ext4: move __func__ into a macro for ext4_warning, ext4_error
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63 * Test whether an inode is a fast symlink.
64 */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
76 */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79 ext4_lblk_t needed;
80
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
91
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
96
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
104 *
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
109 */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112 handle_t *result;
113
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
117
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
120 }
121
122 /*
123 * Try to extend this transaction for the purposes of truncation.
124 *
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
127 */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
137 }
138
139 /*
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
143 */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
146 {
147 int ret;
148
149 /*
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
154 */
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
161
162 return ret;
163 }
164
165 /*
166 * Called at the last iput() if i_nlink is zero.
167 */
168 void ext4_delete_inode(struct inode *inode)
169 {
170 handle_t *handle;
171 int err;
172
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
176
177 if (is_bad_inode(inode))
178 goto no_delete;
179
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 /*
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
187 */
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
190 }
191
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
200 }
201 if (inode->i_blocks)
202 ext4_truncate(inode);
203
204 /*
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
209 */
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
220 }
221 }
222
223 /*
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
230 */
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
233
234 /*
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
240 */
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260 p->key = *(p->p = v);
261 p->bh = bh;
262 }
263
264 /**
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
271 *
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
279 *
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
283 */
284
285 /*
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
293 */
294
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
298 {
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
327 i_block + direct_blocks +
328 indirect_blocks + double_blocks, inode->i_ino);
329 }
330 if (boundary)
331 *boundary = final - 1 - (i_block & (ptrs - 1));
332 return n;
333 }
334
335 static int __ext4_check_blockref(const char *function, struct inode *inode,
336 __le32 *p, unsigned int max)
337 {
338 __le32 *bref = p;
339 unsigned int blk;
340
341 while (bref < p+max) {
342 blk = le32_to_cpu(*bref++);
343 if (blk &&
344 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
345 blk, 1))) {
346 __ext4_error(inode->i_sb, function,
347 "invalid block reference %u "
348 "in inode #%lu", blk, inode->i_ino);
349 return -EIO;
350 }
351 }
352 return 0;
353 }
354
355
356 #define ext4_check_indirect_blockref(inode, bh) \
357 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
358 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
359
360 #define ext4_check_inode_blockref(inode) \
361 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
362 EXT4_NDIR_BLOCKS)
363
364 /**
365 * ext4_get_branch - read the chain of indirect blocks leading to data
366 * @inode: inode in question
367 * @depth: depth of the chain (1 - direct pointer, etc.)
368 * @offsets: offsets of pointers in inode/indirect blocks
369 * @chain: place to store the result
370 * @err: here we store the error value
371 *
372 * Function fills the array of triples <key, p, bh> and returns %NULL
373 * if everything went OK or the pointer to the last filled triple
374 * (incomplete one) otherwise. Upon the return chain[i].key contains
375 * the number of (i+1)-th block in the chain (as it is stored in memory,
376 * i.e. little-endian 32-bit), chain[i].p contains the address of that
377 * number (it points into struct inode for i==0 and into the bh->b_data
378 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379 * block for i>0 and NULL for i==0. In other words, it holds the block
380 * numbers of the chain, addresses they were taken from (and where we can
381 * verify that chain did not change) and buffer_heads hosting these
382 * numbers.
383 *
384 * Function stops when it stumbles upon zero pointer (absent block)
385 * (pointer to last triple returned, *@err == 0)
386 * or when it gets an IO error reading an indirect block
387 * (ditto, *@err == -EIO)
388 * or when it reads all @depth-1 indirect blocks successfully and finds
389 * the whole chain, all way to the data (returns %NULL, *err == 0).
390 *
391 * Need to be called with
392 * down_read(&EXT4_I(inode)->i_data_sem)
393 */
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 ext4_lblk_t *offsets,
396 Indirect chain[4], int *err)
397 {
398 struct super_block *sb = inode->i_sb;
399 Indirect *p = chain;
400 struct buffer_head *bh;
401
402 *err = 0;
403 /* i_data is not going away, no lock needed */
404 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405 if (!p->key)
406 goto no_block;
407 while (--depth) {
408 bh = sb_getblk(sb, le32_to_cpu(p->key));
409 if (unlikely(!bh))
410 goto failure;
411
412 if (!bh_uptodate_or_lock(bh)) {
413 if (bh_submit_read(bh) < 0) {
414 put_bh(bh);
415 goto failure;
416 }
417 /* validate block references */
418 if (ext4_check_indirect_blockref(inode, bh)) {
419 put_bh(bh);
420 goto failure;
421 }
422 }
423
424 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
425 /* Reader: end */
426 if (!p->key)
427 goto no_block;
428 }
429 return NULL;
430
431 failure:
432 *err = -EIO;
433 no_block:
434 return p;
435 }
436
437 /**
438 * ext4_find_near - find a place for allocation with sufficient locality
439 * @inode: owner
440 * @ind: descriptor of indirect block.
441 *
442 * This function returns the preferred place for block allocation.
443 * It is used when heuristic for sequential allocation fails.
444 * Rules are:
445 * + if there is a block to the left of our position - allocate near it.
446 * + if pointer will live in indirect block - allocate near that block.
447 * + if pointer will live in inode - allocate in the same
448 * cylinder group.
449 *
450 * In the latter case we colour the starting block by the callers PID to
451 * prevent it from clashing with concurrent allocations for a different inode
452 * in the same block group. The PID is used here so that functionally related
453 * files will be close-by on-disk.
454 *
455 * Caller must make sure that @ind is valid and will stay that way.
456 */
457 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
458 {
459 struct ext4_inode_info *ei = EXT4_I(inode);
460 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
461 __le32 *p;
462 ext4_fsblk_t bg_start;
463 ext4_fsblk_t last_block;
464 ext4_grpblk_t colour;
465 ext4_group_t block_group;
466 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
467
468 /* Try to find previous block */
469 for (p = ind->p - 1; p >= start; p--) {
470 if (*p)
471 return le32_to_cpu(*p);
472 }
473
474 /* No such thing, so let's try location of indirect block */
475 if (ind->bh)
476 return ind->bh->b_blocknr;
477
478 /*
479 * It is going to be referred to from the inode itself? OK, just put it
480 * into the same cylinder group then.
481 */
482 block_group = ei->i_block_group;
483 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
484 block_group &= ~(flex_size-1);
485 if (S_ISREG(inode->i_mode))
486 block_group++;
487 }
488 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
489 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
490
491 /*
492 * If we are doing delayed allocation, we don't need take
493 * colour into account.
494 */
495 if (test_opt(inode->i_sb, DELALLOC))
496 return bg_start;
497
498 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
499 colour = (current->pid % 16) *
500 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
501 else
502 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
503 return bg_start + colour;
504 }
505
506 /**
507 * ext4_find_goal - find a preferred place for allocation.
508 * @inode: owner
509 * @block: block we want
510 * @partial: pointer to the last triple within a chain
511 *
512 * Normally this function find the preferred place for block allocation,
513 * returns it.
514 * Because this is only used for non-extent files, we limit the block nr
515 * to 32 bits.
516 */
517 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
518 Indirect *partial)
519 {
520 ext4_fsblk_t goal;
521
522 /*
523 * XXX need to get goal block from mballoc's data structures
524 */
525
526 goal = ext4_find_near(inode, partial);
527 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
528 return goal;
529 }
530
531 /**
532 * ext4_blks_to_allocate: Look up the block map and count the number
533 * of direct blocks need to be allocated for the given branch.
534 *
535 * @branch: chain of indirect blocks
536 * @k: number of blocks need for indirect blocks
537 * @blks: number of data blocks to be mapped.
538 * @blocks_to_boundary: the offset in the indirect block
539 *
540 * return the total number of blocks to be allocate, including the
541 * direct and indirect blocks.
542 */
543 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
544 int blocks_to_boundary)
545 {
546 unsigned int count = 0;
547
548 /*
549 * Simple case, [t,d]Indirect block(s) has not allocated yet
550 * then it's clear blocks on that path have not allocated
551 */
552 if (k > 0) {
553 /* right now we don't handle cross boundary allocation */
554 if (blks < blocks_to_boundary + 1)
555 count += blks;
556 else
557 count += blocks_to_boundary + 1;
558 return count;
559 }
560
561 count++;
562 while (count < blks && count <= blocks_to_boundary &&
563 le32_to_cpu(*(branch[0].p + count)) == 0) {
564 count++;
565 }
566 return count;
567 }
568
569 /**
570 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
571 * @indirect_blks: the number of blocks need to allocate for indirect
572 * blocks
573 *
574 * @new_blocks: on return it will store the new block numbers for
575 * the indirect blocks(if needed) and the first direct block,
576 * @blks: on return it will store the total number of allocated
577 * direct blocks
578 */
579 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
580 ext4_lblk_t iblock, ext4_fsblk_t goal,
581 int indirect_blks, int blks,
582 ext4_fsblk_t new_blocks[4], int *err)
583 {
584 struct ext4_allocation_request ar;
585 int target, i;
586 unsigned long count = 0, blk_allocated = 0;
587 int index = 0;
588 ext4_fsblk_t current_block = 0;
589 int ret = 0;
590
591 /*
592 * Here we try to allocate the requested multiple blocks at once,
593 * on a best-effort basis.
594 * To build a branch, we should allocate blocks for
595 * the indirect blocks(if not allocated yet), and at least
596 * the first direct block of this branch. That's the
597 * minimum number of blocks need to allocate(required)
598 */
599 /* first we try to allocate the indirect blocks */
600 target = indirect_blks;
601 while (target > 0) {
602 count = target;
603 /* allocating blocks for indirect blocks and direct blocks */
604 current_block = ext4_new_meta_blocks(handle, inode,
605 goal, &count, err);
606 if (*err)
607 goto failed_out;
608
609 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
610
611 target -= count;
612 /* allocate blocks for indirect blocks */
613 while (index < indirect_blks && count) {
614 new_blocks[index++] = current_block++;
615 count--;
616 }
617 if (count > 0) {
618 /*
619 * save the new block number
620 * for the first direct block
621 */
622 new_blocks[index] = current_block;
623 printk(KERN_INFO "%s returned more blocks than "
624 "requested\n", __func__);
625 WARN_ON(1);
626 break;
627 }
628 }
629
630 target = blks - count ;
631 blk_allocated = count;
632 if (!target)
633 goto allocated;
634 /* Now allocate data blocks */
635 memset(&ar, 0, sizeof(ar));
636 ar.inode = inode;
637 ar.goal = goal;
638 ar.len = target;
639 ar.logical = iblock;
640 if (S_ISREG(inode->i_mode))
641 /* enable in-core preallocation only for regular files */
642 ar.flags = EXT4_MB_HINT_DATA;
643
644 current_block = ext4_mb_new_blocks(handle, &ar, err);
645 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
646
647 if (*err && (target == blks)) {
648 /*
649 * if the allocation failed and we didn't allocate
650 * any blocks before
651 */
652 goto failed_out;
653 }
654 if (!*err) {
655 if (target == blks) {
656 /*
657 * save the new block number
658 * for the first direct block
659 */
660 new_blocks[index] = current_block;
661 }
662 blk_allocated += ar.len;
663 }
664 allocated:
665 /* total number of blocks allocated for direct blocks */
666 ret = blk_allocated;
667 *err = 0;
668 return ret;
669 failed_out:
670 for (i = 0; i < index; i++)
671 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
672 return ret;
673 }
674
675 /**
676 * ext4_alloc_branch - allocate and set up a chain of blocks.
677 * @inode: owner
678 * @indirect_blks: number of allocated indirect blocks
679 * @blks: number of allocated direct blocks
680 * @offsets: offsets (in the blocks) to store the pointers to next.
681 * @branch: place to store the chain in.
682 *
683 * This function allocates blocks, zeroes out all but the last one,
684 * links them into chain and (if we are synchronous) writes them to disk.
685 * In other words, it prepares a branch that can be spliced onto the
686 * inode. It stores the information about that chain in the branch[], in
687 * the same format as ext4_get_branch() would do. We are calling it after
688 * we had read the existing part of chain and partial points to the last
689 * triple of that (one with zero ->key). Upon the exit we have the same
690 * picture as after the successful ext4_get_block(), except that in one
691 * place chain is disconnected - *branch->p is still zero (we did not
692 * set the last link), but branch->key contains the number that should
693 * be placed into *branch->p to fill that gap.
694 *
695 * If allocation fails we free all blocks we've allocated (and forget
696 * their buffer_heads) and return the error value the from failed
697 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
698 * as described above and return 0.
699 */
700 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
701 ext4_lblk_t iblock, int indirect_blks,
702 int *blks, ext4_fsblk_t goal,
703 ext4_lblk_t *offsets, Indirect *branch)
704 {
705 int blocksize = inode->i_sb->s_blocksize;
706 int i, n = 0;
707 int err = 0;
708 struct buffer_head *bh;
709 int num;
710 ext4_fsblk_t new_blocks[4];
711 ext4_fsblk_t current_block;
712
713 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
714 *blks, new_blocks, &err);
715 if (err)
716 return err;
717
718 branch[0].key = cpu_to_le32(new_blocks[0]);
719 /*
720 * metadata blocks and data blocks are allocated.
721 */
722 for (n = 1; n <= indirect_blks; n++) {
723 /*
724 * Get buffer_head for parent block, zero it out
725 * and set the pointer to new one, then send
726 * parent to disk.
727 */
728 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
729 branch[n].bh = bh;
730 lock_buffer(bh);
731 BUFFER_TRACE(bh, "call get_create_access");
732 err = ext4_journal_get_create_access(handle, bh);
733 if (err) {
734 /* Don't brelse(bh) here; it's done in
735 * ext4_journal_forget() below */
736 unlock_buffer(bh);
737 goto failed;
738 }
739
740 memset(bh->b_data, 0, blocksize);
741 branch[n].p = (__le32 *) bh->b_data + offsets[n];
742 branch[n].key = cpu_to_le32(new_blocks[n]);
743 *branch[n].p = branch[n].key;
744 if (n == indirect_blks) {
745 current_block = new_blocks[n];
746 /*
747 * End of chain, update the last new metablock of
748 * the chain to point to the new allocated
749 * data blocks numbers
750 */
751 for (i = 1; i < num; i++)
752 *(branch[n].p + i) = cpu_to_le32(++current_block);
753 }
754 BUFFER_TRACE(bh, "marking uptodate");
755 set_buffer_uptodate(bh);
756 unlock_buffer(bh);
757
758 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
759 err = ext4_handle_dirty_metadata(handle, inode, bh);
760 if (err)
761 goto failed;
762 }
763 *blks = num;
764 return err;
765 failed:
766 /* Allocation failed, free what we already allocated */
767 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
768 for (i = 1; i <= n ; i++) {
769 /*
770 * branch[i].bh is newly allocated, so there is no
771 * need to revoke the block, which is why we don't
772 * need to set EXT4_FREE_BLOCKS_METADATA.
773 */
774 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
775 EXT4_FREE_BLOCKS_FORGET);
776 }
777 for (i = n+1; i < indirect_blks; i++)
778 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
779
780 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
781
782 return err;
783 }
784
785 /**
786 * ext4_splice_branch - splice the allocated branch onto inode.
787 * @inode: owner
788 * @block: (logical) number of block we are adding
789 * @chain: chain of indirect blocks (with a missing link - see
790 * ext4_alloc_branch)
791 * @where: location of missing link
792 * @num: number of indirect blocks we are adding
793 * @blks: number of direct blocks we are adding
794 *
795 * This function fills the missing link and does all housekeeping needed in
796 * inode (->i_blocks, etc.). In case of success we end up with the full
797 * chain to new block and return 0.
798 */
799 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
800 ext4_lblk_t block, Indirect *where, int num,
801 int blks)
802 {
803 int i;
804 int err = 0;
805 ext4_fsblk_t current_block;
806
807 /*
808 * If we're splicing into a [td]indirect block (as opposed to the
809 * inode) then we need to get write access to the [td]indirect block
810 * before the splice.
811 */
812 if (where->bh) {
813 BUFFER_TRACE(where->bh, "get_write_access");
814 err = ext4_journal_get_write_access(handle, where->bh);
815 if (err)
816 goto err_out;
817 }
818 /* That's it */
819
820 *where->p = where->key;
821
822 /*
823 * Update the host buffer_head or inode to point to more just allocated
824 * direct blocks blocks
825 */
826 if (num == 0 && blks > 1) {
827 current_block = le32_to_cpu(where->key) + 1;
828 for (i = 1; i < blks; i++)
829 *(where->p + i) = cpu_to_le32(current_block++);
830 }
831
832 /* We are done with atomic stuff, now do the rest of housekeeping */
833 /* had we spliced it onto indirect block? */
834 if (where->bh) {
835 /*
836 * If we spliced it onto an indirect block, we haven't
837 * altered the inode. Note however that if it is being spliced
838 * onto an indirect block at the very end of the file (the
839 * file is growing) then we *will* alter the inode to reflect
840 * the new i_size. But that is not done here - it is done in
841 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
842 */
843 jbd_debug(5, "splicing indirect only\n");
844 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
845 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
846 if (err)
847 goto err_out;
848 } else {
849 /*
850 * OK, we spliced it into the inode itself on a direct block.
851 */
852 ext4_mark_inode_dirty(handle, inode);
853 jbd_debug(5, "splicing direct\n");
854 }
855 return err;
856
857 err_out:
858 for (i = 1; i <= num; i++) {
859 /*
860 * branch[i].bh is newly allocated, so there is no
861 * need to revoke the block, which is why we don't
862 * need to set EXT4_FREE_BLOCKS_METADATA.
863 */
864 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
865 EXT4_FREE_BLOCKS_FORGET);
866 }
867 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
868 blks, 0);
869
870 return err;
871 }
872
873 /*
874 * The ext4_ind_get_blocks() function handles non-extents inodes
875 * (i.e., using the traditional indirect/double-indirect i_blocks
876 * scheme) for ext4_get_blocks().
877 *
878 * Allocation strategy is simple: if we have to allocate something, we will
879 * have to go the whole way to leaf. So let's do it before attaching anything
880 * to tree, set linkage between the newborn blocks, write them if sync is
881 * required, recheck the path, free and repeat if check fails, otherwise
882 * set the last missing link (that will protect us from any truncate-generated
883 * removals - all blocks on the path are immune now) and possibly force the
884 * write on the parent block.
885 * That has a nice additional property: no special recovery from the failed
886 * allocations is needed - we simply release blocks and do not touch anything
887 * reachable from inode.
888 *
889 * `handle' can be NULL if create == 0.
890 *
891 * return > 0, # of blocks mapped or allocated.
892 * return = 0, if plain lookup failed.
893 * return < 0, error case.
894 *
895 * The ext4_ind_get_blocks() function should be called with
896 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
897 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
898 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
899 * blocks.
900 */
901 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
902 ext4_lblk_t iblock, unsigned int maxblocks,
903 struct buffer_head *bh_result,
904 int flags)
905 {
906 int err = -EIO;
907 ext4_lblk_t offsets[4];
908 Indirect chain[4];
909 Indirect *partial;
910 ext4_fsblk_t goal;
911 int indirect_blks;
912 int blocks_to_boundary = 0;
913 int depth;
914 int count = 0;
915 ext4_fsblk_t first_block = 0;
916
917 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
918 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
919 depth = ext4_block_to_path(inode, iblock, offsets,
920 &blocks_to_boundary);
921
922 if (depth == 0)
923 goto out;
924
925 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
926
927 /* Simplest case - block found, no allocation needed */
928 if (!partial) {
929 first_block = le32_to_cpu(chain[depth - 1].key);
930 clear_buffer_new(bh_result);
931 count++;
932 /*map more blocks*/
933 while (count < maxblocks && count <= blocks_to_boundary) {
934 ext4_fsblk_t blk;
935
936 blk = le32_to_cpu(*(chain[depth-1].p + count));
937
938 if (blk == first_block + count)
939 count++;
940 else
941 break;
942 }
943 goto got_it;
944 }
945
946 /* Next simple case - plain lookup or failed read of indirect block */
947 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
948 goto cleanup;
949
950 /*
951 * Okay, we need to do block allocation.
952 */
953 goal = ext4_find_goal(inode, iblock, partial);
954
955 /* the number of blocks need to allocate for [d,t]indirect blocks */
956 indirect_blks = (chain + depth) - partial - 1;
957
958 /*
959 * Next look up the indirect map to count the totoal number of
960 * direct blocks to allocate for this branch.
961 */
962 count = ext4_blks_to_allocate(partial, indirect_blks,
963 maxblocks, blocks_to_boundary);
964 /*
965 * Block out ext4_truncate while we alter the tree
966 */
967 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
968 &count, goal,
969 offsets + (partial - chain), partial);
970
971 /*
972 * The ext4_splice_branch call will free and forget any buffers
973 * on the new chain if there is a failure, but that risks using
974 * up transaction credits, especially for bitmaps where the
975 * credits cannot be returned. Can we handle this somehow? We
976 * may need to return -EAGAIN upwards in the worst case. --sct
977 */
978 if (!err)
979 err = ext4_splice_branch(handle, inode, iblock,
980 partial, indirect_blks, count);
981 if (err)
982 goto cleanup;
983
984 set_buffer_new(bh_result);
985
986 ext4_update_inode_fsync_trans(handle, inode, 1);
987 got_it:
988 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
989 if (count > blocks_to_boundary)
990 set_buffer_boundary(bh_result);
991 err = count;
992 /* Clean up and exit */
993 partial = chain + depth - 1; /* the whole chain */
994 cleanup:
995 while (partial > chain) {
996 BUFFER_TRACE(partial->bh, "call brelse");
997 brelse(partial->bh);
998 partial--;
999 }
1000 BUFFER_TRACE(bh_result, "returned");
1001 out:
1002 return err;
1003 }
1004
1005 #ifdef CONFIG_QUOTA
1006 qsize_t *ext4_get_reserved_space(struct inode *inode)
1007 {
1008 return &EXT4_I(inode)->i_reserved_quota;
1009 }
1010 #endif
1011
1012 /*
1013 * Calculate the number of metadata blocks need to reserve
1014 * to allocate a new block at @lblocks for non extent file based file
1015 */
1016 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1017 sector_t lblock)
1018 {
1019 struct ext4_inode_info *ei = EXT4_I(inode);
1020 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1021 int blk_bits;
1022
1023 if (lblock < EXT4_NDIR_BLOCKS)
1024 return 0;
1025
1026 lblock -= EXT4_NDIR_BLOCKS;
1027
1028 if (ei->i_da_metadata_calc_len &&
1029 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1030 ei->i_da_metadata_calc_len++;
1031 return 0;
1032 }
1033 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1034 ei->i_da_metadata_calc_len = 1;
1035 blk_bits = roundup_pow_of_two(lblock + 1);
1036 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1037 }
1038
1039 /*
1040 * Calculate the number of metadata blocks need to reserve
1041 * to allocate a block located at @lblock
1042 */
1043 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1044 {
1045 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1046 return ext4_ext_calc_metadata_amount(inode, lblock);
1047
1048 return ext4_indirect_calc_metadata_amount(inode, lblock);
1049 }
1050
1051 /*
1052 * Called with i_data_sem down, which is important since we can call
1053 * ext4_discard_preallocations() from here.
