Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !ext4_has_metadata_csum(inode->i_sb))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !ext4_has_metadata_csum(inode->i_sb))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149 if (ext4_has_inline_data(inode))
150 return 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages_final(&inode->i_data);
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 goto no_delete;
223 }
224
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages_final(&inode->i_data);
232
233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
330 {
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
333
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
344
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
359 */
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 }
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
376 {
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EIO;
384 }
385 return 0;
386 }
387
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397 {
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 down_read(&EXT4_I(inode)->i_data_sem);
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
419 /*
420 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
421 * because it shouldn't be marked in es_map->m_flags.
422 */
423 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
424
425 /*
426 * We don't check m_len because extent will be collpased in status
427 * tree. So the m_len might not equal.
428 */
429 if (es_map->m_lblk != map->m_lblk ||
430 es_map->m_flags != map->m_flags ||
431 es_map->m_pblk != map->m_pblk) {
432 printk("ES cache assertion failed for inode: %lu "
433 "es_cached ex [%d/%d/%llu/%x] != "
434 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435 inode->i_ino, es_map->m_lblk, es_map->m_len,
436 es_map->m_pblk, es_map->m_flags, map->m_lblk,
437 map->m_len, map->m_pblk, map->m_flags,
438 retval, flags);
439 }
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442
443 /*
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
446 *
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocated.
456 * if create==0 and the blocks are pre-allocated and unwritten block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
462 *
463 * It returns the error in case of allocation failure.
464 */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
467 {
468 struct extent_status es;
469 int retval;
470 int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472 struct ext4_map_blocks orig_map;
473
474 memcpy(&orig_map, map, sizeof(*map));
475 #endif
476
477 map->m_flags = 0;
478 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479 "logical block %lu\n", inode->i_ino, flags, map->m_len,
480 (unsigned long) map->m_lblk);
481
482 /*
483 * ext4_map_blocks returns an int, and m_len is an unsigned int
484 */
485 if (unlikely(map->m_len > INT_MAX))
486 map->m_len = INT_MAX;
487
488 /* We can handle the block number less than EXT_MAX_BLOCKS */
489 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490 return -EIO;
491
492 /* Lookup extent status tree firstly */
493 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494 ext4_es_lru_add(inode);
495 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
496 map->m_pblk = ext4_es_pblock(&es) +
497 map->m_lblk - es.es_lblk;
498 map->m_flags |= ext4_es_is_written(&es) ?
499 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
500 retval = es.es_len - (map->m_lblk - es.es_lblk);
501 if (retval > map->m_len)
502 retval = map->m_len;
503 map->m_len = retval;
504 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
505 retval = 0;
506 } else {
507 BUG_ON(1);
508 }
509 #ifdef ES_AGGRESSIVE_TEST
510 ext4_map_blocks_es_recheck(handle, inode, map,
511 &orig_map, flags);
512 #endif
513 goto found;
514 }
515
516 /*
517 * Try to see if we can get the block without requesting a new
518 * file system block.
519 */
520 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521 down_read(&EXT4_I(inode)->i_data_sem);
522 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
525 } else {
526 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
528 }
529 if (retval > 0) {
530 unsigned int status;
531
532 if (unlikely(retval != map->m_len)) {
533 ext4_warning(inode->i_sb,
534 "ES len assertion failed for inode "
535 "%lu: retval %d != map->m_len %d",
536 inode->i_ino, retval, map->m_len);
537 WARN_ON(1);
538 }
539
540 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
541 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
542 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
543 ext4_find_delalloc_range(inode, map->m_lblk,
544 map->m_lblk + map->m_len - 1))
545 status |= EXTENT_STATUS_DELAYED;
546 ret = ext4_es_insert_extent(inode, map->m_lblk,
547 map->m_len, map->m_pblk, status);
548 if (ret < 0)
549 retval = ret;
550 }
551 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552 up_read((&EXT4_I(inode)->i_data_sem));
553
554 found:
555 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556 ret = check_block_validity(inode, map);
557 if (ret != 0)
558 return ret;
559 }
560
561 /* If it is only a block(s) look up */
562 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563 return retval;
564
565 /*
566 * Returns if the blocks have already allocated
567 *
568 * Note that if blocks have been preallocated
569 * ext4_ext_get_block() returns the create = 0
570 * with buffer head unmapped.
571 */
572 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573 /*
574 * If we need to convert extent to unwritten
575 * we continue and do the actual work in
576 * ext4_ext_map_blocks()
577 */
578 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579 return retval;
580
581 /*
582 * Here we clear m_flags because after allocating an new extent,
583 * it will be set again.
584 */
585 map->m_flags &= ~EXT4_MAP_FLAGS;
586
587 /*
588 * New blocks allocate and/or writing to unwritten extent
589 * will possibly result in updating i_data, so we take
590 * the write lock of i_data_sem, and call get_block()
591 * with create == 1 flag.
592 */
593 down_write(&EXT4_I(inode)->i_data_sem);
594
595 /*
596 * We need to check for EXT4 here because migrate
597 * could have changed the inode type in between
598 */
599 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600 retval = ext4_ext_map_blocks(handle, inode, map, flags);
601 } else {
602 retval = ext4_ind_map_blocks(handle, inode, map, flags);
603
604 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605 /*
606 * We allocated new blocks which will result in
607 * i_data's format changing. Force the migrate
608 * to fail by clearing migrate flags
609 */
610 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611 }
612
613 /*
614 * Update reserved blocks/metadata blocks after successful
615 * block allocation which had been deferred till now. We don't
616 * support fallocate for non extent files. So we can update
617 * reserve space here.
618 */
619 if ((retval > 0) &&
620 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621 ext4_da_update_reserve_space(inode, retval, 1);
622 }
623
624 if (retval > 0) {
625 unsigned int status;
626
627 if (unlikely(retval != map->m_len)) {
628 ext4_warning(inode->i_sb,
629 "ES len assertion failed for inode "
630 "%lu: retval %d != map->m_len %d",
631 inode->i_ino, retval, map->m_len);
632 WARN_ON(1);
633 }
634
635 /*
636 * If the extent has been zeroed out, we don't need to update
637 * extent status tree.
638 */
639 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641 if (ext4_es_is_written(&es))
642 goto has_zeroout;
643 }
644 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647 ext4_find_delalloc_range(inode, map->m_lblk,
648 map->m_lblk + map->m_len - 1))
649 status |= EXTENT_STATUS_DELAYED;
650 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
651 map->m_pblk, status);
652 if (ret < 0)
653 retval = ret;
654 }
655
656 has_zeroout:
657 up_write((&EXT4_I(inode)->i_data_sem));
658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
659 ret = check_block_validity(inode, map);
660 if (ret != 0)
661 return ret;
662 }
663 return retval;
664 }
665
666 /* Maximum number of blocks we map for direct IO at once. */
667 #define DIO_MAX_BLOCKS 4096
668
669 static int _ext4_get_block(struct inode *inode, sector_t iblock,
670 struct buffer_head *bh, int flags)
671 {
672 handle_t *handle = ext4_journal_current_handle();
673 struct ext4_map_blocks map;
674 int ret = 0, started = 0;
675 int dio_credits;
676
677 if (ext4_has_inline_data(inode))
678 return -ERANGE;
679
680 map.m_lblk = iblock;
681 map.m_len = bh->b_size >> inode->i_blkbits;
682
683 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
684 /* Direct IO write... */
685 if (map.m_len > DIO_MAX_BLOCKS)
686 map.m_len = DIO_MAX_BLOCKS;
687 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
688 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
689 dio_credits);
690 if (IS_ERR(handle)) {
691 ret = PTR_ERR(handle);
692 return ret;
693 }
694 started = 1;
695 }
696
697 ret = ext4_map_blocks(handle, inode, &map, flags);
698 if (ret > 0) {
699 ext4_io_end_t *io_end = ext4_inode_aio(inode);
700
701 map_bh(bh, inode->i_sb, map.m_pblk);
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
704 set_buffer_defer_completion(bh);
705 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
706 ret = 0;
707 }
708 if (started)
709 ext4_journal_stop(handle);
710 return ret;
711 }
712
713 int ext4_get_block(struct inode *inode, sector_t iblock,
714 struct buffer_head *bh, int create)
715 {
716 return _ext4_get_block(inode, iblock, bh,
717 create ? EXT4_GET_BLOCKS_CREATE : 0);
718 }
719
720 /*
721 * `handle' can be NULL if create is zero
722 */
723 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
724 ext4_lblk_t block, int create)
725 {
726 struct ext4_map_blocks map;
727 struct buffer_head *bh;
728 int err;
729
730 J_ASSERT(handle != NULL || create == 0);
731
732 map.m_lblk = block;
733 map.m_len = 1;
734 err = ext4_map_blocks(handle, inode, &map,
735 create ? EXT4_GET_BLOCKS_CREATE : 0);
736
737 if (err == 0)
738 return create ? ERR_PTR(-ENOSPC) : NULL;
739 if (err < 0)
740 return ERR_PTR(err);
741
742 bh = sb_getblk(inode->i_sb, map.m_pblk);
743 if (unlikely(!bh))
744 return ERR_PTR(-ENOMEM);
745 if (map.m_flags & EXT4_MAP_NEW) {
746 J_ASSERT(create != 0);
747 J_ASSERT(handle != NULL);
748
749 /*
750 * Now that we do not always journal data, we should
751 * keep in mind whether this should always journal the
752 * new buffer as metadata. For now, regular file
753 * writes use ext4_get_block instead, so it's not a
754 * problem.
755 */
756 lock_buffer(bh);
757 BUFFER_TRACE(bh, "call get_create_access");
758 err = ext4_journal_get_create_access(handle, bh);
759 if (unlikely(err)) {
760 unlock_buffer(bh);
761 goto errout;
762 }
763 if (!buffer_uptodate(bh)) {
764 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765 set_buffer_uptodate(bh);
766 }
767 unlock_buffer(bh);
768 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769 err = ext4_handle_dirty_metadata(handle, inode, bh);
770 if (unlikely(err))
771 goto errout;
772 } else
773 BUFFER_TRACE(bh, "not a new buffer");
774 return bh;
775 errout:
776 brelse(bh);
777 return ERR_PTR(err);
778 }
779
780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
781 ext4_lblk_t block, int create)
782 {
783 struct buffer_head *bh;
784
785 bh = ext4_getblk(handle, inode, block, create);
786 if (IS_ERR(bh))
787 return bh;
788 if (!bh || buffer_uptodate(bh))
789 return bh;
790 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791 wait_on_buffer(bh);
792 if (buffer_uptodate(bh))
793 return bh;
794 put_bh(bh);
795 return ERR_PTR(-EIO);
796 }
797
798 int ext4_walk_page_buffers(handle_t *handle,
799 struct buffer_head *head,
800 unsigned from,
801 unsigned to,
802 int *partial,
803 int (*fn)(handle_t *handle,
804 struct buffer_head *bh))
805 {
806 struct buffer_head *bh;
807 unsigned block_start, block_end;
808 unsigned blocksize = head->b_size;
809 int err, ret = 0;
810 struct buffer_head *next;
811
812 for (bh = head, block_start = 0;
813 ret == 0 && (bh != head || !block_start);
814 block_start = block_end, bh = next) {
815 next = bh->b_this_page;
816 block_end = block_start + blocksize;
817 if (block_end <= from || block_start >= to) {
818 if (partial && !buffer_uptodate(bh))
819 *partial = 1;
820 continue;
821 }
822 err = (*fn)(handle, bh);
823 if (!ret)
824 ret = err;
825 }
826 return ret;
827 }
828
829 /*
830 * To preserve ordering, it is essential that the hole instantiation and
831 * the data write be encapsulated in a single transaction. We cannot
832 * close off a transaction and start a new one between the ext4_get_block()
833 * and the commit_write(). So doing the jbd2_journal_start at the start of
834 * prepare_write() is the right place.
835 *
836 * Also, this function can nest inside ext4_writepage(). In that case, we
837 * *know* that ext4_writepage() has generated enough buffer credits to do the
838 * whole page. So we won't block on the journal in that case, which is good,
839 * because the caller may be PF_MEMALLOC.
840 *
841 * By accident, ext4 can be reentered when a transaction is open via
842 * quota file writes. If we were to commit the transaction while thus
843 * reentered, there can be a deadlock - we would be holding a quota
844 * lock, and the commit would never complete if another thread had a
845 * transaction open and was blocking on the quota lock - a ranking
846 * violation.
847 *
848 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
849 * will _not_ run commit under these circumstances because handle->h_ref
850 * is elevated. We'll still have enough credits for the tiny quotafile
851 * write.
852 */
853 int do_journal_get_write_access(handle_t *handle,
854 struct buffer_head *bh)
855 {
856 int dirty = buffer_dirty(bh);
857 int ret;
858
859 if (!buffer_mapped(bh) || buffer_freed(bh))
860 return 0;
861 /*
862 * __block_write_begin() could have dirtied some buffers. Clean
863 * the dirty bit as jbd2_journal_get_write_access() could complain
864 * otherwise about fs integrity issues. Setting of the dirty bit
865 * by __block_write_begin() isn't a real problem here as we clear
866 * the bit before releasing a page lock and thus writeback cannot
867 * ever write the buffer.
868 */
869 if (dirty)
870 clear_buffer_dirty(bh);
871 BUFFER_TRACE(bh, "get write access");
872 ret = ext4_journal_get_write_access(handle, bh);
873 if (!ret && dirty)
874 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
875 return ret;
876 }
877
878 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
879 struct buffer_head *bh_result, int create);
880 static int ext4_write_begin(struct file *file, struct address_space *mapping,
881 loff_t pos, unsigned len, unsigned flags,
882 struct page **pagep, void **fsdata)
883 {
884 struct inode *inode = mapping->host;
885 int ret, needed_blocks;
886 handle_t *handle;
887 int retries = 0;
888 struct page *page;
889 pgoff_t index;
890 unsigned from, to;
891
892 trace_ext4_write_begin(inode, pos, len, flags);
893 /*
894 * Reserve one block more for addition to orphan list in case
895 * we allocate blocks but write fails for some reason
896 */
897 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
898 index = pos >> PAGE_CACHE_SHIFT;
899 from = pos & (PAGE_CACHE_SIZE - 1);
900 to = from + len;
901
902 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
903 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
904 flags, pagep);
905 if (ret < 0)
906 return ret;
907 if (ret == 1)
908 return 0;
909 }
910
911 /*
912 * grab_cache_page_write_begin() can take a long time if the
913 * system is thrashing due to memory pressure, or if the page
914 * is being written back. So grab it first before we start
915 * the transaction handle. This also allows us to allocate
916 * the page (if needed) without using GFP_NOFS.
917 */
918 retry_grab:
919 page = grab_cache_page_write_begin(mapping, index, flags);
920 if (!page)
921 return -ENOMEM;
922 unlock_page(page);
923
924 retry_journal:
925 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
926 if (IS_ERR(handle)) {
927 page_cache_release(page);
928 return PTR_ERR(handle);
929 }
930
931 lock_page(page);
932 if (page->mapping != mapping) {
933 /* The page got truncated from under us */
934 unlock_page(page);
935 page_cache_release(page);
936 ext4_journal_stop(handle);
937 goto retry_grab;
938 }
939 /* In case writeback began while the page was unlocked */
940 wait_for_stable_page(page);
941
942 if (ext4_should_dioread_nolock(inode))
943 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
944 else
945 ret = __block_write_begin(page, pos, len, ext4_get_block);
946
947 if (!ret && ext4_should_journal_data(inode)) {
948 ret = ext4_walk_page_buffers(handle, page_buffers(page),
949 from, to, NULL,
950 do_journal_get_write_access);
951 }
952
953 if (ret) {
954 unlock_page(page);
955 /*
956 * __block_write_begin may have instantiated a few blocks
957 * outside i_size. Trim these off again. Don't need
958 * i_size_read because we hold i_mutex.
959 *
960 * Add inode to orphan list in case we crash before
961 * truncate finishes
962 */
963 if (pos + len > inode->i_size && ext4_can_truncate(inode))
964 ext4_orphan_add(handle, inode);
965
966 ext4_journal_stop(handle);
967 if (pos + len > inode->i_size) {
968 ext4_truncate_failed_write(inode);
969 /*
970 * If truncate failed early the inode might
971 * still be on the orphan list; we need to
972 * make sure the inode is removed from the
973 * orphan list in that case.
974 */
975 if (inode->i_nlink)
976 ext4_orphan_del(NULL, inode);
977 }
978
979 if (ret == -ENOSPC &&
980 ext4_should_retry_alloc(inode->i_sb, &retries))
981 goto retry_journal;
982 page_cache_release(page);
983 return ret;
984 }
985 *pagep = page;
986 return ret;
987 }
988
989 /* For write_end() in data=journal mode */
990 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
991 {
992 int ret;
993 if (!buffer_mapped(bh) || buffer_freed(bh))
994 return 0;
995 set_buffer_uptodate(bh);
996 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
997 clear_buffer_meta(bh);
998 clear_buffer_prio(bh);
999 return ret;
1000 }
1001
1002 /*
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1005 *
1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1007 * buffers are managed internally.
1008 */
1009 static int ext4_write_end(struct file *file,
1010 struct address_space *mapping,
1011 loff_t pos, unsigned len, unsigned copied,
1012 struct page *page, void *fsdata)
1013 {
1014 handle_t *handle = ext4_journal_current_handle();
1015 struct inode *inode = mapping->host;
1016 int ret = 0, ret2;
1017 int i_size_changed = 0;
1018
1019 trace_ext4_write_end(inode, pos, len, copied);
1020 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1021 ret = ext4_jbd2_file_inode(handle, inode);
1022 if (ret) {
1023 unlock_page(page);
1024 page_cache_release(page);
1025 goto errout;
1026 }
1027 }
1028
1029 if (ext4_has_inline_data(inode)) {
1030 ret = ext4_write_inline_data_end(inode, pos, len,
1031 copied, page);
1032 if (ret < 0)
1033 goto errout;
1034 copied = ret;
1035 } else
1036 copied = block_write_end(file, mapping, pos,
1037 len, copied, page, fsdata);
1038 /*
1039 * it's important to update i_size while still holding page lock:
1040 * page writeout could otherwise come in and zero beyond i_size.
