seccomp: Add SECCOMP_RET_TRAP
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52 {
53 trace_ext4_begin_ordered_truncate(inode, new_size);
54 /*
55 * If jinode is zero, then we never opened the file for
56 * writing, so there's no need to call
57 * jbd2_journal_begin_ordered_truncate() since there's no
58 * outstanding writes we need to flush.
59 */
60 if (!EXT4_I(inode)->jinode)
61 return 0;
62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 EXT4_I(inode)->jinode,
64 new_size);
65 }
66
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 struct inode *inode, struct page *page, loff_t from,
76 loff_t length, int flags);
77
78 /*
79 * Test whether an inode is a fast symlink.
80 */
81 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 {
83 int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 (inode->i_sb->s_blocksize >> 9) : 0;
85
86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87 }
88
89 /*
90 * Restart the transaction associated with *handle. This does a commit,
91 * so before we call here everything must be consistently dirtied against
92 * this transaction.
93 */
94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95 int nblocks)
96 {
97 int ret;
98
99 /*
100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
101 * moment, get_block can be called only for blocks inside i_size since
102 * page cache has been already dropped and writes are blocked by
103 * i_mutex. So we can safely drop the i_data_sem here.
104 */
105 BUG_ON(EXT4_JOURNAL(inode) == NULL);
106 jbd_debug(2, "restarting handle %p\n", handle);
107 up_write(&EXT4_I(inode)->i_data_sem);
108 ret = ext4_journal_restart(handle, nblocks);
109 down_write(&EXT4_I(inode)->i_data_sem);
110 ext4_discard_preallocations(inode);
111
112 return ret;
113 }
114
115 /*
116 * Called at the last iput() if i_nlink is zero.
117 */
118 void ext4_evict_inode(struct inode *inode)
119 {
120 handle_t *handle;
121 int err;
122
123 trace_ext4_evict_inode(inode);
124
125 ext4_ioend_wait(inode);
126
127 if (inode->i_nlink) {
128 /*
129 * When journalling data dirty buffers are tracked only in the
130 * journal. So although mm thinks everything is clean and
131 * ready for reaping the inode might still have some pages to
132 * write in the running transaction or waiting to be
133 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 * (via truncate_inode_pages()) to discard these buffers can
135 * cause data loss. Also even if we did not discard these
136 * buffers, we would have no way to find them after the inode
137 * is reaped and thus user could see stale data if he tries to
138 * read them before the transaction is checkpointed. So be
139 * careful and force everything to disk here... We use
140 * ei->i_datasync_tid to store the newest transaction
141 * containing inode's data.
142 *
143 * Note that directories do not have this problem because they
144 * don't use page cache.
145 */
146 if (ext4_should_journal_data(inode) &&
147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150
151 jbd2_log_start_commit(journal, commit_tid);
152 jbd2_log_wait_commit(journal, commit_tid);
153 filemap_write_and_wait(&inode->i_data);
154 }
155 truncate_inode_pages(&inode->i_data, 0);
156 goto no_delete;
157 }
158
159 if (!is_bad_inode(inode))
160 dquot_initialize(inode);
161
162 if (ext4_should_order_data(inode))
163 ext4_begin_ordered_truncate(inode, 0);
164 truncate_inode_pages(&inode->i_data, 0);
165
166 if (is_bad_inode(inode))
167 goto no_delete;
168
169 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170 if (IS_ERR(handle)) {
171 ext4_std_error(inode->i_sb, PTR_ERR(handle));
172 /*
173 * If we're going to skip the normal cleanup, we still need to
174 * make sure that the in-core orphan linked list is properly
175 * cleaned up.
176 */
177 ext4_orphan_del(NULL, inode);
178 goto no_delete;
179 }
180
181 if (IS_SYNC(inode))
182 ext4_handle_sync(handle);
183 inode->i_size = 0;
184 err = ext4_mark_inode_dirty(handle, inode);
185 if (err) {
186 ext4_warning(inode->i_sb,
187 "couldn't mark inode dirty (err %d)", err);
188 goto stop_handle;
189 }
190 if (inode->i_blocks)
191 ext4_truncate(inode);
192
193 /*
194 * ext4_ext_truncate() doesn't reserve any slop when it
195 * restarts journal transactions; therefore there may not be
196 * enough credits left in the handle to remove the inode from
197 * the orphan list and set the dtime field.
198 */
199 if (!ext4_handle_has_enough_credits(handle, 3)) {
200 err = ext4_journal_extend(handle, 3);
201 if (err > 0)
202 err = ext4_journal_restart(handle, 3);
203 if (err != 0) {
204 ext4_warning(inode->i_sb,
205 "couldn't extend journal (err %d)", err);
206 stop_handle:
207 ext4_journal_stop(handle);
208 ext4_orphan_del(NULL, inode);
209 goto no_delete;
210 }
211 }
212
213 /*
214 * Kill off the orphan record which ext4_truncate created.
215 * AKPM: I think this can be inside the above `if'.
216 * Note that ext4_orphan_del() has to be able to cope with the
217 * deletion of a non-existent orphan - this is because we don't
218 * know if ext4_truncate() actually created an orphan record.
219 * (Well, we could do this if we need to, but heck - it works)
220 */
221 ext4_orphan_del(handle, inode);
222 EXT4_I(inode)->i_dtime = get_seconds();
223
224 /*
225 * One subtle ordering requirement: if anything has gone wrong
226 * (transaction abort, IO errors, whatever), then we can still
227 * do these next steps (the fs will already have been marked as
228 * having errors), but we can't free the inode if the mark_dirty
229 * fails.
230 */
231 if (ext4_mark_inode_dirty(handle, inode))
232 /* If that failed, just do the required in-core inode clear. */
233 ext4_clear_inode(inode);
234 else
235 ext4_free_inode(handle, inode);
236 ext4_journal_stop(handle);
237 return;
238 no_delete:
239 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
240 }
241
242 #ifdef CONFIG_QUOTA
243 qsize_t *ext4_get_reserved_space(struct inode *inode)
244 {
245 return &EXT4_I(inode)->i_reserved_quota;
246 }
247 #endif
248
249 /*
250 * Calculate the number of metadata blocks need to reserve
251 * to allocate a block located at @lblock
252 */
253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254 {
255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256 return ext4_ext_calc_metadata_amount(inode, lblock);
257
258 return ext4_ind_calc_metadata_amount(inode, lblock);
259 }
260
261 /*
262 * Called with i_data_sem down, which is important since we can call
263 * ext4_discard_preallocations() from here.
264 */
265 void ext4_da_update_reserve_space(struct inode *inode,
266 int used, int quota_claim)
267 {
268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269 struct ext4_inode_info *ei = EXT4_I(inode);
270
271 spin_lock(&ei->i_block_reservation_lock);
272 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273 if (unlikely(used > ei->i_reserved_data_blocks)) {
274 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275 "with only %d reserved data blocks",
276 __func__, inode->i_ino, used,
277 ei->i_reserved_data_blocks);
278 WARN_ON(1);
279 used = ei->i_reserved_data_blocks;
280 }
281
282 /* Update per-inode reservations */
283 ei->i_reserved_data_blocks -= used;
284 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286 used + ei->i_allocated_meta_blocks);
287 ei->i_allocated_meta_blocks = 0;
288
289 if (ei->i_reserved_data_blocks == 0) {
290 /*
291 * We can release all of the reserved metadata blocks
292 * only when we have written all of the delayed
293 * allocation blocks.
294 */
295 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296 ei->i_reserved_meta_blocks);
297 ei->i_reserved_meta_blocks = 0;
298 ei->i_da_metadata_calc_len = 0;
299 }
300 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301
302 /* Update quota subsystem for data blocks */
303 if (quota_claim)
304 dquot_claim_block(inode, EXT4_C2B(sbi, used));
305 else {
306 /*
307 * We did fallocate with an offset that is already delayed
308 * allocated. So on delayed allocated writeback we should
309 * not re-claim the quota for fallocated blocks.
310 */
311 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
312 }
313
314 /*
315 * If we have done all the pending block allocations and if
316 * there aren't any writers on the inode, we can discard the
317 * inode's preallocations.
318 */
319 if ((ei->i_reserved_data_blocks == 0) &&
320 (atomic_read(&inode->i_writecount) == 0))
321 ext4_discard_preallocations(inode);
322 }
323
324 static int __check_block_validity(struct inode *inode, const char *func,
325 unsigned int line,
326 struct ext4_map_blocks *map)
327 {
328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329 map->m_len)) {
330 ext4_error_inode(inode, func, line, map->m_pblk,
331 "lblock %lu mapped to illegal pblock "
332 "(length %d)", (unsigned long) map->m_lblk,
333 map->m_len);
334 return -EIO;
335 }
336 return 0;
337 }
338
339 #define check_block_validity(inode, map) \
340 __check_block_validity((inode), __func__, __LINE__, (map))
341
342 /*
343 * Return the number of contiguous dirty pages in a given inode
344 * starting at page frame idx.
345 */
346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347 unsigned int max_pages)
348 {
349 struct address_space *mapping = inode->i_mapping;
350 pgoff_t index;
351 struct pagevec pvec;
352 pgoff_t num = 0;
353 int i, nr_pages, done = 0;
354
355 if (max_pages == 0)
356 return 0;
357 pagevec_init(&pvec, 0);
358 while (!done) {
359 index = idx;
360 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361 PAGECACHE_TAG_DIRTY,
362 (pgoff_t)PAGEVEC_SIZE);
363 if (nr_pages == 0)
364 break;
365 for (i = 0; i < nr_pages; i++) {
366 struct page *page = pvec.pages[i];
367 struct buffer_head *bh, *head;
368
369 lock_page(page);
370 if (unlikely(page->mapping != mapping) ||
371 !PageDirty(page) ||
372 PageWriteback(page) ||
373 page->index != idx) {
374 done = 1;
375 unlock_page(page);
376 break;
377 }
378 if (page_has_buffers(page)) {
379 bh = head = page_buffers(page);
380 do {
381 if (!buffer_delay(bh) &&
382 !buffer_unwritten(bh))
383 done = 1;
384 bh = bh->b_this_page;
385 } while (!done && (bh != head));
386 }
387 unlock_page(page);
388 if (done)
389 break;
390 idx++;
391 num++;
392 if (num >= max_pages) {
393 done = 1;
394 break;
395 }
396 }
397 pagevec_release(&pvec);
398 }
399 return num;
400 }
401
402 /*
403 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
404 */
405 static void set_buffers_da_mapped(struct inode *inode,
406 struct ext4_map_blocks *map)
407 {
408 struct address_space *mapping = inode->i_mapping;
409 struct pagevec pvec;
410 int i, nr_pages;
411 pgoff_t index, end;
412
413 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414 end = (map->m_lblk + map->m_len - 1) >>
415 (PAGE_CACHE_SHIFT - inode->i_blkbits);
416
417 pagevec_init(&pvec, 0);
418 while (index <= end) {
419 nr_pages = pagevec_lookup(&pvec, mapping, index,
420 min(end - index + 1,
421 (pgoff_t)PAGEVEC_SIZE));
422 if (nr_pages == 0)
423 break;
424 for (i = 0; i < nr_pages; i++) {
425 struct page *page = pvec.pages[i];
426 struct buffer_head *bh, *head;
427
428 if (unlikely(page->mapping != mapping) ||
429 !PageDirty(page))
430 break;
431
432 if (page_has_buffers(page)) {
433 bh = head = page_buffers(page);
434 do {
435 set_buffer_da_mapped(bh);
436 bh = bh->b_this_page;
437 } while (bh != head);
438 }
439 index++;
440 }
441 pagevec_release(&pvec);
442 }
443 }
444
445 /*
446 * The ext4_map_blocks() function tries to look up the requested blocks,
447 * and returns if the blocks are already mapped.
448 *
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
452 *
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * based files
456 *
457 * On success, it returns the number of blocks being mapped or allocate.
458 * if create==0 and the blocks are pre-allocated and uninitialized block,
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, buffer head is unmapped
464 *
465 * It returns the error in case of allocation failure.
466 */
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
469 {
470 int retval;
471
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
476 /*
477 * Try to see if we can get the block without requesting a new
478 * file system block.
479 */
480 down_read((&EXT4_I(inode)->i_data_sem));
481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482 retval = ext4_ext_map_blocks(handle, inode, map, flags &
483 EXT4_GET_BLOCKS_KEEP_SIZE);
484 } else {
485 retval = ext4_ind_map_blocks(handle, inode, map, flags &
486 EXT4_GET_BLOCKS_KEEP_SIZE);
487 }
488 up_read((&EXT4_I(inode)->i_data_sem));
489
490 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491 int ret = check_block_validity(inode, map);
492 if (ret != 0)
493 return ret;
494 }
495
496 /* If it is only a block(s) look up */
497 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498 return retval;
499
500 /*
501 * Returns if the blocks have already allocated
502 *
503 * Note that if blocks have been preallocated
504 * ext4_ext_get_block() returns the create = 0
505 * with buffer head unmapped.
506 */
507 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508 return retval;
509
510 /*
511 * When we call get_blocks without the create flag, the
512 * BH_Unwritten flag could have gotten set if the blocks
513 * requested were part of a uninitialized extent. We need to
514 * clear this flag now that we are committed to convert all or
515 * part of the uninitialized extent to be an initialized
516 * extent. This is because we need to avoid the combination
517 * of BH_Unwritten and BH_Mapped flags being simultaneously
518 * set on the buffer_head.
519 */
520 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521
522 /*
523 * New blocks allocate and/or writing to uninitialized extent
524 * will possibly result in updating i_data, so we take
525 * the write lock of i_data_sem, and call get_blocks()
526 * with create == 1 flag.
527 */
528 down_write((&EXT4_I(inode)->i_data_sem));
529
530 /*
531 * if the caller is from delayed allocation writeout path
532 * we have already reserved fs blocks for allocation
533 * let the underlying get_block() function know to
534 * avoid double accounting
535 */
536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
538 /*
539 * We need to check for EXT4 here because migrate
540 * could have changed the inode type in between
541 */
542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543 retval = ext4_ext_map_blocks(handle, inode, map, flags);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags);
546
547 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
548 /*
549 * We allocated new blocks which will result in
550 * i_data's format changing. Force the migrate
551 * to fail by clearing migrate flags
552 */
553 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
554 }
555
556 /*
557 * Update reserved blocks/metadata blocks after successful
558 * block allocation which had been deferred till now. We don't
559 * support fallocate for non extent files. So we can update
560 * reserve space here.
561 */
562 if ((retval > 0) &&
563 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564 ext4_da_update_reserve_space(inode, retval, 1);
565 }
566 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
568
569 /* If we have successfully mapped the delayed allocated blocks,
570 * set the BH_Da_Mapped bit on them. Its important to do this
571 * under the protection of i_data_sem.
572 */
573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574 set_buffers_da_mapped(inode, map);
575 }
576
577 up_write((&EXT4_I(inode)->i_data_sem));
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 int ret = check_block_validity(inode, map);
580 if (ret != 0)
581 return ret;
582 }
583 return retval;
584 }
585
586 /* Maximum number of blocks we map for direct IO at once. */
587 #define DIO_MAX_BLOCKS 4096
588
589 static int _ext4_get_block(struct inode *inode, sector_t iblock,
590 struct buffer_head *bh, int flags)
591 {
592 handle_t *handle = ext4_journal_current_handle();
593 struct ext4_map_blocks map;
594 int ret = 0, started = 0;
595 int dio_credits;
596
597 map.m_lblk = iblock;
598 map.m_len = bh->b_size >> inode->i_blkbits;
599
600 if (flags && !handle) {
601 /* Direct IO write... */
602 if (map.m_len > DIO_MAX_BLOCKS)
603 map.m_len = DIO_MAX_BLOCKS;
604 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605 handle = ext4_journal_start(inode, dio_credits);
606 if (IS_ERR(handle)) {
607 ret = PTR_ERR(handle);
608 return ret;
609 }
610 started = 1;
611 }
612
613 ret = ext4_map_blocks(handle, inode, &map, flags);
614 if (ret > 0) {
615 map_bh(bh, inode->i_sb, map.m_pblk);
616 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
618 ret = 0;
619 }
620 if (started)
621 ext4_journal_stop(handle);
622 return ret;
623 }
624
625 int ext4_get_block(struct inode *inode, sector_t iblock,
626 struct buffer_head *bh, int create)
627 {
628 return _ext4_get_block(inode, iblock, bh,
629 create ? EXT4_GET_BLOCKS_CREATE : 0);
630 }
631
632 /*
633 * `handle' can be NULL if create is zero
634 */
635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
636 ext4_lblk_t block, int create, int *errp)
637 {
638 struct ext4_map_blocks map;
639 struct buffer_head *bh;
640 int fatal = 0, err;
641
642 J_ASSERT(handle != NULL || create == 0);
643
644 map.m_lblk = block;
645 map.m_len = 1;
646 err = ext4_map_blocks(handle, inode, &map,
647 create ? EXT4_GET_BLOCKS_CREATE : 0);
648
649 if (err < 0)
650 *errp = err;
651 if (err <= 0)
652 return NULL;
653 *errp = 0;
654
655 bh = sb_getblk(inode->i_sb, map.m_pblk);
656 if (!bh) {
657 *errp = -EIO;
658 return NULL;
659 }
660 if (map.m_flags & EXT4_MAP_NEW) {
661 J_ASSERT(create != 0);
662 J_ASSERT(handle != NULL);
663
664 /*
665 * Now that we do not always journal data, we should
666 * keep in mind whether this should always journal the
667 * new buffer as metadata. For now, regular file
668 * writes use ext4_get_block instead, so it's not a
669 * problem.
