_head *bh_result, int create)
1041 {
1042 handle_t *handle = ext4_journal_current_handle();
1043 int ret = 0, started = 0;
1044 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1045
1046 if (create && !handle) {
1047 /* Direct IO write... */
1048 if (max_blocks > DIO_MAX_BLOCKS)
1049 max_blocks = DIO_MAX_BLOCKS;
1050 handle = ext4_journal_start(inode, DIO_CREDITS +
1051 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1052 if (IS_ERR(handle)) {
1053 ret = PTR_ERR(handle);
1054 goto out;
1055 }
1056 started = 1;
1057 }
1058
1059 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1060 max_blocks, bh_result, create, 0);
1061 if (ret > 0) {
1062 bh_result->b_size = (ret << inode->i_blkbits);
1063 ret = 0;
1064 }
1065 if (started)
1066 ext4_journal_stop(handle);
1067 out:
1068 return ret;
1069 }
1070
1071 /*
1072 * `handle' can be NULL if create is zero
1073 */
1074 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1075 ext4_lblk_t block, int create, int *errp)
1076 {
1077 struct buffer_head dummy;
1078 int fatal = 0, err;
1079
1080 J_ASSERT(handle != NULL || create == 0);
1081
1082 dummy.b_state = 0;
1083 dummy.b_blocknr = -1000;
1084 buffer_trace_init(&dummy.b_history);
1085 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1086 &dummy, create, 1);
1087 /*
1088 * ext4_get_blocks_handle() returns number of blocks
1089 * mapped. 0 in case of a HOLE.
1090 */
1091 if (err > 0) {
1092 if (err > 1)
1093 WARN_ON(1);
1094 err = 0;
1095 }
1096 *errp = err;
1097 if (!err && buffer_mapped(&dummy)) {
1098 struct buffer_head *bh;
1099 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1100 if (!bh) {
1101 *errp = -EIO;
1102 goto err;
1103 }
1104 if (buffer_new(&dummy)) {
1105 J_ASSERT(create != 0);
1106 J_ASSERT(handle != NULL);
1107
1108 /*
1109 * Now that we do not always journal data, we should
1110 * keep in mind whether this should always journal the
1111 * new buffer as metadata. For now, regular file
1112 * writes use ext4_get_block instead, so it's not a
1113 * problem.
1114 */
1115 lock_buffer(bh);
1116 BUFFER_TRACE(bh, "call get_create_access");
1117 fatal = ext4_journal_get_create_access(handle, bh);
1118 if (!fatal && !buffer_uptodate(bh)) {
1119 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1120 set_buffer_uptodate(bh);
1121 }
1122 unlock_buffer(bh);
1123 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1124 err = ext4_journal_dirty_metadata(handle, bh);
1125 if (!fatal)
1126 fatal = err;
1127 } else {
1128 BUFFER_TRACE(bh, "not a new buffer");
1129 }
1130 if (fatal) {
1131 *errp = fatal;
1132 brelse(bh);
1133 bh = NULL;
1134 }
1135 return bh;
1136 }
1137 err:
1138 return NULL;
1139 }
1140
1141 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1142 ext4_lblk_t block, int create, int *err)
1143 {
1144 struct buffer_head * bh;
1145
1146 bh = ext4_getblk(handle, inode, block, create, err);
1147 if (!bh)
1148 return bh;
1149 if (buffer_uptodate(bh))
1150 return bh;
1151 ll_rw_block(READ_META, 1, &bh);
1152 wait_on_buffer(bh);
1153 if (buffer_uptodate(bh))
1154 return bh;
1155 put_bh(bh);
1156 *err = -EIO;
1157 return NULL;
1158 }
1159
1160 static int walk_page_buffers( handle_t *handle,
1161 struct buffer_head *head,
1162 unsigned from,
1163 unsigned to,
1164 int *partial,
1165 int (*fn)( handle_t *handle,
1166 struct buffer_head *bh))
1167 {
1168 struct buffer_head *bh;
1169 unsigned block_start, block_end;
1170 unsigned blocksize = head->b_size;
1171 int err, ret = 0;
1172 struct buffer_head *next;
1173
1174 for ( bh = head, block_start = 0;
1175 ret == 0 && (bh != head || !block_start);
1176 block_start = block_end, bh = next)
1177 {
1178 next = bh->b_this_page;
1179 block_end = block_start + blocksize;
1180 if (block_end <= from || block_start >= to) {
1181 if (partial && !buffer_uptodate(bh))
1182 *partial = 1;
1183 continue;
1184 }
1185 err = (*fn)(handle, bh);
1186 if (!ret)
1187 ret = err;
1188 }
1189 return ret;
1190 }
1191
1192 /*
1193 * To preserve ordering, it is essential that the hole instantiation and
1194 * the data write be encapsulated in a single transaction. We cannot
1195 * close off a transaction and start a new one between the ext4_get_block()
1196 * and the commit_write(). So doing the jbd2_journal_start at the start of
1197 * prepare_write() is the right place.
1198 *
1199 * Also, this function can nest inside ext4_writepage() ->
1200 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1201 * has generated enough buffer credits to do the whole page. So we won't
1202 * block on the journal in that case, which is good, because the caller may
1203 * be PF_MEMALLOC.
1204 *
1205 * By accident, ext4 can be reentered when a transaction is open via
1206 * quota file writes. If we were to commit the transaction while thus
1207 * reentered, there can be a deadlock - we would be holding a quota
1208 * lock, and the commit would never complete if another thread had a
1209 * transaction open and was blocking on the quota lock - a ranking
1210 * violation.
1211 *
1212 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1213 * will _not_ run commit under these circumstances because handle->h_ref
1214 * is elevated. We'll still have enough credits for the tiny quotafile
1215 * write.
1216 */
1217 static int do_journal_get_write_access(handle_t *handle,
1218 struct buffer_head *bh)
1219 {
1220 if (!buffer_mapped(bh) || buffer_freed(bh))
1221 return 0;
1222 return ext4_journal_get_write_access(handle, bh);
1223 }
1224
1225 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1226 loff_t pos, unsigned len, unsigned flags,
1227 struct page **pagep, void **fsdata)
1228 {
1229 struct inode *inode = mapping->host;
1230 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1231 handle_t *handle;
1232 int retries = 0;
1233 struct page *page;
1234 pgoff_t index;
1235 unsigned from, to;
1236
1237 index = pos >> PAGE_CACHE_SHIFT;
1238 from = pos & (PAGE_CACHE_SIZE - 1);
1239 to = from + len;
1240
1241 retry:
1242 handle = ext4_journal_start(inode, needed_blocks);
1243 if (IS_ERR(handle)) {
1244 ret = PTR_ERR(handle);
1245 goto out;
1246 }
1247
1248 page = __grab_cache_page(mapping, index);
1249 if (!page) {
1250 ext4_journal_stop(handle);
1251 ret = -ENOMEM;
1252 goto out;
1253 }
1254 *pagep = page;
1255
1256 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1257 ext4_get_block);
1258
1259 if (!ret && ext4_should_journal_data(inode)) {
1260 ret = walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL, do_journal_get_write_access);
1262 }
1263
1264 if (ret) {
1265 unlock_page(page);
1266 ext4_journal_stop(handle);
1267 page_cache_release(page);
1268 }
1269
1270 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1271 goto retry;
1272 out:
1273 return ret;
1274 }
1275
1276 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1277 {
1278 int err = jbd2_journal_dirty_data(handle, bh);
1279 if (err)
1280 ext4_journal_abort_handle(__func__, __func__,
1281 bh, handle, err);
1282 return err;
1283 }
1284
1285 /* For write_end() in data=journal mode */
1286 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1287 {
1288 if (!buffer_mapped(bh) || buffer_freed(bh))
1289 return 0;
1290 set_buffer_uptodate(bh);
1291 return ext4_journal_dirty_metadata(handle, bh);
1292 }
1293
1294 /*
1295 * We need to pick up the new inode size which generic_commit_write gave us
1296 * `file' can be NULL - eg, when called from page_symlink().
1297 *
1298 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1299 * buffers are managed internally.
1300 */
1301 static int ext4_ordered_write_end(struct file *file,
1302 struct address_space *mapping,
1303 loff_t pos, unsigned len, unsigned copied,
1304 struct page *page, void *fsdata)
1305 {
1306 handle_t *handle = ext4_journal_current_handle();
1307 struct inode *inode = mapping->host;
1308 unsigned from, to;
1309 int ret = 0, ret2;
1310
1311 from = pos & (PAGE_CACHE_SIZE - 1);
1312 to = from + len;
1313
1314 ret = walk_page_buffers(handle, page_buffers(page),
1315 from, to, NULL, ext4_journal_dirty_data);
1316
1317 if (ret == 0) {
1318 /*
1319 * generic_write_end() will run mark_inode_dirty() if i_size
1320 * changes. So let's piggyback the i_disksize mark_inode_dirty
1321 * into that.
1322 */
1323 loff_t new_i_size;
1324
1325 new_i_size = pos + copied;
1326 if (new_i_size > EXT4_I(inode)->i_disksize)
1327 EXT4_I(inode)->i_disksize = new_i_size;
1328 ret2 = generic_write_end(file, mapping, pos, len, copied,
1329 page, fsdata);
1330 copied = ret2;
1331 if (ret2 < 0)
1332 ret = ret2;
1333 }
1334 ret2 = ext4_journal_stop(handle);
1335 if (!ret)
1336 ret = ret2;
1337
1338 return ret ? ret : copied;
1339 }
1340
1341 static int ext4_writeback_write_end(struct file *file,
1342 struct address_space *mapping,
1343 loff_t pos, unsigned len, unsigned copied,
1344 struct page *page, void *fsdata)
1345 {
1346 handle_t *handle = ext4_journal_current_handle();
1347 struct inode *inode = mapping->host;
1348 int ret = 0, ret2;
1349 loff_t new_i_size;
1350
1351 new_i_size = pos + copied;
1352 if (new_i_size > EXT4_I(inode)->i_disksize)
1353 EXT4_I(inode)->i_disksize = new_i_size;
1354
1355 ret2 = generic_write_end(file, mapping, pos, len, copied,
1356 page, fsdata);
1357 copied = ret2;
1358 if (ret2 < 0)
1359 ret = ret2;
1360
1361 ret2 = ext4_journal_stop(handle);
1362 if (!ret)
1363 ret = ret2;
1364
1365 return ret ? ret : copied;
1366 }
1367
1368 static int ext4_journalled_write_end(struct file *file,
1369 struct address_space *mapping,
1370 loff_t pos, unsigned len, unsigned copied,
1371 struct page *page, void *fsdata)
1372 {
1373 handle_t *handle = ext4_journal_current_handle();
1374 struct inode *inode = mapping->host;
1375 int ret = 0, ret2;
1376 int partial = 0;
1377 unsigned from, to;
1378
1379 from = pos & (PAGE_CACHE_SIZE - 1);
1380 to = from + len;
1381
1382 if (copied < len) {
1383 if (!PageUptodate(page))
1384 copied = 0;
1385 page_zero_new_buffers(page, from+copied, to);
1386 }
1387
1388 ret = walk_page_buffers(handle, page_buffers(page), from,
1389 to, &partial, write_end_fn);
1390 if (!partial)
1391 SetPageUptodate(page);
1392 if (pos+copied > inode->i_size)
1393 i_size_write(inode, pos+copied);
1394 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1395 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1396 EXT4_I(inode)->i_disksize = inode->i_size;
1397 ret2 = ext4_mark_inode_dirty(handle, inode);
1398 if (!ret)
1399 ret = ret2;
1400 }
1401
1402 unlock_page(page);
1403 ret2 = ext4_journal_stop(handle);
1404 if (!ret)
1405 ret = ret2;
1406 page_cache_release(page);
1407
1408 return ret ? ret : copied;
1409 }
1410
1411 /*
1412 * bmap() is special. It gets used by applications such as lilo and by
1413 * the swapper to find the on-disk block of a specific piece of data.