1041 */
1042 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1043 unlock_page(page);
1044 page_cache_release(page);
1045
1046 /*
1047 * Don't mark the inode dirty under page lock. First, it unnecessarily
1048 * makes the holding time of page lock longer. Second, it forces lock
1049 * ordering of page lock and transaction start for journaling
1050 * filesystems.
1051 */
1052 if (i_size_changed)
1053 ext4_mark_inode_dirty(handle, inode);
1054
1055 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 /* if we have allocated more blocks and copied
1057 * less. We will have blocks allocated outside
1058 * inode->i_size. So truncate them
1059 */
1060 ext4_orphan_add(handle, inode);
1061 errout:
1062 ret2 = ext4_journal_stop(handle);
1063 if (!ret)
1064 ret = ret2;
1065
1066 if (pos + len > inode->i_size) {
1067 ext4_truncate_failed_write(inode);
1068 /*
1069 * If truncate failed early the inode might still be
1070 * on the orphan list; we need to make sure the inode
1071 * is removed from the orphan list in that case.
1072 */
1073 if (inode->i_nlink)
1074 ext4_orphan_del(NULL, inode);
1075 }
1076
1077 return ret ? ret : copied;
1078 }
1079
1080 static int ext4_journalled_write_end(struct file *file,
1081 struct address_space *mapping,
1082 loff_t pos, unsigned len, unsigned copied,
1083 struct page *page, void *fsdata)
1084 {
1085 handle_t *handle = ext4_journal_current_handle();
1086 struct inode *inode = mapping->host;
1087 int ret = 0, ret2;
1088 int partial = 0;
1089 unsigned from, to;
1090 int size_changed = 0;
1091
1092 trace_ext4_journalled_write_end(inode, pos, len, copied);
1093 from = pos & (PAGE_CACHE_SIZE - 1);
1094 to = from + len;
1095
1096 BUG_ON(!ext4_handle_valid(handle));
1097
1098 if (ext4_has_inline_data(inode))
1099 copied = ext4_write_inline_data_end(inode, pos, len,
1100 copied, page);
1101 else {
1102 if (copied < len) {
1103 if (!PageUptodate(page))
1104 copied = 0;
1105 page_zero_new_buffers(page, from+copied, to);
1106 }
1107
1108 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1109 to, &partial, write_end_fn);
1110 if (!partial)
1111 SetPageUptodate(page);
1112 }
1113 size_changed = ext4_update_inode_size(inode, pos + copied);
1114 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1115 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1116 unlock_page(page);
1117 page_cache_release(page);
1118
1119 if (size_changed) {
1120 ret2 = ext4_mark_inode_dirty(handle, inode);
1121 if (!ret)
1122 ret = ret2;
1123 }
1124
1125 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1126 /* if we have allocated more blocks and copied
1127 * less. We will have blocks allocated outside
1128 * inode->i_size. So truncate them
1129 */
1130 ext4_orphan_add(handle, inode);
1131
1132 ret2 = ext4_journal_stop(handle);
1133 if (!ret)
1134 ret = ret2;
1135 if (pos + len > inode->i_size) {
1136 ext4_truncate_failed_write(inode);
1137 /*
1138 * If truncate failed early the inode might still be
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1141 */
1142 if (inode->i_nlink)
1143 ext4_orphan_del(NULL, inode);
1144 }
1145
1146 return ret ? ret : copied;
1147 }
1148
1149 /*
1150 * Reserve a single cluster located at lblock
1151 */
1152 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1153 {
1154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1155 struct ext4_inode_info *ei = EXT4_I(inode);
1156 unsigned int md_needed;
1157 int ret;
1158
1159 /*
1160 * We will charge metadata quota at writeout time; this saves
1161 * us from metadata over-estimation, though we may go over by
1162 * a small amount in the end. Here we just reserve for data.
1163 */
1164 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1165 if (ret)
1166 return ret;
1167
1168 /*
1169 * recalculate the amount of metadata blocks to reserve
1170 * in order to allocate nrblocks
1171 * worse case is one extent per block
1172 */
1173 spin_lock(&ei->i_block_reservation_lock);
1174 /*
1175 * ext4_calc_metadata_amount() has side effects, which we have
1176 * to be prepared undo if we fail to claim space.
1177 */
1178 md_needed = 0;
1179 trace_ext4_da_reserve_space(inode, 0);
1180
1181 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1182 spin_unlock(&ei->i_block_reservation_lock);
1183 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1184 return -ENOSPC;
1185 }
1186 ei->i_reserved_data_blocks++;
1187 spin_unlock(&ei->i_block_reservation_lock);
1188
1189 return 0; /* success */
1190 }
1191
1192 static void ext4_da_release_space(struct inode *inode, int to_free)
1193 {
1194 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1195 struct ext4_inode_info *ei = EXT4_I(inode);
1196
1197 if (!to_free)
1198 return; /* Nothing to release, exit */
1199
1200 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1201
1202 trace_ext4_da_release_space(inode, to_free);
1203 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1204 /*
1205 * if there aren't enough reserved blocks, then the
1206 * counter is messed up somewhere. Since this
1207 * function is called from invalidate page, it's
1208 * harmless to return without any action.
1209 */
1210 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1211 "ino %lu, to_free %d with only %d reserved "
1212 "data blocks", inode->i_ino, to_free,
1213 ei->i_reserved_data_blocks);
1214 WARN_ON(1);
1215 to_free = ei->i_reserved_data_blocks;
1216 }
1217 ei->i_reserved_data_blocks -= to_free;
1218
1219 /* update fs dirty data blocks counter */
1220 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1221
1222 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1223
1224 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1225 }
1226
1227 static void ext4_da_page_release_reservation(struct page *page,
1228 unsigned int offset,
1229 unsigned int length)
1230 {
1231 int to_release = 0;
1232 struct buffer_head *head, *bh;
1233 unsigned int curr_off = 0;
1234 struct inode *inode = page->mapping->host;
1235 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1236 unsigned int stop = offset + length;
1237 int num_clusters;
1238 ext4_fsblk_t lblk;
1239
1240 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1241
1242 head = page_buffers(page);
1243 bh = head;
1244 do {
1245 unsigned int next_off = curr_off + bh->b_size;
1246
1247 if (next_off > stop)
1248 break;
1249
1250 if ((offset <= curr_off) && (buffer_delay(bh))) {
1251 to_release++;
1252 clear_buffer_delay(bh);
1253 }
1254 curr_off = next_off;
1255 } while ((bh = bh->b_this_page) != head);
1256
1257 if (to_release) {
1258 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1259 ext4_es_remove_extent(inode, lblk, to_release);
1260 }
1261
1262 /* If we have released all the blocks belonging to a cluster, then we
1263 * need to release the reserved space for that cluster. */
1264 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1265 while (num_clusters > 0) {
1266 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1267 ((num_clusters - 1) << sbi->s_cluster_bits);
1268 if (sbi->s_cluster_ratio == 1 ||
1269 !ext4_find_delalloc_cluster(inode, lblk))
1270 ext4_da_release_space(inode, 1);
1271
1272 num_clusters--;
1273 }
1274 }
1275
1276 /*
1277 * Delayed allocation stuff
1278 */
1279
1280 struct mpage_da_data {
1281 struct inode *inode;
1282 struct writeback_control *wbc;
1283
1284 pgoff_t first_page; /* The first page to write */
1285 pgoff_t next_page; /* Current page to examine */
1286 pgoff_t last_page; /* Last page to examine */
1287 /*
1288 * Extent to map - this can be after first_page because that can be
1289 * fully mapped. We somewhat abuse m_flags to store whether the extent
1290 * is delalloc or unwritten.
1291 */
1292 struct ext4_map_blocks map;
1293 struct ext4_io_submit io_submit; /* IO submission data */
1294 };
1295
1296 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1297 bool invalidate)
1298 {
1299 int nr_pages, i;
1300 pgoff_t index, end;
1301 struct pagevec pvec;
1302 struct inode *inode = mpd->inode;
1303 struct address_space *mapping = inode->i_mapping;
1304
1305 /* This is necessary when next_page == 0. */
1306 if (mpd->first_page >= mpd->next_page)
1307 return;
1308
1309 index = mpd->first_page;
1310 end = mpd->next_page - 1;
1311 if (invalidate) {
1312 ext4_lblk_t start, last;
1313 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1314 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 ext4_es_remove_extent(inode, start, last - start + 1);
1316 }
1317
1318 pagevec_init(&pvec, 0);
1319 while (index <= end) {
1320 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1321 if (nr_pages == 0)
1322 break;
1323 for (i = 0; i < nr_pages; i++) {
1324 struct page *page = pvec.pages[i];
1325 if (page->index > end)
1326 break;
1327 BUG_ON(!PageLocked(page));
1328 BUG_ON(PageWriteback(page));
1329 if (invalidate) {
1330 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1331 ClearPageUptodate(page);
1332 }
1333 unlock_page(page);
1334 }
1335 index = pvec.pages[nr_pages - 1]->index + 1;
1336 pagevec_release(&pvec);
1337 }
1338 }
1339
1340 static void ext4_print_free_blocks(struct inode *inode)
1341 {
1342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1343 struct super_block *sb = inode->i_sb;
1344 struct ext4_inode_info *ei = EXT4_I(inode);
1345
1346 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1347 EXT4_C2B(EXT4_SB(inode->i_sb),
1348 ext4_count_free_clusters(sb)));
1349 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1350 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1351 (long long) EXT4_C2B(EXT4_SB(sb),
1352 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1353 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1354 (long long) EXT4_C2B(EXT4_SB(sb),
1355 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1356 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1357 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1358 ei->i_reserved_data_blocks);
1359 return;
1360 }
1361
1362 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1363 {
1364 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1365 }
1366
1367 /*
1368 * This function is grabs code from the very beginning of
1369 * ext4_map_blocks, but assumes that the caller is from delayed write
1370 * time. This function looks up the requested blocks and sets the
1371 * buffer delay bit under the protection of i_data_sem.
1372 */
1373 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1374 struct ext4_map_blocks *map,
1375 struct buffer_head *bh)
1376 {
1377 struct extent_status es;
1378 int retval;
1379 sector_t invalid_block = ~((sector_t) 0xffff);
1380 #ifdef ES_AGGRESSIVE_TEST
1381 struct ext4_map_blocks orig_map;
1382
1383 memcpy(&orig_map, map, sizeof(*map));
1384 #endif
1385
1386 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1387 invalid_block = ~0;
1388
1389 map->m_flags = 0;
1390 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1391 "logical block %lu\n", inode->i_ino, map->m_len,
1392 (unsigned long) map->m_lblk);
1393
1394 /* Lookup extent status tree firstly */
1395 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1396 ext4_es_lru_add(inode);
1397 if (ext4_es_is_hole(&es)) {
1398 retval = 0;
1399 down_read(&EXT4_I(inode)->i_data_sem);
1400 goto add_delayed;
1401 }
1402
1403 /*
1404 * Delayed extent could be allocated by fallocate.
1405 * So we need to check it.
1406 */
1407 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1408 map_bh(bh, inode->i_sb, invalid_block);
1409 set_buffer_new(bh);
1410 set_buffer_delay(bh);
1411 return 0;
1412 }
1413
1414 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1415 retval = es.es_len - (iblock - es.es_lblk);
1416 if (retval > map->m_len)
1417 retval = map->m_len;
1418 map->m_len = retval;
1419 if (ext4_es_is_written(&es))
1420 map->m_flags |= EXT4_MAP_MAPPED;
1421 else if (ext4_es_is_unwritten(&es))
1422 map->m_flags |= EXT4_MAP_UNWRITTEN;
1423 else
1424 BUG_ON(1);
1425
1426 #ifdef ES_AGGRESSIVE_TEST
1427 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1428 #endif
1429 return retval;
1430 }
1431
1432 /*
1433 * Try to see if we can get the block without requesting a new
1434 * file system block.
1435 */
1436 down_read(&EXT4_I(inode)->i_data_sem);
1437 if (ext4_has_inline_data(inode)) {
1438 /*
1439 * We will soon create blocks for this page, and let
1440 * us pretend as if the blocks aren't allocated yet.
1441 * In case of clusters, we have to handle the work
1442 * of mapping from cluster so that the reserved space
1443 * is calculated properly.
1444 */
1445 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1446 ext4_find_delalloc_cluster(inode, map->m_lblk))
1447 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1448 retval = 0;
1449 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1450 retval = ext4_ext_map_blocks(NULL, inode, map,
1451 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1452 else
1453 retval = ext4_ind_map_blocks(NULL, inode, map,
1454 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1455
1456 add_delayed:
1457 if (retval == 0) {
1458 int ret;
1459 /*
1460 * XXX: __block_prepare_write() unmaps passed block,
1461 * is it OK?
1462 */
1463 /*
1464 * If the block was allocated from previously allocated cluster,
1465 * then we don't need to reserve it again. However we still need
1466 * to reserve metadata for every block we're going to write.
1467 */
1468 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1469 ret = ext4_da_reserve_space(inode, iblock);
1470 if (ret) {
1471 /* not enough space to reserve */
1472 retval = ret;
1473 goto out_unlock;
1474 }
1475 }
1476
1477 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1478 ~0, EXTENT_STATUS_DELAYED);
1479 if (ret) {
1480 retval = ret;
1481 goto out_unlock;
1482 }
1483
1484 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1485 * and it should not appear on the bh->b_state.
1486 */
1487 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1488
1489 map_bh(bh, inode->i_sb, invalid_block);
1490 set_buffer_new(bh);
1491 set_buffer_delay(bh);
1492 } else if (retval > 0) {
1493 int ret;
1494 unsigned int status;
1495
1496 if (unlikely(retval != map->m_len)) {
1497 ext4_warning(inode->i_sb,
1498 "ES len assertion failed for inode "
1499 "%lu: retval %d != map->m_len %d",
1500 inode->i_ino, retval, map->m_len);
1501 WARN_ON(1);
1502 }
1503
1504 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507 map->m_pblk, status);
1508 if (ret != 0)
1509 retval = ret;
1510 }
1511
1512 out_unlock:
1513 up_read((&EXT4_I(inode)->i_data_sem));
1514
1515 return retval;
1516 }
1517
1518 /*
1519 * This is a special get_block_t callback which is used by
1520 * ext4_da_write_begin(). It will either return mapped block or
1521 * reserve space for a single block.
1522 *
1523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524 * We also have b_blocknr = -1 and b_bdev initialized properly
1525 *
1526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528 * initialized properly.
1529 */
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531 struct buffer_head *bh, int create)
1532 {
1533 struct ext4_map_blocks map;
1534 int ret = 0;
1535
1536 BUG_ON(create == 0);
1537 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1538
1539 map.m_lblk = iblock;
1540 map.m_len = 1;
1541
1542 /*
1543 * first, we need to know whether the block is allocated already
1544 * preallocated blocks are unmapped but should treated
1545 * the same as allocated blocks.
1546 */
1547 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1548 if (ret <= 0)
1549 return ret;
1550
1551 map_bh(bh, inode->i_sb, map.m_pblk);
1552 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1553
1554 if (buffer_unwritten(bh)) {
1555 /* A delayed write to unwritten bh should be marked
1556 * new and mapped. Mapped ensures that we don't do
1557 * get_block multiple times when we write to the same
1558 * offset and new ensures that we do proper zero out
1559 * for partial write.
1560 */
1561 set_buffer_new(bh);
1562 set_buffer_mapped(bh);
1563 }
1564 return 0;
1565 }
1566
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569 get_bh(bh);
1570 return 0;
1571 }
1572
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1574 {
1575 put_bh(bh);
1576 return 0;
1577 }
1578
1579 static int __ext4_journalled_writepage(struct page *page,
1580 unsigned int len)
1581 {
1582 struct address_space *mapping = page->mapping;
1583 struct inode *inode = mapping->host;
1584 struct buffer_head *page_bufs = NULL;
1585 handle_t *handle = NULL;
1586 int ret = 0, err = 0;
1587 int inline_data = ext4_has_inline_data(inode);
1588 struct buffer_head *inode_bh = NULL;
1589
1590 ClearPageChecked(page);
1591
1592 if (inline_data) {
1593 BUG_ON(page->index != 0);
1594 BUG_ON(len > ext4_get_max_inline_size(inode));
1595 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596 if (inode_bh == NULL)
1597 goto out;
1598 } else {
1599 page_bufs = page_buffers(page);
1600 if (!page_bufs) {
1601 BUG();
1602 goto out;
1603 }
1604 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1605 NULL, bget_one);
1606 }
1607 /* As soon as we unlock the page, it can go away, but we have
1608 * references to buffers so we are safe */
1609 unlock_page(page);
1610
1611 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612 ext4_writepage_trans_blocks(inode));
1613 if (IS_ERR(handle)) {
1614 ret = PTR_ERR(handle);
1615 goto out;
1616 }
1617
1618 BUG_ON(!ext4_handle_valid(handle));
1619
1620 if (inline_data) {
1621 BUFFER_TRACE(inode_bh, "get write access");
1622 ret = ext4_journal_get_write_access(handle, inode_bh);
1623
1624 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1625
1626 } else {
1627 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628 do_journal_get_write_access);
1629
1630 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631 write_end_fn);
1632 }
1633 if (ret == 0)
1634 ret = err;
1635 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636 err = ext4_journal_stop(handle);
1637 if (!ret)
1638 ret = err;
1639
1640 if (!ext4_has_inline_data(inode))
1641 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1642 NULL, bput_one);
1643 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1644 out:
1645 brelse(inode_bh);
1646 return ret;
1647 }
1648
1649 /*
1650 * Note that we don't need to start a transaction unless we're journaling data
1651 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652 * need to file the inode to the transaction's list in ordered mode because if
1653 * we are writing back data added by write(), the inode is already there and if
1654 * we are writing back data modified via mmap(), no one guarantees in which
1655 * transaction the data will hit the disk. In case we are journaling data, we
1656 * cannot start transaction directly because transaction start ranks above page
1657 * lock so we have to do some magic.
