ext4: call ext4_ioend_wait and ext4_flush_completed_IO in ext4_evict_inode
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 trace_ext4_begin_ordered_truncate(inode, new_size);
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78 * Test whether an inode is a fast symlink.
79 */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
95 {
96 int ret;
97
98 /*
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
110
111 return ret;
112 }
113
114 /*
115 * Called at the last iput() if i_nlink is zero.
116 */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 handle_t *handle;
120 int err;
121
122 trace_ext4_evict_inode(inode);
123
124 mutex_lock(&inode->i_mutex);
125 ext4_flush_completed_IO(inode);
126 mutex_unlock(&inode->i_mutex);
127 ext4_ioend_wait(inode);
128
129 if (inode->i_nlink) {
130 /*
131 * When journalling data dirty buffers are tracked only in the
132 * journal. So although mm thinks everything is clean and
133 * ready for reaping the inode might still have some pages to
134 * write in the running transaction or waiting to be
135 * checkpointed. Thus calling jbd2_journal_invalidatepage()
136 * (via truncate_inode_pages()) to discard these buffers can
137 * cause data loss. Also even if we did not discard these
138 * buffers, we would have no way to find them after the inode
139 * is reaped and thus user could see stale data if he tries to
140 * read them before the transaction is checkpointed. So be
141 * careful and force everything to disk here... We use
142 * ei->i_datasync_tid to store the newest transaction
143 * containing inode's data.
144 *
145 * Note that directories do not have this problem because they
146 * don't use page cache.
147 */
148 if (ext4_should_journal_data(inode) &&
149 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
150 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
151 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
152
153 jbd2_log_start_commit(journal, commit_tid);
154 jbd2_log_wait_commit(journal, commit_tid);
155 filemap_write_and_wait(&inode->i_data);
156 }
157 truncate_inode_pages(&inode->i_data, 0);
158 goto no_delete;
159 }
160
161 if (!is_bad_inode(inode))
162 dquot_initialize(inode);
163
164 if (ext4_should_order_data(inode))
165 ext4_begin_ordered_truncate(inode, 0);
166 truncate_inode_pages(&inode->i_data, 0);
167
168 if (is_bad_inode(inode))
169 goto no_delete;
170
171 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
172 if (IS_ERR(handle)) {
173 ext4_std_error(inode->i_sb, PTR_ERR(handle));
174 /*
175 * If we're going to skip the normal cleanup, we still need to
176 * make sure that the in-core orphan linked list is properly
177 * cleaned up.
178 */
179 ext4_orphan_del(NULL, inode);
180 goto no_delete;
181 }
182
183 if (IS_SYNC(inode))
184 ext4_handle_sync(handle);
185 inode->i_size = 0;
186 err = ext4_mark_inode_dirty(handle, inode);
187 if (err) {
188 ext4_warning(inode->i_sb,
189 "couldn't mark inode dirty (err %d)", err);
190 goto stop_handle;
191 }
192 if (inode->i_blocks)
193 ext4_truncate(inode);
194
195 /*
196 * ext4_ext_truncate() doesn't reserve any slop when it
197 * restarts journal transactions; therefore there may not be
198 * enough credits left in the handle to remove the inode from
199 * the orphan list and set the dtime field.
200 */
201 if (!ext4_handle_has_enough_credits(handle, 3)) {
202 err = ext4_journal_extend(handle, 3);
203 if (err > 0)
204 err = ext4_journal_restart(handle, 3);
205 if (err != 0) {
206 ext4_warning(inode->i_sb,
207 "couldn't extend journal (err %d)", err);
208 stop_handle:
209 ext4_journal_stop(handle);
210 ext4_orphan_del(NULL, inode);
211 goto no_delete;
212 }
213 }
214
215 /*
216 * Kill off the orphan record which ext4_truncate created.
217 * AKPM: I think this can be inside the above `if'.
218 * Note that ext4_orphan_del() has to be able to cope with the
219 * deletion of a non-existent orphan - this is because we don't
220 * know if ext4_truncate() actually created an orphan record.
221 * (Well, we could do this if we need to, but heck - it works)
222 */
223 ext4_orphan_del(handle, inode);
224 EXT4_I(inode)->i_dtime = get_seconds();
225
226 /*
227 * One subtle ordering requirement: if anything has gone wrong
228 * (transaction abort, IO errors, whatever), then we can still
229 * do these next steps (the fs will already have been marked as
230 * having errors), but we can't free the inode if the mark_dirty
231 * fails.
232 */
233 if (ext4_mark_inode_dirty(handle, inode))
234 /* If that failed, just do the required in-core inode clear. */
235 ext4_clear_inode(inode);
236 else
237 ext4_free_inode(handle, inode);
238 ext4_journal_stop(handle);
239 return;
240 no_delete:
241 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
242 }
243
244 #ifdef CONFIG_QUOTA
245 qsize_t *ext4_get_reserved_space(struct inode *inode)
246 {
247 return &EXT4_I(inode)->i_reserved_quota;
248 }
249 #endif
250
251 /*
252 * Calculate the number of metadata blocks need to reserve
253 * to allocate a block located at @lblock
254 */
255 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
256 {
257 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
258 return ext4_ext_calc_metadata_amount(inode, lblock);
259
260 return ext4_ind_calc_metadata_amount(inode, lblock);
261 }
262
263 /*
264 * Called with i_data_sem down, which is important since we can call
265 * ext4_discard_preallocations() from here.
266 */
267 void ext4_da_update_reserve_space(struct inode *inode,
268 int used, int quota_claim)
269 {
270 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 spin_lock(&ei->i_block_reservation_lock);
274 trace_ext4_da_update_reserve_space(inode, used);
275 if (unlikely(used > ei->i_reserved_data_blocks)) {
276 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
277 "with only %d reserved data blocks\n",
278 __func__, inode->i_ino, used,
279 ei->i_reserved_data_blocks);
280 WARN_ON(1);
281 used = ei->i_reserved_data_blocks;
282 }
283
284 /* Update per-inode reservations */
285 ei->i_reserved_data_blocks -= used;
286 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
287 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
288 used + ei->i_allocated_meta_blocks);
289 ei->i_allocated_meta_blocks = 0;
290
291 if (ei->i_reserved_data_blocks == 0) {
292 /*
293 * We can release all of the reserved metadata blocks
294 * only when we have written all of the delayed
295 * allocation blocks.
296 */
297 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
298 ei->i_reserved_meta_blocks);
299 ei->i_reserved_meta_blocks = 0;
300 ei->i_da_metadata_calc_len = 0;
301 }
302 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
303
304 /* Update quota subsystem for data blocks */
305 if (quota_claim)
306 dquot_claim_block(inode, used);
307 else {
308 /*
309 * We did fallocate with an offset that is already delayed
310 * allocated. So on delayed allocated writeback we should
311 * not re-claim the quota for fallocated blocks.
312 */
313 dquot_release_reservation_block(inode, used);
314 }
315
316 /*
317 * If we have done all the pending block allocations and if
318 * there aren't any writers on the inode, we can discard the
319 * inode's preallocations.
320 */
321 if ((ei->i_reserved_data_blocks == 0) &&
322 (atomic_read(&inode->i_writecount) == 0))
323 ext4_discard_preallocations(inode);
324 }
325
326 static int __check_block_validity(struct inode *inode, const char *func,
327 unsigned int line,
328 struct ext4_map_blocks *map)
329 {
330 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
331 map->m_len)) {
332 ext4_error_inode(inode, func, line, map->m_pblk,
333 "lblock %lu mapped to illegal pblock "
334 "(length %d)", (unsigned long) map->m_lblk,
335 map->m_len);
336 return -EIO;
337 }
338 return 0;
339 }
340
341 #define check_block_validity(inode, map) \
342 __check_block_validity((inode), __func__, __LINE__, (map))
343
344 /*
345 * Return the number of contiguous dirty pages in a given inode
346 * starting at page frame idx.
347 */
348 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
349 unsigned int max_pages)
350 {
351 struct address_space *mapping = inode->i_mapping;
352 pgoff_t index;
353 struct pagevec pvec;
354 pgoff_t num = 0;
355 int i, nr_pages, done = 0;
356
357 if (max_pages == 0)
358 return 0;
359 pagevec_init(&pvec, 0);
360 while (!done) {
361 index = idx;
362 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
363 PAGECACHE_TAG_DIRTY,
364 (pgoff_t)PAGEVEC_SIZE);
365 if (nr_pages == 0)
366 break;
367 for (i = 0; i < nr_pages; i++) {
368 struct page *page = pvec.pages[i];
369 struct buffer_head *bh, *head;
370
371 lock_page(page);
372 if (unlikely(page->mapping != mapping) ||
373 !PageDirty(page) ||
374 PageWriteback(page) ||
375 page->index != idx) {
376 done = 1;
377 unlock_page(page);
378 break;
379 }
380 if (page_has_buffers(page)) {
381 bh = head = page_buffers(page);
382 do {
383 if (!buffer_delay(bh) &&
384 !buffer_unwritten(bh))
385 done = 1;
386 bh = bh->b_this_page;
387 } while (!done && (bh != head));
388 }
389 unlock_page(page);
390 if (done)
391 break;
392 idx++;
393 num++;
394 if (num >= max_pages) {
395 done = 1;
396 break;
397 }
398 }
399 pagevec_release(&pvec);
400 }
401 return num;
402 }
403
404 /*
405 * The ext4_map_blocks() function tries to look up the requested blocks,
406 * and returns if the blocks are already mapped.
407 *
408 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
409 * and store the allocated blocks in the result buffer head and mark it
410 * mapped.
411 *
412 * If file type is extents based, it will call ext4_ext_map_blocks(),
413 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
414 * based files
415 *
416 * On success, it returns the number of blocks being mapped or allocate.
417 * if create==0 and the blocks are pre-allocated and uninitialized block,
418 * the result buffer head is unmapped. If the create ==1, it will make sure
419 * the buffer head is mapped.
420 *
421 * It returns 0 if plain look up failed (blocks have not been allocated), in
422 * that casem, buffer head is unmapped
423 *
424 * It returns the error in case of allocation failure.
425 */
426 int ext4_map_blocks(handle_t *handle, struct inode *inode,
427 struct ext4_map_blocks *map, int flags)
428 {
429 int retval;
430
431 map->m_flags = 0;
432 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
433 "logical block %lu\n", inode->i_ino, flags, map->m_len,
434 (unsigned long) map->m_lblk);
435 /*
436 * Try to see if we can get the block without requesting a new
437 * file system block.
438 */
439 down_read((&EXT4_I(inode)->i_data_sem));
440 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
441 retval = ext4_ext_map_blocks(handle, inode, map, 0);
442 } else {
443 retval = ext4_ind_map_blocks(handle, inode, map, 0);
444 }
445 up_read((&EXT4_I(inode)->i_data_sem));
446
447 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
448 int ret = check_block_validity(inode, map);
449 if (ret != 0)
450 return ret;
451 }
452
453 /* If it is only a block(s) look up */
454 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
455 return retval;
456
457 /*
458 * Returns if the blocks have already allocated
459 *
460 * Note that if blocks have been preallocated
461 * ext4_ext_get_block() returns th create = 0
462 * with buffer head unmapped.
463 */
464 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
465 return retval;
466
467 /*
468 * When we call get_blocks without the create flag, the
469 * BH_Unwritten flag could have gotten set if the blocks
470 * requested were part of a uninitialized extent. We need to
471 * clear this flag now that we are committed to convert all or
472 * part of the uninitialized extent to be an initialized
473 * extent. This is because we need to avoid the combination
474 * of BH_Unwritten and BH_Mapped flags being simultaneously
475 * set on the buffer_head.
476 */
477 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
478
479 /*
480 * New blocks allocate and/or writing to uninitialized extent
481 * will possibly result in updating i_data, so we take
482 * the write lock of i_data_sem, and call get_blocks()
483 * with create == 1 flag.
484 */
485 down_write((&EXT4_I(inode)->i_data_sem));
486
487 /*
488 * if the caller is from delayed allocation writeout path
489 * we have already reserved fs blocks for allocation
490 * let the underlying get_block() function know to
491 * avoid double accounting
492 */
493 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
494 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
495 /*
496 * We need to check for EXT4 here because migrate
497 * could have changed the inode type in between
498 */
499 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
500 retval = ext4_ext_map_blocks(handle, inode, map, flags);
501 } else {
502 retval = ext4_ind_map_blocks(handle, inode, map, flags);
503
504 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
505 /*
506 * We allocated new blocks which will result in
507 * i_data's format changing. Force the migrate
508 * to fail by clearing migrate flags
509 */
510 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
511 }
512
513 /*
514 * Update reserved blocks/metadata blocks after successful
515 * block allocation which had been deferred till now. We don't
516 * support fallocate for non extent files. So we can update
517 * reserve space here.
518 */
519 if ((retval > 0) &&
520 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
521 ext4_da_update_reserve_space(inode, retval, 1);
522 }
523 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
524 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
525
526 up_write((&EXT4_I(inode)->i_data_sem));
527 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
528 int ret = check_block_validity(inode, map);
529 if (ret != 0)
530 return ret;
531 }
532 return retval;
533 }
534
535 /* Maximum number of blocks we map for direct IO at once. */
536 #define DIO_MAX_BLOCKS 4096
537
538 static int _ext4_get_block(struct inode *inode, sector_t iblock,
539 struct buffer_head *bh, int flags)
540 {
541 handle_t *handle = ext4_journal_current_handle();
542 struct ext4_map_blocks map;
543 int ret = 0, started = 0;
544 int dio_credits;
545
546 map.m_lblk = iblock;
547 map.m_len = bh->b_size >> inode->i_blkbits;
548
549 if (flags && !handle) {
550 /* Direct IO write... */
551 if (map.m_len > DIO_MAX_BLOCKS)
552 map.m_len = DIO_MAX_BLOCKS;
553 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
554 handle = ext4_journal_start(inode, dio_credits);
555 if (IS_ERR(handle)) {
556 ret = PTR_ERR(handle);
557 return ret;
558 }
559 started = 1;
560 }
561
562 ret = ext4_map_blocks(handle, inode, &map, flags);
563 if (ret > 0) {
564 map_bh(bh, inode->i_sb, map.m_pblk);
565 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
566 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
567 ret = 0;
568 }
569 if (started)
570 ext4_journal_stop(handle);
571 return ret;
572 }
573
574 int ext4_get_block(struct inode *inode, sector_t iblock,
575 struct buffer_head *bh, int create)
576 {
577 return _ext4_get_block(inode, iblock, bh,
578 create ? EXT4_GET_BLOCKS_CREATE : 0);
579 }
580
581 /*
582 * `handle' can be NULL if create is zero
583 */
584 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
585 ext4_lblk_t block, int create, int *errp)
586 {
587 struct ext4_map_blocks map;
588 struct buffer_head *bh;
589 int fatal = 0, err;
590
591 J_ASSERT(handle != NULL || create == 0);
592
593 map.m_lblk = block;
594 map.m_len = 1;
595 err = ext4_map_blocks(handle, inode, &map,
596 create ? EXT4_GET_BLOCKS_CREATE : 0);
597
598 if (err < 0)
599 *errp = err;
600 if (err <= 0)
601 return NULL;
602 *errp = 0;
603
604 bh = sb_getblk(inode->i_sb, map.m_pblk);
605 if (!bh) {
606 *errp = -EIO;
607 return NULL;
608 }
609 if (map.m_flags & EXT4_MAP_NEW) {
610 J_ASSERT(create != 0);
611 J_ASSERT(handle != NULL);
612
613 /*
614 * Now that we do not always journal data, we should
615 * keep in mind whether this should always journal the
616 * new buffer as metadata. For now, regular file
617 * writes use ext4_get_block instead, so it's not a
618 * problem.
619 */
620 lock_buffer(bh);
621 BUFFER_TRACE(bh, "call get_create_access");
622 fatal = ext4_journal_get_create_access(handle, bh);
623 if (!fatal && !buffer_uptodate(bh)) {
624 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
625 set_buffer_uptodate(bh);
626 }
627 unlock_buffer(bh);
628 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
629 err = ext4_handle_dirty_metadata(handle, inode, bh);
630 if (!fatal)
631 fatal = err;
632 } else {
633 BUFFER_TRACE(bh, "not a new buffer");
634 }
635 if (fatal) {
636 *errp = fatal;
637 brelse(bh);
638 bh = NULL;
639 }
640 return bh;
641 }
642
643 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
644 ext4_lblk_t block, int create, int *err)
645 {
646 struct buffer_head *bh;
647
648 bh = ext4_getblk(handle, inode, block, create, err);
649 if (!bh)
650 return bh;
651 if (buffer_uptodate(bh))
652 return bh;
653 ll_rw_block(READ_META, 1, &bh);
654 wait_on_buffer(bh);
655 if (buffer_uptodate(bh))
656 return bh;
657 put_bh(bh);
658 *err = -EIO;
659 return NULL;
660 }
661
662 static int walk_page_buffers(handle_t *handle,
663 struct buffer_head *head,
664 unsigned from,
665 unsigned to,
666 int *partial,
667 int (*fn)(handle_t *handle,
668 struct buffer_head *bh))
669 {
670 struct buffer_head *bh;
671 unsigned block_start, block_end;
672 unsigned blocksize = head->b_size;
673 int err, ret = 0;
674 struct buffer_head *next;
675
676 for (bh = head, block_start = 0;
677 ret == 0 && (bh != head || !block_start);
678 block_start = block_end, bh = next) {
679 next = bh->b_this_page;
680 block_end = block_start + blocksize;
681 if (block_end <= from || block_start >= to) {
682 if (partial && !buffer_uptodate(bh))
683 *partial = 1;
684 continue;
685 }
686 err = (*fn)(handle, bh);
687 if (!ret)
688 ret = err;
689 }
690 return ret;
691 }
692
693 /*
694 * To preserve ordering, it is essential that the hole instantiation and
695 * the data write be encapsulated in a single transaction. We cannot
696 * close off a transaction and start a new one between the ext4_get_block()
697 * and the commit_write(). So doing the jbd2_journal_start at the start of
698 * prepare_write() is the right place.