1414 *
1415 * Naturally, this is dangerous if the block concerned is still in the
1416 * journal. If somebody makes a swapfile on an ext4 data-journaling
1417 * filesystem and enables swap, then they may get a nasty shock when the
1418 * data getting swapped to that swapfile suddenly gets overwritten by
1419 * the original zero's written out previously to the journal and
1420 * awaiting writeback in the kernel's buffer cache.
1421 *
1422 * So, if we see any bmap calls here on a modified, data-journaled file,
1423 * take extra steps to flush any blocks which might be in the cache.
1424 */
1425 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1426 {
1427 struct inode *inode = mapping->host;
1428 journal_t *journal;
1429 int err;
1430
1431 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1432 /*
1433 * This is a REALLY heavyweight approach, but the use of
1434 * bmap on dirty files is expected to be extremely rare:
1435 * only if we run lilo or swapon on a freshly made file
1436 * do we expect this to happen.
1437 *
1438 * (bmap requires CAP_SYS_RAWIO so this does not
1439 * represent an unprivileged user DOS attack --- we'd be
1440 * in trouble if mortal users could trigger this path at
1441 * will.)
1442 *
1443 * NB. EXT4_STATE_JDATA is not set on files other than
1444 * regular files. If somebody wants to bmap a directory
1445 * or symlink and gets confused because the buffer
1446 * hasn't yet been flushed to disk, they deserve
1447 * everything they get.
1448 */
1449
1450 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1451 journal = EXT4_JOURNAL(inode);
1452 jbd2_journal_lock_updates(journal);
1453 err = jbd2_journal_flush(journal);
1454 jbd2_journal_unlock_updates(journal);
1455
1456 if (err)
1457 return 0;
1458 }
1459
1460 return generic_block_bmap(mapping,block,ext4_get_block);
1461 }
1462
1463 static int bget_one(handle_t *handle, struct buffer_head *bh)
1464 {
1465 get_bh(bh);
1466 return 0;
1467 }
1468
1469 static int bput_one(handle_t *handle, struct buffer_head *bh)
1470 {
1471 put_bh(bh);
1472 return 0;
1473 }
1474
1475 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1476 {
1477 if (buffer_mapped(bh))
1478 return ext4_journal_dirty_data(handle, bh);
1479 return 0;
1480 }
1481
1482 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
1483 {
1484 return !buffer_mapped(bh) || buffer_delay(bh);
1485 }
1486
1487 /*
1488 * Note that we don't need to start a transaction unless we're journaling
1489 * data because we should have holes filled from ext4_page_mkwrite(). If
1490 * we are journaling data, we cannot start transaction directly because
1491 * transaction start ranks above page lock so we have to do some magic...
1492 *
1493 * In all journalling modes block_write_full_page() will start the I/O.
1494 *
1495 * Problem:
1496 *
1497 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1498 * ext4_writepage()
1499 *
1500 * Similar for:
1501 *
1502 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1503 *
1504 * Same applies to ext4_get_block(). We will deadlock on various things like
1505 * lock_journal and i_data_sem
1506 *
1507 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1508 * allocations fail.
1509 *
1510 * 16May01: If we're reentered then journal_current_handle() will be
1511 * non-zero. We simply *return*.
1512 *
1513 * 1 July 2001: @@@ FIXME:
1514 * In journalled data mode, a data buffer may be metadata against the
1515 * current transaction. But the same file is part of a shared mapping
1516 * and someone does a writepage() on it.
1517 *
1518 * We will move the buffer onto the async_data list, but *after* it has
1519 * been dirtied. So there's a small window where we have dirty data on
1520 * BJ_Metadata.
1521 *
1522 * Note that this only applies to the last partial page in the file. The
1523 * bit which block_write_full_page() uses prepare/commit for. (That's
1524 * broken code anyway: it's wrong for msync()).
1525 *
1526 * It's a rare case: affects the final partial page, for journalled data
1527 * where the file is subject to bith write() and writepage() in the same
1528 * transction. To fix it we'll need a custom block_write_full_page().
1529 * We'll probably need that anyway for journalling writepage() output.
1530 *
1531 * We don't honour synchronous mounts for writepage(). That would be
1532 * disastrous. Any write() or metadata operation will sync the fs for
1533 * us.
1534 *
1535 */
1536 static int __ext4_ordered_writepage(struct page *page,
1537 struct writeback_control *wbc)
1538 {
1539 struct inode *inode = page->mapping->host;
1540 struct buffer_head *page_bufs;
1541 handle_t *handle = NULL;
1542 int ret = 0;
1543 int err;
1544
1545 if (!page_has_buffers(page)) {
1546 create_empty_buffers(page, inode->i_sb->s_blocksize,
1547 (1 << BH_Dirty)|(1 << BH_Uptodate));
1548 }
1549 page_bufs = page_buffers(page);
1550 walk_page_buffers(handle, page_bufs, 0,
1551 PAGE_CACHE_SIZE, NULL, bget_one);
1552
1553 ret = block_write_full_page(page, ext4_get_block, wbc);
1554
1555 /*
1556 * The page can become unlocked at any point now, and
1557 * truncate can then come in and change things. So we
1558 * can't touch *page from now on. But *page_bufs is
1559 * safe due to elevated refcount.
1560 */
1561
1562 /*
1563 * And attach them to the current transaction. But only if
1564 * block_write_full_page() succeeded. Otherwise they are unmapped,
1565 * and generally junk.
1566 */
1567 if (ret == 0) {
1568 handle = ext4_journal_start(inode,
1569 ext4_writepage_trans_blocks(inode));
1570 if (IS_ERR(handle)) {
1571 ret = PTR_ERR(handle);
1572 goto out_put;
1573 }
1574
1575 ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1576 NULL, jbd2_journal_dirty_data_fn);
1577 err = ext4_journal_stop(handle);
1578 if (!ret)
1579 ret = err;
1580 }
1581 out_put:
1582 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
1583 bput_one);
1584 return ret;
1585 }
1586
1587 static int ext4_ordered_writepage(struct page *page,
1588 struct writeback_control *wbc)
1589 {
1590 struct inode *inode = page->mapping->host;
1591 loff_t size = i_size_read(inode);
1592 loff_t len;
1593
1594 J_ASSERT(PageLocked(page));
1595 J_ASSERT(page_has_buffers(page));
1596 if (page->index == size >> PAGE_CACHE_SHIFT)
1597 len = size & ~PAGE_CACHE_MASK;
1598 else
1599 len = PAGE_CACHE_SIZE;
1600 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1601 ext4_bh_unmapped_or_delay));
1602
1603 /*
1604 * We give up here if we're reentered, because it might be for a
1605 * different filesystem.
1606 */
1607 if (!ext4_journal_current_handle())
1608 return __ext4_ordered_writepage(page, wbc);
1609
1610 redirty_page_for_writepage(wbc, page);
1611 unlock_page(page);
1612 return 0;
1613 }
1614
1615 static int __ext4_writeback_writepage(struct page *page,
1616 struct writeback_control *wbc)
1617 {
1618 struct inode *inode = page->mapping->host;
1619
1620 if (test_opt(inode->i_sb, NOBH))
1621 return nobh_writepage(page, ext4_get_block, wbc);
1622 else
1623 return block_write_full_page(page, ext4_get_block, wbc);
1624 }
1625
1626
1627 static int ext4_writeback_writepage(struct page *page,
1628 struct writeback_control *wbc)
1629 {
1630 struct inode *inode = page->mapping->host;
1631 loff_t size = i_size_read(inode);
1632 loff_t len;
1633
1634 J_ASSERT(PageLocked(page));
1635 J_ASSERT(page_has_buffers(page));
1636 if (page->index == size >> PAGE_CACHE_SHIFT)
1637 len = size & ~PAGE_CACHE_MASK;
1638 else
1639 len = PAGE_CACHE_SIZE;
1640 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1641 ext4_bh_unmapped_or_delay));
1642
1643 if (!ext4_journal_current_handle())
1644 return __ext4_writeback_writepage(page, wbc);
1645
1646 redirty_page_for_writepage(wbc, page);
1647 unlock_page(page);
1648 return 0;
1649 }
1650
1651 static int __ext4_journalled_writepage(struct page *page,
1652 struct writeback_control *wbc)
1653 {
1654 struct address_space *mapping = page->mapping;
1655 struct inode *inode = mapping->host;
1656 struct buffer_head *page_bufs;
1657 handle_t *handle = NULL;
1658 int ret = 0;
1659 int err;
1660
1661 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
1662 if (ret != 0)
1663 goto out_unlock;
1664
1665 page_bufs = page_buffers(page);
1666 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
1667 bget_one);
1668 /* As soon as we unlock the page, it can go away, but we have
1669 * references to buffers so we are safe */
1670 unlock_page(page);
1671
1672 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1673 if (IS_ERR(handle)) {
1674 ret = PTR_ERR(handle);
1675 goto out;
1676 }
1677
1678 ret = walk_page_buffers(handle, page_bufs, 0,
1679 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1680
1681 err = walk_page_buffers(handle, page_bufs, 0,
1682 PAGE_CACHE_SIZE, NULL, write_end_fn);
1683 if (ret == 0)
1684 ret = err;
1685 err = ext4_journal_stop(handle);
1686 if (!ret)
1687 ret = err;
1688
1689 walk_page_buffers(handle, page_bufs, 0,
1690 PAGE_CACHE_SIZE, NULL, bput_one);
1691 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1692 goto out;
1693
1694 out_unlock:
1695 unlock_page(page);
1696 out:
1697 return ret;
1698 }
1699
1700 static int ext4_journalled_writepage(struct page *page,
1701 struct writeback_control *wbc)
1702 {
1703 struct inode *inode = page->mapping->host;
1704 loff_t size = i_size_read(inode);
1705 loff_t len;
1706
1707 J_ASSERT(PageLocked(page));
1708 J_ASSERT(page_has_buffers(page));
1709 if (page->index == size >> PAGE_CACHE_SHIFT)
1710 len = size & ~PAGE_CACHE_MASK;
1711 else
1712 len = PAGE_CACHE_SIZE;
1713 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1714 ext4_bh_unmapped_or_delay));
1715
1716 if (ext4_journal_current_handle())
1717 goto no_write;
1718
1719 if (PageChecked(page)) {
1720 /*
1721 * It's mmapped pagecache. Add buffers and journal it. There
1722 * doesn't seem much point in redirtying the page here.