1658 *
1659 * This function can get called via...
1660 * - ext4_writepages after taking page lock (have journal handle)
1661 * - journal_submit_inode_data_buffers (no journal handle)
1662 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663 * - grab_page_cache when doing write_begin (have journal handle)
1664 *
1665 * We don't do any block allocation in this function. If we have page with
1666 * multiple blocks we need to write those buffer_heads that are mapped. This
1667 * is important for mmaped based write. So if we do with blocksize 1K
1668 * truncate(f, 1024);
1669 * a = mmap(f, 0, 4096);
1670 * a[0] = 'a';
1671 * truncate(f, 4096);
1672 * we have in the page first buffer_head mapped via page_mkwrite call back
1673 * but other buffer_heads would be unmapped but dirty (dirty done via the
1674 * do_wp_page). So writepage should write the first block. If we modify
1675 * the mmap area beyond 1024 we will again get a page_fault and the
1676 * page_mkwrite callback will do the block allocation and mark the
1677 * buffer_heads mapped.
1678 *
1679 * We redirty the page if we have any buffer_heads that is either delay or
1680 * unwritten in the page.
1681 *
1682 * We can get recursively called as show below.
1683 *
1684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1685 * ext4_writepage()
1686 *
1687 * But since we don't do any block allocation we should not deadlock.
1688 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1689 */
1690 static int ext4_writepage(struct page *page,
1691 struct writeback_control *wbc)
1692 {
1693 int ret = 0;
1694 loff_t size;
1695 unsigned int len;
1696 struct buffer_head *page_bufs = NULL;
1697 struct inode *inode = page->mapping->host;
1698 struct ext4_io_submit io_submit;
1699 bool keep_towrite = false;
1700
1701 trace_ext4_writepage(page);
1702 size = i_size_read(inode);
1703 if (page->index == size >> PAGE_CACHE_SHIFT)
1704 len = size & ~PAGE_CACHE_MASK;
1705 else
1706 len = PAGE_CACHE_SIZE;
1707
1708 page_bufs = page_buffers(page);
1709 /*
1710 * We cannot do block allocation or other extent handling in this
1711 * function. If there are buffers needing that, we have to redirty
1712 * the page. But we may reach here when we do a journal commit via
1713 * journal_submit_inode_data_buffers() and in that case we must write
1714 * allocated buffers to achieve data=ordered mode guarantees.
1715 */
1716 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717 ext4_bh_delay_or_unwritten)) {
1718 redirty_page_for_writepage(wbc, page);
1719 if (current->flags & PF_MEMALLOC) {
1720 /*
1721 * For memory cleaning there's no point in writing only
1722 * some buffers. So just bail out. Warn if we came here
1723 * from direct reclaim.
1724 */
1725 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1726 == PF_MEMALLOC);
1727 unlock_page(page);
1728 return 0;
1729 }
1730 keep_towrite = true;
1731 }
1732
1733 if (PageChecked(page) && ext4_should_journal_data(inode))
1734 /*
1735 * It's mmapped pagecache. Add buffers and journal it. There
1736 * doesn't seem much point in redirtying the page here.
1737 */
1738 return __ext4_journalled_writepage(page, len);
1739
1740 ext4_io_submit_init(&io_submit, wbc);
1741 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742 if (!io_submit.io_end) {
1743 redirty_page_for_writepage(wbc, page);
1744 unlock_page(page);
1745 return -ENOMEM;
1746 }
1747 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748 ext4_io_submit(&io_submit);
1749 /* Drop io_end reference we got from init */
1750 ext4_put_io_end_defer(io_submit.io_end);
1751 return ret;
1752 }
1753
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1755 {
1756 int len;
1757 loff_t size = i_size_read(mpd->inode);
1758 int err;
1759
1760 BUG_ON(page->index != mpd->first_page);
1761 if (page->index == size >> PAGE_CACHE_SHIFT)
1762 len = size & ~PAGE_CACHE_MASK;
1763 else
1764 len = PAGE_CACHE_SIZE;
1765 clear_page_dirty_for_io(page);
1766 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1767 if (!err)
1768 mpd->wbc->nr_to_write--;
1769 mpd->first_page++;
1770
1771 return err;
1772 }
1773
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1775
1776 /*
1777 * mballoc gives us at most this number of blocks...
1778 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779 * The rest of mballoc seems to handle chunks up to full group size.
1780 */
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1782
1783 /*
1784 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1785 *
1786 * @mpd - extent of blocks
1787 * @lblk - logical number of the block in the file
1788 * @bh - buffer head we want to add to the extent
1789 *
1790 * The function is used to collect contig. blocks in the same state. If the
1791 * buffer doesn't require mapping for writeback and we haven't started the
1792 * extent of buffers to map yet, the function returns 'true' immediately - the
1793 * caller can write the buffer right away. Otherwise the function returns true
1794 * if the block has been added to the extent, false if the block couldn't be
1795 * added.
1796 */
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798 struct buffer_head *bh)
1799 {
1800 struct ext4_map_blocks *map = &mpd->map;
1801
1802 /* Buffer that doesn't need mapping for writeback? */
1803 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805 /* So far no extent to map => we write the buffer right away */
1806 if (map->m_len == 0)
1807 return true;
1808 return false;
1809 }
1810
1811 /* First block in the extent? */
1812 if (map->m_len == 0) {
1813 map->m_lblk = lblk;
1814 map->m_len = 1;
1815 map->m_flags = bh->b_state & BH_FLAGS;
1816 return true;
1817 }
1818
1819 /* Don't go larger than mballoc is willing to allocate */
1820 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1821 return false;
1822
1823 /* Can we merge the block to our big extent? */
1824 if (lblk == map->m_lblk + map->m_len &&
1825 (bh->b_state & BH_FLAGS) == map->m_flags) {
1826 map->m_len++;
1827 return true;
1828 }
1829 return false;
1830 }
1831
1832 /*
1833 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1834 *
1835 * @mpd - extent of blocks for mapping
1836 * @head - the first buffer in the page
1837 * @bh - buffer we should start processing from
1838 * @lblk - logical number of the block in the file corresponding to @bh
1839 *
1840 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841 * the page for IO if all buffers in this page were mapped and there's no
1842 * accumulated extent of buffers to map or add buffers in the page to the
1843 * extent of buffers to map. The function returns 1 if the caller can continue
1844 * by processing the next page, 0 if it should stop adding buffers to the
1845 * extent to map because we cannot extend it anymore. It can also return value
1846 * < 0 in case of error during IO submission.
1847 */
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849 struct buffer_head *head,
1850 struct buffer_head *bh,
1851 ext4_lblk_t lblk)
1852 {
1853 struct inode *inode = mpd->inode;
1854 int err;
1855 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856 >> inode->i_blkbits;
1857
1858 do {
1859 BUG_ON(buffer_locked(bh));
1860
1861 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862 /* Found extent to map? */
1863 if (mpd->map.m_len)
1864 return 0;
1865 /* Everything mapped so far and we hit EOF */
1866 break;
1867 }
1868 } while (lblk++, (bh = bh->b_this_page) != head);
1869 /* So far everything mapped? Submit the page for IO. */
1870 if (mpd->map.m_len == 0) {
1871 err = mpage_submit_page(mpd, head->b_page);
1872 if (err < 0)
1873 return err;
1874 }
1875 return lblk < blocks;
1876 }
1877
1878 /*
1879 * mpage_map_buffers - update buffers corresponding to changed extent and
1880 * submit fully mapped pages for IO
1881 *
1882 * @mpd - description of extent to map, on return next extent to map
1883 *
1884 * Scan buffers corresponding to changed extent (we expect corresponding pages
1885 * to be already locked) and update buffer state according to new extent state.
1886 * We map delalloc buffers to their physical location, clear unwritten bits,
1887 * and mark buffers as uninit when we perform writes to unwritten extents
1888 * and do extent conversion after IO is finished. If the last page is not fully
1889 * mapped, we update @map to the next extent in the last page that needs
1890 * mapping. Otherwise we submit the page for IO.
1891 */
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1893 {
1894 struct pagevec pvec;
1895 int nr_pages, i;
1896 struct inode *inode = mpd->inode;
1897 struct buffer_head *head, *bh;
1898 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1899 pgoff_t start, end;
1900 ext4_lblk_t lblk;
1901 sector_t pblock;
1902 int err;
1903
1904 start = mpd->map.m_lblk >> bpp_bits;
1905 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906 lblk = start << bpp_bits;
1907 pblock = mpd->map.m_pblk;
1908
1909 pagevec_init(&pvec, 0);
1910 while (start <= end) {
1911 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1912 PAGEVEC_SIZE);
1913 if (nr_pages == 0)
1914 break;
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1917
1918 if (page->index > end)
1919 break;
1920 /* Up to 'end' pages must be contiguous */
1921 BUG_ON(page->index != start);
1922 bh = head = page_buffers(page);
1923 do {
1924 if (lblk < mpd->map.m_lblk)
1925 continue;
1926 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1927 /*
1928 * Buffer after end of mapped extent.
1929 * Find next buffer in the page to map.
1930 */
1931 mpd->map.m_len = 0;
1932 mpd->map.m_flags = 0;
1933 /*
1934 * FIXME: If dioread_nolock supports
1935 * blocksize < pagesize, we need to make
1936 * sure we add size mapped so far to
1937 * io_end->size as the following call
1938 * can submit the page for IO.
1939 */
1940 err = mpage_process_page_bufs(mpd, head,
1941 bh, lblk);
1942 pagevec_release(&pvec);
1943 if (err > 0)
1944 err = 0;
1945 return err;
1946 }
1947 if (buffer_delay(bh)) {
1948 clear_buffer_delay(bh);
1949 bh->b_blocknr = pblock++;
1950 }
1951 clear_buffer_unwritten(bh);
1952 } while (lblk++, (bh = bh->b_this_page) != head);
1953
1954 /*
1955 * FIXME: This is going to break if dioread_nolock
1956 * supports blocksize < pagesize as we will try to
1957 * convert potentially unmapped parts of inode.
1958 */
1959 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960 /* Page fully mapped - let IO run! */
1961 err = mpage_submit_page(mpd, page);
1962 if (err < 0) {
1963 pagevec_release(&pvec);
1964 return err;
1965 }
1966 start++;
1967 }
1968 pagevec_release(&pvec);
1969 }
1970 /* Extent fully mapped and matches with page boundary. We are done. */
1971 mpd->map.m_len = 0;
1972 mpd->map.m_flags = 0;
1973 return 0;
1974 }
1975
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1977 {
1978 struct inode *inode = mpd->inode;
1979 struct ext4_map_blocks *map = &mpd->map;
1980 int get_blocks_flags;
1981 int err, dioread_nolock;
1982
1983 trace_ext4_da_write_pages_extent(inode, map);
1984 /*
1985 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986 * to convert an unwritten extent to be initialized (in the case
1987 * where we have written into one or more preallocated blocks). It is
1988 * possible that we're going to need more metadata blocks than
1989 * previously reserved. However we must not fail because we're in
1990 * writeback and there is nothing we can do about it so it might result
1991 * in data loss. So use reserved blocks to allocate metadata if
1992 * possible.
1993 *
1994 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995 * the blocks in question are delalloc blocks. This indicates
1996 * that the blocks and quotas has already been checked when
1997 * the data was copied into the page cache.
1998 */
1999 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001 dioread_nolock = ext4_should_dioread_nolock(inode);
2002 if (dioread_nolock)
2003 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004 if (map->m_flags & (1 << BH_Delay))
2005 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2006
2007 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2008 if (err < 0)
2009 return err;
2010 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011 if (!mpd->io_submit.io_end->handle &&
2012 ext4_handle_valid(handle)) {
2013 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014 handle->h_rsv_handle = NULL;
2015 }
2016 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2017 }
2018
2019 BUG_ON(map->m_len == 0);
2020 if (map->m_flags & EXT4_MAP_NEW) {
2021 struct block_device *bdev = inode->i_sb->s_bdev;
2022 int i;
2023
2024 for (i = 0; i < map->m_len; i++)
2025 unmap_underlying_metadata(bdev, map->m_pblk + i);
2026 }
2027 return 0;
2028 }
2029
2030 /*
2031 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032 * mpd->len and submit pages underlying it for IO
2033 *
2034 * @handle - handle for journal operations
2035 * @mpd - extent to map
2036 * @give_up_on_write - we set this to true iff there is a fatal error and there
2037 * is no hope of writing the data. The caller should discard
2038 * dirty pages to avoid infinite loops.
2039 *
2040 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042 * them to initialized or split the described range from larger unwritten
2043 * extent. Note that we need not map all the described range since allocation
2044 * can return less blocks or the range is covered by more unwritten extents. We
2045 * cannot map more because we are limited by reserved transaction credits. On
2046 * the other hand we always make sure that the last touched page is fully
2047 * mapped so that it can be written out (and thus forward progress is
2048 * guaranteed). After mapping we submit all mapped pages for IO.
2049 */
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051 struct mpage_da_data *mpd,
2052 bool *give_up_on_write)
2053 {
2054 struct inode *inode = mpd->inode;
2055 struct ext4_map_blocks *map = &mpd->map;
2056 int err;
2057 loff_t disksize;
2058 int progress = 0;
2059
2060 mpd->io_submit.io_end->offset =
2061 ((loff_t)map->m_lblk) << inode->i_blkbits;
2062 do {
2063 err = mpage_map_one_extent(handle, mpd);
2064 if (err < 0) {
2065 struct super_block *sb = inode->i_sb;
2066
2067 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068 goto invalidate_dirty_pages;
2069 /*
2070 * Let the uper layers retry transient errors.
2071 * In the case of ENOSPC, if ext4_count_free_blocks()
2072 * is non-zero, a commit should free up blocks.
2073 */
2074 if ((err == -ENOMEM) ||
2075 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2076 if (progress)
2077 goto update_disksize;
2078 return err;
2079 }
2080 ext4_msg(sb, KERN_CRIT,
2081 "Delayed block allocation failed for "
2082 "inode %lu at logical offset %llu with"
2083 " max blocks %u with error %d",
2084 inode->i_ino,
2085 (unsigned long long)map->m_lblk,
2086 (unsigned)map->m_len, -err);
2087 ext4_msg(sb, KERN_CRIT,
2088 "This should not happen!! Data will "
2089 "be lost\n");
2090 if (err == -ENOSPC)
2091 ext4_print_free_blocks(inode);
2092 invalidate_dirty_pages:
2093 *give_up_on_write = true;
2094 return err;
2095 }
2096 progress = 1;
2097 /*
2098 * Update buffer state, submit mapped pages, and get us new
2099 * extent to map
2100 */
2101 err = mpage_map_and_submit_buffers(mpd);
2102 if (err < 0)
2103 goto update_disksize;
2104 } while (map->m_len);
2105
2106 update_disksize:
2107 /*
2108 * Update on-disk size after IO is submitted. Races with
2109 * truncate are avoided by checking i_size under i_data_sem.
2110 */
2111 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112 if (disksize > EXT4_I(inode)->i_disksize) {
2113 int err2;
2114 loff_t i_size;
2115
2116 down_write(&EXT4_I(inode)->i_data_sem);
2117 i_size = i_size_read(inode);
2118 if (disksize > i_size)
2119 disksize = i_size;
2120 if (disksize > EXT4_I(inode)->i_disksize)
2121 EXT4_I(inode)->i_disksize = disksize;
2122 err2 = ext4_mark_inode_dirty(handle, inode);
2123 up_write(&EXT4_I(inode)->i_data_sem);
2124 if (err2)
2125 ext4_error(inode->i_sb,
2126 "Failed to mark inode %lu dirty",
2127 inode->i_ino);
2128 if (!err)
2129 err = err2;
2130 }
2131 return err;
2132 }
2133
2134 /*
2135 * Calculate the total number of credits to reserve for one writepages
2136 * iteration. This is called from ext4_writepages(). We map an extent of
2137 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139 * bpp - 1 blocks in bpp different extents.
2140 */
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2142 {
2143 int bpp = ext4_journal_blocks_per_page(inode);
2144
2145 return ext4_meta_trans_blocks(inode,
2146 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2147 }
2148
2149 /*
2150 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151 * and underlying extent to map
2152 *
2153 * @mpd - where to look for pages
2154 *
2155 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156 * IO immediately. When we find a page which isn't mapped we start accumulating
2157 * extent of buffers underlying these pages that needs mapping (formed by
2158 * either delayed or unwritten buffers). We also lock the pages containing
2159 * these buffers. The extent found is returned in @mpd structure (starting at
2160 * mpd->lblk with length mpd->len blocks).
2161 *
2162 * Note that this function can attach bios to one io_end structure which are
2163 * neither logically nor physically contiguous. Although it may seem as an
2164 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165 * case as we need to track IO to all buffers underlying a page in one io_end.
2166 */
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2168 {
2169 struct address_space *mapping = mpd->inode->i_mapping;
2170 struct pagevec pvec;
2171 unsigned int nr_pages;
2172 long left = mpd->wbc->nr_to_write;
2173 pgoff_t index = mpd->first_page;
2174 pgoff_t end = mpd->last_page;
2175 int tag;
2176 int i, err = 0;
2177 int blkbits = mpd->inode->i_blkbits;
2178 ext4_lblk_t lblk;
2179 struct buffer_head *head;
2180
2181 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182 tag = PAGECACHE_TAG_TOWRITE;
2183 else
2184 tag = PAGECACHE_TAG_DIRTY;
2185
2186 pagevec_init(&pvec, 0);
2187 mpd->map.m_len = 0;
2188 mpd->next_page = index;
2189 while (index <= end) {
2190 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192 if (nr_pages == 0)
2193 goto out;
2194
2195 for (i = 0; i < nr_pages; i++) {
2196 struct page *page = pvec.pages[i];
2197
2198 /*
2199 * At this point, the page may be truncated or
2200 * invalidated (changing page->mapping to NULL), or
2201 * even swizzled back from swapper_space to tmpfs file
2202 * mapping. However, page->index will not change
2203 * because we have a reference on the page.