670 */
671 lock_buffer(bh);
672 BUFFER_TRACE(bh, "call get_create_access");
673 fatal = ext4_journal_get_create_access(handle, bh);
674 if (!fatal && !buffer_uptodate(bh)) {
675 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676 set_buffer_uptodate(bh);
677 }
678 unlock_buffer(bh);
679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680 err = ext4_handle_dirty_metadata(handle, inode, bh);
681 if (!fatal)
682 fatal = err;
683 } else {
684 BUFFER_TRACE(bh, "not a new buffer");
685 }
686 if (fatal) {
687 *errp = fatal;
688 brelse(bh);
689 bh = NULL;
690 }
691 return bh;
692 }
693
694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
695 ext4_lblk_t block, int create, int *err)
696 {
697 struct buffer_head *bh;
698
699 bh = ext4_getblk(handle, inode, block, create, err);
700 if (!bh)
701 return bh;
702 if (buffer_uptodate(bh))
703 return bh;
704 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705 wait_on_buffer(bh);
706 if (buffer_uptodate(bh))
707 return bh;
708 put_bh(bh);
709 *err = -EIO;
710 return NULL;
711 }
712
713 static int walk_page_buffers(handle_t *handle,
714 struct buffer_head *head,
715 unsigned from,
716 unsigned to,
717 int *partial,
718 int (*fn)(handle_t *handle,
719 struct buffer_head *bh))
720 {
721 struct buffer_head *bh;
722 unsigned block_start, block_end;
723 unsigned blocksize = head->b_size;
724 int err, ret = 0;
725 struct buffer_head *next;
726
727 for (bh = head, block_start = 0;
728 ret == 0 && (bh != head || !block_start);
729 block_start = block_end, bh = next) {
730 next = bh->b_this_page;
731 block_end = block_start + blocksize;
732 if (block_end <= from || block_start >= to) {
733 if (partial && !buffer_uptodate(bh))
734 *partial = 1;
735 continue;
736 }
737 err = (*fn)(handle, bh);
738 if (!ret)
739 ret = err;
740 }
741 return ret;
742 }
743
744 /*
745 * To preserve ordering, it is essential that the hole instantiation and
746 * the data write be encapsulated in a single transaction. We cannot
747 * close off a transaction and start a new one between the ext4_get_block()
748 * and the commit_write(). So doing the jbd2_journal_start at the start of
749 * prepare_write() is the right place.
750 *
751 * Also, this function can nest inside ext4_writepage() ->
752 * block_write_full_page(). In that case, we *know* that ext4_writepage()
753 * has generated enough buffer credits to do the whole page. So we won't
754 * block on the journal in that case, which is good, because the caller may
755 * be PF_MEMALLOC.
756 *
757 * By accident, ext4 can be reentered when a transaction is open via
758 * quota file writes. If we were to commit the transaction while thus
759 * reentered, there can be a deadlock - we would be holding a quota
760 * lock, and the commit would never complete if another thread had a
761 * transaction open and was blocking on the quota lock - a ranking
762 * violation.
763 *
764 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765 * will _not_ run commit under these circumstances because handle->h_ref
766 * is elevated. We'll still have enough credits for the tiny quotafile
767 * write.
768 */
769 static int do_journal_get_write_access(handle_t *handle,
770 struct buffer_head *bh)
771 {
772 int dirty = buffer_dirty(bh);
773 int ret;
774
775 if (!buffer_mapped(bh) || buffer_freed(bh))
776 return 0;
777 /*
778 * __block_write_begin() could have dirtied some buffers. Clean
779 * the dirty bit as jbd2_journal_get_write_access() could complain
780 * otherwise about fs integrity issues. Setting of the dirty bit
781 * by __block_write_begin() isn't a real problem here as we clear
782 * the bit before releasing a page lock and thus writeback cannot
783 * ever write the buffer.
784 */
785 if (dirty)
786 clear_buffer_dirty(bh);
787 ret = ext4_journal_get_write_access(handle, bh);
788 if (!ret && dirty)
789 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790 return ret;
791 }
792
793 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794 struct buffer_head *bh_result, int create);
795 static int ext4_write_begin(struct file *file, struct address_space *mapping,
796 loff_t pos, unsigned len, unsigned flags,
797 struct page **pagep, void **fsdata)
798 {
799 struct inode *inode = mapping->host;
800 int ret, needed_blocks;
801 handle_t *handle;
802 int retries = 0;
803 struct page *page;
804 pgoff_t index;
805 unsigned from, to;
806
807 trace_ext4_write_begin(inode, pos, len, flags);
808 /*
809 * Reserve one block more for addition to orphan list in case
810 * we allocate blocks but write fails for some reason
811 */
812 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813 index = pos >> PAGE_CACHE_SHIFT;
814 from = pos & (PAGE_CACHE_SIZE - 1);
815 to = from + len;
816
817 retry:
818 handle = ext4_journal_start(inode, needed_blocks);
819 if (IS_ERR(handle)) {
820 ret = PTR_ERR(handle);
821 goto out;
822 }
823
824 /* We cannot recurse into the filesystem as the transaction is already
825 * started */
826 flags |= AOP_FLAG_NOFS;
827
828 page = grab_cache_page_write_begin(mapping, index, flags);
829 if (!page) {
830 ext4_journal_stop(handle);
831 ret = -ENOMEM;
832 goto out;
833 }
834 *pagep = page;
835
836 if (ext4_should_dioread_nolock(inode))
837 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838 else
839 ret = __block_write_begin(page, pos, len, ext4_get_block);
840
841 if (!ret && ext4_should_journal_data(inode)) {
842 ret = walk_page_buffers(handle, page_buffers(page),
843 from, to, NULL, do_journal_get_write_access);
844 }
845
846 if (ret) {
847 unlock_page(page);
848 page_cache_release(page);
849 /*
850 * __block_write_begin may have instantiated a few blocks
851 * outside i_size. Trim these off again. Don't need
852 * i_size_read because we hold i_mutex.
853 *
854 * Add inode to orphan list in case we crash before
855 * truncate finishes
856 */
857 if (pos + len > inode->i_size && ext4_can_truncate(inode))
858 ext4_orphan_add(handle, inode);
859
860 ext4_journal_stop(handle);
861 if (pos + len > inode->i_size) {
862 ext4_truncate_failed_write(inode);
863 /*
864 * If truncate failed early the inode might
865 * still be on the orphan list; we need to
866 * make sure the inode is removed from the
867 * orphan list in that case.
868 */
869 if (inode->i_nlink)
870 ext4_orphan_del(NULL, inode);
871 }
872 }
873
874 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875 goto retry;
876 out:
877 return ret;
878 }
879
880 /* For write_end() in data=journal mode */
881 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
882 {
883 if (!buffer_mapped(bh) || buffer_freed(bh))
884 return 0;
885 set_buffer_uptodate(bh);
886 return ext4_handle_dirty_metadata(handle, NULL, bh);
887 }
888
889 static int ext4_generic_write_end(struct file *file,
890 struct address_space *mapping,
891 loff_t pos, unsigned len, unsigned copied,
892 struct page *page, void *fsdata)
893 {
894 int i_size_changed = 0;
895 struct inode *inode = mapping->host;
896 handle_t *handle = ext4_journal_current_handle();
897
898 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899
900 /*
901 * No need to use i_size_read() here, the i_size
902 * cannot change under us because we hold i_mutex.
903 *
904 * But it's important to update i_size while still holding page lock:
905 * page writeout could otherwise come in and zero beyond i_size.
906 */
907 if (pos + copied > inode->i_size) {
908 i_size_write(inode, pos + copied);
909 i_size_changed = 1;
910 }
911
912 if (pos + copied > EXT4_I(inode)->i_disksize) {
913 /* We need to mark inode dirty even if
914 * new_i_size is less that inode->i_size
915 * bu greater than i_disksize.(hint delalloc)
916 */
917 ext4_update_i_disksize(inode, (pos + copied));
918 i_size_changed = 1;
919 }
920 unlock_page(page);
921 page_cache_release(page);
922
923 /*
924 * Don't mark the inode dirty under page lock. First, it unnecessarily
925 * makes the holding time of page lock longer. Second, it forces lock
926 * ordering of page lock and transaction start for journaling
927 * filesystems.
928 */
929 if (i_size_changed)
930 ext4_mark_inode_dirty(handle, inode);
931
932 return copied;
933 }
934
935 /*
936 * We need to pick up the new inode size which generic_commit_write gave us
937 * `file' can be NULL - eg, when called from page_symlink().
938 *
939 * ext4 never places buffers on inode->i_mapping->private_list. metadata
940 * buffers are managed internally.
941 */
942 static int ext4_ordered_write_end(struct file *file,
943 struct address_space *mapping,
944 loff_t pos, unsigned len, unsigned copied,
945 struct page *page, void *fsdata)
946 {
947 handle_t *handle = ext4_journal_current_handle();
948 struct inode *inode = mapping->host;
949 int ret = 0, ret2;
950
951 trace_ext4_ordered_write_end(inode, pos, len, copied);
952 ret = ext4_jbd2_file_inode(handle, inode);
953
954 if (ret == 0) {
955 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
956 page, fsdata);
957 copied = ret2;
958 if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 /* if we have allocated more blocks and copied
960 * less. We will have blocks allocated outside
961 * inode->i_size. So truncate them
962 */
963 ext4_orphan_add(handle, inode);
964 if (ret2 < 0)
965 ret = ret2;
966 } else {
967 unlock_page(page);
968 page_cache_release(page);
969 }
970
971 ret2 = ext4_journal_stop(handle);
972 if (!ret)
973 ret = ret2;
974
975 if (pos + len > inode->i_size) {
976 ext4_truncate_failed_write(inode);
977 /*
978 * If truncate failed early the inode might still be
979 * on the orphan list; we need to make sure the inode
980 * is removed from the orphan list in that case.
981 */
982 if (inode->i_nlink)
983 ext4_orphan_del(NULL, inode);
984 }
985
986
987 return ret ? ret : copied;
988 }
989
990 static int ext4_writeback_write_end(struct file *file,
991 struct address_space *mapping,
992 loff_t pos, unsigned len, unsigned copied,
993 struct page *page, void *fsdata)
994 {
995 handle_t *handle = ext4_journal_current_handle();
996 struct inode *inode = mapping->host;
997 int ret = 0, ret2;
998
999 trace_ext4_writeback_write_end(inode, pos, len, copied);
1000 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1001 page, fsdata);
1002 copied = ret2;
1003 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004 /* if we have allocated more blocks and copied
1005 * less. We will have blocks allocated outside
1006 * inode->i_size. So truncate them
1007 */
1008 ext4_orphan_add(handle, inode);
1009
1010 if (ret2 < 0)
1011 ret = ret2;
1012
1013 ret2 = ext4_journal_stop(handle);
1014 if (!ret)
1015 ret = ret2;
1016
1017 if (pos + len > inode->i_size) {
1018 ext4_truncate_failed_write(inode);
1019 /*
1020 * If truncate failed early the inode might still be
1021 * on the orphan list; we need to make sure the inode
1022 * is removed from the orphan list in that case.
1023 */
1024 if (inode->i_nlink)
1025 ext4_orphan_del(NULL, inode);
1026 }
1027
1028 return ret ? ret : copied;
1029 }
1030
1031 static int ext4_journalled_write_end(struct file *file,
1032 struct address_space *mapping,
1033 loff_t pos, unsigned len, unsigned copied,
1034 struct page *page, void *fsdata)
1035 {
1036 handle_t *handle = ext4_journal_current_handle();
1037 struct inode *inode = mapping->host;
1038 int ret = 0, ret2;
1039 int partial = 0;
1040 unsigned from, to;
1041 loff_t new_i_size;
1042
1043 trace_ext4_journalled_write_end(inode, pos, len, copied);
1044 from = pos & (PAGE_CACHE_SIZE - 1);
1045 to = from + len;
1046
1047 BUG_ON(!ext4_handle_valid(handle));
1048
1049 if (copied < len) {
1050 if (!PageUptodate(page))
1051 copied = 0;
1052 page_zero_new_buffers(page, from+copied, to);
1053 }
1054
1055 ret = walk_page_buffers(handle, page_buffers(page), from,
1056 to, &partial, write_end_fn);
1057 if (!partial)
1058 SetPageUptodate(page);
1059 new_i_size = pos + copied;
1060 if (new_i_size > inode->i_size)
1061 i_size_write(inode, pos+copied);
1062 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064 if (new_i_size > EXT4_I(inode)->i_disksize) {
1065 ext4_update_i_disksize(inode, new_i_size);
1066 ret2 = ext4_mark_inode_dirty(handle, inode);
1067 if (!ret)
1068 ret = ret2;
1069 }
1070
1071 unlock_page(page);
1072 page_cache_release(page);
1073 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074 /* if we have allocated more blocks and copied
1075 * less. We will have blocks allocated outside
1076 * inode->i_size. So truncate them
1077 */
1078 ext4_orphan_add(handle, inode);
1079
1080 ret2 = ext4_journal_stop(handle);
1081 if (!ret)
1082 ret = ret2;
1083 if (pos + len > inode->i_size) {
1084 ext4_truncate_failed_write(inode);
1085 /*
1086 * If truncate failed early the inode might still be
1087 * on the orphan list; we need to make sure the inode
1088 * is removed from the orphan list in that case.
1089 */
1090 if (inode->i_nlink)
1091 ext4_orphan_del(NULL, inode);
1092 }
1093
1094 return ret ? ret : copied;
1095 }
1096
1097 /*
1098 * Reserve a single cluster located at lblock
1099 */
1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1101 {
1102 int retries = 0;
1103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104 struct ext4_inode_info *ei = EXT4_I(inode);
1105 unsigned int md_needed;
1106 int ret;
1107
1108 /*
1109 * recalculate the amount of metadata blocks to reserve
1110 * in order to allocate nrblocks
1111 * worse case is one extent per block
1112 */
1113 repeat:
1114 spin_lock(&ei->i_block_reservation_lock);
1115 md_needed = EXT4_NUM_B2C(sbi,
1116 ext4_calc_metadata_amount(inode, lblock));
1117 trace_ext4_da_reserve_space(inode, md_needed);
1118 spin_unlock(&ei->i_block_reservation_lock);
1119
1120 /*
1121 * We will charge metadata quota at writeout time; this saves
1122 * us from metadata over-estimation, though we may go over by
1123 * a small amount in the end. Here we just reserve for data.
1124 */
1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 if (ret)
1127 return ret;
1128 /*
1129 * We do still charge estimated metadata to the sb though;
1130 * we cannot afford to run out of free blocks.
1131 */
1132 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1134 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135 yield();
1136 goto repeat;
1137 }
1138 return -ENOSPC;
1139 }
1140 spin_lock(&ei->i_block_reservation_lock);
1141 ei->i_reserved_data_blocks++;
1142 ei->i_reserved_meta_blocks += md_needed;
1143 spin_unlock(&ei->i_block_reservation_lock);
1144
1145 return 0; /* success */
1146 }
1147
1148 static void ext4_da_release_space(struct inode *inode, int to_free)
1149 {
1150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151 struct ext4_inode_info *ei = EXT4_I(inode);
1152
1153 if (!to_free)
1154 return; /* Nothing to release, exit */
1155
1156 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1157
1158 trace_ext4_da_release_space(inode, to_free);
1159 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1160 /*
1161 * if there aren't enough reserved blocks, then the
1162 * counter is messed up somewhere. Since this
1163 * function is called from invalidate page, it's
1164 * harmless to return without any action.
1165 */
1166 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167 "ino %lu, to_free %d with only %d reserved "
1168 "data blocks", inode->i_ino, to_free,
1169 ei->i_reserved_data_blocks);
1170 WARN_ON(1);
1171 to_free = ei->i_reserved_data_blocks;
1172 }
1173 ei->i_reserved_data_blocks -= to_free;
1174
1175 if (ei->i_reserved_data_blocks == 0) {
1176 /*
1177 * We can release all of the reserved metadata blocks
1178 * only when we have written all of the delayed
1179 * allocation blocks.
1180 * Note that in case of bigalloc, i_reserved_meta_blocks,
1181 * i_reserved_data_blocks, etc. refer to number of clusters.
1182 */
1183 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184 ei->i_reserved_meta_blocks);
1185 ei->i_reserved_meta_blocks = 0;
1186 ei->i_da_metadata_calc_len = 0;
1187 }
1188
1189 /* update fs dirty data blocks counter */
1190 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1191
1192 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1193
1194 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 }
1196
1197 static void ext4_da_page_release_reservation(struct page *page,
1198 unsigned long offset)
1199 {
1200 int to_release = 0;
1201 struct buffer_head *head, *bh;
1202 unsigned int curr_off = 0;
1203 struct inode *inode = page->mapping->host;
1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 int num_clusters;
1206
1207 head = page_buffers(page);
1208 bh = head;
1209 do {
1210 unsigned int next_off = curr_off + bh->b_size;
1211
1212 if ((offset <= curr_off) && (buffer_delay(bh))) {
1213 to_release++;
1214 clear_buffer_delay(bh);
1215 clear_buffer_da_mapped(bh);
1216 }
1217 curr_off = next_off;
1218 } while ((bh = bh->b_this_page) != head);
1219
1220 /* If we have released all the blocks belonging to a cluster, then we
1221 * need to release the reserved space for that cluster. */
1222 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223 while (num_clusters > 0) {
1224 ext4_fsblk_t lblk;
1225 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226 ((num_clusters - 1) << sbi->s_cluster_bits);
1227 if (sbi->s_cluster_ratio == 1 ||
1228 !ext4_find_delalloc_cluster(inode, lblk, 1))
1229 ext4_da_release_space(inode, 1);
1230
1231 num_clusters--;
1232 }
1233 }
1234
1235 /*
1236 * Delayed allocation stuff
1237 */
1238
1239 /*
1240 * mpage_da_submit_io - walks through extent of pages and try to write
1241 * them with writepage() call back
1242 *
1243 * @mpd->inode: inode
1244 * @mpd->first_page: first page of the extent
1245 * @mpd->next_page: page after the last page of the extent
1246 *
1247 * By the time mpage_da_submit_io() is called we expect all blocks
1248 * to be allocated. this may be wrong if allocation failed.
1249 *
1250 * As pages are already locked by write_cache_pages(), we can't use it
1251 */
1252 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253 struct ext4_map_blocks *map)
1254 {
1255 struct pagevec pvec;
1256 unsigned long index, end;
1257 int ret = 0, err, nr_pages, i;
1258 struct inode *inode = mpd->inode;
1259 struct address_space *mapping = inode->i_mapping;
1260 loff_t size = i_size_read(inode);
1261 unsigned int len, block_start;
1262 struct buffer_head *bh, *page_bufs = NULL;
1263 int journal_data = ext4_should_journal_data(inode);
1264 sector_t pblock = 0, cur_logical = 0;
1265 struct ext4_io_submit io_submit;
1266
1267 BUG_ON(mpd->next_page <= mpd->first_page);
1268 memset(&io_submit, 0, sizeof(io_submit));
1269 /*
1270 * We need to start from the first_page to the next_page - 1
1271 * to make sure we also write the mapped dirty buffer_heads.