1723 */
1724 ClearPageChecked(page);
1725 return __ext4_journalled_writepage(page, wbc);
1726 } else {
1727 /*
1728 * It may be a page full of checkpoint-mode buffers. We don't
1729 * really know unless we go poke around in the buffer_heads.
1730 * But block_write_full_page will do the right thing.
1731 */
1732 return block_write_full_page(page, ext4_get_block, wbc);
1733 }
1734 no_write:
1735 redirty_page_for_writepage(wbc, page);
1736 unlock_page(page);
1737 return 0;
1738 }
1739
1740 static int ext4_readpage(struct file *file, struct page *page)
1741 {
1742 return mpage_readpage(page, ext4_get_block);
1743 }
1744
1745 static int
1746 ext4_readpages(struct file *file, struct address_space *mapping,
1747 struct list_head *pages, unsigned nr_pages)
1748 {
1749 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1750 }
1751
1752 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1753 {
1754 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1755
1756 /*
1757 * If it's a full truncate we just forget about the pending dirtying
1758 */
1759 if (offset == 0)
1760 ClearPageChecked(page);
1761
1762 jbd2_journal_invalidatepage(journal, page, offset);
1763 }
1764
1765 static int ext4_releasepage(struct page *page, gfp_t wait)
1766 {
1767 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1768
1769 WARN_ON(PageChecked(page));
1770 if (!page_has_buffers(page))
1771 return 0;
1772 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1773 }
1774
1775 /*
1776 * If the O_DIRECT write will extend the file then add this inode to the
1777 * orphan list. So recovery will truncate it back to the original size
1778 * if the machine crashes during the write.
1779 *
1780 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1781 * crashes then stale disk data _may_ be exposed inside the file. But current
1782 * VFS code falls back into buffered path in that case so we are safe.
1783 */
1784 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1785 const struct iovec *iov, loff_t offset,
1786 unsigned long nr_segs)
1787 {
1788 struct file *file = iocb->ki_filp;
1789 struct inode *inode = file->f_mapping->host;
1790 struct ext4_inode_info *ei = EXT4_I(inode);
1791 handle_t *handle;
1792 ssize_t ret;
1793 int orphan = 0;
1794 size_t count = iov_length(iov, nr_segs);
1795
1796 if (rw == WRITE) {
1797 loff_t final_size = offset + count;
1798
1799 if (final_size > inode->i_size) {
1800 /* Credits for sb + inode write */
1801 handle = ext4_journal_start(inode, 2);
1802 if (IS_ERR(handle)) {
1803 ret = PTR_ERR(handle);
1804 goto out;
1805 }
1806 ret = ext4_orphan_add(handle, inode);
1807 if (ret) {
1808 ext4_journal_stop(handle);
1809 goto out;
1810 }
1811 orphan = 1;
1812 ei->i_disksize = inode->i_size;
1813 ext4_journal_stop(handle);
1814 }
1815 }
1816
1817 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1818 offset, nr_segs,
1819 ext4_get_block, NULL);
1820
1821 if (orphan) {
1822 int err;
1823
1824 /* Credits for sb + inode write */
1825 handle = ext4_journal_start(inode, 2);
1826 if (IS_ERR(handle)) {
1827 /* This is really bad luck. We've written the data
1828 * but cannot extend i_size. Bail out and pretend
1829 * the write failed... */
1830 ret = PTR_ERR(handle);
1831 goto out;
1832 }
1833 if (inode->i_nlink)
1834 ext4_orphan_del(handle, inode);
1835 if (ret > 0) {
1836 loff_t end = offset + ret;
1837 if (end > inode->i_size) {
1838 ei->i_disksize = end;
1839 i_size_write(inode, end);
1840 /*
1841 * We're going to return a positive `ret'
1842 * here due to non-zero-length I/O, so there's
1843 * no way of reporting error returns from
1844 * ext4_mark_inode_dirty() to userspace. So
1845 * ignore it.
1846 */
1847 ext4_mark_inode_dirty(handle, inode);
1848 }
1849 }
1850 err = ext4_journal_stop(handle);
1851 if (ret == 0)
1852 ret = err;
1853 }
1854 out:
1855 return ret;
1856 }
1857
1858 /*
1859 * Pages can be marked dirty completely asynchronously from ext4's journalling
1860 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1861 * much here because ->set_page_dirty is called under VFS locks. The page is
1862 * not necessarily locked.
1863 *
1864 * We cannot just dirty the page and leave attached buffers clean, because the
1865 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1866 * or jbddirty because all the journalling code will explode.
1867 *
1868 * So what we do is to mark the page "pending dirty" and next time writepage
1869 * is called, propagate that into the buffers appropriately.
1870 */
1871 static int ext4_journalled_set_page_dirty(struct page *page)
1872 {
1873 SetPageChecked(page);
1874 return __set_page_dirty_nobuffers(page);
1875 }
1876
1877 static const struct address_space_operations ext4_ordered_aops = {
1878 .readpage = ext4_readpage,
1879 .readpages = ext4_readpages,
1880 .writepage = ext4_ordered_writepage,
1881 .sync_page = block_sync_page,
1882 .write_begin = ext4_write_begin,
1883 .write_end = ext4_ordered_write_end,
1884 .bmap = ext4_bmap,
1885 .invalidatepage = ext4_invalidatepage,
1886 .releasepage = ext4_releasepage,
1887 .direct_IO = ext4_direct_IO,
1888 .migratepage = buffer_migrate_page,
1889 };
1890
1891 static const struct address_space_operations ext4_writeback_aops = {
1892 .readpage = ext4_readpage,
1893 .readpages = ext4_readpages,
1894 .writepage = ext4_writeback_writepage,
1895 .sync_page = block_sync_page,
1896 .write_begin = ext4_write_begin,
1897 .write_end = ext4_writeback_write_end,
1898 .bmap = ext4_bmap,
1899 .invalidatepage = ext4_invalidatepage,
1900 .releasepage = ext4_releasepage,
1901 .direct_IO = ext4_direct_IO,
1902 .migratepage = buffer_migrate_page,
1903 };
1904
1905 static const struct address_space_operations ext4_journalled_aops = {
1906 .readpage = ext4_readpage,
1907 .readpages = ext4_readpages,
1908 .writepage = ext4_journalled_writepage,
1909 .sync_page = block_sync_page,
1910 .write_begin = ext4_write_begin,
1911 .write_end = ext4_journalled_write_end,
1912 .set_page_dirty = ext4_journalled_set_page_dirty,
1913 .bmap = ext4_bmap,
1914 .invalidatepage = ext4_invalidatepage,
1915 .releasepage = ext4_releasepage,
1916 };
1917
1918 void ext4_set_aops(struct inode *inode)
1919 {
1920 if (ext4_should_order_data(inode))
1921 inode->i_mapping->a_ops = &ext4_ordered_aops;
1922 else if (ext4_should_writeback_data(inode))
1923 inode->i_mapping->a_ops = &ext4_writeback_aops;
1924 else
1925 inode->i_mapping->a_ops = &ext4_journalled_aops;
1926 }
1927
1928 /*
1929 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1930 * up to the end of the block which corresponds to `from'.
1931 * This required during truncate. We need to physically zero the tail end
1932 * of that block so it doesn't yield old data if the file is later grown.
1933 */
1934 int ext4_block_truncate_page(handle_t *handle,
1935 struct address_space *mapping, loff_t from)
1936 {
1937 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1938 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1939 unsigned blocksize, length, pos;
1940 ext4_lblk_t iblock;
1941 struct inode *inode = mapping->host;
1942 struct buffer_head *bh;
1943 struct page *page;
1944 int err = 0;
1945
1946 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
1947 if (!page)
1948 return -EINVAL;
1949
1950 blocksize = inode->i_sb->s_blocksize;
1951 length = blocksize - (offset & (blocksize - 1));
1952 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1953
1954 /*
1955 * For "nobh" option, we can only work if we don't need to
1956 * read-in the page - otherwise we create buffers to do the IO.
1957 */
1958 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1959 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1960 zero_user(page, offset, length);
1961 set_page_dirty(page);
1962 goto unlock;
1963 }
1964
1965 if (!page_has_buffers(page))
1966 create_empty_buffers(page, blocksize, 0);
1967
1968 /* Find the buffer that contains "offset" */
1969 bh = page_buffers(page);
1970 pos = blocksize;
1971 while (offset >= pos) {
1972 bh = bh->b_this_page;
1973 iblock++;
1974 pos += blocksize;
1975 }
1976
1977 err = 0;
1978 if (buffer_freed(bh)) {
1979 BUFFER_TRACE(bh, "freed: skip");
1980 goto unlock;
1981 }
1982
1983 if (!buffer_mapped(bh)) {
1984 BUFFER_TRACE(bh, "unmapped");
1985 ext4_get_block(inode, iblock, bh, 0);
1986 /* unmapped? It's a hole - nothing to do */
1987 if (!buffer_mapped(bh)) {
1988 BUFFER_TRACE(bh, "still unmapped");
1989 goto unlock;
1990 }
1991 }
1992
1993 /* Ok, it's mapped. Make sure it's up-to-date */
1994 if (PageUptodate(page))
1995 set_buffer_uptodate(bh);
1996
1997 if (!buffer_uptodate(bh)) {
1998 err = -EIO;
1999 ll_rw_block(READ, 1, &bh);
2000 wait_on_buffer(bh);
2001 /* Uhhuh. Read error. Complain and punt. */
2002 if (!buffer_uptodate(bh))
2003 goto unlock;
2004 }
2005
2006 if (ext4_should_journal_data(inode)) {
2007 BUFFER_TRACE(bh, "get write access");
2008 err = ext4_journal_get_write_access(handle, bh);
2009 if (err)
2010 goto unlock;
2011 }
2012
2013 zero_user(page, offset, length);
2014
2015 BUFFER_TRACE(bh, "zeroed end of block");
2016
2017 err = 0;
2018 if (ext4_should_journal_data(inode)) {
2019 err = ext4_journal_dirty_metadata(handle, bh);
2020 } else {
2021 if (ext4_should_order_data(inode))
2022 err = ext4_journal_dirty_data(handle, bh);
2023 mark_buffer_dirty(bh);
2024 }
2025
2026 unlock:
2027 unlock_page(page);
2028 page_cache_release(page);
2029 return err;
2030 }
2031
2032 /*
2033 * Probably it should be a library function... search for first non-zero word
2034 * or memcmp with zero_page, whatever is better for particular architecture.