2204 */
2205 if (page->index > end)
2206 goto out;
2207
2208 /*
2209 * Accumulated enough dirty pages? This doesn't apply
2210 * to WB_SYNC_ALL mode. For integrity sync we have to
2211 * keep going because someone may be concurrently
2212 * dirtying pages, and we might have synced a lot of
2213 * newly appeared dirty pages, but have not synced all
2214 * of the old dirty pages.
2215 */
2216 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2217 goto out;
2218
2219 /* If we can't merge this page, we are done. */
2220 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2221 goto out;
2222
2223 lock_page(page);
2224 /*
2225 * If the page is no longer dirty, or its mapping no
2226 * longer corresponds to inode we are writing (which
2227 * means it has been truncated or invalidated), or the
2228 * page is already under writeback and we are not doing
2229 * a data integrity writeback, skip the page
2230 */
2231 if (!PageDirty(page) ||
2232 (PageWriteback(page) &&
2233 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234 unlikely(page->mapping != mapping)) {
2235 unlock_page(page);
2236 continue;
2237 }
2238
2239 wait_on_page_writeback(page);
2240 BUG_ON(PageWriteback(page));
2241
2242 if (mpd->map.m_len == 0)
2243 mpd->first_page = page->index;
2244 mpd->next_page = page->index + 1;
2245 /* Add all dirty buffers to mpd */
2246 lblk = ((ext4_lblk_t)page->index) <<
2247 (PAGE_CACHE_SHIFT - blkbits);
2248 head = page_buffers(page);
2249 err = mpage_process_page_bufs(mpd, head, head, lblk);
2250 if (err <= 0)
2251 goto out;
2252 err = 0;
2253 left--;
2254 }
2255 pagevec_release(&pvec);
2256 cond_resched();
2257 }
2258 return 0;
2259 out:
2260 pagevec_release(&pvec);
2261 return err;
2262 }
2263
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2265 void *data)
2266 {
2267 struct address_space *mapping = data;
2268 int ret = ext4_writepage(page, wbc);
2269 mapping_set_error(mapping, ret);
2270 return ret;
2271 }
2272
2273 static int ext4_writepages(struct address_space *mapping,
2274 struct writeback_control *wbc)
2275 {
2276 pgoff_t writeback_index = 0;
2277 long nr_to_write = wbc->nr_to_write;
2278 int range_whole = 0;
2279 int cycled = 1;
2280 handle_t *handle = NULL;
2281 struct mpage_da_data mpd;
2282 struct inode *inode = mapping->host;
2283 int needed_blocks, rsv_blocks = 0, ret = 0;
2284 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2285 bool done;
2286 struct blk_plug plug;
2287 bool give_up_on_write = false;
2288
2289 trace_ext4_writepages(inode, wbc);
2290
2291 /*
2292 * No pages to write? This is mainly a kludge to avoid starting
2293 * a transaction for special inodes like journal inode on last iput()
2294 * because that could violate lock ordering on umount
2295 */
2296 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297 goto out_writepages;
2298
2299 if (ext4_should_journal_data(inode)) {
2300 struct blk_plug plug;
2301
2302 blk_start_plug(&plug);
2303 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304 blk_finish_plug(&plug);
2305 goto out_writepages;
2306 }
2307
2308 /*
2309 * If the filesystem has aborted, it is read-only, so return
2310 * right away instead of dumping stack traces later on that
2311 * will obscure the real source of the problem. We test
2312 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313 * the latter could be true if the filesystem is mounted
2314 * read-only, and in that case, ext4_writepages should
2315 * *never* be called, so if that ever happens, we would want
2316 * the stack trace.
2317 */
2318 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2319 ret = -EROFS;
2320 goto out_writepages;
2321 }
2322
2323 if (ext4_should_dioread_nolock(inode)) {
2324 /*
2325 * We may need to convert up to one extent per block in
2326 * the page and we may dirty the inode.
2327 */
2328 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2329 }
2330
2331 /*
2332 * If we have inline data and arrive here, it means that
2333 * we will soon create the block for the 1st page, so
2334 * we'd better clear the inline data here.
2335 */
2336 if (ext4_has_inline_data(inode)) {
2337 /* Just inode will be modified... */
2338 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339 if (IS_ERR(handle)) {
2340 ret = PTR_ERR(handle);
2341 goto out_writepages;
2342 }
2343 BUG_ON(ext4_test_inode_state(inode,
2344 EXT4_STATE_MAY_INLINE_DATA));
2345 ext4_destroy_inline_data(handle, inode);
2346 ext4_journal_stop(handle);
2347 }
2348
2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 range_whole = 1;
2351
2352 if (wbc->range_cyclic) {
2353 writeback_index = mapping->writeback_index;
2354 if (writeback_index)
2355 cycled = 0;
2356 mpd.first_page = writeback_index;
2357 mpd.last_page = -1;
2358 } else {
2359 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2361 }
2362
2363 mpd.inode = inode;
2364 mpd.wbc = wbc;
2365 ext4_io_submit_init(&mpd.io_submit, wbc);
2366 retry:
2367 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2369 done = false;
2370 blk_start_plug(&plug);
2371 while (!done && mpd.first_page <= mpd.last_page) {
2372 /* For each extent of pages we use new io_end */
2373 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374 if (!mpd.io_submit.io_end) {
2375 ret = -ENOMEM;
2376 break;
2377 }
2378
2379 /*
2380 * We have two constraints: We find one extent to map and we
2381 * must always write out whole page (makes a difference when
2382 * blocksize < pagesize) so that we don't block on IO when we
2383 * try to write out the rest of the page. Journalled mode is
2384 * not supported by delalloc.
2385 */
2386 BUG_ON(ext4_should_journal_data(inode));
2387 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2388
2389 /* start a new transaction */
2390 handle = ext4_journal_start_with_reserve(inode,
2391 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392 if (IS_ERR(handle)) {
2393 ret = PTR_ERR(handle);
2394 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395 "%ld pages, ino %lu; err %d", __func__,
2396 wbc->nr_to_write, inode->i_ino, ret);
2397 /* Release allocated io_end */
2398 ext4_put_io_end(mpd.io_submit.io_end);
2399 break;
2400 }
2401
2402 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403 ret = mpage_prepare_extent_to_map(&mpd);
2404 if (!ret) {
2405 if (mpd.map.m_len)
2406 ret = mpage_map_and_submit_extent(handle, &mpd,
2407 &give_up_on_write);
2408 else {
2409 /*
2410 * We scanned the whole range (or exhausted
2411 * nr_to_write), submitted what was mapped and
2412 * didn't find anything needing mapping. We are
2413 * done.
2414 */
2415 done = true;
2416 }
2417 }
2418 ext4_journal_stop(handle);
2419 /* Submit prepared bio */
2420 ext4_io_submit(&mpd.io_submit);
2421 /* Unlock pages we didn't use */
2422 mpage_release_unused_pages(&mpd, give_up_on_write);
2423 /* Drop our io_end reference we got from init */
2424 ext4_put_io_end(mpd.io_submit.io_end);
2425
2426 if (ret == -ENOSPC && sbi->s_journal) {
2427 /*
2428 * Commit the transaction which would
2429 * free blocks released in the transaction
2430 * and try again
2431 */
2432 jbd2_journal_force_commit_nested(sbi->s_journal);
2433 ret = 0;
2434 continue;
2435 }
2436 /* Fatal error - ENOMEM, EIO... */
2437 if (ret)
2438 break;
2439 }
2440 blk_finish_plug(&plug);
2441 if (!ret && !cycled && wbc->nr_to_write > 0) {
2442 cycled = 1;
2443 mpd.last_page = writeback_index - 1;
2444 mpd.first_page = 0;
2445 goto retry;
2446 }
2447
2448 /* Update index */
2449 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2450 /*
2451 * Set the writeback_index so that range_cyclic
2452 * mode will write it back later
2453 */
2454 mapping->writeback_index = mpd.first_page;
2455
2456 out_writepages:
2457 trace_ext4_writepages_result(inode, wbc, ret,
2458 nr_to_write - wbc->nr_to_write);
2459 return ret;
2460 }
2461
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464 s64 free_clusters, dirty_clusters;
2465 struct ext4_sb_info *sbi = EXT4_SB(sb);
2466
2467 /*
2468 * switch to non delalloc mode if we are running low
2469 * on free block. The free block accounting via percpu
2470 * counters can get slightly wrong with percpu_counter_batch getting
2471 * accumulated on each CPU without updating global counters
2472 * Delalloc need an accurate free block accounting. So switch
2473 * to non delalloc when we are near to error range.
2474 */
2475 free_clusters =
2476 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2477 dirty_clusters =
2478 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2479 /*
2480 * Start pushing delalloc when 1/2 of free blocks are dirty.
2481 */
2482 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2484
2485 if (2 * free_clusters < 3 * dirty_clusters ||
2486 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2487 /*
2488 * free block count is less than 150% of dirty blocks
2489 * or free blocks is less than watermark
2490 */
2491 return 1;
2492 }
2493 return 0;
2494 }
2495
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2498 {
2499 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2501 return 1;
2502
2503 if (pos + len <= 0x7fffffffULL)
2504 return 1;
2505
2506 /* We might need to update the superblock to set LARGE_FILE */
2507 return 2;
2508 }
2509
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511 loff_t pos, unsigned len, unsigned flags,
2512 struct page **pagep, void **fsdata)
2513 {
2514 int ret, retries = 0;
2515 struct page *page;
2516 pgoff_t index;
2517 struct inode *inode = mapping->host;
2518 handle_t *handle;
2519
2520 index = pos >> PAGE_CACHE_SHIFT;
2521
2522 if (ext4_nonda_switch(inode->i_sb)) {
2523 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524 return ext4_write_begin(file, mapping, pos,
2525 len, flags, pagep, fsdata);
2526 }
2527 *fsdata = (void *)0;
2528 trace_ext4_da_write_begin(inode, pos, len, flags);
2529
2530 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531 ret = ext4_da_write_inline_data_begin(mapping, inode,
2532 pos, len, flags,
2533 pagep, fsdata);
2534 if (ret < 0)
2535 return ret;
2536 if (ret == 1)
2537 return 0;
2538 }
2539
2540 /*
2541 * grab_cache_page_write_begin() can take a long time if the
2542 * system is thrashing due to memory pressure, or if the page
2543 * is being written back. So grab it first before we start
2544 * the transaction handle. This also allows us to allocate
2545 * the page (if needed) without using GFP_NOFS.
2546 */
2547 retry_grab:
2548 page = grab_cache_page_write_begin(mapping, index, flags);
2549 if (!page)
2550 return -ENOMEM;
2551 unlock_page(page);
2552
2553 /*
2554 * With delayed allocation, we don't log the i_disksize update
2555 * if there is delayed block allocation. But we still need
2556 * to journalling the i_disksize update if writes to the end
2557 * of file which has an already mapped buffer.
2558 */
2559 retry_journal:
2560 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561 ext4_da_write_credits(inode, pos, len));
2562 if (IS_ERR(handle)) {
2563 page_cache_release(page);
2564 return PTR_ERR(handle);
2565 }
2566
2567 lock_page(page);
2568 if (page->mapping != mapping) {
2569 /* The page got truncated from under us */
2570 unlock_page(page);
2571 page_cache_release(page);
2572 ext4_journal_stop(handle);
2573 goto retry_grab;
2574 }
2575 /* In case writeback began while the page was unlocked */
2576 wait_for_stable_page(page);
2577
2578 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579 if (ret < 0) {
2580 unlock_page(page);
2581 ext4_journal_stop(handle);
2582 /*
2583 * block_write_begin may have instantiated a few blocks
2584 * outside i_size. Trim these off again. Don't need
2585 * i_size_read because we hold i_mutex.
2586 */
2587 if (pos + len > inode->i_size)
2588 ext4_truncate_failed_write(inode);
2589
2590 if (ret == -ENOSPC &&
2591 ext4_should_retry_alloc(inode->i_sb, &retries))
2592 goto retry_journal;
2593
2594 page_cache_release(page);
2595 return ret;
2596 }
2597
2598 *pagep = page;
2599 return ret;
2600 }
2601
2602 /*
2603 * Check if we should update i_disksize
2604 * when write to the end of file but not require block allocation
2605 */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607 unsigned long offset)
2608 {
2609 struct buffer_head *bh;
2610 struct inode *inode = page->mapping->host;
2611 unsigned int idx;
2612 int i;
2613
2614 bh = page_buffers(page);
2615 idx = offset >> inode->i_blkbits;
2616
2617 for (i = 0; i < idx; i++)
2618 bh = bh->b_this_page;
2619
2620 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621 return 0;
2622 return 1;
2623 }
2624
2625 static int ext4_da_write_end(struct file *file,
2626 struct address_space *mapping,
2627 loff_t pos, unsigned len, unsigned copied,
2628 struct page *page, void *fsdata)
2629 {
2630 struct inode *inode = mapping->host;
2631 int ret = 0, ret2;
2632 handle_t *handle = ext4_journal_current_handle();
2633 loff_t new_i_size;
2634 unsigned long start, end;
2635 int write_mode = (int)(unsigned long)fsdata;
2636
2637 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638 return ext4_write_end(file, mapping, pos,
2639 len, copied, page, fsdata);
2640
2641 trace_ext4_da_write_end(inode, pos, len, copied);
2642 start = pos & (PAGE_CACHE_SIZE - 1);
2643 end = start + copied - 1;
2644
2645 /*
2646 * generic_write_end() will run mark_inode_dirty() if i_size
2647 * changes. So let's piggyback the i_disksize mark_inode_dirty
2648 * into that.
2649 */
2650 new_i_size = pos + copied;
2651 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652 if (ext4_has_inline_data(inode) ||
2653 ext4_da_should_update_i_disksize(page, end)) {
2654 ext4_update_i_disksize(inode, new_i_size);
2655 /* We need to mark inode dirty even if
2656 * new_i_size is less that inode->i_size
2657 * bu greater than i_disksize.(hint delalloc)
2658 */
2659 ext4_mark_inode_dirty(handle, inode);
2660 }
2661 }
2662
2663 if (write_mode != CONVERT_INLINE_DATA &&
2664 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665 ext4_has_inline_data(inode))
2666 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667 page);
2668 else
2669 ret2 = generic_write_end(file, mapping, pos, len, copied,
2670 page, fsdata);
2671
2672 copied = ret2;
2673 if (ret2 < 0)
2674 ret = ret2;
2675 ret2 = ext4_journal_stop(handle);
2676 if (!ret)
2677 ret = ret2;
2678
2679 return ret ? ret : copied;
2680 }
2681
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683 unsigned int length)
2684 {
2685 /*
2686 * Drop reserved blocks
2687 */
2688 BUG_ON(!PageLocked(page));
2689 if (!page_has_buffers(page))
2690 goto out;
2691
2692 ext4_da_page_release_reservation(page, offset, length);
2693
2694 out:
2695 ext4_invalidatepage(page, offset, length);
2696
2697 return;
2698 }
2699
2700 /*
2701 * Force all delayed allocation blocks to be allocated for a given inode.
2702 */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705 trace_ext4_alloc_da_blocks(inode);
2706
2707 if (!EXT4_I(inode)->i_reserved_data_blocks)
2708 return 0;
2709
2710 /*
2711 * We do something simple for now. The filemap_flush() will
2712 * also start triggering a write of the data blocks, which is
2713 * not strictly speaking necessary (and for users of
2714 * laptop_mode, not even desirable). However, to do otherwise
2715 * would require replicating code paths in:
2716 *
2717 * ext4_writepages() ->
2718 * write_cache_pages() ---> (via passed in callback function)
2719 * __mpage_da_writepage() -->
2720 * mpage_add_bh_to_extent()
2721 * mpage_da_map_blocks()
2722 *
2723 * The problem is that write_cache_pages(), located in
2724 * mm/page-writeback.c, marks pages clean in preparation for
2725 * doing I/O, which is not desirable if we're not planning on
2726 * doing I/O at all.
2727 *
2728 * We could call write_cache_pages(), and then redirty all of
2729 * the pages by calling redirty_page_for_writepage() but that
2730 * would be ugly in the extreme. So instead we would need to
2731 * replicate parts of the code in the above functions,
2732 * simplifying them because we wouldn't actually intend to
2733 * write out the pages, but rather only collect contiguous
2734 * logical block extents, call the multi-block allocator, and
2735 * then update the buffer heads with the block allocations.
2736 *
2737 * For now, though, we'll cheat by calling filemap_flush(),
2738 * which will map the blocks, and start the I/O, but not
2739 * actually wait for the I/O to complete.
2740 */
2741 return filemap_flush(inode->i_mapping);
2742 }
2743
2744 /*
2745 * bmap() is special. It gets used by applications such as lilo and by
2746 * the swapper to find the on-disk block of a specific piece of data.
2747 *
2748 * Naturally, this is dangerous if the block concerned is still in the
2749 * journal. If somebody makes a swapfile on an ext4 data-journaling
2750 * filesystem and enables swap, then they may get a nasty shock when the
2751 * data getting swapped to that swapfile suddenly gets overwritten by
2752 * the original zero's written out previously to the journal and
2753 * awaiting writeback in the kernel's buffer cache.
2754 *
2755 * So, if we see any bmap calls here on a modified, data-journaled file,
2756 * take extra steps to flush any blocks which might be in the cache.
2757 */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760 struct inode *inode = mapping->host;
2761 journal_t *journal;
2762 int err;
2763
2764 /*
2765 * We can get here for an inline file via the FIBMAP ioctl
2766 */
2767 if (ext4_has_inline_data(inode))
2768 return 0;
2769
2770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771 test_opt(inode->i_sb, DELALLOC)) {
2772 /*
2773 * With delalloc we want to sync the file
2774 * so that we can make sure we allocate
2775 * blocks for file
2776 */
2777 filemap_write_and_wait(mapping);
2778 }
2779
2780 if (EXT4_JOURNAL(inode) &&
2781 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782 /*
2783 * This is a REALLY heavyweight approach, but the use of
2784 * bmap on dirty files is expected to be extremely rare:
2785 * only if we run lilo or swapon on a freshly made file
2786 * do we expect this to happen.