1272 * If we look at mpd->b_blocknr we would only be looking
1273 * at the currently mapped buffer_heads.
1274 */
1275 index = mpd->first_page;
1276 end = mpd->next_page - 1;
1277
1278 pagevec_init(&pvec, 0);
1279 while (index <= end) {
1280 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281 if (nr_pages == 0)
1282 break;
1283 for (i = 0; i < nr_pages; i++) {
1284 int commit_write = 0, skip_page = 0;
1285 struct page *page = pvec.pages[i];
1286
1287 index = page->index;
1288 if (index > end)
1289 break;
1290
1291 if (index == size >> PAGE_CACHE_SHIFT)
1292 len = size & ~PAGE_CACHE_MASK;
1293 else
1294 len = PAGE_CACHE_SIZE;
1295 if (map) {
1296 cur_logical = index << (PAGE_CACHE_SHIFT -
1297 inode->i_blkbits);
1298 pblock = map->m_pblk + (cur_logical -
1299 map->m_lblk);
1300 }
1301 index++;
1302
1303 BUG_ON(!PageLocked(page));
1304 BUG_ON(PageWriteback(page));
1305
1306 /*
1307 * If the page does not have buffers (for
1308 * whatever reason), try to create them using
1309 * __block_write_begin. If this fails,
1310 * skip the page and move on.
1311 */
1312 if (!page_has_buffers(page)) {
1313 if (__block_write_begin(page, 0, len,
1314 noalloc_get_block_write)) {
1315 skip_page:
1316 unlock_page(page);
1317 continue;
1318 }
1319 commit_write = 1;
1320 }
1321
1322 bh = page_bufs = page_buffers(page);
1323 block_start = 0;
1324 do {
1325 if (!bh)
1326 goto skip_page;
1327 if (map && (cur_logical >= map->m_lblk) &&
1328 (cur_logical <= (map->m_lblk +
1329 (map->m_len - 1)))) {
1330 if (buffer_delay(bh)) {
1331 clear_buffer_delay(bh);
1332 bh->b_blocknr = pblock;
1333 }
1334 if (buffer_da_mapped(bh))
1335 clear_buffer_da_mapped(bh);
1336 if (buffer_unwritten(bh) ||
1337 buffer_mapped(bh))
1338 BUG_ON(bh->b_blocknr != pblock);
1339 if (map->m_flags & EXT4_MAP_UNINIT)
1340 set_buffer_uninit(bh);
1341 clear_buffer_unwritten(bh);
1342 }
1343
1344 /*
1345 * skip page if block allocation undone and
1346 * block is dirty
1347 */
1348 if (ext4_bh_delay_or_unwritten(NULL, bh))
1349 skip_page = 1;
1350 bh = bh->b_this_page;
1351 block_start += bh->b_size;
1352 cur_logical++;
1353 pblock++;
1354 } while (bh != page_bufs);
1355
1356 if (skip_page)
1357 goto skip_page;
1358
1359 if (commit_write)
1360 /* mark the buffer_heads as dirty & uptodate */
1361 block_commit_write(page, 0, len);
1362
1363 clear_page_dirty_for_io(page);
1364 /*
1365 * Delalloc doesn't support data journalling,
1366 * but eventually maybe we'll lift this
1367 * restriction.
1368 */
1369 if (unlikely(journal_data && PageChecked(page)))
1370 err = __ext4_journalled_writepage(page, len);
1371 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372 err = ext4_bio_write_page(&io_submit, page,
1373 len, mpd->wbc);
1374 else if (buffer_uninit(page_bufs)) {
1375 ext4_set_bh_endio(page_bufs, inode);
1376 err = block_write_full_page_endio(page,
1377 noalloc_get_block_write,
1378 mpd->wbc, ext4_end_io_buffer_write);
1379 } else
1380 err = block_write_full_page(page,
1381 noalloc_get_block_write, mpd->wbc);
1382
1383 if (!err)
1384 mpd->pages_written++;
1385 /*
1386 * In error case, we have to continue because
1387 * remaining pages are still locked
1388 */
1389 if (ret == 0)
1390 ret = err;
1391 }
1392 pagevec_release(&pvec);
1393 }
1394 ext4_io_submit(&io_submit);
1395 return ret;
1396 }
1397
1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1399 {
1400 int nr_pages, i;
1401 pgoff_t index, end;
1402 struct pagevec pvec;
1403 struct inode *inode = mpd->inode;
1404 struct address_space *mapping = inode->i_mapping;
1405
1406 index = mpd->first_page;
1407 end = mpd->next_page - 1;
1408 while (index <= end) {
1409 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410 if (nr_pages == 0)
1411 break;
1412 for (i = 0; i < nr_pages; i++) {
1413 struct page *page = pvec.pages[i];
1414 if (page->index > end)
1415 break;
1416 BUG_ON(!PageLocked(page));
1417 BUG_ON(PageWriteback(page));
1418 block_invalidatepage(page, 0);
1419 ClearPageUptodate(page);
1420 unlock_page(page);
1421 }
1422 index = pvec.pages[nr_pages - 1]->index + 1;
1423 pagevec_release(&pvec);
1424 }
1425 return;
1426 }
1427
1428 static void ext4_print_free_blocks(struct inode *inode)
1429 {
1430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431 struct super_block *sb = inode->i_sb;
1432
1433 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1434 EXT4_C2B(EXT4_SB(inode->i_sb),
1435 ext4_count_free_clusters(inode->i_sb)));
1436 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1437 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1438 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1439 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1440 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1441 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1442 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1443 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1444 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1445 EXT4_I(inode)->i_reserved_data_blocks);
1446 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1447 EXT4_I(inode)->i_reserved_meta_blocks);
1448 return;
1449 }
1450
1451 /*
1452 * mpage_da_map_and_submit - go through given space, map them
1453 * if necessary, and then submit them for I/O
1454 *
1455 * @mpd - bh describing space
1456 *
1457 * The function skips space we know is already mapped to disk blocks.
1458 *
1459 */
1460 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1461 {
1462 int err, blks, get_blocks_flags;
1463 struct ext4_map_blocks map, *mapp = NULL;
1464 sector_t next = mpd->b_blocknr;
1465 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1466 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1467 handle_t *handle = NULL;
1468
1469 /*
1470 * If the blocks are mapped already, or we couldn't accumulate
1471 * any blocks, then proceed immediately to the submission stage.
1472 */
1473 if ((mpd->b_size == 0) ||
1474 ((mpd->b_state & (1 << BH_Mapped)) &&
1475 !(mpd->b_state & (1 << BH_Delay)) &&
1476 !(mpd->b_state & (1 << BH_Unwritten))))
1477 goto submit_io;
1478
1479 handle = ext4_journal_current_handle();
1480 BUG_ON(!handle);
1481
1482 /*
1483 * Call ext4_map_blocks() to allocate any delayed allocation
1484 * blocks, or to convert an uninitialized extent to be
1485 * initialized (in the case where we have written into
1486 * one or more preallocated blocks).
1487 *
1488 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1489 * indicate that we are on the delayed allocation path. This
1490 * affects functions in many different parts of the allocation
1491 * call path. This flag exists primarily because we don't
1492 * want to change *many* call functions, so ext4_map_blocks()
1493 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1494 * inode's allocation semaphore is taken.
1495 *
1496 * If the blocks in questions were delalloc blocks, set
1497 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1498 * variables are updated after the blocks have been allocated.
1499 */
1500 map.m_lblk = next;
1501 map.m_len = max_blocks;
1502 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1503 if (ext4_should_dioread_nolock(mpd->inode))
1504 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1505 if (mpd->b_state & (1 << BH_Delay))
1506 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1507
1508 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1509 if (blks < 0) {
1510 struct super_block *sb = mpd->inode->i_sb;
1511
1512 err = blks;
1513 /*
1514 * If get block returns EAGAIN or ENOSPC and there
1515 * appears to be free blocks we will just let
1516 * mpage_da_submit_io() unlock all of the pages.
1517 */
1518 if (err == -EAGAIN)
1519 goto submit_io;
1520
1521 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1522 mpd->retval = err;
1523 goto submit_io;
1524 }
1525
1526 /*
1527 * get block failure will cause us to loop in
1528 * writepages, because a_ops->writepage won't be able
1529 * to make progress. The page will be redirtied by
1530 * writepage and writepages will again try to write
1531 * the same.
1532 */
1533 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1534 ext4_msg(sb, KERN_CRIT,
1535 "delayed block allocation failed for inode %lu "
1536 "at logical offset %llu with max blocks %zd "
1537 "with error %d", mpd->inode->i_ino,
1538 (unsigned long long) next,
1539 mpd->b_size >> mpd->inode->i_blkbits, err);
1540 ext4_msg(sb, KERN_CRIT,
1541 "This should not happen!! Data will be lost\n");
1542 if (err == -ENOSPC)
1543 ext4_print_free_blocks(mpd->inode);
1544 }
1545 /* invalidate all the pages */
1546 ext4_da_block_invalidatepages(mpd);
1547
1548 /* Mark this page range as having been completed */
1549 mpd->io_done = 1;
1550 return;
1551 }
1552 BUG_ON(blks == 0);
1553
1554 mapp = &map;
1555 if (map.m_flags & EXT4_MAP_NEW) {
1556 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1557 int i;
1558
1559 for (i = 0; i < map.m_len; i++)
1560 unmap_underlying_metadata(bdev, map.m_pblk + i);
1561
1562 if (ext4_should_order_data(mpd->inode)) {
1563 err = ext4_jbd2_file_inode(handle, mpd->inode);
1564 if (err) {
1565 /* Only if the journal is aborted */
1566 mpd->retval = err;
1567 goto submit_io;
1568 }
1569 }
1570 }
1571
1572 /*
1573 * Update on-disk size along with block allocation.
1574 */
1575 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1576 if (disksize > i_size_read(mpd->inode))
1577 disksize = i_size_read(mpd->inode);
1578 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1579 ext4_update_i_disksize(mpd->inode, disksize);
1580 err = ext4_mark_inode_dirty(handle, mpd->inode);
1581 if (err)
1582 ext4_error(mpd->inode->i_sb,
1583 "Failed to mark inode %lu dirty",
1584 mpd->inode->i_ino);
1585 }
1586
1587 submit_io:
1588 mpage_da_submit_io(mpd, mapp);
1589 mpd->io_done = 1;
1590 }
1591
1592 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1593 (1 << BH_Delay) | (1 << BH_Unwritten))
1594
1595 /*
1596 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1597 *
1598 * @mpd->lbh - extent of blocks
1599 * @logical - logical number of the block in the file
1600 * @bh - bh of the block (used to access block's state)
1601 *
1602 * the function is used to collect contig. blocks in same state
1603 */
1604 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1605 sector_t logical, size_t b_size,
1606 unsigned long b_state)
1607 {
1608 sector_t next;
1609 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1610
1611 /*
1612 * XXX Don't go larger than mballoc is willing to allocate
1613 * This is a stopgap solution. We eventually need to fold
1614 * mpage_da_submit_io() into this function and then call
1615 * ext4_map_blocks() multiple times in a loop
1616 */
1617 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1618 goto flush_it;
1619
1620 /* check if thereserved journal credits might overflow */
1621 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1622 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1623 /*
1624 * With non-extent format we are limited by the journal
1625 * credit available. Total credit needed to insert
1626 * nrblocks contiguous blocks is dependent on the
1627 * nrblocks. So limit nrblocks.
1628 */
1629 goto flush_it;
1630 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1631 EXT4_MAX_TRANS_DATA) {
1632 /*
1633 * Adding the new buffer_head would make it cross the
1634 * allowed limit for which we have journal credit
1635 * reserved. So limit the new bh->b_size
1636 */
1637 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1638 mpd->inode->i_blkbits;
1639 /* we will do mpage_da_submit_io in the next loop */
1640 }
1641 }
1642 /*
1643 * First block in the extent
1644 */
1645 if (mpd->b_size == 0) {
1646 mpd->b_blocknr = logical;
1647 mpd->b_size = b_size;
1648 mpd->b_state = b_state & BH_FLAGS;
1649 return;
1650 }
1651
1652 next = mpd->b_blocknr + nrblocks;
1653 /*
1654 * Can we merge the block to our big extent?
1655 */
1656 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1657 mpd->b_size += b_size;
1658 return;
1659 }
1660
1661 flush_it:
1662 /*
1663 * We couldn't merge the block to our extent, so we
1664 * need to flush current extent and start new one
1665 */
1666 mpage_da_map_and_submit(mpd);
1667 return;
1668 }
1669
1670 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1671 {
1672 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1673 }
1674
1675 /*
1676 * This function is grabs code from the very beginning of
1677 * ext4_map_blocks, but assumes that the caller is from delayed write
1678 * time. This function looks up the requested blocks and sets the
1679 * buffer delay bit under the protection of i_data_sem.
1680 */
1681 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1682 struct ext4_map_blocks *map,
1683 struct buffer_head *bh)
1684 {
1685 int retval;
1686 sector_t invalid_block = ~((sector_t) 0xffff);
1687
1688 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1689 invalid_block = ~0;
1690
1691 map->m_flags = 0;
1692 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1693 "logical block %lu\n", inode->i_ino, map->m_len,
1694 (unsigned long) map->m_lblk);
1695 /*
1696 * Try to see if we can get the block without requesting a new
1697 * file system block.
1698 */
1699 down_read((&EXT4_I(inode)->i_data_sem));
1700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1701 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1702 else
1703 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1704
1705 if (retval == 0) {
1706 /*
1707 * XXX: __block_prepare_write() unmaps passed block,
1708 * is it OK?
1709 */
1710 /* If the block was allocated from previously allocated cluster,
1711 * then we dont need to reserve it again. */
1712 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1713 retval = ext4_da_reserve_space(inode, iblock);
1714 if (retval)
1715 /* not enough space to reserve */
1716 goto out_unlock;
1717 }
1718
1719 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1720 * and it should not appear on the bh->b_state.
1721 */
1722 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1723
1724 map_bh(bh, inode->i_sb, invalid_block);
1725 set_buffer_new(bh);
1726 set_buffer_delay(bh);
1727 }
1728
1729 out_unlock:
1730 up_read((&EXT4_I(inode)->i_data_sem));
1731
1732 return retval;
1733 }
1734
1735 /*
1736 * This is a special get_blocks_t callback which is used by
1737 * ext4_da_write_begin(). It will either return mapped block or
1738 * reserve space for a single block.
1739 *
1740 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1741 * We also have b_blocknr = -1 and b_bdev initialized properly
1742 *
1743 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1744 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1745 * initialized properly.
1746 */
1747 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1748 struct buffer_head *bh, int create)
1749 {
1750 struct ext4_map_blocks map;
1751 int ret = 0;
1752
1753 BUG_ON(create == 0);
1754 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1755
1756 map.m_lblk = iblock;
1757 map.m_len = 1;
1758
1759 /*
1760 * first, we need to know whether the block is allocated already
1761 * preallocated blocks are unmapped but should treated
1762 * the same as allocated blocks.
1763 */
1764 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1765 if (ret <= 0)
1766 return ret;
1767
1768 map_bh(bh, inode->i_sb, map.m_pblk);
1769 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1770
1771 if (buffer_unwritten(bh)) {
1772 /* A delayed write to unwritten bh should be marked
1773 * new and mapped. Mapped ensures that we don't do
1774 * get_block multiple times when we write to the same
1775 * offset and new ensures that we do proper zero out
1776 * for partial write.
1777 */
1778 set_buffer_new(bh);
1779 set_buffer_mapped(bh);
1780 }
1781 return 0;
1782 }
1783
1784 /*
1785 * This function is used as a standard get_block_t calback function
1786 * when there is no desire to allocate any blocks. It is used as a
1787 * callback function for block_write_begin() and block_write_full_page().
1788 * These functions should only try to map a single block at a time.
1789 *
1790 * Since this function doesn't do block allocations even if the caller
1791 * requests it by passing in create=1, it is critically important that
1792 * any caller checks to make sure that any buffer heads are returned
1793 * by this function are either all already mapped or marked for
1794 * delayed allocation before calling block_write_full_page(). Otherwise,
1795 * b_blocknr could be left unitialized, and the page write functions will
1796 * be taken by surprise.
1797 */
1798 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1799 struct buffer_head *bh_result, int create)
1800 {
1801 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1802 return _ext4_get_block(inode, iblock, bh_result, 0);
1803 }
1804
1805 static int bget_one(handle_t *handle, struct buffer_head *bh)
1806 {
1807 get_bh(bh);
1808 return 0;
1809 }
1810
1811 static int bput_one(handle_t *handle, struct buffer_head *bh)
1812 {
1813 put_bh(bh);
1814 return 0;
1815 }
1816
1817 static int __ext4_journalled_writepage(struct page *page,
1818 unsigned int len)
1819 {
1820 struct address_space *mapping = page->mapping;
1821 struct inode *inode = mapping->host;
1822 struct buffer_head *page_bufs;
1823 handle_t *handle = NULL;
1824 int ret = 0;
1825 int err;
1826
1827 ClearPageChecked(page);
1828 page_bufs = page_buffers(page);
1829 BUG_ON(!page_bufs);
1830 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1831 /* As soon as we unlock the page, it can go away, but we have
1832 * references to buffers so we are safe */
1833 unlock_page(page);
1834
1835 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1836 if (IS_ERR(handle)) {
1837 ret = PTR_ERR(handle);
1838 goto out;
1839 }
1840
1841 BUG_ON(!ext4_handle_valid(handle));
1842
1843 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1844 do_journal_get_write_access);
1845
1846 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1847 write_end_fn);
1848 if (ret == 0)
1849 ret = err;
1850 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1851 err = ext4_journal_stop(handle);
1852 if (!ret)
1853 ret = err;
1854
1855 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1856 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1857 out:
1858 return ret;
1859 }
1860
1861 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1862 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1863
1864 /*
1865 * Note that we don't need to start a transaction unless we're journaling data
1866 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1867 * need to file the inode to the transaction's list in ordered mode because if
1868 * we are writing back data added by write(), the inode is already there and if
1869 * we are writing back data modified via mmap(), no one guarantees in which
1870 * transaction the data will hit the disk. In case we are journaling data, we
1871 * cannot start transaction directly because transaction start ranks above page
1872 * lock so we have to do some magic.