2035 * Linus?
2036 */
2037 static inline int all_zeroes(__le32 *p, __le32 *q)
2038 {
2039 while (p < q)
2040 if (*p++)
2041 return 0;
2042 return 1;
2043 }
2044
2045 /**
2046 * ext4_find_shared - find the indirect blocks for partial truncation.
2047 * @inode: inode in question
2048 * @depth: depth of the affected branch
2049 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2050 * @chain: place to store the pointers to partial indirect blocks
2051 * @top: place to the (detached) top of branch
2052 *
2053 * This is a helper function used by ext4_truncate().
2054 *
2055 * When we do truncate() we may have to clean the ends of several
2056 * indirect blocks but leave the blocks themselves alive. Block is
2057 * partially truncated if some data below the new i_size is refered
2058 * from it (and it is on the path to the first completely truncated
2059 * data block, indeed). We have to free the top of that path along
2060 * with everything to the right of the path. Since no allocation
2061 * past the truncation point is possible until ext4_truncate()
2062 * finishes, we may safely do the latter, but top of branch may
2063 * require special attention - pageout below the truncation point
2064 * might try to populate it.
2065 *
2066 * We atomically detach the top of branch from the tree, store the
2067 * block number of its root in *@top, pointers to buffer_heads of
2068 * partially truncated blocks - in @chain[].bh and pointers to
2069 * their last elements that should not be removed - in
2070 * @chain[].p. Return value is the pointer to last filled element
2071 * of @chain.
2072 *
2073 * The work left to caller to do the actual freeing of subtrees:
2074 * a) free the subtree starting from *@top
2075 * b) free the subtrees whose roots are stored in
2076 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2077 * c) free the subtrees growing from the inode past the @chain[0].
2078 * (no partially truncated stuff there). */
2079
2080 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2081 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2082 {
2083 Indirect *partial, *p;
2084 int k, err;
2085
2086 *top = 0;
2087 /* Make k index the deepest non-null offest + 1 */
2088 for (k = depth; k > 1 && !offsets[k-1]; k--)
2089 ;
2090 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2091 /* Writer: pointers */
2092 if (!partial)
2093 partial = chain + k-1;
2094 /*
2095 * If the branch acquired continuation since we've looked at it -
2096 * fine, it should all survive and (new) top doesn't belong to us.
2097 */
2098 if (!partial->key && *partial->p)
2099 /* Writer: end */
2100 goto no_top;
2101 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2102 ;
2103 /*
2104 * OK, we've found the last block that must survive. The rest of our
2105 * branch should be detached before unlocking. However, if that rest
2106 * of branch is all ours and does not grow immediately from the inode
2107 * it's easier to cheat and just decrement partial->p.
2108 */
2109 if (p == chain + k - 1 && p > chain) {
2110 p->p--;
2111 } else {
2112 *top = *p->p;
2113 /* Nope, don't do this in ext4. Must leave the tree intact */
2114 #if 0
2115 *p->p = 0;
2116 #endif
2117 }
2118 /* Writer: end */
2119
2120 while(partial > p) {
2121 brelse(partial->bh);
2122 partial--;
2123 }
2124 no_top:
2125 return partial;
2126 }
2127
2128 /*
2129 * Zero a number of block pointers in either an inode or an indirect block.
2130 * If we restart the transaction we must again get write access to the
2131 * indirect block for further modification.
2132 *
2133 * We release `count' blocks on disk, but (last - first) may be greater
2134 * than `count' because there can be holes in there.
2135 */
2136 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2137 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2138 unsigned long count, __le32 *first, __le32 *last)
2139 {
2140 __le32 *p;
2141 if (try_to_extend_transaction(handle, inode)) {
2142 if (bh) {
2143 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2144 ext4_journal_dirty_metadata(handle, bh);
2145 }
2146 ext4_mark_inode_dirty(handle, inode);
2147 ext4_journal_test_restart(handle, inode);
2148 if (bh) {
2149 BUFFER_TRACE(bh, "retaking write access");
2150 ext4_journal_get_write_access(handle, bh);
2151 }
2152 }
2153
2154 /*
2155 * Any buffers which are on the journal will be in memory. We find
2156 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2157 * on them. We've already detached each block from the file, so
2158 * bforget() in jbd2_journal_forget() should be safe.
2159 *
2160 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2161 */
2162 for (p = first; p < last; p++) {
2163 u32 nr = le32_to_cpu(*p);
2164 if (nr) {
2165 struct buffer_head *tbh;
2166
2167 *p = 0;
2168 tbh = sb_find_get_block(inode->i_sb, nr);
2169 ext4_forget(handle, 0, inode, tbh, nr);
2170 }
2171 }
2172
2173 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2174 }
2175
2176 /**
2177 * ext4_free_data - free a list of data blocks
2178 * @handle: handle for this transaction
2179 * @inode: inode we are dealing with
2180 * @this_bh: indirect buffer_head which contains *@first and *@last
2181 * @first: array of block numbers
2182 * @last: points immediately past the end of array
2183 *
2184 * We are freeing all blocks refered from that array (numbers are stored as
2185 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2186 *
2187 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2188 * blocks are contiguous then releasing them at one time will only affect one
2189 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2190 * actually use a lot of journal space.
2191 *
2192 * @this_bh will be %NULL if @first and @last point into the inode's direct
2193 * block pointers.
2194 */
2195 static void ext4_free_data(handle_t *handle, struct inode *inode,
2196 struct buffer_head *this_bh,
2197 __le32 *first, __le32 *last)
2198 {
2199 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2200 unsigned long count = 0; /* Number of blocks in the run */
2201 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2202 corresponding to
2203 block_to_free */
2204 ext4_fsblk_t nr; /* Current block # */
2205 __le32 *p; /* Pointer into inode/ind
2206 for current block */
2207 int err;
2208
2209 if (this_bh) { /* For indirect block */
2210 BUFFER_TRACE(this_bh, "get_write_access");
2211 err = ext4_journal_get_write_access(handle, this_bh);
2212 /* Important: if we can't update the indirect pointers
2213 * to the blocks, we can't free them. */
2214 if (err)
2215 return;
2216 }
2217
2218 for (p = first; p < last; p++) {
2219 nr = le32_to_cpu(*p);
2220 if (nr) {
2221 /* accumulate blocks to free if they're contiguous */
2222 if (count == 0) {
2223 block_to_free = nr;
2224 block_to_free_p = p;
2225 count = 1;
2226 } else if (nr == block_to_free + count) {
2227 count++;
2228 } else {
2229 ext4_clear_blocks(handle, inode, this_bh,
2230 block_to_free,
2231 count, block_to_free_p, p);
2232 block_to_free = nr;
2233 block_to_free_p = p;
2234 count = 1;
2235 }
2236 }
2237 }
2238
2239 if (count > 0)
2240 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2241 count, block_to_free_p, p);
2242
2243 if (this_bh) {
2244 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2245
2246 /*
2247 * The buffer head should have an attached journal head at this
2248 * point. However, if the data is corrupted and an indirect
2249 * block pointed to itself, it would have been detached when
2250 * the block was cleared. Check for this instead of OOPSing.
2251 */
2252 if (bh2jh(this_bh))
2253 ext4_journal_dirty_metadata(handle, this_bh);
2254 else
2255 ext4_error(inode->i_sb, __func__,
2256 "circular indirect block detected, "
2257 "inode=%lu, block=%llu",
2258 inode->i_ino,
2259 (unsigned long long) this_bh->b_blocknr);
2260 }
2261 }
2262
2263 /**
2264 * ext4_free_branches - free an array of branches
2265 * @handle: JBD handle for this transaction
2266 * @inode: inode we are dealing with
2267 * @parent_bh: the buffer_head which contains *@first and *@last
2268 * @first: array of block numbers
2269 * @last: pointer immediately past the end of array
2270 * @depth: depth of the branches to free
2271 *
2272 * We are freeing all blocks refered from these branches (numbers are
2273 * stored as little-endian 32-bit) and updating @inode->i_blocks
2274 * appropriately.
2275 */
2276 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2277 struct buffer_head *parent_bh,
2278 __le32 *first, __le32 *last, int depth)
2279 {
2280 ext4_fsblk_t nr;
2281 __le32 *p;
2282
2283 if (is_handle_aborted(handle))
2284 return;
2285
2286 if (depth--) {
2287 struct buffer_head *bh;
2288 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2289 p = last;
2290 while (--p >= first) {
2291 nr = le32_to_cpu(*p);
2292 if (!nr)
2293 continue; /* A hole */
2294
2295 /* Go read the buffer for the next level down */
2296 bh = sb_bread(inode->i_sb, nr);
2297
2298 /*
2299 * A read failure? Report error and clear slot
2300 * (should be rare).
2301 */
2302 if (!bh) {
2303 ext4_error(inode->i_sb, "ext4_free_branches",
2304 "Read failure, inode=%lu, block=%llu",
2305 inode->i_ino, nr);
2306 continue;
2307 }
2308
2309 /* This zaps the entire block. Bottom up. */
2310 BUFFER_TRACE(bh, "free child branches");
2311 ext4_free_branches(handle, inode, bh,
2312 (__le32*)bh->b_data,
2313 (__le32*)bh->b_data + addr_per_block,
2314 depth);
2315
2316 /*
2317 * We've probably journalled the indirect block several
2318 * times during the truncate. But it's no longer
2319 * needed and we now drop it from the transaction via
2320 * jbd2_journal_revoke().
2321 *
2322 * That's easy if it's exclusively part of this
2323 * transaction. But if it's part of the committing
2324 * transaction then jbd2_journal_forget() will simply
2325 * brelse() it. That means that if the underlying
2326 * block is reallocated in ext4_get_block(),
2327 * unmap_underlying_metadata() will find this block
2328 * and will try to get rid of it. damn, damn.