2787 *
2788 * (bmap requires CAP_SYS_RAWIO so this does not
2789 * represent an unprivileged user DOS attack --- we'd be
2790 * in trouble if mortal users could trigger this path at
2791 * will.)
2792 *
2793 * NB. EXT4_STATE_JDATA is not set on files other than
2794 * regular files. If somebody wants to bmap a directory
2795 * or symlink and gets confused because the buffer
2796 * hasn't yet been flushed to disk, they deserve
2797 * everything they get.
2798 */
2799
2800 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801 journal = EXT4_JOURNAL(inode);
2802 jbd2_journal_lock_updates(journal);
2803 err = jbd2_journal_flush(journal);
2804 jbd2_journal_unlock_updates(journal);
2805
2806 if (err)
2807 return 0;
2808 }
2809
2810 return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815 int ret = -EAGAIN;
2816 struct inode *inode = page->mapping->host;
2817
2818 trace_ext4_readpage(page);
2819
2820 if (ext4_has_inline_data(inode))
2821 ret = ext4_readpage_inline(inode, page);
2822
2823 if (ret == -EAGAIN)
2824 return mpage_readpage(page, ext4_get_block);
2825
2826 return ret;
2827 }
2828
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831 struct list_head *pages, unsigned nr_pages)
2832 {
2833 struct inode *inode = mapping->host;
2834
2835 /* If the file has inline data, no need to do readpages. */
2836 if (ext4_has_inline_data(inode))
2837 return 0;
2838
2839 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843 unsigned int length)
2844 {
2845 trace_ext4_invalidatepage(page, offset, length);
2846
2847 /* No journalling happens on data buffers when this function is used */
2848 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849
2850 block_invalidatepage(page, offset, length);
2851 }
2852
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854 unsigned int offset,
2855 unsigned int length)
2856 {
2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859 trace_ext4_journalled_invalidatepage(page, offset, length);
2860
2861 /*
2862 * If it's a full truncate we just forget about the pending dirtying
2863 */
2864 if (offset == 0 && length == PAGE_CACHE_SIZE)
2865 ClearPageChecked(page);
2866
2867 return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872 unsigned int offset,
2873 unsigned int length)
2874 {
2875 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881
2882 trace_ext4_releasepage(page);
2883
2884 /* Page has dirty journalled data -> cannot release */
2885 if (PageChecked(page))
2886 return 0;
2887 if (journal)
2888 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889 else
2890 return try_to_free_buffers(page);
2891 }
2892
2893 /*
2894 * ext4_get_block used when preparing for a DIO write or buffer write.
2895 * We allocate an uinitialized extent if blocks haven't been allocated.
2896 * The extent will be converted to initialized after the IO is complete.
2897 */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899 struct buffer_head *bh_result, int create)
2900 {
2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 inode->i_ino, create);
2903 return _ext4_get_block(inode, iblock, bh_result,
2904 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908 struct buffer_head *bh_result, int create)
2909 {
2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 inode->i_ino, create);
2912 return _ext4_get_block(inode, iblock, bh_result,
2913 EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917 ssize_t size, void *private)
2918 {
2919 ext4_io_end_t *io_end = iocb->private;
2920
2921 /* if not async direct IO just return */
2922 if (!io_end)
2923 return;
2924
2925 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927 iocb->private, io_end->inode->i_ino, iocb, offset,
2928 size);
2929
2930 iocb->private = NULL;
2931 io_end->offset = offset;
2932 io_end->size = size;
2933 ext4_put_io_end(io_end);
2934 }
2935
2936 /*
2937 * For ext4 extent files, ext4 will do direct-io write to holes,
2938 * preallocated extents, and those write extend the file, no need to
2939 * fall back to buffered IO.
2940 *
2941 * For holes, we fallocate those blocks, mark them as unwritten
2942 * If those blocks were preallocated, we mark sure they are split, but
2943 * still keep the range to write as unwritten.
2944 *
2945 * The unwritten extents will be converted to written when DIO is completed.
2946 * For async direct IO, since the IO may still pending when return, we
2947 * set up an end_io call back function, which will do the conversion
2948 * when async direct IO completed.
2949 *
2950 * If the O_DIRECT write will extend the file then add this inode to the
2951 * orphan list. So recovery will truncate it back to the original size
2952 * if the machine crashes during the write.
2953 *
2954 */
2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2956 struct iov_iter *iter, loff_t offset)
2957 {
2958 struct file *file = iocb->ki_filp;
2959 struct inode *inode = file->f_mapping->host;
2960 ssize_t ret;
2961 size_t count = iov_iter_count(iter);
2962 int overwrite = 0;
2963 get_block_t *get_block_func = NULL;
2964 int dio_flags = 0;
2965 loff_t final_size = offset + count;
2966 ext4_io_end_t *io_end = NULL;
2967
2968 /* Use the old path for reads and writes beyond i_size. */
2969 if (rw != WRITE || final_size > inode->i_size)
2970 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2971
2972 BUG_ON(iocb->private == NULL);
2973
2974 /*
2975 * Make all waiters for direct IO properly wait also for extent
2976 * conversion. This also disallows race between truncate() and
2977 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978 */
2979 if (rw == WRITE)
2980 atomic_inc(&inode->i_dio_count);
2981
2982 /* If we do a overwrite dio, i_mutex locking can be released */
2983 overwrite = *((int *)iocb->private);
2984
2985 if (overwrite) {
2986 down_read(&EXT4_I(inode)->i_data_sem);
2987 mutex_unlock(&inode->i_mutex);
2988 }
2989
2990 /*
2991 * We could direct write to holes and fallocate.
2992 *
2993 * Allocated blocks to fill the hole are marked as
2994 * unwritten to prevent parallel buffered read to expose
2995 * the stale data before DIO complete the data IO.
2996 *
2997 * As to previously fallocated extents, ext4 get_block will
2998 * just simply mark the buffer mapped but still keep the
2999 * extents unwritten.
3000 *
3001 * For non AIO case, we will convert those unwritten extents
3002 * to written after return back from blockdev_direct_IO.
3003 *
3004 * For async DIO, the conversion needs to be deferred when the
3005 * IO is completed. The ext4 end_io callback function will be
3006 * called to take care of the conversion work. Here for async
3007 * case, we allocate an io_end structure to hook to the iocb.
3008 */
3009 iocb->private = NULL;
3010 ext4_inode_aio_set(inode, NULL);
3011 if (!is_sync_kiocb(iocb)) {
3012 io_end = ext4_init_io_end(inode, GFP_NOFS);
3013 if (!io_end) {
3014 ret = -ENOMEM;
3015 goto retake_lock;
3016 }
3017 /*
3018 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019 */
3020 iocb->private = ext4_get_io_end(io_end);
3021 /*
3022 * we save the io structure for current async direct
3023 * IO, so that later ext4_map_blocks() could flag the
3024 * io structure whether there is a unwritten extents
3025 * needs to be converted when IO is completed.
3026 */
3027 ext4_inode_aio_set(inode, io_end);
3028 }
3029
3030 if (overwrite) {
3031 get_block_func = ext4_get_block_write_nolock;
3032 } else {
3033 get_block_func = ext4_get_block_write;
3034 dio_flags = DIO_LOCKING;
3035 }
3036 ret = __blockdev_direct_IO(rw, iocb, inode,
3037 inode->i_sb->s_bdev, iter,
3038 offset,
3039 get_block_func,
3040 ext4_end_io_dio,
3041 NULL,
3042 dio_flags);
3043
3044 /*
3045 * Put our reference to io_end. This can free the io_end structure e.g.
3046 * in sync IO case or in case of error. It can even perform extent
3047 * conversion if all bios we submitted finished before we got here.
3048 * Note that in that case iocb->private can be already set to NULL
3049 * here.
3050 */
3051 if (io_end) {
3052 ext4_inode_aio_set(inode, NULL);
3053 ext4_put_io_end(io_end);
3054 /*
3055 * When no IO was submitted ext4_end_io_dio() was not
3056 * called so we have to put iocb's reference.
3057 */
3058 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059 WARN_ON(iocb->private != io_end);
3060 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3061 ext4_put_io_end(io_end);
3062 iocb->private = NULL;
3063 }
3064 }
3065 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3066 EXT4_STATE_DIO_UNWRITTEN)) {
3067 int err;
3068 /*
3069 * for non AIO case, since the IO is already
3070 * completed, we could do the conversion right here
3071 */
3072 err = ext4_convert_unwritten_extents(NULL, inode,
3073 offset, ret);
3074 if (err < 0)
3075 ret = err;
3076 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077 }
3078
3079 retake_lock:
3080 if (rw == WRITE)
3081 inode_dio_done(inode);
3082 /* take i_mutex locking again if we do a ovewrite dio */
3083 if (overwrite) {
3084 up_read(&EXT4_I(inode)->i_data_sem);
3085 mutex_lock(&inode->i_mutex);
3086 }
3087
3088 return ret;
3089 }
3090
3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3092 struct iov_iter *iter, loff_t offset)
3093 {
3094 struct file *file = iocb->ki_filp;
3095 struct inode *inode = file->f_mapping->host;
3096 size_t count = iov_iter_count(iter);
3097 ssize_t ret;
3098
3099 /*
3100 * If we are doing data journalling we don't support O_DIRECT
3101 */
3102 if (ext4_should_journal_data(inode))
3103 return 0;
3104
3105 /* Let buffer I/O handle the inline data case. */
3106 if (ext4_has_inline_data(inode))
3107 return 0;
3108
3109 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3110 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3111 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3112 else
3113 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3114 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3115 return ret;
3116 }
3117
3118 /*
3119 * Pages can be marked dirty completely asynchronously from ext4's journalling
3120 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3121 * much here because ->set_page_dirty is called under VFS locks. The page is
3122 * not necessarily locked.
3123 *
3124 * We cannot just dirty the page and leave attached buffers clean, because the
3125 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3126 * or jbddirty because all the journalling code will explode.
3127 *
3128 * So what we do is to mark the page "pending dirty" and next time writepage
3129 * is called, propagate that into the buffers appropriately.
3130 */
3131 static int ext4_journalled_set_page_dirty(struct page *page)
3132 {
3133 SetPageChecked(page);
3134 return __set_page_dirty_nobuffers(page);
3135 }
3136
3137 static const struct address_space_operations ext4_aops = {
3138 .readpage = ext4_readpage,
3139 .readpages = ext4_readpages,
3140 .writepage = ext4_writepage,
3141 .writepages = ext4_writepages,
3142 .write_begin = ext4_write_begin,
3143 .write_end = ext4_write_end,
3144 .bmap = ext4_bmap,
3145 .invalidatepage = ext4_invalidatepage,
3146 .releasepage = ext4_releasepage,
3147 .direct_IO = ext4_direct_IO,
3148 .migratepage = buffer_migrate_page,
3149 .is_partially_uptodate = block_is_partially_uptodate,
3150 .error_remove_page = generic_error_remove_page,
3151 };
3152
3153 static const struct address_space_operations ext4_journalled_aops = {
3154 .readpage = ext4_readpage,
3155 .readpages = ext4_readpages,
3156 .writepage = ext4_writepage,
3157 .writepages = ext4_writepages,
3158 .write_begin = ext4_write_begin,
3159 .write_end = ext4_journalled_write_end,
3160 .set_page_dirty = ext4_journalled_set_page_dirty,
3161 .bmap = ext4_bmap,
3162 .invalidatepage = ext4_journalled_invalidatepage,
3163 .releasepage = ext4_releasepage,
3164 .direct_IO = ext4_direct_IO,
3165 .is_partially_uptodate = block_is_partially_uptodate,
3166 .error_remove_page = generic_error_remove_page,
3167 };
3168
3169 static const struct address_space_operations ext4_da_aops = {
3170 .readpage = ext4_readpage,
3171 .readpages = ext4_readpages,
3172 .writepage = ext4_writepage,
3173 .writepages = ext4_writepages,
3174 .write_begin = ext4_da_write_begin,
3175 .write_end = ext4_da_write_end,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_da_invalidatepage,
3178 .releasepage = ext4_releasepage,
3179 .direct_IO = ext4_direct_IO,
3180 .migratepage = buffer_migrate_page,
3181 .is_partially_uptodate = block_is_partially_uptodate,
3182 .error_remove_page = generic_error_remove_page,
3183 };
3184
3185 void ext4_set_aops(struct inode *inode)
3186 {
3187 switch (ext4_inode_journal_mode(inode)) {
3188 case EXT4_INODE_ORDERED_DATA_MODE:
3189 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3190 break;
3191 case EXT4_INODE_WRITEBACK_DATA_MODE:
3192 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3193 break;
3194 case EXT4_INODE_JOURNAL_DATA_MODE:
3195 inode->i_mapping->a_ops = &ext4_journalled_aops;
3196 return;
3197 default:
3198 BUG();
3199 }
3200 if (test_opt(inode->i_sb, DELALLOC))
3201 inode->i_mapping->a_ops = &ext4_da_aops;
3202 else
3203 inode->i_mapping->a_ops = &ext4_aops;
3204 }
3205
3206 /*
3207 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3208 * starting from file offset 'from'. The range to be zero'd must
3209 * be contained with in one block. If the specified range exceeds
3210 * the end of the block it will be shortened to end of the block
3211 * that cooresponds to 'from'
3212 */
3213 static int ext4_block_zero_page_range(handle_t *handle,
3214 struct address_space *mapping, loff_t from, loff_t length)
3215 {
3216 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3217 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3218 unsigned blocksize, max, pos;
3219 ext4_lblk_t iblock;
3220 struct inode *inode = mapping->host;
3221 struct buffer_head *bh;
3222 struct page *page;
3223 int err = 0;
3224
3225 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3226 mapping_gfp_mask(mapping) & ~__GFP_FS);
3227 if (!page)
3228 return -ENOMEM;
3229
3230 blocksize = inode->i_sb->s_blocksize;
3231 max = blocksize - (offset & (blocksize - 1));
3232
3233 /*
3234 * correct length if it does not fall between
3235 * 'from' and the end of the block
3236 */
3237 if (length > max || length < 0)
3238 length = max;
3239
3240 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3241
3242 if (!page_has_buffers(page))
3243 create_empty_buffers(page, blocksize, 0);
3244
3245 /* Find the buffer that contains "offset" */
3246 bh = page_buffers(page);
3247 pos = blocksize;
3248 while (offset >= pos) {
3249 bh = bh->b_this_page;
3250 iblock++;
3251 pos += blocksize;
3252 }
3253 if (buffer_freed(bh)) {
3254 BUFFER_TRACE(bh, "freed: skip");
3255 goto unlock;
3256 }
3257 if (!buffer_mapped(bh)) {
3258 BUFFER_TRACE(bh, "unmapped");
3259 ext4_get_block(inode, iblock, bh, 0);
3260 /* unmapped? It's a hole - nothing to do */
3261 if (!buffer_mapped(bh)) {
3262 BUFFER_TRACE(bh, "still unmapped");
3263 goto unlock;
3264 }
3265 }
3266
3267 /* Ok, it's mapped. Make sure it's up-to-date */
3268 if (PageUptodate(page))
3269 set_buffer_uptodate(bh);
3270
3271 if (!buffer_uptodate(bh)) {
3272 err = -EIO;
3273 ll_rw_block(READ, 1, &bh);
3274 wait_on_buffer(bh);
3275 /* Uhhuh. Read error. Complain and punt. */
3276 if (!buffer_uptodate(bh))
3277 goto unlock;
3278 }
3279 if (ext4_should_journal_data(inode)) {
3280 BUFFER_TRACE(bh, "get write access");
3281 err = ext4_journal_get_write_access(handle, bh);
3282 if (err)
3283 goto unlock;
3284 }
3285 zero_user(page, offset, length);
3286 BUFFER_TRACE(bh, "zeroed end of block");
3287
3288 if (ext4_should_journal_data(inode)) {
3289 err = ext4_handle_dirty_metadata(handle, inode, bh);
3290 } else {
3291 err = 0;
3292 mark_buffer_dirty(bh);
3293 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3294 err = ext4_jbd2_file_inode(handle, inode);
3295 }
3296
3297 unlock:
3298 unlock_page(page);
3299 page_cache_release(page);
3300 return err;
3301 }
3302
3303 /*
3304 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305 * up to the end of the block which corresponds to `from'.
3306 * This required during truncate. We need to physically zero the tail end
3307 * of that block so it doesn't yield old data if the file is later grown.
3308 */
3309 static int ext4_block_truncate_page(handle_t *handle,
3310 struct address_space *mapping, loff_t from)
3311 {
3312 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3313 unsigned length;
3314 unsigned blocksize;
3315 struct inode *inode = mapping->host;
3316
3317 blocksize = inode->i_sb->s_blocksize;
3318 length = blocksize - (offset & (blocksize - 1));
3319
3320 return ext4_block_zero_page_range(handle, mapping, from, length);
3321 }
3322
3323 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3324 loff_t lstart, loff_t length)
3325 {
3326 struct super_block *sb = inode->i_sb;
3327 struct address_space *mapping = inode->i_mapping;
3328 unsigned partial_start, partial_end;
3329 ext4_fsblk_t start, end;
3330 loff_t byte_end = (lstart + length - 1);
3331 int err = 0;
3332
3333 partial_start = lstart & (sb->s_blocksize - 1);
3334 partial_end = byte_end & (sb->s_blocksize - 1);
3335
3336 start = lstart >> sb->s_blocksize_bits;
3337 end = byte_end >> sb->s_blocksize_bits;
3338
3339 /* Handle partial zero within the single block */
3340 if (start == end &&
3341 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3342 err = ext4_block_zero_page_range(handle, mapping,
3343 lstart, length);
3344 return err;
3345 }
3346 /* Handle partial zero out on the start of the range */
3347 if (partial_start) {
3348 err = ext4_block_zero_page_range(handle, mapping,
3349 lstart, sb->s_blocksize);
3350 if (err)
3351 return err;
3352 }
3353 /* Handle partial zero out on the end of the range */
3354 if (partial_end != sb->s_blocksize - 1)
3355 err = ext4_block_zero_page_range(handle, mapping,
3356 byte_end - partial_end,
3357 partial_end + 1);
3358 return err;
3359 }
3360
3361 int ext4_can_truncate(struct inode *inode)
3362 {
3363 if (S_ISREG(inode->i_mode))
3364 return 1;
3365 if (S_ISDIR(inode->i_mode))
3366 return 1;
3367 if (S_ISLNK(inode->i_mode))
3368 return !ext4_inode_is_fast_symlink(inode);
3369 return 0;
3370 }
3371
3372 /*
3373 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3374 * associated with the given offset and length
3375 *
3376 * @inode: File inode
3377 * @offset: The offset where the hole will begin
3378 * @len: The length of the hole
3379 *
3380 * Returns: 0 on success or negative on failure
3381 */
3382
3383 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3384 {
3385 struct super_block *sb = inode->i_sb;
3386 ext4_lblk_t first_block, stop_block;
3387 struct address_space *mapping = inode->i_mapping;
3388 loff_t first_block_offset, last_block_offset;
3389 handle_t *handle;
3390 unsigned int credits;
3391 int ret = 0;
3392
3393 if (!S_ISREG(inode->i_mode))
3394 return -EOPNOTSUPP;
3395
3396 trace_ext4_punch_hole(inode, offset, length, 0);
3397
3398 /*
3399 * Write out all dirty pages to avoid race conditions
3400 * Then release them.