1873 *
1874 * This function can get called via...
1875 * - ext4_da_writepages after taking page lock (have journal handle)
1876 * - journal_submit_inode_data_buffers (no journal handle)
1877 * - shrink_page_list via pdflush (no journal handle)
1878 * - grab_page_cache when doing write_begin (have journal handle)
1879 *
1880 * We don't do any block allocation in this function. If we have page with
1881 * multiple blocks we need to write those buffer_heads that are mapped. This
1882 * is important for mmaped based write. So if we do with blocksize 1K
1883 * truncate(f, 1024);
1884 * a = mmap(f, 0, 4096);
1885 * a[0] = 'a';
1886 * truncate(f, 4096);
1887 * we have in the page first buffer_head mapped via page_mkwrite call back
1888 * but other buffer_heads would be unmapped but dirty (dirty done via the
1889 * do_wp_page). So writepage should write the first block. If we modify
1890 * the mmap area beyond 1024 we will again get a page_fault and the
1891 * page_mkwrite callback will do the block allocation and mark the
1892 * buffer_heads mapped.
1893 *
1894 * We redirty the page if we have any buffer_heads that is either delay or
1895 * unwritten in the page.
1896 *
1897 * We can get recursively called as show below.
1898 *
1899 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1900 * ext4_writepage()
1901 *
1902 * But since we don't do any block allocation we should not deadlock.
1903 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1904 */
1905 static int ext4_writepage(struct page *page,
1906 struct writeback_control *wbc)
1907 {
1908 int ret = 0, commit_write = 0;
1909 loff_t size;
1910 unsigned int len;
1911 struct buffer_head *page_bufs = NULL;
1912 struct inode *inode = page->mapping->host;
1913
1914 trace_ext4_writepage(page);
1915 size = i_size_read(inode);
1916 if (page->index == size >> PAGE_CACHE_SHIFT)
1917 len = size & ~PAGE_CACHE_MASK;
1918 else
1919 len = PAGE_CACHE_SIZE;
1920
1921 /*
1922 * If the page does not have buffers (for whatever reason),
1923 * try to create them using __block_write_begin. If this
1924 * fails, redirty the page and move on.
1925 */
1926 if (!page_has_buffers(page)) {
1927 if (__block_write_begin(page, 0, len,
1928 noalloc_get_block_write)) {
1929 redirty_page:
1930 redirty_page_for_writepage(wbc, page);
1931 unlock_page(page);
1932 return 0;
1933 }
1934 commit_write = 1;
1935 }
1936 page_bufs = page_buffers(page);
1937 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1938 ext4_bh_delay_or_unwritten)) {
1939 /*
1940 * We don't want to do block allocation, so redirty
1941 * the page and return. We may reach here when we do
1942 * a journal commit via journal_submit_inode_data_buffers.
1943 * We can also reach here via shrink_page_list but it
1944 * should never be for direct reclaim so warn if that
1945 * happens
1946 */
1947 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1948 PF_MEMALLOC);
1949 goto redirty_page;
1950 }
1951 if (commit_write)
1952 /* now mark the buffer_heads as dirty and uptodate */
1953 block_commit_write(page, 0, len);
1954
1955 if (PageChecked(page) && ext4_should_journal_data(inode))
1956 /*
1957 * It's mmapped pagecache. Add buffers and journal it. There
1958 * doesn't seem much point in redirtying the page here.
1959 */
1960 return __ext4_journalled_writepage(page, len);
1961
1962 if (buffer_uninit(page_bufs)) {
1963 ext4_set_bh_endio(page_bufs, inode);
1964 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1965 wbc, ext4_end_io_buffer_write);
1966 } else
1967 ret = block_write_full_page(page, noalloc_get_block_write,
1968 wbc);
1969
1970 return ret;
1971 }
1972
1973 /*
1974 * This is called via ext4_da_writepages() to
1975 * calculate the total number of credits to reserve to fit
1976 * a single extent allocation into a single transaction,
1977 * ext4_da_writpeages() will loop calling this before
1978 * the block allocation.
1979 */
1980
1981 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1982 {
1983 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1984
1985 /*
1986 * With non-extent format the journal credit needed to
1987 * insert nrblocks contiguous block is dependent on
1988 * number of contiguous block. So we will limit
1989 * number of contiguous block to a sane value
1990 */
1991 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1992 (max_blocks > EXT4_MAX_TRANS_DATA))
1993 max_blocks = EXT4_MAX_TRANS_DATA;
1994
1995 return ext4_chunk_trans_blocks(inode, max_blocks);
1996 }
1997
1998 /*
1999 * write_cache_pages_da - walk the list of dirty pages of the given
2000 * address space and accumulate pages that need writing, and call
2001 * mpage_da_map_and_submit to map a single contiguous memory region
2002 * and then write them.
2003 */
2004 static int write_cache_pages_da(struct address_space *mapping,
2005 struct writeback_control *wbc,
2006 struct mpage_da_data *mpd,
2007 pgoff_t *done_index)
2008 {
2009 struct buffer_head *bh, *head;
2010 struct inode *inode = mapping->host;
2011 struct pagevec pvec;
2012 unsigned int nr_pages;
2013 sector_t logical;
2014 pgoff_t index, end;
2015 long nr_to_write = wbc->nr_to_write;
2016 int i, tag, ret = 0;
2017
2018 memset(mpd, 0, sizeof(struct mpage_da_data));
2019 mpd->wbc = wbc;
2020 mpd->inode = inode;
2021 pagevec_init(&pvec, 0);
2022 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2023 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2024
2025 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2026 tag = PAGECACHE_TAG_TOWRITE;
2027 else
2028 tag = PAGECACHE_TAG_DIRTY;
2029
2030 *done_index = index;
2031 while (index <= end) {
2032 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2033 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2034 if (nr_pages == 0)
2035 return 0;
2036
2037 for (i = 0; i < nr_pages; i++) {
2038 struct page *page = pvec.pages[i];
2039
2040 /*
2041 * At this point, the page may be truncated or
2042 * invalidated (changing page->mapping to NULL), or
2043 * even swizzled back from swapper_space to tmpfs file
2044 * mapping. However, page->index will not change
2045 * because we have a reference on the page.
2046 */
2047 if (page->index > end)
2048 goto out;
2049
2050 *done_index = page->index + 1;
2051
2052 /*
2053 * If we can't merge this page, and we have
2054 * accumulated an contiguous region, write it
2055 */
2056 if ((mpd->next_page != page->index) &&
2057 (mpd->next_page != mpd->first_page)) {
2058 mpage_da_map_and_submit(mpd);
2059 goto ret_extent_tail;
2060 }
2061
2062 lock_page(page);
2063
2064 /*
2065 * If the page is no longer dirty, or its
2066 * mapping no longer corresponds to inode we
2067 * are writing (which means it has been
2068 * truncated or invalidated), or the page is
2069 * already under writeback and we are not
2070 * doing a data integrity writeback, skip the page
2071 */
2072 if (!PageDirty(page) ||
2073 (PageWriteback(page) &&
2074 (wbc->sync_mode == WB_SYNC_NONE)) ||
2075 unlikely(page->mapping != mapping)) {
2076 unlock_page(page);
2077 continue;
2078 }
2079
2080 wait_on_page_writeback(page);
2081 BUG_ON(PageWriteback(page));
2082
2083 if (mpd->next_page != page->index)
2084 mpd->first_page = page->index;
2085 mpd->next_page = page->index + 1;
2086 logical = (sector_t) page->index <<
2087 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088
2089 if (!page_has_buffers(page)) {
2090 mpage_add_bh_to_extent(mpd, logical,
2091 PAGE_CACHE_SIZE,
2092 (1 << BH_Dirty) | (1 << BH_Uptodate));
2093 if (mpd->io_done)
2094 goto ret_extent_tail;
2095 } else {
2096 /*
2097 * Page with regular buffer heads,
2098 * just add all dirty ones
2099 */
2100 head = page_buffers(page);
2101 bh = head;
2102 do {
2103 BUG_ON(buffer_locked(bh));
2104 /*
2105 * We need to try to allocate
2106 * unmapped blocks in the same page.
2107 * Otherwise we won't make progress
2108 * with the page in ext4_writepage
2109 */
2110 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2111 mpage_add_bh_to_extent(mpd, logical,
2112 bh->b_size,
2113 bh->b_state);
2114 if (mpd->io_done)
2115 goto ret_extent_tail;
2116 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2117 /*
2118 * mapped dirty buffer. We need
2119 * to update the b_state
2120 * because we look at b_state
2121 * in mpage_da_map_blocks. We
2122 * don't update b_size because
2123 * if we find an unmapped
2124 * buffer_head later we need to
2125 * use the b_state flag of that
2126 * buffer_head.
2127 */
2128 if (mpd->b_size == 0)
2129 mpd->b_state = bh->b_state & BH_FLAGS;
2130 }
2131 logical++;
2132 } while ((bh = bh->b_this_page) != head);
2133 }
2134
2135 if (nr_to_write > 0) {
2136 nr_to_write--;
2137 if (nr_to_write == 0 &&
2138 wbc->sync_mode == WB_SYNC_NONE)
2139 /*
2140 * We stop writing back only if we are
2141 * not doing integrity sync. In case of
2142 * integrity sync we have to keep going
2143 * because someone may be concurrently
2144 * dirtying pages, and we might have
2145 * synced a lot of newly appeared dirty
2146 * pages, but have not synced all of the
2147 * old dirty pages.
2148 */
2149 goto out;
2150 }
2151 }
2152 pagevec_release(&pvec);
2153 cond_resched();
2154 }
2155 return 0;
2156 ret_extent_tail:
2157 ret = MPAGE_DA_EXTENT_TAIL;
2158 out:
2159 pagevec_release(&pvec);
2160 cond_resched();
2161 return ret;
2162 }
2163
2164
2165 static int ext4_da_writepages(struct address_space *mapping,
2166 struct writeback_control *wbc)
2167 {
2168 pgoff_t index;
2169 int range_whole = 0;
2170 handle_t *handle = NULL;
2171 struct mpage_da_data mpd;
2172 struct inode *inode = mapping->host;
2173 int pages_written = 0;
2174 unsigned int max_pages;
2175 int range_cyclic, cycled = 1, io_done = 0;
2176 int needed_blocks, ret = 0;
2177 long desired_nr_to_write, nr_to_writebump = 0;
2178 loff_t range_start = wbc->range_start;
2179 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2180 pgoff_t done_index = 0;
2181 pgoff_t end;
2182 struct blk_plug plug;
2183
2184 trace_ext4_da_writepages(inode, wbc);
2185
2186 /*
2187 * No pages to write? This is mainly a kludge to avoid starting
2188 * a transaction for special inodes like journal inode on last iput()
2189 * because that could violate lock ordering on umount
2190 */
2191 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2192 return 0;
2193
2194 /*
2195 * If the filesystem has aborted, it is read-only, so return
2196 * right away instead of dumping stack traces later on that
2197 * will obscure the real source of the problem. We test
2198 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2199 * the latter could be true if the filesystem is mounted
2200 * read-only, and in that case, ext4_da_writepages should
2201 * *never* be called, so if that ever happens, we would want
2202 * the stack trace.
2203 */
2204 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2205 return -EROFS;
2206
2207 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2208 range_whole = 1;
2209
2210 range_cyclic = wbc->range_cyclic;
2211 if (wbc->range_cyclic) {
2212 index = mapping->writeback_index;
2213 if (index)
2214 cycled = 0;
2215 wbc->range_start = index << PAGE_CACHE_SHIFT;
2216 wbc->range_end = LLONG_MAX;
2217 wbc->range_cyclic = 0;
2218 end = -1;
2219 } else {
2220 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2221 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2222 }
2223
2224 /*
2225 * This works around two forms of stupidity. The first is in
2226 * the writeback code, which caps the maximum number of pages
2227 * written to be 1024 pages. This is wrong on multiple
2228 * levels; different architectues have a different page size,
2229 * which changes the maximum amount of data which gets
2230 * written. Secondly, 4 megabytes is way too small. XFS
2231 * forces this value to be 16 megabytes by multiplying
2232 * nr_to_write parameter by four, and then relies on its
2233 * allocator to allocate larger extents to make them
2234 * contiguous. Unfortunately this brings us to the second
2235 * stupidity, which is that ext4's mballoc code only allocates
2236 * at most 2048 blocks. So we force contiguous writes up to
2237 * the number of dirty blocks in the inode, or
2238 * sbi->max_writeback_mb_bump whichever is smaller.
2239 */
2240 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2241 if (!range_cyclic && range_whole) {
2242 if (wbc->nr_to_write == LONG_MAX)
2243 desired_nr_to_write = wbc->nr_to_write;
2244 else
2245 desired_nr_to_write = wbc->nr_to_write * 8;
2246 } else
2247 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2248 max_pages);
2249 if (desired_nr_to_write > max_pages)
2250 desired_nr_to_write = max_pages;
2251
2252 if (wbc->nr_to_write < desired_nr_to_write) {
2253 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2254 wbc->nr_to_write = desired_nr_to_write;
2255 }
2256
2257 retry:
2258 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2259 tag_pages_for_writeback(mapping, index, end);
2260
2261 blk_start_plug(&plug);
2262 while (!ret && wbc->nr_to_write > 0) {
2263
2264 /*
2265 * we insert one extent at a time. So we need
2266 * credit needed for single extent allocation.
2267 * journalled mode is currently not supported
2268 * by delalloc
2269 */
2270 BUG_ON(ext4_should_journal_data(inode));
2271 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2272
2273 /* start a new transaction*/
2274 handle = ext4_journal_start(inode, needed_blocks);
2275 if (IS_ERR(handle)) {
2276 ret = PTR_ERR(handle);
2277 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2278 "%ld pages, ino %lu; err %d", __func__,
2279 wbc->nr_to_write, inode->i_ino, ret);
2280 blk_finish_plug(&plug);
2281 goto out_writepages;
2282 }
2283
2284 /*
2285 * Now call write_cache_pages_da() to find the next
2286 * contiguous region of logical blocks that need
2287 * blocks to be allocated by ext4 and submit them.
2288 */
2289 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2290 /*
2291 * If we have a contiguous extent of pages and we
2292 * haven't done the I/O yet, map the blocks and submit
2293 * them for I/O.
2294 */
2295 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2296 mpage_da_map_and_submit(&mpd);
2297 ret = MPAGE_DA_EXTENT_TAIL;
2298 }
2299 trace_ext4_da_write_pages(inode, &mpd);
2300 wbc->nr_to_write -= mpd.pages_written;
2301
2302 ext4_journal_stop(handle);
2303
2304 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2305 /* commit the transaction which would
2306 * free blocks released in the transaction
2307 * and try again
2308 */
2309 jbd2_journal_force_commit_nested(sbi->s_journal);
2310 ret = 0;
2311 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2312 /*
2313 * Got one extent now try with rest of the pages.
2314 * If mpd.retval is set -EIO, journal is aborted.
2315 * So we don't need to write any more.
2316 */
2317 pages_written += mpd.pages_written;
2318 ret = mpd.retval;
2319 io_done = 1;
2320 } else if (wbc->nr_to_write)
2321 /*
2322 * There is no more writeout needed
2323 * or we requested for a noblocking writeout
2324 * and we found the device congested
2325 */
2326 break;
2327 }
2328 blk_finish_plug(&plug);
2329 if (!io_done && !cycled) {
2330 cycled = 1;
2331 index = 0;
2332 wbc->range_start = index << PAGE_CACHE_SHIFT;
2333 wbc->range_end = mapping->writeback_index - 1;
2334 goto retry;
2335 }
2336
2337 /* Update index */
2338 wbc->range_cyclic = range_cyclic;
2339 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2340 /*
2341 * set the writeback_index so that range_cyclic
2342 * mode will write it back later
2343 */
2344 mapping->writeback_index = done_index;
2345
2346 out_writepages:
2347 wbc->nr_to_write -= nr_to_writebump;
2348 wbc->range_start = range_start;
2349 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2350 return ret;
2351 }
2352
2353 #define FALL_BACK_TO_NONDELALLOC 1
2354 static int ext4_nonda_switch(struct super_block *sb)
2355 {
2356 s64 free_blocks, dirty_blocks;
2357 struct ext4_sb_info *sbi = EXT4_SB(sb);
2358
2359 /*
2360 * switch to non delalloc mode if we are running low
2361 * on free block. The free block accounting via percpu
2362 * counters can get slightly wrong with percpu_counter_batch getting
2363 * accumulated on each CPU without updating global counters
2364 * Delalloc need an accurate free block accounting. So switch
2365 * to non delalloc when we are near to error range.
2366 */
2367 free_blocks = EXT4_C2B(sbi,
2368 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2369 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2370 if (2 * free_blocks < 3 * dirty_blocks ||
2371 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2372 /*
2373 * free block count is less than 150% of dirty blocks
2374 * or free blocks is less than watermark
2375 */
2376 return 1;
2377 }
2378 /*
2379 * Even if we don't switch but are nearing capacity,
2380 * start pushing delalloc when 1/2 of free blocks are dirty.
2381 */
2382 if (free_blocks < 2 * dirty_blocks)
2383 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2384
2385 return 0;
2386 }
2387
2388 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2389 loff_t pos, unsigned len, unsigned flags,
2390 struct page **pagep, void **fsdata)
2391 {
2392 int ret, retries = 0;
2393 struct page *page;
2394 pgoff_t index;
2395 struct inode *inode = mapping->host;
2396 handle_t *handle;
2397
2398 index = pos >> PAGE_CACHE_SHIFT;
2399
2400 if (ext4_nonda_switch(inode->i_sb)) {
2401 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2402 return ext4_write_begin(file, mapping, pos,
2403 len, flags, pagep, fsdata);
2404 }
2405 *fsdata = (void *)0;
2406 trace_ext4_da_write_begin(inode, pos, len, flags);
2407 retry:
2408 /*
2409 * With delayed allocation, we don't log the i_disksize update
2410 * if there is delayed block allocation. But we still need
2411 * to journalling the i_disksize update if writes to the end
2412 * of file which has an already mapped buffer.