1054 */
1055 void ext4_da_update_reserve_space(struct inode *inode,
1056 int used, int quota_claim)
1057 {
1058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1059 struct ext4_inode_info *ei = EXT4_I(inode);
1060 int mdb_free = 0, allocated_meta_blocks = 0;
1061
1062 spin_lock(&ei->i_block_reservation_lock);
1063 trace_ext4_da_update_reserve_space(inode, used);
1064 if (unlikely(used > ei->i_reserved_data_blocks)) {
1065 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1066 "with only %d reserved data blocks\n",
1067 __func__, inode->i_ino, used,
1068 ei->i_reserved_data_blocks);
1069 WARN_ON(1);
1070 used = ei->i_reserved_data_blocks;
1071 }
1072
1073 /* Update per-inode reservations */
1074 ei->i_reserved_data_blocks -= used;
1075 used += ei->i_allocated_meta_blocks;
1076 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1077 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1078 ei->i_allocated_meta_blocks = 0;
1079 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1080
1081 if (ei->i_reserved_data_blocks == 0) {
1082 /*
1083 * We can release all of the reserved metadata blocks
1084 * only when we have written all of the delayed
1085 * allocation blocks.
1086 */
1087 mdb_free = ei->i_reserved_meta_blocks;
1088 ei->i_reserved_meta_blocks = 0;
1089 ei->i_da_metadata_calc_len = 0;
1090 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1091 }
1092 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1093
1094 /* Update quota subsystem */
1095 if (quota_claim) {
1096 vfs_dq_claim_block(inode, used);
1097 if (mdb_free)
1098 vfs_dq_release_reservation_block(inode, mdb_free);
1099 } else {
1100 /*
1101 * We did fallocate with an offset that is already delayed
1102 * allocated. So on delayed allocated writeback we should
1103 * not update the quota for allocated blocks. But then
1104 * converting an fallocate region to initialized region would
1105 * have caused a metadata allocation. So claim quota for
1106 * that
1107 */
1108 if (allocated_meta_blocks)
1109 vfs_dq_claim_block(inode, allocated_meta_blocks);
1110 vfs_dq_release_reservation_block(inode, mdb_free + used);
1111 }
1112
1113 /*
1114 * If we have done all the pending block allocations and if
1115 * there aren't any writers on the inode, we can discard the
1116 * inode's preallocations.
1117 */
1118 if ((ei->i_reserved_data_blocks == 0) &&
1119 (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
1121 }
1122
1123 static int check_block_validity(struct inode *inode, const char *msg,
1124 sector_t logical, sector_t phys, int len)
1125 {
1126 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1127 __ext4_error(inode->i_sb, msg,
1128 "inode #%lu logical block %llu mapped to %llu "
1129 "(size %d)", inode->i_ino,
1130 (unsigned long long) logical,
1131 (unsigned long long) phys, len);
1132 return -EIO;
1133 }
1134 return 0;
1135 }
1136
1137 /*
1138 * Return the number of contiguous dirty pages in a given inode
1139 * starting at page frame idx.
1140 */
1141 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1142 unsigned int max_pages)
1143 {
1144 struct address_space *mapping = inode->i_mapping;
1145 pgoff_t index;
1146 struct pagevec pvec;
1147 pgoff_t num = 0;
1148 int i, nr_pages, done = 0;
1149
1150 if (max_pages == 0)
1151 return 0;
1152 pagevec_init(&pvec, 0);
1153 while (!done) {
1154 index = idx;
1155 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1156 PAGECACHE_TAG_DIRTY,
1157 (pgoff_t)PAGEVEC_SIZE);
1158 if (nr_pages == 0)
1159 break;
1160 for (i = 0; i < nr_pages; i++) {
1161 struct page *page = pvec.pages[i];
1162 struct buffer_head *bh, *head;
1163
1164 lock_page(page);
1165 if (unlikely(page->mapping != mapping) ||
1166 !PageDirty(page) ||
1167 PageWriteback(page) ||
1168 page->index != idx) {
1169 done = 1;
1170 unlock_page(page);
1171 break;
1172 }
1173 if (page_has_buffers(page)) {
1174 bh = head = page_buffers(page);
1175 do {
1176 if (!buffer_delay(bh) &&
1177 !buffer_unwritten(bh))
1178 done = 1;
1179 bh = bh->b_this_page;
1180 } while (!done && (bh != head));
1181 }
1182 unlock_page(page);
1183 if (done)
1184 break;
1185 idx++;
1186 num++;
1187 if (num >= max_pages)
1188 break;
1189 }
1190 pagevec_release(&pvec);
1191 }
1192 return num;
1193 }
1194
1195 /*
1196 * The ext4_get_blocks() function tries to look up the requested blocks,
1197 * and returns if the blocks are already mapped.
1198 *
1199 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1200 * and store the allocated blocks in the result buffer head and mark it
1201 * mapped.
1202 *
1203 * If file type is extents based, it will call ext4_ext_get_blocks(),
1204 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1205 * based files
1206 *
1207 * On success, it returns the number of blocks being mapped or allocate.
1208 * if create==0 and the blocks are pre-allocated and uninitialized block,
1209 * the result buffer head is unmapped. If the create ==1, it will make sure
1210 * the buffer head is mapped.
1211 *
1212 * It returns 0 if plain look up failed (blocks have not been allocated), in
1213 * that casem, buffer head is unmapped
1214 *
1215 * It returns the error in case of allocation failure.
1216 */
1217 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1218 unsigned int max_blocks, struct buffer_head *bh,
1219 int flags)
1220 {
1221 int retval;
1222
1223 clear_buffer_mapped(bh);
1224 clear_buffer_unwritten(bh);
1225
1226 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1227 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1228 (unsigned long)block);
1229 /*
1230 * Try to see if we can get the block without requesting a new
1231 * file system block.
1232 */
1233 down_read((&EXT4_I(inode)->i_data_sem));
1234 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1235 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1236 bh, 0);
1237 } else {
1238 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1239 bh, 0);
1240 }
1241 up_read((&EXT4_I(inode)->i_data_sem));
1242
1243 if (retval > 0 && buffer_mapped(bh)) {
1244 int ret = check_block_validity(inode, "file system corruption",
1245 block, bh->b_blocknr, retval);
1246 if (ret != 0)
1247 return ret;
1248 }
1249
1250 /* If it is only a block(s) look up */
1251 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1252 return retval;
1253
1254 /*
1255 * Returns if the blocks have already allocated
1256 *
1257 * Note that if blocks have been preallocated
1258 * ext4_ext_get_block() returns th create = 0
1259 * with buffer head unmapped.
1260 */
1261 if (retval > 0 && buffer_mapped(bh))
1262 return retval;
1263
1264 /*
1265 * When we call get_blocks without the create flag, the
1266 * BH_Unwritten flag could have gotten set if the blocks
1267 * requested were part of a uninitialized extent. We need to
1268 * clear this flag now that we are committed to convert all or
1269 * part of the uninitialized extent to be an initialized
1270 * extent. This is because we need to avoid the combination
1271 * of BH_Unwritten and BH_Mapped flags being simultaneously
1272 * set on the buffer_head.
1273 */
1274 clear_buffer_unwritten(bh);
1275
1276 /*
1277 * New blocks allocate and/or writing to uninitialized extent
1278 * will possibly result in updating i_data, so we take
1279 * the write lock of i_data_sem, and call get_blocks()
1280 * with create == 1 flag.
1281 */
1282 down_write((&EXT4_I(inode)->i_data_sem));
1283
1284 /*
1285 * if the caller is from delayed allocation writeout path
1286 * we have already reserved fs blocks for allocation
1287 * let the underlying get_block() function know to
1288 * avoid double accounting
1289 */
1290 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1291 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1292 /*
1293 * We need to check for EXT4 here because migrate
1294 * could have changed the inode type in between
1295 */
1296 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1297 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1298 bh, flags);
1299 } else {
1300 retval = ext4_ind_get_blocks(handle, inode, block,
1301 max_blocks, bh, flags);
1302
1303 if (retval > 0 && buffer_new(bh)) {
1304 /*
1305 * We allocated new blocks which will result in
1306 * i_data's format changing. Force the migrate
1307 * to fail by clearing migrate flags
1308 */
1309 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1310 }
1311
1312 /*
1313 * Update reserved blocks/metadata blocks after successful
1314 * block allocation which had been deferred till now. We don't
1315 * support fallocate for non extent files. So we can update
1316 * reserve space here.
1317 */
1318 if ((retval > 0) &&
1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1320 ext4_da_update_reserve_space(inode, retval, 1);
1321 }
1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1324
1325 up_write((&EXT4_I(inode)->i_data_sem));
1326 if (retval > 0 && buffer_mapped(bh)) {
1327 int ret = check_block_validity(inode, "file system "
1328 "corruption after allocation",
1329 block, bh->b_blocknr, retval);
1330 if (ret != 0)
1331 return ret;
1332 }
1333 return retval;
1334 }
1335
1336 /* Maximum number of blocks we map for direct IO at once. */
1337 #define DIO_MAX_BLOCKS 4096
1338
1339 int ext4_get_block(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh_result, int create)
1341 {
1342 handle_t *handle = ext4_journal_current_handle();
1343 int ret = 0, started = 0;
1344 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1345 int dio_credits;
1346
1347 if (create && !handle) {
1348 /* Direct IO write... */
1349 if (max_blocks > DIO_MAX_BLOCKS)
1350 max_blocks = DIO_MAX_BLOCKS;
1351 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1352 handle = ext4_journal_start(inode, dio_credits);
1353 if (IS_ERR(handle)) {
1354 ret = PTR_ERR(handle);
1355 goto out;
1356 }
1357 started = 1;
1358 }
1359
1360 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1361 create ? EXT4_GET_BLOCKS_CREATE : 0);
1362 if (ret > 0) {
1363 bh_result->b_size = (ret << inode->i_blkbits);
1364 ret = 0;
1365 }
1366 if (started)
1367 ext4_journal_stop(handle);
1368 out:
1369 return ret;
1370 }
1371
1372 /*
1373 * `handle' can be NULL if create is zero
1374 */
1375 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1376 ext4_lblk_t block, int create, int *errp)
1377 {
1378 struct buffer_head dummy;
1379 int fatal = 0, err;
1380 int flags = 0;
1381
1382 J_ASSERT(handle != NULL || create == 0);
1383
1384 dummy.b_state = 0;
1385 dummy.b_blocknr = -1000;
1386 buffer_trace_init(&dummy.b_history);
1387 if (create)
1388 flags |= EXT4_GET_BLOCKS_CREATE;
1389 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1390 /*
1391 * ext4_get_blocks() returns number of blocks mapped. 0 in
1392 * case of a HOLE.
1393 */
1394 if (err > 0) {
1395 if (err > 1)
1396 WARN_ON(1);
1397 err = 0;
1398 }
1399 *errp = err;
1400 if (!err && buffer_mapped(&dummy)) {
1401 struct buffer_head *bh;
1402 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1403 if (!bh) {
1404 *errp = -EIO;
1405 goto err;
1406 }
1407 if (buffer_new(&dummy)) {
1408 J_ASSERT(create != 0);
1409 J_ASSERT(handle != NULL);
1410
1411 /*
1412 * Now that we do not always journal data, we should
1413 * keep in mind whether this should always journal the
1414 * new buffer as metadata. For now, regular file
1415 * writes use ext4_get_block instead, so it's not a
1416 * problem.
1417 */
1418 lock_buffer(bh);
1419 BUFFER_TRACE(bh, "call get_create_access");
1420 fatal = ext4_journal_get_create_access(handle, bh);
1421 if (!fatal && !buffer_uptodate(bh)) {
1422 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1423 set_buffer_uptodate(bh);
1424 }
1425 unlock_buffer(bh);
1426 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1427 err = ext4_handle_dirty_metadata(handle, inode, bh);
1428 if (!fatal)
1429 fatal = err;
1430 } else {
1431 BUFFER_TRACE(bh, "not a new buffer");
1432 }
1433 if (fatal) {
1434 *errp = fatal;
1435 brelse(bh);
1436 bh = NULL;
1437 }
1438 return bh;
1439 }
1440 err:
1441 return NULL;
1442 }
1443
1444 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1445 ext4_lblk_t block, int create, int *err)
1446 {
1447 struct buffer_head *bh;
1448
1449 bh = ext4_getblk(handle, inode, block, create, err);
1450 if (!bh)
1451 return bh;
1452 if (buffer_uptodate(bh))
1453 return bh;
1454 ll_rw_block(READ_META, 1, &bh);
1455 wait_on_buffer(bh);
1456 if (buffer_uptodate(bh))
1457 return bh;
1458 put_bh(bh);
1459 *err = -EIO;
1460 return NULL;
1461 }
1462
1463 static int walk_page_buffers(handle_t *handle,
1464 struct buffer_head *head,
1465 unsigned from,
1466 unsigned to,
1467 int *partial,
1468 int (*fn)(handle_t *handle,
1469 struct buffer_head *bh))
1470 {
1471 struct buffer_head *bh;
1472 unsigned block_start, block_end;
1473 unsigned blocksize = head->b_size;
1474 int err, ret = 0;
1475 struct buffer_head *next;
1476
1477 for (bh = head, block_start = 0;
1478 ret == 0 && (bh != head || !block_start);
1479 block_start = block_end, bh = next) {
1480 next = bh->b_this_page;
1481 block_end = block_start + blocksize;
1482 if (block_end <= from || block_start >= to) {
1483 if (partial && !buffer_uptodate(bh))
1484 *partial = 1;
1485 continue;
1486 }
1487 err = (*fn)(handle, bh);
1488 if (!ret)
1489 ret = err;
1490 }
1491 return ret;
1492 }
1493
1494 /*
1495 * To preserve ordering, it is essential that the hole instantiation and
1496 * the data write be encapsulated in a single transaction. We cannot
1497 * close off a transaction and start a new one between the ext4_get_block()
1498 * and the commit_write(). So doing the jbd2_journal_start at the start of
1499 * prepare_write() is the right place.
1500 *
1501 * Also, this function can nest inside ext4_writepage() ->
1502 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1503 * has generated enough buffer credits to do the whole page. So we won't
1504 * block on the journal in that case, which is good, because the caller may
1505 * be PF_MEMALLOC.
1506 *
1507 * By accident, ext4 can be reentered when a transaction is open via
1508 * quota file writes. If we were to commit the transaction while thus
1509 * reentered, there can be a deadlock - we would be holding a quota
1510 * lock, and the commit would never complete if another thread had a
1511 * transaction open and was blocking on the quota lock - a ranking
1512 * violation.
1513 *
1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1515 * will _not_ run commit under these circumstances because handle->h_ref
1516 * is elevated. We'll still have enough credits for the tiny quotafile
1517 * write.
1518 */
1519 static int do_journal_get_write_access(handle_t *handle,
1520 struct buffer_head *bh)
1521 {
1522 if (!buffer_mapped(bh) || buffer_freed(bh))
1523 return 0;
1524 return ext4_journal_get_write_access(handle, bh);
1525 }
1526
1527 /*
1528 * Truncate blocks that were not used by write. We have to truncate the
1529 * pagecache as well so that corresponding buffers get properly unmapped.
1530 */
1531 static void ext4_truncate_failed_write(struct inode *inode)
1532 {
1533 truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 ext4_truncate(inode);
1535 }
1536
1537 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1538 loff_t pos, unsigned len, unsigned flags,
1539 struct page **pagep, void **fsdata)
1540 {
1541 struct inode *inode = mapping->host;
1542 int ret, needed_blocks;
1543 handle_t *handle;
1544 int retries = 0;
1545 struct page *page;
1546 pgoff_t index;
1547 unsigned from, to;
1548
1549 trace_ext4_write_begin(inode, pos, len, flags);
1550 /*
1551 * Reserve one block more for addition to orphan list in case
1552 * we allocate blocks but write fails for some reason
1553 */
1554 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1555 index = pos >> PAGE_CACHE_SHIFT;
1556 from = pos & (PAGE_CACHE_SIZE - 1);
1557 to = from + len;
1558
1559 retry:
1560 handle = ext4_journal_start(inode, needed_blocks);
1561 if (IS_ERR(handle)) {
1562 ret = PTR_ERR(handle);
1563 goto out;
1564 }
1565
1566 /* We cannot recurse into the filesystem as the transaction is already
1567 * started */
1568 flags |= AOP_FLAG_NOFS;
1569
1570 page = grab_cache_page_write_begin(mapping, index, flags);
1571 if (!page) {
1572 ext4_journal_stop(handle);
1573 ret = -ENOMEM;
1574 goto out;
1575 }
1576 *pagep = page;
1577
1578 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579 ext4_get_block);
1580
1581 if (!ret && ext4_should_journal_data(inode)) {
1582 ret = walk_page_buffers(handle, page_buffers(page),
1583 from, to, NULL, do_journal_get_write_access);
1584 }
1585
1586 if (ret) {
1587 unlock_page(page);
1588 page_cache_release(page);
1589 /*
1590 * block_write_begin may have instantiated a few blocks
1591 * outside i_size. Trim these off again. Don't need
1592 * i_size_read because we hold i_mutex.
1593 *
1594 * Add inode to orphan list in case we crash before
1595 * truncate finishes
1596 */
1597 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1598 ext4_orphan_add(handle, inode);
1599
1600 ext4_journal_stop(handle);
1601 if (pos + len > inode->i_size) {
1602 ext4_truncate_failed_write(inode);
1603 /*
1604 * If truncate failed early the inode might
1605 * still be on the orphan list; we need to
1606 * make sure the inode is removed from the
1607 * orphan list in that case.
1608 */
1609 if (inode->i_nlink)
1610 ext4_orphan_del(NULL, inode);
1611 }
1612 }
1613
1614 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1615 goto retry;
1616 out:
1617 return ret;
1618 }
1619
1620 /* For write_end() in data=journal mode */
1621 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1622 {
1623 if (!buffer_mapped(bh) || buffer_freed(bh))
1624 return 0;
1625 set_buffer_uptodate(bh);
1626 return ext4_handle_dirty_metadata(handle, NULL, bh);
1627 }
1628
1629 static int ext4_generic_write_end(struct file *file,
1630 struct address_space *mapping,
1631 loff_t pos, unsigned len, unsigned copied,
1632 struct page *page, void *fsdata)
1633 {
1634 int i_size_changed = 0;
1635 struct inode *inode = mapping->host;
1636 handle_t *handle = ext4_journal_current_handle();
1637
1638 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639
1640 /*
1641 * No need to use i_size_read() here, the i_size
1642 * cannot change under us because we hold i_mutex.
1643 *
1644 * But it's important to update i_size while still holding page lock:
1645 * page writeout could otherwise come in and zero beyond i_size.
1646 */
1647 if (pos + copied > inode->i_size) {
1648 i_size_write(inode, pos + copied);
1649 i_size_changed = 1;
1650 }
1651
1652 if (pos + copied > EXT4_I(inode)->i_disksize) {
1653 /* We need to mark inode dirty even if
1654 * new_i_size is less that inode->i_size
1655 * bu greater than i_disksize.(hint delalloc)
1656 */
1657 ext4_update_i_disksize(inode, (pos + copied));
1658 i_size_changed = 1;
1659 }
1660 unlock_page(page);
1661 page_cache_release(page);
1662
1663 /*
1664 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 * makes the holding time of page lock longer. Second, it forces lock
1666 * ordering of page lock and transaction start for journaling
1667 * filesystems.
1668 */
1669 if (i_size_changed)
1670 ext4_mark_inode_dirty(handle, inode);
1671
1672 return copied;
1673 }
1674
1675 /*
1676 * We need to pick up the new inode size which generic_commit_write gave us
1677 * `file' can be NULL - eg, when called from page_symlink().
1678 *
1679 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1680 * buffers are managed internally.
1681 */
1682 static int ext4_ordered_write_end(struct file *file,
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
1686 {
1687 handle_t *handle = ext4_journal_current_handle();
1688 struct inode *inode = mapping->host;
1689 int ret = 0, ret2;
1690
1691 trace_ext4_ordered_write_end(inode, pos, len, copied);
1692 ret = ext4_jbd2_file_inode(handle, inode);
1693
1694 if (ret == 0) {
1695 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1696 page, fsdata);
1697 copied = ret2;
1698 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1699 /* if we have allocated more blocks and copied
1700 * less. We will have blocks allocated outside
1701 * inode->i_size. So truncate them
1702 */
1703 ext4_orphan_add(handle, inode);
1704 if (ret2 < 0)
1705 ret = ret2;
1706 }
1707 ret2 = ext4_journal_stop(handle);
1708 if (!ret)
1709 ret = ret2;
1710
1711 if (pos + len > inode->i_size) {
1712 ext4_truncate_failed_write(inode);
1713 /*
1714 * If truncate failed early the inode might still be
1715 * on the orphan list; we need to make sure the inode
1716 * is removed from the orphan list in that case.
