ext4: fix deadlock in ext4_ordered_write_end()
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 trace_ext4_begin_ordered_truncate(inode, new_size);
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77 * Test whether an inode is a fast symlink.
78 */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 int nblocks)
94 {
95 int ret;
96
97 /*
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 jbd_debug(2, "restarting handle %p\n", handle);
105 up_write(&EXT4_I(inode)->i_data_sem);
106 ret = ext4_journal_restart(handle, nblocks);
107 down_write(&EXT4_I(inode)->i_data_sem);
108 ext4_discard_preallocations(inode);
109
110 return ret;
111 }
112
113 /*
114 * Called at the last iput() if i_nlink is zero.
115 */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 handle_t *handle;
119 int err;
120
121 trace_ext4_evict_inode(inode);
122
123 ext4_ioend_wait(inode);
124
125 if (inode->i_nlink) {
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
157 if (!is_bad_inode(inode))
158 dquot_initialize(inode);
159
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 if (IS_ERR(handle)) {
169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
175 ext4_orphan_del(NULL, inode);
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
180 ext4_handle_sync(handle);
181 inode->i_size = 0;
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
184 ext4_warning(inode->i_sb,
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
188 if (inode->i_blocks)
189 ext4_truncate(inode);
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
197 if (!ext4_handle_has_enough_credits(handle, 3)) {
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
202 ext4_warning(inode->i_sb,
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
208 }
209 }
210
211 /*
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
218 */
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
229 if (ext4_mark_inode_dirty(handle, inode))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode);
232 else
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
235 return;
236 no_delete:
237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
250 */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256 return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
265 {
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 struct ext4_inode_info *ei = EXT4_I(inode);
268
269 spin_lock(&ei->i_block_reservation_lock);
270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
279
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 used + ei->i_allocated_meta_blocks);
285 ei->i_allocated_meta_blocks = 0;
286
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 ei->i_reserved_meta_blocks);
295 ei->i_reserved_meta_blocks = 0;
296 ei->i_da_metadata_calc_len = 0;
297 }
298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 else {
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
308 */
309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 }
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
319 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323 unsigned int line,
324 struct ext4_map_blocks *map)
325 {
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
332 return -EIO;
333 }
334 return 0;
335 }
336
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
343 */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346 {
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
390 if (num >= max_pages) {
391 done = 1;
392 break;
393 }
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398 }
399
400 /*
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402 */
403 static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
405 {
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
410
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
425
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
429
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
436 }
437 index++;
438 }
439 pagevec_release(&pvec);
440 }
441 }
442
443 /*
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
446 *
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
462 *
463 * It returns the error in case of allocation failure.
464 */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
467 {
468 int retval;
469
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
474 /*
475 * Try to see if we can get the block without requesting a new
476 * file system block.
477 */
478 down_read((&EXT4_I(inode)->i_data_sem));
479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 retval = ext4_ext_map_blocks(handle, inode, map, 0);
481 } else {
482 retval = ext4_ind_map_blocks(handle, inode, map, 0);
483 }
484 up_read((&EXT4_I(inode)->i_data_sem));
485
486 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487 int ret = check_block_validity(inode, map);
488 if (ret != 0)
489 return ret;
490 }
491
492 /* If it is only a block(s) look up */
493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494 return retval;
495
496 /*
497 * Returns if the blocks have already allocated
498 *
499 * Note that if blocks have been preallocated
500 * ext4_ext_get_block() returns the create = 0
501 * with buffer head unmapped.
502 */
503 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504 return retval;
505
506 /*
507 * When we call get_blocks without the create flag, the
508 * BH_Unwritten flag could have gotten set if the blocks
509 * requested were part of a uninitialized extent. We need to
510 * clear this flag now that we are committed to convert all or
511 * part of the uninitialized extent to be an initialized
512 * extent. This is because we need to avoid the combination
513 * of BH_Unwritten and BH_Mapped flags being simultaneously
514 * set on the buffer_head.
515 */
516 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517
518 /*
519 * New blocks allocate and/or writing to uninitialized extent
520 * will possibly result in updating i_data, so we take
521 * the write lock of i_data_sem, and call get_blocks()
522 * with create == 1 flag.
523 */
524 down_write((&EXT4_I(inode)->i_data_sem));
525
526 /*
527 * if the caller is from delayed allocation writeout path
528 * we have already reserved fs blocks for allocation
529 * let the underlying get_block() function know to
530 * avoid double accounting
531 */
532 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534 /*
535 * We need to check for EXT4 here because migrate
536 * could have changed the inode type in between
537 */
538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539 retval = ext4_ext_map_blocks(handle, inode, map, flags);
540 } else {
541 retval = ext4_ind_map_blocks(handle, inode, map, flags);
542
543 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544 /*
545 * We allocated new blocks which will result in
546 * i_data's format changing. Force the migrate
547 * to fail by clearing migrate flags
548 */
549 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550 }
551
552 /*
553 * Update reserved blocks/metadata blocks after successful
554 * block allocation which had been deferred till now. We don't
555 * support fallocate for non extent files. So we can update
556 * reserve space here.
557 */
558 if ((retval > 0) &&
559 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560 ext4_da_update_reserve_space(inode, retval, 1);
561 }
562 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564
565 /* If we have successfully mapped the delayed allocated blocks,
566 * set the BH_Da_Mapped bit on them. Its important to do this
567 * under the protection of i_data_sem.
568 */
569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570 set_buffers_da_mapped(inode, map);
571 }
572
573 up_write((&EXT4_I(inode)->i_data_sem));
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 int ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579 return retval;
580 }
581
582 /* Maximum number of blocks we map for direct IO at once. */
583 #define DIO_MAX_BLOCKS 4096
584
585 static int _ext4_get_block(struct inode *inode, sector_t iblock,
586 struct buffer_head *bh, int flags)
587 {
588 handle_t *handle = ext4_journal_current_handle();
589 struct ext4_map_blocks map;
590 int ret = 0, started = 0;
591 int dio_credits;
592
593 map.m_lblk = iblock;
594 map.m_len = bh->b_size >> inode->i_blkbits;
595
596 if (flags && !handle) {
597 /* Direct IO write... */
598 if (map.m_len > DIO_MAX_BLOCKS)
599 map.m_len = DIO_MAX_BLOCKS;
600 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601 handle = ext4_journal_start(inode, dio_credits);
602 if (IS_ERR(handle)) {
603 ret = PTR_ERR(handle);
604 return ret;
605 }
606 started = 1;
607 }
608
609 ret = ext4_map_blocks(handle, inode, &map, flags);
610 if (ret > 0) {
611 map_bh(bh, inode->i_sb, map.m_pblk);
612 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
614 ret = 0;
615 }
616 if (started)
617 ext4_journal_stop(handle);
618 return ret;
619 }
620
621 int ext4_get_block(struct inode *inode, sector_t iblock,
622 struct buffer_head *bh, int create)
623 {
624 return _ext4_get_block(inode, iblock, bh,
625 create ? EXT4_GET_BLOCKS_CREATE : 0);
626 }
627
628 /*
629 * `handle' can be NULL if create is zero
630 */
631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
632 ext4_lblk_t block, int create, int *errp)
633 {
634 struct ext4_map_blocks map;
635 struct buffer_head *bh;
636 int fatal = 0, err;
637
638 J_ASSERT(handle != NULL || create == 0);
639
640 map.m_lblk = block;
641 map.m_len = 1;
642 err = ext4_map_blocks(handle, inode, &map,
643 create ? EXT4_GET_BLOCKS_CREATE : 0);
644
645 if (err < 0)
646 *errp = err;
647 if (err <= 0)
648 return NULL;
649 *errp = 0;
650
651 bh = sb_getblk(inode->i_sb, map.m_pblk);
652 if (!bh) {
653 *errp = -EIO;
654 return NULL;
655 }
656 if (map.m_flags & EXT4_MAP_NEW) {
657 J_ASSERT(create != 0);
658 J_ASSERT(handle != NULL);
659
660 /*
661 * Now that we do not always journal data, we should
662 * keep in mind whether this should always journal the
663 * new buffer as metadata. For now, regular file
664 * writes use ext4_get_block instead, so it's not a
665 * problem.
666 */
667 lock_buffer(bh);
668 BUFFER_TRACE(bh, "call get_create_access");
669 fatal = ext4_journal_get_create_access(handle, bh);
670 if (!fatal && !buffer_uptodate(bh)) {
671 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672 set_buffer_uptodate(bh);
673 }
674 unlock_buffer(bh);
675 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676 err = ext4_handle_dirty_metadata(handle, inode, bh);
677 if (!fatal)
678 fatal = err;
679 } else {
680 BUFFER_TRACE(bh, "not a new buffer");
681 }
682 if (fatal) {
683 *errp = fatal;
684 brelse(bh);
685 bh = NULL;
686 }
687 return bh;
688 }
689
690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
691 ext4_lblk_t block, int create, int *err)
692 {
693 struct buffer_head *bh;
694
695 bh = ext4_getblk(handle, inode, block, create, err);
696 if (!bh)
697 return bh;
698 if (buffer_uptodate(bh))
699 return bh;
700 ll_rw_block(READ_META, 1, &bh);
701 wait_on_buffer(bh);
702 if (buffer_uptodate(bh))
703 return bh;
704 put_bh(bh);
705 *err = -EIO;
706 return NULL;
707 }
708
709 static int walk_page_buffers(handle_t *handle,
710 struct buffer_head *head,
711 unsigned from,
712 unsigned to,
713 int *partial,
714 int (*fn)(handle_t *handle,
715 struct buffer_head *bh))
716 {
717 struct buffer_head *bh;
718 unsigned block_start, block_end;
719 unsigned blocksize = head->b_size;
720 int err, ret = 0;
721 struct buffer_head *next;
722
723 for (bh = head, block_start = 0;
724 ret == 0 && (bh != head || !block_start);
725 block_start = block_end, bh = next) {
726 next = bh->b_this_page;
727 block_end = block_start + blocksize;
728 if (block_end <= from || block_start >= to) {
729 if (partial && !buffer_uptodate(bh))
730 *partial = 1;
731 continue;
732 }
733 err = (*fn)(handle, bh);
734 if (!ret)
735 ret = err;
736 }
737 return ret;
738 }
739
740 /*
741 * To preserve ordering, it is essential that the hole instantiation and
742 * the data write be encapsulated in a single transaction. We cannot
743 * close off a transaction and start a new one between the ext4_get_block()
744 * and the commit_write(). So doing the jbd2_journal_start at the start of
745 * prepare_write() is the right place.
746 *
747 * Also, this function can nest inside ext4_writepage() ->
748 * block_write_full_page(). In that case, we *know* that ext4_writepage()
749 * has generated enough buffer credits to do the whole page. So we won't
750 * block on the journal in that case, which is good, because the caller may
751 * be PF_MEMALLOC.
752 *
753 * By accident, ext4 can be reentered when a transaction is open via
754 * quota file writes. If we were to commit the transaction while thus
755 * reentered, there can be a deadlock - we would be holding a quota
756 * lock, and the commit would never complete if another thread had a
757 * transaction open and was blocking on the quota lock - a ranking
758 * violation.
759 *
760 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761 * will _not_ run commit under these circumstances because handle->h_ref
762 * is elevated. We'll still have enough credits for the tiny quotafile
763 * write.
764 */
765 static int do_journal_get_write_access(handle_t *handle,
766 struct buffer_head *bh)
767 {
768 int dirty = buffer_dirty(bh);
769 int ret;
770
771 if (!buffer_mapped(bh) || buffer_freed(bh))
772 return 0;
773 /*
774 * __block_write_begin() could have dirtied some buffers. Clean
775 * the dirty bit as jbd2_journal_get_write_access() could complain
776 * otherwise about fs integrity issues. Setting of the dirty bit
777 * by __block_write_begin() isn't a real problem here as we clear
778 * the bit before releasing a page lock and thus writeback cannot
779 * ever write the buffer.
780 */
781 if (dirty)
782 clear_buffer_dirty(bh);
783 ret = ext4_journal_get_write_access(handle, bh);
784 if (!ret && dirty)
785 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786 return ret;
787 }
788
789 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create);
791 static int ext4_write_begin(struct file *file, struct address_space *mapping,
792 loff_t pos, unsigned len, unsigned flags,
793 struct page **pagep, void **fsdata)
794 {
795 struct inode *inode = mapping->host;
796 int ret, needed_blocks;
797 handle_t *handle;
798 int retries = 0;
799 struct page *page;
800 pgoff_t index;
801 unsigned from, to;
802
803 trace_ext4_write_begin(inode, pos, len, flags);
804 /*
805 * Reserve one block more for addition to orphan list in case
806 * we allocate blocks but write fails for some reason
807 */
808 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809 index = pos >> PAGE_CACHE_SHIFT;
810 from = pos & (PAGE_CACHE_SIZE - 1);
811 to = from + len;
812
813 retry:
814 handle = ext4_journal_start(inode, needed_blocks);
815 if (IS_ERR(handle)) {
816 ret = PTR_ERR(handle);
817 goto out;
818 }
819
820 /* We cannot recurse into the filesystem as the transaction is already
821 * started */
822 flags |= AOP_FLAG_NOFS;
823
824 page = grab_cache_page_write_begin(mapping, index, flags);
825 if (!page) {
826 ext4_journal_stop(handle);
827 ret = -ENOMEM;
828 goto out;
829 }
830 *pagep = page;
831
832 if (ext4_should_dioread_nolock(inode))
833 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834 else
835 ret = __block_write_begin(page, pos, len, ext4_get_block);
836
837 if (!ret && ext4_should_journal_data(inode)) {
838 ret = walk_page_buffers(handle, page_buffers(page),
839 from, to, NULL, do_journal_get_write_access);
840 }
841
842 if (ret) {
843 unlock_page(page);
844 page_cache_release(page);
845 /*
846 * __block_write_begin may have instantiated a few blocks
847 * outside i_size. Trim these off again. Don't need
848 * i_size_read because we hold i_mutex.