2413 */
2414 handle = ext4_journal_start(inode, 1);
2415 if (IS_ERR(handle)) {
2416 ret = PTR_ERR(handle);
2417 goto out;
2418 }
2419 /* We cannot recurse into the filesystem as the transaction is already
2420 * started */
2421 flags |= AOP_FLAG_NOFS;
2422
2423 page = grab_cache_page_write_begin(mapping, index, flags);
2424 if (!page) {
2425 ext4_journal_stop(handle);
2426 ret = -ENOMEM;
2427 goto out;
2428 }
2429 *pagep = page;
2430
2431 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2432 if (ret < 0) {
2433 unlock_page(page);
2434 ext4_journal_stop(handle);
2435 page_cache_release(page);
2436 /*
2437 * block_write_begin may have instantiated a few blocks
2438 * outside i_size. Trim these off again. Don't need
2439 * i_size_read because we hold i_mutex.
2440 */
2441 if (pos + len > inode->i_size)
2442 ext4_truncate_failed_write(inode);
2443 }
2444
2445 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2446 goto retry;
2447 out:
2448 return ret;
2449 }
2450
2451 /*
2452 * Check if we should update i_disksize
2453 * when write to the end of file but not require block allocation
2454 */
2455 static int ext4_da_should_update_i_disksize(struct page *page,
2456 unsigned long offset)
2457 {
2458 struct buffer_head *bh;
2459 struct inode *inode = page->mapping->host;
2460 unsigned int idx;
2461 int i;
2462
2463 bh = page_buffers(page);
2464 idx = offset >> inode->i_blkbits;
2465
2466 for (i = 0; i < idx; i++)
2467 bh = bh->b_this_page;
2468
2469 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2470 return 0;
2471 return 1;
2472 }
2473
2474 static int ext4_da_write_end(struct file *file,
2475 struct address_space *mapping,
2476 loff_t pos, unsigned len, unsigned copied,
2477 struct page *page, void *fsdata)
2478 {
2479 struct inode *inode = mapping->host;
2480 int ret = 0, ret2;
2481 handle_t *handle = ext4_journal_current_handle();
2482 loff_t new_i_size;
2483 unsigned long start, end;
2484 int write_mode = (int)(unsigned long)fsdata;
2485
2486 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2487 switch (ext4_inode_journal_mode(inode)) {
2488 case EXT4_INODE_ORDERED_DATA_MODE:
2489 return ext4_ordered_write_end(file, mapping, pos,
2490 len, copied, page, fsdata);
2491 case EXT4_INODE_WRITEBACK_DATA_MODE:
2492 return ext4_writeback_write_end(file, mapping, pos,
2493 len, copied, page, fsdata);
2494 default:
2495 BUG();
2496 }
2497 }
2498
2499 trace_ext4_da_write_end(inode, pos, len, copied);
2500 start = pos & (PAGE_CACHE_SIZE - 1);
2501 end = start + copied - 1;
2502
2503 /*
2504 * generic_write_end() will run mark_inode_dirty() if i_size
2505 * changes. So let's piggyback the i_disksize mark_inode_dirty
2506 * into that.
2507 */
2508
2509 new_i_size = pos + copied;
2510 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2511 if (ext4_da_should_update_i_disksize(page, end)) {
2512 down_write(&EXT4_I(inode)->i_data_sem);
2513 if (new_i_size > EXT4_I(inode)->i_disksize) {
2514 /*
2515 * Updating i_disksize when extending file
2516 * without needing block allocation
2517 */
2518 if (ext4_should_order_data(inode))
2519 ret = ext4_jbd2_file_inode(handle,
2520 inode);
2521
2522 EXT4_I(inode)->i_disksize = new_i_size;
2523 }
2524 up_write(&EXT4_I(inode)->i_data_sem);
2525 /* We need to mark inode dirty even if
2526 * new_i_size is less that inode->i_size
2527 * bu greater than i_disksize.(hint delalloc)
2528 */
2529 ext4_mark_inode_dirty(handle, inode);
2530 }
2531 }
2532 ret2 = generic_write_end(file, mapping, pos, len, copied,
2533 page, fsdata);
2534 copied = ret2;
2535 if (ret2 < 0)
2536 ret = ret2;
2537 ret2 = ext4_journal_stop(handle);
2538 if (!ret)
2539 ret = ret2;
2540
2541 return ret ? ret : copied;
2542 }
2543
2544 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2545 {
2546 /*
2547 * Drop reserved blocks
2548 */
2549 BUG_ON(!PageLocked(page));
2550 if (!page_has_buffers(page))
2551 goto out;
2552
2553 ext4_da_page_release_reservation(page, offset);
2554
2555 out:
2556 ext4_invalidatepage(page, offset);
2557
2558 return;
2559 }
2560
2561 /*
2562 * Force all delayed allocation blocks to be allocated for a given inode.
2563 */
2564 int ext4_alloc_da_blocks(struct inode *inode)
2565 {
2566 trace_ext4_alloc_da_blocks(inode);
2567
2568 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2569 !EXT4_I(inode)->i_reserved_meta_blocks)
2570 return 0;
2571
2572 /*
2573 * We do something simple for now. The filemap_flush() will
2574 * also start triggering a write of the data blocks, which is
2575 * not strictly speaking necessary (and for users of
2576 * laptop_mode, not even desirable). However, to do otherwise
2577 * would require replicating code paths in:
2578 *
2579 * ext4_da_writepages() ->
2580 * write_cache_pages() ---> (via passed in callback function)
2581 * __mpage_da_writepage() -->
2582 * mpage_add_bh_to_extent()
2583 * mpage_da_map_blocks()
2584 *
2585 * The problem is that write_cache_pages(), located in
2586 * mm/page-writeback.c, marks pages clean in preparation for
2587 * doing I/O, which is not desirable if we're not planning on
2588 * doing I/O at all.
2589 *
2590 * We could call write_cache_pages(), and then redirty all of
2591 * the pages by calling redirty_page_for_writepage() but that
2592 * would be ugly in the extreme. So instead we would need to
2593 * replicate parts of the code in the above functions,
2594 * simplifying them because we wouldn't actually intend to
2595 * write out the pages, but rather only collect contiguous
2596 * logical block extents, call the multi-block allocator, and
2597 * then update the buffer heads with the block allocations.
2598 *
2599 * For now, though, we'll cheat by calling filemap_flush(),
2600 * which will map the blocks, and start the I/O, but not
2601 * actually wait for the I/O to complete.
2602 */
2603 return filemap_flush(inode->i_mapping);
2604 }
2605
2606 /*
2607 * bmap() is special. It gets used by applications such as lilo and by
2608 * the swapper to find the on-disk block of a specific piece of data.
2609 *
2610 * Naturally, this is dangerous if the block concerned is still in the
2611 * journal. If somebody makes a swapfile on an ext4 data-journaling
2612 * filesystem and enables swap, then they may get a nasty shock when the
2613 * data getting swapped to that swapfile suddenly gets overwritten by
2614 * the original zero's written out previously to the journal and
2615 * awaiting writeback in the kernel's buffer cache.
2616 *
2617 * So, if we see any bmap calls here on a modified, data-journaled file,
2618 * take extra steps to flush any blocks which might be in the cache.
2619 */
2620 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2621 {
2622 struct inode *inode = mapping->host;
2623 journal_t *journal;
2624 int err;
2625
2626 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2627 test_opt(inode->i_sb, DELALLOC)) {
2628 /*
2629 * With delalloc we want to sync the file
2630 * so that we can make sure we allocate
2631 * blocks for file
2632 */
2633 filemap_write_and_wait(mapping);
2634 }
2635
2636 if (EXT4_JOURNAL(inode) &&
2637 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2638 /*
2639 * This is a REALLY heavyweight approach, but the use of
2640 * bmap on dirty files is expected to be extremely rare:
2641 * only if we run lilo or swapon on a freshly made file
2642 * do we expect this to happen.
2643 *
2644 * (bmap requires CAP_SYS_RAWIO so this does not
2645 * represent an unprivileged user DOS attack --- we'd be
2646 * in trouble if mortal users could trigger this path at
2647 * will.)
2648 *
2649 * NB. EXT4_STATE_JDATA is not set on files other than
2650 * regular files. If somebody wants to bmap a directory
2651 * or symlink and gets confused because the buffer
2652 * hasn't yet been flushed to disk, they deserve
2653 * everything they get.
2654 */
2655
2656 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2657 journal = EXT4_JOURNAL(inode);
2658 jbd2_journal_lock_updates(journal);
2659 err = jbd2_journal_flush(journal);
2660 jbd2_journal_unlock_updates(journal);
2661
2662 if (err)
2663 return 0;
2664 }
2665
2666 return generic_block_bmap(mapping, block, ext4_get_block);
2667 }
2668
2669 static int ext4_readpage(struct file *file, struct page *page)
2670 {
2671 trace_ext4_readpage(page);
2672 return mpage_readpage(page, ext4_get_block);
2673 }
2674
2675 static int
2676 ext4_readpages(struct file *file, struct address_space *mapping,
2677 struct list_head *pages, unsigned nr_pages)
2678 {
2679 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2680 }
2681
2682 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2683 {
2684 struct buffer_head *head, *bh;
2685 unsigned int curr_off = 0;
2686
2687 if (!page_has_buffers(page))
2688 return;
2689 head = bh = page_buffers(page);
2690 do {
2691 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2692 && bh->b_private) {
2693 ext4_free_io_end(bh->b_private);
2694 bh->b_private = NULL;
2695 bh->b_end_io = NULL;
2696 }
2697 curr_off = curr_off + bh->b_size;
2698 bh = bh->b_this_page;
2699 } while (bh != head);
2700 }
2701
2702 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2703 {
2704 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2705
2706 trace_ext4_invalidatepage(page, offset);
2707
2708 /*
2709 * free any io_end structure allocated for buffers to be discarded
2710 */
2711 if (ext4_should_dioread_nolock(page->mapping->host))
2712 ext4_invalidatepage_free_endio(page, offset);
2713 /*
2714 * If it's a full truncate we just forget about the pending dirtying
2715 */
2716 if (offset == 0)
2717 ClearPageChecked(page);
2718
2719 if (journal)
2720 jbd2_journal_invalidatepage(journal, page, offset);
2721 else
2722 block_invalidatepage(page, offset);
2723 }
2724
2725 static int ext4_releasepage(struct page *page, gfp_t wait)
2726 {
2727 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2728
2729 trace_ext4_releasepage(page);
2730
2731 WARN_ON(PageChecked(page));
2732 if (!page_has_buffers(page))
2733 return 0;
2734 if (journal)
2735 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2736 else
2737 return try_to_free_buffers(page);
2738 }
2739
2740 /*
2741 * ext4_get_block used when preparing for a DIO write or buffer write.
2742 * We allocate an uinitialized extent if blocks haven't been allocated.
2743 * The extent will be converted to initialized after the IO is complete.
2744 */
2745 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2746 struct buffer_head *bh_result, int create)
2747 {
2748 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2749 inode->i_ino, create);
2750 return _ext4_get_block(inode, iblock, bh_result,
2751 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2752 }
2753
2754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2755 ssize_t size, void *private, int ret,
2756 bool is_async)
2757 {
2758 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2759 ext4_io_end_t *io_end = iocb->private;
2760 struct workqueue_struct *wq;
2761 unsigned long flags;
2762 struct ext4_inode_info *ei;
2763
2764 /* if not async direct IO or dio with 0 bytes write, just return */
2765 if (!io_end || !size)
2766 goto out;
2767
2768 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2769 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2770 iocb->private, io_end->inode->i_ino, iocb, offset,
2771 size);
2772
2773 iocb->private = NULL;
2774
2775 /* if not aio dio with unwritten extents, just free io and return */
2776 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2777 ext4_free_io_end(io_end);
2778 out:
2779 if (is_async)
2780 aio_complete(iocb, ret, 0);
2781 inode_dio_done(inode);
2782 return;
2783 }
2784
2785 io_end->offset = offset;
2786 io_end->size = size;
2787 if (is_async) {
2788 io_end->iocb = iocb;
2789 io_end->result = ret;
2790 }
2791 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2792
2793 /* Add the io_end to per-inode completed aio dio list*/
2794 ei = EXT4_I(io_end->inode);
2795 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2796 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2797 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2798
2799 /* queue the work to convert unwritten extents to written */
2800 queue_work(wq, &io_end->work);
2801 }
2802
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805 ext4_io_end_t *io_end = bh->b_private;
2806 struct workqueue_struct *wq;
2807 struct inode *inode;
2808 unsigned long flags;
2809
2810 if (!test_clear_buffer_uninit(bh) || !io_end)
2811 goto out;
2812
2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2815 "sb umounted, discard end_io request for inode %lu",
2816 io_end->inode->i_ino);
2817 ext4_free_io_end(io_end);
2818 goto out;
2819 }
2820
2821 /*
2822 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2823 * but being more careful is always safe for the future change.
2824 */
2825 inode = io_end->inode;
2826 ext4_set_io_unwritten_flag(inode, io_end);
2827
2828 /* Add the io_end to per-inode completed io list*/
2829 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2830 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2831 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2832
2833 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2834 /* queue the work to convert unwritten extents to written */
2835 queue_work(wq, &io_end->work);
2836 out:
2837 bh->b_private = NULL;
2838 bh->b_end_io = NULL;
2839 clear_buffer_uninit(bh);
2840 end_buffer_async_write(bh, uptodate);
2841 }
2842
2843 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2844 {
2845 ext4_io_end_t *io_end;
2846 struct page *page = bh->b_page;
2847 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2848 size_t size = bh->b_size;
2849
2850 retry:
2851 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2852 if (!io_end) {
2853 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2854 schedule();
2855 goto retry;
2856 }
2857 io_end->offset = offset;
2858 io_end->size = size;
2859 /*
2860 * We need to hold a reference to the page to make sure it
2861 * doesn't get evicted before ext4_end_io_work() has a chance
2862 * to convert the extent from written to unwritten.
2863 */
2864 io_end->page = page;
2865 get_page(io_end->page);
2866
2867 bh->b_private = io_end;
2868 bh->b_end_io = ext4_end_io_buffer_write;
2869 return 0;
2870 }
2871
2872 /*
2873 * For ext4 extent files, ext4 will do direct-io write to holes,
2874 * preallocated extents, and those write extend the file, no need to
2875 * fall back to buffered IO.
2876 *
2877 * For holes, we fallocate those blocks, mark them as uninitialized
2878 * If those blocks were preallocated, we mark sure they are splited, but
2879 * still keep the range to write as uninitialized.
2880 *
2881 * The unwrritten extents will be converted to written when DIO is completed.
2882 * For async direct IO, since the IO may still pending when return, we
2883 * set up an end_io call back function, which will do the conversion
2884 * when async direct IO completed.
2885 *
2886 * If the O_DIRECT write will extend the file then add this inode to the
2887 * orphan list. So recovery will truncate it back to the original size
2888 * if the machine crashes during the write.
2889 *
2890 */
2891 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2892 const struct iovec *iov, loff_t offset,
2893 unsigned long nr_segs)
2894 {
2895 struct file *file = iocb->ki_filp;
2896 struct inode *inode = file->f_mapping->host;
2897 ssize_t ret;
2898 size_t count = iov_length(iov, nr_segs);
2899
2900 loff_t final_size = offset + count;
2901 if (rw == WRITE && final_size <= inode->i_size) {
2902 /*
2903 * We could direct write to holes and fallocate.
2904 *
2905 * Allocated blocks to fill the hole are marked as uninitialized
2906 * to prevent parallel buffered read to expose the stale data
2907 * before DIO complete the data IO.
2908 *
2909 * As to previously fallocated extents, ext4 get_block
2910 * will just simply mark the buffer mapped but still
2911 * keep the extents uninitialized.
2912 *
2913 * for non AIO case, we will convert those unwritten extents
2914 * to written after return back from blockdev_direct_IO.
2915 *
2916 * for async DIO, the conversion needs to be defered when
2917 * the IO is completed. The ext4 end_io callback function
2918 * will be called to take care of the conversion work.
2919 * Here for async case, we allocate an io_end structure to
2920 * hook to the iocb.
2921 */
2922 iocb->private = NULL;
2923 EXT4_I(inode)->cur_aio_dio = NULL;
2924 if (!is_sync_kiocb(iocb)) {
2925 ext4_io_end_t *io_end =
2926 ext4_init_io_end(inode, GFP_NOFS);
2927 if (!io_end)
2928 return -ENOMEM;
2929 io_end->flag |= EXT4_IO_END_DIRECT;
2930 iocb->private = io_end;
2931 /*
2932 * we save the io structure for current async
2933 * direct IO, so that later ext4_map_blocks()
2934 * could flag the io structure whether there
2935 * is a unwritten extents needs to be converted
2936 * when IO is completed.
2937 */
2938 EXT4_I(inode)->cur_aio_dio = iocb->private;
2939 }
2940
2941 ret = __blockdev_direct_IO(rw, iocb, inode,
2942 inode->i_sb->s_bdev, iov,
2943 offset, nr_segs,
2944 ext4_get_block_write,
2945 ext4_end_io_dio,
2946 NULL,
2947 DIO_LOCKING);
2948 if (iocb->private)
2949 EXT4_I(inode)->cur_aio_dio = NULL;
2950 /*
2951 * The io_end structure takes a reference to the inode,
2952 * that structure needs to be destroyed and the
2953 * reference to the inode need to be dropped, when IO is
2954 * complete, even with 0 byte write, or failed.
2955 *
2956 * In the successful AIO DIO case, the io_end structure will be
2957 * desctroyed and the reference to the inode will be dropped
2958 * after the end_io call back function is called.
2959 *
2960 * In the case there is 0 byte write, or error case, since
2961 * VFS direct IO won't invoke the end_io call back function,
2962 * we need to free the end_io structure here.