2329 *
2330 * If this block has already been committed to the
2331 * journal, a revoke record will be written. And
2332 * revoke records must be emitted *before* clearing
2333 * this block's bit in the bitmaps.
2334 */
2335 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2336
2337 /*
2338 * Everything below this this pointer has been
2339 * released. Now let this top-of-subtree go.
2340 *
2341 * We want the freeing of this indirect block to be
2342 * atomic in the journal with the updating of the
2343 * bitmap block which owns it. So make some room in
2344 * the journal.
2345 *
2346 * We zero the parent pointer *after* freeing its
2347 * pointee in the bitmaps, so if extend_transaction()
2348 * for some reason fails to put the bitmap changes and
2349 * the release into the same transaction, recovery
2350 * will merely complain about releasing a free block,
2351 * rather than leaking blocks.
2352 */
2353 if (is_handle_aborted(handle))
2354 return;
2355 if (try_to_extend_transaction(handle, inode)) {
2356 ext4_mark_inode_dirty(handle, inode);
2357 ext4_journal_test_restart(handle, inode);
2358 }
2359
2360 ext4_free_blocks(handle, inode, nr, 1, 1);
2361
2362 if (parent_bh) {
2363 /*
2364 * The block which we have just freed is
2365 * pointed to by an indirect block: journal it
2366 */
2367 BUFFER_TRACE(parent_bh, "get_write_access");
2368 if (!ext4_journal_get_write_access(handle,
2369 parent_bh)){
2370 *p = 0;
2371 BUFFER_TRACE(parent_bh,
2372 "call ext4_journal_dirty_metadata");
2373 ext4_journal_dirty_metadata(handle,
2374 parent_bh);
2375 }
2376 }
2377 }
2378 } else {
2379 /* We have reached the bottom of the tree. */
2380 BUFFER_TRACE(parent_bh, "free data blocks");
2381 ext4_free_data(handle, inode, parent_bh, first, last);
2382 }
2383 }
2384
2385 int ext4_can_truncate(struct inode *inode)
2386 {
2387 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2388 return 0;
2389 if (S_ISREG(inode->i_mode))
2390 return 1;
2391 if (S_ISDIR(inode->i_mode))
2392 return 1;
2393 if (S_ISLNK(inode->i_mode))
2394 return !ext4_inode_is_fast_symlink(inode);
2395 return 0;
2396 }
2397
2398 /*
2399 * ext4_truncate()
2400 *
2401 * We block out ext4_get_block() block instantiations across the entire
2402 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2403 * simultaneously on behalf of the same inode.
2404 *
2405 * As we work through the truncate and commmit bits of it to the journal there
2406 * is one core, guiding principle: the file's tree must always be consistent on
2407 * disk. We must be able to restart the truncate after a crash.
2408 *
2409 * The file's tree may be transiently inconsistent in memory (although it
2410 * probably isn't), but whenever we close off and commit a journal transaction,
2411 * the contents of (the filesystem + the journal) must be consistent and
2412 * restartable. It's pretty simple, really: bottom up, right to left (although
2413 * left-to-right works OK too).
2414 *
2415 * Note that at recovery time, journal replay occurs *before* the restart of
2416 * truncate against the orphan inode list.
2417 *
2418 * The committed inode has the new, desired i_size (which is the same as
2419 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2420 * that this inode's truncate did not complete and it will again call
2421 * ext4_truncate() to have another go. So there will be instantiated blocks
2422 * to the right of the truncation point in a crashed ext4 filesystem. But
2423 * that's fine - as long as they are linked from the inode, the post-crash
2424 * ext4_truncate() run will find them and release them.
2425 */
2426 void ext4_truncate(struct inode *inode)
2427 {
2428 handle_t *handle;
2429 struct ext4_inode_info *ei = EXT4_I(inode);
2430 __le32 *i_data = ei->i_data;
2431 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2432 struct address_space *mapping = inode->i_mapping;
2433 ext4_lblk_t offsets[4];
2434 Indirect chain[4];
2435 Indirect *partial;
2436 __le32 nr = 0;
2437 int n;
2438 ext4_lblk_t last_block;
2439 unsigned blocksize = inode->i_sb->s_blocksize;
2440
2441 if (!ext4_can_truncate(inode))
2442 return;
2443
2444 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2445 ext4_ext_truncate(inode);
2446 return;
2447 }
2448
2449 handle = start_transaction(inode);
2450 if (IS_ERR(handle))
2451 return; /* AKPM: return what? */
2452
2453 last_block = (inode->i_size + blocksize-1)
2454 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2455
2456 if (inode->i_size & (blocksize - 1))
2457 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
2458 goto out_stop;
2459
2460 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2461 if (n == 0)
2462 goto out_stop; /* error */
2463
2464 /*
2465 * OK. This truncate is going to happen. We add the inode to the
2466 * orphan list, so that if this truncate spans multiple transactions,
2467 * and we crash, we will resume the truncate when the filesystem
2468 * recovers. It also marks the inode dirty, to catch the new size.
2469 *
2470 * Implication: the file must always be in a sane, consistent
2471 * truncatable state while each transaction commits.
2472 */
2473 if (ext4_orphan_add(handle, inode))
2474 goto out_stop;
2475
2476 /*
2477 * The orphan list entry will now protect us from any crash which
2478 * occurs before the truncate completes, so it is now safe to propagate
2479 * the new, shorter inode size (held for now in i_size) into the
2480 * on-disk inode. We do this via i_disksize, which is the value which
2481 * ext4 *really* writes onto the disk inode.
2482 */
2483 ei->i_disksize = inode->i_size;
2484
2485 /*
2486 * From here we block out all ext4_get_block() callers who want to
2487 * modify the block allocation tree.
2488 */
2489 down_write(&ei->i_data_sem);
2490
2491 if (n == 1) { /* direct blocks */
2492 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2493 i_data + EXT4_NDIR_BLOCKS);
2494 goto do_indirects;
2495 }
2496
2497 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2498 /* Kill the top of shared branch (not detached) */
2499 if (nr) {
2500 if (partial == chain) {
2501 /* Shared branch grows from the inode */
2502 ext4_free_branches(handle, inode, NULL,
2503 &nr, &nr+1, (chain+n-1) - partial);
2504 *partial->p = 0;
2505 /*
2506 * We mark the inode dirty prior to restart,
2507 * and prior to stop. No need for it here.
2508 */
2509 } else {
2510 /* Shared branch grows from an indirect block */
2511 BUFFER_TRACE(partial->bh, "get_write_access");
2512 ext4_free_branches(handle, inode, partial->bh,
2513 partial->p,
2514 partial->p+1, (chain+n-1) - partial);
2515 }
2516 }
2517 /* Clear the ends of indirect blocks on the shared branch */
2518 while (partial > chain) {
2519 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2520 (__le32*)partial->bh->b_data+addr_per_block,
2521 (chain+n-1) - partial);
2522 BUFFER_TRACE(partial->bh, "call brelse");
2523 brelse (partial->bh);
2524 partial--;
2525 }
2526 do_indirects:
2527 /* Kill the remaining (whole) subtrees */
2528 switch (offsets[0]) {
2529 default:
2530 nr = i_data[EXT4_IND_BLOCK];
2531 if (nr) {
2532 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2533 i_data[EXT4_IND_BLOCK] = 0;
2534 }
2535 case EXT4_IND_BLOCK:
2536 nr = i_data[EXT4_DIND_BLOCK];
2537 if (nr) {
2538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2539 i_data[EXT4_DIND_BLOCK] = 0;
2540 }
2541 case EXT4_DIND_BLOCK:
2542 nr = i_data[EXT4_TIND_BLOCK];
2543 if (nr) {
2544 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2545 i_data[EXT4_TIND_BLOCK] = 0;
2546 }
2547 case EXT4_TIND_BLOCK:
2548 ;
2549 }
2550
2551 ext4_discard_reservation(inode);
2552
2553 up_write(&ei->i_data_sem);
2554 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2555 ext4_mark_inode_dirty(handle, inode);
2556
2557 /*
2558 * In a multi-transaction truncate, we only make the final transaction
2559 * synchronous
2560 */
2561 if (IS_SYNC(inode))
2562 handle->h_sync = 1;
2563 out_stop:
2564 /*
2565 * If this was a simple ftruncate(), and the file will remain alive
2566 * then we need to clear up the orphan record which we created above.
2567 * However, if this was a real unlink then we were called by
2568 * ext4_delete_inode(), and we allow that function to clean up the
2569 * orphan info for us.
2570 */
2571 if (inode->i_nlink)
2572 ext4_orphan_del(handle, inode);
2573
2574 ext4_journal_stop(handle);
2575 }
2576
2577 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2578 unsigned long ino, struct ext4_iloc *iloc)
2579 {
2580 ext4_group_t block_group;
2581 unsigned long offset;
2582 ext4_fsblk_t block;
2583 struct ext4_group_desc *gdp;
2584
2585 if (!ext4_valid_inum(sb, ino)) {
2586 /*
2587 * This error is already checked for in namei.c unless we are
2588 * looking at an NFS filehandle, in which case no error
2589 * report is needed
2590 */
2591 return 0;
2592 }
2593
2594 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2595 gdp = ext4_get_group_desc(sb, block_group, NULL);
2596 if (!gdp)
2597 return 0;
2598
2599 /*
2600 * Figure out the offset within the block group inode table
2601 */
2602 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2603 EXT4_INODE_SIZE(sb);
2604 block = ext4_inode_table(sb, gdp) +
2605 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2606
2607 iloc->block_group = block_group;
2608 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2609 return block;
2610 }
2611
2612 /*
2613 * ext4_get_inode_loc returns with an extra refcount against the inode's
2614 * underlying buffer_head on success. If 'in_mem' is true, we have all
2615 * data in memory that is needed to recreate the on-disk version of this
2616 * inode.
2617 */
2618 static int __ext4_get_inode_loc(struct inode *inode,
2619 struct ext4_iloc *iloc, int in_mem)
2620 {
2621 ext4_fsblk_t block;
2622 struct buffer_head *bh;
2623
2624 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2625 if (!block)
2626 return -EIO;
2627
2628 bh = sb_getblk(inode->i_sb, block);
2629 if (!bh) {
2630 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2631 "unable to read inode block - "
2632 "inode=%lu, block=%llu",
2633 inode->i_ino, block);
2634 return -EIO;
2635 }
2636 if (!buffer_uptodate(bh)) {
2637 lock_buffer(bh);
2638 if (buffer_uptodate(bh)) {
2639 /* someone brought it uptodate while we waited */
2640 unlock_buffer(bh);
2641 goto has_buffer;
2642 }
2643
2644 /*
2645 * If we have all information of the inode in memory and this
2646 * is the only valid inode in the block, we need not read the
2647 * block.