699 *
700 * Also, this function can nest inside ext4_writepage() ->
701 * block_write_full_page(). In that case, we *know* that ext4_writepage()
702 * has generated enough buffer credits to do the whole page. So we won't
703 * block on the journal in that case, which is good, because the caller may
704 * be PF_MEMALLOC.
705 *
706 * By accident, ext4 can be reentered when a transaction is open via
707 * quota file writes. If we were to commit the transaction while thus
708 * reentered, there can be a deadlock - we would be holding a quota
709 * lock, and the commit would never complete if another thread had a
710 * transaction open and was blocking on the quota lock - a ranking
711 * violation.
712 *
713 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
714 * will _not_ run commit under these circumstances because handle->h_ref
715 * is elevated. We'll still have enough credits for the tiny quotafile
716 * write.
717 */
718 static int do_journal_get_write_access(handle_t *handle,
719 struct buffer_head *bh)
720 {
721 int dirty = buffer_dirty(bh);
722 int ret;
723
724 if (!buffer_mapped(bh) || buffer_freed(bh))
725 return 0;
726 /*
727 * __block_write_begin() could have dirtied some buffers. Clean
728 * the dirty bit as jbd2_journal_get_write_access() could complain
729 * otherwise about fs integrity issues. Setting of the dirty bit
730 * by __block_write_begin() isn't a real problem here as we clear
731 * the bit before releasing a page lock and thus writeback cannot
732 * ever write the buffer.
733 */
734 if (dirty)
735 clear_buffer_dirty(bh);
736 ret = ext4_journal_get_write_access(handle, bh);
737 if (!ret && dirty)
738 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
739 return ret;
740 }
741
742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh_result, int create);
744 static int ext4_write_begin(struct file *file, struct address_space *mapping,
745 loff_t pos, unsigned len, unsigned flags,
746 struct page **pagep, void **fsdata)
747 {
748 struct inode *inode = mapping->host;
749 int ret, needed_blocks;
750 handle_t *handle;
751 int retries = 0;
752 struct page *page;
753 pgoff_t index;
754 unsigned from, to;
755
756 trace_ext4_write_begin(inode, pos, len, flags);
757 /*
758 * Reserve one block more for addition to orphan list in case
759 * we allocate blocks but write fails for some reason
760 */
761 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
762 index = pos >> PAGE_CACHE_SHIFT;
763 from = pos & (PAGE_CACHE_SIZE - 1);
764 to = from + len;
765
766 retry:
767 handle = ext4_journal_start(inode, needed_blocks);
768 if (IS_ERR(handle)) {
769 ret = PTR_ERR(handle);
770 goto out;
771 }
772
773 /* We cannot recurse into the filesystem as the transaction is already
774 * started */
775 flags |= AOP_FLAG_NOFS;
776
777 page = grab_cache_page_write_begin(mapping, index, flags);
778 if (!page) {
779 ext4_journal_stop(handle);
780 ret = -ENOMEM;
781 goto out;
782 }
783 *pagep = page;
784
785 if (ext4_should_dioread_nolock(inode))
786 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
787 else
788 ret = __block_write_begin(page, pos, len, ext4_get_block);
789
790 if (!ret && ext4_should_journal_data(inode)) {
791 ret = walk_page_buffers(handle, page_buffers(page),
792 from, to, NULL, do_journal_get_write_access);
793 }
794
795 if (ret) {
796 unlock_page(page);
797 page_cache_release(page);
798 /*
799 * __block_write_begin may have instantiated a few blocks
800 * outside i_size. Trim these off again. Don't need
801 * i_size_read because we hold i_mutex.
802 *
803 * Add inode to orphan list in case we crash before
804 * truncate finishes
805 */
806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
807 ext4_orphan_add(handle, inode);
808
809 ext4_journal_stop(handle);
810 if (pos + len > inode->i_size) {
811 ext4_truncate_failed_write(inode);
812 /*
813 * If truncate failed early the inode might
814 * still be on the orphan list; we need to
815 * make sure the inode is removed from the
816 * orphan list in that case.
817 */
818 if (inode->i_nlink)
819 ext4_orphan_del(NULL, inode);
820 }
821 }
822
823 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
824 goto retry;
825 out:
826 return ret;
827 }
828
829 /* For write_end() in data=journal mode */
830 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
831 {
832 if (!buffer_mapped(bh) || buffer_freed(bh))
833 return 0;
834 set_buffer_uptodate(bh);
835 return ext4_handle_dirty_metadata(handle, NULL, bh);
836 }
837
838 static int ext4_generic_write_end(struct file *file,
839 struct address_space *mapping,
840 loff_t pos, unsigned len, unsigned copied,
841 struct page *page, void *fsdata)
842 {
843 int i_size_changed = 0;
844 struct inode *inode = mapping->host;
845 handle_t *handle = ext4_journal_current_handle();
846
847 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
848
849 /*
850 * No need to use i_size_read() here, the i_size
851 * cannot change under us because we hold i_mutex.
852 *
853 * But it's important to update i_size while still holding page lock:
854 * page writeout could otherwise come in and zero beyond i_size.
855 */
856 if (pos + copied > inode->i_size) {
857 i_size_write(inode, pos + copied);
858 i_size_changed = 1;
859 }
860
861 if (pos + copied > EXT4_I(inode)->i_disksize) {
862 /* We need to mark inode dirty even if
863 * new_i_size is less that inode->i_size
864 * bu greater than i_disksize.(hint delalloc)
865 */
866 ext4_update_i_disksize(inode, (pos + copied));
867 i_size_changed = 1;
868 }
869 unlock_page(page);
870 page_cache_release(page);
871
872 /*
873 * Don't mark the inode dirty under page lock. First, it unnecessarily
874 * makes the holding time of page lock longer. Second, it forces lock
875 * ordering of page lock and transaction start for journaling
876 * filesystems.
877 */
878 if (i_size_changed)
879 ext4_mark_inode_dirty(handle, inode);
880
881 return copied;
882 }
883
884 /*
885 * We need to pick up the new inode size which generic_commit_write gave us
886 * `file' can be NULL - eg, when called from page_symlink().
887 *
888 * ext4 never places buffers on inode->i_mapping->private_list. metadata
889 * buffers are managed internally.
890 */
891 static int ext4_ordered_write_end(struct file *file,
892 struct address_space *mapping,
893 loff_t pos, unsigned len, unsigned copied,
894 struct page *page, void *fsdata)
895 {
896 handle_t *handle = ext4_journal_current_handle();
897 struct inode *inode = mapping->host;
898 int ret = 0, ret2;
899
900 trace_ext4_ordered_write_end(inode, pos, len, copied);
901 ret = ext4_jbd2_file_inode(handle, inode);
902
903 if (ret == 0) {
904 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
905 page, fsdata);
906 copied = ret2;
907 if (pos + len > inode->i_size && ext4_can_truncate(inode))
908 /* if we have allocated more blocks and copied
909 * less. We will have blocks allocated outside
910 * inode->i_size. So truncate them
911 */
912 ext4_orphan_add(handle, inode);
913 if (ret2 < 0)
914 ret = ret2;
915 }
916 ret2 = ext4_journal_stop(handle);
917 if (!ret)
918 ret = ret2;
919
920 if (pos + len > inode->i_size) {
921 ext4_truncate_failed_write(inode);
922 /*
923 * If truncate failed early the inode might still be
924 * on the orphan list; we need to make sure the inode
925 * is removed from the orphan list in that case.
926 */
927 if (inode->i_nlink)
928 ext4_orphan_del(NULL, inode);
929 }
930
931
932 return ret ? ret : copied;
933 }
934
935 static int ext4_writeback_write_end(struct file *file,
936 struct address_space *mapping,
937 loff_t pos, unsigned len, unsigned copied,
938 struct page *page, void *fsdata)
939 {
940 handle_t *handle = ext4_journal_current_handle();
941 struct inode *inode = mapping->host;
942 int ret = 0, ret2;
943
944 trace_ext4_writeback_write_end(inode, pos, len, copied);
945 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
946 page, fsdata);
947 copied = ret2;
948 if (pos + len > inode->i_size && ext4_can_truncate(inode))
949 /* if we have allocated more blocks and copied
950 * less. We will have blocks allocated outside
951 * inode->i_size. So truncate them
952 */
953 ext4_orphan_add(handle, inode);
954
955 if (ret2 < 0)
956 ret = ret2;
957
958 ret2 = ext4_journal_stop(handle);
959 if (!ret)
960 ret = ret2;
961
962 if (pos + len > inode->i_size) {
963 ext4_truncate_failed_write(inode);
964 /*
965 * If truncate failed early the inode might still be
966 * on the orphan list; we need to make sure the inode
967 * is removed from the orphan list in that case.
968 */
969 if (inode->i_nlink)
970 ext4_orphan_del(NULL, inode);
971 }
972
973 return ret ? ret : copied;
974 }
975
976 static int ext4_journalled_write_end(struct file *file,
977 struct address_space *mapping,
978 loff_t pos, unsigned len, unsigned copied,
979 struct page *page, void *fsdata)
980 {
981 handle_t *handle = ext4_journal_current_handle();
982 struct inode *inode = mapping->host;
983 int ret = 0, ret2;
984 int partial = 0;
985 unsigned from, to;
986 loff_t new_i_size;
987
988 trace_ext4_journalled_write_end(inode, pos, len, copied);
989 from = pos & (PAGE_CACHE_SIZE - 1);
990 to = from + len;
991
992 BUG_ON(!ext4_handle_valid(handle));
993
994 if (copied < len) {
995 if (!PageUptodate(page))
996 copied = 0;
997 page_zero_new_buffers(page, from+copied, to);
998 }
999
1000 ret = walk_page_buffers(handle, page_buffers(page), from,
1001 to, &partial, write_end_fn);
1002 if (!partial)
1003 SetPageUptodate(page);
1004 new_i_size = pos + copied;
1005 if (new_i_size > inode->i_size)
1006 i_size_write(inode, pos+copied);
1007 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1008 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1009 if (new_i_size > EXT4_I(inode)->i_disksize) {
1010 ext4_update_i_disksize(inode, new_i_size);
1011 ret2 = ext4_mark_inode_dirty(handle, inode);
1012 if (!ret)
1013 ret = ret2;
1014 }
1015
1016 unlock_page(page);
1017 page_cache_release(page);
1018 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1019 /* if we have allocated more blocks and copied
1020 * less. We will have blocks allocated outside
1021 * inode->i_size. So truncate them
1022 */
1023 ext4_orphan_add(handle, inode);
1024
1025 ret2 = ext4_journal_stop(handle);
1026 if (!ret)
1027 ret = ret2;
1028 if (pos + len > inode->i_size) {
1029 ext4_truncate_failed_write(inode);
1030 /*
1031 * If truncate failed early the inode might still be
1032 * on the orphan list; we need to make sure the inode
1033 * is removed from the orphan list in that case.
1034 */
1035 if (inode->i_nlink)
1036 ext4_orphan_del(NULL, inode);
1037 }
1038
1039 return ret ? ret : copied;
1040 }
1041
1042 /*
1043 * Reserve a single block located at lblock
1044 */
1045 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1046 {
1047 int retries = 0;
1048 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1049 struct ext4_inode_info *ei = EXT4_I(inode);
1050 unsigned long md_needed;
1051 int ret;
1052
1053 /*
1054 * recalculate the amount of metadata blocks to reserve
1055 * in order to allocate nrblocks
1056 * worse case is one extent per block
1057 */
1058 repeat:
1059 spin_lock(&ei->i_block_reservation_lock);
1060 md_needed = ext4_calc_metadata_amount(inode, lblock);
1061 trace_ext4_da_reserve_space(inode, md_needed);
1062 spin_unlock(&ei->i_block_reservation_lock);
1063
1064 /*
1065 * We will charge metadata quota at writeout time; this saves
1066 * us from metadata over-estimation, though we may go over by
1067 * a small amount in the end. Here we just reserve for data.
1068 */
1069 ret = dquot_reserve_block(inode, 1);
1070 if (ret)
1071 return ret;
1072 /*
1073 * We do still charge estimated metadata to the sb though;
1074 * we cannot afford to run out of free blocks.
1075 */
1076 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1077 dquot_release_reservation_block(inode, 1);
1078 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1079 yield();
1080 goto repeat;
1081 }
1082 return -ENOSPC;
1083 }
1084 spin_lock(&ei->i_block_reservation_lock);
1085 ei->i_reserved_data_blocks++;
1086 ei->i_reserved_meta_blocks += md_needed;
1087 spin_unlock(&ei->i_block_reservation_lock);
1088
1089 return 0; /* success */
1090 }
1091
1092 static void ext4_da_release_space(struct inode *inode, int to_free)
1093 {
1094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1095 struct ext4_inode_info *ei = EXT4_I(inode);
1096
1097 if (!to_free)
1098 return; /* Nothing to release, exit */
1099
1100 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1101
1102 trace_ext4_da_release_space(inode, to_free);
1103 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1104 /*
1105 * if there aren't enough reserved blocks, then the
1106 * counter is messed up somewhere. Since this
1107 * function is called from invalidate page, it's
1108 * harmless to return without any action.
1109 */
1110 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1111 "ino %lu, to_free %d with only %d reserved "
1112 "data blocks\n", inode->i_ino, to_free,
1113 ei->i_reserved_data_blocks);
1114 WARN_ON(1);
1115 to_free = ei->i_reserved_data_blocks;
1116 }
1117 ei->i_reserved_data_blocks -= to_free;
1118
1119 if (ei->i_reserved_data_blocks == 0) {
1120 /*
1121 * We can release all of the reserved metadata blocks
1122 * only when we have written all of the delayed
1123 * allocation blocks.
1124 */
1125 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1126 ei->i_reserved_meta_blocks);
1127 ei->i_reserved_meta_blocks = 0;
1128 ei->i_da_metadata_calc_len = 0;
1129 }
1130
1131 /* update fs dirty data blocks counter */
1132 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1133
1134 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135
1136 dquot_release_reservation_block(inode, to_free);
1137 }
1138
1139 static void ext4_da_page_release_reservation(struct page *page,
1140 unsigned long offset)
1141 {
1142 int to_release = 0;
1143 struct buffer_head *head, *bh;
1144 unsigned int curr_off = 0;
1145
1146 head = page_buffers(page);
1147 bh = head;
1148 do {
1149 unsigned int next_off = curr_off + bh->b_size;
1150
1151 if ((offset <= curr_off) && (buffer_delay(bh))) {
1152 to_release++;
1153 clear_buffer_delay(bh);
1154 }
1155 curr_off = next_off;
1156 } while ((bh = bh->b_this_page) != head);
1157 ext4_da_release_space(page->mapping->host, to_release);
1158 }
1159
1160 /*
1161 * Delayed allocation stuff
1162 */
1163
1164 /*
1165 * mpage_da_submit_io - walks through extent of pages and try to write
1166 * them with writepage() call back
1167 *
1168 * @mpd->inode: inode
1169 * @mpd->first_page: first page of the extent
1170 * @mpd->next_page: page after the last page of the extent
1171 *
1172 * By the time mpage_da_submit_io() is called we expect all blocks
1173 * to be allocated. this may be wrong if allocation failed.
1174 *
1175 * As pages are already locked by write_cache_pages(), we can't use it
1176 */
1177 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1178 struct ext4_map_blocks *map)
1179 {
1180 struct pagevec pvec;
1181 unsigned long index, end;
1182 int ret = 0, err, nr_pages, i;
1183 struct inode *inode = mpd->inode;
1184 struct address_space *mapping = inode->i_mapping;
1185 loff_t size = i_size_read(inode);
1186 unsigned int len, block_start;
1187 struct buffer_head *bh, *page_bufs = NULL;
1188 int journal_data = ext4_should_journal_data(inode);
1189 sector_t pblock = 0, cur_logical = 0;
1190 struct ext4_io_submit io_submit;
1191
1192 BUG_ON(mpd->next_page <= mpd->first_page);
1193 memset(&io_submit, 0, sizeof(io_submit));
1194 /*
1195 * We need to start from the first_page to the next_page - 1
1196 * to make sure we also write the mapped dirty buffer_heads.
1197 * If we look at mpd->b_blocknr we would only be looking
1198 * at the currently mapped buffer_heads.