1717 */
1718 if (inode->i_nlink)
1719 ext4_orphan_del(NULL, inode);
1720 }
1721
1722
1723 return ret ? ret : copied;
1724 }
1725
1726 static int ext4_writeback_write_end(struct file *file,
1727 struct address_space *mapping,
1728 loff_t pos, unsigned len, unsigned copied,
1729 struct page *page, void *fsdata)
1730 {
1731 handle_t *handle = ext4_journal_current_handle();
1732 struct inode *inode = mapping->host;
1733 int ret = 0, ret2;
1734
1735 trace_ext4_writeback_write_end(inode, pos, len, copied);
1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737 page, fsdata);
1738 copied = ret2;
1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1743 */
1744 ext4_orphan_add(handle, inode);
1745
1746 if (ret2 < 0)
1747 ret = ret2;
1748
1749 ret2 = ext4_journal_stop(handle);
1750 if (!ret)
1751 ret = ret2;
1752
1753 if (pos + len > inode->i_size) {
1754 ext4_truncate_failed_write(inode);
1755 /*
1756 * If truncate failed early the inode might still be
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1759 */
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1762 }
1763
1764 return ret ? ret : copied;
1765 }
1766
1767 static int ext4_journalled_write_end(struct file *file,
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
1771 {
1772 handle_t *handle = ext4_journal_current_handle();
1773 struct inode *inode = mapping->host;
1774 int ret = 0, ret2;
1775 int partial = 0;
1776 unsigned from, to;
1777 loff_t new_i_size;
1778
1779 trace_ext4_journalled_write_end(inode, pos, len, copied);
1780 from = pos & (PAGE_CACHE_SIZE - 1);
1781 to = from + len;
1782
1783 if (copied < len) {
1784 if (!PageUptodate(page))
1785 copied = 0;
1786 page_zero_new_buffers(page, from+copied, to);
1787 }
1788
1789 ret = walk_page_buffers(handle, page_buffers(page), from,
1790 to, &partial, write_end_fn);
1791 if (!partial)
1792 SetPageUptodate(page);
1793 new_i_size = pos + copied;
1794 if (new_i_size > inode->i_size)
1795 i_size_write(inode, pos+copied);
1796 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1797 if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 ext4_update_i_disksize(inode, new_i_size);
1799 ret2 = ext4_mark_inode_dirty(handle, inode);
1800 if (!ret)
1801 ret = ret2;
1802 }
1803
1804 unlock_page(page);
1805 page_cache_release(page);
1806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1807 /* if we have allocated more blocks and copied
1808 * less. We will have blocks allocated outside
1809 * inode->i_size. So truncate them
1810 */
1811 ext4_orphan_add(handle, inode);
1812
1813 ret2 = ext4_journal_stop(handle);
1814 if (!ret)
1815 ret = ret2;
1816 if (pos + len > inode->i_size) {
1817 ext4_truncate_failed_write(inode);
1818 /*
1819 * If truncate failed early the inode might still be
1820 * on the orphan list; we need to make sure the inode
1821 * is removed from the orphan list in that case.
1822 */
1823 if (inode->i_nlink)
1824 ext4_orphan_del(NULL, inode);
1825 }
1826
1827 return ret ? ret : copied;
1828 }
1829
1830 /*
1831 * Reserve a single block located at lblock
1832 */
1833 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1834 {
1835 int retries = 0;
1836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1837 struct ext4_inode_info *ei = EXT4_I(inode);
1838 unsigned long md_needed, md_reserved;
1839
1840 /*
1841 * recalculate the amount of metadata blocks to reserve
1842 * in order to allocate nrblocks
1843 * worse case is one extent per block
1844 */
1845 repeat:
1846 spin_lock(&ei->i_block_reservation_lock);
1847 md_reserved = ei->i_reserved_meta_blocks;
1848 md_needed = ext4_calc_metadata_amount(inode, lblock);
1849 trace_ext4_da_reserve_space(inode, md_needed);
1850 spin_unlock(&ei->i_block_reservation_lock);
1851
1852 /*
1853 * Make quota reservation here to prevent quota overflow
1854 * later. Real quota accounting is done at pages writeout
1855 * time.
1856 */
1857 if (vfs_dq_reserve_block(inode, md_needed + 1))
1858 return -EDQUOT;
1859
1860 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1861 vfs_dq_release_reservation_block(inode, md_needed + 1);
1862 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1863 yield();
1864 goto repeat;
1865 }
1866 return -ENOSPC;
1867 }
1868 spin_lock(&ei->i_block_reservation_lock);
1869 ei->i_reserved_data_blocks++;
1870 ei->i_reserved_meta_blocks += md_needed;
1871 spin_unlock(&ei->i_block_reservation_lock);
1872
1873 return 0; /* success */
1874 }
1875
1876 static void ext4_da_release_space(struct inode *inode, int to_free)
1877 {
1878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879 struct ext4_inode_info *ei = EXT4_I(inode);
1880
1881 if (!to_free)
1882 return; /* Nothing to release, exit */
1883
1884 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1885
1886 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1887 /*
1888 * if there aren't enough reserved blocks, then the
1889 * counter is messed up somewhere. Since this
1890 * function is called from invalidate page, it's
1891 * harmless to return without any action.
1892 */
1893 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1894 "ino %lu, to_free %d with only %d reserved "
1895 "data blocks\n", inode->i_ino, to_free,
1896 ei->i_reserved_data_blocks);
1897 WARN_ON(1);
1898 to_free = ei->i_reserved_data_blocks;
1899 }
1900 ei->i_reserved_data_blocks -= to_free;
1901
1902 if (ei->i_reserved_data_blocks == 0) {
1903 /*
1904 * We can release all of the reserved metadata blocks
1905 * only when we have written all of the delayed
1906 * allocation blocks.
1907 */
1908 to_free += ei->i_reserved_meta_blocks;
1909 ei->i_reserved_meta_blocks = 0;
1910 ei->i_da_metadata_calc_len = 0;
1911 }
1912
1913 /* update fs dirty blocks counter */
1914 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1915
1916 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1917
1918 vfs_dq_release_reservation_block(inode, to_free);
1919 }
1920
1921 static void ext4_da_page_release_reservation(struct page *page,
1922 unsigned long offset)
1923 {
1924 int to_release = 0;
1925 struct buffer_head *head, *bh;
1926 unsigned int curr_off = 0;
1927
1928 head = page_buffers(page);
1929 bh = head;
1930 do {
1931 unsigned int next_off = curr_off + bh->b_size;
1932
1933 if ((offset <= curr_off) && (buffer_delay(bh))) {
1934 to_release++;
1935 clear_buffer_delay(bh);
1936 }
1937 curr_off = next_off;
1938 } while ((bh = bh->b_this_page) != head);
1939 ext4_da_release_space(page->mapping->host, to_release);
1940 }
1941
1942 /*
1943 * Delayed allocation stuff
1944 */
1945
1946 /*
1947 * mpage_da_submit_io - walks through extent of pages and try to write
1948 * them with writepage() call back
1949 *
1950 * @mpd->inode: inode
1951 * @mpd->first_page: first page of the extent
1952 * @mpd->next_page: page after the last page of the extent
1953 *
1954 * By the time mpage_da_submit_io() is called we expect all blocks
1955 * to be allocated. this may be wrong if allocation failed.
1956 *
1957 * As pages are already locked by write_cache_pages(), we can't use it
1958 */
1959 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1960 {
1961 long pages_skipped;
1962 struct pagevec pvec;
1963 unsigned long index, end;
1964 int ret = 0, err, nr_pages, i;
1965 struct inode *inode = mpd->inode;
1966 struct address_space *mapping = inode->i_mapping;
1967
1968 BUG_ON(mpd->next_page <= mpd->first_page);
1969 /*
1970 * We need to start from the first_page to the next_page - 1
1971 * to make sure we also write the mapped dirty buffer_heads.
1972 * If we look at mpd->b_blocknr we would only be looking
1973 * at the currently mapped buffer_heads.
1974 */
1975 index = mpd->first_page;
1976 end = mpd->next_page - 1;
1977
1978 pagevec_init(&pvec, 0);
1979 while (index <= end) {
1980 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1981 if (nr_pages == 0)
1982 break;
1983 for (i = 0; i < nr_pages; i++) {
1984 struct page *page = pvec.pages[i];
1985
1986 index = page->index;
1987 if (index > end)
1988 break;
1989 index++;
1990
1991 BUG_ON(!PageLocked(page));
1992 BUG_ON(PageWriteback(page));
1993
1994 pages_skipped = mpd->wbc->pages_skipped;
1995 err = mapping->a_ops->writepage(page, mpd->wbc);
1996 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1997 /*
1998 * have successfully written the page
1999 * without skipping the same
2000 */
2001 mpd->pages_written++;
2002 /*
2003 * In error case, we have to continue because
2004 * remaining pages are still locked
2005 * XXX: unlock and re-dirty them?
2006 */
2007 if (ret == 0)
2008 ret = err;
2009 }
2010 pagevec_release(&pvec);
2011 }
2012 return ret;
2013 }
2014
2015 /*
2016 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2017 *
2018 * @mpd->inode - inode to walk through
2019 * @exbh->b_blocknr - first block on a disk
2020 * @exbh->b_size - amount of space in bytes
2021 * @logical - first logical block to start assignment with
2022 *
2023 * the function goes through all passed space and put actual disk
2024 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2025 */
2026 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2027 struct buffer_head *exbh)
2028 {
2029 struct inode *inode = mpd->inode;
2030 struct address_space *mapping = inode->i_mapping;
2031 int blocks = exbh->b_size >> inode->i_blkbits;
2032 sector_t pblock = exbh->b_blocknr, cur_logical;
2033 struct buffer_head *head, *bh;
2034 pgoff_t index, end;
2035 struct pagevec pvec;
2036 int nr_pages, i;
2037
2038 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041
2042 pagevec_init(&pvec, 0);
2043
2044 while (index <= end) {
2045 /* XXX: optimize tail */
2046 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2047 if (nr_pages == 0)
2048 break;
2049 for (i = 0; i < nr_pages; i++) {
2050 struct page *page = pvec.pages[i];
2051
2052 index = page->index;
2053 if (index > end)
2054 break;
2055 index++;
2056
2057 BUG_ON(!PageLocked(page));
2058 BUG_ON(PageWriteback(page));
2059 BUG_ON(!page_has_buffers(page));
2060
2061 bh = page_buffers(page);
2062 head = bh;
2063
2064 /* skip blocks out of the range */
2065 do {
2066 if (cur_logical >= logical)
2067 break;
2068 cur_logical++;
2069 } while ((bh = bh->b_this_page) != head);
2070
2071 do {
2072 if (cur_logical >= logical + blocks)
2073 break;
2074
2075 if (buffer_delay(bh) ||
2076 buffer_unwritten(bh)) {
2077
2078 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2079
2080 if (buffer_delay(bh)) {
2081 clear_buffer_delay(bh);
2082 bh->b_blocknr = pblock;
2083 } else {
2084 /*
2085 * unwritten already should have
2086 * blocknr assigned. Verify that
2087 */
2088 clear_buffer_unwritten(bh);
2089 BUG_ON(bh->b_blocknr != pblock);
2090 }
2091
2092 } else if (buffer_mapped(bh))
2093 BUG_ON(bh->b_blocknr != pblock);
2094
2095 cur_logical++;
2096 pblock++;
2097 } while ((bh = bh->b_this_page) != head);
2098 }
2099 pagevec_release(&pvec);
2100 }
2101 }
2102
2103
2104 /*
2105 * __unmap_underlying_blocks - just a helper function to unmap
2106 * set of blocks described by @bh
2107 */
2108 static inline void __unmap_underlying_blocks(struct inode *inode,
2109 struct buffer_head *bh)
2110 {
2111 struct block_device *bdev = inode->i_sb->s_bdev;
2112 int blocks, i;
2113
2114 blocks = bh->b_size >> inode->i_blkbits;
2115 for (i = 0; i < blocks; i++)
2116 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2117 }
2118
2119 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2120 sector_t logical, long blk_cnt)
2121 {
2122 int nr_pages, i;
2123 pgoff_t index, end;
2124 struct pagevec pvec;
2125 struct inode *inode = mpd->inode;
2126 struct address_space *mapping = inode->i_mapping;
2127
2128 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 end = (logical + blk_cnt - 1) >>
2130 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 while (index <= end) {
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
2137 index = page->index;
2138 if (index > end)
2139 break;
2140 index++;
2141
2142 BUG_ON(!PageLocked(page));
2143 BUG_ON(PageWriteback(page));
2144 block_invalidatepage(page, 0);
2145 ClearPageUptodate(page);
2146 unlock_page(page);
2147 }
2148 }
2149 return;
2150 }
2151
2152 static void ext4_print_free_blocks(struct inode *inode)
2153 {
2154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2155 printk(KERN_CRIT "Total free blocks count %lld\n",
2156 ext4_count_free_blocks(inode->i_sb));
2157 printk(KERN_CRIT "Free/Dirty block details\n");
2158 printk(KERN_CRIT "free_blocks=%lld\n",
2159 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2160 printk(KERN_CRIT "dirty_blocks=%lld\n",
2161 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2162 printk(KERN_CRIT "Block reservation details\n");
2163 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2164 EXT4_I(inode)->i_reserved_data_blocks);
2165 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2166 EXT4_I(inode)->i_reserved_meta_blocks);
2167 return;
2168 }
2169
2170 /*
2171 * mpage_da_map_blocks - go through given space
2172 *
2173 * @mpd - bh describing space
2174 *
2175 * The function skips space we know is already mapped to disk blocks.
2176 *
2177 */
2178 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2179 {
2180 int err, blks, get_blocks_flags;
2181 struct buffer_head new;
2182 sector_t next = mpd->b_blocknr;
2183 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2184 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2185 handle_t *handle = NULL;
2186
2187 /*
2188 * We consider only non-mapped and non-allocated blocks
2189 */
2190 if ((mpd->b_state & (1 << BH_Mapped)) &&
2191 !(mpd->b_state & (1 << BH_Delay)) &&
2192 !(mpd->b_state & (1 << BH_Unwritten)))
2193 return 0;
2194
2195 /*
2196 * If we didn't accumulate anything to write simply return
2197 */
2198 if (!mpd->b_size)
2199 return 0;
2200
2201 handle = ext4_journal_current_handle();
2202 BUG_ON(!handle);
2203
2204 /*
2205 * Call ext4_get_blocks() to allocate any delayed allocation
2206 * blocks, or to convert an uninitialized extent to be
2207 * initialized (in the case where we have written into
2208 * one or more preallocated blocks).
2209 *
2210 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2211 * indicate that we are on the delayed allocation path. This
2212 * affects functions in many different parts of the allocation
2213 * call path. This flag exists primarily because we don't
2214 * want to change *many* call functions, so ext4_get_blocks()
2215 * will set the magic i_delalloc_reserved_flag once the
2216 * inode's allocation semaphore is taken.
2217 *
2218 * If the blocks in questions were delalloc blocks, set
2219 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2220 * variables are updated after the blocks have been allocated.
2221 */
2222 new.b_state = 0;
2223 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2224 if (mpd->b_state & (1 << BH_Delay))
2225 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2226
2227 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2228 &new, get_blocks_flags);
2229 if (blks < 0) {
2230 err = blks;
2231 /*
2232 * If get block returns with error we simply
2233 * return. Later writepage will redirty the page and
2234 * writepages will find the dirty page again
2235 */
2236 if (err == -EAGAIN)
2237 return 0;
2238
2239 if (err == -ENOSPC &&
2240 ext4_count_free_blocks(mpd->inode->i_sb)) {
2241 mpd->retval = err;
2242 return 0;
2243 }
2244
2245 /*
2246 * get block failure will cause us to loop in
2247 * writepages, because a_ops->writepage won't be able
2248 * to make progress. The page will be redirtied by
2249 * writepage and writepages will again try to write
2250 * the same.
2251 */
2252 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2253 "delayed block allocation failed for inode %lu at "
2254 "logical offset %llu with max blocks %zd with "
2255 "error %d\n", mpd->inode->i_ino,
2256 (unsigned long long) next,
2257 mpd->b_size >> mpd->inode->i_blkbits, err);
2258 printk(KERN_CRIT "This should not happen!! "
2259 "Data will be lost\n");
2260 if (err == -ENOSPC) {
2261 ext4_print_free_blocks(mpd->inode);
2262 }
2263 /* invalidate all the pages */
2264 ext4_da_block_invalidatepages(mpd, next,
2265 mpd->b_size >> mpd->inode->i_blkbits);
2266 return err;
2267 }
2268 BUG_ON(blks == 0);
2269
2270 new.b_size = (blks << mpd->inode->i_blkbits);
2271
2272 if (buffer_new(&new))
2273 __unmap_underlying_blocks(mpd->inode, &new);
2274
2275 /*
2276 * If blocks are delayed marked, we need to
2277 * put actual blocknr and drop delayed bit
2278 */
2279 if ((mpd->b_state & (1 << BH_Delay)) ||
2280 (mpd->b_state & (1 << BH_Unwritten)))
2281 mpage_put_bnr_to_bhs(mpd, next, &new);
2282
2283 if (ext4_should_order_data(mpd->inode)) {
2284 err = ext4_jbd2_file_inode(handle, mpd->inode);
2285 if (err)
2286 return err;
2287 }
2288
2289 /*
2290 * Update on-disk size along with block allocation.
2291 */
2292 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2293 if (disksize > i_size_read(mpd->inode))
2294 disksize = i_size_read(mpd->inode);
2295 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2296 ext4_update_i_disksize(mpd->inode, disksize);
2297 return ext4_mark_inode_dirty(handle, mpd->inode);
2298 }
2299
2300 return 0;
2301 }
2302
2303 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2304 (1 << BH_Delay) | (1 << BH_Unwritten))
2305
2306 /*
2307 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2308 *
2309 * @mpd->lbh - extent of blocks
2310 * @logical - logical number of the block in the file
2311 * @bh - bh of the block (used to access block's state)
2312 *
2313 * the function is used to collect contig. blocks in same state
2314 */
2315 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2316 sector_t logical, size_t b_size,
2317 unsigned long b_state)
2318 {
2319 sector_t next;
2320 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2321
2322 /* check if thereserved journal credits might overflow */
2323 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2324 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2325 /*
2326 * With non-extent format we are limited by the journal
2327 * credit available. Total credit needed to insert
2328 * nrblocks contiguous blocks is dependent on the
2329 * nrblocks. So limit nrblocks.
2330 */
2331 goto flush_it;
2332 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2333 EXT4_MAX_TRANS_DATA) {
2334 /*
2335 * Adding the new buffer_head would make it cross the
2336 * allowed limit for which we have journal credit
2337 * reserved. So limit the new bh->b_size
2338 */
2339 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2340 mpd->inode->i_blkbits;
2341 /* we will do mpage_da_submit_io in the next loop */
2342 }
2343 }
2344 /*
2345 * First block in the extent
2346 */
2347 if (mpd->b_size == 0) {
2348 mpd->b_blocknr = logical;
2349 mpd->b_size = b_size;
2350 mpd->b_state = b_state & BH_FLAGS;
2351 return;
2352 }
2353
2354 next = mpd->b_blocknr + nrblocks;
2355 /*
2356 * Can we merge the block to our big extent?
2357 */
2358 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2359 mpd->b_size += b_size;
2360 return;
2361 }
2362
2363 flush_it:
2364 /*
2365 * We couldn't merge the block to our extent, so we
2366 * need to flush current extent and start new one
2367 */
2368 if (mpage_da_map_blocks(mpd) == 0)
2369 mpage_da_submit_io(mpd);
2370 mpd->io_done = 1;
2371 return;
2372 }
2373
2374 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2375 {
2376 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2377 }
2378
2379 /*
2380 * __mpage_da_writepage - finds extent of pages and blocks
2381 *
2382 * @page: page to consider
2383 * @wbc: not used, we just follow rules
2384 * @data: context
2385 *
2386 * The function finds extents of pages and scan them for all blocks.
2387 */
2388 static int __mpage_da_writepage(struct page *page,
2389 struct writeback_control *wbc, void *data)
2390 {
2391 struct mpage_da_data *mpd = data;
2392 struct inode *inode = mpd->inode;
2393 struct buffer_head *bh, *head;
2394 sector_t logical;
2395
2396 if (mpd->io_done) {
2397 /*
2398 * Rest of the page in the page_vec
2399 * redirty then and skip then. We will
2400 * try to write them again after
2401 * starting a new transaction
2402 */
2403 redirty_page_for_writepage(wbc, page);
2404 unlock_page(page);
2405 return MPAGE_DA_EXTENT_TAIL;
2406 }
2407 /*
2408 * Can we merge this page to current extent?
2409 */
2410 if (mpd->next_page != page->index) {
2411 /*
2412 * Nope, we can't. So, we map non-allocated blocks
2413 * and start IO on them using writepage()
2414 */
2415 if (mpd->next_page != mpd->first_page) {
2416 if (mpage_da_map_blocks(mpd) == 0)
2417 mpage_da_submit_io(mpd);
2418 /*
2419 * skip rest of the page in the page_vec
2420 */
2421 mpd->io_done = 1;
2422 redirty_page_for_writepage(wbc, page);
2423 unlock_page(page);
2424 return MPAGE_DA_EXTENT_TAIL;
2425 }
2426
2427 /*
2428 * Start next extent of pages ...
2429 */
2430 mpd->first_page = page->index;
2431
2432 /*
2433 * ... and blocks
2434 */
2435 mpd->b_size = 0;
2436 mpd->b_state = 0;
2437 mpd->b_blocknr = 0;
2438 }
2439
2440 mpd->next_page = page->index + 1;
2441 logical = (sector_t) page->index <<
2442 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2443
2444 if (!page_has_buffers(page)) {
2445 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2446 (1 << BH_Dirty) | (1 << BH_Uptodate));
2447 if (mpd->io_done)
2448 return MPAGE_DA_EXTENT_TAIL;
2449 } else {
2450 /*
2451 * Page with regular buffer heads, just add all dirty ones
2452 */
2453 head = page_buffers(page);
2454 bh = head;
2455 do {
2456 BUG_ON(buffer_locked(bh));
2457 /*
2458 * We need to try to allocate
2459 * unmapped blocks in the same page.