2648 */
2649 if (in_mem) {
2650 struct buffer_head *bitmap_bh;
2651 struct ext4_group_desc *desc;
2652 int inodes_per_buffer;
2653 int inode_offset, i;
2654 ext4_group_t block_group;
2655 int start;
2656
2657 block_group = (inode->i_ino - 1) /
2658 EXT4_INODES_PER_GROUP(inode->i_sb);
2659 inodes_per_buffer = bh->b_size /
2660 EXT4_INODE_SIZE(inode->i_sb);
2661 inode_offset = ((inode->i_ino - 1) %
2662 EXT4_INODES_PER_GROUP(inode->i_sb));
2663 start = inode_offset & ~(inodes_per_buffer - 1);
2664
2665 /* Is the inode bitmap in cache? */
2666 desc = ext4_get_group_desc(inode->i_sb,
2667 block_group, NULL);
2668 if (!desc)
2669 goto make_io;
2670
2671 bitmap_bh = sb_getblk(inode->i_sb,
2672 ext4_inode_bitmap(inode->i_sb, desc));
2673 if (!bitmap_bh)
2674 goto make_io;
2675
2676 /*
2677 * If the inode bitmap isn't in cache then the
2678 * optimisation may end up performing two reads instead
2679 * of one, so skip it.
2680 */
2681 if (!buffer_uptodate(bitmap_bh)) {
2682 brelse(bitmap_bh);
2683 goto make_io;
2684 }
2685 for (i = start; i < start + inodes_per_buffer; i++) {
2686 if (i == inode_offset)
2687 continue;
2688 if (ext4_test_bit(i, bitmap_bh->b_data))
2689 break;
2690 }
2691 brelse(bitmap_bh);
2692 if (i == start + inodes_per_buffer) {
2693 /* all other inodes are free, so skip I/O */
2694 memset(bh->b_data, 0, bh->b_size);
2695 set_buffer_uptodate(bh);
2696 unlock_buffer(bh);
2697 goto has_buffer;
2698 }
2699 }
2700
2701 make_io:
2702 /*
2703 * There are other valid inodes in the buffer, this inode
2704 * has in-inode xattrs, or we don't have this inode in memory.
2705 * Read the block from disk.
2706 */
2707 get_bh(bh);
2708 bh->b_end_io = end_buffer_read_sync;
2709 submit_bh(READ_META, bh);
2710 wait_on_buffer(bh);
2711 if (!buffer_uptodate(bh)) {
2712 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2713 "unable to read inode block - "
2714 "inode=%lu, block=%llu",
2715 inode->i_ino, block);
2716 brelse(bh);
2717 return -EIO;
2718 }
2719 }
2720 has_buffer:
2721 iloc->bh = bh;
2722 return 0;
2723 }
2724
2725 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2726 {
2727 /* We have all inode data except xattrs in memory here. */
2728 return __ext4_get_inode_loc(inode, iloc,
2729 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2730 }
2731
2732 void ext4_set_inode_flags(struct inode *inode)
2733 {
2734 unsigned int flags = EXT4_I(inode)->i_flags;
2735
2736 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2737 if (flags & EXT4_SYNC_FL)
2738 inode->i_flags |= S_SYNC;
2739 if (flags & EXT4_APPEND_FL)
2740 inode->i_flags |= S_APPEND;
2741 if (flags & EXT4_IMMUTABLE_FL)
2742 inode->i_flags |= S_IMMUTABLE;
2743 if (flags & EXT4_NOATIME_FL)
2744 inode->i_flags |= S_NOATIME;
2745 if (flags & EXT4_DIRSYNC_FL)
2746 inode->i_flags |= S_DIRSYNC;
2747 }
2748
2749 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2750 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2751 {
2752 unsigned int flags = ei->vfs_inode.i_flags;
2753
2754 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2755 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2756 if (flags & S_SYNC)
2757 ei->i_flags |= EXT4_SYNC_FL;
2758 if (flags & S_APPEND)
2759 ei->i_flags |= EXT4_APPEND_FL;
2760 if (flags & S_IMMUTABLE)
2761 ei->i_flags |= EXT4_IMMUTABLE_FL;
2762 if (flags & S_NOATIME)
2763 ei->i_flags |= EXT4_NOATIME_FL;
2764 if (flags & S_DIRSYNC)
2765 ei->i_flags |= EXT4_DIRSYNC_FL;
2766 }
2767 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2768 struct ext4_inode_info *ei)
2769 {
2770 blkcnt_t i_blocks ;
2771 struct inode *inode = &(ei->vfs_inode);
2772 struct super_block *sb = inode->i_sb;
2773
2774 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2775 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2776 /* we are using combined 48 bit field */
2777 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2778 le32_to_cpu(raw_inode->i_blocks_lo);
2779 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2780 /* i_blocks represent file system block size */
2781 return i_blocks << (inode->i_blkbits - 9);
2782 } else {
2783 return i_blocks;
2784 }
2785 } else {
2786 return le32_to_cpu(raw_inode->i_blocks_lo);
2787 }
2788 }
2789
2790 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2791 {
2792 struct ext4_iloc iloc;
2793 struct ext4_inode *raw_inode;
2794 struct ext4_inode_info *ei;
2795 struct buffer_head *bh;
2796 struct inode *inode;
2797 long ret;
2798 int block;
2799
2800 inode = iget_locked(sb, ino);
2801 if (!inode)
2802 return ERR_PTR(-ENOMEM);
2803 if (!(inode->i_state & I_NEW))
2804 return inode;
2805
2806 ei = EXT4_I(inode);
2807 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2808 ei->i_acl = EXT4_ACL_NOT_CACHED;
2809 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2810 #endif
2811 ei->i_block_alloc_info = NULL;
2812
2813 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2814 if (ret < 0)
2815 goto bad_inode;
2816 bh = iloc.bh;
2817 raw_inode = ext4_raw_inode(&iloc);
2818 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2819 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2820 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2821 if(!(test_opt (inode->i_sb, NO_UID32))) {
2822 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2823 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2824 }
2825 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2826
2827 ei->i_state = 0;
2828 ei->i_dir_start_lookup = 0;
2829 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2830 /* We now have enough fields to check if the inode was active or not.
2831 * This is needed because nfsd might try to access dead inodes
2832 * the test is that same one that e2fsck uses
2833 * NeilBrown 1999oct15
2834 */
2835 if (inode->i_nlink == 0) {
2836 if (inode->i_mode == 0 ||
2837 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2838 /* this inode is deleted */
2839 brelse (bh);
2840 ret = -ESTALE;
2841 goto bad_inode;
2842 }
2843 /* The only unlinked inodes we let through here have
2844 * valid i_mode and are being read by the orphan
2845 * recovery code: that's fine, we're about to complete
2846 * the process of deleting those. */
2847 }
2848 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2849 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2850 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2851 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2852 cpu_to_le32(EXT4_OS_HURD)) {
2853 ei->i_file_acl |=
2854 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2855 }
2856 inode->i_size = ext4_isize(raw_inode);
2857 ei->i_disksize = inode->i_size;
2858 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2859 ei->i_block_group = iloc.block_group;
2860 /*
2861 * NOTE! The in-memory inode i_data array is in little-endian order
2862 * even on big-endian machines: we do NOT byteswap the block numbers!
2863 */
2864 for (block = 0; block < EXT4_N_BLOCKS; block++)
2865 ei->i_data[block] = raw_inode->i_block[block];
2866 INIT_LIST_HEAD(&ei->i_orphan);
2867
2868 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2869 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2870 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2871 EXT4_INODE_SIZE(inode->i_sb)) {
2872 brelse (bh);
2873 ret = -EIO;
2874 goto bad_inode;
2875 }
2876 if (ei->i_extra_isize == 0) {
2877 /* The extra space is currently unused. Use it. */
2878 ei->i_extra_isize = sizeof(struct ext4_inode) -
2879 EXT4_GOOD_OLD_INODE_SIZE;
2880 } else {
2881 __le32 *magic = (void *)raw_inode +
2882 EXT4_GOOD_OLD_INODE_SIZE +
2883 ei->i_extra_isize;
2884 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2885 ei->i_state |= EXT4_STATE_XATTR;
2886 }
2887 } else
2888 ei->i_extra_isize = 0;
2889
2890 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2891 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2892 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2893 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2894
2895 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2896 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2897 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2898 inode->i_version |=
2899 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2900 }
2901
2902 if (S_ISREG(inode->i_mode)) {
2903 inode->i_op = &ext4_file_inode_operations;
2904 inode->i_fop = &ext4_file_operations;
2905 ext4_set_aops(inode);
2906 } else if (S_ISDIR(inode->i_mode)) {
2907 inode->i_op = &ext4_dir_inode_operations;
2908 inode->i_fop = &ext4_dir_operations;
2909 } else if (S_ISLNK(inode->i_mode)) {
2910 if (ext4_inode_is_fast_symlink(inode))
2911 inode->i_op = &ext4_fast_symlink_inode_operations;
2912 else {
2913 inode->i_op = &ext4_symlink_inode_operations;
2914 ext4_set_aops(inode);
2915 }
2916 } else {
2917 inode->i_op = &ext4_special_inode_operations;
2918 if (raw_inode->i_block[0])
2919 init_special_inode(inode, inode->i_mode,
2920 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2921 else
2922 init_special_inode(inode, inode->i_mode,
2923 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2924 }
2925 brelse (iloc.bh);
2926 ext4_set_inode_flags(inode);
2927 unlock_new_inode(inode);
2928 return inode;
2929
2930 bad_inode:
2931 iget_failed(inode);
2932 return ERR_PTR(ret);
2933 }
2934
2935 static int ext4_inode_blocks_set(handle_t *handle,
2936 struct ext4_inode *raw_inode,
2937 struct ext4_inode_info *ei)
2938 {
2939 struct inode *inode = &(ei->vfs_inode);
2940 u64 i_blocks = inode->i_blocks;
2941 struct super_block *sb = inode->i_sb;
2942 int err = 0;
2943
2944 if (i_blocks <= ~0U) {
2945 /*
2946 * i_blocks can be represnted in a 32 bit variable
2947 * as multiple of 512 bytes
2948 */
2949 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2950 raw_inode->i_blocks_high = 0;
2951 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2952 } else if (i_blocks <= 0xffffffffffffULL) {
2953 /*
2954 * i_blocks can be represented in a 48 bit variable
2955 * as multiple of 512 bytes
2956 */
2957 err = ext4_update_rocompat_feature(handle, sb,
2958 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2959 if (err)
2960 goto err_out;
2961 /* i_block is stored in the split 48 bit fields */
2962 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2963 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2964 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2965 } else {
2966 /*
2967 * i_blocks should be represented in a 48 bit variable
2968 * as multiple of file system block size
2969 */
2970 err = ext4_update_rocompat_feature(handle, sb,
2971 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2972 if (err)
2973 goto err_out;
2974 ei->i_flags |= EXT4_HUGE_FILE_FL;
2975 /* i_block is stored in file system block size */
2976 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2977 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2978 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2979 }
2980 err_out:
2981 return err;
2982 }
2983
2984 /*
2985 * Post the struct inode info into an on-disk inode location in the
2986 * buffer-cache. This gobbles the caller's reference to the
2987 * buffer_head in the inode location struct.