1199 */
1200 index = mpd->first_page;
1201 end = mpd->next_page - 1;
1202
1203 pagevec_init(&pvec, 0);
1204 while (index <= end) {
1205 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1206 if (nr_pages == 0)
1207 break;
1208 for (i = 0; i < nr_pages; i++) {
1209 int commit_write = 0, skip_page = 0;
1210 struct page *page = pvec.pages[i];
1211
1212 index = page->index;
1213 if (index > end)
1214 break;
1215
1216 if (index == size >> PAGE_CACHE_SHIFT)
1217 len = size & ~PAGE_CACHE_MASK;
1218 else
1219 len = PAGE_CACHE_SIZE;
1220 if (map) {
1221 cur_logical = index << (PAGE_CACHE_SHIFT -
1222 inode->i_blkbits);
1223 pblock = map->m_pblk + (cur_logical -
1224 map->m_lblk);
1225 }
1226 index++;
1227
1228 BUG_ON(!PageLocked(page));
1229 BUG_ON(PageWriteback(page));
1230
1231 /*
1232 * If the page does not have buffers (for
1233 * whatever reason), try to create them using
1234 * __block_write_begin. If this fails,
1235 * skip the page and move on.
1236 */
1237 if (!page_has_buffers(page)) {
1238 if (__block_write_begin(page, 0, len,
1239 noalloc_get_block_write)) {
1240 skip_page:
1241 unlock_page(page);
1242 continue;
1243 }
1244 commit_write = 1;
1245 }
1246
1247 bh = page_bufs = page_buffers(page);
1248 block_start = 0;
1249 do {
1250 if (!bh)
1251 goto skip_page;
1252 if (map && (cur_logical >= map->m_lblk) &&
1253 (cur_logical <= (map->m_lblk +
1254 (map->m_len - 1)))) {
1255 if (buffer_delay(bh)) {
1256 clear_buffer_delay(bh);
1257 bh->b_blocknr = pblock;
1258 }
1259 if (buffer_unwritten(bh) ||
1260 buffer_mapped(bh))
1261 BUG_ON(bh->b_blocknr != pblock);
1262 if (map->m_flags & EXT4_MAP_UNINIT)
1263 set_buffer_uninit(bh);
1264 clear_buffer_unwritten(bh);
1265 }
1266
1267 /* skip page if block allocation undone */
1268 if (buffer_delay(bh) || buffer_unwritten(bh))
1269 skip_page = 1;
1270 bh = bh->b_this_page;
1271 block_start += bh->b_size;
1272 cur_logical++;
1273 pblock++;
1274 } while (bh != page_bufs);
1275
1276 if (skip_page)
1277 goto skip_page;
1278
1279 if (commit_write)
1280 /* mark the buffer_heads as dirty & uptodate */
1281 block_commit_write(page, 0, len);
1282
1283 clear_page_dirty_for_io(page);
1284 /*
1285 * Delalloc doesn't support data journalling,
1286 * but eventually maybe we'll lift this
1287 * restriction.
1288 */
1289 if (unlikely(journal_data && PageChecked(page)))
1290 err = __ext4_journalled_writepage(page, len);
1291 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1292 err = ext4_bio_write_page(&io_submit, page,
1293 len, mpd->wbc);
1294 else
1295 err = block_write_full_page(page,
1296 noalloc_get_block_write, mpd->wbc);
1297
1298 if (!err)
1299 mpd->pages_written++;
1300 /*
1301 * In error case, we have to continue because
1302 * remaining pages are still locked
1303 */
1304 if (ret == 0)
1305 ret = err;
1306 }
1307 pagevec_release(&pvec);
1308 }
1309 ext4_io_submit(&io_submit);
1310 return ret;
1311 }
1312
1313 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1314 {
1315 int nr_pages, i;
1316 pgoff_t index, end;
1317 struct pagevec pvec;
1318 struct inode *inode = mpd->inode;
1319 struct address_space *mapping = inode->i_mapping;
1320
1321 index = mpd->first_page;
1322 end = mpd->next_page - 1;
1323 while (index <= end) {
1324 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1325 if (nr_pages == 0)
1326 break;
1327 for (i = 0; i < nr_pages; i++) {
1328 struct page *page = pvec.pages[i];
1329 if (page->index > end)
1330 break;
1331 BUG_ON(!PageLocked(page));
1332 BUG_ON(PageWriteback(page));
1333 block_invalidatepage(page, 0);
1334 ClearPageUptodate(page);
1335 unlock_page(page);
1336 }
1337 index = pvec.pages[nr_pages - 1]->index + 1;
1338 pagevec_release(&pvec);
1339 }
1340 return;
1341 }
1342
1343 static void ext4_print_free_blocks(struct inode *inode)
1344 {
1345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1346 printk(KERN_CRIT "Total free blocks count %lld\n",
1347 ext4_count_free_blocks(inode->i_sb));
1348 printk(KERN_CRIT "Free/Dirty block details\n");
1349 printk(KERN_CRIT "free_blocks=%lld\n",
1350 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1351 printk(KERN_CRIT "dirty_blocks=%lld\n",
1352 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1353 printk(KERN_CRIT "Block reservation details\n");
1354 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1355 EXT4_I(inode)->i_reserved_data_blocks);
1356 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1357 EXT4_I(inode)->i_reserved_meta_blocks);
1358 return;
1359 }
1360
1361 /*
1362 * mpage_da_map_and_submit - go through given space, map them
1363 * if necessary, and then submit them for I/O
1364 *
1365 * @mpd - bh describing space
1366 *
1367 * The function skips space we know is already mapped to disk blocks.
1368 *
1369 */
1370 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1371 {
1372 int err, blks, get_blocks_flags;
1373 struct ext4_map_blocks map, *mapp = NULL;
1374 sector_t next = mpd->b_blocknr;
1375 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1376 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1377 handle_t *handle = NULL;
1378
1379 /*
1380 * If the blocks are mapped already, or we couldn't accumulate
1381 * any blocks, then proceed immediately to the submission stage.
1382 */
1383 if ((mpd->b_size == 0) ||
1384 ((mpd->b_state & (1 << BH_Mapped)) &&
1385 !(mpd->b_state & (1 << BH_Delay)) &&
1386 !(mpd->b_state & (1 << BH_Unwritten))))
1387 goto submit_io;
1388
1389 handle = ext4_journal_current_handle();
1390 BUG_ON(!handle);
1391
1392 /*
1393 * Call ext4_map_blocks() to allocate any delayed allocation
1394 * blocks, or to convert an uninitialized extent to be
1395 * initialized (in the case where we have written into
1396 * one or more preallocated blocks).
1397 *
1398 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1399 * indicate that we are on the delayed allocation path. This
1400 * affects functions in many different parts of the allocation
1401 * call path. This flag exists primarily because we don't
1402 * want to change *many* call functions, so ext4_map_blocks()
1403 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1404 * inode's allocation semaphore is taken.
1405 *
1406 * If the blocks in questions were delalloc blocks, set
1407 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1408 * variables are updated after the blocks have been allocated.
1409 */
1410 map.m_lblk = next;
1411 map.m_len = max_blocks;
1412 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1413 if (ext4_should_dioread_nolock(mpd->inode))
1414 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1415 if (mpd->b_state & (1 << BH_Delay))
1416 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1417
1418 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1419 if (blks < 0) {
1420 struct super_block *sb = mpd->inode->i_sb;
1421
1422 err = blks;
1423 /*
1424 * If get block returns EAGAIN or ENOSPC and there
1425 * appears to be free blocks we will just let
1426 * mpage_da_submit_io() unlock all of the pages.
1427 */
1428 if (err == -EAGAIN)
1429 goto submit_io;
1430
1431 if (err == -ENOSPC &&
1432 ext4_count_free_blocks(sb)) {
1433 mpd->retval = err;
1434 goto submit_io;
1435 }
1436
1437 /*
1438 * get block failure will cause us to loop in
1439 * writepages, because a_ops->writepage won't be able
1440 * to make progress. The page will be redirtied by
1441 * writepage and writepages will again try to write
1442 * the same.
1443 */
1444 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1445 ext4_msg(sb, KERN_CRIT,
1446 "delayed block allocation failed for inode %lu "
1447 "at logical offset %llu with max blocks %zd "
1448 "with error %d", mpd->inode->i_ino,
1449 (unsigned long long) next,
1450 mpd->b_size >> mpd->inode->i_blkbits, err);
1451 ext4_msg(sb, KERN_CRIT,
1452 "This should not happen!! Data will be lost\n");
1453 if (err == -ENOSPC)
1454 ext4_print_free_blocks(mpd->inode);
1455 }
1456 /* invalidate all the pages */
1457 ext4_da_block_invalidatepages(mpd);
1458
1459 /* Mark this page range as having been completed */
1460 mpd->io_done = 1;
1461 return;
1462 }
1463 BUG_ON(blks == 0);
1464
1465 mapp = &map;
1466 if (map.m_flags & EXT4_MAP_NEW) {
1467 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1468 int i;
1469
1470 for (i = 0; i < map.m_len; i++)
1471 unmap_underlying_metadata(bdev, map.m_pblk + i);
1472 }
1473
1474 if (ext4_should_order_data(mpd->inode)) {
1475 err = ext4_jbd2_file_inode(handle, mpd->inode);
1476 if (err)
1477 /* This only happens if the journal is aborted */
1478 return;
1479 }
1480
1481 /*
1482 * Update on-disk size along with block allocation.
1483 */
1484 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1485 if (disksize > i_size_read(mpd->inode))
1486 disksize = i_size_read(mpd->inode);
1487 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1488 ext4_update_i_disksize(mpd->inode, disksize);
1489 err = ext4_mark_inode_dirty(handle, mpd->inode);
1490 if (err)
1491 ext4_error(mpd->inode->i_sb,
1492 "Failed to mark inode %lu dirty",
1493 mpd->inode->i_ino);
1494 }
1495
1496 submit_io:
1497 mpage_da_submit_io(mpd, mapp);
1498 mpd->io_done = 1;
1499 }
1500
1501 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1502 (1 << BH_Delay) | (1 << BH_Unwritten))
1503
1504 /*
1505 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1506 *
1507 * @mpd->lbh - extent of blocks
1508 * @logical - logical number of the block in the file
1509 * @bh - bh of the block (used to access block's state)
1510 *
1511 * the function is used to collect contig. blocks in same state
1512 */
1513 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1514 sector_t logical, size_t b_size,
1515 unsigned long b_state)
1516 {
1517 sector_t next;
1518 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1519
1520 /*
1521 * XXX Don't go larger than mballoc is willing to allocate
1522 * This is a stopgap solution. We eventually need to fold
1523 * mpage_da_submit_io() into this function and then call
1524 * ext4_map_blocks() multiple times in a loop
1525 */
1526 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1527 goto flush_it;
1528
1529 /* check if thereserved journal credits might overflow */
1530 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1531 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1532 /*
1533 * With non-extent format we are limited by the journal
1534 * credit available. Total credit needed to insert
1535 * nrblocks contiguous blocks is dependent on the
1536 * nrblocks. So limit nrblocks.
1537 */
1538 goto flush_it;
1539 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1540 EXT4_MAX_TRANS_DATA) {
1541 /*
1542 * Adding the new buffer_head would make it cross the
1543 * allowed limit for which we have journal credit
1544 * reserved. So limit the new bh->b_size
1545 */
1546 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1547 mpd->inode->i_blkbits;
1548 /* we will do mpage_da_submit_io in the next loop */
1549 }
1550 }
1551 /*
1552 * First block in the extent
1553 */
1554 if (mpd->b_size == 0) {
1555 mpd->b_blocknr = logical;
1556 mpd->b_size = b_size;
1557 mpd->b_state = b_state & BH_FLAGS;
1558 return;
1559 }
1560
1561 next = mpd->b_blocknr + nrblocks;
1562 /*
1563 * Can we merge the block to our big extent?
1564 */
1565 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1566 mpd->b_size += b_size;
1567 return;
1568 }
1569
1570 flush_it:
1571 /*
1572 * We couldn't merge the block to our extent, so we
1573 * need to flush current extent and start new one
1574 */
1575 mpage_da_map_and_submit(mpd);
1576 return;
1577 }
1578
1579 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1580 {
1581 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1582 }
1583
1584 /*
1585 * This is a special get_blocks_t callback which is used by
1586 * ext4_da_write_begin(). It will either return mapped block or
1587 * reserve space for a single block.
1588 *
1589 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1590 * We also have b_blocknr = -1 and b_bdev initialized properly
1591 *
1592 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1593 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1594 * initialized properly.
1595 */
1596 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1597 struct buffer_head *bh, int create)
1598 {
1599 struct ext4_map_blocks map;
1600 int ret = 0;
1601 sector_t invalid_block = ~((sector_t) 0xffff);
1602
1603 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1604 invalid_block = ~0;
1605
1606 BUG_ON(create == 0);
1607 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1608
1609 map.m_lblk = iblock;
1610 map.m_len = 1;
1611
1612 /*
1613 * first, we need to know whether the block is allocated already
1614 * preallocated blocks are unmapped but should treated
1615 * the same as allocated blocks.
1616 */
1617 ret = ext4_map_blocks(NULL, inode, &map, 0);
1618 if (ret < 0)
1619 return ret;
1620 if (ret == 0) {
1621 if (buffer_delay(bh))
1622 return 0; /* Not sure this could or should happen */
1623 /*
1624 * XXX: __block_write_begin() unmaps passed block, is it OK?
1625 */
1626 ret = ext4_da_reserve_space(inode, iblock);
1627 if (ret)
1628 /* not enough space to reserve */
1629 return ret;
1630
1631 map_bh(bh, inode->i_sb, invalid_block);
1632 set_buffer_new(bh);
1633 set_buffer_delay(bh);
1634 return 0;
1635 }
1636
1637 map_bh(bh, inode->i_sb, map.m_pblk);
1638 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1639
1640 if (buffer_unwritten(bh)) {
1641 /* A delayed write to unwritten bh should be marked
1642 * new and mapped. Mapped ensures that we don't do
1643 * get_block multiple times when we write to the same
1644 * offset and new ensures that we do proper zero out
1645 * for partial write.
1646 */
1647 set_buffer_new(bh);
1648 set_buffer_mapped(bh);
1649 }
1650 return 0;
1651 }
1652
1653 /*
1654 * This function is used as a standard get_block_t calback function
1655 * when there is no desire to allocate any blocks. It is used as a
1656 * callback function for block_write_begin() and block_write_full_page().
1657 * These functions should only try to map a single block at a time.
1658 *
1659 * Since this function doesn't do block allocations even if the caller
1660 * requests it by passing in create=1, it is critically important that
1661 * any caller checks to make sure that any buffer heads are returned
1662 * by this function are either all already mapped or marked for
1663 * delayed allocation before calling block_write_full_page(). Otherwise,
1664 * b_blocknr could be left unitialized, and the page write functions will
1665 * be taken by surprise.
1666 */
1667 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1668 struct buffer_head *bh_result, int create)
1669 {
1670 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1671 return _ext4_get_block(inode, iblock, bh_result, 0);
1672 }
1673
1674 static int bget_one(handle_t *handle, struct buffer_head *bh)
1675 {
1676 get_bh(bh);
1677 return 0;
1678 }
1679
1680 static int bput_one(handle_t *handle, struct buffer_head *bh)
1681 {
1682 put_bh(bh);
1683 return 0;
1684 }
1685
1686 static int __ext4_journalled_writepage(struct page *page,
1687 unsigned int len)
1688 {
1689 struct address_space *mapping = page->mapping;
1690 struct inode *inode = mapping->host;
1691 struct buffer_head *page_bufs;
1692 handle_t *handle = NULL;
1693 int ret = 0;
1694 int err;
1695
1696 ClearPageChecked(page);
1697 page_bufs = page_buffers(page);
1698 BUG_ON(!page_bufs);
1699 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1700 /* As soon as we unlock the page, it can go away, but we have
1701 * references to buffers so we are safe */
1702 unlock_page(page);
1703
1704 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1705 if (IS_ERR(handle)) {
1706 ret = PTR_ERR(handle);
1707 goto out;
1708 }
1709
1710 BUG_ON(!ext4_handle_valid(handle));
1711
1712 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1713 do_journal_get_write_access);
1714
1715 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1716 write_end_fn);
1717 if (ret == 0)
1718 ret = err;
1719 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1720 err = ext4_journal_stop(handle);
1721 if (!ret)
1722 ret = err;
1723
1724 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1725 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1726 out:
1727 return ret;
1728 }
1729
1730 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1731 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1732
1733 /*
1734 * Note that we don't need to start a transaction unless we're journaling data
1735 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1736 * need to file the inode to the transaction's list in ordered mode because if
1737 * we are writing back data added by write(), the inode is already there and if
1738 * we are writing back data modified via mmap(), no one guarantees in which
1739 * transaction the data will hit the disk. In case we are journaling data, we
1740 * cannot start transaction directly because transaction start ranks above page
1741 * lock so we have to do some magic.
1742 *
1743 * This function can get called via...
1744 * - ext4_da_writepages after taking page lock (have journal handle)
1745 * - journal_submit_inode_data_buffers (no journal handle)
1746 * - shrink_page_list via pdflush (no journal handle)
1747 * - grab_page_cache when doing write_begin (have journal handle)
1748 *
1749 * We don't do any block allocation in this function. If we have page with
1750 * multiple blocks we need to write those buffer_heads that are mapped. This
1751 * is important for mmaped based write. So if we do with blocksize 1K
1752 * truncate(f, 1024);
1753 * a = mmap(f, 0, 4096);
1754 * a[0] = 'a';
1755 * truncate(f, 4096);
1756 * we have in the page first buffer_head mapped via page_mkwrite call back
1757 * but other bufer_heads would be unmapped but dirty(dirty done via the
1758 * do_wp_page). So writepage should write the first block. If we modify
1759 * the mmap area beyond 1024 we will again get a page_fault and the
1760 * page_mkwrite callback will do the block allocation and mark the
1761 * buffer_heads mapped.