849 *
850 * Add inode to orphan list in case we crash before
851 * truncate finishes
852 */
853 if (pos + len > inode->i_size && ext4_can_truncate(inode))
854 ext4_orphan_add(handle, inode);
855
856 ext4_journal_stop(handle);
857 if (pos + len > inode->i_size) {
858 ext4_truncate_failed_write(inode);
859 /*
860 * If truncate failed early the inode might
861 * still be on the orphan list; we need to
862 * make sure the inode is removed from the
863 * orphan list in that case.
864 */
865 if (inode->i_nlink)
866 ext4_orphan_del(NULL, inode);
867 }
868 }
869
870 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871 goto retry;
872 out:
873 return ret;
874 }
875
876 /* For write_end() in data=journal mode */
877 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 {
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
881 set_buffer_uptodate(bh);
882 return ext4_handle_dirty_metadata(handle, NULL, bh);
883 }
884
885 static int ext4_generic_write_end(struct file *file,
886 struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned copied,
888 struct page *page, void *fsdata)
889 {
890 int i_size_changed = 0;
891 struct inode *inode = mapping->host;
892 handle_t *handle = ext4_journal_current_handle();
893
894 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895
896 /*
897 * No need to use i_size_read() here, the i_size
898 * cannot change under us because we hold i_mutex.
899 *
900 * But it's important to update i_size while still holding page lock:
901 * page writeout could otherwise come in and zero beyond i_size.
902 */
903 if (pos + copied > inode->i_size) {
904 i_size_write(inode, pos + copied);
905 i_size_changed = 1;
906 }
907
908 if (pos + copied > EXT4_I(inode)->i_disksize) {
909 /* We need to mark inode dirty even if
910 * new_i_size is less that inode->i_size
911 * bu greater than i_disksize.(hint delalloc)
912 */
913 ext4_update_i_disksize(inode, (pos + copied));
914 i_size_changed = 1;
915 }
916 unlock_page(page);
917 page_cache_release(page);
918
919 /*
920 * Don't mark the inode dirty under page lock. First, it unnecessarily
921 * makes the holding time of page lock longer. Second, it forces lock
922 * ordering of page lock and transaction start for journaling
923 * filesystems.
924 */
925 if (i_size_changed)
926 ext4_mark_inode_dirty(handle, inode);
927
928 return copied;
929 }
930
931 /*
932 * We need to pick up the new inode size which generic_commit_write gave us
933 * `file' can be NULL - eg, when called from page_symlink().
934 *
935 * ext4 never places buffers on inode->i_mapping->private_list. metadata
936 * buffers are managed internally.
937 */
938 static int ext4_ordered_write_end(struct file *file,
939 struct address_space *mapping,
940 loff_t pos, unsigned len, unsigned copied,
941 struct page *page, void *fsdata)
942 {
943 handle_t *handle = ext4_journal_current_handle();
944 struct inode *inode = mapping->host;
945 int ret = 0, ret2;
946
947 trace_ext4_ordered_write_end(inode, pos, len, copied);
948 ret = ext4_jbd2_file_inode(handle, inode);
949
950 if (ret == 0) {
951 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
952 page, fsdata);
953 copied = ret2;
954 if (pos + len > inode->i_size && ext4_can_truncate(inode))
955 /* if we have allocated more blocks and copied
956 * less. We will have blocks allocated outside
957 * inode->i_size. So truncate them
958 */
959 ext4_orphan_add(handle, inode);
960 if (ret2 < 0)
961 ret = ret2;
962 } else {
963 unlock_page(page);
964 page_cache_release(page);
965 }
966
967 ret2 = ext4_journal_stop(handle);
968 if (!ret)
969 ret = ret2;
970
971 if (pos + len > inode->i_size) {
972 ext4_truncate_failed_write(inode);
973 /*
974 * If truncate failed early the inode might still be
975 * on the orphan list; we need to make sure the inode
976 * is removed from the orphan list in that case.
977 */
978 if (inode->i_nlink)
979 ext4_orphan_del(NULL, inode);
980 }
981
982
983 return ret ? ret : copied;
984 }
985
986 static int ext4_writeback_write_end(struct file *file,
987 struct address_space *mapping,
988 loff_t pos, unsigned len, unsigned copied,
989 struct page *page, void *fsdata)
990 {
991 handle_t *handle = ext4_journal_current_handle();
992 struct inode *inode = mapping->host;
993 int ret = 0, ret2;
994
995 trace_ext4_writeback_write_end(inode, pos, len, copied);
996 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
997 page, fsdata);
998 copied = ret2;
999 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1000 /* if we have allocated more blocks and copied
1001 * less. We will have blocks allocated outside
1002 * inode->i_size. So truncate them
1003 */
1004 ext4_orphan_add(handle, inode);
1005
1006 if (ret2 < 0)
1007 ret = ret2;
1008
1009 ret2 = ext4_journal_stop(handle);
1010 if (!ret)
1011 ret = ret2;
1012
1013 if (pos + len > inode->i_size) {
1014 ext4_truncate_failed_write(inode);
1015 /*
1016 * If truncate failed early the inode might still be
1017 * on the orphan list; we need to make sure the inode
1018 * is removed from the orphan list in that case.
1019 */
1020 if (inode->i_nlink)
1021 ext4_orphan_del(NULL, inode);
1022 }
1023
1024 return ret ? ret : copied;
1025 }
1026
1027 static int ext4_journalled_write_end(struct file *file,
1028 struct address_space *mapping,
1029 loff_t pos, unsigned len, unsigned copied,
1030 struct page *page, void *fsdata)
1031 {
1032 handle_t *handle = ext4_journal_current_handle();
1033 struct inode *inode = mapping->host;
1034 int ret = 0, ret2;
1035 int partial = 0;
1036 unsigned from, to;
1037 loff_t new_i_size;
1038
1039 trace_ext4_journalled_write_end(inode, pos, len, copied);
1040 from = pos & (PAGE_CACHE_SIZE - 1);
1041 to = from + len;
1042
1043 BUG_ON(!ext4_handle_valid(handle));
1044
1045 if (copied < len) {
1046 if (!PageUptodate(page))
1047 copied = 0;
1048 page_zero_new_buffers(page, from+copied, to);
1049 }
1050
1051 ret = walk_page_buffers(handle, page_buffers(page), from,
1052 to, &partial, write_end_fn);
1053 if (!partial)
1054 SetPageUptodate(page);
1055 new_i_size = pos + copied;
1056 if (new_i_size > inode->i_size)
1057 i_size_write(inode, pos+copied);
1058 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1059 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1060 if (new_i_size > EXT4_I(inode)->i_disksize) {
1061 ext4_update_i_disksize(inode, new_i_size);
1062 ret2 = ext4_mark_inode_dirty(handle, inode);
1063 if (!ret)
1064 ret = ret2;
1065 }
1066
1067 unlock_page(page);
1068 page_cache_release(page);
1069 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070 /* if we have allocated more blocks and copied
1071 * less. We will have blocks allocated outside
1072 * inode->i_size. So truncate them
1073 */
1074 ext4_orphan_add(handle, inode);
1075
1076 ret2 = ext4_journal_stop(handle);
1077 if (!ret)
1078 ret = ret2;
1079 if (pos + len > inode->i_size) {
1080 ext4_truncate_failed_write(inode);
1081 /*
1082 * If truncate failed early the inode might still be
1083 * on the orphan list; we need to make sure the inode
1084 * is removed from the orphan list in that case.
1085 */
1086 if (inode->i_nlink)
1087 ext4_orphan_del(NULL, inode);
1088 }
1089
1090 return ret ? ret : copied;
1091 }
1092
1093 /*
1094 * Reserve a single cluster located at lblock
1095 */
1096 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1097 {
1098 int retries = 0;
1099 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1100 struct ext4_inode_info *ei = EXT4_I(inode);
1101 unsigned int md_needed;
1102 int ret;
1103
1104 /*
1105 * recalculate the amount of metadata blocks to reserve
1106 * in order to allocate nrblocks
1107 * worse case is one extent per block
1108 */
1109 repeat:
1110 spin_lock(&ei->i_block_reservation_lock);
1111 md_needed = EXT4_NUM_B2C(sbi,
1112 ext4_calc_metadata_amount(inode, lblock));
1113 trace_ext4_da_reserve_space(inode, md_needed);
1114 spin_unlock(&ei->i_block_reservation_lock);
1115
1116 /*
1117 * We will charge metadata quota at writeout time; this saves
1118 * us from metadata over-estimation, though we may go over by
1119 * a small amount in the end. Here we just reserve for data.
1120 */
1121 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1122 if (ret)
1123 return ret;
1124 /*
1125 * We do still charge estimated metadata to the sb though;
1126 * we cannot afford to run out of free blocks.
1127 */
1128 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1129 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1130 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1131 yield();
1132 goto repeat;
1133 }
1134 return -ENOSPC;
1135 }
1136 spin_lock(&ei->i_block_reservation_lock);
1137 ei->i_reserved_data_blocks++;
1138 ei->i_reserved_meta_blocks += md_needed;
1139 spin_unlock(&ei->i_block_reservation_lock);
1140
1141 return 0; /* success */
1142 }
1143
1144 static void ext4_da_release_space(struct inode *inode, int to_free)
1145 {
1146 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1147 struct ext4_inode_info *ei = EXT4_I(inode);
1148
1149 if (!to_free)
1150 return; /* Nothing to release, exit */
1151
1152 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1153
1154 trace_ext4_da_release_space(inode, to_free);
1155 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1156 /*
1157 * if there aren't enough reserved blocks, then the
1158 * counter is messed up somewhere. Since this
1159 * function is called from invalidate page, it's
1160 * harmless to return without any action.
1161 */
1162 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1163 "ino %lu, to_free %d with only %d reserved "
1164 "data blocks\n", inode->i_ino, to_free,
1165 ei->i_reserved_data_blocks);
1166 WARN_ON(1);
1167 to_free = ei->i_reserved_data_blocks;
1168 }
1169 ei->i_reserved_data_blocks -= to_free;
1170
1171 if (ei->i_reserved_data_blocks == 0) {
1172 /*
1173 * We can release all of the reserved metadata blocks
1174 * only when we have written all of the delayed
1175 * allocation blocks.
1176 * Note that in case of bigalloc, i_reserved_meta_blocks,
1177 * i_reserved_data_blocks, etc. refer to number of clusters.
1178 */
1179 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1180 ei->i_reserved_meta_blocks);
1181 ei->i_reserved_meta_blocks = 0;
1182 ei->i_da_metadata_calc_len = 0;
1183 }
1184
1185 /* update fs dirty data blocks counter */
1186 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1187
1188 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1189
1190 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1191 }
1192
1193 static void ext4_da_page_release_reservation(struct page *page,
1194 unsigned long offset)
1195 {
1196 int to_release = 0;
1197 struct buffer_head *head, *bh;
1198 unsigned int curr_off = 0;
1199 struct inode *inode = page->mapping->host;
1200 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1201 int num_clusters;
1202
1203 head = page_buffers(page);
1204 bh = head;
1205 do {
1206 unsigned int next_off = curr_off + bh->b_size;
1207
1208 if ((offset <= curr_off) && (buffer_delay(bh))) {
1209 to_release++;
1210 clear_buffer_delay(bh);
1211 clear_buffer_da_mapped(bh);
1212 }
1213 curr_off = next_off;
1214 } while ((bh = bh->b_this_page) != head);
1215
1216 /* If we have released all the blocks belonging to a cluster, then we
1217 * need to release the reserved space for that cluster. */
1218 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1219 while (num_clusters > 0) {
1220 ext4_fsblk_t lblk;
1221 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1222 ((num_clusters - 1) << sbi->s_cluster_bits);
1223 if (sbi->s_cluster_ratio == 1 ||
1224 !ext4_find_delalloc_cluster(inode, lblk, 1))
1225 ext4_da_release_space(inode, 1);
1226
1227 num_clusters--;
1228 }
1229 }
1230
1231 /*
1232 * Delayed allocation stuff
1233 */
1234
1235 /*
1236 * mpage_da_submit_io - walks through extent of pages and try to write
1237 * them with writepage() call back
1238 *
1239 * @mpd->inode: inode
1240 * @mpd->first_page: first page of the extent
1241 * @mpd->next_page: page after the last page of the extent
1242 *
1243 * By the time mpage_da_submit_io() is called we expect all blocks
1244 * to be allocated. this may be wrong if allocation failed.
1245 *
1246 * As pages are already locked by write_cache_pages(), we can't use it
1247 */
1248 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1249 struct ext4_map_blocks *map)
1250 {
1251 struct pagevec pvec;
1252 unsigned long index, end;
1253 int ret = 0, err, nr_pages, i;
1254 struct inode *inode = mpd->inode;
1255 struct address_space *mapping = inode->i_mapping;
1256 loff_t size = i_size_read(inode);
1257 unsigned int len, block_start;
1258 struct buffer_head *bh, *page_bufs = NULL;
1259 int journal_data = ext4_should_journal_data(inode);
1260 sector_t pblock = 0, cur_logical = 0;
1261 struct ext4_io_submit io_submit;
1262
1263 BUG_ON(mpd->next_page <= mpd->first_page);
1264 memset(&io_submit, 0, sizeof(io_submit));
1265 /*
1266 * We need to start from the first_page to the next_page - 1
1267 * to make sure we also write the mapped dirty buffer_heads.
1268 * If we look at mpd->b_blocknr we would only be looking
1269 * at the currently mapped buffer_heads.
