9a4c929b16dccecb848e01ca5f9d489af6dd677f
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52 {
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62 * Test whether an inode is a fast symlink.
63 */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
68
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
76 *
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
80 *
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
83 */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87 int err;
88
89 might_sleep();
90
91 BUFFER_TRACE(bh, "enter");
92
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 "data mode %x\n",
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
97
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
102
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
105 if (bh) {
106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle, bh);
108 }
109 return 0;
110 }
111
112 /*
113 * data!=journal && (is_metadata || should_journal_data(inode))
114 */
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
117 if (err)
118 ext4_abort(inode->i_sb, __func__,
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
122 }
123
124 /*
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
127 */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130 ext4_lblk_t needed;
131
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
142
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
147
148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150
151 /*
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
155 *
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
160 */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163 handle_t *result;
164
165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 if (!IS_ERR(result))
167 return result;
168
169 ext4_std_error(inode->i_sb, PTR_ERR(result));
170 return result;
171 }
172
173 /*
174 * Try to extend this transaction for the purposes of truncation.
175 *
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
178 */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 return 0;
185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 return 0;
187 return 1;
188 }
189
190 /*
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
194 */
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 {
197 BUG_ON(EXT4_JOURNAL(inode) == NULL);
198 jbd_debug(2, "restarting handle %p\n", handle);
199 return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 }
201
202 /*
203 * Called at the last iput() if i_nlink is zero.
204 */
205 void ext4_delete_inode(struct inode *inode)
206 {
207 handle_t *handle;
208 int err;
209
210 if (ext4_should_order_data(inode))
211 ext4_begin_ordered_truncate(inode, 0);
212 truncate_inode_pages(&inode->i_data, 0);
213
214 if (is_bad_inode(inode))
215 goto no_delete;
216
217 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218 if (IS_ERR(handle)) {
219 ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 /*
221 * If we're going to skip the normal cleanup, we still need to
222 * make sure that the in-core orphan linked list is properly
223 * cleaned up.
224 */
225 ext4_orphan_del(NULL, inode);
226 goto no_delete;
227 }
228
229 if (IS_SYNC(inode))
230 ext4_handle_sync(handle);
231 inode->i_size = 0;
232 err = ext4_mark_inode_dirty(handle, inode);
233 if (err) {
234 ext4_warning(inode->i_sb, __func__,
235 "couldn't mark inode dirty (err %d)", err);
236 goto stop_handle;
237 }
238 if (inode->i_blocks)
239 ext4_truncate(inode);
240
241 /*
242 * ext4_ext_truncate() doesn't reserve any slop when it
243 * restarts journal transactions; therefore there may not be
244 * enough credits left in the handle to remove the inode from
245 * the orphan list and set the dtime field.
246 */
247 if (!ext4_handle_has_enough_credits(handle, 3)) {
248 err = ext4_journal_extend(handle, 3);
249 if (err > 0)
250 err = ext4_journal_restart(handle, 3);
251 if (err != 0) {
252 ext4_warning(inode->i_sb, __func__,
253 "couldn't extend journal (err %d)", err);
254 stop_handle:
255 ext4_journal_stop(handle);
256 goto no_delete;
257 }
258 }
259
260 /*
261 * Kill off the orphan record which ext4_truncate created.
262 * AKPM: I think this can be inside the above `if'.
263 * Note that ext4_orphan_del() has to be able to cope with the
264 * deletion of a non-existent orphan - this is because we don't
265 * know if ext4_truncate() actually created an orphan record.
266 * (Well, we could do this if we need to, but heck - it works)
267 */
268 ext4_orphan_del(handle, inode);
269 EXT4_I(inode)->i_dtime = get_seconds();
270
271 /*
272 * One subtle ordering requirement: if anything has gone wrong
273 * (transaction abort, IO errors, whatever), then we can still
274 * do these next steps (the fs will already have been marked as
275 * having errors), but we can't free the inode if the mark_dirty
276 * fails.
277 */
278 if (ext4_mark_inode_dirty(handle, inode))
279 /* If that failed, just do the required in-core inode clear. */
280 clear_inode(inode);
281 else
282 ext4_free_inode(handle, inode);
283 ext4_journal_stop(handle);
284 return;
285 no_delete:
286 clear_inode(inode); /* We must guarantee clearing of inode... */
287 }
288
289 typedef struct {
290 __le32 *p;
291 __le32 key;
292 struct buffer_head *bh;
293 } Indirect;
294
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 {
297 p->key = *(p->p = v);
298 p->bh = bh;
299 }
300
301 /**
302 * ext4_block_to_path - parse the block number into array of offsets
303 * @inode: inode in question (we are only interested in its superblock)
304 * @i_block: block number to be parsed
305 * @offsets: array to store the offsets in
306 * @boundary: set this non-zero if the referred-to block is likely to be
307 * followed (on disk) by an indirect block.
308 *
309 * To store the locations of file's data ext4 uses a data structure common
310 * for UNIX filesystems - tree of pointers anchored in the inode, with
311 * data blocks at leaves and indirect blocks in intermediate nodes.
312 * This function translates the block number into path in that tree -
313 * return value is the path length and @offsets[n] is the offset of
314 * pointer to (n+1)th node in the nth one. If @block is out of range
315 * (negative or too large) warning is printed and zero returned.
316 *
317 * Note: function doesn't find node addresses, so no IO is needed. All
318 * we need to know is the capacity of indirect blocks (taken from the
319 * inode->i_sb).
320 */
321
322 /*
323 * Portability note: the last comparison (check that we fit into triple
324 * indirect block) is spelled differently, because otherwise on an
325 * architecture with 32-bit longs and 8Kb pages we might get into trouble
326 * if our filesystem had 8Kb blocks. We might use long long, but that would
327 * kill us on x86. Oh, well, at least the sign propagation does not matter -
328 * i_block would have to be negative in the very beginning, so we would not
329 * get there at all.
330 */
331
332 static int ext4_block_to_path(struct inode *inode,
333 ext4_lblk_t i_block,
334 ext4_lblk_t offsets[4], int *boundary)
335 {
336 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338 const long direct_blocks = EXT4_NDIR_BLOCKS,
339 indirect_blocks = ptrs,
340 double_blocks = (1 << (ptrs_bits * 2));
341 int n = 0;
342 int final = 0;
343
344 if (i_block < direct_blocks) {
345 offsets[n++] = i_block;
346 final = direct_blocks;
347 } else if ((i_block -= direct_blocks) < indirect_blocks) {
348 offsets[n++] = EXT4_IND_BLOCK;
349 offsets[n++] = i_block;
350 final = ptrs;
351 } else if ((i_block -= indirect_blocks) < double_blocks) {
352 offsets[n++] = EXT4_DIND_BLOCK;
353 offsets[n++] = i_block >> ptrs_bits;
354 offsets[n++] = i_block & (ptrs - 1);
355 final = ptrs;
356 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
357 offsets[n++] = EXT4_TIND_BLOCK;
358 offsets[n++] = i_block >> (ptrs_bits * 2);
359 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
360 offsets[n++] = i_block & (ptrs - 1);
361 final = ptrs;
362 } else {
363 ext4_warning(inode->i_sb, "ext4_block_to_path",
364 "block %lu > max in inode %lu",
365 i_block + direct_blocks +
366 indirect_blocks + double_blocks, inode->i_ino);
367 }
368 if (boundary)
369 *boundary = final - 1 - (i_block & (ptrs - 1));
370 return n;
371 }
372
373 static int __ext4_check_blockref(const char *function, struct inode *inode,
374 __le32 *p, unsigned int max)
375 {
376 __le32 *bref = p;
377 unsigned int blk;
378
379 while (bref < p+max) {
380 blk = le32_to_cpu(*bref++);
381 if (blk &&
382 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
383 blk, 1))) {
384 ext4_error(inode->i_sb, function,
385 "invalid block reference %u "
386 "in inode #%lu", blk, inode->i_ino);
387 return -EIO;
388 }
389 }
390 return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
402 /**
403 * ext4_get_branch - read the chain of indirect blocks leading to data
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
428 *
429 * Need to be called with
430 * down_read(&EXT4_I(inode)->i_data_sem)
431 */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
434 Indirect chain[4], int *err)
435 {
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
448 goto failure;
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
469 failure:
470 *err = -EIO;
471 no_block:
472 return p;
473 }
474
475 /**
476 * ext4_find_near - find a place for allocation with sufficient locality
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
480 * This function returns the preferred place for block allocation.
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 struct ext4_inode_info *ei = EXT4_I(inode);
498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 __le32 *p;
500 ext4_fsblk_t bg_start;
501 ext4_fsblk_t last_block;
502 ext4_grpblk_t colour;
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 return bg_start + colour;
542 }
543
544 /**
545 * ext4_find_goal - find a preferred place for allocation.
546 * @inode: owner
547 * @block: block we want
548 * @partial: pointer to the last triple within a chain
549 *
550 * Normally this function find the preferred place for block allocation,
551 * returns it.
552 */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 Indirect *partial)
555 {
556 /*
557 * XXX need to get goal block from mballoc's data structures
558 */
559
560 return ext4_find_near(inode, partial);
561 }
562
563 /**
564 * ext4_blks_to_allocate: Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
615 {
616 struct ext4_allocation_request ar;
617 int target, i;
618 unsigned long count = 0, blk_allocated = 0;
619 int index = 0;
620 ext4_fsblk_t current_block = 0;
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
656 break;
657 }
658 }
659
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
691 blk_allocated += ar.len;
692 }
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 return ret;
702 }
703
704 /**
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
728 */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
733 {
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
741
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 /* Don't brelse(bh) here; it's done in
764 * ext4_journal_forget() below */
765 unlock_buffer(bh);
766 goto failed;
767 }
768
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
773 if (n == indirect_blks) {
774 current_block = new_blocks[n];
775 /*
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
779 */
780 for (i = 1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
782 }
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
786
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
789 if (err)
790 goto failed;
791 }
792 *blks = num;
793 return err;
794 failed:
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798 ext4_journal_forget(handle, branch[i].bh);
799 }
800 for (i = 0; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802
803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804
805 return err;
806 }
807
808 /**
809 * ext4_splice_branch - splice the allocated branch onto inode.
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
813 * ext4_alloc_branch)
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 ext4_lblk_t block, Indirect *where, int num,
824 int blks)
825 {
826 int i;
827 int err = 0;
828 ext4_fsblk_t current_block;
829
830 /*
831 * If we're splicing into a [td]indirect block (as opposed to the
832 * inode) then we need to get write access to the [td]indirect block
833 * before the splice.
834 */
835 if (where->bh) {
836 BUFFER_TRACE(where->bh, "get_write_access");
837 err = ext4_journal_get_write_access(handle, where->bh);
838 if (err)
839 goto err_out;
840 }
841 /* That's it */
842
843 *where->p = where->key;
844
845 /*
846 * Update the host buffer_head or inode to point to more just allocated
847 * direct blocks blocks
848 */
849 if (num == 0 && blks > 1) {
850 current_block = le32_to_cpu(where->key) + 1;
851 for (i = 1; i < blks; i++)
852 *(where->p + i) = cpu_to_le32(current_block++);
853 }
854
855 /* We are done with atomic stuff, now do the rest of housekeeping */
856 /* had we spliced it onto indirect block? */
857 if (where->bh) {
858 /*
859 * If we spliced it onto an indirect block, we haven't
860 * altered the inode. Note however that if it is being spliced
861 * onto an indirect block at the very end of the file (the
862 * file is growing) then we *will* alter the inode to reflect
863 * the new i_size. But that is not done here - it is done in
864 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
865 */
866 jbd_debug(5, "splicing indirect only\n");
867 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
868 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
869 if (err)
870 goto err_out;
871 } else {
872 /*
873 * OK, we spliced it into the inode itself on a direct block.
874 */
875 ext4_mark_inode_dirty(handle, inode);
876 jbd_debug(5, "splicing direct\n");
877 }
878 return err;
879
880 err_out:
881 for (i = 1; i <= num; i++) {
882 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
883 ext4_journal_forget(handle, where[i].bh);
884 ext4_free_blocks(handle, inode,
885 le32_to_cpu(where[i-1].key), 1, 0);
886 }
887 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
888
889 return err;
890 }
891
892 /*
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
896 *
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
907 *
908 * `handle' can be NULL if create == 0.
909 *
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
913 *
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918 * blocks.
919 */
920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921 ext4_lblk_t iblock, unsigned int maxblocks,
922 struct buffer_head *bh_result,
923 int flags)
924 {
925 int err = -EIO;
926 ext4_lblk_t offsets[4];
927 Indirect chain[4];
928 Indirect *partial;
929 ext4_fsblk_t goal;
930 int indirect_blks;
931 int blocks_to_boundary = 0;
932 int depth;
933 int count = 0;
934 ext4_fsblk_t first_block = 0;
935
936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
940
941 if (depth == 0)
942 goto out;
943
944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
953 ext4_fsblk_t blk;
954
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
962 goto got_it;
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 goto cleanup;
968
969 /*
970 * Okay, we need to do block allocation.
971 */
972 goal = ext4_find_goal(inode, iblock, partial);
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
981 count = ext4_blks_to_allocate(partial, indirect_blks,
982 maxblocks, blocks_to_boundary);
983 /*
984 * Block out ext4_truncate while we alter the tree
985 */
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
989
990 /*
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
998 err = ext4_splice_branch(handle, inode, iblock,
999 partial, indirect_blks, count);
1000 else
1001 goto cleanup;
1002
1003 set_buffer_new(bh_result);
1004 got_it:
1005 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1006 if (count > blocks_to_boundary)
1007 set_buffer_boundary(bh_result);
1008 err = count;
1009 /* Clean up and exit */
1010 partial = chain + depth - 1; /* the whole chain */
1011 cleanup:
1012 while (partial > chain) {
1013 BUFFER_TRACE(partial->bh, "call brelse");
1014 brelse(partial->bh);
1015 partial--;
1016 }
1017 BUFFER_TRACE(bh_result, "returned");
1018 out:
1019 return err;
1020 }
1021
1022 qsize_t ext4_get_reserved_space(struct inode *inode)
1023 {
1024 unsigned long long total;
1025
1026 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1027 total = EXT4_I(inode)->i_reserved_data_blocks +
1028 EXT4_I(inode)->i_reserved_meta_blocks;
1029 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1030
1031 return total;
1032 }
1033 /*
1034 * Calculate the number of metadata blocks need to reserve
1035 * to allocate @blocks for non extent file based file
1036 */
1037 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1038 {
1039 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1040 int ind_blks, dind_blks, tind_blks;
1041
1042 /* number of new indirect blocks needed */
1043 ind_blks = (blocks + icap - 1) / icap;
1044
1045 dind_blks = (ind_blks + icap - 1) / icap;
1046
1047 tind_blks = 1;
1048
1049 return ind_blks + dind_blks + tind_blks;
1050 }
1051
1052 /*
1053 * Calculate the number of metadata blocks need to reserve
1054 * to allocate given number of blocks
1055 */
1056 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1057 {
1058 if (!blocks)
1059 return 0;
1060
1061 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1062 return ext4_ext_calc_metadata_amount(inode, blocks);
1063
1064 return ext4_indirect_calc_metadata_amount(inode, blocks);
1065 }
1066
1067 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1068 {
1069 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1070 int total, mdb, mdb_free;
1071
1072 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1073 /* recalculate the number of metablocks still need to be reserved */
1074 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1075 mdb = ext4_calc_metadata_amount(inode, total);
1076
1077 /* figure out how many metablocks to release */
1078 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1079 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1080
1081 if (mdb_free) {
1082 /* Account for allocated meta_blocks */
1083 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1084
1085 /* update fs dirty blocks counter */
1086 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1087 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1088 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1089 }
1090
1091 /* update per-inode reservations */
1092 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1093 EXT4_I(inode)->i_reserved_data_blocks -= used;
1094 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1095
1096 /*
1097 * free those over-booking quota for metadata blocks
1098 */
1099 if (mdb_free)
1100 vfs_dq_release_reservation_block(inode, mdb_free);
1101
1102 /*
1103 * If we have done all the pending block allocations and if
1104 * there aren't any writers on the inode, we can discard the
1105 * inode's preallocations.
1106 */
1107 if (!total && (atomic_read(&inode->i_writecount) == 0))
1108 ext4_discard_preallocations(inode);
1109 }
1110
1111 static int check_block_validity(struct inode *inode, sector_t logical,
1112 sector_t phys, int len)
1113 {
1114 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1115 ext4_error(inode->i_sb, "check_block_validity",
1116 "inode #%lu logical block %llu mapped to %llu "
1117 "(size %d)", inode->i_ino,
1118 (unsigned long long) logical,
1119 (unsigned long long) phys, len);
1120 WARN_ON(1);
1121 return -EIO;
1122 }
1123 return 0;
1124 }
1125
1126 /*
1127 * The ext4_get_blocks() function tries to look up the requested blocks,
1128 * and returns if the blocks are already mapped.
1129 *
1130 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1131 * and store the allocated blocks in the result buffer head and mark it
1132 * mapped.
1133 *
1134 * If file type is extents based, it will call ext4_ext_get_blocks(),
1135 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1136 * based files
1137 *
1138 * On success, it returns the number of blocks being mapped or allocate.
1139 * if create==0 and the blocks are pre-allocated and uninitialized block,
1140 * the result buffer head is unmapped. If the create ==1, it will make sure
1141 * the buffer head is mapped.
1142 *
1143 * It returns 0 if plain look up failed (blocks have not been allocated), in
1144 * that casem, buffer head is unmapped
1145 *
1146 * It returns the error in case of allocation failure.
1147 */
1148 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1149 unsigned int max_blocks, struct buffer_head *bh,
1150 int flags)
1151 {
1152 int retval;
1153
1154 clear_buffer_mapped(bh);
1155 clear_buffer_unwritten(bh);
1156
1157 /*
1158 * Try to see if we can get the block without requesting a new
1159 * file system block.
1160 */
1161 down_read((&EXT4_I(inode)->i_data_sem));
1162 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1163 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1164 bh, 0);
1165 } else {
1166 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1167 bh, 0);
1168 }
1169 up_read((&EXT4_I(inode)->i_data_sem));
1170
1171 if (retval > 0 && buffer_mapped(bh)) {
1172 int ret = check_block_validity(inode, block,
1173 bh->b_blocknr, retval);
1174 if (ret != 0)
1175 return ret;
1176 }
1177
1178 /* If it is only a block(s) look up */
1179 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1180 return retval;
1181
1182 /*
1183 * Returns if the blocks have already allocated
1184 *
1185 * Note that if blocks have been preallocated
1186 * ext4_ext_get_block() returns th create = 0
1187 * with buffer head unmapped.