1762 *
1763 * We redirty the page if we have any buffer_heads that is either delay or
1764 * unwritten in the page.
1765 *
1766 * We can get recursively called as show below.
1767 *
1768 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1769 * ext4_writepage()
1770 *
1771 * But since we don't do any block allocation we should not deadlock.
1772 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1773 */
1774 static int ext4_writepage(struct page *page,
1775 struct writeback_control *wbc)
1776 {
1777 int ret = 0, commit_write = 0;
1778 loff_t size;
1779 unsigned int len;
1780 struct buffer_head *page_bufs = NULL;
1781 struct inode *inode = page->mapping->host;
1782
1783 trace_ext4_writepage(page);
1784 size = i_size_read(inode);
1785 if (page->index == size >> PAGE_CACHE_SHIFT)
1786 len = size & ~PAGE_CACHE_MASK;
1787 else
1788 len = PAGE_CACHE_SIZE;
1789
1790 /*
1791 * If the page does not have buffers (for whatever reason),
1792 * try to create them using __block_write_begin. If this
1793 * fails, redirty the page and move on.
1794 */
1795 if (!page_has_buffers(page)) {
1796 if (__block_write_begin(page, 0, len,
1797 noalloc_get_block_write)) {
1798 redirty_page:
1799 redirty_page_for_writepage(wbc, page);
1800 unlock_page(page);
1801 return 0;
1802 }
1803 commit_write = 1;
1804 }
1805 page_bufs = page_buffers(page);
1806 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1807 ext4_bh_delay_or_unwritten)) {
1808 /*
1809 * We don't want to do block allocation, so redirty
1810 * the page and return. We may reach here when we do
1811 * a journal commit via journal_submit_inode_data_buffers.
1812 * We can also reach here via shrink_page_list
1813 */
1814 goto redirty_page;
1815 }
1816 if (commit_write)
1817 /* now mark the buffer_heads as dirty and uptodate */
1818 block_commit_write(page, 0, len);
1819
1820 if (PageChecked(page) && ext4_should_journal_data(inode))
1821 /*
1822 * It's mmapped pagecache. Add buffers and journal it. There
1823 * doesn't seem much point in redirtying the page here.
1824 */
1825 return __ext4_journalled_writepage(page, len);
1826
1827 if (buffer_uninit(page_bufs)) {
1828 ext4_set_bh_endio(page_bufs, inode);
1829 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1830 wbc, ext4_end_io_buffer_write);
1831 } else
1832 ret = block_write_full_page(page, noalloc_get_block_write,
1833 wbc);
1834
1835 return ret;
1836 }
1837
1838 /*
1839 * This is called via ext4_da_writepages() to
1840 * calculate the total number of credits to reserve to fit
1841 * a single extent allocation into a single transaction,
1842 * ext4_da_writpeages() will loop calling this before
1843 * the block allocation.
1844 */
1845
1846 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1847 {
1848 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1849
1850 /*
1851 * With non-extent format the journal credit needed to
1852 * insert nrblocks contiguous block is dependent on
1853 * number of contiguous block. So we will limit
1854 * number of contiguous block to a sane value
1855 */
1856 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1857 (max_blocks > EXT4_MAX_TRANS_DATA))
1858 max_blocks = EXT4_MAX_TRANS_DATA;
1859
1860 return ext4_chunk_trans_blocks(inode, max_blocks);
1861 }
1862
1863 /*
1864 * write_cache_pages_da - walk the list of dirty pages of the given
1865 * address space and accumulate pages that need writing, and call
1866 * mpage_da_map_and_submit to map a single contiguous memory region
1867 * and then write them.
1868 */
1869 static int write_cache_pages_da(struct address_space *mapping,
1870 struct writeback_control *wbc,
1871 struct mpage_da_data *mpd,
1872 pgoff_t *done_index)
1873 {
1874 struct buffer_head *bh, *head;
1875 struct inode *inode = mapping->host;
1876 struct pagevec pvec;
1877 unsigned int nr_pages;
1878 sector_t logical;
1879 pgoff_t index, end;
1880 long nr_to_write = wbc->nr_to_write;
1881 int i, tag, ret = 0;
1882
1883 memset(mpd, 0, sizeof(struct mpage_da_data));
1884 mpd->wbc = wbc;
1885 mpd->inode = inode;
1886 pagevec_init(&pvec, 0);
1887 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1888 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1889
1890 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1891 tag = PAGECACHE_TAG_TOWRITE;
1892 else
1893 tag = PAGECACHE_TAG_DIRTY;
1894
1895 *done_index = index;
1896 while (index <= end) {
1897 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1898 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1899 if (nr_pages == 0)
1900 return 0;
1901
1902 for (i = 0; i < nr_pages; i++) {
1903 struct page *page = pvec.pages[i];
1904
1905 /*
1906 * At this point, the page may be truncated or
1907 * invalidated (changing page->mapping to NULL), or
1908 * even swizzled back from swapper_space to tmpfs file
1909 * mapping. However, page->index will not change
1910 * because we have a reference on the page.
1911 */
1912 if (page->index > end)
1913 goto out;
1914
1915 *done_index = page->index + 1;
1916
1917 /*
1918 * If we can't merge this page, and we have
1919 * accumulated an contiguous region, write it
1920 */
1921 if ((mpd->next_page != page->index) &&
1922 (mpd->next_page != mpd->first_page)) {
1923 mpage_da_map_and_submit(mpd);
1924 goto ret_extent_tail;
1925 }
1926
1927 lock_page(page);
1928
1929 /*
1930 * If the page is no longer dirty, or its
1931 * mapping no longer corresponds to inode we
1932 * are writing (which means it has been
1933 * truncated or invalidated), or the page is
1934 * already under writeback and we are not
1935 * doing a data integrity writeback, skip the page
1936 */
1937 if (!PageDirty(page) ||
1938 (PageWriteback(page) &&
1939 (wbc->sync_mode == WB_SYNC_NONE)) ||
1940 unlikely(page->mapping != mapping)) {
1941 unlock_page(page);
1942 continue;
1943 }
1944
1945 wait_on_page_writeback(page);
1946 BUG_ON(PageWriteback(page));
1947
1948 if (mpd->next_page != page->index)
1949 mpd->first_page = page->index;
1950 mpd->next_page = page->index + 1;
1951 logical = (sector_t) page->index <<
1952 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1953
1954 if (!page_has_buffers(page)) {
1955 mpage_add_bh_to_extent(mpd, logical,
1956 PAGE_CACHE_SIZE,
1957 (1 << BH_Dirty) | (1 << BH_Uptodate));
1958 if (mpd->io_done)
1959 goto ret_extent_tail;
1960 } else {
1961 /*
1962 * Page with regular buffer heads,
1963 * just add all dirty ones
1964 */
1965 head = page_buffers(page);
1966 bh = head;
1967 do {
1968 BUG_ON(buffer_locked(bh));
1969 /*
1970 * We need to try to allocate
1971 * unmapped blocks in the same page.
1972 * Otherwise we won't make progress
1973 * with the page in ext4_writepage
1974 */
1975 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1976 mpage_add_bh_to_extent(mpd, logical,
1977 bh->b_size,
1978 bh->b_state);
1979 if (mpd->io_done)
1980 goto ret_extent_tail;
1981 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1982 /*
1983 * mapped dirty buffer. We need
1984 * to update the b_state
1985 * because we look at b_state
1986 * in mpage_da_map_blocks. We
1987 * don't update b_size because
1988 * if we find an unmapped
1989 * buffer_head later we need to
1990 * use the b_state flag of that
1991 * buffer_head.
1992 */
1993 if (mpd->b_size == 0)
1994 mpd->b_state = bh->b_state & BH_FLAGS;
1995 }
1996 logical++;
1997 } while ((bh = bh->b_this_page) != head);
1998 }
1999
2000 if (nr_to_write > 0) {
2001 nr_to_write--;
2002 if (nr_to_write == 0 &&
2003 wbc->sync_mode == WB_SYNC_NONE)
2004 /*
2005 * We stop writing back only if we are
2006 * not doing integrity sync. In case of
2007 * integrity sync we have to keep going
2008 * because someone may be concurrently
2009 * dirtying pages, and we might have
2010 * synced a lot of newly appeared dirty
2011 * pages, but have not synced all of the
2012 * old dirty pages.
2013 */
2014 goto out;
2015 }
2016 }
2017 pagevec_release(&pvec);
2018 cond_resched();
2019 }
2020 return 0;
2021 ret_extent_tail:
2022 ret = MPAGE_DA_EXTENT_TAIL;
2023 out:
2024 pagevec_release(&pvec);
2025 cond_resched();
2026 return ret;
2027 }
2028
2029
2030 static int ext4_da_writepages(struct address_space *mapping,
2031 struct writeback_control *wbc)
2032 {
2033 pgoff_t index;
2034 int range_whole = 0;
2035 handle_t *handle = NULL;
2036 struct mpage_da_data mpd;
2037 struct inode *inode = mapping->host;
2038 int pages_written = 0;
2039 unsigned int max_pages;
2040 int range_cyclic, cycled = 1, io_done = 0;
2041 int needed_blocks, ret = 0;
2042 long desired_nr_to_write, nr_to_writebump = 0;
2043 loff_t range_start = wbc->range_start;
2044 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2045 pgoff_t done_index = 0;
2046 pgoff_t end;
2047
2048 trace_ext4_da_writepages(inode, wbc);
2049
2050 /*
2051 * No pages to write? This is mainly a kludge to avoid starting
2052 * a transaction for special inodes like journal inode on last iput()
2053 * because that could violate lock ordering on umount
2054 */
2055 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2056 return 0;
2057
2058 /*
2059 * If the filesystem has aborted, it is read-only, so return
2060 * right away instead of dumping stack traces later on that
2061 * will obscure the real source of the problem. We test
2062 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2063 * the latter could be true if the filesystem is mounted
2064 * read-only, and in that case, ext4_da_writepages should
2065 * *never* be called, so if that ever happens, we would want
2066 * the stack trace.
2067 */
2068 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2069 return -EROFS;
2070
2071 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2072 range_whole = 1;
2073
2074 range_cyclic = wbc->range_cyclic;
2075 if (wbc->range_cyclic) {
2076 index = mapping->writeback_index;
2077 if (index)
2078 cycled = 0;
2079 wbc->range_start = index << PAGE_CACHE_SHIFT;
2080 wbc->range_end = LLONG_MAX;
2081 wbc->range_cyclic = 0;
2082 end = -1;
2083 } else {
2084 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2085 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2086 }
2087
2088 /*
2089 * This works around two forms of stupidity. The first is in
2090 * the writeback code, which caps the maximum number of pages
2091 * written to be 1024 pages. This is wrong on multiple
2092 * levels; different architectues have a different page size,
2093 * which changes the maximum amount of data which gets
2094 * written. Secondly, 4 megabytes is way too small. XFS
2095 * forces this value to be 16 megabytes by multiplying
2096 * nr_to_write parameter by four, and then relies on its
2097 * allocator to allocate larger extents to make them
2098 * contiguous. Unfortunately this brings us to the second
2099 * stupidity, which is that ext4's mballoc code only allocates
2100 * at most 2048 blocks. So we force contiguous writes up to
2101 * the number of dirty blocks in the inode, or
2102 * sbi->max_writeback_mb_bump whichever is smaller.
2103 */
2104 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2105 if (!range_cyclic && range_whole) {
2106 if (wbc->nr_to_write == LONG_MAX)
2107 desired_nr_to_write = wbc->nr_to_write;
2108 else
2109 desired_nr_to_write = wbc->nr_to_write * 8;
2110 } else
2111 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2112 max_pages);
2113 if (desired_nr_to_write > max_pages)
2114 desired_nr_to_write = max_pages;
2115
2116 if (wbc->nr_to_write < desired_nr_to_write) {
2117 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2118 wbc->nr_to_write = desired_nr_to_write;
2119 }
2120
2121 retry:
2122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123 tag_pages_for_writeback(mapping, index, end);
2124
2125 while (!ret && wbc->nr_to_write > 0) {
2126
2127 /*
2128 * we insert one extent at a time. So we need
2129 * credit needed for single extent allocation.
2130 * journalled mode is currently not supported
2131 * by delalloc
2132 */
2133 BUG_ON(ext4_should_journal_data(inode));
2134 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2135
2136 /* start a new transaction*/
2137 handle = ext4_journal_start(inode, needed_blocks);
2138 if (IS_ERR(handle)) {
2139 ret = PTR_ERR(handle);
2140 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2141 "%ld pages, ino %lu; err %d", __func__,
2142 wbc->nr_to_write, inode->i_ino, ret);
2143 goto out_writepages;
2144 }
2145
2146 /*
2147 * Now call write_cache_pages_da() to find the next
2148 * contiguous region of logical blocks that need
2149 * blocks to be allocated by ext4 and submit them.
2150 */
2151 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2152 /*
2153 * If we have a contiguous extent of pages and we
2154 * haven't done the I/O yet, map the blocks and submit
2155 * them for I/O.
2156 */
2157 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2158 mpage_da_map_and_submit(&mpd);
2159 ret = MPAGE_DA_EXTENT_TAIL;
2160 }
2161 trace_ext4_da_write_pages(inode, &mpd);
2162 wbc->nr_to_write -= mpd.pages_written;
2163
2164 ext4_journal_stop(handle);
2165
2166 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2167 /* commit the transaction which would
2168 * free blocks released in the transaction
2169 * and try again
2170 */
2171 jbd2_journal_force_commit_nested(sbi->s_journal);
2172 ret = 0;
2173 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2174 /*
2175 * got one extent now try with
2176 * rest of the pages
2177 */
2178 pages_written += mpd.pages_written;
2179 ret = 0;
2180 io_done = 1;
2181 } else if (wbc->nr_to_write)
2182 /*
2183 * There is no more writeout needed
2184 * or we requested for a noblocking writeout
2185 * and we found the device congested
2186 */
2187 break;
2188 }
2189 if (!io_done && !cycled) {
2190 cycled = 1;
2191 index = 0;
2192 wbc->range_start = index << PAGE_CACHE_SHIFT;
2193 wbc->range_end = mapping->writeback_index - 1;
2194 goto retry;
2195 }
2196
2197 /* Update index */
2198 wbc->range_cyclic = range_cyclic;
2199 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2200 /*
2201 * set the writeback_index so that range_cyclic
2202 * mode will write it back later
2203 */
2204 mapping->writeback_index = done_index;
2205
2206 out_writepages:
2207 wbc->nr_to_write -= nr_to_writebump;
2208 wbc->range_start = range_start;
2209 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2210 return ret;
2211 }
2212
2213 #define FALL_BACK_TO_NONDELALLOC 1
2214 static int ext4_nonda_switch(struct super_block *sb)
2215 {
2216 s64 free_blocks, dirty_blocks;
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2218
2219 /*
2220 * switch to non delalloc mode if we are running low
2221 * on free block. The free block accounting via percpu
2222 * counters can get slightly wrong with percpu_counter_batch getting
2223 * accumulated on each CPU without updating global counters
2224 * Delalloc need an accurate free block accounting. So switch
2225 * to non delalloc when we are near to error range.
2226 */
2227 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2228 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2229 if (2 * free_blocks < 3 * dirty_blocks ||
2230 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2231 /*
2232 * free block count is less than 150% of dirty blocks
2233 * or free blocks is less than watermark
2234 */
2235 return 1;
2236 }
2237 /*
2238 * Even if we don't switch but are nearing capacity,
2239 * start pushing delalloc when 1/2 of free blocks are dirty.
2240 */
2241 if (free_blocks < 2 * dirty_blocks)
2242 writeback_inodes_sb_if_idle(sb);
2243
2244 return 0;
2245 }
2246
2247 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2248 loff_t pos, unsigned len, unsigned flags,
2249 struct page **pagep, void **fsdata)
2250 {
2251 int ret, retries = 0;
2252 struct page *page;
2253 pgoff_t index;
2254 struct inode *inode = mapping->host;
2255 handle_t *handle;
2256
2257 index = pos >> PAGE_CACHE_SHIFT;
2258
2259 if (ext4_nonda_switch(inode->i_sb)) {
2260 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2261 return ext4_write_begin(file, mapping, pos,
2262 len, flags, pagep, fsdata);
2263 }
2264 *fsdata = (void *)0;
2265 trace_ext4_da_write_begin(inode, pos, len, flags);
2266 retry:
2267 /*
2268 * With delayed allocation, we don't log the i_disksize update
2269 * if there is delayed block allocation. But we still need
2270 * to journalling the i_disksize update if writes to the end
2271 * of file which has an already mapped buffer.