1270 */
1271 index = mpd->first_page;
1272 end = mpd->next_page - 1;
1273
1274 pagevec_init(&pvec, 0);
1275 while (index <= end) {
1276 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1277 if (nr_pages == 0)
1278 break;
1279 for (i = 0; i < nr_pages; i++) {
1280 int commit_write = 0, skip_page = 0;
1281 struct page *page = pvec.pages[i];
1282
1283 index = page->index;
1284 if (index > end)
1285 break;
1286
1287 if (index == size >> PAGE_CACHE_SHIFT)
1288 len = size & ~PAGE_CACHE_MASK;
1289 else
1290 len = PAGE_CACHE_SIZE;
1291 if (map) {
1292 cur_logical = index << (PAGE_CACHE_SHIFT -
1293 inode->i_blkbits);
1294 pblock = map->m_pblk + (cur_logical -
1295 map->m_lblk);
1296 }
1297 index++;
1298
1299 BUG_ON(!PageLocked(page));
1300 BUG_ON(PageWriteback(page));
1301
1302 /*
1303 * If the page does not have buffers (for
1304 * whatever reason), try to create them using
1305 * __block_write_begin. If this fails,
1306 * skip the page and move on.
1307 */
1308 if (!page_has_buffers(page)) {
1309 if (__block_write_begin(page, 0, len,
1310 noalloc_get_block_write)) {
1311 skip_page:
1312 unlock_page(page);
1313 continue;
1314 }
1315 commit_write = 1;
1316 }
1317
1318 bh = page_bufs = page_buffers(page);
1319 block_start = 0;
1320 do {
1321 if (!bh)
1322 goto skip_page;
1323 if (map && (cur_logical >= map->m_lblk) &&
1324 (cur_logical <= (map->m_lblk +
1325 (map->m_len - 1)))) {
1326 if (buffer_delay(bh)) {
1327 clear_buffer_delay(bh);
1328 bh->b_blocknr = pblock;
1329 }
1330 if (buffer_da_mapped(bh))
1331 clear_buffer_da_mapped(bh);
1332 if (buffer_unwritten(bh) ||
1333 buffer_mapped(bh))
1334 BUG_ON(bh->b_blocknr != pblock);
1335 if (map->m_flags & EXT4_MAP_UNINIT)
1336 set_buffer_uninit(bh);
1337 clear_buffer_unwritten(bh);
1338 }
1339
1340 /* skip page if block allocation undone */
1341 if (buffer_delay(bh) || buffer_unwritten(bh))
1342 skip_page = 1;
1343 bh = bh->b_this_page;
1344 block_start += bh->b_size;
1345 cur_logical++;
1346 pblock++;
1347 } while (bh != page_bufs);
1348
1349 if (skip_page)
1350 goto skip_page;
1351
1352 if (commit_write)
1353 /* mark the buffer_heads as dirty & uptodate */
1354 block_commit_write(page, 0, len);
1355
1356 clear_page_dirty_for_io(page);
1357 /*
1358 * Delalloc doesn't support data journalling,
1359 * but eventually maybe we'll lift this
1360 * restriction.
1361 */
1362 if (unlikely(journal_data && PageChecked(page)))
1363 err = __ext4_journalled_writepage(page, len);
1364 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1365 err = ext4_bio_write_page(&io_submit, page,
1366 len, mpd->wbc);
1367 else if (buffer_uninit(page_bufs)) {
1368 ext4_set_bh_endio(page_bufs, inode);
1369 err = block_write_full_page_endio(page,
1370 noalloc_get_block_write,
1371 mpd->wbc, ext4_end_io_buffer_write);
1372 } else
1373 err = block_write_full_page(page,
1374 noalloc_get_block_write, mpd->wbc);
1375
1376 if (!err)
1377 mpd->pages_written++;
1378 /*
1379 * In error case, we have to continue because
1380 * remaining pages are still locked
1381 */
1382 if (ret == 0)
1383 ret = err;
1384 }
1385 pagevec_release(&pvec);
1386 }
1387 ext4_io_submit(&io_submit);
1388 return ret;
1389 }
1390
1391 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1392 {
1393 int nr_pages, i;
1394 pgoff_t index, end;
1395 struct pagevec pvec;
1396 struct inode *inode = mpd->inode;
1397 struct address_space *mapping = inode->i_mapping;
1398
1399 index = mpd->first_page;
1400 end = mpd->next_page - 1;
1401 while (index <= end) {
1402 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1403 if (nr_pages == 0)
1404 break;
1405 for (i = 0; i < nr_pages; i++) {
1406 struct page *page = pvec.pages[i];
1407 if (page->index > end)
1408 break;
1409 BUG_ON(!PageLocked(page));
1410 BUG_ON(PageWriteback(page));
1411 block_invalidatepage(page, 0);
1412 ClearPageUptodate(page);
1413 unlock_page(page);
1414 }
1415 index = pvec.pages[nr_pages - 1]->index + 1;
1416 pagevec_release(&pvec);
1417 }
1418 return;
1419 }
1420
1421 static void ext4_print_free_blocks(struct inode *inode)
1422 {
1423 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424 printk(KERN_CRIT "Total free blocks count %lld\n",
1425 EXT4_C2B(EXT4_SB(inode->i_sb),
1426 ext4_count_free_clusters(inode->i_sb)));
1427 printk(KERN_CRIT "Free/Dirty block details\n");
1428 printk(KERN_CRIT "free_blocks=%lld\n",
1429 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1430 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1431 printk(KERN_CRIT "dirty_blocks=%lld\n",
1432 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1433 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1434 printk(KERN_CRIT "Block reservation details\n");
1435 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1436 EXT4_I(inode)->i_reserved_data_blocks);
1437 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1438 EXT4_I(inode)->i_reserved_meta_blocks);
1439 return;
1440 }
1441
1442 /*
1443 * mpage_da_map_and_submit - go through given space, map them
1444 * if necessary, and then submit them for I/O
1445 *
1446 * @mpd - bh describing space
1447 *
1448 * The function skips space we know is already mapped to disk blocks.
1449 *
1450 */
1451 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1452 {
1453 int err, blks, get_blocks_flags;
1454 struct ext4_map_blocks map, *mapp = NULL;
1455 sector_t next = mpd->b_blocknr;
1456 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1457 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1458 handle_t *handle = NULL;
1459
1460 /*
1461 * If the blocks are mapped already, or we couldn't accumulate
1462 * any blocks, then proceed immediately to the submission stage.
1463 */
1464 if ((mpd->b_size == 0) ||
1465 ((mpd->b_state & (1 << BH_Mapped)) &&
1466 !(mpd->b_state & (1 << BH_Delay)) &&
1467 !(mpd->b_state & (1 << BH_Unwritten))))
1468 goto submit_io;
1469
1470 handle = ext4_journal_current_handle();
1471 BUG_ON(!handle);
1472
1473 /*
1474 * Call ext4_map_blocks() to allocate any delayed allocation
1475 * blocks, or to convert an uninitialized extent to be
1476 * initialized (in the case where we have written into
1477 * one or more preallocated blocks).
1478 *
1479 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1480 * indicate that we are on the delayed allocation path. This
1481 * affects functions in many different parts of the allocation
1482 * call path. This flag exists primarily because we don't
1483 * want to change *many* call functions, so ext4_map_blocks()
1484 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1485 * inode's allocation semaphore is taken.
1486 *
1487 * If the blocks in questions were delalloc blocks, set
1488 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1489 * variables are updated after the blocks have been allocated.
1490 */
1491 map.m_lblk = next;
1492 map.m_len = max_blocks;
1493 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1494 if (ext4_should_dioread_nolock(mpd->inode))
1495 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1496 if (mpd->b_state & (1 << BH_Delay))
1497 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1498
1499 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1500 if (blks < 0) {
1501 struct super_block *sb = mpd->inode->i_sb;
1502
1503 err = blks;
1504 /*
1505 * If get block returns EAGAIN or ENOSPC and there
1506 * appears to be free blocks we will just let
1507 * mpage_da_submit_io() unlock all of the pages.
1508 */
1509 if (err == -EAGAIN)
1510 goto submit_io;
1511
1512 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1513 mpd->retval = err;
1514 goto submit_io;
1515 }
1516
1517 /*
1518 * get block failure will cause us to loop in
1519 * writepages, because a_ops->writepage won't be able
1520 * to make progress. The page will be redirtied by
1521 * writepage and writepages will again try to write
1522 * the same.
1523 */
1524 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1525 ext4_msg(sb, KERN_CRIT,
1526 "delayed block allocation failed for inode %lu "
1527 "at logical offset %llu with max blocks %zd "
1528 "with error %d", mpd->inode->i_ino,
1529 (unsigned long long) next,
1530 mpd->b_size >> mpd->inode->i_blkbits, err);
1531 ext4_msg(sb, KERN_CRIT,
1532 "This should not happen!! Data will be lost\n");
1533 if (err == -ENOSPC)
1534 ext4_print_free_blocks(mpd->inode);
1535 }
1536 /* invalidate all the pages */
1537 ext4_da_block_invalidatepages(mpd);
1538
1539 /* Mark this page range as having been completed */
1540 mpd->io_done = 1;
1541 return;
1542 }
1543 BUG_ON(blks == 0);
1544
1545 mapp = &map;
1546 if (map.m_flags & EXT4_MAP_NEW) {
1547 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1548 int i;
1549
1550 for (i = 0; i < map.m_len; i++)
1551 unmap_underlying_metadata(bdev, map.m_pblk + i);
1552
1553 if (ext4_should_order_data(mpd->inode)) {
1554 err = ext4_jbd2_file_inode(handle, mpd->inode);
1555 if (err)
1556 /* Only if the journal is aborted */
1557 return;
1558 }
1559 }
1560
1561 /*
1562 * Update on-disk size along with block allocation.
1563 */
1564 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1565 if (disksize > i_size_read(mpd->inode))
1566 disksize = i_size_read(mpd->inode);
1567 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1568 ext4_update_i_disksize(mpd->inode, disksize);
1569 err = ext4_mark_inode_dirty(handle, mpd->inode);
1570 if (err)
1571 ext4_error(mpd->inode->i_sb,
1572 "Failed to mark inode %lu dirty",
1573 mpd->inode->i_ino);
1574 }
1575
1576 submit_io:
1577 mpage_da_submit_io(mpd, mapp);
1578 mpd->io_done = 1;
1579 }
1580
1581 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1582 (1 << BH_Delay) | (1 << BH_Unwritten))
1583
1584 /*
1585 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1586 *
1587 * @mpd->lbh - extent of blocks
1588 * @logical - logical number of the block in the file
1589 * @bh - bh of the block (used to access block's state)
1590 *
1591 * the function is used to collect contig. blocks in same state
1592 */
1593 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1594 sector_t logical, size_t b_size,
1595 unsigned long b_state)
1596 {
1597 sector_t next;
1598 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1599
1600 /*
1601 * XXX Don't go larger than mballoc is willing to allocate
1602 * This is a stopgap solution. We eventually need to fold
1603 * mpage_da_submit_io() into this function and then call
1604 * ext4_map_blocks() multiple times in a loop
1605 */
1606 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1607 goto flush_it;
1608
1609 /* check if thereserved journal credits might overflow */
1610 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1611 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1612 /*
1613 * With non-extent format we are limited by the journal
1614 * credit available. Total credit needed to insert
1615 * nrblocks contiguous blocks is dependent on the
1616 * nrblocks. So limit nrblocks.
1617 */
1618 goto flush_it;
1619 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1620 EXT4_MAX_TRANS_DATA) {
1621 /*
1622 * Adding the new buffer_head would make it cross the
1623 * allowed limit for which we have journal credit
1624 * reserved. So limit the new bh->b_size
1625 */
1626 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1627 mpd->inode->i_blkbits;
1628 /* we will do mpage_da_submit_io in the next loop */
1629 }
1630 }
1631 /*
1632 * First block in the extent
1633 */
1634 if (mpd->b_size == 0) {
1635 mpd->b_blocknr = logical;
1636 mpd->b_size = b_size;
1637 mpd->b_state = b_state & BH_FLAGS;
1638 return;
1639 }
1640
1641 next = mpd->b_blocknr + nrblocks;
1642 /*
1643 * Can we merge the block to our big extent?
1644 */
1645 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1646 mpd->b_size += b_size;
1647 return;
1648 }
1649
1650 flush_it:
1651 /*
1652 * We couldn't merge the block to our extent, so we
1653 * need to flush current extent and start new one
1654 */
1655 mpage_da_map_and_submit(mpd);
1656 return;
1657 }
1658
1659 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1660 {
1661 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1662 }
1663
1664 /*
1665 * This function is grabs code from the very beginning of
1666 * ext4_map_blocks, but assumes that the caller is from delayed write
1667 * time. This function looks up the requested blocks and sets the
1668 * buffer delay bit under the protection of i_data_sem.
1669 */
1670 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1671 struct ext4_map_blocks *map,
1672 struct buffer_head *bh)
1673 {
1674 int retval;
1675 sector_t invalid_block = ~((sector_t) 0xffff);
1676
1677 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1678 invalid_block = ~0;
1679
1680 map->m_flags = 0;
1681 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1682 "logical block %lu\n", inode->i_ino, map->m_len,
1683 (unsigned long) map->m_lblk);
1684 /*
1685 * Try to see if we can get the block without requesting a new
1686 * file system block.
1687 */
1688 down_read((&EXT4_I(inode)->i_data_sem));
1689 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1690 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1691 else
1692 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1693
1694 if (retval == 0) {
1695 /*
1696 * XXX: __block_prepare_write() unmaps passed block,
1697 * is it OK?
1698 */
1699 /* If the block was allocated from previously allocated cluster,
1700 * then we dont need to reserve it again. */
1701 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1702 retval = ext4_da_reserve_space(inode, iblock);
1703 if (retval)
1704 /* not enough space to reserve */
1705 goto out_unlock;
1706 }
1707
1708 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1709 * and it should not appear on the bh->b_state.
1710 */
1711 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1712
1713 map_bh(bh, inode->i_sb, invalid_block);
1714 set_buffer_new(bh);
1715 set_buffer_delay(bh);
1716 }
1717
1718 out_unlock:
1719 up_read((&EXT4_I(inode)->i_data_sem));
1720
1721 return retval;
1722 }
1723
1724 /*
1725 * This is a special get_blocks_t callback which is used by
1726 * ext4_da_write_begin(). It will either return mapped block or
1727 * reserve space for a single block.