2460 * Otherwise we won't make progress
2461 * with the page in ext4_writepage
2462 */
2463 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2464 mpage_add_bh_to_extent(mpd, logical,
2465 bh->b_size,
2466 bh->b_state);
2467 if (mpd->io_done)
2468 return MPAGE_DA_EXTENT_TAIL;
2469 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2470 /*
2471 * mapped dirty buffer. We need to update
2472 * the b_state because we look at
2473 * b_state in mpage_da_map_blocks. We don't
2474 * update b_size because if we find an
2475 * unmapped buffer_head later we need to
2476 * use the b_state flag of that buffer_head.
2477 */
2478 if (mpd->b_size == 0)
2479 mpd->b_state = bh->b_state & BH_FLAGS;
2480 }
2481 logical++;
2482 } while ((bh = bh->b_this_page) != head);
2483 }
2484
2485 return 0;
2486 }
2487
2488 /*
2489 * This is a special get_blocks_t callback which is used by
2490 * ext4_da_write_begin(). It will either return mapped block or
2491 * reserve space for a single block.
2492 *
2493 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2494 * We also have b_blocknr = -1 and b_bdev initialized properly
2495 *
2496 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2497 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2498 * initialized properly.
2499 */
2500 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2501 struct buffer_head *bh_result, int create)
2502 {
2503 int ret = 0;
2504 sector_t invalid_block = ~((sector_t) 0xffff);
2505
2506 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2507 invalid_block = ~0;
2508
2509 BUG_ON(create == 0);
2510 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2511
2512 /*
2513 * first, we need to know whether the block is allocated already
2514 * preallocated blocks are unmapped but should treated
2515 * the same as allocated blocks.
2516 */
2517 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2518 if ((ret == 0) && !buffer_delay(bh_result)) {
2519 /* the block isn't (pre)allocated yet, let's reserve space */
2520 /*
2521 * XXX: __block_prepare_write() unmaps passed block,
2522 * is it OK?
2523 */
2524 ret = ext4_da_reserve_space(inode, iblock);
2525 if (ret)
2526 /* not enough space to reserve */
2527 return ret;
2528
2529 map_bh(bh_result, inode->i_sb, invalid_block);
2530 set_buffer_new(bh_result);
2531 set_buffer_delay(bh_result);
2532 } else if (ret > 0) {
2533 bh_result->b_size = (ret << inode->i_blkbits);
2534 if (buffer_unwritten(bh_result)) {
2535 /* A delayed write to unwritten bh should
2536 * be marked new and mapped. Mapped ensures
2537 * that we don't do get_block multiple times
2538 * when we write to the same offset and new
2539 * ensures that we do proper zero out for
2540 * partial write.
2541 */
2542 set_buffer_new(bh_result);
2543 set_buffer_mapped(bh_result);
2544 }
2545 ret = 0;
2546 }
2547
2548 return ret;
2549 }
2550
2551 /*
2552 * This function is used as a standard get_block_t calback function
2553 * when there is no desire to allocate any blocks. It is used as a
2554 * callback function for block_prepare_write(), nobh_writepage(), and
2555 * block_write_full_page(). These functions should only try to map a
2556 * single block at a time.
2557 *
2558 * Since this function doesn't do block allocations even if the caller
2559 * requests it by passing in create=1, it is critically important that
2560 * any caller checks to make sure that any buffer heads are returned
2561 * by this function are either all already mapped or marked for
2562 * delayed allocation before calling nobh_writepage() or
2563 * block_write_full_page(). Otherwise, b_blocknr could be left
2564 * unitialized, and the page write functions will be taken by
2565 * surprise.
2566 */
2567 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2568 struct buffer_head *bh_result, int create)
2569 {
2570 int ret = 0;
2571 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2572
2573 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2574
2575 /*
2576 * we don't want to do block allocation in writepage
2577 * so call get_block_wrap with create = 0
2578 */
2579 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2580 if (ret > 0) {
2581 bh_result->b_size = (ret << inode->i_blkbits);
2582 ret = 0;
2583 }
2584 return ret;
2585 }
2586
2587 static int bget_one(handle_t *handle, struct buffer_head *bh)
2588 {
2589 get_bh(bh);
2590 return 0;
2591 }
2592
2593 static int bput_one(handle_t *handle, struct buffer_head *bh)
2594 {
2595 put_bh(bh);
2596 return 0;
2597 }
2598
2599 static int __ext4_journalled_writepage(struct page *page,
2600 unsigned int len)
2601 {
2602 struct address_space *mapping = page->mapping;
2603 struct inode *inode = mapping->host;
2604 struct buffer_head *page_bufs;
2605 handle_t *handle = NULL;
2606 int ret = 0;
2607 int err;
2608
2609 page_bufs = page_buffers(page);
2610 BUG_ON(!page_bufs);
2611 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2612 /* As soon as we unlock the page, it can go away, but we have
2613 * references to buffers so we are safe */
2614 unlock_page(page);
2615
2616 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2617 if (IS_ERR(handle)) {
2618 ret = PTR_ERR(handle);
2619 goto out;
2620 }
2621
2622 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2623 do_journal_get_write_access);
2624
2625 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2626 write_end_fn);
2627 if (ret == 0)
2628 ret = err;
2629 err = ext4_journal_stop(handle);
2630 if (!ret)
2631 ret = err;
2632
2633 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2634 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2635 out:
2636 return ret;
2637 }
2638
2639 /*
2640 * Note that we don't need to start a transaction unless we're journaling data
2641 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2642 * need to file the inode to the transaction's list in ordered mode because if
2643 * we are writing back data added by write(), the inode is already there and if
2644 * we are writing back data modified via mmap(), noone guarantees in which
2645 * transaction the data will hit the disk. In case we are journaling data, we
2646 * cannot start transaction directly because transaction start ranks above page
2647 * lock so we have to do some magic.
2648 *
2649 * This function can get called via...
2650 * - ext4_da_writepages after taking page lock (have journal handle)
2651 * - journal_submit_inode_data_buffers (no journal handle)
2652 * - shrink_page_list via pdflush (no journal handle)
2653 * - grab_page_cache when doing write_begin (have journal handle)
2654 *
2655 * We don't do any block allocation in this function. If we have page with
2656 * multiple blocks we need to write those buffer_heads that are mapped. This
2657 * is important for mmaped based write. So if we do with blocksize 1K
2658 * truncate(f, 1024);
2659 * a = mmap(f, 0, 4096);
2660 * a[0] = 'a';
2661 * truncate(f, 4096);
2662 * we have in the page first buffer_head mapped via page_mkwrite call back
2663 * but other bufer_heads would be unmapped but dirty(dirty done via the
2664 * do_wp_page). So writepage should write the first block. If we modify
2665 * the mmap area beyond 1024 we will again get a page_fault and the
2666 * page_mkwrite callback will do the block allocation and mark the
2667 * buffer_heads mapped.
2668 *
2669 * We redirty the page if we have any buffer_heads that is either delay or
2670 * unwritten in the page.
2671 *
2672 * We can get recursively called as show below.
2673 *
2674 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2675 * ext4_writepage()
2676 *
2677 * But since we don't do any block allocation we should not deadlock.
2678 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2679 */
2680 static int ext4_writepage(struct page *page,
2681 struct writeback_control *wbc)
2682 {
2683 int ret = 0;
2684 loff_t size;
2685 unsigned int len;
2686 struct buffer_head *page_bufs;
2687 struct inode *inode = page->mapping->host;
2688
2689 trace_ext4_writepage(inode, page);
2690 size = i_size_read(inode);
2691 if (page->index == size >> PAGE_CACHE_SHIFT)
2692 len = size & ~PAGE_CACHE_MASK;
2693 else
2694 len = PAGE_CACHE_SIZE;
2695
2696 if (page_has_buffers(page)) {
2697 page_bufs = page_buffers(page);
2698 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2699 ext4_bh_delay_or_unwritten)) {
2700 /*
2701 * We don't want to do block allocation
2702 * So redirty the page and return
2703 * We may reach here when we do a journal commit
2704 * via journal_submit_inode_data_buffers.
2705 * If we don't have mapping block we just ignore
2706 * them. We can also reach here via shrink_page_list
2707 */
2708 redirty_page_for_writepage(wbc, page);
2709 unlock_page(page);
2710 return 0;
2711 }
2712 } else {
2713 /*
2714 * The test for page_has_buffers() is subtle:
2715 * We know the page is dirty but it lost buffers. That means
2716 * that at some moment in time after write_begin()/write_end()
2717 * has been called all buffers have been clean and thus they
2718 * must have been written at least once. So they are all
2719 * mapped and we can happily proceed with mapping them
2720 * and writing the page.
2721 *
2722 * Try to initialize the buffer_heads and check whether
2723 * all are mapped and non delay. We don't want to
2724 * do block allocation here.
2725 */
2726 ret = block_prepare_write(page, 0, len,
2727 noalloc_get_block_write);
2728 if (!ret) {
2729 page_bufs = page_buffers(page);
2730 /* check whether all are mapped and non delay */
2731 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2732 ext4_bh_delay_or_unwritten)) {
2733 redirty_page_for_writepage(wbc, page);
2734 unlock_page(page);
2735 return 0;
2736 }
2737 } else {
2738 /*
2739 * We can't do block allocation here
2740 * so just redity the page and unlock
2741 * and return
2742 */
2743 redirty_page_for_writepage(wbc, page);
2744 unlock_page(page);
2745 return 0;
2746 }
2747 /* now mark the buffer_heads as dirty and uptodate */
2748 block_commit_write(page, 0, len);
2749 }
2750
2751 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2752 /*
2753 * It's mmapped pagecache. Add buffers and journal it. There
2754 * doesn't seem much point in redirtying the page here.
2755 */
2756 ClearPageChecked(page);
2757 return __ext4_journalled_writepage(page, len);
2758 }
2759
2760 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2761 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2762 else
2763 ret = block_write_full_page(page, noalloc_get_block_write,
2764 wbc);
2765
2766 return ret;
2767 }
2768
2769 /*
2770 * This is called via ext4_da_writepages() to
2771 * calulate the total number of credits to reserve to fit
2772 * a single extent allocation into a single transaction,
2773 * ext4_da_writpeages() will loop calling this before
2774 * the block allocation.
2775 */
2776
2777 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2778 {
2779 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2780
2781 /*
2782 * With non-extent format the journal credit needed to
2783 * insert nrblocks contiguous block is dependent on
2784 * number of contiguous block. So we will limit
2785 * number of contiguous block to a sane value
2786 */
2787 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2788 (max_blocks > EXT4_MAX_TRANS_DATA))
2789 max_blocks = EXT4_MAX_TRANS_DATA;
2790
2791 return ext4_chunk_trans_blocks(inode, max_blocks);
2792 }
2793
2794 static int ext4_da_writepages(struct address_space *mapping,
2795 struct writeback_control *wbc)
2796 {
2797 pgoff_t index;
2798 int range_whole = 0;
2799 handle_t *handle = NULL;
2800 struct mpage_da_data mpd;
2801 struct inode *inode = mapping->host;
2802 int no_nrwrite_index_update;
2803 int pages_written = 0;
2804 long pages_skipped;
2805 unsigned int max_pages;
2806 int range_cyclic, cycled = 1, io_done = 0;
2807 int needed_blocks, ret = 0;
2808 long desired_nr_to_write, nr_to_writebump = 0;
2809 loff_t range_start = wbc->range_start;
2810 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2811
2812 trace_ext4_da_writepages(inode, wbc);
2813
2814 /*
2815 * No pages to write? This is mainly a kludge to avoid starting
2816 * a transaction for special inodes like journal inode on last iput()
2817 * because that could violate lock ordering on umount
2818 */
2819 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2820 return 0;
2821
2822 /*
2823 * If the filesystem has aborted, it is read-only, so return
2824 * right away instead of dumping stack traces later on that
2825 * will obscure the real source of the problem. We test
2826 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2827 * the latter could be true if the filesystem is mounted
2828 * read-only, and in that case, ext4_da_writepages should
2829 * *never* be called, so if that ever happens, we would want
2830 * the stack trace.
2831 */
2832 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2833 return -EROFS;
2834
2835 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2836 range_whole = 1;
2837
2838 range_cyclic = wbc->range_cyclic;
2839 if (wbc->range_cyclic) {
2840 index = mapping->writeback_index;
2841 if (index)
2842 cycled = 0;
2843 wbc->range_start = index << PAGE_CACHE_SHIFT;
2844 wbc->range_end = LLONG_MAX;
2845 wbc->range_cyclic = 0;
2846 } else
2847 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2848
2849 /*
2850 * This works around two forms of stupidity. The first is in
2851 * the writeback code, which caps the maximum number of pages
2852 * written to be 1024 pages. This is wrong on multiple
2853 * levels; different architectues have a different page size,
2854 * which changes the maximum amount of data which gets
2855 * written. Secondly, 4 megabytes is way too small. XFS
2856 * forces this value to be 16 megabytes by multiplying
2857 * nr_to_write parameter by four, and then relies on its
2858 * allocator to allocate larger extents to make them
2859 * contiguous. Unfortunately this brings us to the second
2860 * stupidity, which is that ext4's mballoc code only allocates
2861 * at most 2048 blocks. So we force contiguous writes up to
2862 * the number of dirty blocks in the inode, or
2863 * sbi->max_writeback_mb_bump whichever is smaller.
2864 */
2865 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2866 if (!range_cyclic && range_whole)
2867 desired_nr_to_write = wbc->nr_to_write * 8;
2868 else
2869 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2870 max_pages);
2871 if (desired_nr_to_write > max_pages)
2872 desired_nr_to_write = max_pages;
2873
2874 if (wbc->nr_to_write < desired_nr_to_write) {
2875 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2876 wbc->nr_to_write = desired_nr_to_write;
2877 }
2878
2879 mpd.wbc = wbc;
2880 mpd.inode = mapping->host;
2881
2882 /*
2883 * we don't want write_cache_pages to update
2884 * nr_to_write and writeback_index
2885 */
2886 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2887 wbc->no_nrwrite_index_update = 1;
2888 pages_skipped = wbc->pages_skipped;
2889
2890 retry:
2891 while (!ret && wbc->nr_to_write > 0) {
2892
2893 /*
2894 * we insert one extent at a time. So we need
2895 * credit needed for single extent allocation.
2896 * journalled mode is currently not supported
2897 * by delalloc
2898 */
2899 BUG_ON(ext4_should_journal_data(inode));
2900 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2901
2902 /* start a new transaction*/
2903 handle = ext4_journal_start(inode, needed_blocks);
2904 if (IS_ERR(handle)) {
2905 ret = PTR_ERR(handle);
2906 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2907 "%ld pages, ino %lu; err %d\n", __func__,
2908 wbc->nr_to_write, inode->i_ino, ret);
2909 goto out_writepages;
2910 }
2911
2912 /*
2913 * Now call __mpage_da_writepage to find the next
2914 * contiguous region of logical blocks that need
2915 * blocks to be allocated by ext4. We don't actually
2916 * submit the blocks for I/O here, even though
2917 * write_cache_pages thinks it will, and will set the
2918 * pages as clean for write before calling
2919 * __mpage_da_writepage().
2920 */
2921 mpd.b_size = 0;
2922 mpd.b_state = 0;
2923 mpd.b_blocknr = 0;
2924 mpd.first_page = 0;
2925 mpd.next_page = 0;
2926 mpd.io_done = 0;
2927 mpd.pages_written = 0;
2928 mpd.retval = 0;
2929 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2930 &mpd);
2931 /*
2932 * If we have a contiguous extent of pages and we
2933 * haven't done the I/O yet, map the blocks and submit
2934 * them for I/O.
2935 */
2936 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2937 if (mpage_da_map_blocks(&mpd) == 0)
2938 mpage_da_submit_io(&mpd);
2939 mpd.io_done = 1;
2940 ret = MPAGE_DA_EXTENT_TAIL;
2941 }
2942 trace_ext4_da_write_pages(inode, &mpd);
2943 wbc->nr_to_write -= mpd.pages_written;
2944
2945 ext4_journal_stop(handle);
2946
2947 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2948 /* commit the transaction which would
2949 * free blocks released in the transaction
2950 * and try again
2951 */
2952 jbd2_journal_force_commit_nested(sbi->s_journal);
2953 wbc->pages_skipped = pages_skipped;
2954 ret = 0;
2955 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2956 /*
2957 * got one extent now try with
2958 * rest of the pages
2959 */
2960 pages_written += mpd.pages_written;
2961 wbc->pages_skipped = pages_skipped;
2962 ret = 0;
2963 io_done = 1;
2964 } else if (wbc->nr_to_write)
2965 /*
2966 * There is no more writeout needed
2967 * or we requested for a noblocking writeout
2968 * and we found the device congested
2969 */
2970 break;
2971 }
2972 if (!io_done && !cycled) {
2973 cycled = 1;
2974 index = 0;
2975 wbc->range_start = index << PAGE_CACHE_SHIFT;
2976 wbc->range_end = mapping->writeback_index - 1;
2977 goto retry;
2978 }
2979 if (pages_skipped != wbc->pages_skipped)
2980 ext4_msg(inode->i_sb, KERN_CRIT,
2981 "This should not happen leaving %s "
2982 "with nr_to_write = %ld ret = %d\n",
2983 __func__, wbc->nr_to_write, ret);
2984
2985 /* Update index */
2986 index += pages_written;
2987 wbc->range_cyclic = range_cyclic;
2988 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2989 /*
2990 * set the writeback_index so that range_cyclic
2991 * mode will write it back later
2992 */
2993 mapping->writeback_index = index;
2994
2995 out_writepages:
2996 if (!no_nrwrite_index_update)
2997 wbc->no_nrwrite_index_update = 0;
2998 wbc->nr_to_write -= nr_to_writebump;
2999 wbc->range_start = range_start;
3000 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3001 return ret;
3002 }
3003
3004 #define FALL_BACK_TO_NONDELALLOC 1
3005 static int ext4_nonda_switch(struct super_block *sb)
3006 {
3007 s64 free_blocks, dirty_blocks;
3008 struct ext4_sb_info *sbi = EXT4_SB(sb);
3009
3010 /*
3011 * switch to non delalloc mode if we are running low
3012 * on free block. The free block accounting via percpu
3013 * counters can get slightly wrong with percpu_counter_batch getting
3014 * accumulated on each CPU without updating global counters
3015 * Delalloc need an accurate free block accounting. So switch
3016 * to non delalloc when we are near to error range.
3017 */
3018 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3019 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3020 if (2 * free_blocks < 3 * dirty_blocks ||
3021 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3022 /*
3023 * free block count is less than 150% of dirty blocks
3024 * or free blocks is less than watermark
3025 */
3026 return 1;
3027 }
3028 /*
3029 * Even if we don't switch but are nearing capacity,
3030 * start pushing delalloc when 1/2 of free blocks are dirty.
3031 */
3032 if (free_blocks < 2 * dirty_blocks)
3033 writeback_inodes_sb_if_idle(sb);
3034
3035 return 0;
3036 }
3037
3038 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3039 loff_t pos, unsigned len, unsigned flags,
3040 struct page **pagep, void **fsdata)
3041 {
3042 int ret, retries = 0, quota_retries = 0;
3043 struct page *page;
3044 pgoff_t index;
3045 unsigned from, to;
3046 struct inode *inode = mapping->host;
3047 handle_t *handle;
3048
3049 index = pos >> PAGE_CACHE_SHIFT;
3050 from = pos & (PAGE_CACHE_SIZE - 1);
3051 to = from + len;
3052
3053 if (ext4_nonda_switch(inode->i_sb)) {
3054 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3055 return ext4_write_begin(file, mapping, pos,
3056 len, flags, pagep, fsdata);
3057 }
3058 *fsdata = (void *)0;
3059 trace_ext4_da_write_begin(inode, pos, len, flags);
3060 retry:
3061 /*
3062 * With delayed allocation, we don't log the i_disksize update
3063 * if there is delayed block allocation. But we still need
3064 * to journalling the i_disksize update if writes to the end
3065 * of file which has an already mapped buffer.
3066 */
3067 handle = ext4_journal_start(inode, 1);
3068 if (IS_ERR(handle)) {
3069 ret = PTR_ERR(handle);
3070 goto out;
3071 }
3072 /* We cannot recurse into the filesystem as the transaction is already
3073 * started */
3074 flags |= AOP_FLAG_NOFS;
3075
3076 page = grab_cache_page_write_begin(mapping, index, flags);
3077 if (!page) {
3078 ext4_journal_stop(handle);
3079 ret = -ENOMEM;
3080 goto out;
3081 }
3082 *pagep = page;
3083
3084 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3085 ext4_da_get_block_prep);
3086 if (ret < 0) {
3087 unlock_page(page);
3088 ext4_journal_stop(handle);
3089 page_cache_release(page);
3090 /*
3091 * block_write_begin may have instantiated a few blocks
3092 * outside i_size. Trim these off again. Don't need
3093 * i_size_read because we hold i_mutex.
3094 */
3095 if (pos + len > inode->i_size)
3096 ext4_truncate_failed_write(inode);
3097 }
3098
3099 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3100 goto retry;
3101
3102 if ((ret == -EDQUOT) &&
3103 EXT4_I(inode)->i_reserved_meta_blocks &&
3104 (quota_retries++ < 3)) {
3105 /*
3106 * Since we often over-estimate the number of meta
3107 * data blocks required, we may sometimes get a
3108 * spurios out of quota error even though there would
3109 * be enough space once we write the data blocks and
3110 * find out how many meta data blocks were _really_
3111 * required. So try forcing the inode write to see if
3112 * that helps.