2272 */
2273 handle = ext4_journal_start(inode, 1);
2274 if (IS_ERR(handle)) {
2275 ret = PTR_ERR(handle);
2276 goto out;
2277 }
2278 /* We cannot recurse into the filesystem as the transaction is already
2279 * started */
2280 flags |= AOP_FLAG_NOFS;
2281
2282 page = grab_cache_page_write_begin(mapping, index, flags);
2283 if (!page) {
2284 ext4_journal_stop(handle);
2285 ret = -ENOMEM;
2286 goto out;
2287 }
2288 *pagep = page;
2289
2290 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2291 if (ret < 0) {
2292 unlock_page(page);
2293 ext4_journal_stop(handle);
2294 page_cache_release(page);
2295 /*
2296 * block_write_begin may have instantiated a few blocks
2297 * outside i_size. Trim these off again. Don't need
2298 * i_size_read because we hold i_mutex.
2299 */
2300 if (pos + len > inode->i_size)
2301 ext4_truncate_failed_write(inode);
2302 }
2303
2304 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2305 goto retry;
2306 out:
2307 return ret;
2308 }
2309
2310 /*
2311 * Check if we should update i_disksize
2312 * when write to the end of file but not require block allocation
2313 */
2314 static int ext4_da_should_update_i_disksize(struct page *page,
2315 unsigned long offset)
2316 {
2317 struct buffer_head *bh;
2318 struct inode *inode = page->mapping->host;
2319 unsigned int idx;
2320 int i;
2321
2322 bh = page_buffers(page);
2323 idx = offset >> inode->i_blkbits;
2324
2325 for (i = 0; i < idx; i++)
2326 bh = bh->b_this_page;
2327
2328 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2329 return 0;
2330 return 1;
2331 }
2332
2333 static int ext4_da_write_end(struct file *file,
2334 struct address_space *mapping,
2335 loff_t pos, unsigned len, unsigned copied,
2336 struct page *page, void *fsdata)
2337 {
2338 struct inode *inode = mapping->host;
2339 int ret = 0, ret2;
2340 handle_t *handle = ext4_journal_current_handle();
2341 loff_t new_i_size;
2342 unsigned long start, end;
2343 int write_mode = (int)(unsigned long)fsdata;
2344
2345 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2346 if (ext4_should_order_data(inode)) {
2347 return ext4_ordered_write_end(file, mapping, pos,
2348 len, copied, page, fsdata);
2349 } else if (ext4_should_writeback_data(inode)) {
2350 return ext4_writeback_write_end(file, mapping, pos,
2351 len, copied, page, fsdata);
2352 } else {
2353 BUG();
2354 }
2355 }
2356
2357 trace_ext4_da_write_end(inode, pos, len, copied);
2358 start = pos & (PAGE_CACHE_SIZE - 1);
2359 end = start + copied - 1;
2360
2361 /*
2362 * generic_write_end() will run mark_inode_dirty() if i_size
2363 * changes. So let's piggyback the i_disksize mark_inode_dirty
2364 * into that.
2365 */
2366
2367 new_i_size = pos + copied;
2368 if (new_i_size > EXT4_I(inode)->i_disksize) {
2369 if (ext4_da_should_update_i_disksize(page, end)) {
2370 down_write(&EXT4_I(inode)->i_data_sem);
2371 if (new_i_size > EXT4_I(inode)->i_disksize) {
2372 /*
2373 * Updating i_disksize when extending file
2374 * without needing block allocation
2375 */
2376 if (ext4_should_order_data(inode))
2377 ret = ext4_jbd2_file_inode(handle,
2378 inode);
2379
2380 EXT4_I(inode)->i_disksize = new_i_size;
2381 }
2382 up_write(&EXT4_I(inode)->i_data_sem);
2383 /* We need to mark inode dirty even if
2384 * new_i_size is less that inode->i_size
2385 * bu greater than i_disksize.(hint delalloc)
2386 */
2387 ext4_mark_inode_dirty(handle, inode);
2388 }
2389 }
2390 ret2 = generic_write_end(file, mapping, pos, len, copied,
2391 page, fsdata);
2392 copied = ret2;
2393 if (ret2 < 0)
2394 ret = ret2;
2395 ret2 = ext4_journal_stop(handle);
2396 if (!ret)
2397 ret = ret2;
2398
2399 return ret ? ret : copied;
2400 }
2401
2402 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2403 {
2404 /*
2405 * Drop reserved blocks
2406 */
2407 BUG_ON(!PageLocked(page));
2408 if (!page_has_buffers(page))
2409 goto out;
2410
2411 ext4_da_page_release_reservation(page, offset);
2412
2413 out:
2414 ext4_invalidatepage(page, offset);
2415
2416 return;
2417 }
2418
2419 /*
2420 * Force all delayed allocation blocks to be allocated for a given inode.
2421 */
2422 int ext4_alloc_da_blocks(struct inode *inode)
2423 {
2424 trace_ext4_alloc_da_blocks(inode);
2425
2426 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2427 !EXT4_I(inode)->i_reserved_meta_blocks)
2428 return 0;
2429
2430 /*
2431 * We do something simple for now. The filemap_flush() will
2432 * also start triggering a write of the data blocks, which is
2433 * not strictly speaking necessary (and for users of
2434 * laptop_mode, not even desirable). However, to do otherwise
2435 * would require replicating code paths in:
2436 *
2437 * ext4_da_writepages() ->
2438 * write_cache_pages() ---> (via passed in callback function)
2439 * __mpage_da_writepage() -->
2440 * mpage_add_bh_to_extent()
2441 * mpage_da_map_blocks()
2442 *
2443 * The problem is that write_cache_pages(), located in
2444 * mm/page-writeback.c, marks pages clean in preparation for
2445 * doing I/O, which is not desirable if we're not planning on
2446 * doing I/O at all.
2447 *
2448 * We could call write_cache_pages(), and then redirty all of
2449 * the pages by calling redirty_page_for_writepage() but that
2450 * would be ugly in the extreme. So instead we would need to
2451 * replicate parts of the code in the above functions,
2452 * simplifying them because we wouldn't actually intend to
2453 * write out the pages, but rather only collect contiguous
2454 * logical block extents, call the multi-block allocator, and
2455 * then update the buffer heads with the block allocations.
2456 *
2457 * For now, though, we'll cheat by calling filemap_flush(),
2458 * which will map the blocks, and start the I/O, but not
2459 * actually wait for the I/O to complete.
2460 */
2461 return filemap_flush(inode->i_mapping);
2462 }
2463
2464 /*
2465 * bmap() is special. It gets used by applications such as lilo and by
2466 * the swapper to find the on-disk block of a specific piece of data.
2467 *
2468 * Naturally, this is dangerous if the block concerned is still in the
2469 * journal. If somebody makes a swapfile on an ext4 data-journaling
2470 * filesystem and enables swap, then they may get a nasty shock when the
2471 * data getting swapped to that swapfile suddenly gets overwritten by
2472 * the original zero's written out previously to the journal and
2473 * awaiting writeback in the kernel's buffer cache.
2474 *
2475 * So, if we see any bmap calls here on a modified, data-journaled file,
2476 * take extra steps to flush any blocks which might be in the cache.
2477 */
2478 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2479 {
2480 struct inode *inode = mapping->host;
2481 journal_t *journal;
2482 int err;
2483
2484 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2485 test_opt(inode->i_sb, DELALLOC)) {
2486 /*
2487 * With delalloc we want to sync the file
2488 * so that we can make sure we allocate
2489 * blocks for file
2490 */
2491 filemap_write_and_wait(mapping);
2492 }
2493
2494 if (EXT4_JOURNAL(inode) &&
2495 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2496 /*
2497 * This is a REALLY heavyweight approach, but the use of
2498 * bmap on dirty files is expected to be extremely rare:
2499 * only if we run lilo or swapon on a freshly made file
2500 * do we expect this to happen.
2501 *
2502 * (bmap requires CAP_SYS_RAWIO so this does not
2503 * represent an unprivileged user DOS attack --- we'd be
2504 * in trouble if mortal users could trigger this path at
2505 * will.)
2506 *
2507 * NB. EXT4_STATE_JDATA is not set on files other than
2508 * regular files. If somebody wants to bmap a directory
2509 * or symlink and gets confused because the buffer
2510 * hasn't yet been flushed to disk, they deserve
2511 * everything they get.
2512 */
2513
2514 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2515 journal = EXT4_JOURNAL(inode);
2516 jbd2_journal_lock_updates(journal);
2517 err = jbd2_journal_flush(journal);
2518 jbd2_journal_unlock_updates(journal);
2519
2520 if (err)
2521 return 0;
2522 }
2523
2524 return generic_block_bmap(mapping, block, ext4_get_block);
2525 }
2526
2527 static int ext4_readpage(struct file *file, struct page *page)
2528 {
2529 trace_ext4_readpage(page);
2530 return mpage_readpage(page, ext4_get_block);
2531 }
2532
2533 static int
2534 ext4_readpages(struct file *file, struct address_space *mapping,
2535 struct list_head *pages, unsigned nr_pages)
2536 {
2537 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2538 }
2539
2540 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2541 {
2542 struct buffer_head *head, *bh;
2543 unsigned int curr_off = 0;
2544
2545 if (!page_has_buffers(page))
2546 return;
2547 head = bh = page_buffers(page);
2548 do {
2549 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2550 && bh->b_private) {
2551 ext4_free_io_end(bh->b_private);
2552 bh->b_private = NULL;
2553 bh->b_end_io = NULL;
2554 }
2555 curr_off = curr_off + bh->b_size;
2556 bh = bh->b_this_page;
2557 } while (bh != head);
2558 }
2559
2560 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2561 {
2562 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2563
2564 trace_ext4_invalidatepage(page, offset);
2565
2566 /*
2567 * free any io_end structure allocated for buffers to be discarded
2568 */
2569 if (ext4_should_dioread_nolock(page->mapping->host))
2570 ext4_invalidatepage_free_endio(page, offset);
2571 /*
2572 * If it's a full truncate we just forget about the pending dirtying
2573 */
2574 if (offset == 0)
2575 ClearPageChecked(page);
2576
2577 if (journal)
2578 jbd2_journal_invalidatepage(journal, page, offset);
2579 else
2580 block_invalidatepage(page, offset);
2581 }
2582
2583 static int ext4_releasepage(struct page *page, gfp_t wait)
2584 {
2585 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2586
2587 trace_ext4_releasepage(page);
2588
2589 WARN_ON(PageChecked(page));
2590 if (!page_has_buffers(page))
2591 return 0;
2592 if (journal)
2593 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2594 else
2595 return try_to_free_buffers(page);
2596 }
2597
2598 /*
2599 * ext4_get_block used when preparing for a DIO write or buffer write.
2600 * We allocate an uinitialized extent if blocks haven't been allocated.
2601 * The extent will be converted to initialized after the IO is complete.
2602 */
2603 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2604 struct buffer_head *bh_result, int create)
2605 {
2606 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2607 inode->i_ino, create);
2608 return _ext4_get_block(inode, iblock, bh_result,
2609 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2610 }
2611
2612 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2613 ssize_t size, void *private, int ret,
2614 bool is_async)
2615 {
2616 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2617 ext4_io_end_t *io_end = iocb->private;
2618 struct workqueue_struct *wq;
2619 unsigned long flags;
2620 struct ext4_inode_info *ei;
2621
2622 /* if not async direct IO or dio with 0 bytes write, just return */
2623 if (!io_end || !size)
2624 goto out;
2625
2626 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2627 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2628 iocb->private, io_end->inode->i_ino, iocb, offset,
2629 size);
2630
2631 /* if not aio dio with unwritten extents, just free io and return */
2632 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2633 ext4_free_io_end(io_end);
2634 iocb->private = NULL;
2635 out:
2636 if (is_async)
2637 aio_complete(iocb, ret, 0);
2638 inode_dio_done(inode);
2639 return;
2640 }
2641
2642 io_end->offset = offset;
2643 io_end->size = size;
2644 if (is_async) {
2645 io_end->iocb = iocb;
2646 io_end->result = ret;
2647 }
2648 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2649
2650 /* Add the io_end to per-inode completed aio dio list*/
2651 ei = EXT4_I(io_end->inode);
2652 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2653 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2654 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2655
2656 /* queue the work to convert unwritten extents to written */
2657 queue_work(wq, &io_end->work);
2658 iocb->private = NULL;
2659
2660 /* XXX: probably should move into the real I/O completion handler */
2661 inode_dio_done(inode);
2662 }
2663
2664 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2665 {
2666 ext4_io_end_t *io_end = bh->b_private;
2667 struct workqueue_struct *wq;
2668 struct inode *inode;
2669 unsigned long flags;
2670
2671 if (!test_clear_buffer_uninit(bh) || !io_end)
2672 goto out;
2673
2674 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2675 printk("sb umounted, discard end_io request for inode %lu\n",
2676 io_end->inode->i_ino);
2677 ext4_free_io_end(io_end);
2678 goto out;
2679 }
2680
2681 io_end->flag = EXT4_IO_END_UNWRITTEN;
2682 inode = io_end->inode;
2683
2684 /* Add the io_end to per-inode completed io list*/
2685 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2686 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2687 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2688
2689 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2690 /* queue the work to convert unwritten extents to written */
2691 queue_work(wq, &io_end->work);
2692 out:
2693 bh->b_private = NULL;
2694 bh->b_end_io = NULL;
2695 clear_buffer_uninit(bh);
2696 end_buffer_async_write(bh, uptodate);
2697 }
2698
2699 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2700 {
2701 ext4_io_end_t *io_end;
2702 struct page *page = bh->b_page;
2703 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2704 size_t size = bh->b_size;
2705
2706 retry:
2707 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2708 if (!io_end) {
2709 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2710 schedule();
2711 goto retry;
2712 }
2713 io_end->offset = offset;
2714 io_end->size = size;
2715 /*
2716 * We need to hold a reference to the page to make sure it
2717 * doesn't get evicted before ext4_end_io_work() has a chance
2718 * to convert the extent from written to unwritten.
2719 */
2720 io_end->page = page;
2721 get_page(io_end->page);
2722
2723 bh->b_private = io_end;
2724 bh->b_end_io = ext4_end_io_buffer_write;
2725 return 0;
2726 }
2727
2728 /*
2729 * For ext4 extent files, ext4 will do direct-io write to holes,
2730 * preallocated extents, and those write extend the file, no need to
2731 * fall back to buffered IO.
2732 *
2733 * For holes, we fallocate those blocks, mark them as uninitialized
2734 * If those blocks were preallocated, we mark sure they are splited, but
2735 * still keep the range to write as uninitialized.
2736 *
2737 * The unwrritten extents will be converted to written when DIO is completed.
2738 * For async direct IO, since the IO may still pending when return, we
2739 * set up an end_io call back function, which will do the conversion
2740 * when async direct IO completed.
2741 *
2742 * If the O_DIRECT write will extend the file then add this inode to the
2743 * orphan list. So recovery will truncate it back to the original size
2744 * if the machine crashes during the write.
2745 *
2746 */
2747 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2748 const struct iovec *iov, loff_t offset,
2749 unsigned long nr_segs)
2750 {
2751 struct file *file = iocb->ki_filp;
2752 struct inode *inode = file->f_mapping->host;
2753 ssize_t ret;
2754 size_t count = iov_length(iov, nr_segs);
2755
2756 loff_t final_size = offset + count;
2757 if (rw == WRITE && final_size <= inode->i_size) {
2758 /*
2759 * We could direct write to holes and fallocate.
2760 *
2761 * Allocated blocks to fill the hole are marked as uninitialized
2762 * to prevent parallel buffered read to expose the stale data
2763 * before DIO complete the data IO.
2764 *
2765 * As to previously fallocated extents, ext4 get_block
2766 * will just simply mark the buffer mapped but still
2767 * keep the extents uninitialized.
2768 *
2769 * for non AIO case, we will convert those unwritten extents
2770 * to written after return back from blockdev_direct_IO.
2771 *
2772 * for async DIO, the conversion needs to be defered when
2773 * the IO is completed. The ext4 end_io callback function
2774 * will be called to take care of the conversion work.
2775 * Here for async case, we allocate an io_end structure to
2776 * hook to the iocb.
2777 */
2778 iocb->private = NULL;
2779 EXT4_I(inode)->cur_aio_dio = NULL;
2780 if (!is_sync_kiocb(iocb)) {
2781 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2782 if (!iocb->private)
2783 return -ENOMEM;
2784 /*
2785 * we save the io structure for current async
2786 * direct IO, so that later ext4_map_blocks()
2787 * could flag the io structure whether there
2788 * is a unwritten extents needs to be converted
2789 * when IO is completed.
2790 */
2791 EXT4_I(inode)->cur_aio_dio = iocb->private;
2792 }
2793
2794 ret = __blockdev_direct_IO(rw, iocb, inode,
2795 inode->i_sb->s_bdev, iov,
2796 offset, nr_segs,
2797 ext4_get_block_write,
2798 ext4_end_io_dio,
2799 NULL,
2800 DIO_LOCKING | DIO_SKIP_HOLES);
2801 if (iocb->private)
2802 EXT4_I(inode)->cur_aio_dio = NULL;
2803 /*
2804 * The io_end structure takes a reference to the inode,
2805 * that structure needs to be destroyed and the
2806 * reference to the inode need to be dropped, when IO is
2807 * complete, even with 0 byte write, or failed.
2808 *
2809 * In the successful AIO DIO case, the io_end structure will be
2810 * desctroyed and the reference to the inode will be dropped
2811 * after the end_io call back function is called.