1728 *
1729 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1730 * We also have b_blocknr = -1 and b_bdev initialized properly
1731 *
1732 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1733 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1734 * initialized properly.
1735 */
1736 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1737 struct buffer_head *bh, int create)
1738 {
1739 struct ext4_map_blocks map;
1740 int ret = 0;
1741
1742 BUG_ON(create == 0);
1743 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1744
1745 map.m_lblk = iblock;
1746 map.m_len = 1;
1747
1748 /*
1749 * first, we need to know whether the block is allocated already
1750 * preallocated blocks are unmapped but should treated
1751 * the same as allocated blocks.
1752 */
1753 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1754 if (ret <= 0)
1755 return ret;
1756
1757 map_bh(bh, inode->i_sb, map.m_pblk);
1758 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1759
1760 if (buffer_unwritten(bh)) {
1761 /* A delayed write to unwritten bh should be marked
1762 * new and mapped. Mapped ensures that we don't do
1763 * get_block multiple times when we write to the same
1764 * offset and new ensures that we do proper zero out
1765 * for partial write.
1766 */
1767 set_buffer_new(bh);
1768 set_buffer_mapped(bh);
1769 }
1770 return 0;
1771 }
1772
1773 /*
1774 * This function is used as a standard get_block_t calback function
1775 * when there is no desire to allocate any blocks. It is used as a
1776 * callback function for block_write_begin() and block_write_full_page().
1777 * These functions should only try to map a single block at a time.
1778 *
1779 * Since this function doesn't do block allocations even if the caller
1780 * requests it by passing in create=1, it is critically important that
1781 * any caller checks to make sure that any buffer heads are returned
1782 * by this function are either all already mapped or marked for
1783 * delayed allocation before calling block_write_full_page(). Otherwise,
1784 * b_blocknr could be left unitialized, and the page write functions will
1785 * be taken by surprise.
1786 */
1787 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1788 struct buffer_head *bh_result, int create)
1789 {
1790 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1791 return _ext4_get_block(inode, iblock, bh_result, 0);
1792 }
1793
1794 static int bget_one(handle_t *handle, struct buffer_head *bh)
1795 {
1796 get_bh(bh);
1797 return 0;
1798 }
1799
1800 static int bput_one(handle_t *handle, struct buffer_head *bh)
1801 {
1802 put_bh(bh);
1803 return 0;
1804 }
1805
1806 static int __ext4_journalled_writepage(struct page *page,
1807 unsigned int len)
1808 {
1809 struct address_space *mapping = page->mapping;
1810 struct inode *inode = mapping->host;
1811 struct buffer_head *page_bufs;
1812 handle_t *handle = NULL;
1813 int ret = 0;
1814 int err;
1815
1816 ClearPageChecked(page);
1817 page_bufs = page_buffers(page);
1818 BUG_ON(!page_bufs);
1819 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1820 /* As soon as we unlock the page, it can go away, but we have
1821 * references to buffers so we are safe */
1822 unlock_page(page);
1823
1824 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1825 if (IS_ERR(handle)) {
1826 ret = PTR_ERR(handle);
1827 goto out;
1828 }
1829
1830 BUG_ON(!ext4_handle_valid(handle));
1831
1832 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1833 do_journal_get_write_access);
1834
1835 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1836 write_end_fn);
1837 if (ret == 0)
1838 ret = err;
1839 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1840 err = ext4_journal_stop(handle);
1841 if (!ret)
1842 ret = err;
1843
1844 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1845 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1846 out:
1847 return ret;
1848 }
1849
1850 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1851 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1852
1853 /*
1854 * Note that we don't need to start a transaction unless we're journaling data
1855 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1856 * need to file the inode to the transaction's list in ordered mode because if
1857 * we are writing back data added by write(), the inode is already there and if
1858 * we are writing back data modified via mmap(), no one guarantees in which
1859 * transaction the data will hit the disk. In case we are journaling data, we
1860 * cannot start transaction directly because transaction start ranks above page
1861 * lock so we have to do some magic.
1862 *
1863 * This function can get called via...
1864 * - ext4_da_writepages after taking page lock (have journal handle)
1865 * - journal_submit_inode_data_buffers (no journal handle)
1866 * - shrink_page_list via pdflush (no journal handle)
1867 * - grab_page_cache when doing write_begin (have journal handle)
1868 *
1869 * We don't do any block allocation in this function. If we have page with
1870 * multiple blocks we need to write those buffer_heads that are mapped. This
1871 * is important for mmaped based write. So if we do with blocksize 1K
1872 * truncate(f, 1024);
1873 * a = mmap(f, 0, 4096);
1874 * a[0] = 'a';
1875 * truncate(f, 4096);
1876 * we have in the page first buffer_head mapped via page_mkwrite call back
1877 * but other bufer_heads would be unmapped but dirty(dirty done via the
1878 * do_wp_page). So writepage should write the first block. If we modify
1879 * the mmap area beyond 1024 we will again get a page_fault and the
1880 * page_mkwrite callback will do the block allocation and mark the
1881 * buffer_heads mapped.
1882 *
1883 * We redirty the page if we have any buffer_heads that is either delay or
1884 * unwritten in the page.
1885 *
1886 * We can get recursively called as show below.
1887 *
1888 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1889 * ext4_writepage()
1890 *
1891 * But since we don't do any block allocation we should not deadlock.
1892 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1893 */
1894 static int ext4_writepage(struct page *page,
1895 struct writeback_control *wbc)
1896 {
1897 int ret = 0, commit_write = 0;
1898 loff_t size;
1899 unsigned int len;
1900 struct buffer_head *page_bufs = NULL;
1901 struct inode *inode = page->mapping->host;
1902
1903 trace_ext4_writepage(page);
1904 size = i_size_read(inode);
1905 if (page->index == size >> PAGE_CACHE_SHIFT)
1906 len = size & ~PAGE_CACHE_MASK;
1907 else
1908 len = PAGE_CACHE_SIZE;
1909
1910 /*
1911 * If the page does not have buffers (for whatever reason),
1912 * try to create them using __block_write_begin. If this
1913 * fails, redirty the page and move on.
1914 */
1915 if (!page_has_buffers(page)) {
1916 if (__block_write_begin(page, 0, len,
1917 noalloc_get_block_write)) {
1918 redirty_page:
1919 redirty_page_for_writepage(wbc, page);
1920 unlock_page(page);
1921 return 0;
1922 }
1923 commit_write = 1;
1924 }
1925 page_bufs = page_buffers(page);
1926 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1927 ext4_bh_delay_or_unwritten)) {
1928 /*
1929 * We don't want to do block allocation, so redirty
1930 * the page and return. We may reach here when we do
1931 * a journal commit via journal_submit_inode_data_buffers.
1932 * We can also reach here via shrink_page_list
1933 */
1934 goto redirty_page;
1935 }
1936 if (commit_write)
1937 /* now mark the buffer_heads as dirty and uptodate */
1938 block_commit_write(page, 0, len);
1939
1940 if (PageChecked(page) && ext4_should_journal_data(inode))
1941 /*
1942 * It's mmapped pagecache. Add buffers and journal it. There
1943 * doesn't seem much point in redirtying the page here.
1944 */
1945 return __ext4_journalled_writepage(page, len);
1946
1947 if (buffer_uninit(page_bufs)) {
1948 ext4_set_bh_endio(page_bufs, inode);
1949 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1950 wbc, ext4_end_io_buffer_write);
1951 } else
1952 ret = block_write_full_page(page, noalloc_get_block_write,
1953 wbc);
1954
1955 return ret;
1956 }
1957
1958 /*
1959 * This is called via ext4_da_writepages() to
1960 * calculate the total number of credits to reserve to fit
1961 * a single extent allocation into a single transaction,
1962 * ext4_da_writpeages() will loop calling this before
1963 * the block allocation.
1964 */
1965
1966 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1967 {
1968 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1969
1970 /*
1971 * With non-extent format the journal credit needed to
1972 * insert nrblocks contiguous block is dependent on
1973 * number of contiguous block. So we will limit
1974 * number of contiguous block to a sane value
1975 */
1976 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1977 (max_blocks > EXT4_MAX_TRANS_DATA))
1978 max_blocks = EXT4_MAX_TRANS_DATA;
1979
1980 return ext4_chunk_trans_blocks(inode, max_blocks);
1981 }
1982
1983 /*
1984 * write_cache_pages_da - walk the list of dirty pages of the given
1985 * address space and accumulate pages that need writing, and call
1986 * mpage_da_map_and_submit to map a single contiguous memory region
1987 * and then write them.
1988 */
1989 static int write_cache_pages_da(struct address_space *mapping,
1990 struct writeback_control *wbc,
1991 struct mpage_da_data *mpd,
1992 pgoff_t *done_index)
1993 {
1994 struct buffer_head *bh, *head;
1995 struct inode *inode = mapping->host;
1996 struct pagevec pvec;
1997 unsigned int nr_pages;
1998 sector_t logical;
1999 pgoff_t index, end;
2000 long nr_to_write = wbc->nr_to_write;
2001 int i, tag, ret = 0;
2002
2003 memset(mpd, 0, sizeof(struct mpage_da_data));
2004 mpd->wbc = wbc;
2005 mpd->inode = inode;
2006 pagevec_init(&pvec, 0);
2007 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2008 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2009
2010 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2011 tag = PAGECACHE_TAG_TOWRITE;
2012 else
2013 tag = PAGECACHE_TAG_DIRTY;
2014
2015 *done_index = index;
2016 while (index <= end) {
2017 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2018 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2019 if (nr_pages == 0)
2020 return 0;
2021
2022 for (i = 0; i < nr_pages; i++) {
2023 struct page *page = pvec.pages[i];
2024
2025 /*
2026 * At this point, the page may be truncated or
2027 * invalidated (changing page->mapping to NULL), or
2028 * even swizzled back from swapper_space to tmpfs file
2029 * mapping. However, page->index will not change
2030 * because we have a reference on the page.
2031 */
2032 if (page->index > end)
2033 goto out;
2034
2035 *done_index = page->index + 1;
2036
2037 /*
2038 * If we can't merge this page, and we have
2039 * accumulated an contiguous region, write it
2040 */
2041 if ((mpd->next_page != page->index) &&
2042 (mpd->next_page != mpd->first_page)) {
2043 mpage_da_map_and_submit(mpd);
2044 goto ret_extent_tail;
2045 }
2046
2047 lock_page(page);
2048
2049 /*
2050 * If the page is no longer dirty, or its
2051 * mapping no longer corresponds to inode we
2052 * are writing (which means it has been
2053 * truncated or invalidated), or the page is
2054 * already under writeback and we are not
2055 * doing a data integrity writeback, skip the page
2056 */
2057 if (!PageDirty(page) ||
2058 (PageWriteback(page) &&
2059 (wbc->sync_mode == WB_SYNC_NONE)) ||
2060 unlikely(page->mapping != mapping)) {
2061 unlock_page(page);
2062 continue;
2063 }
2064
2065 wait_on_page_writeback(page);
2066 BUG_ON(PageWriteback(page));
2067
2068 if (mpd->next_page != page->index)
2069 mpd->first_page = page->index;
2070 mpd->next_page = page->index + 1;
2071 logical = (sector_t) page->index <<
2072 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2073
2074 if (!page_has_buffers(page)) {
2075 mpage_add_bh_to_extent(mpd, logical,
2076 PAGE_CACHE_SIZE,
2077 (1 << BH_Dirty) | (1 << BH_Uptodate));
2078 if (mpd->io_done)
2079 goto ret_extent_tail;
2080 } else {
2081 /*
2082 * Page with regular buffer heads,
2083 * just add all dirty ones
2084 */
2085 head = page_buffers(page);
2086 bh = head;
2087 do {
2088 BUG_ON(buffer_locked(bh));
2089 /*
2090 * We need to try to allocate
2091 * unmapped blocks in the same page.
2092 * Otherwise we won't make progress
2093 * with the page in ext4_writepage
2094 */
2095 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2096 mpage_add_bh_to_extent(mpd, logical,
2097 bh->b_size,
2098 bh->b_state);
2099 if (mpd->io_done)
2100 goto ret_extent_tail;
2101 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2102 /*
2103 * mapped dirty buffer. We need
2104 * to update the b_state
2105 * because we look at b_state
2106 * in mpage_da_map_blocks. We
2107 * don't update b_size because
2108 * if we find an unmapped
2109 * buffer_head later we need to
2110 * use the b_state flag of that
2111 * buffer_head.
2112 */
2113 if (mpd->b_size == 0)
2114 mpd->b_state = bh->b_state & BH_FLAGS;
2115 }
2116 logical++;
2117 } while ((bh = bh->b_this_page) != head);
2118 }
2119
2120 if (nr_to_write > 0) {
2121 nr_to_write--;
2122 if (nr_to_write == 0 &&
2123 wbc->sync_mode == WB_SYNC_NONE)
2124 /*
2125 * We stop writing back only if we are
2126 * not doing integrity sync. In case of
2127 * integrity sync we have to keep going
2128 * because someone may be concurrently
2129 * dirtying pages, and we might have
2130 * synced a lot of newly appeared dirty
2131 * pages, but have not synced all of the
2132 * old dirty pages.
2133 */
2134 goto out;
2135 }
2136 }
2137 pagevec_release(&pvec);
2138 cond_resched();
2139 }
2140 return 0;
2141 ret_extent_tail:
2142 ret = MPAGE_DA_EXTENT_TAIL;
2143 out:
2144 pagevec_release(&pvec);
2145 cond_resched();
2146 return ret;
2147 }
2148
2149
2150 static int ext4_da_writepages(struct address_space *mapping,
2151 struct writeback_control *wbc)
2152 {
2153 pgoff_t index;
2154 int range_whole = 0;
2155 handle_t *handle = NULL;
2156 struct mpage_da_data mpd;
2157 struct inode *inode = mapping->host;
2158 int pages_written = 0;
2159 unsigned int max_pages;
2160 int range_cyclic, cycled = 1, io_done = 0;
2161 int needed_blocks, ret = 0;
2162 long desired_nr_to_write, nr_to_writebump = 0;
2163 loff_t range_start = wbc->range_start;
2164 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2165 pgoff_t done_index = 0;
2166 pgoff_t end;
2167 struct blk_plug plug;
2168
2169 trace_ext4_da_writepages(inode, wbc);
2170
2171 /*
2172 * No pages to write? This is mainly a kludge to avoid starting
2173 * a transaction for special inodes like journal inode on last iput()
2174 * because that could violate lock ordering on umount
2175 */
2176 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2177 return 0;
2178
2179 /*
2180 * If the filesystem has aborted, it is read-only, so return
2181 * right away instead of dumping stack traces later on that
2182 * will obscure the real source of the problem. We test
2183 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2184 * the latter could be true if the filesystem is mounted
2185 * read-only, and in that case, ext4_da_writepages should
2186 * *never* be called, so if that ever happens, we would want
2187 * the stack trace.