1188 */
1189 if (retval > 0 && buffer_mapped(bh))
1190 return retval;
1191
1192 /*
1193 * When we call get_blocks without the create flag, the
1194 * BH_Unwritten flag could have gotten set if the blocks
1195 * requested were part of a uninitialized extent. We need to
1196 * clear this flag now that we are committed to convert all or
1197 * part of the uninitialized extent to be an initialized
1198 * extent. This is because we need to avoid the combination
1199 * of BH_Unwritten and BH_Mapped flags being simultaneously
1200 * set on the buffer_head.
1201 */
1202 clear_buffer_unwritten(bh);
1203
1204 /*
1205 * New blocks allocate and/or writing to uninitialized extent
1206 * will possibly result in updating i_data, so we take
1207 * the write lock of i_data_sem, and call get_blocks()
1208 * with create == 1 flag.
1209 */
1210 down_write((&EXT4_I(inode)->i_data_sem));
1211
1212 /*
1213 * if the caller is from delayed allocation writeout path
1214 * we have already reserved fs blocks for allocation
1215 * let the underlying get_block() function know to
1216 * avoid double accounting
1217 */
1218 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1219 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1220 /*
1221 * We need to check for EXT4 here because migrate
1222 * could have changed the inode type in between
1223 */
1224 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1225 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1226 bh, flags);
1227 } else {
1228 retval = ext4_ind_get_blocks(handle, inode, block,
1229 max_blocks, bh, flags);
1230
1231 if (retval > 0 && buffer_new(bh)) {
1232 /*
1233 * We allocated new blocks which will result in
1234 * i_data's format changing. Force the migrate
1235 * to fail by clearing migrate flags
1236 */
1237 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1238 ~EXT4_EXT_MIGRATE;
1239 }
1240 }
1241
1242 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1243 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1244
1245 /*
1246 * Update reserved blocks/metadata blocks after successful
1247 * block allocation which had been deferred till now.
1248 */
1249 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1250 ext4_da_update_reserve_space(inode, retval);
1251
1252 up_write((&EXT4_I(inode)->i_data_sem));
1253 if (retval > 0 && buffer_mapped(bh)) {
1254 int ret = check_block_validity(inode, block,
1255 bh->b_blocknr, retval);
1256 if (ret != 0)
1257 return ret;
1258 }
1259 return retval;
1260 }
1261
1262 /* Maximum number of blocks we map for direct IO at once. */
1263 #define DIO_MAX_BLOCKS 4096
1264
1265 int ext4_get_block(struct inode *inode, sector_t iblock,
1266 struct buffer_head *bh_result, int create)
1267 {
1268 handle_t *handle = ext4_journal_current_handle();
1269 int ret = 0, started = 0;
1270 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1271 int dio_credits;
1272
1273 if (create && !handle) {
1274 /* Direct IO write... */
1275 if (max_blocks > DIO_MAX_BLOCKS)
1276 max_blocks = DIO_MAX_BLOCKS;
1277 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1278 handle = ext4_journal_start(inode, dio_credits);
1279 if (IS_ERR(handle)) {
1280 ret = PTR_ERR(handle);
1281 goto out;
1282 }
1283 started = 1;
1284 }
1285
1286 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1287 create ? EXT4_GET_BLOCKS_CREATE : 0);
1288 if (ret > 0) {
1289 bh_result->b_size = (ret << inode->i_blkbits);
1290 ret = 0;
1291 }
1292 if (started)
1293 ext4_journal_stop(handle);
1294 out:
1295 return ret;
1296 }
1297
1298 /*
1299 * `handle' can be NULL if create is zero
1300 */
1301 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1302 ext4_lblk_t block, int create, int *errp)
1303 {
1304 struct buffer_head dummy;
1305 int fatal = 0, err;
1306 int flags = 0;
1307
1308 J_ASSERT(handle != NULL || create == 0);
1309
1310 dummy.b_state = 0;
1311 dummy.b_blocknr = -1000;
1312 buffer_trace_init(&dummy.b_history);
1313 if (create)
1314 flags |= EXT4_GET_BLOCKS_CREATE;
1315 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1316 /*
1317 * ext4_get_blocks() returns number of blocks mapped. 0 in
1318 * case of a HOLE.
1319 */
1320 if (err > 0) {
1321 if (err > 1)
1322 WARN_ON(1);
1323 err = 0;
1324 }
1325 *errp = err;
1326 if (!err && buffer_mapped(&dummy)) {
1327 struct buffer_head *bh;
1328 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1329 if (!bh) {
1330 *errp = -EIO;
1331 goto err;
1332 }
1333 if (buffer_new(&dummy)) {
1334 J_ASSERT(create != 0);
1335 J_ASSERT(handle != NULL);
1336
1337 /*
1338 * Now that we do not always journal data, we should
1339 * keep in mind whether this should always journal the
1340 * new buffer as metadata. For now, regular file
1341 * writes use ext4_get_block instead, so it's not a
1342 * problem.
1343 */
1344 lock_buffer(bh);
1345 BUFFER_TRACE(bh, "call get_create_access");
1346 fatal = ext4_journal_get_create_access(handle, bh);
1347 if (!fatal && !buffer_uptodate(bh)) {
1348 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1349 set_buffer_uptodate(bh);
1350 }
1351 unlock_buffer(bh);
1352 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1353 err = ext4_handle_dirty_metadata(handle, inode, bh);
1354 if (!fatal)
1355 fatal = err;
1356 } else {
1357 BUFFER_TRACE(bh, "not a new buffer");
1358 }
1359 if (fatal) {
1360 *errp = fatal;
1361 brelse(bh);
1362 bh = NULL;
1363 }
1364 return bh;
1365 }
1366 err:
1367 return NULL;
1368 }
1369
1370 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1371 ext4_lblk_t block, int create, int *err)
1372 {
1373 struct buffer_head *bh;
1374
1375 bh = ext4_getblk(handle, inode, block, create, err);
1376 if (!bh)
1377 return bh;
1378 if (buffer_uptodate(bh))
1379 return bh;
1380 ll_rw_block(READ_META, 1, &bh);
1381 wait_on_buffer(bh);
1382 if (buffer_uptodate(bh))
1383 return bh;
1384 put_bh(bh);
1385 *err = -EIO;
1386 return NULL;
1387 }
1388
1389 static int walk_page_buffers(handle_t *handle,
1390 struct buffer_head *head,
1391 unsigned from,
1392 unsigned to,
1393 int *partial,
1394 int (*fn)(handle_t *handle,
1395 struct buffer_head *bh))
1396 {
1397 struct buffer_head *bh;
1398 unsigned block_start, block_end;
1399 unsigned blocksize = head->b_size;
1400 int err, ret = 0;
1401 struct buffer_head *next;
1402
1403 for (bh = head, block_start = 0;
1404 ret == 0 && (bh != head || !block_start);
1405 block_start = block_end, bh = next) {
1406 next = bh->b_this_page;
1407 block_end = block_start + blocksize;
1408 if (block_end <= from || block_start >= to) {
1409 if (partial && !buffer_uptodate(bh))
1410 *partial = 1;
1411 continue;
1412 }
1413 err = (*fn)(handle, bh);
1414 if (!ret)
1415 ret = err;
1416 }
1417 return ret;
1418 }
1419
1420 /*
1421 * To preserve ordering, it is essential that the hole instantiation and
1422 * the data write be encapsulated in a single transaction. We cannot
1423 * close off a transaction and start a new one between the ext4_get_block()
1424 * and the commit_write(). So doing the jbd2_journal_start at the start of
1425 * prepare_write() is the right place.
1426 *
1427 * Also, this function can nest inside ext4_writepage() ->
1428 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1429 * has generated enough buffer credits to do the whole page. So we won't
1430 * block on the journal in that case, which is good, because the caller may
1431 * be PF_MEMALLOC.
1432 *
1433 * By accident, ext4 can be reentered when a transaction is open via
1434 * quota file writes. If we were to commit the transaction while thus
1435 * reentered, there can be a deadlock - we would be holding a quota
1436 * lock, and the commit would never complete if another thread had a
1437 * transaction open and was blocking on the quota lock - a ranking
1438 * violation.
1439 *
1440 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1441 * will _not_ run commit under these circumstances because handle->h_ref
1442 * is elevated. We'll still have enough credits for the tiny quotafile
1443 * write.
1444 */
1445 static int do_journal_get_write_access(handle_t *handle,
1446 struct buffer_head *bh)
1447 {
1448 if (!buffer_mapped(bh) || buffer_freed(bh))
1449 return 0;
1450 return ext4_journal_get_write_access(handle, bh);
1451 }
1452
1453 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1454 loff_t pos, unsigned len, unsigned flags,
1455 struct page **pagep, void **fsdata)
1456 {
1457 struct inode *inode = mapping->host;
1458 int ret, needed_blocks;
1459 handle_t *handle;
1460 int retries = 0;
1461 struct page *page;
1462 pgoff_t index;
1463 unsigned from, to;
1464
1465 trace_ext4_write_begin(inode, pos, len, flags);
1466 /*
1467 * Reserve one block more for addition to orphan list in case
1468 * we allocate blocks but write fails for some reason
1469 */
1470 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1471 index = pos >> PAGE_CACHE_SHIFT;
1472 from = pos & (PAGE_CACHE_SIZE - 1);
1473 to = from + len;
1474
1475 retry:
1476 handle = ext4_journal_start(inode, needed_blocks);
1477 if (IS_ERR(handle)) {
1478 ret = PTR_ERR(handle);
1479 goto out;
1480 }
1481
1482 /* We cannot recurse into the filesystem as the transaction is already
1483 * started */
1484 flags |= AOP_FLAG_NOFS;
1485
1486 page = grab_cache_page_write_begin(mapping, index, flags);
1487 if (!page) {
1488 ext4_journal_stop(handle);
1489 ret = -ENOMEM;
1490 goto out;
1491 }
1492 *pagep = page;
1493
1494 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1495 ext4_get_block);
1496
1497 if (!ret && ext4_should_journal_data(inode)) {
1498 ret = walk_page_buffers(handle, page_buffers(page),
1499 from, to, NULL, do_journal_get_write_access);
1500 }
1501
1502 if (ret) {
1503 unlock_page(page);
1504 page_cache_release(page);
1505 /*
1506 * block_write_begin may have instantiated a few blocks
1507 * outside i_size. Trim these off again. Don't need
1508 * i_size_read because we hold i_mutex.
1509 *
1510 * Add inode to orphan list in case we crash before
1511 * truncate finishes
1512 */
1513 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1514 ext4_orphan_add(handle, inode);
1515
1516 ext4_journal_stop(handle);
1517 if (pos + len > inode->i_size) {
1518 ext4_truncate(inode);
1519 /*
1520 * If truncate failed early the inode might
1521 * still be on the orphan list; we need to
1522 * make sure the inode is removed from the
1523 * orphan list in that case.
1524 */
1525 if (inode->i_nlink)
1526 ext4_orphan_del(NULL, inode);
1527 }
1528 }
1529
1530 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1531 goto retry;
1532 out:
1533 return ret;
1534 }
1535
1536 /* For write_end() in data=journal mode */
1537 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1538 {
1539 if (!buffer_mapped(bh) || buffer_freed(bh))
1540 return 0;
1541 set_buffer_uptodate(bh);
1542 return ext4_handle_dirty_metadata(handle, NULL, bh);
1543 }
1544
1545 static int ext4_generic_write_end(struct file *file,
1546 struct address_space *mapping,
1547 loff_t pos, unsigned len, unsigned copied,
1548 struct page *page, void *fsdata)
1549 {
1550 int i_size_changed = 0;
1551 struct inode *inode = mapping->host;
1552 handle_t *handle = ext4_journal_current_handle();
1553
1554 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1555
1556 /*
1557 * No need to use i_size_read() here, the i_size
1558 * cannot change under us because we hold i_mutex.
1559 *
1560 * But it's important to update i_size while still holding page lock:
1561 * page writeout could otherwise come in and zero beyond i_size.
1562 */
1563 if (pos + copied > inode->i_size) {
1564 i_size_write(inode, pos + copied);
1565 i_size_changed = 1;
1566 }
1567
1568 if (pos + copied > EXT4_I(inode)->i_disksize) {
1569 /* We need to mark inode dirty even if
1570 * new_i_size is less that inode->i_size
1571 * bu greater than i_disksize.(hint delalloc)
1572 */
1573 ext4_update_i_disksize(inode, (pos + copied));
1574 i_size_changed = 1;
1575 }
1576 unlock_page(page);
1577 page_cache_release(page);
1578
1579 /*
1580 * Don't mark the inode dirty under page lock. First, it unnecessarily
1581 * makes the holding time of page lock longer. Second, it forces lock
1582 * ordering of page lock and transaction start for journaling
1583 * filesystems.
1584 */
1585 if (i_size_changed)
1586 ext4_mark_inode_dirty(handle, inode);
1587
1588 return copied;
1589 }
1590
1591 /*
1592 * We need to pick up the new inode size which generic_commit_write gave us
1593 * `file' can be NULL - eg, when called from page_symlink().
1594 *
1595 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1596 * buffers are managed internally.
1597 */
1598 static int ext4_ordered_write_end(struct file *file,
1599 struct address_space *mapping,
1600 loff_t pos, unsigned len, unsigned copied,
1601 struct page *page, void *fsdata)
1602 {
1603 handle_t *handle = ext4_journal_current_handle();
1604 struct inode *inode = mapping->host;
1605 int ret = 0, ret2;
1606
1607 trace_ext4_ordered_write_end(inode, pos, len, copied);
1608 ret = ext4_jbd2_file_inode(handle, inode);
1609
1610 if (ret == 0) {
1611 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1612 page, fsdata);
1613 copied = ret2;
1614 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1615 /* if we have allocated more blocks and copied
1616 * less. We will have blocks allocated outside
1617 * inode->i_size. So truncate them
1618 */
1619 ext4_orphan_add(handle, inode);
1620 if (ret2 < 0)
1621 ret = ret2;
1622 }
1623 ret2 = ext4_journal_stop(handle);
1624 if (!ret)
1625 ret = ret2;
1626
1627 if (pos + len > inode->i_size) {
1628 ext4_truncate(inode);
1629 /*
1630 * If truncate failed early the inode might still be
1631 * on the orphan list; we need to make sure the inode
1632 * is removed from the orphan list in that case.
1633 */
1634 if (inode->i_nlink)
1635 ext4_orphan_del(NULL, inode);
1636 }
1637
1638
1639 return ret ? ret : copied;
1640 }
1641
1642 static int ext4_writeback_write_end(struct file *file,
1643 struct address_space *mapping,
1644 loff_t pos, unsigned len, unsigned copied,
1645 struct page *page, void *fsdata)
1646 {
1647 handle_t *handle = ext4_journal_current_handle();
1648 struct inode *inode = mapping->host;
1649 int ret = 0, ret2;
1650
1651 trace_ext4_writeback_write_end(inode, pos, len, copied);
1652 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1653 page, fsdata);
1654 copied = ret2;
1655 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1656 /* if we have allocated more blocks and copied
1657 * less. We will have blocks allocated outside
1658 * inode->i_size. So truncate them
1659 */
1660 ext4_orphan_add(handle, inode);
1661
1662 if (ret2 < 0)
1663 ret = ret2;
1664
1665 ret2 = ext4_journal_stop(handle);
1666 if (!ret)
1667 ret = ret2;
1668
1669 if (pos + len > inode->i_size) {
1670 ext4_truncate(inode);
1671 /*
1672 * If truncate failed early the inode might still be
1673 * on the orphan list; we need to make sure the inode
1674 * is removed from the orphan list in that case.
1675 */
1676 if (inode->i_nlink)
1677 ext4_orphan_del(NULL, inode);
1678 }
1679
1680 return ret ? ret : copied;
1681 }
1682
1683 static int ext4_journalled_write_end(struct file *file,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned copied,
1686 struct page *page, void *fsdata)
1687 {
1688 handle_t *handle = ext4_journal_current_handle();
1689 struct inode *inode = mapping->host;
1690 int ret = 0, ret2;
1691 int partial = 0;
1692 unsigned from, to;
1693 loff_t new_i_size;
1694
1695 trace_ext4_journalled_write_end(inode, pos, len, copied);
1696 from = pos & (PAGE_CACHE_SIZE - 1);
1697 to = from + len;
1698
1699 if (copied < len) {
1700 if (!PageUptodate(page))
1701 copied = 0;
1702 page_zero_new_buffers(page, from+copied, to);
1703 }
1704
1705 ret = walk_page_buffers(handle, page_buffers(page), from,
1706 to, &partial, write_end_fn);
1707 if (!partial)
1708 SetPageUptodate(page);
1709 new_i_size = pos + copied;
1710 if (new_i_size > inode->i_size)
1711 i_size_write(inode, pos+copied);
1712 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1713 if (new_i_size > EXT4_I(inode)->i_disksize) {
1714 ext4_update_i_disksize(inode, new_i_size);
1715 ret2 = ext4_mark_inode_dirty(handle, inode);
1716 if (!ret)
1717 ret = ret2;
1718 }
1719
1720 unlock_page(page);
1721 page_cache_release(page);
1722 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1723 /* if we have allocated more blocks and copied
1724 * less. We will have blocks allocated outside
1725 * inode->i_size. So truncate them
1726 */
1727 ext4_orphan_add(handle, inode);
1728
1729 ret2 = ext4_journal_stop(handle);
1730 if (!ret)
1731 ret = ret2;
1732 if (pos + len > inode->i_size) {
1733 ext4_truncate(inode);
1734 /*
1735 * If truncate failed early the inode might still be
1736 * on the orphan list; we need to make sure the inode
1737 * is removed from the orphan list in that case.
1738 */
1739 if (inode->i_nlink)
1740 ext4_orphan_del(NULL, inode);
1741 }
1742
1743 return ret ? ret : copied;
1744 }
1745
1746 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1747 {
1748 int retries = 0;
1749 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1750 unsigned long md_needed, mdblocks, total = 0;
1751
1752 /*
1753 * recalculate the amount of metadata blocks to reserve
1754 * in order to allocate nrblocks
1755 * worse case is one extent per block
1756 */
1757 repeat:
1758 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1759 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1760 mdblocks = ext4_calc_metadata_amount(inode, total);
1761 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1762
1763 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1764 total = md_needed + nrblocks;
1765
1766 /*
1767 * Make quota reservation here to prevent quota overflow
1768 * later. Real quota accounting is done at pages writeout
1769 * time.
1770 */
1771 if (vfs_dq_reserve_block(inode, total)) {
1772 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1773 return -EDQUOT;
1774 }
1775
1776 if (ext4_claim_free_blocks(sbi, total)) {
1777 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1778 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1779 yield();
1780 goto repeat;
1781 }
1782 vfs_dq_release_reservation_block(inode, total);
1783 return -ENOSPC;
1784 }
1785 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1786 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1787
1788 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1789 return 0; /* success */
1790 }
1791
1792 static void ext4_da_release_space(struct inode *inode, int to_free)
1793 {
1794 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1795 int total, mdb, mdb_free, release;
1796
1797 if (!to_free)
1798 return; /* Nothing to release, exit */
1799
1800 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801
1802 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1803 /*
1804 * if there is no reserved blocks, but we try to free some
1805 * then the counter is messed up somewhere.