2812 *
2813 * In the case there is 0 byte write, or error case, since
2814 * VFS direct IO won't invoke the end_io call back function,
2815 * we need to free the end_io structure here.
2816 */
2817 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2818 ext4_free_io_end(iocb->private);
2819 iocb->private = NULL;
2820 } else if (ret > 0 && ext4_test_inode_state(inode,
2821 EXT4_STATE_DIO_UNWRITTEN)) {
2822 int err;
2823 /*
2824 * for non AIO case, since the IO is already
2825 * completed, we could do the conversion right here
2826 */
2827 err = ext4_convert_unwritten_extents(inode,
2828 offset, ret);
2829 if (err < 0)
2830 ret = err;
2831 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2832 }
2833 return ret;
2834 }
2835
2836 /* for write the the end of file case, we fall back to old way */
2837 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2838 }
2839
2840 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2841 const struct iovec *iov, loff_t offset,
2842 unsigned long nr_segs)
2843 {
2844 struct file *file = iocb->ki_filp;
2845 struct inode *inode = file->f_mapping->host;
2846 ssize_t ret;
2847
2848 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2849 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2850 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2851 else
2852 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2853 trace_ext4_direct_IO_exit(inode, offset,
2854 iov_length(iov, nr_segs), rw, ret);
2855 return ret;
2856 }
2857
2858 /*
2859 * Pages can be marked dirty completely asynchronously from ext4's journalling
2860 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2861 * much here because ->set_page_dirty is called under VFS locks. The page is
2862 * not necessarily locked.
2863 *
2864 * We cannot just dirty the page and leave attached buffers clean, because the
2865 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2866 * or jbddirty because all the journalling code will explode.
2867 *
2868 * So what we do is to mark the page "pending dirty" and next time writepage
2869 * is called, propagate that into the buffers appropriately.
2870 */
2871 static int ext4_journalled_set_page_dirty(struct page *page)
2872 {
2873 SetPageChecked(page);
2874 return __set_page_dirty_nobuffers(page);
2875 }
2876
2877 static const struct address_space_operations ext4_ordered_aops = {
2878 .readpage = ext4_readpage,
2879 .readpages = ext4_readpages,
2880 .writepage = ext4_writepage,
2881 .write_begin = ext4_write_begin,
2882 .write_end = ext4_ordered_write_end,
2883 .bmap = ext4_bmap,
2884 .invalidatepage = ext4_invalidatepage,
2885 .releasepage = ext4_releasepage,
2886 .direct_IO = ext4_direct_IO,
2887 .migratepage = buffer_migrate_page,
2888 .is_partially_uptodate = block_is_partially_uptodate,
2889 .error_remove_page = generic_error_remove_page,
2890 };
2891
2892 static const struct address_space_operations ext4_writeback_aops = {
2893 .readpage = ext4_readpage,
2894 .readpages = ext4_readpages,
2895 .writepage = ext4_writepage,
2896 .write_begin = ext4_write_begin,
2897 .write_end = ext4_writeback_write_end,
2898 .bmap = ext4_bmap,
2899 .invalidatepage = ext4_invalidatepage,
2900 .releasepage = ext4_releasepage,
2901 .direct_IO = ext4_direct_IO,
2902 .migratepage = buffer_migrate_page,
2903 .is_partially_uptodate = block_is_partially_uptodate,
2904 .error_remove_page = generic_error_remove_page,
2905 };
2906
2907 static const struct address_space_operations ext4_journalled_aops = {
2908 .readpage = ext4_readpage,
2909 .readpages = ext4_readpages,
2910 .writepage = ext4_writepage,
2911 .write_begin = ext4_write_begin,
2912 .write_end = ext4_journalled_write_end,
2913 .set_page_dirty = ext4_journalled_set_page_dirty,
2914 .bmap = ext4_bmap,
2915 .invalidatepage = ext4_invalidatepage,
2916 .releasepage = ext4_releasepage,
2917 .is_partially_uptodate = block_is_partially_uptodate,
2918 .error_remove_page = generic_error_remove_page,
2919 };
2920
2921 static const struct address_space_operations ext4_da_aops = {
2922 .readpage = ext4_readpage,
2923 .readpages = ext4_readpages,
2924 .writepage = ext4_writepage,
2925 .writepages = ext4_da_writepages,
2926 .write_begin = ext4_da_write_begin,
2927 .write_end = ext4_da_write_end,
2928 .bmap = ext4_bmap,
2929 .invalidatepage = ext4_da_invalidatepage,
2930 .releasepage = ext4_releasepage,
2931 .direct_IO = ext4_direct_IO,
2932 .migratepage = buffer_migrate_page,
2933 .is_partially_uptodate = block_is_partially_uptodate,
2934 .error_remove_page = generic_error_remove_page,
2935 };
2936
2937 void ext4_set_aops(struct inode *inode)
2938 {
2939 if (ext4_should_order_data(inode) &&
2940 test_opt(inode->i_sb, DELALLOC))
2941 inode->i_mapping->a_ops = &ext4_da_aops;
2942 else if (ext4_should_order_data(inode))
2943 inode->i_mapping->a_ops = &ext4_ordered_aops;
2944 else if (ext4_should_writeback_data(inode) &&
2945 test_opt(inode->i_sb, DELALLOC))
2946 inode->i_mapping->a_ops = &ext4_da_aops;
2947 else if (ext4_should_writeback_data(inode))
2948 inode->i_mapping->a_ops = &ext4_writeback_aops;
2949 else
2950 inode->i_mapping->a_ops = &ext4_journalled_aops;
2951 }
2952
2953 /*
2954 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2955 * up to the end of the block which corresponds to `from'.
2956 * This required during truncate. We need to physically zero the tail end
2957 * of that block so it doesn't yield old data if the file is later grown.
2958 */
2959 int ext4_block_truncate_page(handle_t *handle,
2960 struct address_space *mapping, loff_t from)
2961 {
2962 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2963 unsigned length;
2964 unsigned blocksize;
2965 struct inode *inode = mapping->host;
2966
2967 blocksize = inode->i_sb->s_blocksize;
2968 length = blocksize - (offset & (blocksize - 1));
2969
2970 return ext4_block_zero_page_range(handle, mapping, from, length);
2971 }
2972
2973 /*
2974 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2975 * starting from file offset 'from'. The range to be zero'd must
2976 * be contained with in one block. If the specified range exceeds
2977 * the end of the block it will be shortened to end of the block
2978 * that cooresponds to 'from'
2979 */
2980 int ext4_block_zero_page_range(handle_t *handle,
2981 struct address_space *mapping, loff_t from, loff_t length)
2982 {
2983 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2984 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2985 unsigned blocksize, max, pos;
2986 ext4_lblk_t iblock;
2987 struct inode *inode = mapping->host;
2988 struct buffer_head *bh;
2989 struct page *page;
2990 int err = 0;
2991
2992 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2993 mapping_gfp_mask(mapping) & ~__GFP_FS);
2994 if (!page)
2995 return -EINVAL;
2996
2997 blocksize = inode->i_sb->s_blocksize;
2998 max = blocksize - (offset & (blocksize - 1));
2999
3000 /*
3001 * correct length if it does not fall between
3002 * 'from' and the end of the block
3003 */
3004 if (length > max || length < 0)
3005 length = max;
3006
3007 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3008
3009 if (!page_has_buffers(page))
3010 create_empty_buffers(page, blocksize, 0);
3011
3012 /* Find the buffer that contains "offset" */
3013 bh = page_buffers(page);
3014 pos = blocksize;
3015 while (offset >= pos) {
3016 bh = bh->b_this_page;
3017 iblock++;
3018 pos += blocksize;
3019 }
3020
3021 err = 0;
3022 if (buffer_freed(bh)) {
3023 BUFFER_TRACE(bh, "freed: skip");
3024 goto unlock;
3025 }
3026
3027 if (!buffer_mapped(bh)) {
3028 BUFFER_TRACE(bh, "unmapped");
3029 ext4_get_block(inode, iblock, bh, 0);
3030 /* unmapped? It's a hole - nothing to do */
3031 if (!buffer_mapped(bh)) {
3032 BUFFER_TRACE(bh, "still unmapped");
3033 goto unlock;
3034 }
3035 }
3036
3037 /* Ok, it's mapped. Make sure it's up-to-date */
3038 if (PageUptodate(page))
3039 set_buffer_uptodate(bh);
3040
3041 if (!buffer_uptodate(bh)) {
3042 err = -EIO;
3043 ll_rw_block(READ, 1, &bh);
3044 wait_on_buffer(bh);
3045 /* Uhhuh. Read error. Complain and punt. */
3046 if (!buffer_uptodate(bh))
3047 goto unlock;
3048 }
3049
3050 if (ext4_should_journal_data(inode)) {
3051 BUFFER_TRACE(bh, "get write access");
3052 err = ext4_journal_get_write_access(handle, bh);
3053 if (err)
3054 goto unlock;
3055 }
3056
3057 zero_user(page, offset, length);
3058
3059 BUFFER_TRACE(bh, "zeroed end of block");
3060
3061 err = 0;
3062 if (ext4_should_journal_data(inode)) {
3063 err = ext4_handle_dirty_metadata(handle, inode, bh);
3064 } else {
3065 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3066 err = ext4_jbd2_file_inode(handle, inode);
3067 mark_buffer_dirty(bh);
3068 }
3069
3070 unlock:
3071 unlock_page(page);
3072 page_cache_release(page);
3073 return err;
3074 }
3075
3076 int ext4_can_truncate(struct inode *inode)
3077 {
3078 if (S_ISREG(inode->i_mode))
3079 return 1;
3080 if (S_ISDIR(inode->i_mode))
3081 return 1;
3082 if (S_ISLNK(inode->i_mode))
3083 return !ext4_inode_is_fast_symlink(inode);
3084 return 0;
3085 }
3086
3087 /*
3088 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3089 * associated with the given offset and length
3090 *
3091 * @inode: File inode
3092 * @offset: The offset where the hole will begin
3093 * @len: The length of the hole
3094 *
3095 * Returns: 0 on sucess or negative on failure
3096 */
3097
3098 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3099 {
3100 struct inode *inode = file->f_path.dentry->d_inode;
3101 if (!S_ISREG(inode->i_mode))
3102 return -ENOTSUPP;
3103
3104 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3105 /* TODO: Add support for non extent hole punching */
3106 return -ENOTSUPP;
3107 }
3108
3109 return ext4_ext_punch_hole(file, offset, length);
3110 }
3111
3112 /*
3113 * ext4_truncate()
3114 *
3115 * We block out ext4_get_block() block instantiations across the entire
3116 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3117 * simultaneously on behalf of the same inode.
3118 *
3119 * As we work through the truncate and commmit bits of it to the journal there
3120 * is one core, guiding principle: the file's tree must always be consistent on
3121 * disk. We must be able to restart the truncate after a crash.
3122 *
3123 * The file's tree may be transiently inconsistent in memory (although it
3124 * probably isn't), but whenever we close off and commit a journal transaction,
3125 * the contents of (the filesystem + the journal) must be consistent and
3126 * restartable. It's pretty simple, really: bottom up, right to left (although
3127 * left-to-right works OK too).
3128 *
3129 * Note that at recovery time, journal replay occurs *before* the restart of
3130 * truncate against the orphan inode list.
3131 *
3132 * The committed inode has the new, desired i_size (which is the same as
3133 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3134 * that this inode's truncate did not complete and it will again call
3135 * ext4_truncate() to have another go. So there will be instantiated blocks
3136 * to the right of the truncation point in a crashed ext4 filesystem. But
3137 * that's fine - as long as they are linked from the inode, the post-crash
3138 * ext4_truncate() run will find them and release them.
3139 */
3140 void ext4_truncate(struct inode *inode)
3141 {
3142 trace_ext4_truncate_enter(inode);
3143
3144 if (!ext4_can_truncate(inode))
3145 return;
3146
3147 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3148
3149 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3150 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3151
3152 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3153 ext4_ext_truncate(inode);
3154 else
3155 ext4_ind_truncate(inode);
3156
3157 trace_ext4_truncate_exit(inode);
3158 }
3159
3160 /*
3161 * ext4_get_inode_loc returns with an extra refcount against the inode's
3162 * underlying buffer_head on success. If 'in_mem' is true, we have all
3163 * data in memory that is needed to recreate the on-disk version of this
3164 * inode.
3165 */
3166 static int __ext4_get_inode_loc(struct inode *inode,
3167 struct ext4_iloc *iloc, int in_mem)
3168 {
3169 struct ext4_group_desc *gdp;
3170 struct buffer_head *bh;
3171 struct super_block *sb = inode->i_sb;
3172 ext4_fsblk_t block;
3173 int inodes_per_block, inode_offset;
3174
3175 iloc->bh = NULL;
3176 if (!ext4_valid_inum(sb, inode->i_ino))
3177 return -EIO;
3178
3179 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3180 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3181 if (!gdp)
3182 return -EIO;
3183
3184 /*
3185 * Figure out the offset within the block group inode table
3186 */
3187 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3188 inode_offset = ((inode->i_ino - 1) %
3189 EXT4_INODES_PER_GROUP(sb));
3190 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3191 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3192
3193 bh = sb_getblk(sb, block);
3194 if (!bh) {
3195 EXT4_ERROR_INODE_BLOCK(inode, block,
3196 "unable to read itable block");
3197 return -EIO;
3198 }
3199 if (!buffer_uptodate(bh)) {
3200 lock_buffer(bh);
3201
3202 /*
3203 * If the buffer has the write error flag, we have failed
3204 * to write out another inode in the same block. In this
3205 * case, we don't have to read the block because we may
3206 * read the old inode data successfully.
3207 */
3208 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3209 set_buffer_uptodate(bh);
3210
3211 if (buffer_uptodate(bh)) {
3212 /* someone brought it uptodate while we waited */
3213 unlock_buffer(bh);
3214 goto has_buffer;
3215 }
3216
3217 /*
3218 * If we have all information of the inode in memory and this
3219 * is the only valid inode in the block, we need not read the
3220 * block.
3221 */
3222 if (in_mem) {
3223 struct buffer_head *bitmap_bh;
3224 int i, start;
3225
3226 start = inode_offset & ~(inodes_per_block - 1);
3227
3228 /* Is the inode bitmap in cache? */
3229 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3230 if (!bitmap_bh)
3231 goto make_io;
3232
3233 /*
3234 * If the inode bitmap isn't in cache then the
3235 * optimisation may end up performing two reads instead
3236 * of one, so skip it.
3237 */
3238 if (!buffer_uptodate(bitmap_bh)) {
3239 brelse(bitmap_bh);
3240 goto make_io;
3241 }
3242 for (i = start; i < start + inodes_per_block; i++) {
3243 if (i == inode_offset)
3244 continue;
3245 if (ext4_test_bit(i, bitmap_bh->b_data))
3246 break;
3247 }
3248 brelse(bitmap_bh);
3249 if (i == start + inodes_per_block) {
3250 /* all other inodes are free, so skip I/O */
3251 memset(bh->b_data, 0, bh->b_size);
3252 set_buffer_uptodate(bh);
3253 unlock_buffer(bh);
3254 goto has_buffer;
3255 }
3256 }
3257
3258 make_io:
3259 /*
3260 * If we need to do any I/O, try to pre-readahead extra
3261 * blocks from the inode table.
3262 */
3263 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3264 ext4_fsblk_t b, end, table;
3265 unsigned num;
3266
3267 table = ext4_inode_table(sb, gdp);
3268 /* s_inode_readahead_blks is always a power of 2 */
3269 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3270 if (table > b)
3271 b = table;
3272 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3273 num = EXT4_INODES_PER_GROUP(sb);
3274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3275 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3276 num -= ext4_itable_unused_count(sb, gdp);
3277 table += num / inodes_per_block;
3278 if (end > table)
3279 end = table;
3280 while (b <= end)
3281 sb_breadahead(sb, b++);
3282 }
3283
3284 /*
3285 * There are other valid inodes in the buffer, this inode
3286 * has in-inode xattrs, or we don't have this inode in memory.
3287 * Read the block from disk.