2188 */
2189 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2190 return -EROFS;
2191
2192 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2193 range_whole = 1;
2194
2195 range_cyclic = wbc->range_cyclic;
2196 if (wbc->range_cyclic) {
2197 index = mapping->writeback_index;
2198 if (index)
2199 cycled = 0;
2200 wbc->range_start = index << PAGE_CACHE_SHIFT;
2201 wbc->range_end = LLONG_MAX;
2202 wbc->range_cyclic = 0;
2203 end = -1;
2204 } else {
2205 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2206 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2207 }
2208
2209 /*
2210 * This works around two forms of stupidity. The first is in
2211 * the writeback code, which caps the maximum number of pages
2212 * written to be 1024 pages. This is wrong on multiple
2213 * levels; different architectues have a different page size,
2214 * which changes the maximum amount of data which gets
2215 * written. Secondly, 4 megabytes is way too small. XFS
2216 * forces this value to be 16 megabytes by multiplying
2217 * nr_to_write parameter by four, and then relies on its
2218 * allocator to allocate larger extents to make them
2219 * contiguous. Unfortunately this brings us to the second
2220 * stupidity, which is that ext4's mballoc code only allocates
2221 * at most 2048 blocks. So we force contiguous writes up to
2222 * the number of dirty blocks in the inode, or
2223 * sbi->max_writeback_mb_bump whichever is smaller.
2224 */
2225 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2226 if (!range_cyclic && range_whole) {
2227 if (wbc->nr_to_write == LONG_MAX)
2228 desired_nr_to_write = wbc->nr_to_write;
2229 else
2230 desired_nr_to_write = wbc->nr_to_write * 8;
2231 } else
2232 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2233 max_pages);
2234 if (desired_nr_to_write > max_pages)
2235 desired_nr_to_write = max_pages;
2236
2237 if (wbc->nr_to_write < desired_nr_to_write) {
2238 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2239 wbc->nr_to_write = desired_nr_to_write;
2240 }
2241
2242 retry:
2243 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2244 tag_pages_for_writeback(mapping, index, end);
2245
2246 blk_start_plug(&plug);
2247 while (!ret && wbc->nr_to_write > 0) {
2248
2249 /*
2250 * we insert one extent at a time. So we need
2251 * credit needed for single extent allocation.
2252 * journalled mode is currently not supported
2253 * by delalloc
2254 */
2255 BUG_ON(ext4_should_journal_data(inode));
2256 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2257
2258 /* start a new transaction*/
2259 handle = ext4_journal_start(inode, needed_blocks);
2260 if (IS_ERR(handle)) {
2261 ret = PTR_ERR(handle);
2262 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2263 "%ld pages, ino %lu; err %d", __func__,
2264 wbc->nr_to_write, inode->i_ino, ret);
2265 goto out_writepages;
2266 }
2267
2268 /*
2269 * Now call write_cache_pages_da() to find the next
2270 * contiguous region of logical blocks that need
2271 * blocks to be allocated by ext4 and submit them.
2272 */
2273 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2274 /*
2275 * If we have a contiguous extent of pages and we
2276 * haven't done the I/O yet, map the blocks and submit
2277 * them for I/O.
2278 */
2279 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2280 mpage_da_map_and_submit(&mpd);
2281 ret = MPAGE_DA_EXTENT_TAIL;
2282 }
2283 trace_ext4_da_write_pages(inode, &mpd);
2284 wbc->nr_to_write -= mpd.pages_written;
2285
2286 ext4_journal_stop(handle);
2287
2288 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2289 /* commit the transaction which would
2290 * free blocks released in the transaction
2291 * and try again
2292 */
2293 jbd2_journal_force_commit_nested(sbi->s_journal);
2294 ret = 0;
2295 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2296 /*
2297 * got one extent now try with
2298 * rest of the pages
2299 */
2300 pages_written += mpd.pages_written;
2301 ret = 0;
2302 io_done = 1;
2303 } else if (wbc->nr_to_write)
2304 /*
2305 * There is no more writeout needed
2306 * or we requested for a noblocking writeout
2307 * and we found the device congested
2308 */
2309 break;
2310 }
2311 blk_finish_plug(&plug);
2312 if (!io_done && !cycled) {
2313 cycled = 1;
2314 index = 0;
2315 wbc->range_start = index << PAGE_CACHE_SHIFT;
2316 wbc->range_end = mapping->writeback_index - 1;
2317 goto retry;
2318 }
2319
2320 /* Update index */
2321 wbc->range_cyclic = range_cyclic;
2322 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2323 /*
2324 * set the writeback_index so that range_cyclic
2325 * mode will write it back later
2326 */
2327 mapping->writeback_index = done_index;
2328
2329 out_writepages:
2330 wbc->nr_to_write -= nr_to_writebump;
2331 wbc->range_start = range_start;
2332 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2333 return ret;
2334 }
2335
2336 #define FALL_BACK_TO_NONDELALLOC 1
2337 static int ext4_nonda_switch(struct super_block *sb)
2338 {
2339 s64 free_blocks, dirty_blocks;
2340 struct ext4_sb_info *sbi = EXT4_SB(sb);
2341
2342 /*
2343 * switch to non delalloc mode if we are running low
2344 * on free block. The free block accounting via percpu
2345 * counters can get slightly wrong with percpu_counter_batch getting
2346 * accumulated on each CPU without updating global counters
2347 * Delalloc need an accurate free block accounting. So switch
2348 * to non delalloc when we are near to error range.
2349 */
2350 free_blocks = EXT4_C2B(sbi,
2351 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2352 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2353 if (2 * free_blocks < 3 * dirty_blocks ||
2354 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2355 /*
2356 * free block count is less than 150% of dirty blocks
2357 * or free blocks is less than watermark
2358 */
2359 return 1;
2360 }
2361 /*
2362 * Even if we don't switch but are nearing capacity,
2363 * start pushing delalloc when 1/2 of free blocks are dirty.
2364 */
2365 if (free_blocks < 2 * dirty_blocks)
2366 writeback_inodes_sb_if_idle(sb);
2367
2368 return 0;
2369 }
2370
2371 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2372 loff_t pos, unsigned len, unsigned flags,
2373 struct page **pagep, void **fsdata)
2374 {
2375 int ret, retries = 0;
2376 struct page *page;
2377 pgoff_t index;
2378 struct inode *inode = mapping->host;
2379 handle_t *handle;
2380 loff_t page_len;
2381
2382 index = pos >> PAGE_CACHE_SHIFT;
2383
2384 if (ext4_nonda_switch(inode->i_sb)) {
2385 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2386 return ext4_write_begin(file, mapping, pos,
2387 len, flags, pagep, fsdata);
2388 }
2389 *fsdata = (void *)0;
2390 trace_ext4_da_write_begin(inode, pos, len, flags);
2391 retry:
2392 /*
2393 * With delayed allocation, we don't log the i_disksize update
2394 * if there is delayed block allocation. But we still need
2395 * to journalling the i_disksize update if writes to the end
2396 * of file which has an already mapped buffer.
2397 */
2398 handle = ext4_journal_start(inode, 1);
2399 if (IS_ERR(handle)) {
2400 ret = PTR_ERR(handle);
2401 goto out;
2402 }
2403 /* We cannot recurse into the filesystem as the transaction is already
2404 * started */
2405 flags |= AOP_FLAG_NOFS;
2406
2407 page = grab_cache_page_write_begin(mapping, index, flags);
2408 if (!page) {
2409 ext4_journal_stop(handle);
2410 ret = -ENOMEM;
2411 goto out;
2412 }
2413 *pagep = page;
2414
2415 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2416 if (ret < 0) {
2417 unlock_page(page);
2418 ext4_journal_stop(handle);
2419 page_cache_release(page);
2420 /*
2421 * block_write_begin may have instantiated a few blocks
2422 * outside i_size. Trim these off again. Don't need
2423 * i_size_read because we hold i_mutex.
2424 */
2425 if (pos + len > inode->i_size)
2426 ext4_truncate_failed_write(inode);
2427 } else {
2428 page_len = pos & (PAGE_CACHE_SIZE - 1);
2429 if (page_len > 0) {
2430 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2431 inode, page, pos - page_len, page_len,
2432 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2433 }
2434 }
2435
2436 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2437 goto retry;
2438 out:
2439 return ret;
2440 }
2441
2442 /*
2443 * Check if we should update i_disksize
2444 * when write to the end of file but not require block allocation
2445 */
2446 static int ext4_da_should_update_i_disksize(struct page *page,
2447 unsigned long offset)
2448 {
2449 struct buffer_head *bh;
2450 struct inode *inode = page->mapping->host;
2451 unsigned int idx;
2452 int i;
2453
2454 bh = page_buffers(page);
2455 idx = offset >> inode->i_blkbits;
2456
2457 for (i = 0; i < idx; i++)
2458 bh = bh->b_this_page;
2459
2460 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2461 return 0;
2462 return 1;
2463 }
2464
2465 static int ext4_da_write_end(struct file *file,
2466 struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned copied,
2468 struct page *page, void *fsdata)
2469 {
2470 struct inode *inode = mapping->host;
2471 int ret = 0, ret2;
2472 handle_t *handle = ext4_journal_current_handle();
2473 loff_t new_i_size;
2474 unsigned long start, end;
2475 int write_mode = (int)(unsigned long)fsdata;
2476 loff_t page_len;
2477
2478 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2479 if (ext4_should_order_data(inode)) {
2480 return ext4_ordered_write_end(file, mapping, pos,
2481 len, copied, page, fsdata);
2482 } else if (ext4_should_writeback_data(inode)) {
2483 return ext4_writeback_write_end(file, mapping, pos,
2484 len, copied, page, fsdata);
2485 } else {
2486 BUG();
2487 }
2488 }
2489
2490 trace_ext4_da_write_end(inode, pos, len, copied);
2491 start = pos & (PAGE_CACHE_SIZE - 1);
2492 end = start + copied - 1;
2493
2494 /*
2495 * generic_write_end() will run mark_inode_dirty() if i_size
2496 * changes. So let's piggyback the i_disksize mark_inode_dirty
2497 * into that.
2498 */
2499
2500 new_i_size = pos + copied;
2501 if (new_i_size > EXT4_I(inode)->i_disksize) {
2502 if (ext4_da_should_update_i_disksize(page, end)) {
2503 down_write(&EXT4_I(inode)->i_data_sem);
2504 if (new_i_size > EXT4_I(inode)->i_disksize) {
2505 /*
2506 * Updating i_disksize when extending file
2507 * without needing block allocation
2508 */
2509 if (ext4_should_order_data(inode))
2510 ret = ext4_jbd2_file_inode(handle,
2511 inode);
2512
2513 EXT4_I(inode)->i_disksize = new_i_size;
2514 }
2515 up_write(&EXT4_I(inode)->i_data_sem);
2516 /* We need to mark inode dirty even if
2517 * new_i_size is less that inode->i_size
2518 * bu greater than i_disksize.(hint delalloc)
2519 */
2520 ext4_mark_inode_dirty(handle, inode);
2521 }
2522 }
2523 ret2 = generic_write_end(file, mapping, pos, len, copied,
2524 page, fsdata);
2525
2526 page_len = PAGE_CACHE_SIZE -
2527 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2528
2529 if (page_len > 0) {
2530 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2531 inode, page, pos + copied - 1, page_len,
2532 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2533 }
2534
2535 copied = ret2;
2536 if (ret2 < 0)
2537 ret = ret2;
2538 ret2 = ext4_journal_stop(handle);
2539 if (!ret)
2540 ret = ret2;
2541
2542 return ret ? ret : copied;
2543 }
2544
2545 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2546 {
2547 /*
2548 * Drop reserved blocks
2549 */
2550 BUG_ON(!PageLocked(page));
2551 if (!page_has_buffers(page))
2552 goto out;
2553
2554 ext4_da_page_release_reservation(page, offset);
2555
2556 out:
2557 ext4_invalidatepage(page, offset);
2558
2559 return;
2560 }
2561
2562 /*
2563 * Force all delayed allocation blocks to be allocated for a given inode.
2564 */
2565 int ext4_alloc_da_blocks(struct inode *inode)
2566 {
2567 trace_ext4_alloc_da_blocks(inode);
2568
2569 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2570 !EXT4_I(inode)->i_reserved_meta_blocks)
2571 return 0;
2572
2573 /*
2574 * We do something simple for now. The filemap_flush() will
2575 * also start triggering a write of the data blocks, which is
2576 * not strictly speaking necessary (and for users of
2577 * laptop_mode, not even desirable). However, to do otherwise
2578 * would require replicating code paths in:
2579 *
2580 * ext4_da_writepages() ->
2581 * write_cache_pages() ---> (via passed in callback function)
2582 * __mpage_da_writepage() -->
2583 * mpage_add_bh_to_extent()
2584 * mpage_da_map_blocks()
2585 *
2586 * The problem is that write_cache_pages(), located in
2587 * mm/page-writeback.c, marks pages clean in preparation for
2588 * doing I/O, which is not desirable if we're not planning on
2589 * doing I/O at all.