3401 */
3402 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3403 ret = filemap_write_and_wait_range(mapping, offset,
3404 offset + length - 1);
3405 if (ret)
3406 return ret;
3407 }
3408
3409 mutex_lock(&inode->i_mutex);
3410
3411 /* No need to punch hole beyond i_size */
3412 if (offset >= inode->i_size)
3413 goto out_mutex;
3414
3415 /*
3416 * If the hole extends beyond i_size, set the hole
3417 * to end after the page that contains i_size
3418 */
3419 if (offset + length > inode->i_size) {
3420 length = inode->i_size +
3421 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3422 offset;
3423 }
3424
3425 if (offset & (sb->s_blocksize - 1) ||
3426 (offset + length) & (sb->s_blocksize - 1)) {
3427 /*
3428 * Attach jinode to inode for jbd2 if we do any zeroing of
3429 * partial block
3430 */
3431 ret = ext4_inode_attach_jinode(inode);
3432 if (ret < 0)
3433 goto out_mutex;
3434
3435 }
3436
3437 first_block_offset = round_up(offset, sb->s_blocksize);
3438 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3439
3440 /* Now release the pages and zero block aligned part of pages*/
3441 if (last_block_offset > first_block_offset)
3442 truncate_pagecache_range(inode, first_block_offset,
3443 last_block_offset);
3444
3445 /* Wait all existing dio workers, newcomers will block on i_mutex */
3446 ext4_inode_block_unlocked_dio(inode);
3447 inode_dio_wait(inode);
3448
3449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3450 credits = ext4_writepage_trans_blocks(inode);
3451 else
3452 credits = ext4_blocks_for_truncate(inode);
3453 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3454 if (IS_ERR(handle)) {
3455 ret = PTR_ERR(handle);
3456 ext4_std_error(sb, ret);
3457 goto out_dio;
3458 }
3459
3460 ret = ext4_zero_partial_blocks(handle, inode, offset,
3461 length);
3462 if (ret)
3463 goto out_stop;
3464
3465 first_block = (offset + sb->s_blocksize - 1) >>
3466 EXT4_BLOCK_SIZE_BITS(sb);
3467 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3468
3469 /* If there are no blocks to remove, return now */
3470 if (first_block >= stop_block)
3471 goto out_stop;
3472
3473 down_write(&EXT4_I(inode)->i_data_sem);
3474 ext4_discard_preallocations(inode);
3475
3476 ret = ext4_es_remove_extent(inode, first_block,
3477 stop_block - first_block);
3478 if (ret) {
3479 up_write(&EXT4_I(inode)->i_data_sem);
3480 goto out_stop;
3481 }
3482
3483 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3484 ret = ext4_ext_remove_space(inode, first_block,
3485 stop_block - 1);
3486 else
3487 ret = ext4_ind_remove_space(handle, inode, first_block,
3488 stop_block);
3489
3490 up_write(&EXT4_I(inode)->i_data_sem);
3491 if (IS_SYNC(inode))
3492 ext4_handle_sync(handle);
3493
3494 /* Now release the pages again to reduce race window */
3495 if (last_block_offset > first_block_offset)
3496 truncate_pagecache_range(inode, first_block_offset,
3497 last_block_offset);
3498
3499 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3500 ext4_mark_inode_dirty(handle, inode);
3501 out_stop:
3502 ext4_journal_stop(handle);
3503 out_dio:
3504 ext4_inode_resume_unlocked_dio(inode);
3505 out_mutex:
3506 mutex_unlock(&inode->i_mutex);
3507 return ret;
3508 }
3509
3510 int ext4_inode_attach_jinode(struct inode *inode)
3511 {
3512 struct ext4_inode_info *ei = EXT4_I(inode);
3513 struct jbd2_inode *jinode;
3514
3515 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3516 return 0;
3517
3518 jinode = jbd2_alloc_inode(GFP_KERNEL);
3519 spin_lock(&inode->i_lock);
3520 if (!ei->jinode) {
3521 if (!jinode) {
3522 spin_unlock(&inode->i_lock);
3523 return -ENOMEM;
3524 }
3525 ei->jinode = jinode;
3526 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3527 jinode = NULL;
3528 }
3529 spin_unlock(&inode->i_lock);
3530 if (unlikely(jinode != NULL))
3531 jbd2_free_inode(jinode);
3532 return 0;
3533 }
3534
3535 /*
3536 * ext4_truncate()
3537 *
3538 * We block out ext4_get_block() block instantiations across the entire
3539 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3540 * simultaneously on behalf of the same inode.
3541 *
3542 * As we work through the truncate and commit bits of it to the journal there
3543 * is one core, guiding principle: the file's tree must always be consistent on
3544 * disk. We must be able to restart the truncate after a crash.
3545 *
3546 * The file's tree may be transiently inconsistent in memory (although it
3547 * probably isn't), but whenever we close off and commit a journal transaction,
3548 * the contents of (the filesystem + the journal) must be consistent and
3549 * restartable. It's pretty simple, really: bottom up, right to left (although
3550 * left-to-right works OK too).
3551 *
3552 * Note that at recovery time, journal replay occurs *before* the restart of
3553 * truncate against the orphan inode list.
3554 *
3555 * The committed inode has the new, desired i_size (which is the same as
3556 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3557 * that this inode's truncate did not complete and it will again call
3558 * ext4_truncate() to have another go. So there will be instantiated blocks
3559 * to the right of the truncation point in a crashed ext4 filesystem. But
3560 * that's fine - as long as they are linked from the inode, the post-crash
3561 * ext4_truncate() run will find them and release them.
3562 */
3563 void ext4_truncate(struct inode *inode)
3564 {
3565 struct ext4_inode_info *ei = EXT4_I(inode);
3566 unsigned int credits;
3567 handle_t *handle;
3568 struct address_space *mapping = inode->i_mapping;
3569
3570 /*
3571 * There is a possibility that we're either freeing the inode
3572 * or it's a completely new inode. In those cases we might not
3573 * have i_mutex locked because it's not necessary.
3574 */
3575 if (!(inode->i_state & (I_NEW|I_FREEING)))
3576 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3577 trace_ext4_truncate_enter(inode);
3578
3579 if (!ext4_can_truncate(inode))
3580 return;
3581
3582 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3583
3584 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3585 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3586
3587 if (ext4_has_inline_data(inode)) {
3588 int has_inline = 1;
3589
3590 ext4_inline_data_truncate(inode, &has_inline);
3591 if (has_inline)
3592 return;
3593 }
3594
3595 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3596 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3597 if (ext4_inode_attach_jinode(inode) < 0)
3598 return;
3599 }
3600
3601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3602 credits = ext4_writepage_trans_blocks(inode);
3603 else
3604 credits = ext4_blocks_for_truncate(inode);
3605
3606 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3607 if (IS_ERR(handle)) {
3608 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3609 return;
3610 }
3611
3612 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3613 ext4_block_truncate_page(handle, mapping, inode->i_size);
3614
3615 /*
3616 * We add the inode to the orphan list, so that if this
3617 * truncate spans multiple transactions, and we crash, we will
3618 * resume the truncate when the filesystem recovers. It also
3619 * marks the inode dirty, to catch the new size.
3620 *
3621 * Implication: the file must always be in a sane, consistent
3622 * truncatable state while each transaction commits.
3623 */
3624 if (ext4_orphan_add(handle, inode))
3625 goto out_stop;
3626
3627 down_write(&EXT4_I(inode)->i_data_sem);
3628
3629 ext4_discard_preallocations(inode);
3630
3631 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3632 ext4_ext_truncate(handle, inode);
3633 else
3634 ext4_ind_truncate(handle, inode);
3635
3636 up_write(&ei->i_data_sem);
3637
3638 if (IS_SYNC(inode))
3639 ext4_handle_sync(handle);
3640
3641 out_stop:
3642 /*
3643 * If this was a simple ftruncate() and the file will remain alive,
3644 * then we need to clear up the orphan record which we created above.
3645 * However, if this was a real unlink then we were called by
3646 * ext4_delete_inode(), and we allow that function to clean up the
3647 * orphan info for us.
3648 */
3649 if (inode->i_nlink)
3650 ext4_orphan_del(handle, inode);
3651
3652 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3653 ext4_mark_inode_dirty(handle, inode);
3654 ext4_journal_stop(handle);
3655
3656 trace_ext4_truncate_exit(inode);
3657 }
3658
3659 /*
3660 * ext4_get_inode_loc returns with an extra refcount against the inode's
3661 * underlying buffer_head on success. If 'in_mem' is true, we have all
3662 * data in memory that is needed to recreate the on-disk version of this
3663 * inode.
3664 */
3665 static int __ext4_get_inode_loc(struct inode *inode,
3666 struct ext4_iloc *iloc, int in_mem)
3667 {
3668 struct ext4_group_desc *gdp;
3669 struct buffer_head *bh;
3670 struct super_block *sb = inode->i_sb;
3671 ext4_fsblk_t block;
3672 int inodes_per_block, inode_offset;
3673
3674 iloc->bh = NULL;
3675 if (!ext4_valid_inum(sb, inode->i_ino))
3676 return -EIO;
3677
3678 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3679 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3680 if (!gdp)
3681 return -EIO;
3682
3683 /*
3684 * Figure out the offset within the block group inode table
3685 */
3686 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3687 inode_offset = ((inode->i_ino - 1) %
3688 EXT4_INODES_PER_GROUP(sb));
3689 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3690 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3691
3692 bh = sb_getblk(sb, block);
3693 if (unlikely(!bh))
3694 return -ENOMEM;
3695 if (!buffer_uptodate(bh)) {
3696 lock_buffer(bh);
3697
3698 /*
3699 * If the buffer has the write error flag, we have failed
3700 * to write out another inode in the same block. In this
3701 * case, we don't have to read the block because we may
3702 * read the old inode data successfully.
3703 */
3704 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3705 set_buffer_uptodate(bh);
3706
3707 if (buffer_uptodate(bh)) {
3708 /* someone brought it uptodate while we waited */
3709 unlock_buffer(bh);
3710 goto has_buffer;
3711 }
3712
3713 /*
3714 * If we have all information of the inode in memory and this
3715 * is the only valid inode in the block, we need not read the
3716 * block.
3717 */
3718 if (in_mem) {
3719 struct buffer_head *bitmap_bh;
3720 int i, start;
3721
3722 start = inode_offset & ~(inodes_per_block - 1);
3723
3724 /* Is the inode bitmap in cache? */
3725 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3726 if (unlikely(!bitmap_bh))
3727 goto make_io;
3728
3729 /*
3730 * If the inode bitmap isn't in cache then the
3731 * optimisation may end up performing two reads instead
3732 * of one, so skip it.
3733 */
3734 if (!buffer_uptodate(bitmap_bh)) {
3735 brelse(bitmap_bh);
3736 goto make_io;
3737 }
3738 for (i = start; i < start + inodes_per_block; i++) {
3739 if (i == inode_offset)
3740 continue;
3741 if (ext4_test_bit(i, bitmap_bh->b_data))
3742 break;
3743 }
3744 brelse(bitmap_bh);
3745 if (i == start + inodes_per_block) {
3746 /* all other inodes are free, so skip I/O */
3747 memset(bh->b_data, 0, bh->b_size);
3748 set_buffer_uptodate(bh);
3749 unlock_buffer(bh);
3750 goto has_buffer;
3751 }
3752 }
3753
3754 make_io:
3755 /*
3756 * If we need to do any I/O, try to pre-readahead extra
3757 * blocks from the inode table.
3758 */
3759 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3760 ext4_fsblk_t b, end, table;
3761 unsigned num;
3762 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3763
3764 table = ext4_inode_table(sb, gdp);
3765 /* s_inode_readahead_blks is always a power of 2 */
3766 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3767 if (table > b)
3768 b = table;
3769 end = b + ra_blks;
3770 num = EXT4_INODES_PER_GROUP(sb);
3771 if (ext4_has_group_desc_csum(sb))
3772 num -= ext4_itable_unused_count(sb, gdp);
3773 table += num / inodes_per_block;
3774 if (end > table)
3775 end = table;
3776 while (b <= end)
3777 sb_breadahead(sb, b++);
3778 }
3779
3780 /*
3781 * There are other valid inodes in the buffer, this inode
3782 * has in-inode xattrs, or we don't have this inode in memory.
3783 * Read the block from disk.
3784 */
3785 trace_ext4_load_inode(inode);
3786 get_bh(bh);
3787 bh->b_end_io = end_buffer_read_sync;
3788 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3789 wait_on_buffer(bh);
3790 if (!buffer_uptodate(bh)) {
3791 EXT4_ERROR_INODE_BLOCK(inode, block,
3792 "unable to read itable block");
3793 brelse(bh);
3794 return -EIO;
3795 }
3796 }
3797 has_buffer:
3798 iloc->bh = bh;
3799 return 0;
3800 }
3801
3802 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3803 {
3804 /* We have all inode data except xattrs in memory here. */
3805 return __ext4_get_inode_loc(inode, iloc,
3806 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3807 }
3808
3809 void ext4_set_inode_flags(struct inode *inode)
3810 {
3811 unsigned int flags = EXT4_I(inode)->i_flags;
3812 unsigned int new_fl = 0;
3813
3814 if (flags & EXT4_SYNC_FL)
3815 new_fl |= S_SYNC;
3816 if (flags & EXT4_APPEND_FL)
3817 new_fl |= S_APPEND;
3818 if (flags & EXT4_IMMUTABLE_FL)
3819 new_fl |= S_IMMUTABLE;
3820 if (flags & EXT4_NOATIME_FL)
3821 new_fl |= S_NOATIME;
3822 if (flags & EXT4_DIRSYNC_FL)
3823 new_fl |= S_DIRSYNC;
3824 inode_set_flags(inode, new_fl,
3825 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3826 }
3827
3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3829 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3830 {
3831 unsigned int vfs_fl;
3832 unsigned long old_fl, new_fl;
3833
3834 do {
3835 vfs_fl = ei->vfs_inode.i_flags;
3836 old_fl = ei->i_flags;
3837 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3838 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3839 EXT4_DIRSYNC_FL);
3840 if (vfs_fl & S_SYNC)
3841 new_fl |= EXT4_SYNC_FL;
3842 if (vfs_fl & S_APPEND)
3843 new_fl |= EXT4_APPEND_FL;
3844 if (vfs_fl & S_IMMUTABLE)
3845 new_fl |= EXT4_IMMUTABLE_FL;
3846 if (vfs_fl & S_NOATIME)
3847 new_fl |= EXT4_NOATIME_FL;
3848 if (vfs_fl & S_DIRSYNC)
3849 new_fl |= EXT4_DIRSYNC_FL;
3850 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3851 }
3852
3853 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3854 struct ext4_inode_info *ei)
3855 {
3856 blkcnt_t i_blocks ;
3857 struct inode *inode = &(ei->vfs_inode);
3858 struct super_block *sb = inode->i_sb;
3859
3860 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3861 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3862 /* we are using combined 48 bit field */
3863 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3864 le32_to_cpu(raw_inode->i_blocks_lo);
3865 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3866 /* i_blocks represent file system block size */
3867 return i_blocks << (inode->i_blkbits - 9);
3868 } else {
3869 return i_blocks;
3870 }
3871 } else {
3872 return le32_to_cpu(raw_inode->i_blocks_lo);
3873 }
3874 }
3875
3876 static inline void ext4_iget_extra_inode(struct inode *inode,
3877 struct ext4_inode *raw_inode,
3878 struct ext4_inode_info *ei)
3879 {
3880 __le32 *magic = (void *)raw_inode +
3881 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3882 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3883 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3884 ext4_find_inline_data_nolock(inode);
3885 } else
3886 EXT4_I(inode)->i_inline_off = 0;
3887 }
3888
3889 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3890 {
3891 struct ext4_iloc iloc;
3892 struct ext4_inode *raw_inode;
3893 struct ext4_inode_info *ei;
3894 struct inode *inode;
3895 journal_t *journal = EXT4_SB(sb)->s_journal;
3896 long ret;
3897 int block;
3898 uid_t i_uid;
3899 gid_t i_gid;
3900
3901 inode = iget_locked(sb, ino);
3902 if (!inode)
3903 return ERR_PTR(-ENOMEM);
3904 if (!(inode->i_state & I_NEW))
3905 return inode;
3906
3907 ei = EXT4_I(inode);
3908 iloc.bh = NULL;
3909
3910 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3911 if (ret < 0)
3912 goto bad_inode;
3913 raw_inode = ext4_raw_inode(&iloc);
3914
3915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3917 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3918 EXT4_INODE_SIZE(inode->i_sb)) {
3919 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3920 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3921 EXT4_INODE_SIZE(inode->i_sb));
3922 ret = -EIO;
3923 goto bad_inode;
3924 }
3925 } else
3926 ei->i_extra_isize = 0;
3927
3928 /* Precompute checksum seed for inode metadata */
3929 if (ext4_has_metadata_csum(sb)) {
3930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3931 __u32 csum;
3932 __le32 inum = cpu_to_le32(inode->i_ino);
3933 __le32 gen = raw_inode->i_generation;
3934 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3935 sizeof(inum));
3936 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3937 sizeof(gen));
3938 }
3939
3940 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3941 EXT4_ERROR_INODE(inode, "checksum invalid");
3942 ret = -EIO;
3943 goto bad_inode;
3944 }
3945
3946 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3947 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3948 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3949 if (!(test_opt(inode->i_sb, NO_UID32))) {
3950 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3951 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3952 }
3953 i_uid_write(inode, i_uid);
3954 i_gid_write(inode, i_gid);
3955 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3956
3957 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3958 ei->i_inline_off = 0;
3959 ei->i_dir_start_lookup = 0;
3960 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3961 /* We now have enough fields to check if the inode was active or not.