1806 * but since this function is called from invalidate
1807 * page, it's harmless to return without any action
1808 */
1809 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1810 "blocks for inode %lu, but there is no reserved "
1811 "data blocks\n", to_free, inode->i_ino);
1812 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1813 return;
1814 }
1815
1816 /* recalculate the number of metablocks still need to be reserved */
1817 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1818 mdb = ext4_calc_metadata_amount(inode, total);
1819
1820 /* figure out how many metablocks to release */
1821 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1822 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1823
1824 release = to_free + mdb_free;
1825
1826 /* update fs dirty blocks counter for truncate case */
1827 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1828
1829 /* update per-inode reservations */
1830 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1831 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1832
1833 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1834 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1835 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1836
1837 vfs_dq_release_reservation_block(inode, release);
1838 }
1839
1840 static void ext4_da_page_release_reservation(struct page *page,
1841 unsigned long offset)
1842 {
1843 int to_release = 0;
1844 struct buffer_head *head, *bh;
1845 unsigned int curr_off = 0;
1846
1847 head = page_buffers(page);
1848 bh = head;
1849 do {
1850 unsigned int next_off = curr_off + bh->b_size;
1851
1852 if ((offset <= curr_off) && (buffer_delay(bh))) {
1853 to_release++;
1854 clear_buffer_delay(bh);
1855 }
1856 curr_off = next_off;
1857 } while ((bh = bh->b_this_page) != head);
1858 ext4_da_release_space(page->mapping->host, to_release);
1859 }
1860
1861 /*
1862 * Delayed allocation stuff
1863 */
1864
1865 struct mpage_da_data {
1866 struct inode *inode;
1867 sector_t b_blocknr; /* start block number of extent */
1868 size_t b_size; /* size of extent */
1869 unsigned long b_state; /* state of the extent */
1870 unsigned long first_page, next_page; /* extent of pages */
1871 struct writeback_control *wbc;
1872 int io_done;
1873 int pages_written;
1874 int retval;
1875 };
1876
1877 /*
1878 * mpage_da_submit_io - walks through extent of pages and try to write
1879 * them with writepage() call back
1880 *
1881 * @mpd->inode: inode
1882 * @mpd->first_page: first page of the extent
1883 * @mpd->next_page: page after the last page of the extent
1884 *
1885 * By the time mpage_da_submit_io() is called we expect all blocks
1886 * to be allocated. this may be wrong if allocation failed.
1887 *
1888 * As pages are already locked by write_cache_pages(), we can't use it
1889 */
1890 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1891 {
1892 long pages_skipped;
1893 struct pagevec pvec;
1894 unsigned long index, end;
1895 int ret = 0, err, nr_pages, i;
1896 struct inode *inode = mpd->inode;
1897 struct address_space *mapping = inode->i_mapping;
1898
1899 BUG_ON(mpd->next_page <= mpd->first_page);
1900 /*
1901 * We need to start from the first_page to the next_page - 1
1902 * to make sure we also write the mapped dirty buffer_heads.
1903 * If we look at mpd->b_blocknr we would only be looking
1904 * at the currently mapped buffer_heads.
1905 */
1906 index = mpd->first_page;
1907 end = mpd->next_page - 1;
1908
1909 pagevec_init(&pvec, 0);
1910 while (index <= end) {
1911 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1912 if (nr_pages == 0)
1913 break;
1914 for (i = 0; i < nr_pages; i++) {
1915 struct page *page = pvec.pages[i];
1916
1917 index = page->index;
1918 if (index > end)
1919 break;
1920 index++;
1921
1922 BUG_ON(!PageLocked(page));
1923 BUG_ON(PageWriteback(page));
1924
1925 pages_skipped = mpd->wbc->pages_skipped;
1926 err = mapping->a_ops->writepage(page, mpd->wbc);
1927 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1928 /*
1929 * have successfully written the page
1930 * without skipping the same
1931 */
1932 mpd->pages_written++;
1933 /*
1934 * In error case, we have to continue because
1935 * remaining pages are still locked
1936 * XXX: unlock and re-dirty them?
1937 */
1938 if (ret == 0)
1939 ret = err;
1940 }
1941 pagevec_release(&pvec);
1942 }
1943 return ret;
1944 }
1945
1946 /*
1947 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1948 *
1949 * @mpd->inode - inode to walk through
1950 * @exbh->b_blocknr - first block on a disk
1951 * @exbh->b_size - amount of space in bytes
1952 * @logical - first logical block to start assignment with
1953 *
1954 * the function goes through all passed space and put actual disk
1955 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1956 */
1957 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1958 struct buffer_head *exbh)
1959 {
1960 struct inode *inode = mpd->inode;
1961 struct address_space *mapping = inode->i_mapping;
1962 int blocks = exbh->b_size >> inode->i_blkbits;
1963 sector_t pblock = exbh->b_blocknr, cur_logical;
1964 struct buffer_head *head, *bh;
1965 pgoff_t index, end;
1966 struct pagevec pvec;
1967 int nr_pages, i;
1968
1969 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1970 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1971 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972
1973 pagevec_init(&pvec, 0);
1974
1975 while (index <= end) {
1976 /* XXX: optimize tail */
1977 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1978 if (nr_pages == 0)
1979 break;
1980 for (i = 0; i < nr_pages; i++) {
1981 struct page *page = pvec.pages[i];
1982
1983 index = page->index;
1984 if (index > end)
1985 break;
1986 index++;
1987
1988 BUG_ON(!PageLocked(page));
1989 BUG_ON(PageWriteback(page));
1990 BUG_ON(!page_has_buffers(page));
1991
1992 bh = page_buffers(page);
1993 head = bh;
1994
1995 /* skip blocks out of the range */
1996 do {
1997 if (cur_logical >= logical)
1998 break;
1999 cur_logical++;
2000 } while ((bh = bh->b_this_page) != head);
2001
2002 do {
2003 if (cur_logical >= logical + blocks)
2004 break;
2005
2006 if (buffer_delay(bh) ||
2007 buffer_unwritten(bh)) {
2008
2009 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2010
2011 if (buffer_delay(bh)) {
2012 clear_buffer_delay(bh);
2013 bh->b_blocknr = pblock;
2014 } else {
2015 /*
2016 * unwritten already should have
2017 * blocknr assigned. Verify that
2018 */
2019 clear_buffer_unwritten(bh);
2020 BUG_ON(bh->b_blocknr != pblock);
2021 }
2022
2023 } else if (buffer_mapped(bh))
2024 BUG_ON(bh->b_blocknr != pblock);
2025
2026 cur_logical++;
2027 pblock++;
2028 } while ((bh = bh->b_this_page) != head);
2029 }
2030 pagevec_release(&pvec);
2031 }
2032 }
2033
2034
2035 /*
2036 * __unmap_underlying_blocks - just a helper function to unmap
2037 * set of blocks described by @bh
2038 */
2039 static inline void __unmap_underlying_blocks(struct inode *inode,
2040 struct buffer_head *bh)
2041 {
2042 struct block_device *bdev = inode->i_sb->s_bdev;
2043 int blocks, i;
2044
2045 blocks = bh->b_size >> inode->i_blkbits;
2046 for (i = 0; i < blocks; i++)
2047 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2048 }
2049
2050 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2051 sector_t logical, long blk_cnt)
2052 {
2053 int nr_pages, i;
2054 pgoff_t index, end;
2055 struct pagevec pvec;
2056 struct inode *inode = mpd->inode;
2057 struct address_space *mapping = inode->i_mapping;
2058
2059 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060 end = (logical + blk_cnt - 1) >>
2061 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062 while (index <= end) {
2063 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2064 if (nr_pages == 0)
2065 break;
2066 for (i = 0; i < nr_pages; i++) {
2067 struct page *page = pvec.pages[i];
2068 index = page->index;
2069 if (index > end)
2070 break;
2071 index++;
2072
2073 BUG_ON(!PageLocked(page));
2074 BUG_ON(PageWriteback(page));
2075 block_invalidatepage(page, 0);
2076 ClearPageUptodate(page);
2077 unlock_page(page);
2078 }
2079 }
2080 return;
2081 }
2082
2083 static void ext4_print_free_blocks(struct inode *inode)
2084 {
2085 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2086 printk(KERN_EMERG "Total free blocks count %lld\n",
2087 ext4_count_free_blocks(inode->i_sb));
2088 printk(KERN_EMERG "Free/Dirty block details\n");
2089 printk(KERN_EMERG "free_blocks=%lld\n",
2090 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2091 printk(KERN_EMERG "dirty_blocks=%lld\n",
2092 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2093 printk(KERN_EMERG "Block reservation details\n");
2094 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2095 EXT4_I(inode)->i_reserved_data_blocks);
2096 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2097 EXT4_I(inode)->i_reserved_meta_blocks);
2098 return;
2099 }
2100
2101 /*
2102 * mpage_da_map_blocks - go through given space
2103 *
2104 * @mpd - bh describing space
2105 *
2106 * The function skips space we know is already mapped to disk blocks.
2107 *
2108 */
2109 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2110 {
2111 int err, blks, get_blocks_flags;
2112 struct buffer_head new;
2113 sector_t next = mpd->b_blocknr;
2114 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2115 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2116 handle_t *handle = NULL;
2117
2118 /*
2119 * We consider only non-mapped and non-allocated blocks
2120 */
2121 if ((mpd->b_state & (1 << BH_Mapped)) &&
2122 !(mpd->b_state & (1 << BH_Delay)) &&
2123 !(mpd->b_state & (1 << BH_Unwritten)))
2124 return 0;
2125
2126 /*
2127 * If we didn't accumulate anything to write simply return
2128 */
2129 if (!mpd->b_size)
2130 return 0;
2131
2132 handle = ext4_journal_current_handle();
2133 BUG_ON(!handle);
2134
2135 /*
2136 * Call ext4_get_blocks() to allocate any delayed allocation
2137 * blocks, or to convert an uninitialized extent to be
2138 * initialized (in the case where we have written into
2139 * one or more preallocated blocks).
2140 *
2141 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2142 * indicate that we are on the delayed allocation path. This
2143 * affects functions in many different parts of the allocation
2144 * call path. This flag exists primarily because we don't
2145 * want to change *many* call functions, so ext4_get_blocks()
2146 * will set the magic i_delalloc_reserved_flag once the
2147 * inode's allocation semaphore is taken.
2148 *
2149 * If the blocks in questions were delalloc blocks, set
2150 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2151 * variables are updated after the blocks have been allocated.
2152 */
2153 new.b_state = 0;
2154 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2155 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2156 if (mpd->b_state & (1 << BH_Delay))
2157 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2158 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2159 &new, get_blocks_flags);
2160 if (blks < 0) {
2161 err = blks;
2162 /*
2163 * If get block returns with error we simply
2164 * return. Later writepage will redirty the page and
2165 * writepages will find the dirty page again
2166 */
2167 if (err == -EAGAIN)
2168 return 0;
2169
2170 if (err == -ENOSPC &&
2171 ext4_count_free_blocks(mpd->inode->i_sb)) {
2172 mpd->retval = err;
2173 return 0;
2174 }
2175
2176 /*
2177 * get block failure will cause us to loop in
2178 * writepages, because a_ops->writepage won't be able
2179 * to make progress. The page will be redirtied by
2180 * writepage and writepages will again try to write
2181 * the same.
2182 */
2183 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2184 "at logical offset %llu with max blocks "
2185 "%zd with error %d\n",
2186 __func__, mpd->inode->i_ino,
2187 (unsigned long long)next,
2188 mpd->b_size >> mpd->inode->i_blkbits, err);
2189 printk(KERN_EMERG "This should not happen.!! "
2190 "Data will be lost\n");
2191 if (err == -ENOSPC) {
2192 ext4_print_free_blocks(mpd->inode);
2193 }
2194 /* invalidate all the pages */
2195 ext4_da_block_invalidatepages(mpd, next,
2196 mpd->b_size >> mpd->inode->i_blkbits);
2197 return err;
2198 }
2199 BUG_ON(blks == 0);
2200
2201 new.b_size = (blks << mpd->inode->i_blkbits);
2202
2203 if (buffer_new(&new))
2204 __unmap_underlying_blocks(mpd->inode, &new);
2205
2206 /*
2207 * If blocks are delayed marked, we need to
2208 * put actual blocknr and drop delayed bit
2209 */
2210 if ((mpd->b_state & (1 << BH_Delay)) ||
2211 (mpd->b_state & (1 << BH_Unwritten)))
2212 mpage_put_bnr_to_bhs(mpd, next, &new);
2213
2214 if (ext4_should_order_data(mpd->inode)) {
2215 err = ext4_jbd2_file_inode(handle, mpd->inode);
2216 if (err)
2217 return err;
2218 }
2219
2220 /*
2221 * Update on-disk size along with block allocation.
2222 */
2223 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2224 if (disksize > i_size_read(mpd->inode))
2225 disksize = i_size_read(mpd->inode);
2226 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2227 ext4_update_i_disksize(mpd->inode, disksize);
2228 return ext4_mark_inode_dirty(handle, mpd->inode);
2229 }
2230
2231 return 0;
2232 }
2233
2234 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2235 (1 << BH_Delay) | (1 << BH_Unwritten))
2236
2237 /*
2238 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2239 *
2240 * @mpd->lbh - extent of blocks
2241 * @logical - logical number of the block in the file
2242 * @bh - bh of the block (used to access block's state)
2243 *
2244 * the function is used to collect contig. blocks in same state
2245 */
2246 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2247 sector_t logical, size_t b_size,
2248 unsigned long b_state)
2249 {
2250 sector_t next;
2251 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2252
2253 /* check if thereserved journal credits might overflow */
2254 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2255 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2256 /*
2257 * With non-extent format we are limited by the journal
2258 * credit available. Total credit needed to insert
2259 * nrblocks contiguous blocks is dependent on the
2260 * nrblocks. So limit nrblocks.
2261 */
2262 goto flush_it;
2263 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2264 EXT4_MAX_TRANS_DATA) {
2265 /*
2266 * Adding the new buffer_head would make it cross the
2267 * allowed limit for which we have journal credit
2268 * reserved. So limit the new bh->b_size
2269 */
2270 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2271 mpd->inode->i_blkbits;
2272 /* we will do mpage_da_submit_io in the next loop */
2273 }
2274 }
2275 /*
2276 * First block in the extent
2277 */
2278 if (mpd->b_size == 0) {
2279 mpd->b_blocknr = logical;
2280 mpd->b_size = b_size;
2281 mpd->b_state = b_state & BH_FLAGS;
2282 return;
2283 }
2284
2285 next = mpd->b_blocknr + nrblocks;
2286 /*
2287 * Can we merge the block to our big extent?
2288 */
2289 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2290 mpd->b_size += b_size;
2291 return;
2292 }
2293
2294 flush_it:
2295 /*
2296 * We couldn't merge the block to our extent, so we
2297 * need to flush current extent and start new one
2298 */
2299 if (mpage_da_map_blocks(mpd) == 0)
2300 mpage_da_submit_io(mpd);
2301 mpd->io_done = 1;
2302 return;
2303 }
2304
2305 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2306 {
2307 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2308 }
2309
2310 /*
2311 * __mpage_da_writepage - finds extent of pages and blocks
2312 *
2313 * @page: page to consider
2314 * @wbc: not used, we just follow rules
2315 * @data: context
2316 *
2317 * The function finds extents of pages and scan them for all blocks.
2318 */
2319 static int __mpage_da_writepage(struct page *page,
2320 struct writeback_control *wbc, void *data)
2321 {
2322 struct mpage_da_data *mpd = data;
2323 struct inode *inode = mpd->inode;
2324 struct buffer_head *bh, *head;
2325 sector_t logical;
2326
2327 if (mpd->io_done) {
2328 /*
2329 * Rest of the page in the page_vec
2330 * redirty then and skip then. We will
2331 * try to to write them again after
2332 * starting a new transaction
2333 */
2334 redirty_page_for_writepage(wbc, page);
2335 unlock_page(page);
2336 return MPAGE_DA_EXTENT_TAIL;
2337 }
2338 /*
2339 * Can we merge this page to current extent?
2340 */
2341 if (mpd->next_page != page->index) {
2342 /*
2343 * Nope, we can't. So, we map non-allocated blocks
2344 * and start IO on them using writepage()
2345 */
2346 if (mpd->next_page != mpd->first_page) {
2347 if (mpage_da_map_blocks(mpd) == 0)
2348 mpage_da_submit_io(mpd);
2349 /*
2350 * skip rest of the page in the page_vec
2351 */
2352 mpd->io_done = 1;
2353 redirty_page_for_writepage(wbc, page);
2354 unlock_page(page);
2355 return MPAGE_DA_EXTENT_TAIL;
2356 }
2357
2358 /*
2359 * Start next extent of pages ...
2360 */
2361 mpd->first_page = page->index;
2362
2363 /*
2364 * ... and blocks
2365 */
2366 mpd->b_size = 0;
2367 mpd->b_state = 0;
2368 mpd->b_blocknr = 0;
2369 }
2370
2371 mpd->next_page = page->index + 1;
2372 logical = (sector_t) page->index <<
2373 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2374
2375 if (!page_has_buffers(page)) {
2376 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2377 (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 if (mpd->io_done)
2379 return MPAGE_DA_EXTENT_TAIL;
2380 } else {
2381 /*
2382 * Page with regular buffer heads, just add all dirty ones
2383 */
2384 head = page_buffers(page);
2385 bh = head;
2386 do {
2387 BUG_ON(buffer_locked(bh));
2388 /*
2389 * We need to try to allocate
2390 * unmapped blocks in the same page.
2391 * Otherwise we won't make progress
2392 * with the page in ext4_writepage
2393 */
2394 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2395 mpage_add_bh_to_extent(mpd, logical,
2396 bh->b_size,
2397 bh->b_state);
2398 if (mpd->io_done)
2399 return MPAGE_DA_EXTENT_TAIL;
2400 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2401 /*
2402 * mapped dirty buffer. We need to update
2403 * the b_state because we look at
2404 * b_state in mpage_da_map_blocks. We don't
2405 * update b_size because if we find an
2406 * unmapped buffer_head later we need to
2407 * use the b_state flag of that buffer_head.
2408 */
2409 if (mpd->b_size == 0)
2410 mpd->b_state = bh->b_state & BH_FLAGS;
2411 }
2412 logical++;
2413 } while ((bh = bh->b_this_page) != head);
2414 }
2415
2416 return 0;
2417 }
2418
2419 /*
2420 * This is a special get_blocks_t callback which is used by
2421 * ext4_da_write_begin(). It will either return mapped block or
2422 * reserve space for a single block.