3113 */
3114 write_inode_now(inode, (quota_retries == 3));
3115 goto retry;
3116 }
3117 out:
3118 return ret;
3119 }
3120
3121 /*
3122 * Check if we should update i_disksize
3123 * when write to the end of file but not require block allocation
3124 */
3125 static int ext4_da_should_update_i_disksize(struct page *page,
3126 unsigned long offset)
3127 {
3128 struct buffer_head *bh;
3129 struct inode *inode = page->mapping->host;
3130 unsigned int idx;
3131 int i;
3132
3133 bh = page_buffers(page);
3134 idx = offset >> inode->i_blkbits;
3135
3136 for (i = 0; i < idx; i++)
3137 bh = bh->b_this_page;
3138
3139 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3140 return 0;
3141 return 1;
3142 }
3143
3144 static int ext4_da_write_end(struct file *file,
3145 struct address_space *mapping,
3146 loff_t pos, unsigned len, unsigned copied,
3147 struct page *page, void *fsdata)
3148 {
3149 struct inode *inode = mapping->host;
3150 int ret = 0, ret2;
3151 handle_t *handle = ext4_journal_current_handle();
3152 loff_t new_i_size;
3153 unsigned long start, end;
3154 int write_mode = (int)(unsigned long)fsdata;
3155
3156 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3157 if (ext4_should_order_data(inode)) {
3158 return ext4_ordered_write_end(file, mapping, pos,
3159 len, copied, page, fsdata);
3160 } else if (ext4_should_writeback_data(inode)) {
3161 return ext4_writeback_write_end(file, mapping, pos,
3162 len, copied, page, fsdata);
3163 } else {
3164 BUG();
3165 }
3166 }
3167
3168 trace_ext4_da_write_end(inode, pos, len, copied);
3169 start = pos & (PAGE_CACHE_SIZE - 1);
3170 end = start + copied - 1;
3171
3172 /*
3173 * generic_write_end() will run mark_inode_dirty() if i_size
3174 * changes. So let's piggyback the i_disksize mark_inode_dirty
3175 * into that.
3176 */
3177
3178 new_i_size = pos + copied;
3179 if (new_i_size > EXT4_I(inode)->i_disksize) {
3180 if (ext4_da_should_update_i_disksize(page, end)) {
3181 down_write(&EXT4_I(inode)->i_data_sem);
3182 if (new_i_size > EXT4_I(inode)->i_disksize) {
3183 /*
3184 * Updating i_disksize when extending file
3185 * without needing block allocation
3186 */
3187 if (ext4_should_order_data(inode))
3188 ret = ext4_jbd2_file_inode(handle,
3189 inode);
3190
3191 EXT4_I(inode)->i_disksize = new_i_size;
3192 }
3193 up_write(&EXT4_I(inode)->i_data_sem);
3194 /* We need to mark inode dirty even if
3195 * new_i_size is less that inode->i_size
3196 * bu greater than i_disksize.(hint delalloc)
3197 */
3198 ext4_mark_inode_dirty(handle, inode);
3199 }
3200 }
3201 ret2 = generic_write_end(file, mapping, pos, len, copied,
3202 page, fsdata);
3203 copied = ret2;
3204 if (ret2 < 0)
3205 ret = ret2;
3206 ret2 = ext4_journal_stop(handle);
3207 if (!ret)
3208 ret = ret2;
3209
3210 return ret ? ret : copied;
3211 }
3212
3213 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3214 {
3215 /*
3216 * Drop reserved blocks
3217 */
3218 BUG_ON(!PageLocked(page));
3219 if (!page_has_buffers(page))
3220 goto out;
3221
3222 ext4_da_page_release_reservation(page, offset);
3223
3224 out:
3225 ext4_invalidatepage(page, offset);
3226
3227 return;
3228 }
3229
3230 /*
3231 * Force all delayed allocation blocks to be allocated for a given inode.
3232 */
3233 int ext4_alloc_da_blocks(struct inode *inode)
3234 {
3235 trace_ext4_alloc_da_blocks(inode);
3236
3237 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3238 !EXT4_I(inode)->i_reserved_meta_blocks)
3239 return 0;
3240
3241 /*
3242 * We do something simple for now. The filemap_flush() will
3243 * also start triggering a write of the data blocks, which is
3244 * not strictly speaking necessary (and for users of
3245 * laptop_mode, not even desirable). However, to do otherwise
3246 * would require replicating code paths in:
3247 *
3248 * ext4_da_writepages() ->
3249 * write_cache_pages() ---> (via passed in callback function)
3250 * __mpage_da_writepage() -->
3251 * mpage_add_bh_to_extent()
3252 * mpage_da_map_blocks()
3253 *
3254 * The problem is that write_cache_pages(), located in
3255 * mm/page-writeback.c, marks pages clean in preparation for
3256 * doing I/O, which is not desirable if we're not planning on
3257 * doing I/O at all.
3258 *
3259 * We could call write_cache_pages(), and then redirty all of
3260 * the pages by calling redirty_page_for_writeback() but that
3261 * would be ugly in the extreme. So instead we would need to
3262 * replicate parts of the code in the above functions,
3263 * simplifying them becuase we wouldn't actually intend to
3264 * write out the pages, but rather only collect contiguous
3265 * logical block extents, call the multi-block allocator, and
3266 * then update the buffer heads with the block allocations.
3267 *
3268 * For now, though, we'll cheat by calling filemap_flush(),
3269 * which will map the blocks, and start the I/O, but not
3270 * actually wait for the I/O to complete.
3271 */
3272 return filemap_flush(inode->i_mapping);
3273 }
3274
3275 /*
3276 * bmap() is special. It gets used by applications such as lilo and by
3277 * the swapper to find the on-disk block of a specific piece of data.
3278 *
3279 * Naturally, this is dangerous if the block concerned is still in the
3280 * journal. If somebody makes a swapfile on an ext4 data-journaling
3281 * filesystem and enables swap, then they may get a nasty shock when the
3282 * data getting swapped to that swapfile suddenly gets overwritten by
3283 * the original zero's written out previously to the journal and
3284 * awaiting writeback in the kernel's buffer cache.
3285 *
3286 * So, if we see any bmap calls here on a modified, data-journaled file,
3287 * take extra steps to flush any blocks which might be in the cache.
3288 */
3289 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3290 {
3291 struct inode *inode = mapping->host;
3292 journal_t *journal;
3293 int err;
3294
3295 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3296 test_opt(inode->i_sb, DELALLOC)) {
3297 /*
3298 * With delalloc we want to sync the file
3299 * so that we can make sure we allocate
3300 * blocks for file
3301 */
3302 filemap_write_and_wait(mapping);
3303 }
3304
3305 if (EXT4_JOURNAL(inode) &&
3306 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3307 /*
3308 * This is a REALLY heavyweight approach, but the use of
3309 * bmap on dirty files is expected to be extremely rare:
3310 * only if we run lilo or swapon on a freshly made file
3311 * do we expect this to happen.
3312 *
3313 * (bmap requires CAP_SYS_RAWIO so this does not
3314 * represent an unprivileged user DOS attack --- we'd be
3315 * in trouble if mortal users could trigger this path at
3316 * will.)
3317 *
3318 * NB. EXT4_STATE_JDATA is not set on files other than
3319 * regular files. If somebody wants to bmap a directory
3320 * or symlink and gets confused because the buffer
3321 * hasn't yet been flushed to disk, they deserve
3322 * everything they get.
3323 */
3324
3325 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3326 journal = EXT4_JOURNAL(inode);
3327 jbd2_journal_lock_updates(journal);
3328 err = jbd2_journal_flush(journal);
3329 jbd2_journal_unlock_updates(journal);
3330
3331 if (err)
3332 return 0;
3333 }
3334
3335 return generic_block_bmap(mapping, block, ext4_get_block);
3336 }
3337
3338 static int ext4_readpage(struct file *file, struct page *page)
3339 {
3340 return mpage_readpage(page, ext4_get_block);
3341 }
3342
3343 static int
3344 ext4_readpages(struct file *file, struct address_space *mapping,
3345 struct list_head *pages, unsigned nr_pages)
3346 {
3347 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3348 }
3349
3350 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3351 {
3352 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3353
3354 /*
3355 * If it's a full truncate we just forget about the pending dirtying
3356 */
3357 if (offset == 0)
3358 ClearPageChecked(page);
3359
3360 if (journal)
3361 jbd2_journal_invalidatepage(journal, page, offset);
3362 else
3363 block_invalidatepage(page, offset);
3364 }
3365
3366 static int ext4_releasepage(struct page *page, gfp_t wait)
3367 {
3368 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3369
3370 WARN_ON(PageChecked(page));
3371 if (!page_has_buffers(page))
3372 return 0;
3373 if (journal)
3374 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3375 else
3376 return try_to_free_buffers(page);
3377 }
3378
3379 /*
3380 * O_DIRECT for ext3 (or indirect map) based files
3381 *
3382 * If the O_DIRECT write will extend the file then add this inode to the
3383 * orphan list. So recovery will truncate it back to the original size
3384 * if the machine crashes during the write.
3385 *
3386 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3387 * crashes then stale disk data _may_ be exposed inside the file. But current
3388 * VFS code falls back into buffered path in that case so we are safe.
3389 */
3390 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3391 const struct iovec *iov, loff_t offset,
3392 unsigned long nr_segs)
3393 {
3394 struct file *file = iocb->ki_filp;
3395 struct inode *inode = file->f_mapping->host;
3396 struct ext4_inode_info *ei = EXT4_I(inode);
3397 handle_t *handle;
3398 ssize_t ret;
3399 int orphan = 0;
3400 size_t count = iov_length(iov, nr_segs);
3401 int retries = 0;
3402
3403 if (rw == WRITE) {
3404 loff_t final_size = offset + count;
3405
3406 if (final_size > inode->i_size) {
3407 /* Credits for sb + inode write */
3408 handle = ext4_journal_start(inode, 2);
3409 if (IS_ERR(handle)) {
3410 ret = PTR_ERR(handle);
3411 goto out;
3412 }
3413 ret = ext4_orphan_add(handle, inode);
3414 if (ret) {
3415 ext4_journal_stop(handle);
3416 goto out;
3417 }
3418 orphan = 1;
3419 ei->i_disksize = inode->i_size;
3420 ext4_journal_stop(handle);
3421 }
3422 }
3423
3424 retry:
3425 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3426 offset, nr_segs,
3427 ext4_get_block, NULL);
3428 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3429 goto retry;
3430
3431 if (orphan) {
3432 int err;
3433
3434 /* Credits for sb + inode write */
3435 handle = ext4_journal_start(inode, 2);
3436 if (IS_ERR(handle)) {
3437 /* This is really bad luck. We've written the data
3438 * but cannot extend i_size. Bail out and pretend
3439 * the write failed... */
3440 ret = PTR_ERR(handle);
3441 goto out;
3442 }
3443 if (inode->i_nlink)
3444 ext4_orphan_del(handle, inode);
3445 if (ret > 0) {
3446 loff_t end = offset + ret;
3447 if (end > inode->i_size) {
3448 ei->i_disksize = end;
3449 i_size_write(inode, end);
3450 /*
3451 * We're going to return a positive `ret'
3452 * here due to non-zero-length I/O, so there's
3453 * no way of reporting error returns from
3454 * ext4_mark_inode_dirty() to userspace. So
3455 * ignore it.
3456 */
3457 ext4_mark_inode_dirty(handle, inode);
3458 }
3459 }
3460 err = ext4_journal_stop(handle);
3461 if (ret == 0)
3462 ret = err;
3463 }
3464 out:
3465 return ret;
3466 }
3467
3468 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3469 struct buffer_head *bh_result, int create)
3470 {
3471 handle_t *handle = NULL;
3472 int ret = 0;
3473 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3474 int dio_credits;
3475
3476 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3477 inode->i_ino, create);
3478 /*
3479 * DIO VFS code passes create = 0 flag for write to
3480 * the middle of file. It does this to avoid block
3481 * allocation for holes, to prevent expose stale data
3482 * out when there is parallel buffered read (which does
3483 * not hold the i_mutex lock) while direct IO write has
3484 * not completed. DIO request on holes finally falls back
3485 * to buffered IO for this reason.
3486 *
3487 * For ext4 extent based file, since we support fallocate,
3488 * new allocated extent as uninitialized, for holes, we
3489 * could fallocate blocks for holes, thus parallel
3490 * buffered IO read will zero out the page when read on
3491 * a hole while parallel DIO write to the hole has not completed.
3492 *
3493 * when we come here, we know it's a direct IO write to
3494 * to the middle of file (<i_size)
3495 * so it's safe to override the create flag from VFS.
3496 */
3497 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3498
3499 if (max_blocks > DIO_MAX_BLOCKS)
3500 max_blocks = DIO_MAX_BLOCKS;
3501 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3502 handle = ext4_journal_start(inode, dio_credits);
3503 if (IS_ERR(handle)) {
3504 ret = PTR_ERR(handle);
3505 goto out;
3506 }
3507 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3508 create);
3509 if (ret > 0) {
3510 bh_result->b_size = (ret << inode->i_blkbits);
3511 ret = 0;
3512 }
3513 ext4_journal_stop(handle);
3514 out:
3515 return ret;
3516 }
3517
3518 static void ext4_free_io_end(ext4_io_end_t *io)
3519 {
3520 BUG_ON(!io);
3521 iput(io->inode);
3522 kfree(io);
3523 }
3524 static void dump_aio_dio_list(struct inode * inode)
3525 {
3526 #ifdef EXT4_DEBUG
3527 struct list_head *cur, *before, *after;
3528 ext4_io_end_t *io, *io0, *io1;
3529
3530 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3531 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3532 return;
3533 }
3534
3535 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3536 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3537 cur = &io->list;
3538 before = cur->prev;
3539 io0 = container_of(before, ext4_io_end_t, list);
3540 after = cur->next;
3541 io1 = container_of(after, ext4_io_end_t, list);
3542
3543 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3544 io, inode->i_ino, io0, io1);
3545 }
3546 #endif
3547 }
3548
3549 /*
3550 * check a range of space and convert unwritten extents to written.
3551 */
3552 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3553 {
3554 struct inode *inode = io->inode;
3555 loff_t offset = io->offset;
3556 ssize_t size = io->size;
3557 int ret = 0;
3558
3559 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3560 "list->prev 0x%p\n",
3561 io, inode->i_ino, io->list.next, io->list.prev);
3562
3563 if (list_empty(&io->list))
3564 return ret;
3565
3566 if (io->flag != DIO_AIO_UNWRITTEN)
3567 return ret;
3568
3569 if (offset + size <= i_size_read(inode))
3570 ret = ext4_convert_unwritten_extents(inode, offset, size);
3571
3572 if (ret < 0) {
3573 printk(KERN_EMERG "%s: failed to convert unwritten"
3574 "extents to written extents, error is %d"
3575 " io is still on inode %lu aio dio list\n",
3576 __func__, ret, inode->i_ino);
3577 return ret;
3578 }
3579
3580 /* clear the DIO AIO unwritten flag */
3581 io->flag = 0;
3582 return ret;
3583 }
3584 /*
3585 * work on completed aio dio IO, to convert unwritten extents to extents
3586 */
3587 static void ext4_end_aio_dio_work(struct work_struct *work)
3588 {
3589 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3590 struct inode *inode = io->inode;
3591 int ret = 0;
3592
3593 mutex_lock(&inode->i_mutex);
3594 ret = ext4_end_aio_dio_nolock(io);
3595 if (ret >= 0) {
3596 if (!list_empty(&io->list))
3597 list_del_init(&io->list);
3598 ext4_free_io_end(io);
3599 }
3600 mutex_unlock(&inode->i_mutex);
3601 }
3602 /*
3603 * This function is called from ext4_sync_file().
3604 *
3605 * When AIO DIO IO is completed, the work to convert unwritten
3606 * extents to written is queued on workqueue but may not get immediately
3607 * scheduled. When fsync is called, we need to ensure the
3608 * conversion is complete before fsync returns.
3609 * The inode keeps track of a list of completed AIO from DIO path
3610 * that might needs to do the conversion. This function walks through
3611 * the list and convert the related unwritten extents to written.
3612 */
3613 int flush_aio_dio_completed_IO(struct inode *inode)
3614 {
3615 ext4_io_end_t *io;
3616 int ret = 0;
3617 int ret2 = 0;
3618
3619 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3620 return ret;
3621
3622 dump_aio_dio_list(inode);
3623 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3624 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3625 ext4_io_end_t, list);
3626 /*
3627 * Calling ext4_end_aio_dio_nolock() to convert completed
3628 * IO to written.
3629 *
3630 * When ext4_sync_file() is called, run_queue() may already
3631 * about to flush the work corresponding to this io structure.
3632 * It will be upset if it founds the io structure related
3633 * to the work-to-be schedule is freed.
3634 *
3635 * Thus we need to keep the io structure still valid here after
3636 * convertion finished. The io structure has a flag to
3637 * avoid double converting from both fsync and background work
3638 * queue work.
3639 */
3640 ret = ext4_end_aio_dio_nolock(io);
3641 if (ret < 0)
3642 ret2 = ret;
3643 else
3644 list_del_init(&io->list);
3645 }
3646 return (ret2 < 0) ? ret2 : 0;
3647 }
3648
3649 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3650 {
3651 ext4_io_end_t *io = NULL;
3652
3653 io = kmalloc(sizeof(*io), GFP_NOFS);
3654
3655 if (io) {
3656 igrab(inode);
3657 io->inode = inode;
3658 io->flag = 0;
3659 io->offset = 0;
3660 io->size = 0;
3661 io->error = 0;
3662 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3663 INIT_LIST_HEAD(&io->list);
3664 }
3665
3666 return io;
3667 }
3668
3669 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3670 ssize_t size, void *private)
3671 {
3672 ext4_io_end_t *io_end = iocb->private;
3673 struct workqueue_struct *wq;
3674
3675 /* if not async direct IO or dio with 0 bytes write, just return */
3676 if (!io_end || !size)
3677 return;
3678
3679 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3680 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3681 iocb->private, io_end->inode->i_ino, iocb, offset,
3682 size);
3683
3684 /* if not aio dio with unwritten extents, just free io and return */
3685 if (io_end->flag != DIO_AIO_UNWRITTEN){
3686 ext4_free_io_end(io_end);
3687 iocb->private = NULL;
3688 return;
3689 }
3690
3691 io_end->offset = offset;
3692 io_end->size = size;
3693 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3694
3695 /* queue the work to convert unwritten extents to written */
3696 queue_work(wq, &io_end->work);
3697
3698 /* Add the io_end to per-inode completed aio dio list*/
3699 list_add_tail(&io_end->list,
3700 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3701 iocb->private = NULL;
3702 }
3703 /*
3704 * For ext4 extent files, ext4 will do direct-io write to holes,
3705 * preallocated extents, and those write extend the file, no need to
3706 * fall back to buffered IO.
3707 *
3708 * For holes, we fallocate those blocks, mark them as unintialized
3709 * If those blocks were preallocated, we mark sure they are splited, but
3710 * still keep the range to write as unintialized.
3711 *
3712 * The unwrritten extents will be converted to written when DIO is completed.
3713 * For async direct IO, since the IO may still pending when return, we
3714 * set up an end_io call back function, which will do the convertion
3715 * when async direct IO completed.
3716 *
3717 * If the O_DIRECT write will extend the file then add this inode to the
3718 * orphan list. So recovery will truncate it back to the original size
3719 * if the machine crashes during the write.
3720 *
3721 */
3722 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3723 const struct iovec *iov, loff_t offset,
3724 unsigned long nr_segs)
3725 {
3726 struct file *file = iocb->ki_filp;
3727 struct inode *inode = file->f_mapping->host;
3728 ssize_t ret;
3729 size_t count = iov_length(iov, nr_segs);
3730
3731 loff_t final_size = offset + count;
3732 if (rw == WRITE && final_size <= inode->i_size) {
3733 /*
3734 * We could direct write to holes and fallocate.
3735 *
3736 * Allocated blocks to fill the hole are marked as uninitialized
3737 * to prevent paralel buffered read to expose the stale data
3738 * before DIO complete the data IO.
3739 *
3740 * As to previously fallocated extents, ext4 get_block
3741 * will just simply mark the buffer mapped but still
3742 * keep the extents uninitialized.
3743 *
3744 * for non AIO case, we will convert those unwritten extents
3745 * to written after return back from blockdev_direct_IO.
3746 *
3747 * for async DIO, the conversion needs to be defered when
3748 * the IO is completed. The ext4 end_io callback function
3749 * will be called to take care of the conversion work.
3750 * Here for async case, we allocate an io_end structure to
3751 * hook to the iocb.
3752 */
3753 iocb->private = NULL;
3754 EXT4_I(inode)->cur_aio_dio = NULL;
3755 if (!is_sync_kiocb(iocb)) {
3756 iocb->private = ext4_init_io_end(inode);
3757 if (!iocb->private)
3758 return -ENOMEM;
3759 /*
3760 * we save the io structure for current async
3761 * direct IO, so that later ext4_get_blocks()
3762 * could flag the io structure whether there
3763 * is a unwritten extents needs to be converted
3764 * when IO is completed.
3765 */
3766 EXT4_I(inode)->cur_aio_dio = iocb->private;
3767 }
3768
3769 ret = blockdev_direct_IO(rw, iocb, inode,
3770 inode->i_sb->s_bdev, iov,
3771 offset, nr_segs,
3772 ext4_get_block_dio_write,
3773 ext4_end_io_dio);
3774 if (iocb->private)
3775 EXT4_I(inode)->cur_aio_dio = NULL;
3776 /*
3777 * The io_end structure takes a reference to the inode,
3778 * that structure needs to be destroyed and the
3779 * reference to the inode need to be dropped, when IO is
3780 * complete, even with 0 byte write, or failed.
3781 *
3782 * In the successful AIO DIO case, the io_end structure will be
3783 * desctroyed and the reference to the inode will be dropped
3784 * after the end_io call back function is called.
3785 *
3786 * In the case there is 0 byte write, or error case, since
3787 * VFS direct IO won't invoke the end_io call back function,
3788 * we need to free the end_io structure here.