3288 */
3289 trace_ext4_load_inode(inode);
3290 get_bh(bh);
3291 bh->b_end_io = end_buffer_read_sync;
3292 submit_bh(READ_META, bh);
3293 wait_on_buffer(bh);
3294 if (!buffer_uptodate(bh)) {
3295 EXT4_ERROR_INODE_BLOCK(inode, block,
3296 "unable to read itable block");
3297 brelse(bh);
3298 return -EIO;
3299 }
3300 }
3301 has_buffer:
3302 iloc->bh = bh;
3303 return 0;
3304 }
3305
3306 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3307 {
3308 /* We have all inode data except xattrs in memory here. */
3309 return __ext4_get_inode_loc(inode, iloc,
3310 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3311 }
3312
3313 void ext4_set_inode_flags(struct inode *inode)
3314 {
3315 unsigned int flags = EXT4_I(inode)->i_flags;
3316
3317 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3318 if (flags & EXT4_SYNC_FL)
3319 inode->i_flags |= S_SYNC;
3320 if (flags & EXT4_APPEND_FL)
3321 inode->i_flags |= S_APPEND;
3322 if (flags & EXT4_IMMUTABLE_FL)
3323 inode->i_flags |= S_IMMUTABLE;
3324 if (flags & EXT4_NOATIME_FL)
3325 inode->i_flags |= S_NOATIME;
3326 if (flags & EXT4_DIRSYNC_FL)
3327 inode->i_flags |= S_DIRSYNC;
3328 }
3329
3330 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3331 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3332 {
3333 unsigned int vfs_fl;
3334 unsigned long old_fl, new_fl;
3335
3336 do {
3337 vfs_fl = ei->vfs_inode.i_flags;
3338 old_fl = ei->i_flags;
3339 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3340 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3341 EXT4_DIRSYNC_FL);
3342 if (vfs_fl & S_SYNC)
3343 new_fl |= EXT4_SYNC_FL;
3344 if (vfs_fl & S_APPEND)
3345 new_fl |= EXT4_APPEND_FL;
3346 if (vfs_fl & S_IMMUTABLE)
3347 new_fl |= EXT4_IMMUTABLE_FL;
3348 if (vfs_fl & S_NOATIME)
3349 new_fl |= EXT4_NOATIME_FL;
3350 if (vfs_fl & S_DIRSYNC)
3351 new_fl |= EXT4_DIRSYNC_FL;
3352 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3353 }
3354
3355 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3356 struct ext4_inode_info *ei)
3357 {
3358 blkcnt_t i_blocks ;
3359 struct inode *inode = &(ei->vfs_inode);
3360 struct super_block *sb = inode->i_sb;
3361
3362 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3363 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3364 /* we are using combined 48 bit field */
3365 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3366 le32_to_cpu(raw_inode->i_blocks_lo);
3367 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3368 /* i_blocks represent file system block size */
3369 return i_blocks << (inode->i_blkbits - 9);
3370 } else {
3371 return i_blocks;
3372 }
3373 } else {
3374 return le32_to_cpu(raw_inode->i_blocks_lo);
3375 }
3376 }
3377
3378 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3379 {
3380 struct ext4_iloc iloc;
3381 struct ext4_inode *raw_inode;
3382 struct ext4_inode_info *ei;
3383 struct inode *inode;
3384 journal_t *journal = EXT4_SB(sb)->s_journal;
3385 long ret;
3386 int block;
3387
3388 inode = iget_locked(sb, ino);
3389 if (!inode)
3390 return ERR_PTR(-ENOMEM);
3391 if (!(inode->i_state & I_NEW))
3392 return inode;
3393
3394 ei = EXT4_I(inode);
3395 iloc.bh = NULL;
3396
3397 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3398 if (ret < 0)
3399 goto bad_inode;
3400 raw_inode = ext4_raw_inode(&iloc);
3401 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3402 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3403 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3404 if (!(test_opt(inode->i_sb, NO_UID32))) {
3405 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3406 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3407 }
3408 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3409
3410 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3411 ei->i_dir_start_lookup = 0;
3412 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3413 /* We now have enough fields to check if the inode was active or not.
3414 * This is needed because nfsd might try to access dead inodes
3415 * the test is that same one that e2fsck uses
3416 * NeilBrown 1999oct15
3417 */
3418 if (inode->i_nlink == 0) {
3419 if (inode->i_mode == 0 ||
3420 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3421 /* this inode is deleted */
3422 ret = -ESTALE;
3423 goto bad_inode;
3424 }
3425 /* The only unlinked inodes we let through here have
3426 * valid i_mode and are being read by the orphan
3427 * recovery code: that's fine, we're about to complete
3428 * the process of deleting those. */
3429 }
3430 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3431 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3432 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3433 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3434 ei->i_file_acl |=
3435 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3436 inode->i_size = ext4_isize(raw_inode);
3437 ei->i_disksize = inode->i_size;
3438 #ifdef CONFIG_QUOTA
3439 ei->i_reserved_quota = 0;
3440 #endif
3441 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3442 ei->i_block_group = iloc.block_group;
3443 ei->i_last_alloc_group = ~0;
3444 /*
3445 * NOTE! The in-memory inode i_data array is in little-endian order
3446 * even on big-endian machines: we do NOT byteswap the block numbers!
3447 */
3448 for (block = 0; block < EXT4_N_BLOCKS; block++)
3449 ei->i_data[block] = raw_inode->i_block[block];
3450 INIT_LIST_HEAD(&ei->i_orphan);
3451
3452 /*
3453 * Set transaction id's of transactions that have to be committed
3454 * to finish f[data]sync. We set them to currently running transaction
3455 * as we cannot be sure that the inode or some of its metadata isn't
3456 * part of the transaction - the inode could have been reclaimed and
3457 * now it is reread from disk.
3458 */
3459 if (journal) {
3460 transaction_t *transaction;
3461 tid_t tid;
3462
3463 read_lock(&journal->j_state_lock);
3464 if (journal->j_running_transaction)
3465 transaction = journal->j_running_transaction;
3466 else
3467 transaction = journal->j_committing_transaction;
3468 if (transaction)
3469 tid = transaction->t_tid;
3470 else
3471 tid = journal->j_commit_sequence;
3472 read_unlock(&journal->j_state_lock);
3473 ei->i_sync_tid = tid;
3474 ei->i_datasync_tid = tid;
3475 }
3476
3477 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3478 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3479 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3480 EXT4_INODE_SIZE(inode->i_sb)) {
3481 ret = -EIO;
3482 goto bad_inode;
3483 }
3484 if (ei->i_extra_isize == 0) {
3485 /* The extra space is currently unused. Use it. */
3486 ei->i_extra_isize = sizeof(struct ext4_inode) -
3487 EXT4_GOOD_OLD_INODE_SIZE;
3488 } else {
3489 __le32 *magic = (void *)raw_inode +
3490 EXT4_GOOD_OLD_INODE_SIZE +
3491 ei->i_extra_isize;
3492 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3493 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3494 }
3495 } else
3496 ei->i_extra_isize = 0;
3497
3498 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3499 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3500 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3501 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3502
3503 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3504 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3505 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3506 inode->i_version |=
3507 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3508 }
3509
3510 ret = 0;
3511 if (ei->i_file_acl &&
3512 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3513 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3514 ei->i_file_acl);
3515 ret = -EIO;
3516 goto bad_inode;
3517 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3518 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3519 (S_ISLNK(inode->i_mode) &&
3520 !ext4_inode_is_fast_symlink(inode)))
3521 /* Validate extent which is part of inode */
3522 ret = ext4_ext_check_inode(inode);
3523 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3524 (S_ISLNK(inode->i_mode) &&
3525 !ext4_inode_is_fast_symlink(inode))) {
3526 /* Validate block references which are part of inode */
3527 ret = ext4_ind_check_inode(inode);
3528 }
3529 if (ret)
3530 goto bad_inode;
3531
3532 if (S_ISREG(inode->i_mode)) {
3533 inode->i_op = &ext4_file_inode_operations;
3534 inode->i_fop = &ext4_file_operations;
3535 ext4_set_aops(inode);
3536 } else if (S_ISDIR(inode->i_mode)) {
3537 inode->i_op = &ext4_dir_inode_operations;
3538 inode->i_fop = &ext4_dir_operations;
3539 } else if (S_ISLNK(inode->i_mode)) {
3540 if (ext4_inode_is_fast_symlink(inode)) {
3541 inode->i_op = &ext4_fast_symlink_inode_operations;
3542 nd_terminate_link(ei->i_data, inode->i_size,
3543 sizeof(ei->i_data) - 1);
3544 } else {
3545 inode->i_op = &ext4_symlink_inode_operations;
3546 ext4_set_aops(inode);
3547 }
3548 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3549 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3550 inode->i_op = &ext4_special_inode_operations;
3551 if (raw_inode->i_block[0])
3552 init_special_inode(inode, inode->i_mode,
3553 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3554 else
3555 init_special_inode(inode, inode->i_mode,
3556 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3557 } else {
3558 ret = -EIO;
3559 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3560 goto bad_inode;
3561 }
3562 brelse(iloc.bh);
3563 ext4_set_inode_flags(inode);
3564 unlock_new_inode(inode);
3565 return inode;
3566
3567 bad_inode:
3568 brelse(iloc.bh);
3569 iget_failed(inode);
3570 return ERR_PTR(ret);
3571 }
3572
3573 static int ext4_inode_blocks_set(handle_t *handle,
3574 struct ext4_inode *raw_inode,
3575 struct ext4_inode_info *ei)
3576 {
3577 struct inode *inode = &(ei->vfs_inode);
3578 u64 i_blocks = inode->i_blocks;
3579 struct super_block *sb = inode->i_sb;
3580
3581 if (i_blocks <= ~0U) {
3582 /*
3583 * i_blocks can be represnted in a 32 bit variable
3584 * as multiple of 512 bytes
3585 */
3586 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3587 raw_inode->i_blocks_high = 0;
3588 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3589 return 0;
3590 }
3591 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3592 return -EFBIG;
3593
3594 if (i_blocks <= 0xffffffffffffULL) {
3595 /*
3596 * i_blocks can be represented in a 48 bit variable
3597 * as multiple of 512 bytes
3598 */
3599 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3600 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3601 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3602 } else {
3603 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3604 /* i_block is stored in file system block size */
3605 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3606 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3607 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3608 }
3609 return 0;
3610 }
3611
3612 /*
3613 * Post the struct inode info into an on-disk inode location in the
3614 * buffer-cache. This gobbles the caller's reference to the
3615 * buffer_head in the inode location struct.
3616 *
3617 * The caller must have write access to iloc->bh.
3618 */
3619 static int ext4_do_update_inode(handle_t *handle,
3620 struct inode *inode,
3621 struct ext4_iloc *iloc)
3622 {
3623 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3624 struct ext4_inode_info *ei = EXT4_I(inode);
3625 struct buffer_head *bh = iloc->bh;
3626 int err = 0, rc, block;
3627
3628 /* For fields not not tracking in the in-memory inode,
3629 * initialise them to zero for new inodes. */
3630 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3631 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3632
3633 ext4_get_inode_flags(ei);
3634 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3635 if (!(test_opt(inode->i_sb, NO_UID32))) {
3636 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3637 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3638 /*
3639 * Fix up interoperability with old kernels. Otherwise, old inodes get
3640 * re-used with the upper 16 bits of the uid/gid intact
3641 */
3642 if (!ei->i_dtime) {
3643 raw_inode->i_uid_high =
3644 cpu_to_le16(high_16_bits(inode->i_uid));
3645 raw_inode->i_gid_high =
3646 cpu_to_le16(high_16_bits(inode->i_gid));
3647 } else {
3648 raw_inode->i_uid_high = 0;
3649 raw_inode->i_gid_high = 0;
3650 }
3651 } else {
3652 raw_inode->i_uid_low =
3653 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3654 raw_inode->i_gid_low =
3655 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3656 raw_inode->i_uid_high = 0;
3657 raw_inode->i_gid_high = 0;
3658 }
3659 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3660
3661 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3662 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3663 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3664 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3665
3666 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3667 goto out_brelse;
3668 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3669 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3670 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3671 cpu_to_le32(EXT4_OS_HURD))
3672 raw_inode->i_file_acl_high =
3673 cpu_to_le16(ei->i_file_acl >> 32);
3674 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3675 ext4_isize_set(raw_inode, ei->i_disksize);
3676 if (ei->i_disksize > 0x7fffffffULL) {
3677 struct super_block *sb = inode->i_sb;
3678 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3679 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3680 EXT4_SB(sb)->s_es->s_rev_level ==
3681 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3682 /* If this is the first large file
3683 * created, add a flag to the superblock.
3684 */
3685 err = ext4_journal_get_write_access(handle,
3686 EXT4_SB(sb)->s_sbh);
3687 if (err)
3688 goto out_brelse;
3689 ext4_update_dynamic_rev(sb);
3690 EXT4_SET_RO_COMPAT_FEATURE(sb,
3691 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3692 sb->s_dirt = 1;
3693 ext4_handle_sync(handle);
3694 err = ext4_handle_dirty_metadata(handle, NULL,
3695 EXT4_SB(sb)->s_sbh);
3696 }
3697 }
3698 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3699 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3700 if (old_valid_dev(inode->i_rdev)) {
3701 raw_inode->i_block[0] =
3702 cpu_to_le32(old_encode_dev(inode->i_rdev));
3703 raw_inode->i_block[1] = 0;
3704 } else {
3705 raw_inode->i_block[0] = 0;
3706 raw_inode->i_block[1] =
3707 cpu_to_le32(new_encode_dev(inode->i_rdev));
3708 raw_inode->i_block[2] = 0;
3709 }
3710 } else
3711 for (block = 0; block < EXT4_N_BLOCKS; block++)
3712 raw_inode->i_block[block] = ei->i_data[block];
3713
3714 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3715 if (ei->i_extra_isize) {
3716 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3717 raw_inode->i_version_hi =
3718 cpu_to_le32(inode->i_version >> 32);
3719 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3720 }
3721
3722 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3723 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3724 if (!err)
3725 err = rc;
3726 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3727
3728 ext4_update_inode_fsync_trans(handle, inode, 0);
3729 out_brelse:
3730 brelse(bh);
3731 ext4_std_error(inode->i_sb, err);
3732 return err;
3733 }
3734
3735 /*
3736 * ext4_write_inode()
3737 *
3738 * We are called from a few places:
3739 *
3740 * - Within generic_file_write() for O_SYNC files.
3741 * Here, there will be no transaction running. We wait for any running
3742 * trasnaction to commit.
3743 *
3744 * - Within sys_sync(), kupdate and such.
3745 * We wait on commit, if tol to.
3746 *
3747 * - Within prune_icache() (PF_MEMALLOC == true)
3748 * Here we simply return. We can't afford to block kswapd on the
3749 * journal commit.
3750 *
3751 * In all cases it is actually safe for us to return without doing anything,
3752 * because the inode has been copied into a raw inode buffer in
3753 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3754 * knfsd.
3755 *
3756 * Note that we are absolutely dependent upon all inode dirtiers doing the
3757 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3758 * which we are interested.
3759 *
3760 * It would be a bug for them to not do this. The code:
3761 *
3762 * mark_inode_dirty(inode)
3763 * stuff();
3764 * inode->i_size = expr;
3765 *
3766 * is in error because a kswapd-driven write_inode() could occur while
3767 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3768 * will no longer be on the superblock's dirty inode list.
3769 */
3770 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3771 {
3772 int err;
3773
3774 if (current->flags & PF_MEMALLOC)
3775 return 0;
3776
3777 if (EXT4_SB(inode->i_sb)->s_journal) {
3778 if (ext4_journal_current_handle()) {
3779 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3780 dump_stack();
3781 return -EIO;
3782 }
3783
3784 if (wbc->sync_mode != WB_SYNC_ALL)
3785 return 0;
3786
3787 err = ext4_force_commit(inode->i_sb);
3788 } else {
3789 struct ext4_iloc iloc;
3790
3791 err = __ext4_get_inode_loc(inode, &iloc, 0);
3792 if (err)
3793 return err;
3794 if (wbc->sync_mode == WB_SYNC_ALL)
3795 sync_dirty_buffer(iloc.bh);
3796 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3797 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3798 "IO error syncing inode");
3799 err = -EIO;
3800 }
3801 brelse(iloc.bh);
3802 }
3803 return err;
3804 }
3805
3806 /*
3807 * ext4_setattr()
3808 *
3809 * Called from notify_change.
3810 *
3811 * We want to trap VFS attempts to truncate the file as soon as
3812 * possible. In particular, we want to make sure that when the VFS
3813 * shrinks i_size, we put the inode on the orphan list and modify
3814 * i_disksize immediately, so that during the subsequent flushing of
3815 * dirty pages and freeing of disk blocks, we can guarantee that any
3816 * commit will leave the blocks being flushed in an unused state on
3817 * disk. (On recovery, the inode will get truncated and the blocks will
3818 * be freed, so we have a strong guarantee that no future commit will
3819 * leave these blocks visible to the user.)
3820 *
3821 * Another thing we have to assure is that if we are in ordered mode
3822 * and inode is still attached to the committing transaction, we must
3823 * we start writeout of all the dirty pages which are being truncated.
3824 * This way we are sure that all the data written in the previous
3825 * transaction are already on disk (truncate waits for pages under
3826 * writeback).
3827 *
3828 * Called with inode->i_mutex down.