2423 *
2424 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2425 * We also have b_blocknr = -1 and b_bdev initialized properly
2426 *
2427 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2428 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2429 * initialized properly.
2430 */
2431 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2432 struct buffer_head *bh_result, int create)
2433 {
2434 int ret = 0;
2435 sector_t invalid_block = ~((sector_t) 0xffff);
2436
2437 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2438 invalid_block = ~0;
2439
2440 BUG_ON(create == 0);
2441 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2442
2443 /*
2444 * first, we need to know whether the block is allocated already
2445 * preallocated blocks are unmapped but should treated
2446 * the same as allocated blocks.
2447 */
2448 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2449 if ((ret == 0) && !buffer_delay(bh_result)) {
2450 /* the block isn't (pre)allocated yet, let's reserve space */
2451 /*
2452 * XXX: __block_prepare_write() unmaps passed block,
2453 * is it OK?
2454 */
2455 ret = ext4_da_reserve_space(inode, 1);
2456 if (ret)
2457 /* not enough space to reserve */
2458 return ret;
2459
2460 map_bh(bh_result, inode->i_sb, invalid_block);
2461 set_buffer_new(bh_result);
2462 set_buffer_delay(bh_result);
2463 } else if (ret > 0) {
2464 bh_result->b_size = (ret << inode->i_blkbits);
2465 if (buffer_unwritten(bh_result)) {
2466 /* A delayed write to unwritten bh should
2467 * be marked new and mapped. Mapped ensures
2468 * that we don't do get_block multiple times
2469 * when we write to the same offset and new
2470 * ensures that we do proper zero out for
2471 * partial write.
2472 */
2473 set_buffer_new(bh_result);
2474 set_buffer_mapped(bh_result);
2475 }
2476 ret = 0;
2477 }
2478
2479 return ret;
2480 }
2481
2482 /*
2483 * This function is used as a standard get_block_t calback function
2484 * when there is no desire to allocate any blocks. It is used as a
2485 * callback function for block_prepare_write(), nobh_writepage(), and
2486 * block_write_full_page(). These functions should only try to map a
2487 * single block at a time.
2488 *
2489 * Since this function doesn't do block allocations even if the caller
2490 * requests it by passing in create=1, it is critically important that
2491 * any caller checks to make sure that any buffer heads are returned
2492 * by this function are either all already mapped or marked for
2493 * delayed allocation before calling nobh_writepage() or
2494 * block_write_full_page(). Otherwise, b_blocknr could be left
2495 * unitialized, and the page write functions will be taken by
2496 * surprise.
2497 */
2498 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2499 struct buffer_head *bh_result, int create)
2500 {
2501 int ret = 0;
2502 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2503
2504 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2505
2506 /*
2507 * we don't want to do block allocation in writepage
2508 * so call get_block_wrap with create = 0
2509 */
2510 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2511 if (ret > 0) {
2512 bh_result->b_size = (ret << inode->i_blkbits);
2513 ret = 0;
2514 }
2515 return ret;
2516 }
2517
2518 static int bget_one(handle_t *handle, struct buffer_head *bh)
2519 {
2520 get_bh(bh);
2521 return 0;
2522 }
2523
2524 static int bput_one(handle_t *handle, struct buffer_head *bh)
2525 {
2526 put_bh(bh);
2527 return 0;
2528 }
2529
2530 static int __ext4_journalled_writepage(struct page *page,
2531 struct writeback_control *wbc,
2532 unsigned int len)
2533 {
2534 struct address_space *mapping = page->mapping;
2535 struct inode *inode = mapping->host;
2536 struct buffer_head *page_bufs;
2537 handle_t *handle = NULL;
2538 int ret = 0;
2539 int err;
2540
2541 page_bufs = page_buffers(page);
2542 BUG_ON(!page_bufs);
2543 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2544 /* As soon as we unlock the page, it can go away, but we have
2545 * references to buffers so we are safe */
2546 unlock_page(page);
2547
2548 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2549 if (IS_ERR(handle)) {
2550 ret = PTR_ERR(handle);
2551 goto out;
2552 }
2553
2554 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2555 do_journal_get_write_access);
2556
2557 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2558 write_end_fn);
2559 if (ret == 0)
2560 ret = err;
2561 err = ext4_journal_stop(handle);
2562 if (!ret)
2563 ret = err;
2564
2565 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2566 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2567 out:
2568 return ret;
2569 }
2570
2571 /*
2572 * Note that we don't need to start a transaction unless we're journaling data
2573 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2574 * need to file the inode to the transaction's list in ordered mode because if
2575 * we are writing back data added by write(), the inode is already there and if
2576 * we are writing back data modified via mmap(), noone guarantees in which
2577 * transaction the data will hit the disk. In case we are journaling data, we
2578 * cannot start transaction directly because transaction start ranks above page
2579 * lock so we have to do some magic.
2580 *
2581 * This function can get called via...
2582 * - ext4_da_writepages after taking page lock (have journal handle)
2583 * - journal_submit_inode_data_buffers (no journal handle)
2584 * - shrink_page_list via pdflush (no journal handle)
2585 * - grab_page_cache when doing write_begin (have journal handle)
2586 *
2587 * We don't do any block allocation in this function. If we have page with
2588 * multiple blocks we need to write those buffer_heads that are mapped. This
2589 * is important for mmaped based write. So if we do with blocksize 1K
2590 * truncate(f, 1024);
2591 * a = mmap(f, 0, 4096);
2592 * a[0] = 'a';
2593 * truncate(f, 4096);
2594 * we have in the page first buffer_head mapped via page_mkwrite call back
2595 * but other bufer_heads would be unmapped but dirty(dirty done via the
2596 * do_wp_page). So writepage should write the first block. If we modify
2597 * the mmap area beyond 1024 we will again get a page_fault and the
2598 * page_mkwrite callback will do the block allocation and mark the
2599 * buffer_heads mapped.
2600 *
2601 * We redirty the page if we have any buffer_heads that is either delay or
2602 * unwritten in the page.
2603 *
2604 * We can get recursively called as show below.
2605 *
2606 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2607 * ext4_writepage()
2608 *
2609 * But since we don't do any block allocation we should not deadlock.
2610 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2611 */
2612 static int ext4_writepage(struct page *page,
2613 struct writeback_control *wbc)
2614 {
2615 int ret = 0;
2616 loff_t size;
2617 unsigned int len;
2618 struct buffer_head *page_bufs;
2619 struct inode *inode = page->mapping->host;
2620
2621 trace_ext4_writepage(inode, page);
2622 size = i_size_read(inode);
2623 if (page->index == size >> PAGE_CACHE_SHIFT)
2624 len = size & ~PAGE_CACHE_MASK;
2625 else
2626 len = PAGE_CACHE_SIZE;
2627
2628 if (page_has_buffers(page)) {
2629 page_bufs = page_buffers(page);
2630 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2631 ext4_bh_delay_or_unwritten)) {
2632 /*
2633 * We don't want to do block allocation
2634 * So redirty the page and return
2635 * We may reach here when we do a journal commit
2636 * via journal_submit_inode_data_buffers.
2637 * If we don't have mapping block we just ignore
2638 * them. We can also reach here via shrink_page_list
2639 */
2640 redirty_page_for_writepage(wbc, page);
2641 unlock_page(page);
2642 return 0;
2643 }
2644 } else {
2645 /*
2646 * The test for page_has_buffers() is subtle:
2647 * We know the page is dirty but it lost buffers. That means
2648 * that at some moment in time after write_begin()/write_end()
2649 * has been called all buffers have been clean and thus they
2650 * must have been written at least once. So they are all
2651 * mapped and we can happily proceed with mapping them
2652 * and writing the page.
2653 *
2654 * Try to initialize the buffer_heads and check whether
2655 * all are mapped and non delay. We don't want to
2656 * do block allocation here.
2657 */
2658 ret = block_prepare_write(page, 0, len,
2659 noalloc_get_block_write);
2660 if (!ret) {
2661 page_bufs = page_buffers(page);
2662 /* check whether all are mapped and non delay */
2663 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2664 ext4_bh_delay_or_unwritten)) {
2665 redirty_page_for_writepage(wbc, page);
2666 unlock_page(page);
2667 return 0;
2668 }
2669 } else {
2670 /*
2671 * We can't do block allocation here
2672 * so just redity the page and unlock
2673 * and return
2674 */
2675 redirty_page_for_writepage(wbc, page);
2676 unlock_page(page);
2677 return 0;
2678 }
2679 /* now mark the buffer_heads as dirty and uptodate */
2680 block_commit_write(page, 0, len);
2681 }
2682
2683 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2684 /*
2685 * It's mmapped pagecache. Add buffers and journal it. There
2686 * doesn't seem much point in redirtying the page here.
2687 */
2688 ClearPageChecked(page);
2689 return __ext4_journalled_writepage(page, wbc, len);
2690 }
2691
2692 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2693 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2694 else
2695 ret = block_write_full_page(page, noalloc_get_block_write,
2696 wbc);
2697
2698 return ret;
2699 }
2700
2701 /*
2702 * This is called via ext4_da_writepages() to
2703 * calulate the total number of credits to reserve to fit
2704 * a single extent allocation into a single transaction,
2705 * ext4_da_writpeages() will loop calling this before
2706 * the block allocation.
2707 */
2708
2709 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2710 {
2711 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2712
2713 /*
2714 * With non-extent format the journal credit needed to
2715 * insert nrblocks contiguous block is dependent on
2716 * number of contiguous block. So we will limit
2717 * number of contiguous block to a sane value
2718 */
2719 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2720 (max_blocks > EXT4_MAX_TRANS_DATA))
2721 max_blocks = EXT4_MAX_TRANS_DATA;
2722
2723 return ext4_chunk_trans_blocks(inode, max_blocks);
2724 }
2725
2726 static int ext4_da_writepages(struct address_space *mapping,
2727 struct writeback_control *wbc)
2728 {
2729 pgoff_t index;
2730 int range_whole = 0;
2731 handle_t *handle = NULL;
2732 struct mpage_da_data mpd;
2733 struct inode *inode = mapping->host;
2734 int no_nrwrite_index_update;
2735 int pages_written = 0;
2736 long pages_skipped;
2737 int range_cyclic, cycled = 1, io_done = 0;
2738 int needed_blocks, ret = 0, nr_to_writebump = 0;
2739 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2740
2741 trace_ext4_da_writepages(inode, wbc);
2742
2743 /*
2744 * No pages to write? This is mainly a kludge to avoid starting
2745 * a transaction for special inodes like journal inode on last iput()
2746 * because that could violate lock ordering on umount
2747 */
2748 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749 return 0;
2750
2751 /*
2752 * If the filesystem has aborted, it is read-only, so return
2753 * right away instead of dumping stack traces later on that
2754 * will obscure the real source of the problem. We test
2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756 * the latter could be true if the filesystem is mounted
2757 * read-only, and in that case, ext4_da_writepages should
2758 * *never* be called, so if that ever happens, we would want
2759 * the stack trace.
2760 */
2761 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2762 return -EROFS;
2763
2764 /*
2765 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2766 * This make sure small files blocks are allocated in
2767 * single attempt. This ensure that small files
2768 * get less fragmented.
2769 */
2770 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2771 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2772 wbc->nr_to_write = sbi->s_mb_stream_request;
2773 }
2774 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775 range_whole = 1;
2776
2777 range_cyclic = wbc->range_cyclic;
2778 if (wbc->range_cyclic) {
2779 index = mapping->writeback_index;
2780 if (index)
2781 cycled = 0;
2782 wbc->range_start = index << PAGE_CACHE_SHIFT;
2783 wbc->range_end = LLONG_MAX;
2784 wbc->range_cyclic = 0;
2785 } else
2786 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2787
2788 mpd.wbc = wbc;
2789 mpd.inode = mapping->host;
2790
2791 /*
2792 * we don't want write_cache_pages to update
2793 * nr_to_write and writeback_index
2794 */
2795 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2796 wbc->no_nrwrite_index_update = 1;
2797 pages_skipped = wbc->pages_skipped;
2798
2799 retry:
2800 while (!ret && wbc->nr_to_write > 0) {
2801
2802 /*
2803 * we insert one extent at a time. So we need
2804 * credit needed for single extent allocation.
2805 * journalled mode is currently not supported
2806 * by delalloc
2807 */
2808 BUG_ON(ext4_should_journal_data(inode));
2809 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2810
2811 /* start a new transaction*/
2812 handle = ext4_journal_start(inode, needed_blocks);
2813 if (IS_ERR(handle)) {
2814 ret = PTR_ERR(handle);
2815 printk(KERN_CRIT "%s: jbd2_start: "
2816 "%ld pages, ino %lu; err %d\n", __func__,
2817 wbc->nr_to_write, inode->i_ino, ret);
2818 dump_stack();
2819 goto out_writepages;
2820 }
2821
2822 /*
2823 * Now call __mpage_da_writepage to find the next
2824 * contiguous region of logical blocks that need
2825 * blocks to be allocated by ext4. We don't actually
2826 * submit the blocks for I/O here, even though
2827 * write_cache_pages thinks it will, and will set the
2828 * pages as clean for write before calling
2829 * __mpage_da_writepage().
2830 */
2831 mpd.b_size = 0;
2832 mpd.b_state = 0;
2833 mpd.b_blocknr = 0;
2834 mpd.first_page = 0;
2835 mpd.next_page = 0;
2836 mpd.io_done = 0;
2837 mpd.pages_written = 0;
2838 mpd.retval = 0;
2839 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2840 &mpd);
2841 /*
2842 * If we have a contigous extent of pages and we
2843 * haven't done the I/O yet, map the blocks and submit
2844 * them for I/O.
2845 */
2846 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2847 if (mpage_da_map_blocks(&mpd) == 0)
2848 mpage_da_submit_io(&mpd);
2849 mpd.io_done = 1;
2850 ret = MPAGE_DA_EXTENT_TAIL;
2851 }
2852 wbc->nr_to_write -= mpd.pages_written;
2853
2854 ext4_journal_stop(handle);
2855
2856 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2857 /* commit the transaction which would
2858 * free blocks released in the transaction
2859 * and try again
2860 */
2861 jbd2_journal_force_commit_nested(sbi->s_journal);
2862 wbc->pages_skipped = pages_skipped;
2863 ret = 0;
2864 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2865 /*
2866 * got one extent now try with
2867 * rest of the pages
2868 */
2869 pages_written += mpd.pages_written;
2870 wbc->pages_skipped = pages_skipped;
2871 ret = 0;
2872 io_done = 1;
2873 } else if (wbc->nr_to_write)
2874 /*
2875 * There is no more writeout needed
2876 * or we requested for a noblocking writeout
2877 * and we found the device congested
2878 */
2879 break;
2880 }
2881 if (!io_done && !cycled) {
2882 cycled = 1;
2883 index = 0;
2884 wbc->range_start = index << PAGE_CACHE_SHIFT;
2885 wbc->range_end = mapping->writeback_index - 1;
2886 goto retry;
2887 }
2888 if (pages_skipped != wbc->pages_skipped)
2889 printk(KERN_EMERG "This should not happen leaving %s "
2890 "with nr_to_write = %ld ret = %d\n",
2891 __func__, wbc->nr_to_write, ret);
2892
2893 /* Update index */
2894 index += pages_written;
2895 wbc->range_cyclic = range_cyclic;
2896 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2897 /*
2898 * set the writeback_index so that range_cyclic
2899 * mode will write it back later
2900 */
2901 mapping->writeback_index = index;
2902
2903 out_writepages:
2904 if (!no_nrwrite_index_update)
2905 wbc->no_nrwrite_index_update = 0;
2906 wbc->nr_to_write -= nr_to_writebump;
2907 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2908 return ret;
2909 }
2910
2911 #define FALL_BACK_TO_NONDELALLOC 1
2912 static int ext4_nonda_switch(struct super_block *sb)
2913 {
2914 s64 free_blocks, dirty_blocks;
2915 struct ext4_sb_info *sbi = EXT4_SB(sb);
2916
2917 /*
2918 * switch to non delalloc mode if we are running low
2919 * on free block. The free block accounting via percpu
2920 * counters can get slightly wrong with percpu_counter_batch getting
2921 * accumulated on each CPU without updating global counters
2922 * Delalloc need an accurate free block accounting. So switch
2923 * to non delalloc when we are near to error range.
2924 */
2925 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2926 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2927 if (2 * free_blocks < 3 * dirty_blocks ||
2928 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2929 /*
2930 * free block count is less that 150% of dirty blocks
2931 * or free blocks is less that watermark
2932 */
2933 return 1;
2934 }
2935 return 0;
2936 }
2937
2938 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2939 loff_t pos, unsigned len, unsigned flags,
2940 struct page **pagep, void **fsdata)
2941 {
2942 int ret, retries = 0;
2943 struct page *page;
2944 pgoff_t index;
2945 unsigned from, to;
2946 struct inode *inode = mapping->host;
2947 handle_t *handle;
2948
2949 index = pos >> PAGE_CACHE_SHIFT;
2950 from = pos & (PAGE_CACHE_SIZE - 1);
2951 to = from + len;
2952
2953 if (ext4_nonda_switch(inode->i_sb)) {
2954 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2955 return ext4_write_begin(file, mapping, pos,
2956 len, flags, pagep, fsdata);
2957 }
2958 *fsdata = (void *)0;
2959 trace_ext4_da_write_begin(inode, pos, len, flags);
2960 retry:
2961 /*
2962 * With delayed allocation, we don't log the i_disksize update
2963 * if there is delayed block allocation. But we still need
2964 * to journalling the i_disksize update if writes to the end
2965 * of file which has an already mapped buffer.
2966 */
2967 handle = ext4_journal_start(inode, 1);
2968 if (IS_ERR(handle)) {
2969 ret = PTR_ERR(handle);
2970 goto out;
2971 }
2972 /* We cannot recurse into the filesystem as the transaction is already
2973 * started */
2974 flags |= AOP_FLAG_NOFS;
2975
2976 page = grab_cache_page_write_begin(mapping, index, flags);
2977 if (!page) {
2978 ext4_journal_stop(handle);
2979 ret = -ENOMEM;
2980 goto out;
2981 }
2982 *pagep = page;
2983
2984 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2985 ext4_da_get_block_prep);
2986 if (ret < 0) {
2987 unlock_page(page);
2988 ext4_journal_stop(handle);
2989 page_cache_release(page);
2990 /*
2991 * block_write_begin may have instantiated a few blocks
2992 * outside i_size. Trim these off again. Don't need
2993 * i_size_read because we hold i_mutex.