2590 *
2591 * We could call write_cache_pages(), and then redirty all of
2592 * the pages by calling redirty_page_for_writepage() but that
2593 * would be ugly in the extreme. So instead we would need to
2594 * replicate parts of the code in the above functions,
2595 * simplifying them because we wouldn't actually intend to
2596 * write out the pages, but rather only collect contiguous
2597 * logical block extents, call the multi-block allocator, and
2598 * then update the buffer heads with the block allocations.
2599 *
2600 * For now, though, we'll cheat by calling filemap_flush(),
2601 * which will map the blocks, and start the I/O, but not
2602 * actually wait for the I/O to complete.
2603 */
2604 return filemap_flush(inode->i_mapping);
2605 }
2606
2607 /*
2608 * bmap() is special. It gets used by applications such as lilo and by
2609 * the swapper to find the on-disk block of a specific piece of data.
2610 *
2611 * Naturally, this is dangerous if the block concerned is still in the
2612 * journal. If somebody makes a swapfile on an ext4 data-journaling
2613 * filesystem and enables swap, then they may get a nasty shock when the
2614 * data getting swapped to that swapfile suddenly gets overwritten by
2615 * the original zero's written out previously to the journal and
2616 * awaiting writeback in the kernel's buffer cache.
2617 *
2618 * So, if we see any bmap calls here on a modified, data-journaled file,
2619 * take extra steps to flush any blocks which might be in the cache.
2620 */
2621 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2622 {
2623 struct inode *inode = mapping->host;
2624 journal_t *journal;
2625 int err;
2626
2627 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2628 test_opt(inode->i_sb, DELALLOC)) {
2629 /*
2630 * With delalloc we want to sync the file
2631 * so that we can make sure we allocate
2632 * blocks for file
2633 */
2634 filemap_write_and_wait(mapping);
2635 }
2636
2637 if (EXT4_JOURNAL(inode) &&
2638 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2639 /*
2640 * This is a REALLY heavyweight approach, but the use of
2641 * bmap on dirty files is expected to be extremely rare:
2642 * only if we run lilo or swapon on a freshly made file
2643 * do we expect this to happen.
2644 *
2645 * (bmap requires CAP_SYS_RAWIO so this does not
2646 * represent an unprivileged user DOS attack --- we'd be
2647 * in trouble if mortal users could trigger this path at
2648 * will.)
2649 *
2650 * NB. EXT4_STATE_JDATA is not set on files other than
2651 * regular files. If somebody wants to bmap a directory
2652 * or symlink and gets confused because the buffer
2653 * hasn't yet been flushed to disk, they deserve
2654 * everything they get.
2655 */
2656
2657 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2658 journal = EXT4_JOURNAL(inode);
2659 jbd2_journal_lock_updates(journal);
2660 err = jbd2_journal_flush(journal);
2661 jbd2_journal_unlock_updates(journal);
2662
2663 if (err)
2664 return 0;
2665 }
2666
2667 return generic_block_bmap(mapping, block, ext4_get_block);
2668 }
2669
2670 static int ext4_readpage(struct file *file, struct page *page)
2671 {
2672 trace_ext4_readpage(page);
2673 return mpage_readpage(page, ext4_get_block);
2674 }
2675
2676 static int
2677 ext4_readpages(struct file *file, struct address_space *mapping,
2678 struct list_head *pages, unsigned nr_pages)
2679 {
2680 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2681 }
2682
2683 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2684 {
2685 struct buffer_head *head, *bh;
2686 unsigned int curr_off = 0;
2687
2688 if (!page_has_buffers(page))
2689 return;
2690 head = bh = page_buffers(page);
2691 do {
2692 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2693 && bh->b_private) {
2694 ext4_free_io_end(bh->b_private);
2695 bh->b_private = NULL;
2696 bh->b_end_io = NULL;
2697 }
2698 curr_off = curr_off + bh->b_size;
2699 bh = bh->b_this_page;
2700 } while (bh != head);
2701 }
2702
2703 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2704 {
2705 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2706
2707 trace_ext4_invalidatepage(page, offset);
2708
2709 /*
2710 * free any io_end structure allocated for buffers to be discarded
2711 */
2712 if (ext4_should_dioread_nolock(page->mapping->host))
2713 ext4_invalidatepage_free_endio(page, offset);
2714 /*
2715 * If it's a full truncate we just forget about the pending dirtying
2716 */
2717 if (offset == 0)
2718 ClearPageChecked(page);
2719
2720 if (journal)
2721 jbd2_journal_invalidatepage(journal, page, offset);
2722 else
2723 block_invalidatepage(page, offset);
2724 }
2725
2726 static int ext4_releasepage(struct page *page, gfp_t wait)
2727 {
2728 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2729
2730 trace_ext4_releasepage(page);
2731
2732 WARN_ON(PageChecked(page));
2733 if (!page_has_buffers(page))
2734 return 0;
2735 if (journal)
2736 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2737 else
2738 return try_to_free_buffers(page);
2739 }
2740
2741 /*
2742 * ext4_get_block used when preparing for a DIO write or buffer write.
2743 * We allocate an uinitialized extent if blocks haven't been allocated.
2744 * The extent will be converted to initialized after the IO is complete.
2745 */
2746 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2747 struct buffer_head *bh_result, int create)
2748 {
2749 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2750 inode->i_ino, create);
2751 return _ext4_get_block(inode, iblock, bh_result,
2752 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2753 }
2754
2755 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2756 ssize_t size, void *private, int ret,
2757 bool is_async)
2758 {
2759 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2760 ext4_io_end_t *io_end = iocb->private;
2761 struct workqueue_struct *wq;
2762 unsigned long flags;
2763 struct ext4_inode_info *ei;
2764
2765 /* if not async direct IO or dio with 0 bytes write, just return */
2766 if (!io_end || !size)
2767 goto out;
2768
2769 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2770 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2771 iocb->private, io_end->inode->i_ino, iocb, offset,
2772 size);
2773
2774 /* if not aio dio with unwritten extents, just free io and return */
2775 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2776 ext4_free_io_end(io_end);
2777 iocb->private = NULL;
2778 out:
2779 if (is_async)
2780 aio_complete(iocb, ret, 0);
2781 inode_dio_done(inode);
2782 return;
2783 }
2784
2785 io_end->offset = offset;
2786 io_end->size = size;
2787 if (is_async) {
2788 io_end->iocb = iocb;
2789 io_end->result = ret;
2790 }
2791 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2792
2793 /* Add the io_end to per-inode completed aio dio list*/
2794 ei = EXT4_I(io_end->inode);
2795 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2796 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2797 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2798
2799 /* queue the work to convert unwritten extents to written */
2800 queue_work(wq, &io_end->work);
2801 iocb->private = NULL;
2802
2803 /* XXX: probably should move into the real I/O completion handler */
2804 inode_dio_done(inode);
2805 }
2806
2807 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2808 {
2809 ext4_io_end_t *io_end = bh->b_private;
2810 struct workqueue_struct *wq;
2811 struct inode *inode;
2812 unsigned long flags;
2813
2814 if (!test_clear_buffer_uninit(bh) || !io_end)
2815 goto out;
2816
2817 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2818 printk("sb umounted, discard end_io request for inode %lu\n",
2819 io_end->inode->i_ino);
2820 ext4_free_io_end(io_end);
2821 goto out;
2822 }
2823
2824 /*
2825 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2826 * but being more careful is always safe for the future change.
2827 */
2828 inode = io_end->inode;
2829 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2830 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2831 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2832 }
2833
2834 /* Add the io_end to per-inode completed io list*/
2835 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2836 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2837 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2838
2839 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2840 /* queue the work to convert unwritten extents to written */
2841 queue_work(wq, &io_end->work);
2842 out:
2843 bh->b_private = NULL;
2844 bh->b_end_io = NULL;
2845 clear_buffer_uninit(bh);
2846 end_buffer_async_write(bh, uptodate);
2847 }
2848
2849 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2850 {
2851 ext4_io_end_t *io_end;
2852 struct page *page = bh->b_page;
2853 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2854 size_t size = bh->b_size;
2855
2856 retry:
2857 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2858 if (!io_end) {
2859 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2860 schedule();
2861 goto retry;
2862 }
2863 io_end->offset = offset;
2864 io_end->size = size;
2865 /*
2866 * We need to hold a reference to the page to make sure it
2867 * doesn't get evicted before ext4_end_io_work() has a chance
2868 * to convert the extent from written to unwritten.
2869 */
2870 io_end->page = page;
2871 get_page(io_end->page);
2872
2873 bh->b_private = io_end;
2874 bh->b_end_io = ext4_end_io_buffer_write;
2875 return 0;
2876 }
2877
2878 /*
2879 * For ext4 extent files, ext4 will do direct-io write to holes,
2880 * preallocated extents, and those write extend the file, no need to
2881 * fall back to buffered IO.
2882 *
2883 * For holes, we fallocate those blocks, mark them as uninitialized
2884 * If those blocks were preallocated, we mark sure they are splited, but
2885 * still keep the range to write as uninitialized.
2886 *
2887 * The unwrritten extents will be converted to written when DIO is completed.
2888 * For async direct IO, since the IO may still pending when return, we
2889 * set up an end_io call back function, which will do the conversion
2890 * when async direct IO completed.
2891 *
2892 * If the O_DIRECT write will extend the file then add this inode to the
2893 * orphan list. So recovery will truncate it back to the original size
2894 * if the machine crashes during the write.
2895 *
2896 */
2897 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2898 const struct iovec *iov, loff_t offset,
2899 unsigned long nr_segs)
2900 {
2901 struct file *file = iocb->ki_filp;
2902 struct inode *inode = file->f_mapping->host;
2903 ssize_t ret;
2904 size_t count = iov_length(iov, nr_segs);
2905
2906 loff_t final_size = offset + count;
2907 if (rw == WRITE && final_size <= inode->i_size) {
2908 /*
2909 * We could direct write to holes and fallocate.
2910 *
2911 * Allocated blocks to fill the hole are marked as uninitialized
2912 * to prevent parallel buffered read to expose the stale data
2913 * before DIO complete the data IO.
2914 *
2915 * As to previously fallocated extents, ext4 get_block
2916 * will just simply mark the buffer mapped but still
2917 * keep the extents uninitialized.
2918 *
2919 * for non AIO case, we will convert those unwritten extents
2920 * to written after return back from blockdev_direct_IO.
2921 *
2922 * for async DIO, the conversion needs to be defered when
2923 * the IO is completed. The ext4 end_io callback function
2924 * will be called to take care of the conversion work.
2925 * Here for async case, we allocate an io_end structure to
2926 * hook to the iocb.
2927 */
2928 iocb->private = NULL;
2929 EXT4_I(inode)->cur_aio_dio = NULL;
2930 if (!is_sync_kiocb(iocb)) {
2931 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2932 if (!iocb->private)
2933 return -ENOMEM;
2934 /*
2935 * we save the io structure for current async
2936 * direct IO, so that later ext4_map_blocks()
2937 * could flag the io structure whether there
2938 * is a unwritten extents needs to be converted
2939 * when IO is completed.
2940 */
2941 EXT4_I(inode)->cur_aio_dio = iocb->private;
2942 }
2943
2944 ret = __blockdev_direct_IO(rw, iocb, inode,
2945 inode->i_sb->s_bdev, iov,
2946 offset, nr_segs,
2947 ext4_get_block_write,
2948 ext4_end_io_dio,
2949 NULL,
2950 DIO_LOCKING | DIO_SKIP_HOLES);
2951 if (iocb->private)
2952 EXT4_I(inode)->cur_aio_dio = NULL;
2953 /*
2954 * The io_end structure takes a reference to the inode,
2955 * that structure needs to be destroyed and the
2956 * reference to the inode need to be dropped, when IO is
2957 * complete, even with 0 byte write, or failed.
2958 *
2959 * In the successful AIO DIO case, the io_end structure will be
2960 * desctroyed and the reference to the inode will be dropped
2961 * after the end_io call back function is called.
2962 *
2963 * In the case there is 0 byte write, or error case, since
2964 * VFS direct IO won't invoke the end_io call back function,
2965 * we need to free the end_io structure here.
2966 */
2967 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2968 ext4_free_io_end(iocb->private);
2969 iocb->private = NULL;
2970 } else if (ret > 0 && ext4_test_inode_state(inode,
2971 EXT4_STATE_DIO_UNWRITTEN)) {
2972 int err;
2973 /*
2974 * for non AIO case, since the IO is already
2975 * completed, we could do the conversion right here
2976 */
2977 err = ext4_convert_unwritten_extents(inode,
2978 offset, ret);
2979 if (err < 0)
2980 ret = err;
2981 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2982 }
2983 return ret;
2984 }
2985
2986 /* for write the the end of file case, we fall back to old way */
2987 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2988 }
2989
2990 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2991 const struct iovec *iov, loff_t offset,
2992 unsigned long nr_segs)
2993 {
2994 struct file *file = iocb->ki_filp;
2995 struct inode *inode = file->f_mapping->host;
2996 ssize_t ret;
2997
2998 /*
2999 * If we are doing data journalling we don't support O_DIRECT
3000 */
3001 if (ext4_should_journal_data(inode))
3002 return 0;
3003
3004 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3005 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3006 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3007 else
3008 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3009 trace_ext4_direct_IO_exit(inode, offset,
3010 iov_length(iov, nr_segs), rw, ret);
3011 return ret;
3012 }
3013
3014 /*
3015 * Pages can be marked dirty completely asynchronously from ext4's journalling
3016 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3017 * much here because ->set_page_dirty is called under VFS locks. The page is
3018 * not necessarily locked.
3019 *
3020 * We cannot just dirty the page and leave attached buffers clean, because the
3021 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3022 * or jbddirty because all the journalling code will explode.
3023 *
3024 * So what we do is to mark the page "pending dirty" and next time writepage
3025 * is called, propagate that into the buffers appropriately.