2963 */
2964 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2965 ext4_free_io_end(iocb->private);
2966 iocb->private = NULL;
2967 } else if (ret > 0 && ext4_test_inode_state(inode,
2968 EXT4_STATE_DIO_UNWRITTEN)) {
2969 int err;
2970 /*
2971 * for non AIO case, since the IO is already
2972 * completed, we could do the conversion right here
2973 */
2974 err = ext4_convert_unwritten_extents(inode,
2975 offset, ret);
2976 if (err < 0)
2977 ret = err;
2978 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2979 }
2980 return ret;
2981 }
2982
2983 /* for write the the end of file case, we fall back to old way */
2984 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2985 }
2986
2987 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2988 const struct iovec *iov, loff_t offset,
2989 unsigned long nr_segs)
2990 {
2991 struct file *file = iocb->ki_filp;
2992 struct inode *inode = file->f_mapping->host;
2993 ssize_t ret;
2994
2995 /*
2996 * If we are doing data journalling we don't support O_DIRECT
2997 */
2998 if (ext4_should_journal_data(inode))
2999 return 0;
3000
3001 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3003 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3004 else
3005 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3006 trace_ext4_direct_IO_exit(inode, offset,
3007 iov_length(iov, nr_segs), rw, ret);
3008 return ret;
3009 }
3010
3011 /*
3012 * Pages can be marked dirty completely asynchronously from ext4's journalling
3013 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3014 * much here because ->set_page_dirty is called under VFS locks. The page is
3015 * not necessarily locked.
3016 *
3017 * We cannot just dirty the page and leave attached buffers clean, because the
3018 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3019 * or jbddirty because all the journalling code will explode.
3020 *
3021 * So what we do is to mark the page "pending dirty" and next time writepage
3022 * is called, propagate that into the buffers appropriately.
3023 */
3024 static int ext4_journalled_set_page_dirty(struct page *page)
3025 {
3026 SetPageChecked(page);
3027 return __set_page_dirty_nobuffers(page);
3028 }
3029
3030 static const struct address_space_operations ext4_ordered_aops = {
3031 .readpage = ext4_readpage,
3032 .readpages = ext4_readpages,
3033 .writepage = ext4_writepage,
3034 .write_begin = ext4_write_begin,
3035 .write_end = ext4_ordered_write_end,
3036 .bmap = ext4_bmap,
3037 .invalidatepage = ext4_invalidatepage,
3038 .releasepage = ext4_releasepage,
3039 .direct_IO = ext4_direct_IO,
3040 .migratepage = buffer_migrate_page,
3041 .is_partially_uptodate = block_is_partially_uptodate,
3042 .error_remove_page = generic_error_remove_page,
3043 };
3044
3045 static const struct address_space_operations ext4_writeback_aops = {
3046 .readpage = ext4_readpage,
3047 .readpages = ext4_readpages,
3048 .writepage = ext4_writepage,
3049 .write_begin = ext4_write_begin,
3050 .write_end = ext4_writeback_write_end,
3051 .bmap = ext4_bmap,
3052 .invalidatepage = ext4_invalidatepage,
3053 .releasepage = ext4_releasepage,
3054 .direct_IO = ext4_direct_IO,
3055 .migratepage = buffer_migrate_page,
3056 .is_partially_uptodate = block_is_partially_uptodate,
3057 .error_remove_page = generic_error_remove_page,
3058 };
3059
3060 static const struct address_space_operations ext4_journalled_aops = {
3061 .readpage = ext4_readpage,
3062 .readpages = ext4_readpages,
3063 .writepage = ext4_writepage,
3064 .write_begin = ext4_write_begin,
3065 .write_end = ext4_journalled_write_end,
3066 .set_page_dirty = ext4_journalled_set_page_dirty,
3067 .bmap = ext4_bmap,
3068 .invalidatepage = ext4_invalidatepage,
3069 .releasepage = ext4_releasepage,
3070 .direct_IO = ext4_direct_IO,
3071 .is_partially_uptodate = block_is_partially_uptodate,
3072 .error_remove_page = generic_error_remove_page,
3073 };
3074
3075 static const struct address_space_operations ext4_da_aops = {
3076 .readpage = ext4_readpage,
3077 .readpages = ext4_readpages,
3078 .writepage = ext4_writepage,
3079 .writepages = ext4_da_writepages,
3080 .write_begin = ext4_da_write_begin,
3081 .write_end = ext4_da_write_end,
3082 .bmap = ext4_bmap,
3083 .invalidatepage = ext4_da_invalidatepage,
3084 .releasepage = ext4_releasepage,
3085 .direct_IO = ext4_direct_IO,
3086 .migratepage = buffer_migrate_page,
3087 .is_partially_uptodate = block_is_partially_uptodate,
3088 .error_remove_page = generic_error_remove_page,
3089 };
3090
3091 void ext4_set_aops(struct inode *inode)
3092 {
3093 switch (ext4_inode_journal_mode(inode)) {
3094 case EXT4_INODE_ORDERED_DATA_MODE:
3095 if (test_opt(inode->i_sb, DELALLOC))
3096 inode->i_mapping->a_ops = &ext4_da_aops;
3097 else
3098 inode->i_mapping->a_ops = &ext4_ordered_aops;
3099 break;
3100 case EXT4_INODE_WRITEBACK_DATA_MODE:
3101 if (test_opt(inode->i_sb, DELALLOC))
3102 inode->i_mapping->a_ops = &ext4_da_aops;
3103 else
3104 inode->i_mapping->a_ops = &ext4_writeback_aops;
3105 break;
3106 case EXT4_INODE_JOURNAL_DATA_MODE:
3107 inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 break;
3109 default:
3110 BUG();
3111 }
3112 }
3113
3114
3115 /*
3116 * ext4_discard_partial_page_buffers()
3117 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3118 * This function finds and locks the page containing the offset
3119 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3120 * Calling functions that already have the page locked should call
3121 * ext4_discard_partial_page_buffers_no_lock directly.
3122 */
3123 int ext4_discard_partial_page_buffers(handle_t *handle,
3124 struct address_space *mapping, loff_t from,
3125 loff_t length, int flags)
3126 {
3127 struct inode *inode = mapping->host;
3128 struct page *page;
3129 int err = 0;
3130
3131 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3132 mapping_gfp_mask(mapping) & ~__GFP_FS);
3133 if (!page)
3134 return -ENOMEM;
3135
3136 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3137 from, length, flags);
3138
3139 unlock_page(page);
3140 page_cache_release(page);
3141 return err;
3142 }
3143
3144 /*
3145 * ext4_discard_partial_page_buffers_no_lock()
3146 * Zeros a page range of length 'length' starting from offset 'from'.
3147 * Buffer heads that correspond to the block aligned regions of the
3148 * zeroed range will be unmapped. Unblock aligned regions
3149 * will have the corresponding buffer head mapped if needed so that
3150 * that region of the page can be updated with the partial zero out.
3151 *
3152 * This function assumes that the page has already been locked. The
3153 * The range to be discarded must be contained with in the given page.
3154 * If the specified range exceeds the end of the page it will be shortened
3155 * to the end of the page that corresponds to 'from'. This function is
3156 * appropriate for updating a page and it buffer heads to be unmapped and
3157 * zeroed for blocks that have been either released, or are going to be
3158 * released.
3159 *
3160 * handle: The journal handle
3161 * inode: The files inode
3162 * page: A locked page that contains the offset "from"
3163 * from: The starting byte offset (from the begining of the file)
3164 * to begin discarding
3165 * len: The length of bytes to discard
3166 * flags: Optional flags that may be used:
3167 *
3168 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3169 * Only zero the regions of the page whose buffer heads
3170 * have already been unmapped. This flag is appropriate
3171 * for updateing the contents of a page whose blocks may
3172 * have already been released, and we only want to zero
3173 * out the regions that correspond to those released blocks.
3174 *
3175 * Returns zero on sucess or negative on failure.
3176 */
3177 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3178 struct inode *inode, struct page *page, loff_t from,
3179 loff_t length, int flags)
3180 {
3181 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3182 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3183 unsigned int blocksize, max, pos;
3184 ext4_lblk_t iblock;
3185 struct buffer_head *bh;
3186 int err = 0;
3187
3188 blocksize = inode->i_sb->s_blocksize;
3189 max = PAGE_CACHE_SIZE - offset;
3190
3191 if (index != page->index)
3192 return -EINVAL;
3193
3194 /*
3195 * correct length if it does not fall between
3196 * 'from' and the end of the page
3197 */
3198 if (length > max || length < 0)
3199 length = max;
3200
3201 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3202
3203 if (!page_has_buffers(page))
3204 create_empty_buffers(page, blocksize, 0);
3205
3206 /* Find the buffer that contains "offset" */
3207 bh = page_buffers(page);
3208 pos = blocksize;
3209 while (offset >= pos) {
3210 bh = bh->b_this_page;
3211 iblock++;
3212 pos += blocksize;
3213 }
3214
3215 pos = offset;
3216 while (pos < offset + length) {
3217 unsigned int end_of_block, range_to_discard;
3218
3219 err = 0;
3220
3221 /* The length of space left to zero and unmap */
3222 range_to_discard = offset + length - pos;
3223
3224 /* The length of space until the end of the block */
3225 end_of_block = blocksize - (pos & (blocksize-1));
3226
3227 /*
3228 * Do not unmap or zero past end of block
3229 * for this buffer head
3230 */
3231 if (range_to_discard > end_of_block)
3232 range_to_discard = end_of_block;
3233
3234
3235 /*
3236 * Skip this buffer head if we are only zeroing unampped
3237 * regions of the page
3238 */
3239 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3240 buffer_mapped(bh))
3241 goto next;
3242
3243 /* If the range is block aligned, unmap */
3244 if (range_to_discard == blocksize) {
3245 clear_buffer_dirty(bh);
3246 bh->b_bdev = NULL;
3247 clear_buffer_mapped(bh);
3248 clear_buffer_req(bh);
3249 clear_buffer_new(bh);
3250 clear_buffer_delay(bh);
3251 clear_buffer_unwritten(bh);
3252 clear_buffer_uptodate(bh);
3253 zero_user(page, pos, range_to_discard);
3254 BUFFER_TRACE(bh, "Buffer discarded");
3255 goto next;
3256 }
3257
3258 /*
3259 * If this block is not completely contained in the range
3260 * to be discarded, then it is not going to be released. Because
3261 * we need to keep this block, we need to make sure this part
3262 * of the page is uptodate before we modify it by writeing
3263 * partial zeros on it.
3264 */
3265 if (!buffer_mapped(bh)) {
3266 /*
3267 * Buffer head must be mapped before we can read
3268 * from the block
3269 */
3270 BUFFER_TRACE(bh, "unmapped");
3271 ext4_get_block(inode, iblock, bh, 0);
3272 /* unmapped? It's a hole - nothing to do */
3273 if (!buffer_mapped(bh)) {
3274 BUFFER_TRACE(bh, "still unmapped");
3275 goto next;
3276 }
3277 }
3278
3279 /* Ok, it's mapped. Make sure it's up-to-date */
3280 if (PageUptodate(page))
3281 set_buffer_uptodate(bh);
3282
3283 if (!buffer_uptodate(bh)) {
3284 err = -EIO;
3285 ll_rw_block(READ, 1, &bh);
3286 wait_on_buffer(bh);
3287 /* Uhhuh. Read error. Complain and punt.*/
3288 if (!buffer_uptodate(bh))
3289 goto next;
3290 }
3291
3292 if (ext4_should_journal_data(inode)) {
3293 BUFFER_TRACE(bh, "get write access");
3294 err = ext4_journal_get_write_access(handle, bh);
3295 if (err)
3296 goto next;
3297 }
3298
3299 zero_user(page, pos, range_to_discard);
3300
3301 err = 0;
3302 if (ext4_should_journal_data(inode)) {
3303 err = ext4_handle_dirty_metadata(handle, inode, bh);
3304 } else
3305 mark_buffer_dirty(bh);
3306
3307 BUFFER_TRACE(bh, "Partial buffer zeroed");
3308 next:
3309 bh = bh->b_this_page;
3310 iblock++;
3311 pos += range_to_discard;
3312 }
3313
3314 return err;
3315 }
3316
3317 int ext4_can_truncate(struct inode *inode)
3318 {
3319 if (S_ISREG(inode->i_mode))
3320 return 1;
3321 if (S_ISDIR(inode->i_mode))
3322 return 1;
3323 if (S_ISLNK(inode->i_mode))
3324 return !ext4_inode_is_fast_symlink(inode);
3325 return 0;
3326 }
3327
3328 /*
3329 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3330 * associated with the given offset and length
3331 *
3332 * @inode: File inode
3333 * @offset: The offset where the hole will begin
3334 * @len: The length of the hole
3335 *
3336 * Returns: 0 on sucess or negative on failure
3337 */
3338
3339 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3340 {
3341 struct inode *inode = file->f_path.dentry->d_inode;
3342 if (!S_ISREG(inode->i_mode))
3343 return -EOPNOTSUPP;
3344
3345 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3346 /* TODO: Add support for non extent hole punching */
3347 return -EOPNOTSUPP;
3348 }
3349
3350 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3351 /* TODO: Add support for bigalloc file systems */
3352 return -EOPNOTSUPP;
3353 }
3354
3355 return ext4_ext_punch_hole(file, offset, length);
3356 }
3357
3358 /*
3359 * ext4_truncate()
3360 *
3361 * We block out ext4_get_block() block instantiations across the entire
3362 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3363 * simultaneously on behalf of the same inode.
3364 *
3365 * As we work through the truncate and commit bits of it to the journal there
3366 * is one core, guiding principle: the file's tree must always be consistent on
3367 * disk. We must be able to restart the truncate after a crash.
3368 *
3369 * The file's tree may be transiently inconsistent in memory (although it
3370 * probably isn't), but whenever we close off and commit a journal transaction,
3371 * the contents of (the filesystem + the journal) must be consistent and
3372 * restartable. It's pretty simple, really: bottom up, right to left (although
3373 * left-to-right works OK too).
3374 *
3375 * Note that at recovery time, journal replay occurs *before* the restart of
3376 * truncate against the orphan inode list.
3377 *
3378 * The committed inode has the new, desired i_size (which is the same as
3379 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3380 * that this inode's truncate did not complete and it will again call
3381 * ext4_truncate() to have another go. So there will be instantiated blocks
3382 * to the right of the truncation point in a crashed ext4 filesystem. But
3383 * that's fine - as long as they are linked from the inode, the post-crash
3384 * ext4_truncate() run will find them and release them.
3385 */
3386 void ext4_truncate(struct inode *inode)
3387 {
3388 trace_ext4_truncate_enter(inode);
3389
3390 if (!ext4_can_truncate(inode))
3391 return;
3392
3393 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3394
3395 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3396 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3397
3398 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399 ext4_ext_truncate(inode);
3400 else
3401 ext4_ind_truncate(inode);
3402
3403 trace_ext4_truncate_exit(inode);
3404 }
3405
3406 /*
3407 * ext4_get_inode_loc returns with an extra refcount against the inode's
3408 * underlying buffer_head on success. If 'in_mem' is true, we have all
3409 * data in memory that is needed to recreate the on-disk version of this
3410 * inode.
3411 */
3412 static int __ext4_get_inode_loc(struct inode *inode,
3413 struct ext4_iloc *iloc, int in_mem)
3414 {
3415 struct ext4_group_desc *gdp;
3416 struct buffer_head *bh;
3417 struct super_block *sb = inode->i_sb;
3418 ext4_fsblk_t block;
3419 int inodes_per_block, inode_offset;
3420
3421 iloc->bh = NULL;
3422 if (!ext4_valid_inum(sb, inode->i_ino))
3423 return -EIO;
3424
3425 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3426 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3427 if (!gdp)
3428 return -EIO;
3429
3430 /*
3431 * Figure out the offset within the block group inode table
3432 */
3433 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3434 inode_offset = ((inode->i_ino - 1) %
3435 EXT4_INODES_PER_GROUP(sb));
3436 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3437 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3438
3439 bh = sb_getblk(sb, block);
3440 if (!bh) {
3441 EXT4_ERROR_INODE_BLOCK(inode, block,
3442 "unable to read itable block");
3443 return -EIO;
3444 }
3445 if (!buffer_uptodate(bh)) {
3446 lock_buffer(bh);
3447
3448 /*
3449 * If the buffer has the write error flag, we have failed
3450 * to write out another inode in the same block. In this
3451 * case, we don't have to read the block because we may
3452 * read the old inode data successfully.
3453 */
3454 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3455 set_buffer_uptodate(bh);
3456
3457 if (buffer_uptodate(bh)) {
3458 /* someone brought it uptodate while we waited */
3459 unlock_buffer(bh);
3460 goto has_buffer;
3461 }
3462
3463 /*
3464 * If we have all information of the inode in memory and this
3465 * is the only valid inode in the block, we need not read the
3466 * block.
3467 */
3468 if (in_mem) {
3469 struct buffer_head *bitmap_bh;
3470 int i, start;
3471
3472 start = inode_offset & ~(inodes_per_block - 1);
3473
3474 /* Is the inode bitmap in cache? */
3475 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3476 if (!bitmap_bh)
3477 goto make_io;
3478
3479 /*
3480 * If the inode bitmap isn't in cache then the
3481 * optimisation may end up performing two reads instead
3482 * of one, so skip it.
3483 */
3484 if (!buffer_uptodate(bitmap_bh)) {
3485 brelse(bitmap_bh);
3486 goto make_io;
3487 }
3488 for (i = start; i < start + inodes_per_block; i++) {
3489 if (i == inode_offset)
3490 continue;
3491 if (ext4_test_bit(i, bitmap_bh->b_data))
3492 break;
3493 }
3494 brelse(bitmap_bh);
3495 if (i == start + inodes_per_block) {
3496 /* all other inodes are free, so skip I/O */
3497 memset(bh->b_data, 0, bh->b_size);
3498 set_buffer_uptodate(bh);
3499 unlock_buffer(bh);
3500 goto has_buffer;
3501 }
3502 }
3503
3504 make_io:
3505 /*
3506 * If we need to do any I/O, try to pre-readahead extra
3507 * blocks from the inode table.