2988 *
2989 * The caller must have write access to iloc->bh.
2990 */
2991 static int ext4_do_update_inode(handle_t *handle,
2992 struct inode *inode,
2993 struct ext4_iloc *iloc)
2994 {
2995 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2996 struct ext4_inode_info *ei = EXT4_I(inode);
2997 struct buffer_head *bh = iloc->bh;
2998 int err = 0, rc, block;
2999
3000 /* For fields not not tracking in the in-memory inode,
3001 * initialise them to zero for new inodes. */
3002 if (ei->i_state & EXT4_STATE_NEW)
3003 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3004
3005 ext4_get_inode_flags(ei);
3006 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3007 if(!(test_opt(inode->i_sb, NO_UID32))) {
3008 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3009 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3010 /*
3011 * Fix up interoperability with old kernels. Otherwise, old inodes get
3012 * re-used with the upper 16 bits of the uid/gid intact
3013 */
3014 if(!ei->i_dtime) {
3015 raw_inode->i_uid_high =
3016 cpu_to_le16(high_16_bits(inode->i_uid));
3017 raw_inode->i_gid_high =
3018 cpu_to_le16(high_16_bits(inode->i_gid));
3019 } else {
3020 raw_inode->i_uid_high = 0;
3021 raw_inode->i_gid_high = 0;
3022 }
3023 } else {
3024 raw_inode->i_uid_low =
3025 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3026 raw_inode->i_gid_low =
3027 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3028 raw_inode->i_uid_high = 0;
3029 raw_inode->i_gid_high = 0;
3030 }
3031 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3032
3033 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3034 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3035 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3036 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3037
3038 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3039 goto out_brelse;
3040 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3041 /* clear the migrate flag in the raw_inode */
3042 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3043 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3044 cpu_to_le32(EXT4_OS_HURD))
3045 raw_inode->i_file_acl_high =
3046 cpu_to_le16(ei->i_file_acl >> 32);
3047 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3048 ext4_isize_set(raw_inode, ei->i_disksize);
3049 if (ei->i_disksize > 0x7fffffffULL) {
3050 struct super_block *sb = inode->i_sb;
3051 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3052 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3053 EXT4_SB(sb)->s_es->s_rev_level ==
3054 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3055 /* If this is the first large file
3056 * created, add a flag to the superblock.
3057 */
3058 err = ext4_journal_get_write_access(handle,
3059 EXT4_SB(sb)->s_sbh);
3060 if (err)
3061 goto out_brelse;
3062 ext4_update_dynamic_rev(sb);
3063 EXT4_SET_RO_COMPAT_FEATURE(sb,
3064 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3065 sb->s_dirt = 1;
3066 handle->h_sync = 1;
3067 err = ext4_journal_dirty_metadata(handle,
3068 EXT4_SB(sb)->s_sbh);
3069 }
3070 }
3071 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3072 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3073 if (old_valid_dev(inode->i_rdev)) {
3074 raw_inode->i_block[0] =
3075 cpu_to_le32(old_encode_dev(inode->i_rdev));
3076 raw_inode->i_block[1] = 0;
3077 } else {
3078 raw_inode->i_block[0] = 0;
3079 raw_inode->i_block[1] =
3080 cpu_to_le32(new_encode_dev(inode->i_rdev));
3081 raw_inode->i_block[2] = 0;
3082 }
3083 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3084 raw_inode->i_block[block] = ei->i_data[block];
3085
3086 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3087 if (ei->i_extra_isize) {
3088 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3089 raw_inode->i_version_hi =
3090 cpu_to_le32(inode->i_version >> 32);
3091 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3092 }
3093
3094
3095 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3096 rc = ext4_journal_dirty_metadata(handle, bh);
3097 if (!err)
3098 err = rc;
3099 ei->i_state &= ~EXT4_STATE_NEW;
3100
3101 out_brelse:
3102 brelse (bh);
3103 ext4_std_error(inode->i_sb, err);
3104 return err;
3105 }
3106
3107 /*
3108 * ext4_write_inode()
3109 *
3110 * We are called from a few places:
3111 *
3112 * - Within generic_file_write() for O_SYNC files.
3113 * Here, there will be no transaction running. We wait for any running
3114 * trasnaction to commit.
3115 *
3116 * - Within sys_sync(), kupdate and such.
3117 * We wait on commit, if tol to.
3118 *
3119 * - Within prune_icache() (PF_MEMALLOC == true)
3120 * Here we simply return. We can't afford to block kswapd on the
3121 * journal commit.
3122 *
3123 * In all cases it is actually safe for us to return without doing anything,
3124 * because the inode has been copied into a raw inode buffer in
3125 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3126 * knfsd.
3127 *
3128 * Note that we are absolutely dependent upon all inode dirtiers doing the
3129 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3130 * which we are interested.
3131 *
3132 * It would be a bug for them to not do this. The code:
3133 *
3134 * mark_inode_dirty(inode)
3135 * stuff();
3136 * inode->i_size = expr;
3137 *
3138 * is in error because a kswapd-driven write_inode() could occur while
3139 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3140 * will no longer be on the superblock's dirty inode list.
3141 */
3142 int ext4_write_inode(struct inode *inode, int wait)
3143 {
3144 if (current->flags & PF_MEMALLOC)
3145 return 0;
3146
3147 if (ext4_journal_current_handle()) {
3148 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3149 dump_stack();
3150 return -EIO;
3151 }
3152
3153 if (!wait)
3154 return 0;
3155
3156 return ext4_force_commit(inode->i_sb);
3157 }
3158
3159 /*
3160 * ext4_setattr()
3161 *
3162 * Called from notify_change.
3163 *
3164 * We want to trap VFS attempts to truncate the file as soon as
3165 * possible. In particular, we want to make sure that when the VFS
3166 * shrinks i_size, we put the inode on the orphan list and modify
3167 * i_disksize immediately, so that during the subsequent flushing of
3168 * dirty pages and freeing of disk blocks, we can guarantee that any
3169 * commit will leave the blocks being flushed in an unused state on
3170 * disk. (On recovery, the inode will get truncated and the blocks will
3171 * be freed, so we have a strong guarantee that no future commit will
3172 * leave these blocks visible to the user.)
3173 *
3174 * Called with inode->sem down.
3175 */
3176 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3177 {
3178 struct inode *inode = dentry->d_inode;
3179 int error, rc = 0;
3180 const unsigned int ia_valid = attr->ia_valid;
3181
3182 error = inode_change_ok(inode, attr);
3183 if (error)
3184 return error;
3185
3186 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3187 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3188 handle_t *handle;
3189
3190 /* (user+group)*(old+new) structure, inode write (sb,
3191 * inode block, ? - but truncate inode update has it) */
3192 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3193 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3194 if (IS_ERR(handle)) {
3195 error = PTR_ERR(handle);
3196 goto err_out;
3197 }
3198 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3199 if (error) {
3200 ext4_journal_stop(handle);
3201 return error;
3202 }
3203 /* Update corresponding info in inode so that everything is in
3204 * one transaction */
3205 if (attr->ia_valid & ATTR_UID)
3206 inode->i_uid = attr->ia_uid;
3207 if (attr->ia_valid & ATTR_GID)
3208 inode->i_gid = attr->ia_gid;
3209 error = ext4_mark_inode_dirty(handle, inode);
3210 ext4_journal_stop(handle);
3211 }
3212
3213 if (attr->ia_valid & ATTR_SIZE) {
3214 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3215 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3216
3217 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3218 error = -EFBIG;
3219 goto err_out;
3220 }
3221 }
3222 }
3223
3224 if (S_ISREG(inode->i_mode) &&
3225 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3226 handle_t *handle;
3227
3228 handle = ext4_journal_start(inode, 3);
3229 if (IS_ERR(handle)) {
3230 error = PTR_ERR(handle);
3231 goto err_out;
3232 }
3233
3234 error = ext4_orphan_add(handle, inode);
3235 EXT4_I(inode)->i_disksize = attr->ia_size;
3236 rc = ext4_mark_inode_dirty(handle, inode);
3237 if (!error)
3238 error = rc;
3239 ext4_journal_stop(handle);
3240 }
3241
3242 rc = inode_setattr(inode, attr);
3243
3244 /* If inode_setattr's call to ext4_truncate failed to get a
3245 * transaction handle at all, we need to clean up the in-core
3246 * orphan list manually. */
3247 if (inode->i_nlink)
3248 ext4_orphan_del(NULL, inode);
3249
3250 if (!rc && (ia_valid & ATTR_MODE))
3251 rc = ext4_acl_chmod(inode);
3252
3253 err_out:
3254 ext4_std_error(inode->i_sb, error);
3255 if (!error)
3256 error = rc;
3257 return error;
3258 }
3259
3260
3261 /*
3262 * How many blocks doth make a writepage()?
3263 *
3264 * With N blocks per page, it may be:
3265 * N data blocks
3266 * 2 indirect block
3267 * 2 dindirect
3268 * 1 tindirect
3269 * N+5 bitmap blocks (from the above)
3270 * N+5 group descriptor summary blocks
3271 * 1 inode block
3272 * 1 superblock.
3273 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3274 *
3275 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3276 *
3277 * With ordered or writeback data it's the same, less the N data blocks.
3278 *
3279 * If the inode's direct blocks can hold an integral number of pages then a
3280 * page cannot straddle two indirect blocks, and we can only touch one indirect
3281 * and dindirect block, and the "5" above becomes "3".
3282 *
3283 * This still overestimates under most circumstances. If we were to pass the
3284 * start and end offsets in here as well we could do block_to_path() on each
3285 * block and work out the exact number of indirects which are touched. Pah.
3286 */
3287
3288 int ext4_writepage_trans_blocks(struct inode *inode)
3289 {
3290 int bpp = ext4_journal_blocks_per_page(inode);
3291 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3292 int ret;
3293
3294 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3295 return ext4_ext_writepage_trans_blocks(inode, bpp);
3296
3297 if (ext4_should_journal_data(inode))
3298 ret = 3 * (bpp + indirects) + 2;
3299 else
3300 ret = 2 * (bpp + indirects) + 2;
3301
3302 #ifdef CONFIG_QUOTA
3303 /* We know that structure was already allocated during DQUOT_INIT so
3304 * we will be updating only the data blocks + inodes */
3305 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3306 #endif
3307
3308 return ret;
3309 }
3310
3311 /*
3312 * The caller must have previously called ext4_reserve_inode_write().