3026 */
3027 static int ext4_journalled_set_page_dirty(struct page *page)
3028 {
3029 SetPageChecked(page);
3030 return __set_page_dirty_nobuffers(page);
3031 }
3032
3033 static const struct address_space_operations ext4_ordered_aops = {
3034 .readpage = ext4_readpage,
3035 .readpages = ext4_readpages,
3036 .writepage = ext4_writepage,
3037 .write_begin = ext4_write_begin,
3038 .write_end = ext4_ordered_write_end,
3039 .bmap = ext4_bmap,
3040 .invalidatepage = ext4_invalidatepage,
3041 .releasepage = ext4_releasepage,
3042 .direct_IO = ext4_direct_IO,
3043 .migratepage = buffer_migrate_page,
3044 .is_partially_uptodate = block_is_partially_uptodate,
3045 .error_remove_page = generic_error_remove_page,
3046 };
3047
3048 static const struct address_space_operations ext4_writeback_aops = {
3049 .readpage = ext4_readpage,
3050 .readpages = ext4_readpages,
3051 .writepage = ext4_writepage,
3052 .write_begin = ext4_write_begin,
3053 .write_end = ext4_writeback_write_end,
3054 .bmap = ext4_bmap,
3055 .invalidatepage = ext4_invalidatepage,
3056 .releasepage = ext4_releasepage,
3057 .direct_IO = ext4_direct_IO,
3058 .migratepage = buffer_migrate_page,
3059 .is_partially_uptodate = block_is_partially_uptodate,
3060 .error_remove_page = generic_error_remove_page,
3061 };
3062
3063 static const struct address_space_operations ext4_journalled_aops = {
3064 .readpage = ext4_readpage,
3065 .readpages = ext4_readpages,
3066 .writepage = ext4_writepage,
3067 .write_begin = ext4_write_begin,
3068 .write_end = ext4_journalled_write_end,
3069 .set_page_dirty = ext4_journalled_set_page_dirty,
3070 .bmap = ext4_bmap,
3071 .invalidatepage = ext4_invalidatepage,
3072 .releasepage = ext4_releasepage,
3073 .direct_IO = ext4_direct_IO,
3074 .is_partially_uptodate = block_is_partially_uptodate,
3075 .error_remove_page = generic_error_remove_page,
3076 };
3077
3078 static const struct address_space_operations ext4_da_aops = {
3079 .readpage = ext4_readpage,
3080 .readpages = ext4_readpages,
3081 .writepage = ext4_writepage,
3082 .writepages = ext4_da_writepages,
3083 .write_begin = ext4_da_write_begin,
3084 .write_end = ext4_da_write_end,
3085 .bmap = ext4_bmap,
3086 .invalidatepage = ext4_da_invalidatepage,
3087 .releasepage = ext4_releasepage,
3088 .direct_IO = ext4_direct_IO,
3089 .migratepage = buffer_migrate_page,
3090 .is_partially_uptodate = block_is_partially_uptodate,
3091 .error_remove_page = generic_error_remove_page,
3092 };
3093
3094 void ext4_set_aops(struct inode *inode)
3095 {
3096 if (ext4_should_order_data(inode) &&
3097 test_opt(inode->i_sb, DELALLOC))
3098 inode->i_mapping->a_ops = &ext4_da_aops;
3099 else if (ext4_should_order_data(inode))
3100 inode->i_mapping->a_ops = &ext4_ordered_aops;
3101 else if (ext4_should_writeback_data(inode) &&
3102 test_opt(inode->i_sb, DELALLOC))
3103 inode->i_mapping->a_ops = &ext4_da_aops;
3104 else if (ext4_should_writeback_data(inode))
3105 inode->i_mapping->a_ops = &ext4_writeback_aops;
3106 else
3107 inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 }
3109
3110
3111 /*
3112 * ext4_discard_partial_page_buffers()
3113 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3114 * This function finds and locks the page containing the offset
3115 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3116 * Calling functions that already have the page locked should call
3117 * ext4_discard_partial_page_buffers_no_lock directly.
3118 */
3119 int ext4_discard_partial_page_buffers(handle_t *handle,
3120 struct address_space *mapping, loff_t from,
3121 loff_t length, int flags)
3122 {
3123 struct inode *inode = mapping->host;
3124 struct page *page;
3125 int err = 0;
3126
3127 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3128 mapping_gfp_mask(mapping) & ~__GFP_FS);
3129 if (!page)
3130 return -EINVAL;
3131
3132 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3133 from, length, flags);
3134
3135 unlock_page(page);
3136 page_cache_release(page);
3137 return err;
3138 }
3139
3140 /*
3141 * ext4_discard_partial_page_buffers_no_lock()
3142 * Zeros a page range of length 'length' starting from offset 'from'.
3143 * Buffer heads that correspond to the block aligned regions of the
3144 * zeroed range will be unmapped. Unblock aligned regions
3145 * will have the corresponding buffer head mapped if needed so that
3146 * that region of the page can be updated with the partial zero out.
3147 *
3148 * This function assumes that the page has already been locked. The
3149 * The range to be discarded must be contained with in the given page.
3150 * If the specified range exceeds the end of the page it will be shortened
3151 * to the end of the page that corresponds to 'from'. This function is
3152 * appropriate for updating a page and it buffer heads to be unmapped and
3153 * zeroed for blocks that have been either released, or are going to be
3154 * released.
3155 *
3156 * handle: The journal handle
3157 * inode: The files inode
3158 * page: A locked page that contains the offset "from"
3159 * from: The starting byte offset (from the begining of the file)
3160 * to begin discarding
3161 * len: The length of bytes to discard
3162 * flags: Optional flags that may be used:
3163 *
3164 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3165 * Only zero the regions of the page whose buffer heads
3166 * have already been unmapped. This flag is appropriate
3167 * for updateing the contents of a page whose blocks may
3168 * have already been released, and we only want to zero
3169 * out the regions that correspond to those released blocks.
3170 *
3171 * Returns zero on sucess or negative on failure.
3172 */
3173 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3174 struct inode *inode, struct page *page, loff_t from,
3175 loff_t length, int flags)
3176 {
3177 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3178 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3179 unsigned int blocksize, max, pos;
3180 unsigned int end_of_block, range_to_discard;
3181 ext4_lblk_t iblock;
3182 struct buffer_head *bh;
3183 int err = 0;
3184
3185 blocksize = inode->i_sb->s_blocksize;
3186 max = PAGE_CACHE_SIZE - offset;
3187
3188 if (index != page->index)
3189 return -EINVAL;
3190
3191 /*
3192 * correct length if it does not fall between
3193 * 'from' and the end of the page
3194 */
3195 if (length > max || length < 0)
3196 length = max;
3197
3198 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3199
3200 if (!page_has_buffers(page)) {
3201 /*
3202 * If the range to be discarded covers a partial block
3203 * we need to get the page buffers. This is because
3204 * partial blocks cannot be released and the page needs
3205 * to be updated with the contents of the block before
3206 * we write the zeros on top of it.
3207 */
3208 if (!(from & (blocksize - 1)) ||
3209 !((from + length) & (blocksize - 1))) {
3210 create_empty_buffers(page, blocksize, 0);
3211 } else {
3212 /*
3213 * If there are no partial blocks,
3214 * there is nothing to update,
3215 * so we can return now
3216 */
3217 return 0;
3218 }
3219 }
3220
3221 /* Find the buffer that contains "offset" */
3222 bh = page_buffers(page);
3223 pos = blocksize;
3224 while (offset >= pos) {
3225 bh = bh->b_this_page;
3226 iblock++;
3227 pos += blocksize;
3228 }
3229
3230 pos = offset;
3231 while (pos < offset + length) {
3232 err = 0;
3233
3234 /* The length of space left to zero and unmap */
3235 range_to_discard = offset + length - pos;
3236
3237 /* The length of space until the end of the block */
3238 end_of_block = blocksize - (pos & (blocksize-1));
3239
3240 /*
3241 * Do not unmap or zero past end of block
3242 * for this buffer head
3243 */
3244 if (range_to_discard > end_of_block)
3245 range_to_discard = end_of_block;
3246
3247
3248 /*
3249 * Skip this buffer head if we are only zeroing unampped
3250 * regions of the page
3251 */
3252 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3253 buffer_mapped(bh))
3254 goto next;
3255
3256 /* If the range is block aligned, unmap */
3257 if (range_to_discard == blocksize) {
3258 clear_buffer_dirty(bh);
3259 bh->b_bdev = NULL;
3260 clear_buffer_mapped(bh);
3261 clear_buffer_req(bh);
3262 clear_buffer_new(bh);
3263 clear_buffer_delay(bh);
3264 clear_buffer_unwritten(bh);
3265 clear_buffer_uptodate(bh);
3266 zero_user(page, pos, range_to_discard);
3267 BUFFER_TRACE(bh, "Buffer discarded");
3268 goto next;
3269 }
3270
3271 /*
3272 * If this block is not completely contained in the range
3273 * to be discarded, then it is not going to be released. Because
3274 * we need to keep this block, we need to make sure this part
3275 * of the page is uptodate before we modify it by writeing
3276 * partial zeros on it.
3277 */
3278 if (!buffer_mapped(bh)) {
3279 /*
3280 * Buffer head must be mapped before we can read
3281 * from the block
3282 */
3283 BUFFER_TRACE(bh, "unmapped");
3284 ext4_get_block(inode, iblock, bh, 0);
3285 /* unmapped? It's a hole - nothing to do */
3286 if (!buffer_mapped(bh)) {
3287 BUFFER_TRACE(bh, "still unmapped");
3288 goto next;
3289 }
3290 }
3291
3292 /* Ok, it's mapped. Make sure it's up-to-date */
3293 if (PageUptodate(page))
3294 set_buffer_uptodate(bh);
3295
3296 if (!buffer_uptodate(bh)) {
3297 err = -EIO;
3298 ll_rw_block(READ, 1, &bh);
3299 wait_on_buffer(bh);
3300 /* Uhhuh. Read error. Complain and punt.*/
3301 if (!buffer_uptodate(bh))
3302 goto next;
3303 }
3304
3305 if (ext4_should_journal_data(inode)) {
3306 BUFFER_TRACE(bh, "get write access");
3307 err = ext4_journal_get_write_access(handle, bh);
3308 if (err)
3309 goto next;
3310 }
3311
3312 zero_user(page, pos, range_to_discard);
3313
3314 err = 0;
3315 if (ext4_should_journal_data(inode)) {
3316 err = ext4_handle_dirty_metadata(handle, inode, bh);
3317 } else
3318 mark_buffer_dirty(bh);
3319
3320 BUFFER_TRACE(bh, "Partial buffer zeroed");
3321 next:
3322 bh = bh->b_this_page;
3323 iblock++;
3324 pos += range_to_discard;
3325 }
3326
3327 return err;
3328 }
3329
3330 /*
3331 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3332 * up to the end of the block which corresponds to `from'.
3333 * This required during truncate. We need to physically zero the tail end
3334 * of that block so it doesn't yield old data if the file is later grown.
3335 */
3336 int ext4_block_truncate_page(handle_t *handle,
3337 struct address_space *mapping, loff_t from)
3338 {
3339 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3340 unsigned length;
3341 unsigned blocksize;
3342 struct inode *inode = mapping->host;
3343
3344 blocksize = inode->i_sb->s_blocksize;
3345 length = blocksize - (offset & (blocksize - 1));
3346
3347 return ext4_block_zero_page_range(handle, mapping, from, length);
3348 }
3349
3350 /*
3351 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3352 * starting from file offset 'from'. The range to be zero'd must
3353 * be contained with in one block. If the specified range exceeds
3354 * the end of the block it will be shortened to end of the block
3355 * that cooresponds to 'from'
3356 */
3357 int ext4_block_zero_page_range(handle_t *handle,
3358 struct address_space *mapping, loff_t from, loff_t length)
3359 {
3360 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3361 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3362 unsigned blocksize, max, pos;
3363 ext4_lblk_t iblock;
3364 struct inode *inode = mapping->host;
3365 struct buffer_head *bh;
3366 struct page *page;
3367 int err = 0;
3368
3369 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3370 mapping_gfp_mask(mapping) & ~__GFP_FS);
3371 if (!page)
3372 return -EINVAL;
3373
3374 blocksize = inode->i_sb->s_blocksize;
3375 max = blocksize - (offset & (blocksize - 1));
3376
3377 /*
3378 * correct length if it does not fall between
3379 * 'from' and the end of the block
3380 */
3381 if (length > max || length < 0)
3382 length = max;
3383
3384 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3385
3386 if (!page_has_buffers(page))
3387 create_empty_buffers(page, blocksize, 0);
3388
3389 /* Find the buffer that contains "offset" */
3390 bh = page_buffers(page);
3391 pos = blocksize;
3392 while (offset >= pos) {
3393 bh = bh->b_this_page;
3394 iblock++;
3395 pos += blocksize;
3396 }
3397
3398 err = 0;
3399 if (buffer_freed(bh)) {
3400 BUFFER_TRACE(bh, "freed: skip");
3401 goto unlock;
3402 }
3403
3404 if (!buffer_mapped(bh)) {
3405 BUFFER_TRACE(bh, "unmapped");
3406 ext4_get_block(inode, iblock, bh, 0);
3407 /* unmapped? It's a hole - nothing to do */
3408 if (!buffer_mapped(bh)) {
3409 BUFFER_TRACE(bh, "still unmapped");
3410 goto unlock;
3411 }
3412 }
3413
3414 /* Ok, it's mapped. Make sure it's up-to-date */
3415 if (PageUptodate(page))
3416 set_buffer_uptodate(bh);
3417
3418 if (!buffer_uptodate(bh)) {
3419 err = -EIO;
3420 ll_rw_block(READ, 1, &bh);
3421 wait_on_buffer(bh);
3422 /* Uhhuh. Read error. Complain and punt. */
3423 if (!buffer_uptodate(bh))
3424 goto unlock;
3425 }
3426
3427 if (ext4_should_journal_data(inode)) {
3428 BUFFER_TRACE(bh, "get write access");
3429 err = ext4_journal_get_write_access(handle, bh);
3430 if (err)
3431 goto unlock;
3432 }
3433
3434 zero_user(page, offset, length);
3435
3436 BUFFER_TRACE(bh, "zeroed end of block");
3437
3438 err = 0;
3439 if (ext4_should_journal_data(inode)) {
3440 err = ext4_handle_dirty_metadata(handle, inode, bh);
3441 } else
3442 mark_buffer_dirty(bh);
3443
3444 unlock:
3445 unlock_page(page);
3446 page_cache_release(page);
3447 return err;
3448 }
3449
3450 int ext4_can_truncate(struct inode *inode)
3451 {
3452 if (S_ISREG(inode->i_mode))
3453 return 1;
3454 if (S_ISDIR(inode->i_mode))
3455 return 1;
3456 if (S_ISLNK(inode->i_mode))
3457 return !ext4_inode_is_fast_symlink(inode);
3458 return 0;
3459 }
3460
3461 /*
3462 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3463 * associated with the given offset and length
3464 *
3465 * @inode: File inode
3466 * @offset: The offset where the hole will begin
3467 * @len: The length of the hole
3468 *
3469 * Returns: 0 on sucess or negative on failure
3470 */
3471
3472 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3473 {
3474 struct inode *inode = file->f_path.dentry->d_inode;
3475 if (!S_ISREG(inode->i_mode))
3476 return -ENOTSUPP;
3477
3478 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3479 /* TODO: Add support for non extent hole punching */
3480 return -ENOTSUPP;
3481 }
3482
3483 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3484 /* TODO: Add support for bigalloc file systems */
3485 return -ENOTSUPP;
3486 }
3487
3488 return ext4_ext_punch_hole(file, offset, length);
3489 }
3490
3491 /*
3492 * ext4_truncate()
3493 *
3494 * We block out ext4_get_block() block instantiations across the entire
3495 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3496 * simultaneously on behalf of the same inode.