2994 */
2995 if (pos + len > inode->i_size)
2996 ext4_truncate(inode);
2997 }
2998
2999 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3000 goto retry;
3001 out:
3002 return ret;
3003 }
3004
3005 /*
3006 * Check if we should update i_disksize
3007 * when write to the end of file but not require block allocation
3008 */
3009 static int ext4_da_should_update_i_disksize(struct page *page,
3010 unsigned long offset)
3011 {
3012 struct buffer_head *bh;
3013 struct inode *inode = page->mapping->host;
3014 unsigned int idx;
3015 int i;
3016
3017 bh = page_buffers(page);
3018 idx = offset >> inode->i_blkbits;
3019
3020 for (i = 0; i < idx; i++)
3021 bh = bh->b_this_page;
3022
3023 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3024 return 0;
3025 return 1;
3026 }
3027
3028 static int ext4_da_write_end(struct file *file,
3029 struct address_space *mapping,
3030 loff_t pos, unsigned len, unsigned copied,
3031 struct page *page, void *fsdata)
3032 {
3033 struct inode *inode = mapping->host;
3034 int ret = 0, ret2;
3035 handle_t *handle = ext4_journal_current_handle();
3036 loff_t new_i_size;
3037 unsigned long start, end;
3038 int write_mode = (int)(unsigned long)fsdata;
3039
3040 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3041 if (ext4_should_order_data(inode)) {
3042 return ext4_ordered_write_end(file, mapping, pos,
3043 len, copied, page, fsdata);
3044 } else if (ext4_should_writeback_data(inode)) {
3045 return ext4_writeback_write_end(file, mapping, pos,
3046 len, copied, page, fsdata);
3047 } else {
3048 BUG();
3049 }
3050 }
3051
3052 trace_ext4_da_write_end(inode, pos, len, copied);
3053 start = pos & (PAGE_CACHE_SIZE - 1);
3054 end = start + copied - 1;
3055
3056 /*
3057 * generic_write_end() will run mark_inode_dirty() if i_size
3058 * changes. So let's piggyback the i_disksize mark_inode_dirty
3059 * into that.
3060 */
3061
3062 new_i_size = pos + copied;
3063 if (new_i_size > EXT4_I(inode)->i_disksize) {
3064 if (ext4_da_should_update_i_disksize(page, end)) {
3065 down_write(&EXT4_I(inode)->i_data_sem);
3066 if (new_i_size > EXT4_I(inode)->i_disksize) {
3067 /*
3068 * Updating i_disksize when extending file
3069 * without needing block allocation
3070 */
3071 if (ext4_should_order_data(inode))
3072 ret = ext4_jbd2_file_inode(handle,
3073 inode);
3074
3075 EXT4_I(inode)->i_disksize = new_i_size;
3076 }
3077 up_write(&EXT4_I(inode)->i_data_sem);
3078 /* We need to mark inode dirty even if
3079 * new_i_size is less that inode->i_size
3080 * bu greater than i_disksize.(hint delalloc)
3081 */
3082 ext4_mark_inode_dirty(handle, inode);
3083 }
3084 }
3085 ret2 = generic_write_end(file, mapping, pos, len, copied,
3086 page, fsdata);
3087 copied = ret2;
3088 if (ret2 < 0)
3089 ret = ret2;
3090 ret2 = ext4_journal_stop(handle);
3091 if (!ret)
3092 ret = ret2;
3093
3094 return ret ? ret : copied;
3095 }
3096
3097 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3098 {
3099 /*
3100 * Drop reserved blocks
3101 */
3102 BUG_ON(!PageLocked(page));
3103 if (!page_has_buffers(page))
3104 goto out;
3105
3106 ext4_da_page_release_reservation(page, offset);
3107
3108 out:
3109 ext4_invalidatepage(page, offset);
3110
3111 return;
3112 }
3113
3114 /*
3115 * Force all delayed allocation blocks to be allocated for a given inode.
3116 */
3117 int ext4_alloc_da_blocks(struct inode *inode)
3118 {
3119 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3120 !EXT4_I(inode)->i_reserved_meta_blocks)
3121 return 0;
3122
3123 /*
3124 * We do something simple for now. The filemap_flush() will
3125 * also start triggering a write of the data blocks, which is
3126 * not strictly speaking necessary (and for users of
3127 * laptop_mode, not even desirable). However, to do otherwise
3128 * would require replicating code paths in:
3129 *
3130 * ext4_da_writepages() ->
3131 * write_cache_pages() ---> (via passed in callback function)
3132 * __mpage_da_writepage() -->
3133 * mpage_add_bh_to_extent()
3134 * mpage_da_map_blocks()
3135 *
3136 * The problem is that write_cache_pages(), located in
3137 * mm/page-writeback.c, marks pages clean in preparation for
3138 * doing I/O, which is not desirable if we're not planning on
3139 * doing I/O at all.
3140 *
3141 * We could call write_cache_pages(), and then redirty all of
3142 * the pages by calling redirty_page_for_writeback() but that
3143 * would be ugly in the extreme. So instead we would need to
3144 * replicate parts of the code in the above functions,
3145 * simplifying them becuase we wouldn't actually intend to
3146 * write out the pages, but rather only collect contiguous
3147 * logical block extents, call the multi-block allocator, and
3148 * then update the buffer heads with the block allocations.
3149 *
3150 * For now, though, we'll cheat by calling filemap_flush(),
3151 * which will map the blocks, and start the I/O, but not
3152 * actually wait for the I/O to complete.
3153 */
3154 return filemap_flush(inode->i_mapping);
3155 }
3156
3157 /*
3158 * bmap() is special. It gets used by applications such as lilo and by
3159 * the swapper to find the on-disk block of a specific piece of data.
3160 *
3161 * Naturally, this is dangerous if the block concerned is still in the
3162 * journal. If somebody makes a swapfile on an ext4 data-journaling
3163 * filesystem and enables swap, then they may get a nasty shock when the
3164 * data getting swapped to that swapfile suddenly gets overwritten by
3165 * the original zero's written out previously to the journal and
3166 * awaiting writeback in the kernel's buffer cache.
3167 *
3168 * So, if we see any bmap calls here on a modified, data-journaled file,
3169 * take extra steps to flush any blocks which might be in the cache.
3170 */
3171 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3172 {
3173 struct inode *inode = mapping->host;
3174 journal_t *journal;
3175 int err;
3176
3177 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178 test_opt(inode->i_sb, DELALLOC)) {
3179 /*
3180 * With delalloc we want to sync the file
3181 * so that we can make sure we allocate
3182 * blocks for file
3183 */
3184 filemap_write_and_wait(mapping);
3185 }
3186
3187 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3188 /*
3189 * This is a REALLY heavyweight approach, but the use of
3190 * bmap on dirty files is expected to be extremely rare:
3191 * only if we run lilo or swapon on a freshly made file
3192 * do we expect this to happen.
3193 *
3194 * (bmap requires CAP_SYS_RAWIO so this does not
3195 * represent an unprivileged user DOS attack --- we'd be
3196 * in trouble if mortal users could trigger this path at
3197 * will.)
3198 *
3199 * NB. EXT4_STATE_JDATA is not set on files other than
3200 * regular files. If somebody wants to bmap a directory
3201 * or symlink and gets confused because the buffer
3202 * hasn't yet been flushed to disk, they deserve
3203 * everything they get.
3204 */
3205
3206 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3207 journal = EXT4_JOURNAL(inode);
3208 jbd2_journal_lock_updates(journal);
3209 err = jbd2_journal_flush(journal);
3210 jbd2_journal_unlock_updates(journal);
3211
3212 if (err)
3213 return 0;
3214 }
3215
3216 return generic_block_bmap(mapping, block, ext4_get_block);
3217 }
3218
3219 static int ext4_readpage(struct file *file, struct page *page)
3220 {
3221 return mpage_readpage(page, ext4_get_block);
3222 }
3223
3224 static int
3225 ext4_readpages(struct file *file, struct address_space *mapping,
3226 struct list_head *pages, unsigned nr_pages)
3227 {
3228 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3229 }
3230
3231 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3232 {
3233 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3234
3235 /*
3236 * If it's a full truncate we just forget about the pending dirtying
3237 */
3238 if (offset == 0)
3239 ClearPageChecked(page);
3240
3241 if (journal)
3242 jbd2_journal_invalidatepage(journal, page, offset);
3243 else
3244 block_invalidatepage(page, offset);
3245 }
3246
3247 static int ext4_releasepage(struct page *page, gfp_t wait)
3248 {
3249 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3250
3251 WARN_ON(PageChecked(page));
3252 if (!page_has_buffers(page))
3253 return 0;
3254 if (journal)
3255 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3256 else
3257 return try_to_free_buffers(page);
3258 }
3259
3260 /*
3261 * If the O_DIRECT write will extend the file then add this inode to the
3262 * orphan list. So recovery will truncate it back to the original size
3263 * if the machine crashes during the write.
3264 *
3265 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3266 * crashes then stale disk data _may_ be exposed inside the file. But current
3267 * VFS code falls back into buffered path in that case so we are safe.
3268 */
3269 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3270 const struct iovec *iov, loff_t offset,
3271 unsigned long nr_segs)
3272 {
3273 struct file *file = iocb->ki_filp;
3274 struct inode *inode = file->f_mapping->host;
3275 struct ext4_inode_info *ei = EXT4_I(inode);
3276 handle_t *handle;
3277 ssize_t ret;
3278 int orphan = 0;
3279 size_t count = iov_length(iov, nr_segs);
3280
3281 if (rw == WRITE) {
3282 loff_t final_size = offset + count;
3283
3284 if (final_size > inode->i_size) {
3285 /* Credits for sb + inode write */
3286 handle = ext4_journal_start(inode, 2);
3287 if (IS_ERR(handle)) {
3288 ret = PTR_ERR(handle);
3289 goto out;
3290 }
3291 ret = ext4_orphan_add(handle, inode);
3292 if (ret) {
3293 ext4_journal_stop(handle);
3294 goto out;
3295 }
3296 orphan = 1;
3297 ei->i_disksize = inode->i_size;
3298 ext4_journal_stop(handle);
3299 }
3300 }
3301
3302 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3303 offset, nr_segs,
3304 ext4_get_block, NULL);
3305
3306 if (orphan) {
3307 int err;
3308
3309 /* Credits for sb + inode write */
3310 handle = ext4_journal_start(inode, 2);
3311 if (IS_ERR(handle)) {
3312 /* This is really bad luck. We've written the data
3313 * but cannot extend i_size. Bail out and pretend
3314 * the write failed... */
3315 ret = PTR_ERR(handle);
3316 goto out;
3317 }
3318 if (inode->i_nlink)
3319 ext4_orphan_del(handle, inode);
3320 if (ret > 0) {
3321 loff_t end = offset + ret;
3322 if (end > inode->i_size) {
3323 ei->i_disksize = end;
3324 i_size_write(inode, end);
3325 /*
3326 * We're going to return a positive `ret'
3327 * here due to non-zero-length I/O, so there's
3328 * no way of reporting error returns from
3329 * ext4_mark_inode_dirty() to userspace. So
3330 * ignore it.
3331 */
3332 ext4_mark_inode_dirty(handle, inode);
3333 }
3334 }
3335 err = ext4_journal_stop(handle);
3336 if (ret == 0)
3337 ret = err;
3338 }
3339 out:
3340 return ret;
3341 }
3342
3343 /*
3344 * Pages can be marked dirty completely asynchronously from ext4's journalling
3345 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3346 * much here because ->set_page_dirty is called under VFS locks. The page is
3347 * not necessarily locked.
3348 *
3349 * We cannot just dirty the page and leave attached buffers clean, because the
3350 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3351 * or jbddirty because all the journalling code will explode.
3352 *
3353 * So what we do is to mark the page "pending dirty" and next time writepage
3354 * is called, propagate that into the buffers appropriately.
3355 */
3356 static int ext4_journalled_set_page_dirty(struct page *page)
3357 {
3358 SetPageChecked(page);
3359 return __set_page_dirty_nobuffers(page);
3360 }
3361
3362 static const struct address_space_operations ext4_ordered_aops = {
3363 .readpage = ext4_readpage,
3364 .readpages = ext4_readpages,
3365 .writepage = ext4_writepage,
3366 .sync_page = block_sync_page,
3367 .write_begin = ext4_write_begin,
3368 .write_end = ext4_ordered_write_end,
3369 .bmap = ext4_bmap,
3370 .invalidatepage = ext4_invalidatepage,
3371 .releasepage = ext4_releasepage,
3372 .direct_IO = ext4_direct_IO,
3373 .migratepage = buffer_migrate_page,
3374 .is_partially_uptodate = block_is_partially_uptodate,
3375 };
3376
3377 static const struct address_space_operations ext4_writeback_aops = {
3378 .readpage = ext4_readpage,
3379 .readpages = ext4_readpages,
3380 .writepage = ext4_writepage,
3381 .sync_page = block_sync_page,
3382 .write_begin = ext4_write_begin,
3383 .write_end = ext4_writeback_write_end,
3384 .bmap = ext4_bmap,
3385 .invalidatepage = ext4_invalidatepage,
3386 .releasepage = ext4_releasepage,
3387 .direct_IO = ext4_direct_IO,
3388 .migratepage = buffer_migrate_page,
3389 .is_partially_uptodate = block_is_partially_uptodate,
3390 };
3391
3392 static const struct address_space_operations ext4_journalled_aops = {
3393 .readpage = ext4_readpage,
3394 .readpages = ext4_readpages,
3395 .writepage = ext4_writepage,
3396 .sync_page = block_sync_page,
3397 .write_begin = ext4_write_begin,
3398 .write_end = ext4_journalled_write_end,
3399 .set_page_dirty = ext4_journalled_set_page_dirty,
3400 .bmap = ext4_bmap,
3401 .invalidatepage = ext4_invalidatepage,
3402 .releasepage = ext4_releasepage,
3403 .is_partially_uptodate = block_is_partially_uptodate,
3404 };
3405
3406 static const struct address_space_operations ext4_da_aops = {
3407 .readpage = ext4_readpage,
3408 .readpages = ext4_readpages,
3409 .writepage = ext4_writepage,
3410 .writepages = ext4_da_writepages,
3411 .sync_page = block_sync_page,
3412 .write_begin = ext4_da_write_begin,
3413 .write_end = ext4_da_write_end,
3414 .bmap = ext4_bmap,
3415 .invalidatepage = ext4_da_invalidatepage,
3416 .releasepage = ext4_releasepage,
3417 .direct_IO = ext4_direct_IO,
3418 .migratepage = buffer_migrate_page,
3419 .is_partially_uptodate = block_is_partially_uptodate,
3420 };
3421
3422 void ext4_set_aops(struct inode *inode)
3423 {
3424 if (ext4_should_order_data(inode) &&
3425 test_opt(inode->i_sb, DELALLOC))
3426 inode->i_mapping->a_ops = &ext4_da_aops;
3427 else if (ext4_should_order_data(inode))
3428 inode->i_mapping->a_ops = &ext4_ordered_aops;
3429 else if (ext4_should_writeback_data(inode) &&
3430 test_opt(inode->i_sb, DELALLOC))
3431 inode->i_mapping->a_ops = &ext4_da_aops;
3432 else if (ext4_should_writeback_data(inode))
3433 inode->i_mapping->a_ops = &ext4_writeback_aops;
3434 else
3435 inode->i_mapping->a_ops = &ext4_journalled_aops;
3436 }
3437
3438 /*
3439 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440 * up to the end of the block which corresponds to `from'.
3441 * This required during truncate. We need to physically zero the tail end
3442 * of that block so it doesn't yield old data if the file is later grown.
3443 */
3444 int ext4_block_truncate_page(handle_t *handle,
3445 struct address_space *mapping, loff_t from)
3446 {
3447 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3448 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3449 unsigned blocksize, length, pos;
3450 ext4_lblk_t iblock;
3451 struct inode *inode = mapping->host;
3452 struct buffer_head *bh;
3453 struct page *page;
3454 int err = 0;
3455
3456 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3457 mapping_gfp_mask(mapping) & ~__GFP_FS);
3458 if (!page)
3459 return -EINVAL;
3460
3461 blocksize = inode->i_sb->s_blocksize;
3462 length = blocksize - (offset & (blocksize - 1));
3463 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3464
3465 /*
3466 * For "nobh" option, we can only work if we don't need to
3467 * read-in the page - otherwise we create buffers to do the IO.
3468 */
3469 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3470 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3471 zero_user(page, offset, length);
3472 set_page_dirty(page);
3473 goto unlock;
3474 }
3475
3476 if (!page_has_buffers(page))
3477 create_empty_buffers(page, blocksize, 0);
3478
3479 /* Find the buffer that contains "offset" */
3480 bh = page_buffers(page);
3481 pos = blocksize;
3482 while (offset >= pos) {
3483 bh = bh->b_this_page;
3484 iblock++;
3485 pos += blocksize;
3486 }
3487
3488 err = 0;
3489 if (buffer_freed(bh)) {
3490 BUFFER_TRACE(bh, "freed: skip");
3491 goto unlock;
3492 }
3493
3494 if (!buffer_mapped(bh)) {
3495 BUFFER_TRACE(bh, "unmapped");
3496 ext4_get_block(inode, iblock, bh, 0);
3497 /* unmapped? It's a hole - nothing to do */
3498 if (!buffer_mapped(bh)) {
3499 BUFFER_TRACE(bh, "still unmapped");
3500 goto unlock;
3501 }
3502 }
3503
3504 /* Ok, it's mapped. Make sure it's up-to-date */
3505 if (PageUptodate(page))
3506 set_buffer_uptodate(bh);
3507
3508 if (!buffer_uptodate(bh)) {
3509 err = -EIO;
3510 ll_rw_block(READ, 1, &bh);
3511 wait_on_buffer(bh);
3512 /* Uhhuh. Read error. Complain and punt. */
3513 if (!buffer_uptodate(bh))
3514 goto unlock;
3515 }
3516
3517 if (ext4_should_journal_data(inode)) {
3518 BUFFER_TRACE(bh, "get write access");
3519 err = ext4_journal_get_write_access(handle, bh);
3520 if (err)
3521 goto unlock;
3522 }
3523
3524 zero_user(page, offset, length);
3525
3526 BUFFER_TRACE(bh, "zeroed end of block");
3527
3528 err = 0;
3529 if (ext4_should_journal_data(inode)) {
3530 err = ext4_handle_dirty_metadata(handle, inode, bh);
3531 } else {
3532 if (ext4_should_order_data(inode))
3533 err = ext4_jbd2_file_inode(handle, inode);
3534 mark_buffer_dirty(bh);
3535 }
3536
3537 unlock:
3538 unlock_page(page);
3539 page_cache_release(page);
3540 return err;
3541 }
3542
3543 /*
3544 * Probably it should be a library function... search for first non-zero word
3545 * or memcmp with zero_page, whatever is better for particular architecture.
3546 * Linus?