3962 * This is needed because nfsd might try to access dead inodes
3963 * the test is that same one that e2fsck uses
3964 * NeilBrown 1999oct15
3965 */
3966 if (inode->i_nlink == 0) {
3967 if ((inode->i_mode == 0 ||
3968 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3969 ino != EXT4_BOOT_LOADER_INO) {
3970 /* this inode is deleted */
3971 ret = -ESTALE;
3972 goto bad_inode;
3973 }
3974 /* The only unlinked inodes we let through here have
3975 * valid i_mode and are being read by the orphan
3976 * recovery code: that's fine, we're about to complete
3977 * the process of deleting those.
3978 * OR it is the EXT4_BOOT_LOADER_INO which is
3979 * not initialized on a new filesystem. */
3980 }
3981 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3982 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3983 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3984 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3985 ei->i_file_acl |=
3986 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3987 inode->i_size = ext4_isize(raw_inode);
3988 ei->i_disksize = inode->i_size;
3989 #ifdef CONFIG_QUOTA
3990 ei->i_reserved_quota = 0;
3991 #endif
3992 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3993 ei->i_block_group = iloc.block_group;
3994 ei->i_last_alloc_group = ~0;
3995 /*
3996 * NOTE! The in-memory inode i_data array is in little-endian order
3997 * even on big-endian machines: we do NOT byteswap the block numbers!
3998 */
3999 for (block = 0; block < EXT4_N_BLOCKS; block++)
4000 ei->i_data[block] = raw_inode->i_block[block];
4001 INIT_LIST_HEAD(&ei->i_orphan);
4002
4003 /*
4004 * Set transaction id's of transactions that have to be committed
4005 * to finish f[data]sync. We set them to currently running transaction
4006 * as we cannot be sure that the inode or some of its metadata isn't
4007 * part of the transaction - the inode could have been reclaimed and
4008 * now it is reread from disk.
4009 */
4010 if (journal) {
4011 transaction_t *transaction;
4012 tid_t tid;
4013
4014 read_lock(&journal->j_state_lock);
4015 if (journal->j_running_transaction)
4016 transaction = journal->j_running_transaction;
4017 else
4018 transaction = journal->j_committing_transaction;
4019 if (transaction)
4020 tid = transaction->t_tid;
4021 else
4022 tid = journal->j_commit_sequence;
4023 read_unlock(&journal->j_state_lock);
4024 ei->i_sync_tid = tid;
4025 ei->i_datasync_tid = tid;
4026 }
4027
4028 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4029 if (ei->i_extra_isize == 0) {
4030 /* The extra space is currently unused. Use it. */
4031 ei->i_extra_isize = sizeof(struct ext4_inode) -
4032 EXT4_GOOD_OLD_INODE_SIZE;
4033 } else {
4034 ext4_iget_extra_inode(inode, raw_inode, ei);
4035 }
4036 }
4037
4038 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4039 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4040 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4041 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4042
4043 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4044 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047 inode->i_version |=
4048 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4049 }
4050 }
4051
4052 ret = 0;
4053 if (ei->i_file_acl &&
4054 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4055 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4056 ei->i_file_acl);
4057 ret = -EIO;
4058 goto bad_inode;
4059 } else if (!ext4_has_inline_data(inode)) {
4060 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4061 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4062 (S_ISLNK(inode->i_mode) &&
4063 !ext4_inode_is_fast_symlink(inode))))
4064 /* Validate extent which is part of inode */
4065 ret = ext4_ext_check_inode(inode);
4066 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4067 (S_ISLNK(inode->i_mode) &&
4068 !ext4_inode_is_fast_symlink(inode))) {
4069 /* Validate block references which are part of inode */
4070 ret = ext4_ind_check_inode(inode);
4071 }
4072 }
4073 if (ret)
4074 goto bad_inode;
4075
4076 if (S_ISREG(inode->i_mode)) {
4077 inode->i_op = &ext4_file_inode_operations;
4078 inode->i_fop = &ext4_file_operations;
4079 ext4_set_aops(inode);
4080 } else if (S_ISDIR(inode->i_mode)) {
4081 inode->i_op = &ext4_dir_inode_operations;
4082 inode->i_fop = &ext4_dir_operations;
4083 } else if (S_ISLNK(inode->i_mode)) {
4084 if (ext4_inode_is_fast_symlink(inode)) {
4085 inode->i_op = &ext4_fast_symlink_inode_operations;
4086 nd_terminate_link(ei->i_data, inode->i_size,
4087 sizeof(ei->i_data) - 1);
4088 } else {
4089 inode->i_op = &ext4_symlink_inode_operations;
4090 ext4_set_aops(inode);
4091 }
4092 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4093 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4094 inode->i_op = &ext4_special_inode_operations;
4095 if (raw_inode->i_block[0])
4096 init_special_inode(inode, inode->i_mode,
4097 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4098 else
4099 init_special_inode(inode, inode->i_mode,
4100 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4101 } else if (ino == EXT4_BOOT_LOADER_INO) {
4102 make_bad_inode(inode);
4103 } else {
4104 ret = -EIO;
4105 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4106 goto bad_inode;
4107 }
4108 brelse(iloc.bh);
4109 ext4_set_inode_flags(inode);
4110 unlock_new_inode(inode);
4111 return inode;
4112
4113 bad_inode:
4114 brelse(iloc.bh);
4115 iget_failed(inode);
4116 return ERR_PTR(ret);
4117 }
4118
4119 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4120 {
4121 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4122 return ERR_PTR(-EIO);
4123 return ext4_iget(sb, ino);
4124 }
4125
4126 static int ext4_inode_blocks_set(handle_t *handle,
4127 struct ext4_inode *raw_inode,
4128 struct ext4_inode_info *ei)
4129 {
4130 struct inode *inode = &(ei->vfs_inode);
4131 u64 i_blocks = inode->i_blocks;
4132 struct super_block *sb = inode->i_sb;
4133
4134 if (i_blocks <= ~0U) {
4135 /*
4136 * i_blocks can be represented in a 32 bit variable
4137 * as multiple of 512 bytes
4138 */
4139 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4140 raw_inode->i_blocks_high = 0;
4141 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4142 return 0;
4143 }
4144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4145 return -EFBIG;
4146
4147 if (i_blocks <= 0xffffffffffffULL) {
4148 /*
4149 * i_blocks can be represented in a 48 bit variable
4150 * as multiple of 512 bytes
4151 */
4152 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4153 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4154 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4155 } else {
4156 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4157 /* i_block is stored in file system block size */
4158 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4159 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4160 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4161 }
4162 return 0;
4163 }
4164
4165 /*
4166 * Post the struct inode info into an on-disk inode location in the
4167 * buffer-cache. This gobbles the caller's reference to the
4168 * buffer_head in the inode location struct.
4169 *
4170 * The caller must have write access to iloc->bh.
4171 */
4172 static int ext4_do_update_inode(handle_t *handle,
4173 struct inode *inode,
4174 struct ext4_iloc *iloc)
4175 {
4176 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4177 struct ext4_inode_info *ei = EXT4_I(inode);
4178 struct buffer_head *bh = iloc->bh;
4179 struct super_block *sb = inode->i_sb;
4180 int err = 0, rc, block;
4181 int need_datasync = 0, set_large_file = 0;
4182 uid_t i_uid;
4183 gid_t i_gid;
4184
4185 spin_lock(&ei->i_raw_lock);
4186
4187 /* For fields not tracked in the in-memory inode,
4188 * initialise them to zero for new inodes. */
4189 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4190 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4191
4192 ext4_get_inode_flags(ei);
4193 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4194 i_uid = i_uid_read(inode);
4195 i_gid = i_gid_read(inode);
4196 if (!(test_opt(inode->i_sb, NO_UID32))) {
4197 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4198 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4199 /*
4200 * Fix up interoperability with old kernels. Otherwise, old inodes get
4201 * re-used with the upper 16 bits of the uid/gid intact
4202 */
4203 if (!ei->i_dtime) {
4204 raw_inode->i_uid_high =
4205 cpu_to_le16(high_16_bits(i_uid));
4206 raw_inode->i_gid_high =
4207 cpu_to_le16(high_16_bits(i_gid));
4208 } else {
4209 raw_inode->i_uid_high = 0;
4210 raw_inode->i_gid_high = 0;
4211 }
4212 } else {
4213 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4214 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4215 raw_inode->i_uid_high = 0;
4216 raw_inode->i_gid_high = 0;
4217 }
4218 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4219
4220 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4221 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4222 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4223 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4224
4225 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4226 if (err) {
4227 spin_unlock(&ei->i_raw_lock);
4228 goto out_brelse;
4229 }
4230 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4231 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4232 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4233 raw_inode->i_file_acl_high =
4234 cpu_to_le16(ei->i_file_acl >> 32);
4235 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4236 if (ei->i_disksize != ext4_isize(raw_inode)) {
4237 ext4_isize_set(raw_inode, ei->i_disksize);
4238 need_datasync = 1;
4239 }
4240 if (ei->i_disksize > 0x7fffffffULL) {
4241 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4242 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4243 EXT4_SB(sb)->s_es->s_rev_level ==
4244 cpu_to_le32(EXT4_GOOD_OLD_REV))
4245 set_large_file = 1;
4246 }
4247 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4248 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4249 if (old_valid_dev(inode->i_rdev)) {
4250 raw_inode->i_block[0] =
4251 cpu_to_le32(old_encode_dev(inode->i_rdev));
4252 raw_inode->i_block[1] = 0;
4253 } else {
4254 raw_inode->i_block[0] = 0;
4255 raw_inode->i_block[1] =
4256 cpu_to_le32(new_encode_dev(inode->i_rdev));
4257 raw_inode->i_block[2] = 0;
4258 }
4259 } else if (!ext4_has_inline_data(inode)) {
4260 for (block = 0; block < EXT4_N_BLOCKS; block++)
4261 raw_inode->i_block[block] = ei->i_data[block];
4262 }
4263
4264 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4265 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4266 if (ei->i_extra_isize) {
4267 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4268 raw_inode->i_version_hi =
4269 cpu_to_le32(inode->i_version >> 32);
4270 raw_inode->i_extra_isize =
4271 cpu_to_le16(ei->i_extra_isize);
4272 }
4273 }
4274
4275 ext4_inode_csum_set(inode, raw_inode, ei);
4276
4277 spin_unlock(&ei->i_raw_lock);
4278
4279 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4280 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4281 if (!err)
4282 err = rc;
4283 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4284 if (set_large_file) {
4285 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4286 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4287 if (err)
4288 goto out_brelse;
4289 ext4_update_dynamic_rev(sb);
4290 EXT4_SET_RO_COMPAT_FEATURE(sb,
4291 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4292 ext4_handle_sync(handle);
4293 err = ext4_handle_dirty_super(handle, sb);
4294 }
4295 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4296 out_brelse:
4297 brelse(bh);
4298 ext4_std_error(inode->i_sb, err);
4299 return err;
4300 }
4301
4302 /*
4303 * ext4_write_inode()
4304 *
4305 * We are called from a few places:
4306 *
4307 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4308 * Here, there will be no transaction running. We wait for any running
4309 * transaction to commit.
4310 *
4311 * - Within flush work (sys_sync(), kupdate and such).
4312 * We wait on commit, if told to.
4313 *
4314 * - Within iput_final() -> write_inode_now()
4315 * We wait on commit, if told to.
4316 *
4317 * In all cases it is actually safe for us to return without doing anything,
4318 * because the inode has been copied into a raw inode buffer in
4319 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4320 * writeback.
4321 *
4322 * Note that we are absolutely dependent upon all inode dirtiers doing the
4323 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4324 * which we are interested.
4325 *
4326 * It would be a bug for them to not do this. The code:
4327 *
4328 * mark_inode_dirty(inode)
4329 * stuff();
4330 * inode->i_size = expr;
4331 *
4332 * is in error because write_inode() could occur while `stuff()' is running,
4333 * and the new i_size will be lost. Plus the inode will no longer be on the
4334 * superblock's dirty inode list.
4335 */
4336 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4337 {
4338 int err;
4339
4340 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4341 return 0;
4342
4343 if (EXT4_SB(inode->i_sb)->s_journal) {
4344 if (ext4_journal_current_handle()) {
4345 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4346 dump_stack();
4347 return -EIO;
4348 }
4349
4350 /*
4351 * No need to force transaction in WB_SYNC_NONE mode. Also
4352 * ext4_sync_fs() will force the commit after everything is
4353 * written.
4354 */
4355 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4356 return 0;
4357
4358 err = ext4_force_commit(inode->i_sb);
4359 } else {
4360 struct ext4_iloc iloc;
4361
4362 err = __ext4_get_inode_loc(inode, &iloc, 0);
4363 if (err)
4364 return err;
4365 /*
4366 * sync(2) will flush the whole buffer cache. No need to do
4367 * it here separately for each inode.
4368 */
4369 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4370 sync_dirty_buffer(iloc.bh);
4371 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4372 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4373 "IO error syncing inode");
4374 err = -EIO;
4375 }
4376 brelse(iloc.bh);
4377 }
4378 return err;
4379 }
4380
4381 /*
4382 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4383 * buffers that are attached to a page stradding i_size and are undergoing
4384 * commit. In that case we have to wait for commit to finish and try again.
4385 */
4386 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4387 {
4388 struct page *page;
4389 unsigned offset;
4390 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4391 tid_t commit_tid = 0;
4392 int ret;
4393
4394 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4395 /*
4396 * All buffers in the last page remain valid? Then there's nothing to
4397 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4398 * blocksize case
4399 */
4400 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4401 return;
4402 while (1) {
4403 page = find_lock_page(inode->i_mapping,
4404 inode->i_size >> PAGE_CACHE_SHIFT);
4405 if (!page)
4406 return;
4407 ret = __ext4_journalled_invalidatepage(page, offset,
4408 PAGE_CACHE_SIZE - offset);
4409 unlock_page(page);
4410 page_cache_release(page);
4411 if (ret != -EBUSY)
4412 return;
4413 commit_tid = 0;
4414 read_lock(&journal->j_state_lock);
4415 if (journal->j_committing_transaction)
4416 commit_tid = journal->j_committing_transaction->t_tid;
4417 read_unlock(&journal->j_state_lock);
4418 if (commit_tid)
4419 jbd2_log_wait_commit(journal, commit_tid);
4420 }
4421 }
4422
4423 /*
4424 * ext4_setattr()
4425 *
4426 * Called from notify_change.
4427 *
4428 * We want to trap VFS attempts to truncate the file as soon as
4429 * possible. In particular, we want to make sure that when the VFS
4430 * shrinks i_size, we put the inode on the orphan list and modify
4431 * i_disksize immediately, so that during the subsequent flushing of
4432 * dirty pages and freeing of disk blocks, we can guarantee that any
4433 * commit will leave the blocks being flushed in an unused state on
4434 * disk. (On recovery, the inode will get truncated and the blocks will
4435 * be freed, so we have a strong guarantee that no future commit will
4436 * leave these blocks visible to the user.)
4437 *
4438 * Another thing we have to assure is that if we are in ordered mode
4439 * and inode is still attached to the committing transaction, we must
4440 * we start writeout of all the dirty pages which are being truncated.
4441 * This way we are sure that all the data written in the previous
4442 * transaction are already on disk (truncate waits for pages under
4443 * writeback).
4444 *
4445 * Called with inode->i_mutex down.
4446 */
4447 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4448 {
4449 struct inode *inode = dentry->d_inode;
4450 int error, rc = 0;
4451 int orphan = 0;
4452 const unsigned int ia_valid = attr->ia_valid;
4453
4454 error = inode_change_ok(inode, attr);
4455 if (error)
4456 return error;
4457
4458 if (is_quota_modification(inode, attr))
4459 dquot_initialize(inode);
4460 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4461 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4462 handle_t *handle;
4463
4464 /* (user+group)*(old+new) structure, inode write (sb,
4465 * inode block, ? - but truncate inode update has it) */
4466 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4467 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4468 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4469 if (IS_ERR(handle)) {
4470 error = PTR_ERR(handle);
4471 goto err_out;
4472 }
4473 error = dquot_transfer(inode, attr);
4474 if (error) {
4475 ext4_journal_stop(handle);
4476 return error;
4477 }
4478 /* Update corresponding info in inode so that everything is in
4479 * one transaction */
4480 if (attr->ia_valid & ATTR_UID)
4481 inode->i_uid = attr->ia_uid;
4482 if (attr->ia_valid & ATTR_GID)
4483 inode->i_gid = attr->ia_gid;
4484 error = ext4_mark_inode_dirty(handle, inode);
4485 ext4_journal_stop(handle);
4486 }
4487
4488 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4489 handle_t *handle;
4490
4491 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4493
4494 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4495 return -EFBIG;
4496 }
4497
4498 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4499 inode_inc_iversion(inode);
4500
4501 if (S_ISREG(inode->i_mode) &&
4502 (attr->ia_size < inode->i_size)) {
4503 if (ext4_should_order_data(inode)) {
4504 error = ext4_begin_ordered_truncate(inode,
4505 attr->ia_size);
4506 if (error)
4507 goto err_out;
4508 }
4509 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4510 if (IS_ERR(handle)) {
4511 error = PTR_ERR(handle);
4512 goto err_out;
4513 }
4514 if (ext4_handle_valid(handle)) {
4515 error = ext4_orphan_add(handle, inode);
4516 orphan = 1;
4517 }
4518 down_write(&EXT4_I(inode)->i_data_sem);
4519 EXT4_I(inode)->i_disksize = attr->ia_size;
4520 rc = ext4_mark_inode_dirty(handle, inode);
4521 if (!error)
4522 error = rc;
4523 /*
4524 * We have to update i_size under i_data_sem together
4525 * with i_disksize to avoid races with writeback code
4526 * running ext4_wb_update_i_disksize().