3313 * Give this, we know that the caller already has write access to iloc->bh.
3314 */
3315 int ext4_mark_iloc_dirty(handle_t *handle,
3316 struct inode *inode, struct ext4_iloc *iloc)
3317 {
3318 int err = 0;
3319
3320 if (test_opt(inode->i_sb, I_VERSION))
3321 inode_inc_iversion(inode);
3322
3323 /* the do_update_inode consumes one bh->b_count */
3324 get_bh(iloc->bh);
3325
3326 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3327 err = ext4_do_update_inode(handle, inode, iloc);
3328 put_bh(iloc->bh);
3329 return err;
3330 }
3331
3332 /*
3333 * On success, We end up with an outstanding reference count against
3334 * iloc->bh. This _must_ be cleaned up later.
3335 */
3336
3337 int
3338 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3339 struct ext4_iloc *iloc)
3340 {
3341 int err = 0;
3342 if (handle) {
3343 err = ext4_get_inode_loc(inode, iloc);
3344 if (!err) {
3345 BUFFER_TRACE(iloc->bh, "get_write_access");
3346 err = ext4_journal_get_write_access(handle, iloc->bh);
3347 if (err) {
3348 brelse(iloc->bh);
3349 iloc->bh = NULL;
3350 }
3351 }
3352 }
3353 ext4_std_error(inode->i_sb, err);
3354 return err;
3355 }
3356
3357 /*
3358 * Expand an inode by new_extra_isize bytes.
3359 * Returns 0 on success or negative error number on failure.
3360 */
3361 static int ext4_expand_extra_isize(struct inode *inode,
3362 unsigned int new_extra_isize,
3363 struct ext4_iloc iloc,
3364 handle_t *handle)
3365 {
3366 struct ext4_inode *raw_inode;
3367 struct ext4_xattr_ibody_header *header;
3368 struct ext4_xattr_entry *entry;
3369
3370 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3371 return 0;
3372
3373 raw_inode = ext4_raw_inode(&iloc);
3374
3375 header = IHDR(inode, raw_inode);
3376 entry = IFIRST(header);
3377
3378 /* No extended attributes present */
3379 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3380 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3381 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3382 new_extra_isize);
3383 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3384 return 0;
3385 }
3386
3387 /* try to expand with EAs present */
3388 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3389 raw_inode, handle);
3390 }
3391
3392 /*
3393 * What we do here is to mark the in-core inode as clean with respect to inode
3394 * dirtiness (it may still be data-dirty).
3395 * This means that the in-core inode may be reaped by prune_icache
3396 * without having to perform any I/O. This is a very good thing,
3397 * because *any* task may call prune_icache - even ones which
3398 * have a transaction open against a different journal.
3399 *
3400 * Is this cheating? Not really. Sure, we haven't written the
3401 * inode out, but prune_icache isn't a user-visible syncing function.
3402 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3403 * we start and wait on commits.
3404 *
3405 * Is this efficient/effective? Well, we're being nice to the system
3406 * by cleaning up our inodes proactively so they can be reaped
3407 * without I/O. But we are potentially leaving up to five seconds'
3408 * worth of inodes floating about which prune_icache wants us to
3409 * write out. One way to fix that would be to get prune_icache()
3410 * to do a write_super() to free up some memory. It has the desired
3411 * effect.
3412 */
3413 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3414 {
3415 struct ext4_iloc iloc;
3416 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3417 static unsigned int mnt_count;
3418 int err, ret;
3419
3420 might_sleep();
3421 err = ext4_reserve_inode_write(handle, inode, &iloc);
3422 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3423 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3424 /*
3425 * We need extra buffer credits since we may write into EA block
3426 * with this same handle. If journal_extend fails, then it will
3427 * only result in a minor loss of functionality for that inode.
3428 * If this is felt to be critical, then e2fsck should be run to
3429 * force a large enough s_min_extra_isize.
3430 */
3431 if ((jbd2_journal_extend(handle,
3432 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3433 ret = ext4_expand_extra_isize(inode,
3434 sbi->s_want_extra_isize,
3435 iloc, handle);
3436 if (ret) {
3437 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3438 if (mnt_count !=
3439 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3440 ext4_warning(inode->i_sb, __func__,
3441 "Unable to expand inode %lu. Delete"
3442 " some EAs or run e2fsck.",
3443 inode->i_ino);
3444 mnt_count =
3445 le16_to_cpu(sbi->s_es->s_mnt_count);
3446 }
3447 }
3448 }
3449 }
3450 if (!err)
3451 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3452 return err;
3453 }
3454
3455 /*
3456 * ext4_dirty_inode() is called from __mark_inode_dirty()
3457 *
3458 * We're really interested in the case where a file is being extended.
3459 * i_size has been changed by generic_commit_write() and we thus need
3460 * to include the updated inode in the current transaction.
3461 *
3462 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3463 * are allocated to the file.
3464 *
3465 * If the inode is marked synchronous, we don't honour that here - doing
3466 * so would cause a commit on atime updates, which we don't bother doing.
3467 * We handle synchronous inodes at the highest possible level.
3468 */
3469 void ext4_dirty_inode(struct inode *inode)
3470 {
3471 handle_t *current_handle = ext4_journal_current_handle();
3472 handle_t *handle;
3473
3474 handle = ext4_journal_start(inode, 2);
3475 if (IS_ERR(handle))
3476 goto out;
3477 if (current_handle &&
3478 current_handle->h_transaction != handle->h_transaction) {
3479 /* This task has a transaction open against a different fs */
3480 printk(KERN_EMERG "%s: transactions do not match!\n",
3481 __func__);
3482 } else {
3483 jbd_debug(5, "marking dirty. outer handle=%p\n",
3484 current_handle);
3485 ext4_mark_inode_dirty(handle, inode);
3486 }
3487 ext4_journal_stop(handle);
3488 out:
3489 return;
3490 }
3491
3492 #if 0
3493 /*
3494 * Bind an inode's backing buffer_head into this transaction, to prevent
3495 * it from being flushed to disk early. Unlike
3496 * ext4_reserve_inode_write, this leaves behind no bh reference and
3497 * returns no iloc structure, so the caller needs to repeat the iloc
3498 * lookup to mark the inode dirty later.
3499 */
3500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3501 {
3502 struct ext4_iloc iloc;
3503
3504 int err = 0;
3505 if (handle) {
3506 err = ext4_get_inode_loc(inode, &iloc);
3507 if (!err) {
3508 BUFFER_TRACE(iloc.bh, "get_write_access");
3509 err = jbd2_journal_get_write_access(handle, iloc.bh);
3510 if (!err)
3511 err = ext4_journal_dirty_metadata(handle,
3512 iloc.bh);
3513 brelse(iloc.bh);
3514 }
3515 }
3516 ext4_std_error(inode->i_sb, err);
3517 return err;
3518 }
3519 #endif
3520
3521 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3522 {
3523 journal_t *journal;
3524 handle_t *handle;
3525 int err;
3526
3527 /*
3528 * We have to be very careful here: changing a data block's
3529 * journaling status dynamically is dangerous. If we write a
3530 * data block to the journal, change the status and then delete
3531 * that block, we risk forgetting to revoke the old log record
3532 * from the journal and so a subsequent replay can corrupt data.
3533 * So, first we make sure that the journal is empty and that
3534 * nobody is changing anything.
3535 */
3536
3537 journal = EXT4_JOURNAL(inode);
3538 if (is_journal_aborted(journal))
3539 return -EROFS;
3540
3541 jbd2_journal_lock_updates(journal);
3542 jbd2_journal_flush(journal);
3543
3544 /*
3545 * OK, there are no updates running now, and all cached data is
3546 * synced to disk. We are now in a completely consistent state
3547 * which doesn't have anything in the journal, and we know that
3548 * no filesystem updates are running, so it is safe to modify
3549 * the inode's in-core data-journaling state flag now.
3550 */
3551
3552 if (val)
3553 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3554 else
3555 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3556 ext4_set_aops(inode);
3557
3558 jbd2_journal_unlock_updates(journal);
3559
3560 /* Finally we can mark the inode as dirty. */
3561
3562 handle = ext4_journal_start(inode, 1);
3563 if (IS_ERR(handle))
3564 return PTR_ERR(handle);
3565
3566 err = ext4_mark_inode_dirty(handle, inode);
3567 handle->h_sync = 1;
3568 ext4_journal_stop(handle);
3569 ext4_std_error(inode->i_sb, err);
3570
3571 return err;
3572 }
3573
3574 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
3575 {
3576 return !buffer_mapped(bh);
3577 }
3578
3579 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3580 {
3581 loff_t size;
3582 unsigned long len;
3583 int ret = -EINVAL;
3584 struct file *file = vma->vm_file;
3585 struct inode *inode = file->f_path.dentry->d_inode;
3586 struct address_space *mapping = inode->i_mapping;
3587
3588 /*
3589 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
3590 * get i_mutex because we are already holding mmap_sem.
3591 */
3592 down_read(&inode->i_alloc_sem);
3593 size = i_size_read(inode);
3594 if (page->mapping != mapping || size <= page_offset(page)
3595 || !PageUptodate(page)) {
3596 /* page got truncated from under us? */
3597 goto out_unlock;
3598 }
3599 ret = 0;
3600 if (PageMappedToDisk(page))
3601 goto out_unlock;
3602
3603 if (page->index == size >> PAGE_CACHE_SHIFT)
3604 len = size & ~PAGE_CACHE_MASK;
3605 else
3606 len = PAGE_CACHE_SIZE;
3607
3608 if (page_has_buffers(page)) {
3609 /* return if we have all the buffers mapped */
3610 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3611 ext4_bh_unmapped))
3612 goto out_unlock;
3613 }
3614 /*
3615 * OK, we need to fill the hole... Do write_begin write_end
3616 * to do block allocation/reservation.We are not holding
3617 * inode.i__mutex here. That allow * parallel write_begin,
3618 * write_end call. lock_page prevent this from happening
3619 * on the same page though
3620 */
3621 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
3622 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
3623 if (ret < 0)
3624 goto out_unlock;
3625 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
3626 len, len, page, NULL);
3627 if (ret < 0)
3628 goto out_unlock;
3629 ret = 0;
3630 out_unlock:
3631 up_read(&inode->i_alloc_sem);
3632 return ret;
3633 }
This page took 0.12129 seconds and 5 git commands to generate.