3829 */
3830 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3831 {
3832 struct inode *inode = dentry->d_inode;
3833 int error, rc = 0;
3834 int orphan = 0;
3835 const unsigned int ia_valid = attr->ia_valid;
3836
3837 error = inode_change_ok(inode, attr);
3838 if (error)
3839 return error;
3840
3841 if (is_quota_modification(inode, attr))
3842 dquot_initialize(inode);
3843 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3844 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3845 handle_t *handle;
3846
3847 /* (user+group)*(old+new) structure, inode write (sb,
3848 * inode block, ? - but truncate inode update has it) */
3849 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3850 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3851 if (IS_ERR(handle)) {
3852 error = PTR_ERR(handle);
3853 goto err_out;
3854 }
3855 error = dquot_transfer(inode, attr);
3856 if (error) {
3857 ext4_journal_stop(handle);
3858 return error;
3859 }
3860 /* Update corresponding info in inode so that everything is in
3861 * one transaction */
3862 if (attr->ia_valid & ATTR_UID)
3863 inode->i_uid = attr->ia_uid;
3864 if (attr->ia_valid & ATTR_GID)
3865 inode->i_gid = attr->ia_gid;
3866 error = ext4_mark_inode_dirty(handle, inode);
3867 ext4_journal_stop(handle);
3868 }
3869
3870 if (attr->ia_valid & ATTR_SIZE) {
3871 inode_dio_wait(inode);
3872
3873 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3874 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3875
3876 if (attr->ia_size > sbi->s_bitmap_maxbytes)
3877 return -EFBIG;
3878 }
3879 }
3880
3881 if (S_ISREG(inode->i_mode) &&
3882 attr->ia_valid & ATTR_SIZE &&
3883 (attr->ia_size < inode->i_size)) {
3884 handle_t *handle;
3885
3886 handle = ext4_journal_start(inode, 3);
3887 if (IS_ERR(handle)) {
3888 error = PTR_ERR(handle);
3889 goto err_out;
3890 }
3891 if (ext4_handle_valid(handle)) {
3892 error = ext4_orphan_add(handle, inode);
3893 orphan = 1;
3894 }
3895 EXT4_I(inode)->i_disksize = attr->ia_size;
3896 rc = ext4_mark_inode_dirty(handle, inode);
3897 if (!error)
3898 error = rc;
3899 ext4_journal_stop(handle);
3900
3901 if (ext4_should_order_data(inode)) {
3902 error = ext4_begin_ordered_truncate(inode,
3903 attr->ia_size);
3904 if (error) {
3905 /* Do as much error cleanup as possible */
3906 handle = ext4_journal_start(inode, 3);
3907 if (IS_ERR(handle)) {
3908 ext4_orphan_del(NULL, inode);
3909 goto err_out;
3910 }
3911 ext4_orphan_del(handle, inode);
3912 orphan = 0;
3913 ext4_journal_stop(handle);
3914 goto err_out;
3915 }
3916 }
3917 }
3918
3919 if (attr->ia_valid & ATTR_SIZE) {
3920 if (attr->ia_size != i_size_read(inode)) {
3921 truncate_setsize(inode, attr->ia_size);
3922 ext4_truncate(inode);
3923 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3924 ext4_truncate(inode);
3925 }
3926
3927 if (!rc) {
3928 setattr_copy(inode, attr);
3929 mark_inode_dirty(inode);
3930 }
3931
3932 /*
3933 * If the call to ext4_truncate failed to get a transaction handle at
3934 * all, we need to clean up the in-core orphan list manually.
3935 */
3936 if (orphan && inode->i_nlink)
3937 ext4_orphan_del(NULL, inode);
3938
3939 if (!rc && (ia_valid & ATTR_MODE))
3940 rc = ext4_acl_chmod(inode);
3941
3942 err_out:
3943 ext4_std_error(inode->i_sb, error);
3944 if (!error)
3945 error = rc;
3946 return error;
3947 }
3948
3949 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3950 struct kstat *stat)
3951 {
3952 struct inode *inode;
3953 unsigned long delalloc_blocks;
3954
3955 inode = dentry->d_inode;
3956 generic_fillattr(inode, stat);
3957
3958 /*
3959 * We can't update i_blocks if the block allocation is delayed
3960 * otherwise in the case of system crash before the real block
3961 * allocation is done, we will have i_blocks inconsistent with
3962 * on-disk file blocks.
3963 * We always keep i_blocks updated together with real
3964 * allocation. But to not confuse with user, stat
3965 * will return the blocks that include the delayed allocation
3966 * blocks for this file.
3967 */
3968 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3969
3970 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3971 return 0;
3972 }
3973
3974 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3975 {
3976 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3977 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3978 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3979 }
3980
3981 /*
3982 * Account for index blocks, block groups bitmaps and block group
3983 * descriptor blocks if modify datablocks and index blocks
3984 * worse case, the indexs blocks spread over different block groups
3985 *
3986 * If datablocks are discontiguous, they are possible to spread over
3987 * different block groups too. If they are contiuguous, with flexbg,
3988 * they could still across block group boundary.
3989 *
3990 * Also account for superblock, inode, quota and xattr blocks
3991 */
3992 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3993 {
3994 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
3995 int gdpblocks;
3996 int idxblocks;
3997 int ret = 0;
3998
3999 /*
4000 * How many index blocks need to touch to modify nrblocks?
4001 * The "Chunk" flag indicating whether the nrblocks is
4002 * physically contiguous on disk
4003 *
4004 * For Direct IO and fallocate, they calls get_block to allocate
4005 * one single extent at a time, so they could set the "Chunk" flag
4006 */
4007 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4008
4009 ret = idxblocks;
4010
4011 /*
4012 * Now let's see how many group bitmaps and group descriptors need
4013 * to account
4014 */
4015 groups = idxblocks;
4016 if (chunk)
4017 groups += 1;
4018 else
4019 groups += nrblocks;
4020
4021 gdpblocks = groups;
4022 if (groups > ngroups)
4023 groups = ngroups;
4024 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4025 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4026
4027 /* bitmaps and block group descriptor blocks */
4028 ret += groups + gdpblocks;
4029
4030 /* Blocks for super block, inode, quota and xattr blocks */
4031 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4032
4033 return ret;
4034 }
4035
4036 /*
4037 * Calculate the total number of credits to reserve to fit
4038 * the modification of a single pages into a single transaction,
4039 * which may include multiple chunks of block allocations.
4040 *
4041 * This could be called via ext4_write_begin()
4042 *
4043 * We need to consider the worse case, when
4044 * one new block per extent.
4045 */
4046 int ext4_writepage_trans_blocks(struct inode *inode)
4047 {
4048 int bpp = ext4_journal_blocks_per_page(inode);
4049 int ret;
4050
4051 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4052
4053 /* Account for data blocks for journalled mode */
4054 if (ext4_should_journal_data(inode))
4055 ret += bpp;
4056 return ret;
4057 }
4058
4059 /*
4060 * Calculate the journal credits for a chunk of data modification.
4061 *
4062 * This is called from DIO, fallocate or whoever calling
4063 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4064 *
4065 * journal buffers for data blocks are not included here, as DIO
4066 * and fallocate do no need to journal data buffers.
4067 */
4068 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4069 {
4070 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4071 }
4072
4073 /*
4074 * The caller must have previously called ext4_reserve_inode_write().
4075 * Give this, we know that the caller already has write access to iloc->bh.
4076 */
4077 int ext4_mark_iloc_dirty(handle_t *handle,
4078 struct inode *inode, struct ext4_iloc *iloc)
4079 {
4080 int err = 0;
4081
4082 if (test_opt(inode->i_sb, I_VERSION))
4083 inode_inc_iversion(inode);
4084
4085 /* the do_update_inode consumes one bh->b_count */
4086 get_bh(iloc->bh);
4087
4088 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4089 err = ext4_do_update_inode(handle, inode, iloc);
4090 put_bh(iloc->bh);
4091 return err;
4092 }
4093
4094 /*
4095 * On success, We end up with an outstanding reference count against
4096 * iloc->bh. This _must_ be cleaned up later.
4097 */
4098
4099 int
4100 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4101 struct ext4_iloc *iloc)
4102 {
4103 int err;
4104
4105 err = ext4_get_inode_loc(inode, iloc);
4106 if (!err) {
4107 BUFFER_TRACE(iloc->bh, "get_write_access");
4108 err = ext4_journal_get_write_access(handle, iloc->bh);
4109 if (err) {
4110 brelse(iloc->bh);
4111 iloc->bh = NULL;
4112 }
4113 }
4114 ext4_std_error(inode->i_sb, err);
4115 return err;
4116 }
4117
4118 /*
4119 * Expand an inode by new_extra_isize bytes.
4120 * Returns 0 on success or negative error number on failure.
4121 */
4122 static int ext4_expand_extra_isize(struct inode *inode,
4123 unsigned int new_extra_isize,
4124 struct ext4_iloc iloc,
4125 handle_t *handle)
4126 {
4127 struct ext4_inode *raw_inode;
4128 struct ext4_xattr_ibody_header *header;
4129
4130 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4131 return 0;
4132
4133 raw_inode = ext4_raw_inode(&iloc);
4134
4135 header = IHDR(inode, raw_inode);
4136
4137 /* No extended attributes present */
4138 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4139 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4140 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4141 new_extra_isize);
4142 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4143 return 0;
4144 }
4145
4146 /* try to expand with EAs present */
4147 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4148 raw_inode, handle);
4149 }
4150
4151 /*
4152 * What we do here is to mark the in-core inode as clean with respect to inode
4153 * dirtiness (it may still be data-dirty).
4154 * This means that the in-core inode may be reaped by prune_icache
4155 * without having to perform any I/O. This is a very good thing,
4156 * because *any* task may call prune_icache - even ones which
4157 * have a transaction open against a different journal.
4158 *
4159 * Is this cheating? Not really. Sure, we haven't written the
4160 * inode out, but prune_icache isn't a user-visible syncing function.
4161 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4162 * we start and wait on commits.
4163 *
4164 * Is this efficient/effective? Well, we're being nice to the system
4165 * by cleaning up our inodes proactively so they can be reaped
4166 * without I/O. But we are potentially leaving up to five seconds'
4167 * worth of inodes floating about which prune_icache wants us to
4168 * write out. One way to fix that would be to get prune_icache()
4169 * to do a write_super() to free up some memory. It has the desired
4170 * effect.
4171 */
4172 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4173 {
4174 struct ext4_iloc iloc;
4175 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4176 static unsigned int mnt_count;
4177 int err, ret;
4178
4179 might_sleep();
4180 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4181 err = ext4_reserve_inode_write(handle, inode, &iloc);
4182 if (ext4_handle_valid(handle) &&
4183 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4184 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4185 /*
4186 * We need extra buffer credits since we may write into EA block
4187 * with this same handle. If journal_extend fails, then it will
4188 * only result in a minor loss of functionality for that inode.
4189 * If this is felt to be critical, then e2fsck should be run to
4190 * force a large enough s_min_extra_isize.
4191 */
4192 if ((jbd2_journal_extend(handle,
4193 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4194 ret = ext4_expand_extra_isize(inode,
4195 sbi->s_want_extra_isize,
4196 iloc, handle);
4197 if (ret) {
4198 ext4_set_inode_state(inode,
4199 EXT4_STATE_NO_EXPAND);
4200 if (mnt_count !=
4201 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4202 ext4_warning(inode->i_sb,
4203 "Unable to expand inode %lu. Delete"
4204 " some EAs or run e2fsck.",
4205 inode->i_ino);
4206 mnt_count =
4207 le16_to_cpu(sbi->s_es->s_mnt_count);
4208 }
4209 }
4210 }
4211 }
4212 if (!err)
4213 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4214 return err;
4215 }
4216
4217 /*
4218 * ext4_dirty_inode() is called from __mark_inode_dirty()
4219 *
4220 * We're really interested in the case where a file is being extended.
4221 * i_size has been changed by generic_commit_write() and we thus need
4222 * to include the updated inode in the current transaction.
4223 *
4224 * Also, dquot_alloc_block() will always dirty the inode when blocks
4225 * are allocated to the file.
4226 *
4227 * If the inode is marked synchronous, we don't honour that here - doing
4228 * so would cause a commit on atime updates, which we don't bother doing.
4229 * We handle synchronous inodes at the highest possible level.
4230 */
4231 void ext4_dirty_inode(struct inode *inode, int flags)
4232 {
4233 handle_t *handle;
4234
4235 handle = ext4_journal_start(inode, 2);
4236 if (IS_ERR(handle))
4237 goto out;
4238
4239 ext4_mark_inode_dirty(handle, inode);
4240
4241 ext4_journal_stop(handle);
4242 out:
4243 return;
4244 }
4245
4246 #if 0
4247 /*
4248 * Bind an inode's backing buffer_head into this transaction, to prevent
4249 * it from being flushed to disk early. Unlike
4250 * ext4_reserve_inode_write, this leaves behind no bh reference and
4251 * returns no iloc structure, so the caller needs to repeat the iloc
4252 * lookup to mark the inode dirty later.
4253 */
4254 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4255 {
4256 struct ext4_iloc iloc;
4257
4258 int err = 0;
4259 if (handle) {
4260 err = ext4_get_inode_loc(inode, &iloc);
4261 if (!err) {
4262 BUFFER_TRACE(iloc.bh, "get_write_access");
4263 err = jbd2_journal_get_write_access(handle, iloc.bh);
4264 if (!err)
4265 err = ext4_handle_dirty_metadata(handle,
4266 NULL,
4267 iloc.bh);
4268 brelse(iloc.bh);
4269 }
4270 }
4271 ext4_std_error(inode->i_sb, err);
4272 return err;
4273 }
4274 #endif
4275
4276 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4277 {
4278 journal_t *journal;
4279 handle_t *handle;
4280 int err;
4281
4282 /*
4283 * We have to be very careful here: changing a data block's
4284 * journaling status dynamically is dangerous. If we write a
4285 * data block to the journal, change the status and then delete
4286 * that block, we risk forgetting to revoke the old log record
4287 * from the journal and so a subsequent replay can corrupt data.
4288 * So, first we make sure that the journal is empty and that
4289 * nobody is changing anything.
4290 */
4291
4292 journal = EXT4_JOURNAL(inode);
4293 if (!journal)
4294 return 0;
4295 if (is_journal_aborted(journal))
4296 return -EROFS;
4297
4298 jbd2_journal_lock_updates(journal);
4299 jbd2_journal_flush(journal);
4300
4301 /*
4302 * OK, there are no updates running now, and all cached data is
4303 * synced to disk. We are now in a completely consistent state
4304 * which doesn't have anything in the journal, and we know that
4305 * no filesystem updates are running, so it is safe to modify
4306 * the inode's in-core data-journaling state flag now.
4307 */
4308
4309 if (val)
4310 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4311 else
4312 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4313 ext4_set_aops(inode);
4314
4315 jbd2_journal_unlock_updates(journal);
4316
4317 /* Finally we can mark the inode as dirty. */
4318
4319 handle = ext4_journal_start(inode, 1);
4320 if (IS_ERR(handle))
4321 return PTR_ERR(handle);
4322
4323 err = ext4_mark_inode_dirty(handle, inode);
4324 ext4_handle_sync(handle);
4325 ext4_journal_stop(handle);
4326 ext4_std_error(inode->i_sb, err);
4327
4328 return err;
4329 }
4330
4331 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4332 {
4333 return !buffer_mapped(bh);
4334 }
4335
4336 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4337 {
4338 struct page *page = vmf->page;
4339 loff_t size;
4340 unsigned long len;
4341 int ret;
4342 struct file *file = vma->vm_file;
4343 struct inode *inode = file->f_path.dentry->d_inode;
4344 struct address_space *mapping = inode->i_mapping;
4345 handle_t *handle;
4346 get_block_t *get_block;
4347 int retries = 0;
4348
4349 /*
4350 * This check is racy but catches the common case. We rely on
4351 * __block_page_mkwrite() to do a reliable check.
4352 */
4353 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4354 /* Delalloc case is easy... */
4355 if (test_opt(inode->i_sb, DELALLOC) &&
4356 !ext4_should_journal_data(inode) &&
4357 !ext4_nonda_switch(inode->i_sb)) {
4358 do {
4359 ret = __block_page_mkwrite(vma, vmf,
4360 ext4_da_get_block_prep);
4361 } while (ret == -ENOSPC &&
4362 ext4_should_retry_alloc(inode->i_sb, &retries));
4363 goto out_ret;
4364 }
4365
4366 lock_page(page);
4367 size = i_size_read(inode);
4368 /* Page got truncated from under us? */
4369 if (page->mapping != mapping || page_offset(page) > size) {
4370 unlock_page(page);
4371 ret = VM_FAULT_NOPAGE;
4372 goto out;
4373 }
4374
4375 if (page->index == size >> PAGE_CACHE_SHIFT)
4376 len = size & ~PAGE_CACHE_MASK;
4377 else
4378 len = PAGE_CACHE_SIZE;
4379 /*
4380 * Return if we have all the buffers mapped. This avoids the need to do
4381 * journal_start/journal_stop which can block and take a long time
4382 */
4383 if (page_has_buffers(page)) {
4384 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4385 ext4_bh_unmapped)) {
4386 /* Wait so that we don't change page under IO */
4387 wait_on_page_writeback(page);
4388 ret = VM_FAULT_LOCKED;
4389 goto out;
4390 }
4391 }
4392 unlock_page(page);
4393 /* OK, we need to fill the hole... */
4394 if (ext4_should_dioread_nolock(inode))
4395 get_block = ext4_get_block_write;
4396 else
4397 get_block = ext4_get_block;
4398 retry_alloc:
4399 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4400 if (IS_ERR(handle)) {
4401 ret = VM_FAULT_SIGBUS;
4402 goto out;
4403 }
4404 ret = __block_page_mkwrite(vma, vmf, get_block);
4405 if (!ret && ext4_should_journal_data(inode)) {
4406 if (walk_page_buffers(handle, page_buffers(page), 0,
4407 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4408 unlock_page(page);
4409 ret = VM_FAULT_SIGBUS;
4410 goto out;
4411 }
4412 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4413 }
4414 ext4_journal_stop(handle);
4415 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4416 goto retry_alloc;
4417 out_ret:
4418 ret = block_page_mkwrite_return(ret);
4419 out:
4420 return ret;
4421 }
This page took 0.472854 seconds and 5 git commands to generate.