3789 */
3790 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3791 ext4_free_io_end(iocb->private);
3792 iocb->private = NULL;
3793 } else if (ret > 0 && ext4_test_inode_state(inode,
3794 EXT4_STATE_DIO_UNWRITTEN)) {
3795 int err;
3796 /*
3797 * for non AIO case, since the IO is already
3798 * completed, we could do the convertion right here
3799 */
3800 err = ext4_convert_unwritten_extents(inode,
3801 offset, ret);
3802 if (err < 0)
3803 ret = err;
3804 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3805 }
3806 return ret;
3807 }
3808
3809 /* for write the the end of file case, we fall back to old way */
3810 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3811 }
3812
3813 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3814 const struct iovec *iov, loff_t offset,
3815 unsigned long nr_segs)
3816 {
3817 struct file *file = iocb->ki_filp;
3818 struct inode *inode = file->f_mapping->host;
3819
3820 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3821 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3822
3823 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3824 }
3825
3826 /*
3827 * Pages can be marked dirty completely asynchronously from ext4's journalling
3828 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3829 * much here because ->set_page_dirty is called under VFS locks. The page is
3830 * not necessarily locked.
3831 *
3832 * We cannot just dirty the page and leave attached buffers clean, because the
3833 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3834 * or jbddirty because all the journalling code will explode.
3835 *
3836 * So what we do is to mark the page "pending dirty" and next time writepage
3837 * is called, propagate that into the buffers appropriately.
3838 */
3839 static int ext4_journalled_set_page_dirty(struct page *page)
3840 {
3841 SetPageChecked(page);
3842 return __set_page_dirty_nobuffers(page);
3843 }
3844
3845 static const struct address_space_operations ext4_ordered_aops = {
3846 .readpage = ext4_readpage,
3847 .readpages = ext4_readpages,
3848 .writepage = ext4_writepage,
3849 .sync_page = block_sync_page,
3850 .write_begin = ext4_write_begin,
3851 .write_end = ext4_ordered_write_end,
3852 .bmap = ext4_bmap,
3853 .invalidatepage = ext4_invalidatepage,
3854 .releasepage = ext4_releasepage,
3855 .direct_IO = ext4_direct_IO,
3856 .migratepage = buffer_migrate_page,
3857 .is_partially_uptodate = block_is_partially_uptodate,
3858 .error_remove_page = generic_error_remove_page,
3859 };
3860
3861 static const struct address_space_operations ext4_writeback_aops = {
3862 .readpage = ext4_readpage,
3863 .readpages = ext4_readpages,
3864 .writepage = ext4_writepage,
3865 .sync_page = block_sync_page,
3866 .write_begin = ext4_write_begin,
3867 .write_end = ext4_writeback_write_end,
3868 .bmap = ext4_bmap,
3869 .invalidatepage = ext4_invalidatepage,
3870 .releasepage = ext4_releasepage,
3871 .direct_IO = ext4_direct_IO,
3872 .migratepage = buffer_migrate_page,
3873 .is_partially_uptodate = block_is_partially_uptodate,
3874 .error_remove_page = generic_error_remove_page,
3875 };
3876
3877 static const struct address_space_operations ext4_journalled_aops = {
3878 .readpage = ext4_readpage,
3879 .readpages = ext4_readpages,
3880 .writepage = ext4_writepage,
3881 .sync_page = block_sync_page,
3882 .write_begin = ext4_write_begin,
3883 .write_end = ext4_journalled_write_end,
3884 .set_page_dirty = ext4_journalled_set_page_dirty,
3885 .bmap = ext4_bmap,
3886 .invalidatepage = ext4_invalidatepage,
3887 .releasepage = ext4_releasepage,
3888 .is_partially_uptodate = block_is_partially_uptodate,
3889 .error_remove_page = generic_error_remove_page,
3890 };
3891
3892 static const struct address_space_operations ext4_da_aops = {
3893 .readpage = ext4_readpage,
3894 .readpages = ext4_readpages,
3895 .writepage = ext4_writepage,
3896 .writepages = ext4_da_writepages,
3897 .sync_page = block_sync_page,
3898 .write_begin = ext4_da_write_begin,
3899 .write_end = ext4_da_write_end,
3900 .bmap = ext4_bmap,
3901 .invalidatepage = ext4_da_invalidatepage,
3902 .releasepage = ext4_releasepage,
3903 .direct_IO = ext4_direct_IO,
3904 .migratepage = buffer_migrate_page,
3905 .is_partially_uptodate = block_is_partially_uptodate,
3906 .error_remove_page = generic_error_remove_page,
3907 };
3908
3909 void ext4_set_aops(struct inode *inode)
3910 {
3911 if (ext4_should_order_data(inode) &&
3912 test_opt(inode->i_sb, DELALLOC))
3913 inode->i_mapping->a_ops = &ext4_da_aops;
3914 else if (ext4_should_order_data(inode))
3915 inode->i_mapping->a_ops = &ext4_ordered_aops;
3916 else if (ext4_should_writeback_data(inode) &&
3917 test_opt(inode->i_sb, DELALLOC))
3918 inode->i_mapping->a_ops = &ext4_da_aops;
3919 else if (ext4_should_writeback_data(inode))
3920 inode->i_mapping->a_ops = &ext4_writeback_aops;
3921 else
3922 inode->i_mapping->a_ops = &ext4_journalled_aops;
3923 }
3924
3925 /*
3926 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3927 * up to the end of the block which corresponds to `from'.
3928 * This required during truncate. We need to physically zero the tail end
3929 * of that block so it doesn't yield old data if the file is later grown.
3930 */
3931 int ext4_block_truncate_page(handle_t *handle,
3932 struct address_space *mapping, loff_t from)
3933 {
3934 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3935 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3936 unsigned blocksize, length, pos;
3937 ext4_lblk_t iblock;
3938 struct inode *inode = mapping->host;
3939 struct buffer_head *bh;
3940 struct page *page;
3941 int err = 0;
3942
3943 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3944 mapping_gfp_mask(mapping) & ~__GFP_FS);
3945 if (!page)
3946 return -EINVAL;
3947
3948 blocksize = inode->i_sb->s_blocksize;
3949 length = blocksize - (offset & (blocksize - 1));
3950 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3951
3952 /*
3953 * For "nobh" option, we can only work if we don't need to
3954 * read-in the page - otherwise we create buffers to do the IO.
3955 */
3956 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3957 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3958 zero_user(page, offset, length);
3959 set_page_dirty(page);
3960 goto unlock;
3961 }
3962
3963 if (!page_has_buffers(page))
3964 create_empty_buffers(page, blocksize, 0);
3965
3966 /* Find the buffer that contains "offset" */
3967 bh = page_buffers(page);
3968 pos = blocksize;
3969 while (offset >= pos) {
3970 bh = bh->b_this_page;
3971 iblock++;
3972 pos += blocksize;
3973 }
3974
3975 err = 0;
3976 if (buffer_freed(bh)) {
3977 BUFFER_TRACE(bh, "freed: skip");
3978 goto unlock;
3979 }
3980
3981 if (!buffer_mapped(bh)) {
3982 BUFFER_TRACE(bh, "unmapped");
3983 ext4_get_block(inode, iblock, bh, 0);
3984 /* unmapped? It's a hole - nothing to do */
3985 if (!buffer_mapped(bh)) {
3986 BUFFER_TRACE(bh, "still unmapped");
3987 goto unlock;
3988 }
3989 }
3990
3991 /* Ok, it's mapped. Make sure it's up-to-date */
3992 if (PageUptodate(page))
3993 set_buffer_uptodate(bh);
3994
3995 if (!buffer_uptodate(bh)) {
3996 err = -EIO;
3997 ll_rw_block(READ, 1, &bh);
3998 wait_on_buffer(bh);
3999 /* Uhhuh. Read error. Complain and punt. */
4000 if (!buffer_uptodate(bh))
4001 goto unlock;
4002 }
4003
4004 if (ext4_should_journal_data(inode)) {
4005 BUFFER_TRACE(bh, "get write access");
4006 err = ext4_journal_get_write_access(handle, bh);
4007 if (err)
4008 goto unlock;
4009 }
4010
4011 zero_user(page, offset, length);
4012
4013 BUFFER_TRACE(bh, "zeroed end of block");
4014
4015 err = 0;
4016 if (ext4_should_journal_data(inode)) {
4017 err = ext4_handle_dirty_metadata(handle, inode, bh);
4018 } else {
4019 if (ext4_should_order_data(inode))
4020 err = ext4_jbd2_file_inode(handle, inode);
4021 mark_buffer_dirty(bh);
4022 }
4023
4024 unlock:
4025 unlock_page(page);
4026 page_cache_release(page);
4027 return err;
4028 }
4029
4030 /*
4031 * Probably it should be a library function... search for first non-zero word
4032 * or memcmp with zero_page, whatever is better for particular architecture.
4033 * Linus?
4034 */
4035 static inline int all_zeroes(__le32 *p, __le32 *q)
4036 {
4037 while (p < q)
4038 if (*p++)
4039 return 0;
4040 return 1;
4041 }
4042
4043 /**
4044 * ext4_find_shared - find the indirect blocks for partial truncation.
4045 * @inode: inode in question
4046 * @depth: depth of the affected branch
4047 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4048 * @chain: place to store the pointers to partial indirect blocks
4049 * @top: place to the (detached) top of branch
4050 *
4051 * This is a helper function used by ext4_truncate().
4052 *
4053 * When we do truncate() we may have to clean the ends of several
4054 * indirect blocks but leave the blocks themselves alive. Block is
4055 * partially truncated if some data below the new i_size is refered
4056 * from it (and it is on the path to the first completely truncated
4057 * data block, indeed). We have to free the top of that path along
4058 * with everything to the right of the path. Since no allocation
4059 * past the truncation point is possible until ext4_truncate()
4060 * finishes, we may safely do the latter, but top of branch may
4061 * require special attention - pageout below the truncation point
4062 * might try to populate it.
4063 *
4064 * We atomically detach the top of branch from the tree, store the
4065 * block number of its root in *@top, pointers to buffer_heads of
4066 * partially truncated blocks - in @chain[].bh and pointers to
4067 * their last elements that should not be removed - in
4068 * @chain[].p. Return value is the pointer to last filled element
4069 * of @chain.
4070 *
4071 * The work left to caller to do the actual freeing of subtrees:
4072 * a) free the subtree starting from *@top
4073 * b) free the subtrees whose roots are stored in
4074 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4075 * c) free the subtrees growing from the inode past the @chain[0].
4076 * (no partially truncated stuff there). */
4077
4078 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4079 ext4_lblk_t offsets[4], Indirect chain[4],
4080 __le32 *top)
4081 {
4082 Indirect *partial, *p;
4083 int k, err;
4084
4085 *top = 0;
4086 /* Make k index the deepest non-null offset + 1 */
4087 for (k = depth; k > 1 && !offsets[k-1]; k--)
4088 ;
4089 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4090 /* Writer: pointers */
4091 if (!partial)
4092 partial = chain + k-1;
4093 /*
4094 * If the branch acquired continuation since we've looked at it -
4095 * fine, it should all survive and (new) top doesn't belong to us.
4096 */
4097 if (!partial->key && *partial->p)
4098 /* Writer: end */
4099 goto no_top;
4100 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4101 ;
4102 /*
4103 * OK, we've found the last block that must survive. The rest of our
4104 * branch should be detached before unlocking. However, if that rest
4105 * of branch is all ours and does not grow immediately from the inode
4106 * it's easier to cheat and just decrement partial->p.
4107 */
4108 if (p == chain + k - 1 && p > chain) {
4109 p->p--;
4110 } else {
4111 *top = *p->p;
4112 /* Nope, don't do this in ext4. Must leave the tree intact */
4113 #if 0
4114 *p->p = 0;
4115 #endif
4116 }
4117 /* Writer: end */
4118
4119 while (partial > p) {
4120 brelse(partial->bh);
4121 partial--;
4122 }
4123 no_top:
4124 return partial;
4125 }
4126
4127 /*
4128 * Zero a number of block pointers in either an inode or an indirect block.
4129 * If we restart the transaction we must again get write access to the
4130 * indirect block for further modification.
4131 *
4132 * We release `count' blocks on disk, but (last - first) may be greater
4133 * than `count' because there can be holes in there.
4134 */
4135 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4136 struct buffer_head *bh,
4137 ext4_fsblk_t block_to_free,
4138 unsigned long count, __le32 *first,
4139 __le32 *last)
4140 {
4141 __le32 *p;
4142 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4143
4144 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4145 flags |= EXT4_FREE_BLOCKS_METADATA;
4146
4147 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4148 count)) {
4149 ext4_error(inode->i_sb, "inode #%lu: "
4150 "attempt to clear blocks %llu len %lu, invalid",
4151 inode->i_ino, (unsigned long long) block_to_free,
4152 count);
4153 return 1;
4154 }
4155
4156 if (try_to_extend_transaction(handle, inode)) {
4157 if (bh) {
4158 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4159 ext4_handle_dirty_metadata(handle, inode, bh);
4160 }
4161 ext4_mark_inode_dirty(handle, inode);
4162 ext4_truncate_restart_trans(handle, inode,
4163 blocks_for_truncate(inode));
4164 if (bh) {
4165 BUFFER_TRACE(bh, "retaking write access");
4166 ext4_journal_get_write_access(handle, bh);
4167 }
4168 }
4169
4170 for (p = first; p < last; p++)
4171 *p = 0;
4172
4173 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4174 return 0;
4175 }
4176
4177 /**
4178 * ext4_free_data - free a list of data blocks
4179 * @handle: handle for this transaction
4180 * @inode: inode we are dealing with
4181 * @this_bh: indirect buffer_head which contains *@first and *@last
4182 * @first: array of block numbers
4183 * @last: points immediately past the end of array
4184 *
4185 * We are freeing all blocks refered from that array (numbers are stored as
4186 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4187 *
4188 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4189 * blocks are contiguous then releasing them at one time will only affect one
4190 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4191 * actually use a lot of journal space.
4192 *
4193 * @this_bh will be %NULL if @first and @last point into the inode's direct
4194 * block pointers.
4195 */
4196 static void ext4_free_data(handle_t *handle, struct inode *inode,
4197 struct buffer_head *this_bh,
4198 __le32 *first, __le32 *last)
4199 {
4200 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4201 unsigned long count = 0; /* Number of blocks in the run */
4202 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4203 corresponding to
4204 block_to_free */
4205 ext4_fsblk_t nr; /* Current block # */
4206 __le32 *p; /* Pointer into inode/ind
4207 for current block */
4208 int err;
4209
4210 if (this_bh) { /* For indirect block */
4211 BUFFER_TRACE(this_bh, "get_write_access");
4212 err = ext4_journal_get_write_access(handle, this_bh);
4213 /* Important: if we can't update the indirect pointers
4214 * to the blocks, we can't free them. */
4215 if (err)
4216 return;
4217 }
4218
4219 for (p = first; p < last; p++) {
4220 nr = le32_to_cpu(*p);
4221 if (nr) {
4222 /* accumulate blocks to free if they're contiguous */
4223 if (count == 0) {
4224 block_to_free = nr;
4225 block_to_free_p = p;
4226 count = 1;
4227 } else if (nr == block_to_free + count) {
4228 count++;
4229 } else {
4230 if (ext4_clear_blocks(handle, inode, this_bh,
4231 block_to_free, count,
4232 block_to_free_p, p))
4233 break;
4234 block_to_free = nr;
4235 block_to_free_p = p;
4236 count = 1;
4237 }
4238 }
4239 }
4240
4241 if (count > 0)
4242 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4243 count, block_to_free_p, p);
4244
4245 if (this_bh) {
4246 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4247
4248 /*
4249 * The buffer head should have an attached journal head at this
4250 * point. However, if the data is corrupted and an indirect
4251 * block pointed to itself, it would have been detached when
4252 * the block was cleared. Check for this instead of OOPSing.
4253 */
4254 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4255 ext4_handle_dirty_metadata(handle, inode, this_bh);
4256 else
4257 ext4_error(inode->i_sb,
4258 "circular indirect block detected, "
4259 "inode=%lu, block=%llu",
4260 inode->i_ino,
4261 (unsigned long long) this_bh->b_blocknr);
4262 }
4263 }
4264
4265 /**
4266 * ext4_free_branches - free an array of branches
4267 * @handle: JBD handle for this transaction
4268 * @inode: inode we are dealing with
4269 * @parent_bh: the buffer_head which contains *@first and *@last
4270 * @first: array of block numbers
4271 * @last: pointer immediately past the end of array
4272 * @depth: depth of the branches to free
4273 *
4274 * We are freeing all blocks refered from these branches (numbers are
4275 * stored as little-endian 32-bit) and updating @inode->i_blocks
4276 * appropriately.
4277 */
4278 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4279 struct buffer_head *parent_bh,
4280 __le32 *first, __le32 *last, int depth)
4281 {
4282 ext4_fsblk_t nr;
4283 __le32 *p;
4284
4285 if (ext4_handle_is_aborted(handle))
4286 return;
4287
4288 if (depth--) {
4289 struct buffer_head *bh;
4290 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4291 p = last;
4292 while (--p >= first) {
4293 nr = le32_to_cpu(*p);
4294 if (!nr)
4295 continue; /* A hole */
4296
4297 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4298 nr, 1)) {
4299 ext4_error(inode->i_sb,
4300 "indirect mapped block in inode "
4301 "#%lu invalid (level %d, blk #%lu)",
4302 inode->i_ino, depth,
4303 (unsigned long) nr);
4304 break;
4305 }
4306
4307 /* Go read the buffer for the next level down */
4308 bh = sb_bread(inode->i_sb, nr);
4309
4310 /*
4311 * A read failure? Report error and clear slot
4312 * (should be rare).
4313 */
4314 if (!bh) {
4315 ext4_error(inode->i_sb,
4316 "Read failure, inode=%lu, block=%llu",
4317 inode->i_ino, nr);
4318 continue;
4319 }
4320
4321 /* This zaps the entire block. Bottom up. */
4322 BUFFER_TRACE(bh, "free child branches");
4323 ext4_free_branches(handle, inode, bh,
4324 (__le32 *) bh->b_data,
4325 (__le32 *) bh->b_data + addr_per_block,
4326 depth);
4327
4328 /*
4329 * We've probably journalled the indirect block several
4330 * times during the truncate. But it's no longer
4331 * needed and we now drop it from the transaction via
4332 * jbd2_journal_revoke().
4333 *
4334 * That's easy if it's exclusively part of this
4335 * transaction. But if it's part of the committing
4336 * transaction then jbd2_journal_forget() will simply
4337 * brelse() it. That means that if the underlying
4338 * block is reallocated in ext4_get_block(),
4339 * unmap_underlying_metadata() will find this block
4340 * and will try to get rid of it. damn, damn.
4341 *
4342 * If this block has already been committed to the
4343 * journal, a revoke record will be written. And
4344 * revoke records must be emitted *before* clearing
4345 * this block's bit in the bitmaps.
4346 */
4347 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4348
4349 /*
4350 * Everything below this this pointer has been
4351 * released. Now let this top-of-subtree go.
4352 *
4353 * We want the freeing of this indirect block to be
4354 * atomic in the journal with the updating of the
4355 * bitmap block which owns it. So make some room in
4356 * the journal.
4357 *
4358 * We zero the parent pointer *after* freeing its
4359 * pointee in the bitmaps, so if extend_transaction()
4360 * for some reason fails to put the bitmap changes and
4361 * the release into the same transaction, recovery
4362 * will merely complain about releasing a free block,
4363 * rather than leaking blocks.
4364 */
4365 if (ext4_handle_is_aborted(handle))
4366 return;
4367 if (try_to_extend_transaction(handle, inode)) {
4368 ext4_mark_inode_dirty(handle, inode);
4369 ext4_truncate_restart_trans(handle, inode,
4370 blocks_for_truncate(inode));
4371 }
4372
4373 ext4_free_blocks(handle, inode, 0, nr, 1,
4374 EXT4_FREE_BLOCKS_METADATA);
4375
4376 if (parent_bh) {
4377 /*
4378 * The block which we have just freed is
4379 * pointed to by an indirect block: journal it
4380 */
4381 BUFFER_TRACE(parent_bh, "get_write_access");
4382 if (!ext4_journal_get_write_access(handle,
4383 parent_bh)){
4384 *p = 0;
4385 BUFFER_TRACE(parent_bh,
4386 "call ext4_handle_dirty_metadata");
4387 ext4_handle_dirty_metadata(handle,
4388 inode,
4389 parent_bh);
4390 }
4391 }
4392 }
4393 } else {
4394 /* We have reached the bottom of the tree. */
4395 BUFFER_TRACE(parent_bh, "free data blocks");
4396 ext4_free_data(handle, inode, parent_bh, first, last);
4397 }
4398 }
4399
4400 int ext4_can_truncate(struct inode *inode)
4401 {
4402 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4403 return 0;
4404 if (S_ISREG(inode->i_mode))
4405 return 1;
4406 if (S_ISDIR(inode->i_mode))
4407 return 1;
4408 if (S_ISLNK(inode->i_mode))
4409 return !ext4_inode_is_fast_symlink(inode);
4410 return 0;
4411 }
4412
4413 /*
4414 * ext4_truncate()
4415 *
4416 * We block out ext4_get_block() block instantiations across the entire
4417 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4418 * simultaneously on behalf of the same inode.
4419 *
4420 * As we work through the truncate and commmit bits of it to the journal there
4421 * is one core, guiding principle: the file's tree must always be consistent on
4422 * disk. We must be able to restart the truncate after a crash.
4423 *
4424 * The file's tree may be transiently inconsistent in memory (although it
4425 * probably isn't), but whenever we close off and commit a journal transaction,
4426 * the contents of (the filesystem + the journal) must be consistent and
4427 * restartable. It's pretty simple, really: bottom up, right to left (although
4428 * left-to-right works OK too).
4429 *
4430 * Note that at recovery time, journal replay occurs *before* the restart of
4431 * truncate against the orphan inode list.