3547 */
3548 static inline int all_zeroes(__le32 *p, __le32 *q)
3549 {
3550 while (p < q)
3551 if (*p++)
3552 return 0;
3553 return 1;
3554 }
3555
3556 /**
3557 * ext4_find_shared - find the indirect blocks for partial truncation.
3558 * @inode: inode in question
3559 * @depth: depth of the affected branch
3560 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3561 * @chain: place to store the pointers to partial indirect blocks
3562 * @top: place to the (detached) top of branch
3563 *
3564 * This is a helper function used by ext4_truncate().
3565 *
3566 * When we do truncate() we may have to clean the ends of several
3567 * indirect blocks but leave the blocks themselves alive. Block is
3568 * partially truncated if some data below the new i_size is refered
3569 * from it (and it is on the path to the first completely truncated
3570 * data block, indeed). We have to free the top of that path along
3571 * with everything to the right of the path. Since no allocation
3572 * past the truncation point is possible until ext4_truncate()
3573 * finishes, we may safely do the latter, but top of branch may
3574 * require special attention - pageout below the truncation point
3575 * might try to populate it.
3576 *
3577 * We atomically detach the top of branch from the tree, store the
3578 * block number of its root in *@top, pointers to buffer_heads of
3579 * partially truncated blocks - in @chain[].bh and pointers to
3580 * their last elements that should not be removed - in
3581 * @chain[].p. Return value is the pointer to last filled element
3582 * of @chain.
3583 *
3584 * The work left to caller to do the actual freeing of subtrees:
3585 * a) free the subtree starting from *@top
3586 * b) free the subtrees whose roots are stored in
3587 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3588 * c) free the subtrees growing from the inode past the @chain[0].
3589 * (no partially truncated stuff there). */
3590
3591 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3592 ext4_lblk_t offsets[4], Indirect chain[4],
3593 __le32 *top)
3594 {
3595 Indirect *partial, *p;
3596 int k, err;
3597
3598 *top = 0;
3599 /* Make k index the deepest non-null offest + 1 */
3600 for (k = depth; k > 1 && !offsets[k-1]; k--)
3601 ;
3602 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3603 /* Writer: pointers */
3604 if (!partial)
3605 partial = chain + k-1;
3606 /*
3607 * If the branch acquired continuation since we've looked at it -
3608 * fine, it should all survive and (new) top doesn't belong to us.
3609 */
3610 if (!partial->key && *partial->p)
3611 /* Writer: end */
3612 goto no_top;
3613 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3614 ;
3615 /*
3616 * OK, we've found the last block that must survive. The rest of our
3617 * branch should be detached before unlocking. However, if that rest
3618 * of branch is all ours and does not grow immediately from the inode
3619 * it's easier to cheat and just decrement partial->p.
3620 */
3621 if (p == chain + k - 1 && p > chain) {
3622 p->p--;
3623 } else {
3624 *top = *p->p;
3625 /* Nope, don't do this in ext4. Must leave the tree intact */
3626 #if 0
3627 *p->p = 0;
3628 #endif
3629 }
3630 /* Writer: end */
3631
3632 while (partial > p) {
3633 brelse(partial->bh);
3634 partial--;
3635 }
3636 no_top:
3637 return partial;
3638 }
3639
3640 /*
3641 * Zero a number of block pointers in either an inode or an indirect block.
3642 * If we restart the transaction we must again get write access to the
3643 * indirect block for further modification.
3644 *
3645 * We release `count' blocks on disk, but (last - first) may be greater
3646 * than `count' because there can be holes in there.
3647 */
3648 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3649 struct buffer_head *bh,
3650 ext4_fsblk_t block_to_free,
3651 unsigned long count, __le32 *first,
3652 __le32 *last)
3653 {
3654 __le32 *p;
3655 if (try_to_extend_transaction(handle, inode)) {
3656 if (bh) {
3657 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3658 ext4_handle_dirty_metadata(handle, inode, bh);
3659 }
3660 ext4_mark_inode_dirty(handle, inode);
3661 ext4_journal_test_restart(handle, inode);
3662 if (bh) {
3663 BUFFER_TRACE(bh, "retaking write access");
3664 ext4_journal_get_write_access(handle, bh);
3665 }
3666 }
3667
3668 /*
3669 * Any buffers which are on the journal will be in memory. We
3670 * find them on the hash table so jbd2_journal_revoke() will
3671 * run jbd2_journal_forget() on them. We've already detached
3672 * each block from the file, so bforget() in
3673 * jbd2_journal_forget() should be safe.
3674 *
3675 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3676 */
3677 for (p = first; p < last; p++) {
3678 u32 nr = le32_to_cpu(*p);
3679 if (nr) {
3680 struct buffer_head *tbh;
3681
3682 *p = 0;
3683 tbh = sb_find_get_block(inode->i_sb, nr);
3684 ext4_forget(handle, 0, inode, tbh, nr);
3685 }
3686 }
3687
3688 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3689 }
3690
3691 /**
3692 * ext4_free_data - free a list of data blocks
3693 * @handle: handle for this transaction
3694 * @inode: inode we are dealing with
3695 * @this_bh: indirect buffer_head which contains *@first and *@last
3696 * @first: array of block numbers
3697 * @last: points immediately past the end of array
3698 *
3699 * We are freeing all blocks refered from that array (numbers are stored as
3700 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3701 *
3702 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3703 * blocks are contiguous then releasing them at one time will only affect one
3704 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3705 * actually use a lot of journal space.
3706 *
3707 * @this_bh will be %NULL if @first and @last point into the inode's direct
3708 * block pointers.
3709 */
3710 static void ext4_free_data(handle_t *handle, struct inode *inode,
3711 struct buffer_head *this_bh,
3712 __le32 *first, __le32 *last)
3713 {
3714 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3715 unsigned long count = 0; /* Number of blocks in the run */
3716 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3717 corresponding to
3718 block_to_free */
3719 ext4_fsblk_t nr; /* Current block # */
3720 __le32 *p; /* Pointer into inode/ind
3721 for current block */
3722 int err;
3723
3724 if (this_bh) { /* For indirect block */
3725 BUFFER_TRACE(this_bh, "get_write_access");
3726 err = ext4_journal_get_write_access(handle, this_bh);
3727 /* Important: if we can't update the indirect pointers
3728 * to the blocks, we can't free them. */
3729 if (err)
3730 return;
3731 }
3732
3733 for (p = first; p < last; p++) {
3734 nr = le32_to_cpu(*p);
3735 if (nr) {
3736 /* accumulate blocks to free if they're contiguous */
3737 if (count == 0) {
3738 block_to_free = nr;
3739 block_to_free_p = p;
3740 count = 1;
3741 } else if (nr == block_to_free + count) {
3742 count++;
3743 } else {
3744 ext4_clear_blocks(handle, inode, this_bh,
3745 block_to_free,
3746 count, block_to_free_p, p);
3747 block_to_free = nr;
3748 block_to_free_p = p;
3749 count = 1;
3750 }
3751 }
3752 }
3753
3754 if (count > 0)
3755 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3756 count, block_to_free_p, p);
3757
3758 if (this_bh) {
3759 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3760
3761 /*
3762 * The buffer head should have an attached journal head at this
3763 * point. However, if the data is corrupted and an indirect
3764 * block pointed to itself, it would have been detached when
3765 * the block was cleared. Check for this instead of OOPSing.
3766 */
3767 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3768 ext4_handle_dirty_metadata(handle, inode, this_bh);
3769 else
3770 ext4_error(inode->i_sb, __func__,
3771 "circular indirect block detected, "
3772 "inode=%lu, block=%llu",
3773 inode->i_ino,
3774 (unsigned long long) this_bh->b_blocknr);
3775 }
3776 }
3777
3778 /**
3779 * ext4_free_branches - free an array of branches
3780 * @handle: JBD handle for this transaction
3781 * @inode: inode we are dealing with
3782 * @parent_bh: the buffer_head which contains *@first and *@last
3783 * @first: array of block numbers
3784 * @last: pointer immediately past the end of array
3785 * @depth: depth of the branches to free
3786 *
3787 * We are freeing all blocks refered from these branches (numbers are
3788 * stored as little-endian 32-bit) and updating @inode->i_blocks
3789 * appropriately.
3790 */
3791 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3792 struct buffer_head *parent_bh,
3793 __le32 *first, __le32 *last, int depth)
3794 {
3795 ext4_fsblk_t nr;
3796 __le32 *p;
3797
3798 if (ext4_handle_is_aborted(handle))
3799 return;
3800
3801 if (depth--) {
3802 struct buffer_head *bh;
3803 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3804 p = last;
3805 while (--p >= first) {
3806 nr = le32_to_cpu(*p);
3807 if (!nr)
3808 continue; /* A hole */
3809
3810 /* Go read the buffer for the next level down */
3811 bh = sb_bread(inode->i_sb, nr);
3812
3813 /*
3814 * A read failure? Report error and clear slot
3815 * (should be rare).
3816 */
3817 if (!bh) {
3818 ext4_error(inode->i_sb, "ext4_free_branches",
3819 "Read failure, inode=%lu, block=%llu",
3820 inode->i_ino, nr);
3821 continue;
3822 }
3823
3824 /* This zaps the entire block. Bottom up. */
3825 BUFFER_TRACE(bh, "free child branches");
3826 ext4_free_branches(handle, inode, bh,
3827 (__le32 *) bh->b_data,
3828 (__le32 *) bh->b_data + addr_per_block,
3829 depth);
3830
3831 /*
3832 * We've probably journalled the indirect block several
3833 * times during the truncate. But it's no longer
3834 * needed and we now drop it from the transaction via
3835 * jbd2_journal_revoke().
3836 *
3837 * That's easy if it's exclusively part of this
3838 * transaction. But if it's part of the committing
3839 * transaction then jbd2_journal_forget() will simply
3840 * brelse() it. That means that if the underlying
3841 * block is reallocated in ext4_get_block(),
3842 * unmap_underlying_metadata() will find this block
3843 * and will try to get rid of it. damn, damn.
3844 *
3845 * If this block has already been committed to the
3846 * journal, a revoke record will be written. And
3847 * revoke records must be emitted *before* clearing
3848 * this block's bit in the bitmaps.
3849 */
3850 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3851
3852 /*
3853 * Everything below this this pointer has been
3854 * released. Now let this top-of-subtree go.
3855 *
3856 * We want the freeing of this indirect block to be
3857 * atomic in the journal with the updating of the
3858 * bitmap block which owns it. So make some room in
3859 * the journal.
3860 *
3861 * We zero the parent pointer *after* freeing its
3862 * pointee in the bitmaps, so if extend_transaction()
3863 * for some reason fails to put the bitmap changes and
3864 * the release into the same transaction, recovery
3865 * will merely complain about releasing a free block,
3866 * rather than leaking blocks.
3867 */
3868 if (ext4_handle_is_aborted(handle))
3869 return;
3870 if (try_to_extend_transaction(handle, inode)) {
3871 ext4_mark_inode_dirty(handle, inode);
3872 ext4_journal_test_restart(handle, inode);
3873 }
3874
3875 ext4_free_blocks(handle, inode, nr, 1, 1);
3876
3877 if (parent_bh) {
3878 /*
3879 * The block which we have just freed is
3880 * pointed to by an indirect block: journal it
3881 */
3882 BUFFER_TRACE(parent_bh, "get_write_access");
3883 if (!ext4_journal_get_write_access(handle,
3884 parent_bh)){
3885 *p = 0;
3886 BUFFER_TRACE(parent_bh,
3887 "call ext4_handle_dirty_metadata");
3888 ext4_handle_dirty_metadata(handle,
3889 inode,
3890 parent_bh);
3891 }
3892 }
3893 }
3894 } else {
3895 /* We have reached the bottom of the tree. */
3896 BUFFER_TRACE(parent_bh, "free data blocks");
3897 ext4_free_data(handle, inode, parent_bh, first, last);
3898 }
3899 }
3900
3901 int ext4_can_truncate(struct inode *inode)
3902 {
3903 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3904 return 0;
3905 if (S_ISREG(inode->i_mode))
3906 return 1;
3907 if (S_ISDIR(inode->i_mode))
3908 return 1;
3909 if (S_ISLNK(inode->i_mode))
3910 return !ext4_inode_is_fast_symlink(inode);
3911 return 0;
3912 }
3913
3914 /*
3915 * ext4_truncate()
3916 *
3917 * We block out ext4_get_block() block instantiations across the entire
3918 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3919 * simultaneously on behalf of the same inode.
3920 *
3921 * As we work through the truncate and commmit bits of it to the journal there
3922 * is one core, guiding principle: the file's tree must always be consistent on
3923 * disk. We must be able to restart the truncate after a crash.
3924 *
3925 * The file's tree may be transiently inconsistent in memory (although it
3926 * probably isn't), but whenever we close off and commit a journal transaction,
3927 * the contents of (the filesystem + the journal) must be consistent and
3928 * restartable. It's pretty simple, really: bottom up, right to left (although
3929 * left-to-right works OK too).
3930 *
3931 * Note that at recovery time, journal replay occurs *before* the restart of
3932 * truncate against the orphan inode list.
3933 *
3934 * The committed inode has the new, desired i_size (which is the same as
3935 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3936 * that this inode's truncate did not complete and it will again call
3937 * ext4_truncate() to have another go. So there will be instantiated blocks
3938 * to the right of the truncation point in a crashed ext4 filesystem. But
3939 * that's fine - as long as they are linked from the inode, the post-crash
3940 * ext4_truncate() run will find them and release them.
3941 */
3942 void ext4_truncate(struct inode *inode)
3943 {
3944 handle_t *handle;
3945 struct ext4_inode_info *ei = EXT4_I(inode);
3946 __le32 *i_data = ei->i_data;
3947 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3948 struct address_space *mapping = inode->i_mapping;
3949 ext4_lblk_t offsets[4];
3950 Indirect chain[4];
3951 Indirect *partial;
3952 __le32 nr = 0;
3953 int n;
3954 ext4_lblk_t last_block;
3955 unsigned blocksize = inode->i_sb->s_blocksize;
3956
3957 if (!ext4_can_truncate(inode))
3958 return;
3959
3960 if (ei->i_disksize && inode->i_size == 0 &&
3961 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3962 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3963
3964 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3965 ext4_ext_truncate(inode);
3966 return;
3967 }
3968
3969 handle = start_transaction(inode);
3970 if (IS_ERR(handle))
3971 return; /* AKPM: return what? */
3972
3973 last_block = (inode->i_size + blocksize-1)
3974 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3975
3976 if (inode->i_size & (blocksize - 1))
3977 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3978 goto out_stop;
3979
3980 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3981 if (n == 0)
3982 goto out_stop; /* error */
3983
3984 /*
3985 * OK. This truncate is going to happen. We add the inode to the
3986 * orphan list, so that if this truncate spans multiple transactions,
3987 * and we crash, we will resume the truncate when the filesystem
3988 * recovers. It also marks the inode dirty, to catch the new size.
3989 *
3990 * Implication: the file must always be in a sane, consistent
3991 * truncatable state while each transaction commits.
3992 */
3993 if (ext4_orphan_add(handle, inode))
3994 goto out_stop;
3995
3996 /*
3997 * From here we block out all ext4_get_block() callers who want to
3998 * modify the block allocation tree.
3999 */
4000 down_write(&ei->i_data_sem);
4001
4002 ext4_discard_preallocations(inode);
4003
4004 /*
4005 * The orphan list entry will now protect us from any crash which
4006 * occurs before the truncate completes, so it is now safe to propagate
4007 * the new, shorter inode size (held for now in i_size) into the
4008 * on-disk inode. We do this via i_disksize, which is the value which
4009 * ext4 *really* writes onto the disk inode.
4010 */
4011 ei->i_disksize = inode->i_size;
4012
4013 if (n == 1) { /* direct blocks */
4014 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4015 i_data + EXT4_NDIR_BLOCKS);
4016 goto do_indirects;
4017 }
4018
4019 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4020 /* Kill the top of shared branch (not detached) */
4021 if (nr) {
4022 if (partial == chain) {
4023 /* Shared branch grows from the inode */
4024 ext4_free_branches(handle, inode, NULL,
4025 &nr, &nr+1, (chain+n-1) - partial);
4026 *partial->p = 0;
4027 /*
4028 * We mark the inode dirty prior to restart,
4029 * and prior to stop. No need for it here.
4030 */
4031 } else {
4032 /* Shared branch grows from an indirect block */
4033 BUFFER_TRACE(partial->bh, "get_write_access");
4034 ext4_free_branches(handle, inode, partial->bh,
4035 partial->p,
4036 partial->p+1, (chain+n-1) - partial);
4037 }
4038 }
4039 /* Clear the ends of indirect blocks on the shared branch */
4040 while (partial > chain) {
4041 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4042 (__le32*)partial->bh->b_data+addr_per_block,
4043 (chain+n-1) - partial);
4044 BUFFER_TRACE(partial->bh, "call brelse");
4045 brelse(partial->bh);
4046 partial--;
4047 }
4048 do_indirects:
4049 /* Kill the remaining (whole) subtrees */
4050 switch (offsets[0]) {
4051 default:
4052 nr = i_data[EXT4_IND_BLOCK];
4053 if (nr) {
4054 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4055 i_data[EXT4_IND_BLOCK] = 0;
4056 }
4057 case EXT4_IND_BLOCK:
4058 nr = i_data[EXT4_DIND_BLOCK];
4059 if (nr) {
4060 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4061 i_data[EXT4_DIND_BLOCK] = 0;
4062 }
4063 case EXT4_DIND_BLOCK:
4064 nr = i_data[EXT4_TIND_BLOCK];
4065 if (nr) {
4066 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4067 i_data[EXT4_TIND_BLOCK] = 0;
4068 }
4069 case EXT4_TIND_BLOCK:
4070 ;
4071 }
4072
4073 up_write(&ei->i_data_sem);
4074 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4075 ext4_mark_inode_dirty(handle, inode);
4076
4077 /*
4078 * In a multi-transaction truncate, we only make the final transaction
4079 * synchronous
4080 */
4081 if (IS_SYNC(inode))
4082 ext4_handle_sync(handle);
4083 out_stop:
4084 /*
4085 * If this was a simple ftruncate(), and the file will remain alive
4086 * then we need to clear up the orphan record which we created above.
4087 * However, if this was a real unlink then we were called by
4088 * ext4_delete_inode(), and we allow that function to clean up the
4089 * orphan info for us.
4090 */
4091 if (inode->i_nlink)
4092 ext4_orphan_del(handle, inode);
4093
4094 ext4_journal_stop(handle);
4095 }
4096
4097 /*
4098 * ext4_get_inode_loc returns with an extra refcount against the inode's
4099 * underlying buffer_head on success. If 'in_mem' is true, we have all
4100 * data in memory that is needed to recreate the on-disk version of this
4101 * inode.