3508 */
3509 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3510 ext4_fsblk_t b, end, table;
3511 unsigned num;
3512
3513 table = ext4_inode_table(sb, gdp);
3514 /* s_inode_readahead_blks is always a power of 2 */
3515 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3516 if (table > b)
3517 b = table;
3518 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3519 num = EXT4_INODES_PER_GROUP(sb);
3520 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3521 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3522 num -= ext4_itable_unused_count(sb, gdp);
3523 table += num / inodes_per_block;
3524 if (end > table)
3525 end = table;
3526 while (b <= end)
3527 sb_breadahead(sb, b++);
3528 }
3529
3530 /*
3531 * There are other valid inodes in the buffer, this inode
3532 * has in-inode xattrs, or we don't have this inode in memory.
3533 * Read the block from disk.
3534 */
3535 trace_ext4_load_inode(inode);
3536 get_bh(bh);
3537 bh->b_end_io = end_buffer_read_sync;
3538 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3539 wait_on_buffer(bh);
3540 if (!buffer_uptodate(bh)) {
3541 EXT4_ERROR_INODE_BLOCK(inode, block,
3542 "unable to read itable block");
3543 brelse(bh);
3544 return -EIO;
3545 }
3546 }
3547 has_buffer:
3548 iloc->bh = bh;
3549 return 0;
3550 }
3551
3552 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3553 {
3554 /* We have all inode data except xattrs in memory here. */
3555 return __ext4_get_inode_loc(inode, iloc,
3556 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3557 }
3558
3559 void ext4_set_inode_flags(struct inode *inode)
3560 {
3561 unsigned int flags = EXT4_I(inode)->i_flags;
3562
3563 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3564 if (flags & EXT4_SYNC_FL)
3565 inode->i_flags |= S_SYNC;
3566 if (flags & EXT4_APPEND_FL)
3567 inode->i_flags |= S_APPEND;
3568 if (flags & EXT4_IMMUTABLE_FL)
3569 inode->i_flags |= S_IMMUTABLE;
3570 if (flags & EXT4_NOATIME_FL)
3571 inode->i_flags |= S_NOATIME;
3572 if (flags & EXT4_DIRSYNC_FL)
3573 inode->i_flags |= S_DIRSYNC;
3574 }
3575
3576 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3577 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3578 {
3579 unsigned int vfs_fl;
3580 unsigned long old_fl, new_fl;
3581
3582 do {
3583 vfs_fl = ei->vfs_inode.i_flags;
3584 old_fl = ei->i_flags;
3585 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3586 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3587 EXT4_DIRSYNC_FL);
3588 if (vfs_fl & S_SYNC)
3589 new_fl |= EXT4_SYNC_FL;
3590 if (vfs_fl & S_APPEND)
3591 new_fl |= EXT4_APPEND_FL;
3592 if (vfs_fl & S_IMMUTABLE)
3593 new_fl |= EXT4_IMMUTABLE_FL;
3594 if (vfs_fl & S_NOATIME)
3595 new_fl |= EXT4_NOATIME_FL;
3596 if (vfs_fl & S_DIRSYNC)
3597 new_fl |= EXT4_DIRSYNC_FL;
3598 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3599 }
3600
3601 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3602 struct ext4_inode_info *ei)
3603 {
3604 blkcnt_t i_blocks ;
3605 struct inode *inode = &(ei->vfs_inode);
3606 struct super_block *sb = inode->i_sb;
3607
3608 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3609 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3610 /* we are using combined 48 bit field */
3611 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3612 le32_to_cpu(raw_inode->i_blocks_lo);
3613 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3614 /* i_blocks represent file system block size */
3615 return i_blocks << (inode->i_blkbits - 9);
3616 } else {
3617 return i_blocks;
3618 }
3619 } else {
3620 return le32_to_cpu(raw_inode->i_blocks_lo);
3621 }
3622 }
3623
3624 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3625 {
3626 struct ext4_iloc iloc;
3627 struct ext4_inode *raw_inode;
3628 struct ext4_inode_info *ei;
3629 struct inode *inode;
3630 journal_t *journal = EXT4_SB(sb)->s_journal;
3631 long ret;
3632 int block;
3633
3634 inode = iget_locked(sb, ino);
3635 if (!inode)
3636 return ERR_PTR(-ENOMEM);
3637 if (!(inode->i_state & I_NEW))
3638 return inode;
3639
3640 ei = EXT4_I(inode);
3641 iloc.bh = NULL;
3642
3643 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3644 if (ret < 0)
3645 goto bad_inode;
3646 raw_inode = ext4_raw_inode(&iloc);
3647 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3648 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3649 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3650 if (!(test_opt(inode->i_sb, NO_UID32))) {
3651 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3652 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3653 }
3654 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3655
3656 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3657 ei->i_dir_start_lookup = 0;
3658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3659 /* We now have enough fields to check if the inode was active or not.
3660 * This is needed because nfsd might try to access dead inodes
3661 * the test is that same one that e2fsck uses
3662 * NeilBrown 1999oct15
3663 */
3664 if (inode->i_nlink == 0) {
3665 if (inode->i_mode == 0 ||
3666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3667 /* this inode is deleted */
3668 ret = -ESTALE;
3669 goto bad_inode;
3670 }
3671 /* The only unlinked inodes we let through here have
3672 * valid i_mode and are being read by the orphan
3673 * recovery code: that's fine, we're about to complete
3674 * the process of deleting those. */
3675 }
3676 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3677 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3678 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3679 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3680 ei->i_file_acl |=
3681 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3682 inode->i_size = ext4_isize(raw_inode);
3683 ei->i_disksize = inode->i_size;
3684 #ifdef CONFIG_QUOTA
3685 ei->i_reserved_quota = 0;
3686 #endif
3687 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3688 ei->i_block_group = iloc.block_group;
3689 ei->i_last_alloc_group = ~0;
3690 /*
3691 * NOTE! The in-memory inode i_data array is in little-endian order
3692 * even on big-endian machines: we do NOT byteswap the block numbers!
3693 */
3694 for (block = 0; block < EXT4_N_BLOCKS; block++)
3695 ei->i_data[block] = raw_inode->i_block[block];
3696 INIT_LIST_HEAD(&ei->i_orphan);
3697
3698 /*
3699 * Set transaction id's of transactions that have to be committed
3700 * to finish f[data]sync. We set them to currently running transaction
3701 * as we cannot be sure that the inode or some of its metadata isn't
3702 * part of the transaction - the inode could have been reclaimed and
3703 * now it is reread from disk.
3704 */
3705 if (journal) {
3706 transaction_t *transaction;
3707 tid_t tid;
3708
3709 read_lock(&journal->j_state_lock);
3710 if (journal->j_running_transaction)
3711 transaction = journal->j_running_transaction;
3712 else
3713 transaction = journal->j_committing_transaction;
3714 if (transaction)
3715 tid = transaction->t_tid;
3716 else
3717 tid = journal->j_commit_sequence;
3718 read_unlock(&journal->j_state_lock);
3719 ei->i_sync_tid = tid;
3720 ei->i_datasync_tid = tid;
3721 }
3722
3723 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3724 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3725 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3726 EXT4_INODE_SIZE(inode->i_sb)) {
3727 ret = -EIO;
3728 goto bad_inode;
3729 }
3730 if (ei->i_extra_isize == 0) {
3731 /* The extra space is currently unused. Use it. */
3732 ei->i_extra_isize = sizeof(struct ext4_inode) -
3733 EXT4_GOOD_OLD_INODE_SIZE;
3734 } else {
3735 __le32 *magic = (void *)raw_inode +
3736 EXT4_GOOD_OLD_INODE_SIZE +
3737 ei->i_extra_isize;
3738 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3739 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3740 }
3741 } else
3742 ei->i_extra_isize = 0;
3743
3744 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3745 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3746 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3747 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3748
3749 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3750 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3751 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3752 inode->i_version |=
3753 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3754 }
3755
3756 ret = 0;
3757 if (ei->i_file_acl &&
3758 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3759 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3760 ei->i_file_acl);
3761 ret = -EIO;
3762 goto bad_inode;
3763 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3764 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3765 (S_ISLNK(inode->i_mode) &&
3766 !ext4_inode_is_fast_symlink(inode)))
3767 /* Validate extent which is part of inode */
3768 ret = ext4_ext_check_inode(inode);
3769 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3770 (S_ISLNK(inode->i_mode) &&
3771 !ext4_inode_is_fast_symlink(inode))) {
3772 /* Validate block references which are part of inode */
3773 ret = ext4_ind_check_inode(inode);
3774 }
3775 if (ret)
3776 goto bad_inode;
3777
3778 if (S_ISREG(inode->i_mode)) {
3779 inode->i_op = &ext4_file_inode_operations;
3780 inode->i_fop = &ext4_file_operations;
3781 ext4_set_aops(inode);
3782 } else if (S_ISDIR(inode->i_mode)) {
3783 inode->i_op = &ext4_dir_inode_operations;
3784 inode->i_fop = &ext4_dir_operations;
3785 } else if (S_ISLNK(inode->i_mode)) {
3786 if (ext4_inode_is_fast_symlink(inode)) {
3787 inode->i_op = &ext4_fast_symlink_inode_operations;
3788 nd_terminate_link(ei->i_data, inode->i_size,
3789 sizeof(ei->i_data) - 1);
3790 } else {
3791 inode->i_op = &ext4_symlink_inode_operations;
3792 ext4_set_aops(inode);
3793 }
3794 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3795 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3796 inode->i_op = &ext4_special_inode_operations;
3797 if (raw_inode->i_block[0])
3798 init_special_inode(inode, inode->i_mode,
3799 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3800 else
3801 init_special_inode(inode, inode->i_mode,
3802 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3803 } else {
3804 ret = -EIO;
3805 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3806 goto bad_inode;
3807 }
3808 brelse(iloc.bh);
3809 ext4_set_inode_flags(inode);
3810 unlock_new_inode(inode);
3811 return inode;
3812
3813 bad_inode:
3814 brelse(iloc.bh);
3815 iget_failed(inode);
3816 return ERR_PTR(ret);
3817 }
3818
3819 static int ext4_inode_blocks_set(handle_t *handle,
3820 struct ext4_inode *raw_inode,
3821 struct ext4_inode_info *ei)
3822 {
3823 struct inode *inode = &(ei->vfs_inode);
3824 u64 i_blocks = inode->i_blocks;
3825 struct super_block *sb = inode->i_sb;
3826
3827 if (i_blocks <= ~0U) {
3828 /*
3829 * i_blocks can be represnted in a 32 bit variable
3830 * as multiple of 512 bytes
3831 */
3832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3833 raw_inode->i_blocks_high = 0;
3834 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3835 return 0;
3836 }
3837 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3838 return -EFBIG;
3839
3840 if (i_blocks <= 0xffffffffffffULL) {
3841 /*
3842 * i_blocks can be represented in a 48 bit variable
3843 * as multiple of 512 bytes
3844 */
3845 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3846 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3847 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3848 } else {
3849 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3850 /* i_block is stored in file system block size */
3851 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3852 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3853 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3854 }
3855 return 0;
3856 }
3857
3858 /*
3859 * Post the struct inode info into an on-disk inode location in the
3860 * buffer-cache. This gobbles the caller's reference to the
3861 * buffer_head in the inode location struct.
3862 *
3863 * The caller must have write access to iloc->bh.
3864 */
3865 static int ext4_do_update_inode(handle_t *handle,
3866 struct inode *inode,
3867 struct ext4_iloc *iloc)
3868 {
3869 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3870 struct ext4_inode_info *ei = EXT4_I(inode);
3871 struct buffer_head *bh = iloc->bh;
3872 int err = 0, rc, block;
3873
3874 /* For fields not not tracking in the in-memory inode,
3875 * initialise them to zero for new inodes. */
3876 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3877 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3878
3879 ext4_get_inode_flags(ei);
3880 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3881 if (!(test_opt(inode->i_sb, NO_UID32))) {
3882 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3883 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3884 /*
3885 * Fix up interoperability with old kernels. Otherwise, old inodes get
3886 * re-used with the upper 16 bits of the uid/gid intact
3887 */
3888 if (!ei->i_dtime) {
3889 raw_inode->i_uid_high =
3890 cpu_to_le16(high_16_bits(inode->i_uid));
3891 raw_inode->i_gid_high =
3892 cpu_to_le16(high_16_bits(inode->i_gid));
3893 } else {
3894 raw_inode->i_uid_high = 0;
3895 raw_inode->i_gid_high = 0;
3896 }
3897 } else {
3898 raw_inode->i_uid_low =
3899 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3900 raw_inode->i_gid_low =
3901 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3902 raw_inode->i_uid_high = 0;
3903 raw_inode->i_gid_high = 0;
3904 }
3905 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3906
3907 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3908 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3909 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3910 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3911
3912 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3913 goto out_brelse;
3914 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3915 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3916 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3917 cpu_to_le32(EXT4_OS_HURD))
3918 raw_inode->i_file_acl_high =
3919 cpu_to_le16(ei->i_file_acl >> 32);
3920 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3921 ext4_isize_set(raw_inode, ei->i_disksize);
3922 if (ei->i_disksize > 0x7fffffffULL) {
3923 struct super_block *sb = inode->i_sb;
3924 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3926 EXT4_SB(sb)->s_es->s_rev_level ==
3927 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3928 /* If this is the first large file
3929 * created, add a flag to the superblock.
3930 */
3931 err = ext4_journal_get_write_access(handle,
3932 EXT4_SB(sb)->s_sbh);
3933 if (err)
3934 goto out_brelse;
3935 ext4_update_dynamic_rev(sb);
3936 EXT4_SET_RO_COMPAT_FEATURE(sb,
3937 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3938 ext4_handle_sync(handle);
3939 err = ext4_handle_dirty_super(handle, sb);
3940 }
3941 }
3942 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3943 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3944 if (old_valid_dev(inode->i_rdev)) {
3945 raw_inode->i_block[0] =
3946 cpu_to_le32(old_encode_dev(inode->i_rdev));
3947 raw_inode->i_block[1] = 0;
3948 } else {
3949 raw_inode->i_block[0] = 0;
3950 raw_inode->i_block[1] =
3951 cpu_to_le32(new_encode_dev(inode->i_rdev));
3952 raw_inode->i_block[2] = 0;
3953 }
3954 } else
3955 for (block = 0; block < EXT4_N_BLOCKS; block++)
3956 raw_inode->i_block[block] = ei->i_data[block];
3957
3958 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3959 if (ei->i_extra_isize) {
3960 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3961 raw_inode->i_version_hi =
3962 cpu_to_le32(inode->i_version >> 32);
3963 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3964 }
3965
3966 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3967 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3968 if (!err)
3969 err = rc;
3970 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3971
3972 ext4_update_inode_fsync_trans(handle, inode, 0);
3973 out_brelse:
3974 brelse(bh);
3975 ext4_std_error(inode->i_sb, err);
3976 return err;
3977 }
3978
3979 /*
3980 * ext4_write_inode()
3981 *
3982 * We are called from a few places:
3983 *
3984 * - Within generic_file_write() for O_SYNC files.
3985 * Here, there will be no transaction running. We wait for any running
3986 * trasnaction to commit.
3987 *
3988 * - Within sys_sync(), kupdate and such.
3989 * We wait on commit, if tol to.
3990 *
3991 * - Within prune_icache() (PF_MEMALLOC == true)
3992 * Here we simply return. We can't afford to block kswapd on the
3993 * journal commit.
3994 *
3995 * In all cases it is actually safe for us to return without doing anything,
3996 * because the inode has been copied into a raw inode buffer in
3997 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3998 * knfsd.
3999 *
4000 * Note that we are absolutely dependent upon all inode dirtiers doing the
4001 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4002 * which we are interested.
4003 *
4004 * It would be a bug for them to not do this. The code:
4005 *
4006 * mark_inode_dirty(inode)
4007 * stuff();
4008 * inode->i_size = expr;
4009 *
4010 * is in error because a kswapd-driven write_inode() could occur while
4011 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4012 * will no longer be on the superblock's dirty inode list.
4013 */
4014 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4015 {
4016 int err;
4017
4018 if (current->flags & PF_MEMALLOC)
4019 return 0;
4020
4021 if (EXT4_SB(inode->i_sb)->s_journal) {
4022 if (ext4_journal_current_handle()) {
4023 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4024 dump_stack();
4025 return -EIO;
4026 }
4027
4028 if (wbc->sync_mode != WB_SYNC_ALL)
4029 return 0;
4030
4031 err = ext4_force_commit(inode->i_sb);
4032 } else {
4033 struct ext4_iloc iloc;
4034
4035 err = __ext4_get_inode_loc(inode, &iloc, 0);
4036 if (err)
4037 return err;
4038 if (wbc->sync_mode == WB_SYNC_ALL)
4039 sync_dirty_buffer(iloc.bh);
4040 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4041 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4042 "IO error syncing inode");
4043 err = -EIO;
4044 }
4045 brelse(iloc.bh);
4046 }
4047 return err;
4048 }
4049
4050 /*
4051 * ext4_setattr()
4052 *
4053 * Called from notify_change.
4054 *
4055 * We want to trap VFS attempts to truncate the file as soon as
4056 * possible. In particular, we want to make sure that when the VFS
4057 * shrinks i_size, we put the inode on the orphan list and modify
4058 * i_disksize immediately, so that during the subsequent flushing of
4059 * dirty pages and freeing of disk blocks, we can guarantee that any
4060 * commit will leave the blocks being flushed in an unused state on
4061 * disk. (On recovery, the inode will get truncated and the blocks will
4062 * be freed, so we have a strong guarantee that no future commit will
4063 * leave these blocks visible to the user.)
4064 *
4065 * Another thing we have to assure is that if we are in ordered mode
4066 * and inode is still attached to the committing transaction, we must
4067 * we start writeout of all the dirty pages which are being truncated.
4068 * This way we are sure that all the data written in the previous
4069 * transaction are already on disk (truncate waits for pages under
4070 * writeback).
4071 *
4072 * Called with inode->i_mutex down.