4432 *
4433 * The committed inode has the new, desired i_size (which is the same as
4434 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4435 * that this inode's truncate did not complete and it will again call
4436 * ext4_truncate() to have another go. So there will be instantiated blocks
4437 * to the right of the truncation point in a crashed ext4 filesystem. But
4438 * that's fine - as long as they are linked from the inode, the post-crash
4439 * ext4_truncate() run will find them and release them.
4440 */
4441 void ext4_truncate(struct inode *inode)
4442 {
4443 handle_t *handle;
4444 struct ext4_inode_info *ei = EXT4_I(inode);
4445 __le32 *i_data = ei->i_data;
4446 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4447 struct address_space *mapping = inode->i_mapping;
4448 ext4_lblk_t offsets[4];
4449 Indirect chain[4];
4450 Indirect *partial;
4451 __le32 nr = 0;
4452 int n;
4453 ext4_lblk_t last_block;
4454 unsigned blocksize = inode->i_sb->s_blocksize;
4455
4456 if (!ext4_can_truncate(inode))
4457 return;
4458
4459 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4460 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4461
4462 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4463 ext4_ext_truncate(inode);
4464 return;
4465 }
4466
4467 handle = start_transaction(inode);
4468 if (IS_ERR(handle))
4469 return; /* AKPM: return what? */
4470
4471 last_block = (inode->i_size + blocksize-1)
4472 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4473
4474 if (inode->i_size & (blocksize - 1))
4475 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4476 goto out_stop;
4477
4478 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4479 if (n == 0)
4480 goto out_stop; /* error */
4481
4482 /*
4483 * OK. This truncate is going to happen. We add the inode to the
4484 * orphan list, so that if this truncate spans multiple transactions,
4485 * and we crash, we will resume the truncate when the filesystem
4486 * recovers. It also marks the inode dirty, to catch the new size.
4487 *
4488 * Implication: the file must always be in a sane, consistent
4489 * truncatable state while each transaction commits.
4490 */
4491 if (ext4_orphan_add(handle, inode))
4492 goto out_stop;
4493
4494 /*
4495 * From here we block out all ext4_get_block() callers who want to
4496 * modify the block allocation tree.
4497 */
4498 down_write(&ei->i_data_sem);
4499
4500 ext4_discard_preallocations(inode);
4501
4502 /*
4503 * The orphan list entry will now protect us from any crash which
4504 * occurs before the truncate completes, so it is now safe to propagate
4505 * the new, shorter inode size (held for now in i_size) into the
4506 * on-disk inode. We do this via i_disksize, which is the value which
4507 * ext4 *really* writes onto the disk inode.
4508 */
4509 ei->i_disksize = inode->i_size;
4510
4511 if (n == 1) { /* direct blocks */
4512 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4513 i_data + EXT4_NDIR_BLOCKS);
4514 goto do_indirects;
4515 }
4516
4517 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4518 /* Kill the top of shared branch (not detached) */
4519 if (nr) {
4520 if (partial == chain) {
4521 /* Shared branch grows from the inode */
4522 ext4_free_branches(handle, inode, NULL,
4523 &nr, &nr+1, (chain+n-1) - partial);
4524 *partial->p = 0;
4525 /*
4526 * We mark the inode dirty prior to restart,
4527 * and prior to stop. No need for it here.
4528 */
4529 } else {
4530 /* Shared branch grows from an indirect block */
4531 BUFFER_TRACE(partial->bh, "get_write_access");
4532 ext4_free_branches(handle, inode, partial->bh,
4533 partial->p,
4534 partial->p+1, (chain+n-1) - partial);
4535 }
4536 }
4537 /* Clear the ends of indirect blocks on the shared branch */
4538 while (partial > chain) {
4539 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4540 (__le32*)partial->bh->b_data+addr_per_block,
4541 (chain+n-1) - partial);
4542 BUFFER_TRACE(partial->bh, "call brelse");
4543 brelse(partial->bh);
4544 partial--;
4545 }
4546 do_indirects:
4547 /* Kill the remaining (whole) subtrees */
4548 switch (offsets[0]) {
4549 default:
4550 nr = i_data[EXT4_IND_BLOCK];
4551 if (nr) {
4552 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4553 i_data[EXT4_IND_BLOCK] = 0;
4554 }
4555 case EXT4_IND_BLOCK:
4556 nr = i_data[EXT4_DIND_BLOCK];
4557 if (nr) {
4558 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4559 i_data[EXT4_DIND_BLOCK] = 0;
4560 }
4561 case EXT4_DIND_BLOCK:
4562 nr = i_data[EXT4_TIND_BLOCK];
4563 if (nr) {
4564 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4565 i_data[EXT4_TIND_BLOCK] = 0;
4566 }
4567 case EXT4_TIND_BLOCK:
4568 ;
4569 }
4570
4571 up_write(&ei->i_data_sem);
4572 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4573 ext4_mark_inode_dirty(handle, inode);
4574
4575 /*
4576 * In a multi-transaction truncate, we only make the final transaction
4577 * synchronous
4578 */
4579 if (IS_SYNC(inode))
4580 ext4_handle_sync(handle);
4581 out_stop:
4582 /*
4583 * If this was a simple ftruncate(), and the file will remain alive
4584 * then we need to clear up the orphan record which we created above.
4585 * However, if this was a real unlink then we were called by
4586 * ext4_delete_inode(), and we allow that function to clean up the
4587 * orphan info for us.
4588 */
4589 if (inode->i_nlink)
4590 ext4_orphan_del(handle, inode);
4591
4592 ext4_journal_stop(handle);
4593 }
4594
4595 /*
4596 * ext4_get_inode_loc returns with an extra refcount against the inode's
4597 * underlying buffer_head on success. If 'in_mem' is true, we have all
4598 * data in memory that is needed to recreate the on-disk version of this
4599 * inode.
4600 */
4601 static int __ext4_get_inode_loc(struct inode *inode,
4602 struct ext4_iloc *iloc, int in_mem)
4603 {
4604 struct ext4_group_desc *gdp;
4605 struct buffer_head *bh;
4606 struct super_block *sb = inode->i_sb;
4607 ext4_fsblk_t block;
4608 int inodes_per_block, inode_offset;
4609
4610 iloc->bh = NULL;
4611 if (!ext4_valid_inum(sb, inode->i_ino))
4612 return -EIO;
4613
4614 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4615 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4616 if (!gdp)
4617 return -EIO;
4618
4619 /*
4620 * Figure out the offset within the block group inode table
4621 */
4622 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4623 inode_offset = ((inode->i_ino - 1) %
4624 EXT4_INODES_PER_GROUP(sb));
4625 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4626 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4627
4628 bh = sb_getblk(sb, block);
4629 if (!bh) {
4630 ext4_error(sb, "unable to read inode block - "
4631 "inode=%lu, block=%llu", inode->i_ino, block);
4632 return -EIO;
4633 }
4634 if (!buffer_uptodate(bh)) {
4635 lock_buffer(bh);
4636
4637 /*
4638 * If the buffer has the write error flag, we have failed
4639 * to write out another inode in the same block. In this
4640 * case, we don't have to read the block because we may
4641 * read the old inode data successfully.
4642 */
4643 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4644 set_buffer_uptodate(bh);
4645
4646 if (buffer_uptodate(bh)) {
4647 /* someone brought it uptodate while we waited */
4648 unlock_buffer(bh);
4649 goto has_buffer;
4650 }
4651
4652 /*
4653 * If we have all information of the inode in memory and this
4654 * is the only valid inode in the block, we need not read the
4655 * block.
4656 */
4657 if (in_mem) {
4658 struct buffer_head *bitmap_bh;
4659 int i, start;
4660
4661 start = inode_offset & ~(inodes_per_block - 1);
4662
4663 /* Is the inode bitmap in cache? */
4664 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4665 if (!bitmap_bh)
4666 goto make_io;
4667
4668 /*
4669 * If the inode bitmap isn't in cache then the
4670 * optimisation may end up performing two reads instead
4671 * of one, so skip it.
4672 */
4673 if (!buffer_uptodate(bitmap_bh)) {
4674 brelse(bitmap_bh);
4675 goto make_io;
4676 }
4677 for (i = start; i < start + inodes_per_block; i++) {
4678 if (i == inode_offset)
4679 continue;
4680 if (ext4_test_bit(i, bitmap_bh->b_data))
4681 break;
4682 }
4683 brelse(bitmap_bh);
4684 if (i == start + inodes_per_block) {
4685 /* all other inodes are free, so skip I/O */
4686 memset(bh->b_data, 0, bh->b_size);
4687 set_buffer_uptodate(bh);
4688 unlock_buffer(bh);
4689 goto has_buffer;
4690 }
4691 }
4692
4693 make_io:
4694 /*
4695 * If we need to do any I/O, try to pre-readahead extra
4696 * blocks from the inode table.
4697 */
4698 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4699 ext4_fsblk_t b, end, table;
4700 unsigned num;
4701
4702 table = ext4_inode_table(sb, gdp);
4703 /* s_inode_readahead_blks is always a power of 2 */
4704 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4705 if (table > b)
4706 b = table;
4707 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4708 num = EXT4_INODES_PER_GROUP(sb);
4709 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4710 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4711 num -= ext4_itable_unused_count(sb, gdp);
4712 table += num / inodes_per_block;
4713 if (end > table)
4714 end = table;
4715 while (b <= end)
4716 sb_breadahead(sb, b++);
4717 }
4718
4719 /*
4720 * There are other valid inodes in the buffer, this inode
4721 * has in-inode xattrs, or we don't have this inode in memory.
4722 * Read the block from disk.
4723 */
4724 get_bh(bh);
4725 bh->b_end_io = end_buffer_read_sync;
4726 submit_bh(READ_META, bh);
4727 wait_on_buffer(bh);
4728 if (!buffer_uptodate(bh)) {
4729 ext4_error(sb, "unable to read inode block - inode=%lu,"
4730 " block=%llu", inode->i_ino, block);
4731 brelse(bh);
4732 return -EIO;
4733 }
4734 }
4735 has_buffer:
4736 iloc->bh = bh;
4737 return 0;
4738 }
4739
4740 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4741 {
4742 /* We have all inode data except xattrs in memory here. */
4743 return __ext4_get_inode_loc(inode, iloc,
4744 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4745 }
4746
4747 void ext4_set_inode_flags(struct inode *inode)
4748 {
4749 unsigned int flags = EXT4_I(inode)->i_flags;
4750
4751 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4752 if (flags & EXT4_SYNC_FL)
4753 inode->i_flags |= S_SYNC;
4754 if (flags & EXT4_APPEND_FL)
4755 inode->i_flags |= S_APPEND;
4756 if (flags & EXT4_IMMUTABLE_FL)
4757 inode->i_flags |= S_IMMUTABLE;
4758 if (flags & EXT4_NOATIME_FL)
4759 inode->i_flags |= S_NOATIME;
4760 if (flags & EXT4_DIRSYNC_FL)
4761 inode->i_flags |= S_DIRSYNC;
4762 }
4763
4764 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4765 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4766 {
4767 unsigned int flags = ei->vfs_inode.i_flags;
4768
4769 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4770 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4771 if (flags & S_SYNC)
4772 ei->i_flags |= EXT4_SYNC_FL;
4773 if (flags & S_APPEND)
4774 ei->i_flags |= EXT4_APPEND_FL;
4775 if (flags & S_IMMUTABLE)
4776 ei->i_flags |= EXT4_IMMUTABLE_FL;
4777 if (flags & S_NOATIME)
4778 ei->i_flags |= EXT4_NOATIME_FL;
4779 if (flags & S_DIRSYNC)
4780 ei->i_flags |= EXT4_DIRSYNC_FL;
4781 }
4782
4783 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4784 struct ext4_inode_info *ei)
4785 {
4786 blkcnt_t i_blocks ;
4787 struct inode *inode = &(ei->vfs_inode);
4788 struct super_block *sb = inode->i_sb;
4789
4790 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4791 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4792 /* we are using combined 48 bit field */
4793 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4794 le32_to_cpu(raw_inode->i_blocks_lo);
4795 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4796 /* i_blocks represent file system block size */
4797 return i_blocks << (inode->i_blkbits - 9);
4798 } else {
4799 return i_blocks;
4800 }
4801 } else {
4802 return le32_to_cpu(raw_inode->i_blocks_lo);
4803 }
4804 }
4805
4806 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4807 {
4808 struct ext4_iloc iloc;
4809 struct ext4_inode *raw_inode;
4810 struct ext4_inode_info *ei;
4811 struct inode *inode;
4812 journal_t *journal = EXT4_SB(sb)->s_journal;
4813 long ret;
4814 int block;
4815
4816 inode = iget_locked(sb, ino);
4817 if (!inode)
4818 return ERR_PTR(-ENOMEM);
4819 if (!(inode->i_state & I_NEW))
4820 return inode;
4821
4822 ei = EXT4_I(inode);
4823 iloc.bh = 0;
4824
4825 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4826 if (ret < 0)
4827 goto bad_inode;
4828 raw_inode = ext4_raw_inode(&iloc);
4829 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4830 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4831 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4832 if (!(test_opt(inode->i_sb, NO_UID32))) {
4833 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4834 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4835 }
4836 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4837
4838 ei->i_state_flags = 0;
4839 ei->i_dir_start_lookup = 0;
4840 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4841 /* We now have enough fields to check if the inode was active or not.
4842 * This is needed because nfsd might try to access dead inodes
4843 * the test is that same one that e2fsck uses
4844 * NeilBrown 1999oct15
4845 */
4846 if (inode->i_nlink == 0) {
4847 if (inode->i_mode == 0 ||
4848 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4849 /* this inode is deleted */
4850 ret = -ESTALE;
4851 goto bad_inode;
4852 }
4853 /* The only unlinked inodes we let through here have
4854 * valid i_mode and are being read by the orphan
4855 * recovery code: that's fine, we're about to complete
4856 * the process of deleting those. */
4857 }
4858 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4859 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4860 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4861 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4862 ei->i_file_acl |=
4863 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4864 inode->i_size = ext4_isize(raw_inode);
4865 ei->i_disksize = inode->i_size;
4866 #ifdef CONFIG_QUOTA
4867 ei->i_reserved_quota = 0;
4868 #endif
4869 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4870 ei->i_block_group = iloc.block_group;
4871 ei->i_last_alloc_group = ~0;
4872 /*
4873 * NOTE! The in-memory inode i_data array is in little-endian order
4874 * even on big-endian machines: we do NOT byteswap the block numbers!
4875 */
4876 for (block = 0; block < EXT4_N_BLOCKS; block++)
4877 ei->i_data[block] = raw_inode->i_block[block];
4878 INIT_LIST_HEAD(&ei->i_orphan);
4879
4880 /*
4881 * Set transaction id's of transactions that have to be committed
4882 * to finish f[data]sync. We set them to currently running transaction
4883 * as we cannot be sure that the inode or some of its metadata isn't
4884 * part of the transaction - the inode could have been reclaimed and
4885 * now it is reread from disk.
4886 */
4887 if (journal) {
4888 transaction_t *transaction;
4889 tid_t tid;
4890
4891 spin_lock(&journal->j_state_lock);
4892 if (journal->j_running_transaction)
4893 transaction = journal->j_running_transaction;
4894 else
4895 transaction = journal->j_committing_transaction;
4896 if (transaction)
4897 tid = transaction->t_tid;
4898 else
4899 tid = journal->j_commit_sequence;
4900 spin_unlock(&journal->j_state_lock);
4901 ei->i_sync_tid = tid;
4902 ei->i_datasync_tid = tid;
4903 }
4904
4905 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4906 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4907 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4908 EXT4_INODE_SIZE(inode->i_sb)) {
4909 ret = -EIO;
4910 goto bad_inode;
4911 }
4912 if (ei->i_extra_isize == 0) {
4913 /* The extra space is currently unused. Use it. */
4914 ei->i_extra_isize = sizeof(struct ext4_inode) -
4915 EXT4_GOOD_OLD_INODE_SIZE;
4916 } else {
4917 __le32 *magic = (void *)raw_inode +
4918 EXT4_GOOD_OLD_INODE_SIZE +
4919 ei->i_extra_isize;
4920 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4921 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4922 }
4923 } else
4924 ei->i_extra_isize = 0;
4925
4926 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4927 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4928 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4929 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4930
4931 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4932 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4933 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4934 inode->i_version |=
4935 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4936 }
4937
4938 ret = 0;
4939 if (ei->i_file_acl &&
4940 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4941 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
4942 ei->i_file_acl, inode->i_ino);
4943 ret = -EIO;
4944 goto bad_inode;
4945 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4946 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4947 (S_ISLNK(inode->i_mode) &&
4948 !ext4_inode_is_fast_symlink(inode)))
4949 /* Validate extent which is part of inode */
4950 ret = ext4_ext_check_inode(inode);
4951 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4952 (S_ISLNK(inode->i_mode) &&
4953 !ext4_inode_is_fast_symlink(inode))) {
4954 /* Validate block references which are part of inode */
4955 ret = ext4_check_inode_blockref(inode);
4956 }
4957 if (ret)
4958 goto bad_inode;
4959
4960 if (S_ISREG(inode->i_mode)) {
4961 inode->i_op = &ext4_file_inode_operations;
4962 inode->i_fop = &ext4_file_operations;
4963 ext4_set_aops(inode);
4964 } else if (S_ISDIR(inode->i_mode)) {
4965 inode->i_op = &ext4_dir_inode_operations;
4966 inode->i_fop = &ext4_dir_operations;
4967 } else if (S_ISLNK(inode->i_mode)) {
4968 if (ext4_inode_is_fast_symlink(inode)) {
4969 inode->i_op = &ext4_fast_symlink_inode_operations;
4970 nd_terminate_link(ei->i_data, inode->i_size,
4971 sizeof(ei->i_data) - 1);
4972 } else {
4973 inode->i_op = &ext4_symlink_inode_operations;
4974 ext4_set_aops(inode);
4975 }
4976 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4977 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4978 inode->i_op = &ext4_special_inode_operations;
4979 if (raw_inode->i_block[0])
4980 init_special_inode(inode, inode->i_mode,
4981 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4982 else
4983 init_special_inode(inode, inode->i_mode,
4984 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4985 } else {
4986 ret = -EIO;
4987 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
4988 inode->i_mode, inode->i_ino);
4989 goto bad_inode;
4990 }
4991 brelse(iloc.bh);
4992 ext4_set_inode_flags(inode);
4993 unlock_new_inode(inode);
4994 return inode;
4995
4996 bad_inode:
4997 brelse(iloc.bh);
4998 iget_failed(inode);
4999 return ERR_PTR(ret);
5000 }
5001
5002 static int ext4_inode_blocks_set(handle_t *handle,
5003 struct ext4_inode *raw_inode,
5004 struct ext4_inode_info *ei)
5005 {
5006 struct inode *inode = &(ei->vfs_inode);
5007 u64 i_blocks = inode->i_blocks;
5008 struct super_block *sb = inode->i_sb;
5009
5010 if (i_blocks <= ~0U) {
5011 /*
5012 * i_blocks can be represnted in a 32 bit variable
5013 * as multiple of 512 bytes
5014 */
5015 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5016 raw_inode->i_blocks_high = 0;
5017 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5018 return 0;
5019 }
5020 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5021 return -EFBIG;
5022
5023 if (i_blocks <= 0xffffffffffffULL) {
5024 /*
5025 * i_blocks can be represented in a 48 bit variable
5026 * as multiple of 512 bytes
5027 */
5028 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5029 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5030 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5031 } else {
5032 ei->i_flags |= EXT4_HUGE_FILE_FL;
5033 /* i_block is stored in file system block size */
5034 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5035 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5036 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5037 }
5038 return 0;
5039 }
5040
5041 /*
5042 * Post the struct inode info into an on-disk inode location in the
5043 * buffer-cache. This gobbles the caller's reference to the
5044 * buffer_head in the inode location struct.
5045 *
5046 * The caller must have write access to iloc->bh.
5047 */
5048 static int ext4_do_update_inode(handle_t *handle,
5049 struct inode *inode,
5050 struct ext4_iloc *iloc)
5051 {
5052 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5053 struct ext4_inode_info *ei = EXT4_I(inode);
5054 struct buffer_head *bh = iloc->bh;
5055 int err = 0, rc, block;
5056
5057 /* For fields not not tracking in the in-memory inode,
5058 * initialise them to zero for new inodes. */
5059 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5060 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5061
5062 ext4_get_inode_flags(ei);
5063 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5064 if (!(test_opt(inode->i_sb, NO_UID32))) {
5065 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5066 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5067 /*
5068 * Fix up interoperability with old kernels. Otherwise, old inodes get
5069 * re-used with the upper 16 bits of the uid/gid intact
5070 */
5071 if (!ei->i_dtime) {
5072 raw_inode->i_uid_high =
5073 cpu_to_le16(high_16_bits(inode->i_uid));
5074 raw_inode->i_gid_high =
5075 cpu_to_le16(high_16_bits(inode->i_gid));
5076 } else {
5077 raw_inode->i_uid_high = 0;
5078 raw_inode->i_gid_high = 0;
5079 }
5080 } else {
5081 raw_inode->i_uid_low =
5082 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5083 raw_inode->i_gid_low =
5084 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5085 raw_inode->i_uid_high = 0;
5086 raw_inode->i_gid_high = 0;
5087 }
5088 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5089
5090 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5091 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5092 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5093 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5094
5095 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5096 goto out_brelse;
5097 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5098 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5099 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5100 cpu_to_le32(EXT4_OS_HURD))
5101 raw_inode->i_file_acl_high =
5102 cpu_to_le16(ei->i_file_acl >> 32);
5103 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5104 ext4_isize_set(raw_inode, ei->i_disksize);
5105 if (ei->i_disksize > 0x7fffffffULL) {
5106 struct super_block *sb = inode->i_sb;
5107 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5108 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5109 EXT4_SB(sb)->s_es->s_rev_level ==
5110 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5111 /* If this is the first large file
5112 * created, add a flag to the superblock.