4102 */
4103 static int __ext4_get_inode_loc(struct inode *inode,
4104 struct ext4_iloc *iloc, int in_mem)
4105 {
4106 struct ext4_group_desc *gdp;
4107 struct buffer_head *bh;
4108 struct super_block *sb = inode->i_sb;
4109 ext4_fsblk_t block;
4110 int inodes_per_block, inode_offset;
4111
4112 iloc->bh = NULL;
4113 if (!ext4_valid_inum(sb, inode->i_ino))
4114 return -EIO;
4115
4116 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4117 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4118 if (!gdp)
4119 return -EIO;
4120
4121 /*
4122 * Figure out the offset within the block group inode table
4123 */
4124 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4125 inode_offset = ((inode->i_ino - 1) %
4126 EXT4_INODES_PER_GROUP(sb));
4127 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4128 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4129
4130 bh = sb_getblk(sb, block);
4131 if (!bh) {
4132 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4133 "inode block - inode=%lu, block=%llu",
4134 inode->i_ino, block);
4135 return -EIO;
4136 }
4137 if (!buffer_uptodate(bh)) {
4138 lock_buffer(bh);
4139
4140 /*
4141 * If the buffer has the write error flag, we have failed
4142 * to write out another inode in the same block. In this
4143 * case, we don't have to read the block because we may
4144 * read the old inode data successfully.
4145 */
4146 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4147 set_buffer_uptodate(bh);
4148
4149 if (buffer_uptodate(bh)) {
4150 /* someone brought it uptodate while we waited */
4151 unlock_buffer(bh);
4152 goto has_buffer;
4153 }
4154
4155 /*
4156 * If we have all information of the inode in memory and this
4157 * is the only valid inode in the block, we need not read the
4158 * block.
4159 */
4160 if (in_mem) {
4161 struct buffer_head *bitmap_bh;
4162 int i, start;
4163
4164 start = inode_offset & ~(inodes_per_block - 1);
4165
4166 /* Is the inode bitmap in cache? */
4167 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4168 if (!bitmap_bh)
4169 goto make_io;
4170
4171 /*
4172 * If the inode bitmap isn't in cache then the
4173 * optimisation may end up performing two reads instead
4174 * of one, so skip it.
4175 */
4176 if (!buffer_uptodate(bitmap_bh)) {
4177 brelse(bitmap_bh);
4178 goto make_io;
4179 }
4180 for (i = start; i < start + inodes_per_block; i++) {
4181 if (i == inode_offset)
4182 continue;
4183 if (ext4_test_bit(i, bitmap_bh->b_data))
4184 break;
4185 }
4186 brelse(bitmap_bh);
4187 if (i == start + inodes_per_block) {
4188 /* all other inodes are free, so skip I/O */
4189 memset(bh->b_data, 0, bh->b_size);
4190 set_buffer_uptodate(bh);
4191 unlock_buffer(bh);
4192 goto has_buffer;
4193 }
4194 }
4195
4196 make_io:
4197 /*
4198 * If we need to do any I/O, try to pre-readahead extra
4199 * blocks from the inode table.
4200 */
4201 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4202 ext4_fsblk_t b, end, table;
4203 unsigned num;
4204
4205 table = ext4_inode_table(sb, gdp);
4206 /* s_inode_readahead_blks is always a power of 2 */
4207 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4208 if (table > b)
4209 b = table;
4210 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4211 num = EXT4_INODES_PER_GROUP(sb);
4212 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4213 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4214 num -= ext4_itable_unused_count(sb, gdp);
4215 table += num / inodes_per_block;
4216 if (end > table)
4217 end = table;
4218 while (b <= end)
4219 sb_breadahead(sb, b++);
4220 }
4221
4222 /*
4223 * There are other valid inodes in the buffer, this inode
4224 * has in-inode xattrs, or we don't have this inode in memory.
4225 * Read the block from disk.
4226 */
4227 get_bh(bh);
4228 bh->b_end_io = end_buffer_read_sync;
4229 submit_bh(READ_META, bh);
4230 wait_on_buffer(bh);
4231 if (!buffer_uptodate(bh)) {
4232 ext4_error(sb, __func__,
4233 "unable to read inode block - inode=%lu, "
4234 "block=%llu", inode->i_ino, block);
4235 brelse(bh);
4236 return -EIO;
4237 }
4238 }
4239 has_buffer:
4240 iloc->bh = bh;
4241 return 0;
4242 }
4243
4244 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4245 {
4246 /* We have all inode data except xattrs in memory here. */
4247 return __ext4_get_inode_loc(inode, iloc,
4248 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4249 }
4250
4251 void ext4_set_inode_flags(struct inode *inode)
4252 {
4253 unsigned int flags = EXT4_I(inode)->i_flags;
4254
4255 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4256 if (flags & EXT4_SYNC_FL)
4257 inode->i_flags |= S_SYNC;
4258 if (flags & EXT4_APPEND_FL)
4259 inode->i_flags |= S_APPEND;
4260 if (flags & EXT4_IMMUTABLE_FL)
4261 inode->i_flags |= S_IMMUTABLE;
4262 if (flags & EXT4_NOATIME_FL)
4263 inode->i_flags |= S_NOATIME;
4264 if (flags & EXT4_DIRSYNC_FL)
4265 inode->i_flags |= S_DIRSYNC;
4266 }
4267
4268 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4269 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4270 {
4271 unsigned int flags = ei->vfs_inode.i_flags;
4272
4273 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4274 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4275 if (flags & S_SYNC)
4276 ei->i_flags |= EXT4_SYNC_FL;
4277 if (flags & S_APPEND)
4278 ei->i_flags |= EXT4_APPEND_FL;
4279 if (flags & S_IMMUTABLE)
4280 ei->i_flags |= EXT4_IMMUTABLE_FL;
4281 if (flags & S_NOATIME)
4282 ei->i_flags |= EXT4_NOATIME_FL;
4283 if (flags & S_DIRSYNC)
4284 ei->i_flags |= EXT4_DIRSYNC_FL;
4285 }
4286
4287 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4288 struct ext4_inode_info *ei)
4289 {
4290 blkcnt_t i_blocks ;
4291 struct inode *inode = &(ei->vfs_inode);
4292 struct super_block *sb = inode->i_sb;
4293
4294 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4295 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4296 /* we are using combined 48 bit field */
4297 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4298 le32_to_cpu(raw_inode->i_blocks_lo);
4299 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4300 /* i_blocks represent file system block size */
4301 return i_blocks << (inode->i_blkbits - 9);
4302 } else {
4303 return i_blocks;
4304 }
4305 } else {
4306 return le32_to_cpu(raw_inode->i_blocks_lo);
4307 }
4308 }
4309
4310 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4311 {
4312 struct ext4_iloc iloc;
4313 struct ext4_inode *raw_inode;
4314 struct ext4_inode_info *ei;
4315 struct buffer_head *bh;
4316 struct inode *inode;
4317 long ret;
4318 int block;
4319
4320 inode = iget_locked(sb, ino);
4321 if (!inode)
4322 return ERR_PTR(-ENOMEM);
4323 if (!(inode->i_state & I_NEW))
4324 return inode;
4325
4326 ei = EXT4_I(inode);
4327
4328 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4329 if (ret < 0)
4330 goto bad_inode;
4331 bh = iloc.bh;
4332 raw_inode = ext4_raw_inode(&iloc);
4333 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4334 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4335 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4336 if (!(test_opt(inode->i_sb, NO_UID32))) {
4337 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4338 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4339 }
4340 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4341
4342 ei->i_state = 0;
4343 ei->i_dir_start_lookup = 0;
4344 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4345 /* We now have enough fields to check if the inode was active or not.
4346 * This is needed because nfsd might try to access dead inodes
4347 * the test is that same one that e2fsck uses
4348 * NeilBrown 1999oct15
4349 */
4350 if (inode->i_nlink == 0) {
4351 if (inode->i_mode == 0 ||
4352 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4353 /* this inode is deleted */
4354 brelse(bh);
4355 ret = -ESTALE;
4356 goto bad_inode;
4357 }
4358 /* The only unlinked inodes we let through here have
4359 * valid i_mode and are being read by the orphan
4360 * recovery code: that's fine, we're about to complete
4361 * the process of deleting those. */
4362 }
4363 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4364 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4365 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4366 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4367 ei->i_file_acl |=
4368 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4369 inode->i_size = ext4_isize(raw_inode);
4370 ei->i_disksize = inode->i_size;
4371 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4372 ei->i_block_group = iloc.block_group;
4373 ei->i_last_alloc_group = ~0;
4374 /*
4375 * NOTE! The in-memory inode i_data array is in little-endian order
4376 * even on big-endian machines: we do NOT byteswap the block numbers!
4377 */
4378 for (block = 0; block < EXT4_N_BLOCKS; block++)
4379 ei->i_data[block] = raw_inode->i_block[block];
4380 INIT_LIST_HEAD(&ei->i_orphan);
4381
4382 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4383 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4384 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4385 EXT4_INODE_SIZE(inode->i_sb)) {
4386 brelse(bh);
4387 ret = -EIO;
4388 goto bad_inode;
4389 }
4390 if (ei->i_extra_isize == 0) {
4391 /* The extra space is currently unused. Use it. */
4392 ei->i_extra_isize = sizeof(struct ext4_inode) -
4393 EXT4_GOOD_OLD_INODE_SIZE;
4394 } else {
4395 __le32 *magic = (void *)raw_inode +
4396 EXT4_GOOD_OLD_INODE_SIZE +
4397 ei->i_extra_isize;
4398 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4399 ei->i_state |= EXT4_STATE_XATTR;
4400 }
4401 } else
4402 ei->i_extra_isize = 0;
4403
4404 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4405 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4406 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4407 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4408
4409 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4410 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4411 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4412 inode->i_version |=
4413 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4414 }
4415
4416 ret = 0;
4417 if (ei->i_file_acl &&
4418 ((ei->i_file_acl <
4419 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4420 EXT4_SB(sb)->s_gdb_count)) ||
4421 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4422 ext4_error(sb, __func__,
4423 "bad extended attribute block %llu in inode #%lu",
4424 ei->i_file_acl, inode->i_ino);
4425 ret = -EIO;
4426 goto bad_inode;
4427 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4428 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4429 (S_ISLNK(inode->i_mode) &&
4430 !ext4_inode_is_fast_symlink(inode)))
4431 /* Validate extent which is part of inode */
4432 ret = ext4_ext_check_inode(inode);
4433 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4434 (S_ISLNK(inode->i_mode) &&
4435 !ext4_inode_is_fast_symlink(inode))) {
4436 /* Validate block references which are part of inode */
4437 ret = ext4_check_inode_blockref(inode);
4438 }
4439 if (ret) {
4440 brelse(bh);
4441 goto bad_inode;
4442 }
4443
4444 if (S_ISREG(inode->i_mode)) {
4445 inode->i_op = &ext4_file_inode_operations;
4446 inode->i_fop = &ext4_file_operations;
4447 ext4_set_aops(inode);
4448 } else if (S_ISDIR(inode->i_mode)) {
4449 inode->i_op = &ext4_dir_inode_operations;
4450 inode->i_fop = &ext4_dir_operations;
4451 } else if (S_ISLNK(inode->i_mode)) {
4452 if (ext4_inode_is_fast_symlink(inode)) {
4453 inode->i_op = &ext4_fast_symlink_inode_operations;
4454 nd_terminate_link(ei->i_data, inode->i_size,
4455 sizeof(ei->i_data) - 1);
4456 } else {
4457 inode->i_op = &ext4_symlink_inode_operations;
4458 ext4_set_aops(inode);
4459 }
4460 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4461 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4462 inode->i_op = &ext4_special_inode_operations;
4463 if (raw_inode->i_block[0])
4464 init_special_inode(inode, inode->i_mode,
4465 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4466 else
4467 init_special_inode(inode, inode->i_mode,
4468 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4469 } else {
4470 brelse(bh);
4471 ret = -EIO;
4472 ext4_error(inode->i_sb, __func__,
4473 "bogus i_mode (%o) for inode=%lu",
4474 inode->i_mode, inode->i_ino);
4475 goto bad_inode;
4476 }
4477 brelse(iloc.bh);
4478 ext4_set_inode_flags(inode);
4479 unlock_new_inode(inode);
4480 return inode;
4481
4482 bad_inode:
4483 iget_failed(inode);
4484 return ERR_PTR(ret);
4485 }
4486
4487 static int ext4_inode_blocks_set(handle_t *handle,
4488 struct ext4_inode *raw_inode,
4489 struct ext4_inode_info *ei)
4490 {
4491 struct inode *inode = &(ei->vfs_inode);
4492 u64 i_blocks = inode->i_blocks;
4493 struct super_block *sb = inode->i_sb;
4494
4495 if (i_blocks <= ~0U) {
4496 /*
4497 * i_blocks can be represnted in a 32 bit variable
4498 * as multiple of 512 bytes
4499 */
4500 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4501 raw_inode->i_blocks_high = 0;
4502 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4503 return 0;
4504 }
4505 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4506 return -EFBIG;
4507
4508 if (i_blocks <= 0xffffffffffffULL) {
4509 /*
4510 * i_blocks can be represented in a 48 bit variable
4511 * as multiple of 512 bytes
4512 */
4513 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4514 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4515 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4516 } else {
4517 ei->i_flags |= EXT4_HUGE_FILE_FL;
4518 /* i_block is stored in file system block size */
4519 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4520 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4521 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4522 }
4523 return 0;
4524 }
4525
4526 /*
4527 * Post the struct inode info into an on-disk inode location in the
4528 * buffer-cache. This gobbles the caller's reference to the
4529 * buffer_head in the inode location struct.
4530 *
4531 * The caller must have write access to iloc->bh.
4532 */
4533 static int ext4_do_update_inode(handle_t *handle,
4534 struct inode *inode,
4535 struct ext4_iloc *iloc)
4536 {
4537 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4538 struct ext4_inode_info *ei = EXT4_I(inode);
4539 struct buffer_head *bh = iloc->bh;
4540 int err = 0, rc, block;
4541
4542 /* For fields not not tracking in the in-memory inode,
4543 * initialise them to zero for new inodes. */
4544 if (ei->i_state & EXT4_STATE_NEW)
4545 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4546
4547 ext4_get_inode_flags(ei);
4548 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4549 if (!(test_opt(inode->i_sb, NO_UID32))) {
4550 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4551 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4552 /*
4553 * Fix up interoperability with old kernels. Otherwise, old inodes get
4554 * re-used with the upper 16 bits of the uid/gid intact
4555 */
4556 if (!ei->i_dtime) {
4557 raw_inode->i_uid_high =
4558 cpu_to_le16(high_16_bits(inode->i_uid));
4559 raw_inode->i_gid_high =
4560 cpu_to_le16(high_16_bits(inode->i_gid));
4561 } else {
4562 raw_inode->i_uid_high = 0;
4563 raw_inode->i_gid_high = 0;
4564 }
4565 } else {
4566 raw_inode->i_uid_low =
4567 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4568 raw_inode->i_gid_low =
4569 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4570 raw_inode->i_uid_high = 0;
4571 raw_inode->i_gid_high = 0;
4572 }
4573 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4574
4575 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4576 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4577 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4578 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4579
4580 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4581 goto out_brelse;
4582 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4583 /* clear the migrate flag in the raw_inode */
4584 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4585 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4586 cpu_to_le32(EXT4_OS_HURD))
4587 raw_inode->i_file_acl_high =
4588 cpu_to_le16(ei->i_file_acl >> 32);
4589 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4590 ext4_isize_set(raw_inode, ei->i_disksize);
4591 if (ei->i_disksize > 0x7fffffffULL) {
4592 struct super_block *sb = inode->i_sb;
4593 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4594 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4595 EXT4_SB(sb)->s_es->s_rev_level ==
4596 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4597 /* If this is the first large file
4598 * created, add a flag to the superblock.
4599 */
4600 err = ext4_journal_get_write_access(handle,
4601 EXT4_SB(sb)->s_sbh);
4602 if (err)
4603 goto out_brelse;
4604 ext4_update_dynamic_rev(sb);
4605 EXT4_SET_RO_COMPAT_FEATURE(sb,
4606 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4607 sb->s_dirt = 1;
4608 ext4_handle_sync(handle);
4609 err = ext4_handle_dirty_metadata(handle, inode,
4610 EXT4_SB(sb)->s_sbh);
4611 }
4612 }
4613 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4614 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4615 if (old_valid_dev(inode->i_rdev)) {
4616 raw_inode->i_block[0] =
4617 cpu_to_le32(old_encode_dev(inode->i_rdev));
4618 raw_inode->i_block[1] = 0;
4619 } else {
4620 raw_inode->i_block[0] = 0;
4621 raw_inode->i_block[1] =
4622 cpu_to_le32(new_encode_dev(inode->i_rdev));
4623 raw_inode->i_block[2] = 0;
4624 }
4625 } else
4626 for (block = 0; block < EXT4_N_BLOCKS; block++)
4627 raw_inode->i_block[block] = ei->i_data[block];
4628
4629 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4630 if (ei->i_extra_isize) {
4631 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4632 raw_inode->i_version_hi =
4633 cpu_to_le32(inode->i_version >> 32);
4634 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4635 }
4636
4637 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4638 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4639 if (!err)
4640 err = rc;
4641 ei->i_state &= ~EXT4_STATE_NEW;
4642
4643 out_brelse:
4644 brelse(bh);
4645 ext4_std_error(inode->i_sb, err);
4646 return err;
4647 }
4648
4649 /*
4650 * ext4_write_inode()
4651 *
4652 * We are called from a few places:
4653 *
4654 * - Within generic_file_write() for O_SYNC files.
4655 * Here, there will be no transaction running. We wait for any running
4656 * trasnaction to commit.
4657 *
4658 * - Within sys_sync(), kupdate and such.
4659 * We wait on commit, if tol to.
4660 *
4661 * - Within prune_icache() (PF_MEMALLOC == true)
4662 * Here we simply return. We can't afford to block kswapd on the
4663 * journal commit.
4664 *
4665 * In all cases it is actually safe for us to return without doing anything,
4666 * because the inode has been copied into a raw inode buffer in
4667 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4668 * knfsd.
4669 *
4670 * Note that we are absolutely dependent upon all inode dirtiers doing the
4671 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4672 * which we are interested.
4673 *
4674 * It would be a bug for them to not do this. The code:
4675 *
4676 * mark_inode_dirty(inode)
4677 * stuff();
4678 * inode->i_size = expr;
4679 *
4680 * is in error because a kswapd-driven write_inode() could occur while
4681 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4682 * will no longer be on the superblock's dirty inode list.
4683 */
4684 int ext4_write_inode(struct inode *inode, int wait)
4685 {
4686 if (current->flags & PF_MEMALLOC)
4687 return 0;
4688
4689 if (ext4_journal_current_handle()) {
4690 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4691 dump_stack();
4692 return -EIO;
4693 }
4694
4695 if (!wait)
4696 return 0;
4697
4698 return ext4_force_commit(inode->i_sb);
4699 }
4700
4701 /*
4702 * ext4_setattr()
4703 *
4704 * Called from notify_change.