4073 */
4074 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4075 {
4076 struct inode *inode = dentry->d_inode;
4077 int error, rc = 0;
4078 int orphan = 0;
4079 const unsigned int ia_valid = attr->ia_valid;
4080
4081 error = inode_change_ok(inode, attr);
4082 if (error)
4083 return error;
4084
4085 if (is_quota_modification(inode, attr))
4086 dquot_initialize(inode);
4087 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4088 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4089 handle_t *handle;
4090
4091 /* (user+group)*(old+new) structure, inode write (sb,
4092 * inode block, ? - but truncate inode update has it) */
4093 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4094 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4095 if (IS_ERR(handle)) {
4096 error = PTR_ERR(handle);
4097 goto err_out;
4098 }
4099 error = dquot_transfer(inode, attr);
4100 if (error) {
4101 ext4_journal_stop(handle);
4102 return error;
4103 }
4104 /* Update corresponding info in inode so that everything is in
4105 * one transaction */
4106 if (attr->ia_valid & ATTR_UID)
4107 inode->i_uid = attr->ia_uid;
4108 if (attr->ia_valid & ATTR_GID)
4109 inode->i_gid = attr->ia_gid;
4110 error = ext4_mark_inode_dirty(handle, inode);
4111 ext4_journal_stop(handle);
4112 }
4113
4114 if (attr->ia_valid & ATTR_SIZE) {
4115 inode_dio_wait(inode);
4116
4117 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4118 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4119
4120 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4121 return -EFBIG;
4122 }
4123 }
4124
4125 if (S_ISREG(inode->i_mode) &&
4126 attr->ia_valid & ATTR_SIZE &&
4127 (attr->ia_size < inode->i_size)) {
4128 handle_t *handle;
4129
4130 handle = ext4_journal_start(inode, 3);
4131 if (IS_ERR(handle)) {
4132 error = PTR_ERR(handle);
4133 goto err_out;
4134 }
4135 if (ext4_handle_valid(handle)) {
4136 error = ext4_orphan_add(handle, inode);
4137 orphan = 1;
4138 }
4139 EXT4_I(inode)->i_disksize = attr->ia_size;
4140 rc = ext4_mark_inode_dirty(handle, inode);
4141 if (!error)
4142 error = rc;
4143 ext4_journal_stop(handle);
4144
4145 if (ext4_should_order_data(inode)) {
4146 error = ext4_begin_ordered_truncate(inode,
4147 attr->ia_size);
4148 if (error) {
4149 /* Do as much error cleanup as possible */
4150 handle = ext4_journal_start(inode, 3);
4151 if (IS_ERR(handle)) {
4152 ext4_orphan_del(NULL, inode);
4153 goto err_out;
4154 }
4155 ext4_orphan_del(handle, inode);
4156 orphan = 0;
4157 ext4_journal_stop(handle);
4158 goto err_out;
4159 }
4160 }
4161 }
4162
4163 if (attr->ia_valid & ATTR_SIZE) {
4164 if (attr->ia_size != i_size_read(inode))
4165 truncate_setsize(inode, attr->ia_size);
4166 ext4_truncate(inode);
4167 }
4168
4169 if (!rc) {
4170 setattr_copy(inode, attr);
4171 mark_inode_dirty(inode);
4172 }
4173
4174 /*
4175 * If the call to ext4_truncate failed to get a transaction handle at
4176 * all, we need to clean up the in-core orphan list manually.
4177 */
4178 if (orphan && inode->i_nlink)
4179 ext4_orphan_del(NULL, inode);
4180
4181 if (!rc && (ia_valid & ATTR_MODE))
4182 rc = ext4_acl_chmod(inode);
4183
4184 err_out:
4185 ext4_std_error(inode->i_sb, error);
4186 if (!error)
4187 error = rc;
4188 return error;
4189 }
4190
4191 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4192 struct kstat *stat)
4193 {
4194 struct inode *inode;
4195 unsigned long delalloc_blocks;
4196
4197 inode = dentry->d_inode;
4198 generic_fillattr(inode, stat);
4199
4200 /*
4201 * We can't update i_blocks if the block allocation is delayed
4202 * otherwise in the case of system crash before the real block
4203 * allocation is done, we will have i_blocks inconsistent with
4204 * on-disk file blocks.
4205 * We always keep i_blocks updated together with real
4206 * allocation. But to not confuse with user, stat
4207 * will return the blocks that include the delayed allocation
4208 * blocks for this file.
4209 */
4210 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4211
4212 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4213 return 0;
4214 }
4215
4216 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4217 {
4218 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4219 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4220 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4221 }
4222
4223 /*
4224 * Account for index blocks, block groups bitmaps and block group
4225 * descriptor blocks if modify datablocks and index blocks
4226 * worse case, the indexs blocks spread over different block groups
4227 *
4228 * If datablocks are discontiguous, they are possible to spread over
4229 * different block groups too. If they are contiuguous, with flexbg,
4230 * they could still across block group boundary.
4231 *
4232 * Also account for superblock, inode, quota and xattr blocks
4233 */
4234 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4235 {
4236 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4237 int gdpblocks;
4238 int idxblocks;
4239 int ret = 0;
4240
4241 /*
4242 * How many index blocks need to touch to modify nrblocks?
4243 * The "Chunk" flag indicating whether the nrblocks is
4244 * physically contiguous on disk
4245 *
4246 * For Direct IO and fallocate, they calls get_block to allocate
4247 * one single extent at a time, so they could set the "Chunk" flag
4248 */
4249 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4250
4251 ret = idxblocks;
4252
4253 /*
4254 * Now let's see how many group bitmaps and group descriptors need
4255 * to account
4256 */
4257 groups = idxblocks;
4258 if (chunk)
4259 groups += 1;
4260 else
4261 groups += nrblocks;
4262
4263 gdpblocks = groups;
4264 if (groups > ngroups)
4265 groups = ngroups;
4266 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4267 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4268
4269 /* bitmaps and block group descriptor blocks */
4270 ret += groups + gdpblocks;
4271
4272 /* Blocks for super block, inode, quota and xattr blocks */
4273 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4274
4275 return ret;
4276 }
4277
4278 /*
4279 * Calculate the total number of credits to reserve to fit
4280 * the modification of a single pages into a single transaction,
4281 * which may include multiple chunks of block allocations.
4282 *
4283 * This could be called via ext4_write_begin()
4284 *
4285 * We need to consider the worse case, when
4286 * one new block per extent.
4287 */
4288 int ext4_writepage_trans_blocks(struct inode *inode)
4289 {
4290 int bpp = ext4_journal_blocks_per_page(inode);
4291 int ret;
4292
4293 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4294
4295 /* Account for data blocks for journalled mode */
4296 if (ext4_should_journal_data(inode))
4297 ret += bpp;
4298 return ret;
4299 }
4300
4301 /*
4302 * Calculate the journal credits for a chunk of data modification.
4303 *
4304 * This is called from DIO, fallocate or whoever calling
4305 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4306 *
4307 * journal buffers for data blocks are not included here, as DIO
4308 * and fallocate do no need to journal data buffers.
4309 */
4310 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4311 {
4312 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4313 }
4314
4315 /*
4316 * The caller must have previously called ext4_reserve_inode_write().
4317 * Give this, we know that the caller already has write access to iloc->bh.
4318 */
4319 int ext4_mark_iloc_dirty(handle_t *handle,
4320 struct inode *inode, struct ext4_iloc *iloc)
4321 {
4322 int err = 0;
4323
4324 if (IS_I_VERSION(inode))
4325 inode_inc_iversion(inode);
4326
4327 /* the do_update_inode consumes one bh->b_count */
4328 get_bh(iloc->bh);
4329
4330 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4331 err = ext4_do_update_inode(handle, inode, iloc);
4332 put_bh(iloc->bh);
4333 return err;
4334 }
4335
4336 /*
4337 * On success, We end up with an outstanding reference count against
4338 * iloc->bh. This _must_ be cleaned up later.
4339 */
4340
4341 int
4342 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4343 struct ext4_iloc *iloc)
4344 {
4345 int err;
4346
4347 err = ext4_get_inode_loc(inode, iloc);
4348 if (!err) {
4349 BUFFER_TRACE(iloc->bh, "get_write_access");
4350 err = ext4_journal_get_write_access(handle, iloc->bh);
4351 if (err) {
4352 brelse(iloc->bh);
4353 iloc->bh = NULL;
4354 }
4355 }
4356 ext4_std_error(inode->i_sb, err);
4357 return err;
4358 }
4359
4360 /*
4361 * Expand an inode by new_extra_isize bytes.
4362 * Returns 0 on success or negative error number on failure.
4363 */
4364 static int ext4_expand_extra_isize(struct inode *inode,
4365 unsigned int new_extra_isize,
4366 struct ext4_iloc iloc,
4367 handle_t *handle)
4368 {
4369 struct ext4_inode *raw_inode;
4370 struct ext4_xattr_ibody_header *header;
4371
4372 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4373 return 0;
4374
4375 raw_inode = ext4_raw_inode(&iloc);
4376
4377 header = IHDR(inode, raw_inode);
4378
4379 /* No extended attributes present */
4380 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4381 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4382 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4383 new_extra_isize);
4384 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4385 return 0;
4386 }
4387
4388 /* try to expand with EAs present */
4389 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4390 raw_inode, handle);
4391 }
4392
4393 /*
4394 * What we do here is to mark the in-core inode as clean with respect to inode
4395 * dirtiness (it may still be data-dirty).
4396 * This means that the in-core inode may be reaped by prune_icache
4397 * without having to perform any I/O. This is a very good thing,
4398 * because *any* task may call prune_icache - even ones which
4399 * have a transaction open against a different journal.
4400 *
4401 * Is this cheating? Not really. Sure, we haven't written the
4402 * inode out, but prune_icache isn't a user-visible syncing function.
4403 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4404 * we start and wait on commits.
4405 *
4406 * Is this efficient/effective? Well, we're being nice to the system
4407 * by cleaning up our inodes proactively so they can be reaped
4408 * without I/O. But we are potentially leaving up to five seconds'
4409 * worth of inodes floating about which prune_icache wants us to
4410 * write out. One way to fix that would be to get prune_icache()
4411 * to do a write_super() to free up some memory. It has the desired
4412 * effect.
4413 */
4414 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4415 {
4416 struct ext4_iloc iloc;
4417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4418 static unsigned int mnt_count;
4419 int err, ret;
4420
4421 might_sleep();
4422 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4423 err = ext4_reserve_inode_write(handle, inode, &iloc);
4424 if (ext4_handle_valid(handle) &&
4425 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4426 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4427 /*
4428 * We need extra buffer credits since we may write into EA block
4429 * with this same handle. If journal_extend fails, then it will
4430 * only result in a minor loss of functionality for that inode.
4431 * If this is felt to be critical, then e2fsck should be run to
4432 * force a large enough s_min_extra_isize.
4433 */
4434 if ((jbd2_journal_extend(handle,
4435 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4436 ret = ext4_expand_extra_isize(inode,
4437 sbi->s_want_extra_isize,
4438 iloc, handle);
4439 if (ret) {
4440 ext4_set_inode_state(inode,
4441 EXT4_STATE_NO_EXPAND);
4442 if (mnt_count !=
4443 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4444 ext4_warning(inode->i_sb,
4445 "Unable to expand inode %lu. Delete"
4446 " some EAs or run e2fsck.",
4447 inode->i_ino);
4448 mnt_count =
4449 le16_to_cpu(sbi->s_es->s_mnt_count);
4450 }
4451 }
4452 }
4453 }
4454 if (!err)
4455 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4456 return err;
4457 }
4458
4459 /*
4460 * ext4_dirty_inode() is called from __mark_inode_dirty()
4461 *
4462 * We're really interested in the case where a file is being extended.
4463 * i_size has been changed by generic_commit_write() and we thus need
4464 * to include the updated inode in the current transaction.
4465 *
4466 * Also, dquot_alloc_block() will always dirty the inode when blocks
4467 * are allocated to the file.
4468 *
4469 * If the inode is marked synchronous, we don't honour that here - doing
4470 * so would cause a commit on atime updates, which we don't bother doing.
4471 * We handle synchronous inodes at the highest possible level.
4472 */
4473 void ext4_dirty_inode(struct inode *inode, int flags)
4474 {
4475 handle_t *handle;
4476
4477 handle = ext4_journal_start(inode, 2);
4478 if (IS_ERR(handle))
4479 goto out;
4480
4481 ext4_mark_inode_dirty(handle, inode);
4482
4483 ext4_journal_stop(handle);
4484 out:
4485 return;
4486 }
4487
4488 #if 0
4489 /*
4490 * Bind an inode's backing buffer_head into this transaction, to prevent
4491 * it from being flushed to disk early. Unlike
4492 * ext4_reserve_inode_write, this leaves behind no bh reference and
4493 * returns no iloc structure, so the caller needs to repeat the iloc
4494 * lookup to mark the inode dirty later.
4495 */
4496 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4497 {
4498 struct ext4_iloc iloc;
4499
4500 int err = 0;
4501 if (handle) {
4502 err = ext4_get_inode_loc(inode, &iloc);
4503 if (!err) {
4504 BUFFER_TRACE(iloc.bh, "get_write_access");
4505 err = jbd2_journal_get_write_access(handle, iloc.bh);
4506 if (!err)
4507 err = ext4_handle_dirty_metadata(handle,
4508 NULL,
4509 iloc.bh);
4510 brelse(iloc.bh);
4511 }
4512 }
4513 ext4_std_error(inode->i_sb, err);
4514 return err;
4515 }
4516 #endif
4517
4518 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4519 {
4520 journal_t *journal;
4521 handle_t *handle;
4522 int err;
4523
4524 /*
4525 * We have to be very careful here: changing a data block's
4526 * journaling status dynamically is dangerous. If we write a
4527 * data block to the journal, change the status and then delete
4528 * that block, we risk forgetting to revoke the old log record
4529 * from the journal and so a subsequent replay can corrupt data.
4530 * So, first we make sure that the journal is empty and that
4531 * nobody is changing anything.
4532 */
4533
4534 journal = EXT4_JOURNAL(inode);
4535 if (!journal)
4536 return 0;
4537 if (is_journal_aborted(journal))
4538 return -EROFS;
4539 /* We have to allocate physical blocks for delalloc blocks
4540 * before flushing journal. otherwise delalloc blocks can not
4541 * be allocated any more. even more truncate on delalloc blocks
4542 * could trigger BUG by flushing delalloc blocks in journal.
4543 * There is no delalloc block in non-journal data mode.
4544 */
4545 if (val && test_opt(inode->i_sb, DELALLOC)) {
4546 err = ext4_alloc_da_blocks(inode);
4547 if (err < 0)
4548 return err;
4549 }
4550
4551 jbd2_journal_lock_updates(journal);
4552
4553 /*
4554 * OK, there are no updates running now, and all cached data is
4555 * synced to disk. We are now in a completely consistent state
4556 * which doesn't have anything in the journal, and we know that
4557 * no filesystem updates are running, so it is safe to modify
4558 * the inode's in-core data-journaling state flag now.
4559 */
4560
4561 if (val)
4562 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4563 else {
4564 jbd2_journal_flush(journal);
4565 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4566 }
4567 ext4_set_aops(inode);
4568
4569 jbd2_journal_unlock_updates(journal);
4570
4571 /* Finally we can mark the inode as dirty. */
4572
4573 handle = ext4_journal_start(inode, 1);
4574 if (IS_ERR(handle))
4575 return PTR_ERR(handle);
4576
4577 err = ext4_mark_inode_dirty(handle, inode);
4578 ext4_handle_sync(handle);
4579 ext4_journal_stop(handle);
4580 ext4_std_error(inode->i_sb, err);
4581
4582 return err;
4583 }
4584
4585 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4586 {
4587 return !buffer_mapped(bh);
4588 }
4589
4590 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4591 {
4592 struct page *page = vmf->page;
4593 loff_t size;
4594 unsigned long len;
4595 int ret;
4596 struct file *file = vma->vm_file;
4597 struct inode *inode = file->f_path.dentry->d_inode;
4598 struct address_space *mapping = inode->i_mapping;
4599 handle_t *handle;
4600 get_block_t *get_block;
4601 int retries = 0;
4602
4603 /*
4604 * This check is racy but catches the common case. We rely on
4605 * __block_page_mkwrite() to do a reliable check.
4606 */
4607 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4608 /* Delalloc case is easy... */
4609 if (test_opt(inode->i_sb, DELALLOC) &&
4610 !ext4_should_journal_data(inode) &&
4611 !ext4_nonda_switch(inode->i_sb)) {
4612 do {
4613 ret = __block_page_mkwrite(vma, vmf,
4614 ext4_da_get_block_prep);
4615 } while (ret == -ENOSPC &&
4616 ext4_should_retry_alloc(inode->i_sb, &retries));
4617 goto out_ret;
4618 }
4619
4620 lock_page(page);
4621 size = i_size_read(inode);
4622 /* Page got truncated from under us? */
4623 if (page->mapping != mapping || page_offset(page) > size) {
4624 unlock_page(page);
4625 ret = VM_FAULT_NOPAGE;
4626 goto out;
4627 }
4628
4629 if (page->index == size >> PAGE_CACHE_SHIFT)
4630 len = size & ~PAGE_CACHE_MASK;
4631 else
4632 len = PAGE_CACHE_SIZE;
4633 /*
4634 * Return if we have all the buffers mapped. This avoids the need to do
4635 * journal_start/journal_stop which can block and take a long time
4636 */
4637 if (page_has_buffers(page)) {
4638 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4639 ext4_bh_unmapped)) {
4640 /* Wait so that we don't change page under IO */
4641 wait_on_page_writeback(page);
4642 ret = VM_FAULT_LOCKED;
4643 goto out;
4644 }
4645 }
4646 unlock_page(page);
4647 /* OK, we need to fill the hole... */
4648 if (ext4_should_dioread_nolock(inode))
4649 get_block = ext4_get_block_write;
4650 else
4651 get_block = ext4_get_block;
4652 retry_alloc:
4653 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4654 if (IS_ERR(handle)) {
4655 ret = VM_FAULT_SIGBUS;
4656 goto out;
4657 }
4658 ret = __block_page_mkwrite(vma, vmf, get_block);
4659 if (!ret && ext4_should_journal_data(inode)) {
4660 if (walk_page_buffers(handle, page_buffers(page), 0,
4661 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4662 unlock_page(page);
4663 ret = VM_FAULT_SIGBUS;
4664 ext4_journal_stop(handle);
4665 goto out;
4666 }
4667 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4668 }
4669 ext4_journal_stop(handle);
4670 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4671 goto retry_alloc;
4672 out_ret:
4673 ret = block_page_mkwrite_return(ret);
4674 out:
4675 return ret;
4676 }
This page took 0.207893 seconds and 5 git commands to generate.