4527 */
4528 if (!error)
4529 i_size_write(inode, attr->ia_size);
4530 up_write(&EXT4_I(inode)->i_data_sem);
4531 ext4_journal_stop(handle);
4532 if (error) {
4533 ext4_orphan_del(NULL, inode);
4534 goto err_out;
4535 }
4536 } else {
4537 loff_t oldsize = inode->i_size;
4538
4539 i_size_write(inode, attr->ia_size);
4540 pagecache_isize_extended(inode, oldsize, inode->i_size);
4541 }
4542
4543 /*
4544 * Blocks are going to be removed from the inode. Wait
4545 * for dio in flight. Temporarily disable
4546 * dioread_nolock to prevent livelock.
4547 */
4548 if (orphan) {
4549 if (!ext4_should_journal_data(inode)) {
4550 ext4_inode_block_unlocked_dio(inode);
4551 inode_dio_wait(inode);
4552 ext4_inode_resume_unlocked_dio(inode);
4553 } else
4554 ext4_wait_for_tail_page_commit(inode);
4555 }
4556 /*
4557 * Truncate pagecache after we've waited for commit
4558 * in data=journal mode to make pages freeable.
4559 */
4560 truncate_pagecache(inode, inode->i_size);
4561 }
4562 /*
4563 * We want to call ext4_truncate() even if attr->ia_size ==
4564 * inode->i_size for cases like truncation of fallocated space
4565 */
4566 if (attr->ia_valid & ATTR_SIZE)
4567 ext4_truncate(inode);
4568
4569 if (!rc) {
4570 setattr_copy(inode, attr);
4571 mark_inode_dirty(inode);
4572 }
4573
4574 /*
4575 * If the call to ext4_truncate failed to get a transaction handle at
4576 * all, we need to clean up the in-core orphan list manually.
4577 */
4578 if (orphan && inode->i_nlink)
4579 ext4_orphan_del(NULL, inode);
4580
4581 if (!rc && (ia_valid & ATTR_MODE))
4582 rc = posix_acl_chmod(inode, inode->i_mode);
4583
4584 err_out:
4585 ext4_std_error(inode->i_sb, error);
4586 if (!error)
4587 error = rc;
4588 return error;
4589 }
4590
4591 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4592 struct kstat *stat)
4593 {
4594 struct inode *inode;
4595 unsigned long long delalloc_blocks;
4596
4597 inode = dentry->d_inode;
4598 generic_fillattr(inode, stat);
4599
4600 /*
4601 * If there is inline data in the inode, the inode will normally not
4602 * have data blocks allocated (it may have an external xattr block).
4603 * Report at least one sector for such files, so tools like tar, rsync,
4604 * others doen't incorrectly think the file is completely sparse.
4605 */
4606 if (unlikely(ext4_has_inline_data(inode)))
4607 stat->blocks += (stat->size + 511) >> 9;
4608
4609 /*
4610 * We can't update i_blocks if the block allocation is delayed
4611 * otherwise in the case of system crash before the real block
4612 * allocation is done, we will have i_blocks inconsistent with
4613 * on-disk file blocks.
4614 * We always keep i_blocks updated together with real
4615 * allocation. But to not confuse with user, stat
4616 * will return the blocks that include the delayed allocation
4617 * blocks for this file.
4618 */
4619 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4620 EXT4_I(inode)->i_reserved_data_blocks);
4621 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4622 return 0;
4623 }
4624
4625 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4626 int pextents)
4627 {
4628 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4629 return ext4_ind_trans_blocks(inode, lblocks);
4630 return ext4_ext_index_trans_blocks(inode, pextents);
4631 }
4632
4633 /*
4634 * Account for index blocks, block groups bitmaps and block group
4635 * descriptor blocks if modify datablocks and index blocks
4636 * worse case, the indexs blocks spread over different block groups
4637 *
4638 * If datablocks are discontiguous, they are possible to spread over
4639 * different block groups too. If they are contiguous, with flexbg,
4640 * they could still across block group boundary.
4641 *
4642 * Also account for superblock, inode, quota and xattr blocks
4643 */
4644 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4645 int pextents)
4646 {
4647 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4648 int gdpblocks;
4649 int idxblocks;
4650 int ret = 0;
4651
4652 /*
4653 * How many index blocks need to touch to map @lblocks logical blocks
4654 * to @pextents physical extents?
4655 */
4656 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4657
4658 ret = idxblocks;
4659
4660 /*
4661 * Now let's see how many group bitmaps and group descriptors need
4662 * to account
4663 */
4664 groups = idxblocks + pextents;
4665 gdpblocks = groups;
4666 if (groups > ngroups)
4667 groups = ngroups;
4668 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4669 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4670
4671 /* bitmaps and block group descriptor blocks */
4672 ret += groups + gdpblocks;
4673
4674 /* Blocks for super block, inode, quota and xattr blocks */
4675 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4676
4677 return ret;
4678 }
4679
4680 /*
4681 * Calculate the total number of credits to reserve to fit
4682 * the modification of a single pages into a single transaction,
4683 * which may include multiple chunks of block allocations.
4684 *
4685 * This could be called via ext4_write_begin()
4686 *
4687 * We need to consider the worse case, when
4688 * one new block per extent.
4689 */
4690 int ext4_writepage_trans_blocks(struct inode *inode)
4691 {
4692 int bpp = ext4_journal_blocks_per_page(inode);
4693 int ret;
4694
4695 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4696
4697 /* Account for data blocks for journalled mode */
4698 if (ext4_should_journal_data(inode))
4699 ret += bpp;
4700 return ret;
4701 }
4702
4703 /*
4704 * Calculate the journal credits for a chunk of data modification.
4705 *
4706 * This is called from DIO, fallocate or whoever calling
4707 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4708 *
4709 * journal buffers for data blocks are not included here, as DIO
4710 * and fallocate do no need to journal data buffers.
4711 */
4712 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4713 {
4714 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4715 }
4716
4717 /*
4718 * The caller must have previously called ext4_reserve_inode_write().
4719 * Give this, we know that the caller already has write access to iloc->bh.
4720 */
4721 int ext4_mark_iloc_dirty(handle_t *handle,
4722 struct inode *inode, struct ext4_iloc *iloc)
4723 {
4724 int err = 0;
4725
4726 if (IS_I_VERSION(inode))
4727 inode_inc_iversion(inode);
4728
4729 /* the do_update_inode consumes one bh->b_count */
4730 get_bh(iloc->bh);
4731
4732 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4733 err = ext4_do_update_inode(handle, inode, iloc);
4734 put_bh(iloc->bh);
4735 return err;
4736 }
4737
4738 /*
4739 * On success, We end up with an outstanding reference count against
4740 * iloc->bh. This _must_ be cleaned up later.
4741 */
4742
4743 int
4744 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4745 struct ext4_iloc *iloc)
4746 {
4747 int err;
4748
4749 err = ext4_get_inode_loc(inode, iloc);
4750 if (!err) {
4751 BUFFER_TRACE(iloc->bh, "get_write_access");
4752 err = ext4_journal_get_write_access(handle, iloc->bh);
4753 if (err) {
4754 brelse(iloc->bh);
4755 iloc->bh = NULL;
4756 }
4757 }
4758 ext4_std_error(inode->i_sb, err);
4759 return err;
4760 }
4761
4762 /*
4763 * Expand an inode by new_extra_isize bytes.
4764 * Returns 0 on success or negative error number on failure.
4765 */
4766 static int ext4_expand_extra_isize(struct inode *inode,
4767 unsigned int new_extra_isize,
4768 struct ext4_iloc iloc,
4769 handle_t *handle)
4770 {
4771 struct ext4_inode *raw_inode;
4772 struct ext4_xattr_ibody_header *header;
4773
4774 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4775 return 0;
4776
4777 raw_inode = ext4_raw_inode(&iloc);
4778
4779 header = IHDR(inode, raw_inode);
4780
4781 /* No extended attributes present */
4782 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4783 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4785 new_extra_isize);
4786 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4787 return 0;
4788 }
4789
4790 /* try to expand with EAs present */
4791 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4792 raw_inode, handle);
4793 }
4794
4795 /*
4796 * What we do here is to mark the in-core inode as clean with respect to inode
4797 * dirtiness (it may still be data-dirty).
4798 * This means that the in-core inode may be reaped by prune_icache
4799 * without having to perform any I/O. This is a very good thing,
4800 * because *any* task may call prune_icache - even ones which
4801 * have a transaction open against a different journal.
4802 *
4803 * Is this cheating? Not really. Sure, we haven't written the
4804 * inode out, but prune_icache isn't a user-visible syncing function.
4805 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4806 * we start and wait on commits.
4807 */
4808 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4809 {
4810 struct ext4_iloc iloc;
4811 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4812 static unsigned int mnt_count;
4813 int err, ret;
4814
4815 might_sleep();
4816 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4817 err = ext4_reserve_inode_write(handle, inode, &iloc);
4818 if (ext4_handle_valid(handle) &&
4819 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4820 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4821 /*
4822 * We need extra buffer credits since we may write into EA block
4823 * with this same handle. If journal_extend fails, then it will
4824 * only result in a minor loss of functionality for that inode.
4825 * If this is felt to be critical, then e2fsck should be run to
4826 * force a large enough s_min_extra_isize.
4827 */
4828 if ((jbd2_journal_extend(handle,
4829 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4830 ret = ext4_expand_extra_isize(inode,
4831 sbi->s_want_extra_isize,
4832 iloc, handle);
4833 if (ret) {
4834 ext4_set_inode_state(inode,
4835 EXT4_STATE_NO_EXPAND);
4836 if (mnt_count !=
4837 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4838 ext4_warning(inode->i_sb,
4839 "Unable to expand inode %lu. Delete"
4840 " some EAs or run e2fsck.",
4841 inode->i_ino);
4842 mnt_count =
4843 le16_to_cpu(sbi->s_es->s_mnt_count);
4844 }
4845 }
4846 }
4847 }
4848 if (!err)
4849 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4850 return err;
4851 }
4852
4853 /*
4854 * ext4_dirty_inode() is called from __mark_inode_dirty()
4855 *
4856 * We're really interested in the case where a file is being extended.
4857 * i_size has been changed by generic_commit_write() and we thus need
4858 * to include the updated inode in the current transaction.
4859 *
4860 * Also, dquot_alloc_block() will always dirty the inode when blocks
4861 * are allocated to the file.
4862 *
4863 * If the inode is marked synchronous, we don't honour that here - doing
4864 * so would cause a commit on atime updates, which we don't bother doing.
4865 * We handle synchronous inodes at the highest possible level.
4866 */
4867 void ext4_dirty_inode(struct inode *inode, int flags)
4868 {
4869 handle_t *handle;
4870
4871 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4872 if (IS_ERR(handle))
4873 goto out;
4874
4875 ext4_mark_inode_dirty(handle, inode);
4876
4877 ext4_journal_stop(handle);
4878 out:
4879 return;
4880 }
4881
4882 #if 0
4883 /*
4884 * Bind an inode's backing buffer_head into this transaction, to prevent
4885 * it from being flushed to disk early. Unlike
4886 * ext4_reserve_inode_write, this leaves behind no bh reference and
4887 * returns no iloc structure, so the caller needs to repeat the iloc
4888 * lookup to mark the inode dirty later.
4889 */
4890 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4891 {
4892 struct ext4_iloc iloc;
4893
4894 int err = 0;
4895 if (handle) {
4896 err = ext4_get_inode_loc(inode, &iloc);
4897 if (!err) {
4898 BUFFER_TRACE(iloc.bh, "get_write_access");
4899 err = jbd2_journal_get_write_access(handle, iloc.bh);
4900 if (!err)
4901 err = ext4_handle_dirty_metadata(handle,
4902 NULL,
4903 iloc.bh);
4904 brelse(iloc.bh);
4905 }
4906 }
4907 ext4_std_error(inode->i_sb, err);
4908 return err;
4909 }
4910 #endif
4911
4912 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4913 {
4914 journal_t *journal;
4915 handle_t *handle;
4916 int err;
4917
4918 /*
4919 * We have to be very careful here: changing a data block's
4920 * journaling status dynamically is dangerous. If we write a
4921 * data block to the journal, change the status and then delete
4922 * that block, we risk forgetting to revoke the old log record
4923 * from the journal and so a subsequent replay can corrupt data.
4924 * So, first we make sure that the journal is empty and that
4925 * nobody is changing anything.
4926 */
4927
4928 journal = EXT4_JOURNAL(inode);
4929 if (!journal)
4930 return 0;
4931 if (is_journal_aborted(journal))
4932 return -EROFS;
4933 /* We have to allocate physical blocks for delalloc blocks
4934 * before flushing journal. otherwise delalloc blocks can not
4935 * be allocated any more. even more truncate on delalloc blocks
4936 * could trigger BUG by flushing delalloc blocks in journal.
4937 * There is no delalloc block in non-journal data mode.
4938 */
4939 if (val && test_opt(inode->i_sb, DELALLOC)) {
4940 err = ext4_alloc_da_blocks(inode);
4941 if (err < 0)
4942 return err;
4943 }
4944
4945 /* Wait for all existing dio workers */
4946 ext4_inode_block_unlocked_dio(inode);
4947 inode_dio_wait(inode);
4948
4949 jbd2_journal_lock_updates(journal);
4950
4951 /*
4952 * OK, there are no updates running now, and all cached data is
4953 * synced to disk. We are now in a completely consistent state
4954 * which doesn't have anything in the journal, and we know that
4955 * no filesystem updates are running, so it is safe to modify
4956 * the inode's in-core data-journaling state flag now.
4957 */
4958
4959 if (val)
4960 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4961 else {
4962 err = jbd2_journal_flush(journal);
4963 if (err < 0) {
4964 jbd2_journal_unlock_updates(journal);
4965 ext4_inode_resume_unlocked_dio(inode);
4966 return err;
4967 }
4968 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4969 }
4970 ext4_set_aops(inode);
4971
4972 jbd2_journal_unlock_updates(journal);
4973 ext4_inode_resume_unlocked_dio(inode);
4974
4975 /* Finally we can mark the inode as dirty. */
4976
4977 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4978 if (IS_ERR(handle))
4979 return PTR_ERR(handle);
4980
4981 err = ext4_mark_inode_dirty(handle, inode);
4982 ext4_handle_sync(handle);
4983 ext4_journal_stop(handle);
4984 ext4_std_error(inode->i_sb, err);
4985
4986 return err;
4987 }
4988
4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4990 {
4991 return !buffer_mapped(bh);
4992 }
4993
4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4995 {
4996 struct page *page = vmf->page;
4997 loff_t size;
4998 unsigned long len;
4999 int ret;
5000 struct file *file = vma->vm_file;
5001 struct inode *inode = file_inode(file);
5002 struct address_space *mapping = inode->i_mapping;
5003 handle_t *handle;
5004 get_block_t *get_block;
5005 int retries = 0;
5006
5007 sb_start_pagefault(inode->i_sb);
5008 file_update_time(vma->vm_file);
5009 /* Delalloc case is easy... */
5010 if (test_opt(inode->i_sb, DELALLOC) &&
5011 !ext4_should_journal_data(inode) &&
5012 !ext4_nonda_switch(inode->i_sb)) {
5013 do {
5014 ret = __block_page_mkwrite(vma, vmf,
5015 ext4_da_get_block_prep);
5016 } while (ret == -ENOSPC &&
5017 ext4_should_retry_alloc(inode->i_sb, &retries));
5018 goto out_ret;
5019 }
5020
5021 lock_page(page);
5022 size = i_size_read(inode);
5023 /* Page got truncated from under us? */
5024 if (page->mapping != mapping || page_offset(page) > size) {
5025 unlock_page(page);
5026 ret = VM_FAULT_NOPAGE;
5027 goto out;
5028 }
5029
5030 if (page->index == size >> PAGE_CACHE_SHIFT)
5031 len = size & ~PAGE_CACHE_MASK;
5032 else
5033 len = PAGE_CACHE_SIZE;
5034 /*
5035 * Return if we have all the buffers mapped. This avoids the need to do
5036 * journal_start/journal_stop which can block and take a long time
5037 */
5038 if (page_has_buffers(page)) {
5039 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5040 0, len, NULL,
5041 ext4_bh_unmapped)) {
5042 /* Wait so that we don't change page under IO */
5043 wait_for_stable_page(page);
5044 ret = VM_FAULT_LOCKED;
5045 goto out;
5046 }
5047 }
5048 unlock_page(page);
5049 /* OK, we need to fill the hole... */
5050 if (ext4_should_dioread_nolock(inode))
5051 get_block = ext4_get_block_write;
5052 else
5053 get_block = ext4_get_block;
5054 retry_alloc:
5055 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5056 ext4_writepage_trans_blocks(inode));
5057 if (IS_ERR(handle)) {
5058 ret = VM_FAULT_SIGBUS;
5059 goto out;
5060 }
5061 ret = __block_page_mkwrite(vma, vmf, get_block);
5062 if (!ret && ext4_should_journal_data(inode)) {
5063 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5064 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5065 unlock_page(page);
5066 ret = VM_FAULT_SIGBUS;
5067 ext4_journal_stop(handle);
5068 goto out;
5069 }
5070 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5071 }
5072 ext4_journal_stop(handle);
5073 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5074 goto retry_alloc;
5075 out_ret:
5076 ret = block_page_mkwrite_return(ret);
5077 out:
5078 sb_end_pagefault(inode->i_sb);
5079 return ret;
5080 }
This page took 0.162921 seconds and 5 git commands to generate.