4705 *
4706 * We want to trap VFS attempts to truncate the file as soon as
4707 * possible. In particular, we want to make sure that when the VFS
4708 * shrinks i_size, we put the inode on the orphan list and modify
4709 * i_disksize immediately, so that during the subsequent flushing of
4710 * dirty pages and freeing of disk blocks, we can guarantee that any
4711 * commit will leave the blocks being flushed in an unused state on
4712 * disk. (On recovery, the inode will get truncated and the blocks will
4713 * be freed, so we have a strong guarantee that no future commit will
4714 * leave these blocks visible to the user.)
4715 *
4716 * Another thing we have to assure is that if we are in ordered mode
4717 * and inode is still attached to the committing transaction, we must
4718 * we start writeout of all the dirty pages which are being truncated.
4719 * This way we are sure that all the data written in the previous
4720 * transaction are already on disk (truncate waits for pages under
4721 * writeback).
4722 *
4723 * Called with inode->i_mutex down.
4724 */
4725 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4726 {
4727 struct inode *inode = dentry->d_inode;
4728 int error, rc = 0;
4729 const unsigned int ia_valid = attr->ia_valid;
4730
4731 error = inode_change_ok(inode, attr);
4732 if (error)
4733 return error;
4734
4735 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4736 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4737 handle_t *handle;
4738
4739 /* (user+group)*(old+new) structure, inode write (sb,
4740 * inode block, ? - but truncate inode update has it) */
4741 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4742 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4743 if (IS_ERR(handle)) {
4744 error = PTR_ERR(handle);
4745 goto err_out;
4746 }
4747 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4748 if (error) {
4749 ext4_journal_stop(handle);
4750 return error;
4751 }
4752 /* Update corresponding info in inode so that everything is in
4753 * one transaction */
4754 if (attr->ia_valid & ATTR_UID)
4755 inode->i_uid = attr->ia_uid;
4756 if (attr->ia_valid & ATTR_GID)
4757 inode->i_gid = attr->ia_gid;
4758 error = ext4_mark_inode_dirty(handle, inode);
4759 ext4_journal_stop(handle);
4760 }
4761
4762 if (attr->ia_valid & ATTR_SIZE) {
4763 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4765
4766 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4767 error = -EFBIG;
4768 goto err_out;
4769 }
4770 }
4771 }
4772
4773 if (S_ISREG(inode->i_mode) &&
4774 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4775 handle_t *handle;
4776
4777 handle = ext4_journal_start(inode, 3);
4778 if (IS_ERR(handle)) {
4779 error = PTR_ERR(handle);
4780 goto err_out;
4781 }
4782
4783 error = ext4_orphan_add(handle, inode);
4784 EXT4_I(inode)->i_disksize = attr->ia_size;
4785 rc = ext4_mark_inode_dirty(handle, inode);
4786 if (!error)
4787 error = rc;
4788 ext4_journal_stop(handle);
4789
4790 if (ext4_should_order_data(inode)) {
4791 error = ext4_begin_ordered_truncate(inode,
4792 attr->ia_size);
4793 if (error) {
4794 /* Do as much error cleanup as possible */
4795 handle = ext4_journal_start(inode, 3);
4796 if (IS_ERR(handle)) {
4797 ext4_orphan_del(NULL, inode);
4798 goto err_out;
4799 }
4800 ext4_orphan_del(handle, inode);
4801 ext4_journal_stop(handle);
4802 goto err_out;
4803 }
4804 }
4805 }
4806
4807 rc = inode_setattr(inode, attr);
4808
4809 /* If inode_setattr's call to ext4_truncate failed to get a
4810 * transaction handle at all, we need to clean up the in-core
4811 * orphan list manually. */
4812 if (inode->i_nlink)
4813 ext4_orphan_del(NULL, inode);
4814
4815 if (!rc && (ia_valid & ATTR_MODE))
4816 rc = ext4_acl_chmod(inode);
4817
4818 err_out:
4819 ext4_std_error(inode->i_sb, error);
4820 if (!error)
4821 error = rc;
4822 return error;
4823 }
4824
4825 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4826 struct kstat *stat)
4827 {
4828 struct inode *inode;
4829 unsigned long delalloc_blocks;
4830
4831 inode = dentry->d_inode;
4832 generic_fillattr(inode, stat);
4833
4834 /*
4835 * We can't update i_blocks if the block allocation is delayed
4836 * otherwise in the case of system crash before the real block
4837 * allocation is done, we will have i_blocks inconsistent with
4838 * on-disk file blocks.
4839 * We always keep i_blocks updated together with real
4840 * allocation. But to not confuse with user, stat
4841 * will return the blocks that include the delayed allocation
4842 * blocks for this file.
4843 */
4844 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4845 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4846 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4847
4848 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4849 return 0;
4850 }
4851
4852 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4853 int chunk)
4854 {
4855 int indirects;
4856
4857 /* if nrblocks are contiguous */
4858 if (chunk) {
4859 /*
4860 * With N contiguous data blocks, it need at most
4861 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4862 * 2 dindirect blocks
4863 * 1 tindirect block
4864 */
4865 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4866 return indirects + 3;
4867 }
4868 /*
4869 * if nrblocks are not contiguous, worse case, each block touch
4870 * a indirect block, and each indirect block touch a double indirect
4871 * block, plus a triple indirect block
4872 */
4873 indirects = nrblocks * 2 + 1;
4874 return indirects;
4875 }
4876
4877 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4878 {
4879 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4880 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4881 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4882 }
4883
4884 /*
4885 * Account for index blocks, block groups bitmaps and block group
4886 * descriptor blocks if modify datablocks and index blocks
4887 * worse case, the indexs blocks spread over different block groups
4888 *
4889 * If datablocks are discontiguous, they are possible to spread over
4890 * different block groups too. If they are contiugous, with flexbg,
4891 * they could still across block group boundary.
4892 *
4893 * Also account for superblock, inode, quota and xattr blocks
4894 */
4895 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4896 {
4897 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4898 int gdpblocks;
4899 int idxblocks;
4900 int ret = 0;
4901
4902 /*
4903 * How many index blocks need to touch to modify nrblocks?
4904 * The "Chunk" flag indicating whether the nrblocks is
4905 * physically contiguous on disk
4906 *
4907 * For Direct IO and fallocate, they calls get_block to allocate
4908 * one single extent at a time, so they could set the "Chunk" flag
4909 */
4910 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4911
4912 ret = idxblocks;
4913
4914 /*
4915 * Now let's see how many group bitmaps and group descriptors need
4916 * to account
4917 */
4918 groups = idxblocks;
4919 if (chunk)
4920 groups += 1;
4921 else
4922 groups += nrblocks;
4923
4924 gdpblocks = groups;
4925 if (groups > ngroups)
4926 groups = ngroups;
4927 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4928 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4929
4930 /* bitmaps and block group descriptor blocks */
4931 ret += groups + gdpblocks;
4932
4933 /* Blocks for super block, inode, quota and xattr blocks */
4934 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4935
4936 return ret;
4937 }
4938
4939 /*
4940 * Calulate the total number of credits to reserve to fit
4941 * the modification of a single pages into a single transaction,
4942 * which may include multiple chunks of block allocations.
4943 *
4944 * This could be called via ext4_write_begin()
4945 *
4946 * We need to consider the worse case, when
4947 * one new block per extent.
4948 */
4949 int ext4_writepage_trans_blocks(struct inode *inode)
4950 {
4951 int bpp = ext4_journal_blocks_per_page(inode);
4952 int ret;
4953
4954 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4955
4956 /* Account for data blocks for journalled mode */
4957 if (ext4_should_journal_data(inode))
4958 ret += bpp;
4959 return ret;
4960 }
4961
4962 /*
4963 * Calculate the journal credits for a chunk of data modification.
4964 *
4965 * This is called from DIO, fallocate or whoever calling
4966 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4967 *
4968 * journal buffers for data blocks are not included here, as DIO
4969 * and fallocate do no need to journal data buffers.
4970 */
4971 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4972 {
4973 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4974 }
4975
4976 /*
4977 * The caller must have previously called ext4_reserve_inode_write().
4978 * Give this, we know that the caller already has write access to iloc->bh.
4979 */
4980 int ext4_mark_iloc_dirty(handle_t *handle,
4981 struct inode *inode, struct ext4_iloc *iloc)
4982 {
4983 int err = 0;
4984
4985 if (test_opt(inode->i_sb, I_VERSION))
4986 inode_inc_iversion(inode);
4987
4988 /* the do_update_inode consumes one bh->b_count */
4989 get_bh(iloc->bh);
4990
4991 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4992 err = ext4_do_update_inode(handle, inode, iloc);
4993 put_bh(iloc->bh);
4994 return err;
4995 }
4996
4997 /*
4998 * On success, We end up with an outstanding reference count against
4999 * iloc->bh. This _must_ be cleaned up later.
5000 */
5001
5002 int
5003 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5004 struct ext4_iloc *iloc)
5005 {
5006 int err;
5007
5008 err = ext4_get_inode_loc(inode, iloc);
5009 if (!err) {
5010 BUFFER_TRACE(iloc->bh, "get_write_access");
5011 err = ext4_journal_get_write_access(handle, iloc->bh);
5012 if (err) {
5013 brelse(iloc->bh);
5014 iloc->bh = NULL;
5015 }
5016 }
5017 ext4_std_error(inode->i_sb, err);
5018 return err;
5019 }
5020
5021 /*
5022 * Expand an inode by new_extra_isize bytes.
5023 * Returns 0 on success or negative error number on failure.
5024 */
5025 static int ext4_expand_extra_isize(struct inode *inode,
5026 unsigned int new_extra_isize,
5027 struct ext4_iloc iloc,
5028 handle_t *handle)
5029 {
5030 struct ext4_inode *raw_inode;
5031 struct ext4_xattr_ibody_header *header;
5032 struct ext4_xattr_entry *entry;
5033
5034 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5035 return 0;
5036
5037 raw_inode = ext4_raw_inode(&iloc);
5038
5039 header = IHDR(inode, raw_inode);
5040 entry = IFIRST(header);
5041
5042 /* No extended attributes present */
5043 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5044 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5045 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5046 new_extra_isize);
5047 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5048 return 0;
5049 }
5050
5051 /* try to expand with EAs present */
5052 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5053 raw_inode, handle);
5054 }
5055
5056 /*
5057 * What we do here is to mark the in-core inode as clean with respect to inode
5058 * dirtiness (it may still be data-dirty).
5059 * This means that the in-core inode may be reaped by prune_icache
5060 * without having to perform any I/O. This is a very good thing,
5061 * because *any* task may call prune_icache - even ones which
5062 * have a transaction open against a different journal.
5063 *
5064 * Is this cheating? Not really. Sure, we haven't written the
5065 * inode out, but prune_icache isn't a user-visible syncing function.
5066 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5067 * we start and wait on commits.
5068 *
5069 * Is this efficient/effective? Well, we're being nice to the system
5070 * by cleaning up our inodes proactively so they can be reaped
5071 * without I/O. But we are potentially leaving up to five seconds'
5072 * worth of inodes floating about which prune_icache wants us to
5073 * write out. One way to fix that would be to get prune_icache()
5074 * to do a write_super() to free up some memory. It has the desired
5075 * effect.
5076 */
5077 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5078 {
5079 struct ext4_iloc iloc;
5080 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5081 static unsigned int mnt_count;
5082 int err, ret;
5083
5084 might_sleep();
5085 err = ext4_reserve_inode_write(handle, inode, &iloc);
5086 if (ext4_handle_valid(handle) &&
5087 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5088 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5089 /*
5090 * We need extra buffer credits since we may write into EA block
5091 * with this same handle. If journal_extend fails, then it will
5092 * only result in a minor loss of functionality for that inode.
5093 * If this is felt to be critical, then e2fsck should be run to
5094 * force a large enough s_min_extra_isize.
5095 */
5096 if ((jbd2_journal_extend(handle,
5097 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5098 ret = ext4_expand_extra_isize(inode,
5099 sbi->s_want_extra_isize,
5100 iloc, handle);
5101 if (ret) {
5102 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5103 if (mnt_count !=
5104 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5105 ext4_warning(inode->i_sb, __func__,
5106 "Unable to expand inode %lu. Delete"
5107 " some EAs or run e2fsck.",
5108 inode->i_ino);
5109 mnt_count =
5110 le16_to_cpu(sbi->s_es->s_mnt_count);
5111 }
5112 }
5113 }
5114 }
5115 if (!err)
5116 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5117 return err;
5118 }
5119
5120 /*
5121 * ext4_dirty_inode() is called from __mark_inode_dirty()
5122 *
5123 * We're really interested in the case where a file is being extended.
5124 * i_size has been changed by generic_commit_write() and we thus need
5125 * to include the updated inode in the current transaction.
5126 *
5127 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5128 * are allocated to the file.
5129 *
5130 * If the inode is marked synchronous, we don't honour that here - doing
5131 * so would cause a commit on atime updates, which we don't bother doing.
5132 * We handle synchronous inodes at the highest possible level.
5133 */
5134 void ext4_dirty_inode(struct inode *inode)
5135 {
5136 handle_t *current_handle = ext4_journal_current_handle();
5137 handle_t *handle;
5138
5139 if (!ext4_handle_valid(current_handle)) {
5140 ext4_mark_inode_dirty(current_handle, inode);
5141 return;
5142 }
5143
5144 handle = ext4_journal_start(inode, 2);
5145 if (IS_ERR(handle))
5146 goto out;
5147 if (current_handle &&
5148 current_handle->h_transaction != handle->h_transaction) {
5149 /* This task has a transaction open against a different fs */
5150 printk(KERN_EMERG "%s: transactions do not match!\n",
5151 __func__);
5152 } else {
5153 jbd_debug(5, "marking dirty. outer handle=%p\n",
5154 current_handle);
5155 ext4_mark_inode_dirty(handle, inode);
5156 }
5157 ext4_journal_stop(handle);
5158 out:
5159 return;
5160 }
5161
5162 #if 0
5163 /*
5164 * Bind an inode's backing buffer_head into this transaction, to prevent
5165 * it from being flushed to disk early. Unlike
5166 * ext4_reserve_inode_write, this leaves behind no bh reference and
5167 * returns no iloc structure, so the caller needs to repeat the iloc
5168 * lookup to mark the inode dirty later.
5169 */
5170 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5171 {
5172 struct ext4_iloc iloc;
5173
5174 int err = 0;
5175 if (handle) {
5176 err = ext4_get_inode_loc(inode, &iloc);
5177 if (!err) {
5178 BUFFER_TRACE(iloc.bh, "get_write_access");
5179 err = jbd2_journal_get_write_access(handle, iloc.bh);
5180 if (!err)
5181 err = ext4_handle_dirty_metadata(handle,
5182 inode,
5183 iloc.bh);
5184 brelse(iloc.bh);
5185 }
5186 }
5187 ext4_std_error(inode->i_sb, err);
5188 return err;
5189 }
5190 #endif
5191
5192 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5193 {
5194 journal_t *journal;
5195 handle_t *handle;
5196 int err;
5197
5198 /*
5199 * We have to be very careful here: changing a data block's
5200 * journaling status dynamically is dangerous. If we write a
5201 * data block to the journal, change the status and then delete
5202 * that block, we risk forgetting to revoke the old log record
5203 * from the journal and so a subsequent replay can corrupt data.
5204 * So, first we make sure that the journal is empty and that
5205 * nobody is changing anything.
5206 */
5207
5208 journal = EXT4_JOURNAL(inode);
5209 if (!journal)
5210 return 0;
5211 if (is_journal_aborted(journal))
5212 return -EROFS;
5213
5214 jbd2_journal_lock_updates(journal);
5215 jbd2_journal_flush(journal);
5216
5217 /*
5218 * OK, there are no updates running now, and all cached data is
5219 * synced to disk. We are now in a completely consistent state
5220 * which doesn't have anything in the journal, and we know that
5221 * no filesystem updates are running, so it is safe to modify
5222 * the inode's in-core data-journaling state flag now.
5223 */
5224
5225 if (val)
5226 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5227 else
5228 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5229 ext4_set_aops(inode);
5230
5231 jbd2_journal_unlock_updates(journal);
5232
5233 /* Finally we can mark the inode as dirty. */
5234
5235 handle = ext4_journal_start(inode, 1);
5236 if (IS_ERR(handle))
5237 return PTR_ERR(handle);
5238
5239 err = ext4_mark_inode_dirty(handle, inode);
5240 ext4_handle_sync(handle);
5241 ext4_journal_stop(handle);
5242 ext4_std_error(inode->i_sb, err);
5243
5244 return err;
5245 }
5246
5247 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5248 {
5249 return !buffer_mapped(bh);
5250 }
5251
5252 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5253 {
5254 struct page *page = vmf->page;
5255 loff_t size;
5256 unsigned long len;
5257 int ret = -EINVAL;
5258 void *fsdata;
5259 struct file *file = vma->vm_file;
5260 struct inode *inode = file->f_path.dentry->d_inode;
5261 struct address_space *mapping = inode->i_mapping;
5262
5263 /*
5264 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5265 * get i_mutex because we are already holding mmap_sem.
5266 */
5267 down_read(&inode->i_alloc_sem);
5268 size = i_size_read(inode);
5269 if (page->mapping != mapping || size <= page_offset(page)
5270 || !PageUptodate(page)) {
5271 /* page got truncated from under us? */
5272 goto out_unlock;
5273 }
5274 ret = 0;
5275 if (PageMappedToDisk(page))
5276 goto out_unlock;
5277
5278 if (page->index == size >> PAGE_CACHE_SHIFT)
5279 len = size & ~PAGE_CACHE_MASK;
5280 else
5281 len = PAGE_CACHE_SIZE;
5282
5283 if (page_has_buffers(page)) {
5284 /* return if we have all the buffers mapped */
5285 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5286 ext4_bh_unmapped))
5287 goto out_unlock;
5288 }
5289 /*
5290 * OK, we need to fill the hole... Do write_begin write_end
5291 * to do block allocation/reservation.We are not holding
5292 * inode.i__mutex here. That allow * parallel write_begin,
5293 * write_end call. lock_page prevent this from happening
5294 * on the same page though
5295 */
5296 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5297 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5298 if (ret < 0)
5299 goto out_unlock;
5300 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5301 len, len, page, fsdata);
5302 if (ret < 0)
5303 goto out_unlock;
5304 ret = 0;
5305 out_unlock:
5306 if (ret)
5307 ret = VM_FAULT_SIGBUS;
5308 up_read(&inode->i_alloc_sem);
5309 return ret;
5310 }
This page took 0.135932 seconds and 4 git commands to generate.