5113 */
5114 err = ext4_journal_get_write_access(handle,
5115 EXT4_SB(sb)->s_sbh);
5116 if (err)
5117 goto out_brelse;
5118 ext4_update_dynamic_rev(sb);
5119 EXT4_SET_RO_COMPAT_FEATURE(sb,
5120 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5121 sb->s_dirt = 1;
5122 ext4_handle_sync(handle);
5123 err = ext4_handle_dirty_metadata(handle, inode,
5124 EXT4_SB(sb)->s_sbh);
5125 }
5126 }
5127 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5128 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5129 if (old_valid_dev(inode->i_rdev)) {
5130 raw_inode->i_block[0] =
5131 cpu_to_le32(old_encode_dev(inode->i_rdev));
5132 raw_inode->i_block[1] = 0;
5133 } else {
5134 raw_inode->i_block[0] = 0;
5135 raw_inode->i_block[1] =
5136 cpu_to_le32(new_encode_dev(inode->i_rdev));
5137 raw_inode->i_block[2] = 0;
5138 }
5139 } else
5140 for (block = 0; block < EXT4_N_BLOCKS; block++)
5141 raw_inode->i_block[block] = ei->i_data[block];
5142
5143 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5144 if (ei->i_extra_isize) {
5145 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5146 raw_inode->i_version_hi =
5147 cpu_to_le32(inode->i_version >> 32);
5148 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5149 }
5150
5151 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5152 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5153 if (!err)
5154 err = rc;
5155 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5156
5157 ext4_update_inode_fsync_trans(handle, inode, 0);
5158 out_brelse:
5159 brelse(bh);
5160 ext4_std_error(inode->i_sb, err);
5161 return err;
5162 }
5163
5164 /*
5165 * ext4_write_inode()
5166 *
5167 * We are called from a few places:
5168 *
5169 * - Within generic_file_write() for O_SYNC files.
5170 * Here, there will be no transaction running. We wait for any running
5171 * trasnaction to commit.
5172 *
5173 * - Within sys_sync(), kupdate and such.
5174 * We wait on commit, if tol to.
5175 *
5176 * - Within prune_icache() (PF_MEMALLOC == true)
5177 * Here we simply return. We can't afford to block kswapd on the
5178 * journal commit.
5179 *
5180 * In all cases it is actually safe for us to return without doing anything,
5181 * because the inode has been copied into a raw inode buffer in
5182 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5183 * knfsd.
5184 *
5185 * Note that we are absolutely dependent upon all inode dirtiers doing the
5186 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5187 * which we are interested.
5188 *
5189 * It would be a bug for them to not do this. The code:
5190 *
5191 * mark_inode_dirty(inode)
5192 * stuff();
5193 * inode->i_size = expr;
5194 *
5195 * is in error because a kswapd-driven write_inode() could occur while
5196 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5197 * will no longer be on the superblock's dirty inode list.
5198 */
5199 int ext4_write_inode(struct inode *inode, int wait)
5200 {
5201 int err;
5202
5203 if (current->flags & PF_MEMALLOC)
5204 return 0;
5205
5206 if (EXT4_SB(inode->i_sb)->s_journal) {
5207 if (ext4_journal_current_handle()) {
5208 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5209 dump_stack();
5210 return -EIO;
5211 }
5212
5213 if (!wait)
5214 return 0;
5215
5216 err = ext4_force_commit(inode->i_sb);
5217 } else {
5218 struct ext4_iloc iloc;
5219
5220 err = ext4_get_inode_loc(inode, &iloc);
5221 if (err)
5222 return err;
5223 if (wait)
5224 sync_dirty_buffer(iloc.bh);
5225 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5226 ext4_error(inode->i_sb, "IO error syncing inode, "
5227 "inode=%lu, block=%llu", inode->i_ino,
5228 (unsigned long long)iloc.bh->b_blocknr);
5229 err = -EIO;
5230 }
5231 }
5232 return err;
5233 }
5234
5235 /*
5236 * ext4_setattr()
5237 *
5238 * Called from notify_change.
5239 *
5240 * We want to trap VFS attempts to truncate the file as soon as
5241 * possible. In particular, we want to make sure that when the VFS
5242 * shrinks i_size, we put the inode on the orphan list and modify
5243 * i_disksize immediately, so that during the subsequent flushing of
5244 * dirty pages and freeing of disk blocks, we can guarantee that any
5245 * commit will leave the blocks being flushed in an unused state on
5246 * disk. (On recovery, the inode will get truncated and the blocks will
5247 * be freed, so we have a strong guarantee that no future commit will
5248 * leave these blocks visible to the user.)
5249 *
5250 * Another thing we have to assure is that if we are in ordered mode
5251 * and inode is still attached to the committing transaction, we must
5252 * we start writeout of all the dirty pages which are being truncated.
5253 * This way we are sure that all the data written in the previous
5254 * transaction are already on disk (truncate waits for pages under
5255 * writeback).
5256 *
5257 * Called with inode->i_mutex down.
5258 */
5259 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5260 {
5261 struct inode *inode = dentry->d_inode;
5262 int error, rc = 0;
5263 const unsigned int ia_valid = attr->ia_valid;
5264
5265 error = inode_change_ok(inode, attr);
5266 if (error)
5267 return error;
5268
5269 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5270 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5271 handle_t *handle;
5272
5273 /* (user+group)*(old+new) structure, inode write (sb,
5274 * inode block, ? - but truncate inode update has it) */
5275 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5276 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5277 if (IS_ERR(handle)) {
5278 error = PTR_ERR(handle);
5279 goto err_out;
5280 }
5281 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5282 if (error) {
5283 ext4_journal_stop(handle);
5284 return error;
5285 }
5286 /* Update corresponding info in inode so that everything is in
5287 * one transaction */
5288 if (attr->ia_valid & ATTR_UID)
5289 inode->i_uid = attr->ia_uid;
5290 if (attr->ia_valid & ATTR_GID)
5291 inode->i_gid = attr->ia_gid;
5292 error = ext4_mark_inode_dirty(handle, inode);
5293 ext4_journal_stop(handle);
5294 }
5295
5296 if (attr->ia_valid & ATTR_SIZE) {
5297 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5298 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5299
5300 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5301 error = -EFBIG;
5302 goto err_out;
5303 }
5304 }
5305 }
5306
5307 if (S_ISREG(inode->i_mode) &&
5308 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5309 handle_t *handle;
5310
5311 handle = ext4_journal_start(inode, 3);
5312 if (IS_ERR(handle)) {
5313 error = PTR_ERR(handle);
5314 goto err_out;
5315 }
5316
5317 error = ext4_orphan_add(handle, inode);
5318 EXT4_I(inode)->i_disksize = attr->ia_size;
5319 rc = ext4_mark_inode_dirty(handle, inode);
5320 if (!error)
5321 error = rc;
5322 ext4_journal_stop(handle);
5323
5324 if (ext4_should_order_data(inode)) {
5325 error = ext4_begin_ordered_truncate(inode,
5326 attr->ia_size);
5327 if (error) {
5328 /* Do as much error cleanup as possible */
5329 handle = ext4_journal_start(inode, 3);
5330 if (IS_ERR(handle)) {
5331 ext4_orphan_del(NULL, inode);
5332 goto err_out;
5333 }
5334 ext4_orphan_del(handle, inode);
5335 ext4_journal_stop(handle);
5336 goto err_out;
5337 }
5338 }
5339 }
5340
5341 rc = inode_setattr(inode, attr);
5342
5343 /* If inode_setattr's call to ext4_truncate failed to get a
5344 * transaction handle at all, we need to clean up the in-core
5345 * orphan list manually. */
5346 if (inode->i_nlink)
5347 ext4_orphan_del(NULL, inode);
5348
5349 if (!rc && (ia_valid & ATTR_MODE))
5350 rc = ext4_acl_chmod(inode);
5351
5352 err_out:
5353 ext4_std_error(inode->i_sb, error);
5354 if (!error)
5355 error = rc;
5356 return error;
5357 }
5358
5359 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5360 struct kstat *stat)
5361 {
5362 struct inode *inode;
5363 unsigned long delalloc_blocks;
5364
5365 inode = dentry->d_inode;
5366 generic_fillattr(inode, stat);
5367
5368 /*
5369 * We can't update i_blocks if the block allocation is delayed
5370 * otherwise in the case of system crash before the real block
5371 * allocation is done, we will have i_blocks inconsistent with
5372 * on-disk file blocks.
5373 * We always keep i_blocks updated together with real
5374 * allocation. But to not confuse with user, stat
5375 * will return the blocks that include the delayed allocation
5376 * blocks for this file.
5377 */
5378 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5379 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5380 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5381
5382 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5383 return 0;
5384 }
5385
5386 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5387 int chunk)
5388 {
5389 int indirects;
5390
5391 /* if nrblocks are contiguous */
5392 if (chunk) {
5393 /*
5394 * With N contiguous data blocks, it need at most
5395 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5396 * 2 dindirect blocks
5397 * 1 tindirect block
5398 */
5399 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5400 return indirects + 3;
5401 }
5402 /*
5403 * if nrblocks are not contiguous, worse case, each block touch
5404 * a indirect block, and each indirect block touch a double indirect
5405 * block, plus a triple indirect block
5406 */
5407 indirects = nrblocks * 2 + 1;
5408 return indirects;
5409 }
5410
5411 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5412 {
5413 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5414 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5415 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5416 }
5417
5418 /*
5419 * Account for index blocks, block groups bitmaps and block group
5420 * descriptor blocks if modify datablocks and index blocks
5421 * worse case, the indexs blocks spread over different block groups
5422 *
5423 * If datablocks are discontiguous, they are possible to spread over
5424 * different block groups too. If they are contiuguous, with flexbg,
5425 * they could still across block group boundary.
5426 *
5427 * Also account for superblock, inode, quota and xattr blocks
5428 */
5429 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5430 {
5431 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5432 int gdpblocks;
5433 int idxblocks;
5434 int ret = 0;
5435
5436 /*
5437 * How many index blocks need to touch to modify nrblocks?
5438 * The "Chunk" flag indicating whether the nrblocks is
5439 * physically contiguous on disk
5440 *
5441 * For Direct IO and fallocate, they calls get_block to allocate
5442 * one single extent at a time, so they could set the "Chunk" flag
5443 */
5444 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5445
5446 ret = idxblocks;
5447
5448 /*
5449 * Now let's see how many group bitmaps and group descriptors need
5450 * to account
5451 */
5452 groups = idxblocks;
5453 if (chunk)
5454 groups += 1;
5455 else
5456 groups += nrblocks;
5457
5458 gdpblocks = groups;
5459 if (groups > ngroups)
5460 groups = ngroups;
5461 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5462 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5463
5464 /* bitmaps and block group descriptor blocks */
5465 ret += groups + gdpblocks;
5466
5467 /* Blocks for super block, inode, quota and xattr blocks */
5468 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5469
5470 return ret;
5471 }
5472
5473 /*
5474 * Calulate the total number of credits to reserve to fit
5475 * the modification of a single pages into a single transaction,
5476 * which may include multiple chunks of block allocations.
5477 *
5478 * This could be called via ext4_write_begin()
5479 *
5480 * We need to consider the worse case, when
5481 * one new block per extent.
5482 */
5483 int ext4_writepage_trans_blocks(struct inode *inode)
5484 {
5485 int bpp = ext4_journal_blocks_per_page(inode);
5486 int ret;
5487
5488 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5489
5490 /* Account for data blocks for journalled mode */
5491 if (ext4_should_journal_data(inode))
5492 ret += bpp;
5493 return ret;
5494 }
5495
5496 /*
5497 * Calculate the journal credits for a chunk of data modification.
5498 *
5499 * This is called from DIO, fallocate or whoever calling
5500 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5501 *
5502 * journal buffers for data blocks are not included here, as DIO
5503 * and fallocate do no need to journal data buffers.
5504 */
5505 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5506 {
5507 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5508 }
5509
5510 /*
5511 * The caller must have previously called ext4_reserve_inode_write().
5512 * Give this, we know that the caller already has write access to iloc->bh.
5513 */
5514 int ext4_mark_iloc_dirty(handle_t *handle,
5515 struct inode *inode, struct ext4_iloc *iloc)
5516 {
5517 int err = 0;
5518
5519 if (test_opt(inode->i_sb, I_VERSION))
5520 inode_inc_iversion(inode);
5521
5522 /* the do_update_inode consumes one bh->b_count */
5523 get_bh(iloc->bh);
5524
5525 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5526 err = ext4_do_update_inode(handle, inode, iloc);
5527 put_bh(iloc->bh);
5528 return err;
5529 }
5530
5531 /*
5532 * On success, We end up with an outstanding reference count against
5533 * iloc->bh. This _must_ be cleaned up later.
5534 */
5535
5536 int
5537 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5538 struct ext4_iloc *iloc)
5539 {
5540 int err;
5541
5542 err = ext4_get_inode_loc(inode, iloc);
5543 if (!err) {
5544 BUFFER_TRACE(iloc->bh, "get_write_access");
5545 err = ext4_journal_get_write_access(handle, iloc->bh);
5546 if (err) {
5547 brelse(iloc->bh);
5548 iloc->bh = NULL;
5549 }
5550 }
5551 ext4_std_error(inode->i_sb, err);
5552 return err;
5553 }
5554
5555 /*
5556 * Expand an inode by new_extra_isize bytes.
5557 * Returns 0 on success or negative error number on failure.
5558 */
5559 static int ext4_expand_extra_isize(struct inode *inode,
5560 unsigned int new_extra_isize,
5561 struct ext4_iloc iloc,
5562 handle_t *handle)
5563 {
5564 struct ext4_inode *raw_inode;
5565 struct ext4_xattr_ibody_header *header;
5566 struct ext4_xattr_entry *entry;
5567
5568 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5569 return 0;
5570
5571 raw_inode = ext4_raw_inode(&iloc);
5572
5573 header = IHDR(inode, raw_inode);
5574 entry = IFIRST(header);
5575
5576 /* No extended attributes present */
5577 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5578 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5579 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5580 new_extra_isize);
5581 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5582 return 0;
5583 }
5584
5585 /* try to expand with EAs present */
5586 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5587 raw_inode, handle);
5588 }
5589
5590 /*
5591 * What we do here is to mark the in-core inode as clean with respect to inode
5592 * dirtiness (it may still be data-dirty).
5593 * This means that the in-core inode may be reaped by prune_icache
5594 * without having to perform any I/O. This is a very good thing,
5595 * because *any* task may call prune_icache - even ones which
5596 * have a transaction open against a different journal.
5597 *
5598 * Is this cheating? Not really. Sure, we haven't written the
5599 * inode out, but prune_icache isn't a user-visible syncing function.
5600 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5601 * we start and wait on commits.
5602 *
5603 * Is this efficient/effective? Well, we're being nice to the system
5604 * by cleaning up our inodes proactively so they can be reaped
5605 * without I/O. But we are potentially leaving up to five seconds'
5606 * worth of inodes floating about which prune_icache wants us to
5607 * write out. One way to fix that would be to get prune_icache()
5608 * to do a write_super() to free up some memory. It has the desired
5609 * effect.
5610 */
5611 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5612 {
5613 struct ext4_iloc iloc;
5614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5615 static unsigned int mnt_count;
5616 int err, ret;
5617
5618 might_sleep();
5619 err = ext4_reserve_inode_write(handle, inode, &iloc);
5620 if (ext4_handle_valid(handle) &&
5621 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5622 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5623 /*
5624 * We need extra buffer credits since we may write into EA block
5625 * with this same handle. If journal_extend fails, then it will
5626 * only result in a minor loss of functionality for that inode.
5627 * If this is felt to be critical, then e2fsck should be run to
5628 * force a large enough s_min_extra_isize.
5629 */
5630 if ((jbd2_journal_extend(handle,
5631 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5632 ret = ext4_expand_extra_isize(inode,
5633 sbi->s_want_extra_isize,
5634 iloc, handle);
5635 if (ret) {
5636 ext4_set_inode_state(inode,
5637 EXT4_STATE_NO_EXPAND);
5638 if (mnt_count !=
5639 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5640 ext4_warning(inode->i_sb,
5641 "Unable to expand inode %lu. Delete"
5642 " some EAs or run e2fsck.",
5643 inode->i_ino);
5644 mnt_count =
5645 le16_to_cpu(sbi->s_es->s_mnt_count);
5646 }
5647 }
5648 }
5649 }
5650 if (!err)
5651 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5652 return err;
5653 }
5654
5655 /*
5656 * ext4_dirty_inode() is called from __mark_inode_dirty()
5657 *
5658 * We're really interested in the case where a file is being extended.
5659 * i_size has been changed by generic_commit_write() and we thus need
5660 * to include the updated inode in the current transaction.
5661 *
5662 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5663 * are allocated to the file.
5664 *
5665 * If the inode is marked synchronous, we don't honour that here - doing
5666 * so would cause a commit on atime updates, which we don't bother doing.
5667 * We handle synchronous inodes at the highest possible level.
5668 */
5669 void ext4_dirty_inode(struct inode *inode)
5670 {
5671 handle_t *handle;
5672
5673 handle = ext4_journal_start(inode, 2);
5674 if (IS_ERR(handle))
5675 goto out;
5676
5677 ext4_mark_inode_dirty(handle, inode);
5678
5679 ext4_journal_stop(handle);
5680 out:
5681 return;
5682 }
5683
5684 #if 0
5685 /*
5686 * Bind an inode's backing buffer_head into this transaction, to prevent
5687 * it from being flushed to disk early. Unlike
5688 * ext4_reserve_inode_write, this leaves behind no bh reference and
5689 * returns no iloc structure, so the caller needs to repeat the iloc
5690 * lookup to mark the inode dirty later.
5691 */
5692 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5693 {
5694 struct ext4_iloc iloc;
5695
5696 int err = 0;
5697 if (handle) {
5698 err = ext4_get_inode_loc(inode, &iloc);
5699 if (!err) {
5700 BUFFER_TRACE(iloc.bh, "get_write_access");
5701 err = jbd2_journal_get_write_access(handle, iloc.bh);
5702 if (!err)
5703 err = ext4_handle_dirty_metadata(handle,
5704 inode,
5705 iloc.bh);
5706 brelse(iloc.bh);
5707 }
5708 }
5709 ext4_std_error(inode->i_sb, err);
5710 return err;
5711 }
5712 #endif
5713
5714 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5715 {
5716 journal_t *journal;
5717 handle_t *handle;
5718 int err;
5719
5720 /*
5721 * We have to be very careful here: changing a data block's
5722 * journaling status dynamically is dangerous. If we write a
5723 * data block to the journal, change the status and then delete
5724 * that block, we risk forgetting to revoke the old log record
5725 * from the journal and so a subsequent replay can corrupt data.
5726 * So, first we make sure that the journal is empty and that
5727 * nobody is changing anything.
5728 */
5729
5730 journal = EXT4_JOURNAL(inode);
5731 if (!journal)
5732 return 0;
5733 if (is_journal_aborted(journal))
5734 return -EROFS;
5735
5736 jbd2_journal_lock_updates(journal);
5737 jbd2_journal_flush(journal);
5738
5739 /*
5740 * OK, there are no updates running now, and all cached data is
5741 * synced to disk. We are now in a completely consistent state
5742 * which doesn't have anything in the journal, and we know that
5743 * no filesystem updates are running, so it is safe to modify
5744 * the inode's in-core data-journaling state flag now.
5745 */
5746
5747 if (val)
5748 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5749 else
5750 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5751 ext4_set_aops(inode);
5752
5753 jbd2_journal_unlock_updates(journal);
5754
5755 /* Finally we can mark the inode as dirty. */
5756
5757 handle = ext4_journal_start(inode, 1);
5758 if (IS_ERR(handle))
5759 return PTR_ERR(handle);
5760
5761 err = ext4_mark_inode_dirty(handle, inode);
5762 ext4_handle_sync(handle);
5763 ext4_journal_stop(handle);
5764 ext4_std_error(inode->i_sb, err);
5765
5766 return err;
5767 }
5768
5769 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5770 {
5771 return !buffer_mapped(bh);
5772 }
5773
5774 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5775 {
5776 struct page *page = vmf->page;
5777 loff_t size;
5778 unsigned long len;
5779 int ret = -EINVAL;
5780 void *fsdata;
5781 struct file *file = vma->vm_file;
5782 struct inode *inode = file->f_path.dentry->d_inode;
5783 struct address_space *mapping = inode->i_mapping;
5784
5785 /*
5786 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5787 * get i_mutex because we are already holding mmap_sem.
5788 */
5789 down_read(&inode->i_alloc_sem);
5790 size = i_size_read(inode);
5791 if (page->mapping != mapping || size <= page_offset(page)
5792 || !PageUptodate(page)) {
5793 /* page got truncated from under us? */
5794 goto out_unlock;
5795 }
5796 ret = 0;
5797 if (PageMappedToDisk(page))
5798 goto out_unlock;
5799
5800 if (page->index == size >> PAGE_CACHE_SHIFT)
5801 len = size & ~PAGE_CACHE_MASK;
5802 else
5803 len = PAGE_CACHE_SIZE;
5804
5805 lock_page(page);
5806 /*
5807 * return if we have all the buffers mapped. This avoid
5808 * the need to call write_begin/write_end which does a
5809 * journal_start/journal_stop which can block and take
5810 * long time
5811 */
5812 if (page_has_buffers(page)) {
5813 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5814 ext4_bh_unmapped)) {
5815 unlock_page(page);
5816 goto out_unlock;
5817 }
5818 }
5819 unlock_page(page);
5820 /*
5821 * OK, we need to fill the hole... Do write_begin write_end
5822 * to do block allocation/reservation.We are not holding
5823 * inode.i__mutex here. That allow * parallel write_begin,
5824 * write_end call. lock_page prevent this from happening
5825 * on the same page though
5826 */
5827 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5828 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5829 if (ret < 0)
5830 goto out_unlock;
5831 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5832 len, len, page, fsdata);
5833 if (ret < 0)
5834 goto out_unlock;
5835 ret = 0;
5836 out_unlock:
5837 if (ret)
5838 ret = VM_FAULT_SIGBUS;
5839 up_read(&inode->i_alloc_sem);
5840 return ret;
5841 }
This page took 0.151015 seconds and 5 git commands to generate.