3497 *
3498 * As we work through the truncate and commmit bits of it to the journal there
3499 * is one core, guiding principle: the file's tree must always be consistent on
3500 * disk. We must be able to restart the truncate after a crash.
3501 *
3502 * The file's tree may be transiently inconsistent in memory (although it
3503 * probably isn't), but whenever we close off and commit a journal transaction,
3504 * the contents of (the filesystem + the journal) must be consistent and
3505 * restartable. It's pretty simple, really: bottom up, right to left (although
3506 * left-to-right works OK too).
3507 *
3508 * Note that at recovery time, journal replay occurs *before* the restart of
3509 * truncate against the orphan inode list.
3510 *
3511 * The committed inode has the new, desired i_size (which is the same as
3512 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3513 * that this inode's truncate did not complete and it will again call
3514 * ext4_truncate() to have another go. So there will be instantiated blocks
3515 * to the right of the truncation point in a crashed ext4 filesystem. But
3516 * that's fine - as long as they are linked from the inode, the post-crash
3517 * ext4_truncate() run will find them and release them.
3518 */
3519 void ext4_truncate(struct inode *inode)
3520 {
3521 trace_ext4_truncate_enter(inode);
3522
3523 if (!ext4_can_truncate(inode))
3524 return;
3525
3526 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3527
3528 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3529 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3530
3531 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3532 ext4_ext_truncate(inode);
3533 else
3534 ext4_ind_truncate(inode);
3535
3536 trace_ext4_truncate_exit(inode);
3537 }
3538
3539 /*
3540 * ext4_get_inode_loc returns with an extra refcount against the inode's
3541 * underlying buffer_head on success. If 'in_mem' is true, we have all
3542 * data in memory that is needed to recreate the on-disk version of this
3543 * inode.
3544 */
3545 static int __ext4_get_inode_loc(struct inode *inode,
3546 struct ext4_iloc *iloc, int in_mem)
3547 {
3548 struct ext4_group_desc *gdp;
3549 struct buffer_head *bh;
3550 struct super_block *sb = inode->i_sb;
3551 ext4_fsblk_t block;
3552 int inodes_per_block, inode_offset;
3553
3554 iloc->bh = NULL;
3555 if (!ext4_valid_inum(sb, inode->i_ino))
3556 return -EIO;
3557
3558 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3559 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3560 if (!gdp)
3561 return -EIO;
3562
3563 /*
3564 * Figure out the offset within the block group inode table
3565 */
3566 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3567 inode_offset = ((inode->i_ino - 1) %
3568 EXT4_INODES_PER_GROUP(sb));
3569 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3570 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3571
3572 bh = sb_getblk(sb, block);
3573 if (!bh) {
3574 EXT4_ERROR_INODE_BLOCK(inode, block,
3575 "unable to read itable block");
3576 return -EIO;
3577 }
3578 if (!buffer_uptodate(bh)) {
3579 lock_buffer(bh);
3580
3581 /*
3582 * If the buffer has the write error flag, we have failed
3583 * to write out another inode in the same block. In this
3584 * case, we don't have to read the block because we may
3585 * read the old inode data successfully.
3586 */
3587 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3588 set_buffer_uptodate(bh);
3589
3590 if (buffer_uptodate(bh)) {
3591 /* someone brought it uptodate while we waited */
3592 unlock_buffer(bh);
3593 goto has_buffer;
3594 }
3595
3596 /*
3597 * If we have all information of the inode in memory and this
3598 * is the only valid inode in the block, we need not read the
3599 * block.
3600 */
3601 if (in_mem) {
3602 struct buffer_head *bitmap_bh;
3603 int i, start;
3604
3605 start = inode_offset & ~(inodes_per_block - 1);
3606
3607 /* Is the inode bitmap in cache? */
3608 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3609 if (!bitmap_bh)
3610 goto make_io;
3611
3612 /*
3613 * If the inode bitmap isn't in cache then the
3614 * optimisation may end up performing two reads instead
3615 * of one, so skip it.
3616 */
3617 if (!buffer_uptodate(bitmap_bh)) {
3618 brelse(bitmap_bh);
3619 goto make_io;
3620 }
3621 for (i = start; i < start + inodes_per_block; i++) {
3622 if (i == inode_offset)
3623 continue;
3624 if (ext4_test_bit(i, bitmap_bh->b_data))
3625 break;
3626 }
3627 brelse(bitmap_bh);
3628 if (i == start + inodes_per_block) {
3629 /* all other inodes are free, so skip I/O */
3630 memset(bh->b_data, 0, bh->b_size);
3631 set_buffer_uptodate(bh);
3632 unlock_buffer(bh);
3633 goto has_buffer;
3634 }
3635 }
3636
3637 make_io:
3638 /*
3639 * If we need to do any I/O, try to pre-readahead extra
3640 * blocks from the inode table.
3641 */
3642 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3643 ext4_fsblk_t b, end, table;
3644 unsigned num;
3645
3646 table = ext4_inode_table(sb, gdp);
3647 /* s_inode_readahead_blks is always a power of 2 */
3648 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3649 if (table > b)
3650 b = table;
3651 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3652 num = EXT4_INODES_PER_GROUP(sb);
3653 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3654 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3655 num -= ext4_itable_unused_count(sb, gdp);
3656 table += num / inodes_per_block;
3657 if (end > table)
3658 end = table;
3659 while (b <= end)
3660 sb_breadahead(sb, b++);
3661 }
3662
3663 /*
3664 * There are other valid inodes in the buffer, this inode
3665 * has in-inode xattrs, or we don't have this inode in memory.
3666 * Read the block from disk.
3667 */
3668 trace_ext4_load_inode(inode);
3669 get_bh(bh);
3670 bh->b_end_io = end_buffer_read_sync;
3671 submit_bh(READ_META, bh);
3672 wait_on_buffer(bh);
3673 if (!buffer_uptodate(bh)) {
3674 EXT4_ERROR_INODE_BLOCK(inode, block,
3675 "unable to read itable block");
3676 brelse(bh);
3677 return -EIO;
3678 }
3679 }
3680 has_buffer:
3681 iloc->bh = bh;
3682 return 0;
3683 }
3684
3685 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3686 {
3687 /* We have all inode data except xattrs in memory here. */
3688 return __ext4_get_inode_loc(inode, iloc,
3689 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3690 }
3691
3692 void ext4_set_inode_flags(struct inode *inode)
3693 {
3694 unsigned int flags = EXT4_I(inode)->i_flags;
3695
3696 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3697 if (flags & EXT4_SYNC_FL)
3698 inode->i_flags |= S_SYNC;
3699 if (flags & EXT4_APPEND_FL)
3700 inode->i_flags |= S_APPEND;
3701 if (flags & EXT4_IMMUTABLE_FL)
3702 inode->i_flags |= S_IMMUTABLE;
3703 if (flags & EXT4_NOATIME_FL)
3704 inode->i_flags |= S_NOATIME;
3705 if (flags & EXT4_DIRSYNC_FL)
3706 inode->i_flags |= S_DIRSYNC;
3707 }
3708
3709 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3710 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3711 {
3712 unsigned int vfs_fl;
3713 unsigned long old_fl, new_fl;
3714
3715 do {
3716 vfs_fl = ei->vfs_inode.i_flags;
3717 old_fl = ei->i_flags;
3718 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3719 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3720 EXT4_DIRSYNC_FL);
3721 if (vfs_fl & S_SYNC)
3722 new_fl |= EXT4_SYNC_FL;
3723 if (vfs_fl & S_APPEND)
3724 new_fl |= EXT4_APPEND_FL;
3725 if (vfs_fl & S_IMMUTABLE)
3726 new_fl |= EXT4_IMMUTABLE_FL;
3727 if (vfs_fl & S_NOATIME)
3728 new_fl |= EXT4_NOATIME_FL;
3729 if (vfs_fl & S_DIRSYNC)
3730 new_fl |= EXT4_DIRSYNC_FL;
3731 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3732 }
3733
3734 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3735 struct ext4_inode_info *ei)
3736 {
3737 blkcnt_t i_blocks ;
3738 struct inode *inode = &(ei->vfs_inode);
3739 struct super_block *sb = inode->i_sb;
3740
3741 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3742 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3743 /* we are using combined 48 bit field */
3744 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3745 le32_to_cpu(raw_inode->i_blocks_lo);
3746 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3747 /* i_blocks represent file system block size */
3748 return i_blocks << (inode->i_blkbits - 9);
3749 } else {
3750 return i_blocks;
3751 }
3752 } else {
3753 return le32_to_cpu(raw_inode->i_blocks_lo);
3754 }
3755 }
3756
3757 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3758 {
3759 struct ext4_iloc iloc;
3760 struct ext4_inode *raw_inode;
3761 struct ext4_inode_info *ei;
3762 struct inode *inode;
3763 journal_t *journal = EXT4_SB(sb)->s_journal;
3764 long ret;
3765 int block;
3766
3767 inode = iget_locked(sb, ino);
3768 if (!inode)
3769 return ERR_PTR(-ENOMEM);
3770 if (!(inode->i_state & I_NEW))
3771 return inode;
3772
3773 ei = EXT4_I(inode);
3774 iloc.bh = NULL;
3775
3776 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3777 if (ret < 0)
3778 goto bad_inode;
3779 raw_inode = ext4_raw_inode(&iloc);
3780 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3781 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3782 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3783 if (!(test_opt(inode->i_sb, NO_UID32))) {
3784 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3785 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3786 }
3787 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3788
3789 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3790 ei->i_dir_start_lookup = 0;
3791 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3792 /* We now have enough fields to check if the inode was active or not.
3793 * This is needed because nfsd might try to access dead inodes
3794 * the test is that same one that e2fsck uses
3795 * NeilBrown 1999oct15
3796 */
3797 if (inode->i_nlink == 0) {
3798 if (inode->i_mode == 0 ||
3799 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3800 /* this inode is deleted */
3801 ret = -ESTALE;
3802 goto bad_inode;
3803 }
3804 /* The only unlinked inodes we let through here have
3805 * valid i_mode and are being read by the orphan
3806 * recovery code: that's fine, we're about to complete
3807 * the process of deleting those. */
3808 }
3809 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3810 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3811 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3812 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3813 ei->i_file_acl |=
3814 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3815 inode->i_size = ext4_isize(raw_inode);
3816 ei->i_disksize = inode->i_size;
3817 #ifdef CONFIG_QUOTA
3818 ei->i_reserved_quota = 0;
3819 #endif
3820 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3821 ei->i_block_group = iloc.block_group;
3822 ei->i_last_alloc_group = ~0;
3823 /*
3824 * NOTE! The in-memory inode i_data array is in little-endian order
3825 * even on big-endian machines: we do NOT byteswap the block numbers!
3826 */
3827 for (block = 0; block < EXT4_N_BLOCKS; block++)
3828 ei->i_data[block] = raw_inode->i_block[block];
3829 INIT_LIST_HEAD(&ei->i_orphan);
3830
3831 /*
3832 * Set transaction id's of transactions that have to be committed
3833 * to finish f[data]sync. We set them to currently running transaction
3834 * as we cannot be sure that the inode or some of its metadata isn't
3835 * part of the transaction - the inode could have been reclaimed and
3836 * now it is reread from disk.
3837 */
3838 if (journal) {
3839 transaction_t *transaction;
3840 tid_t tid;
3841
3842 read_lock(&journal->j_state_lock);
3843 if (journal->j_running_transaction)
3844 transaction = journal->j_running_transaction;
3845 else
3846 transaction = journal->j_committing_transaction;
3847 if (transaction)
3848 tid = transaction->t_tid;
3849 else
3850 tid = journal->j_commit_sequence;
3851 read_unlock(&journal->j_state_lock);
3852 ei->i_sync_tid = tid;
3853 ei->i_datasync_tid = tid;
3854 }
3855
3856 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3857 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3858 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3859 EXT4_INODE_SIZE(inode->i_sb)) {
3860 ret = -EIO;
3861 goto bad_inode;
3862 }
3863 if (ei->i_extra_isize == 0) {
3864 /* The extra space is currently unused. Use it. */
3865 ei->i_extra_isize = sizeof(struct ext4_inode) -
3866 EXT4_GOOD_OLD_INODE_SIZE;
3867 } else {
3868 __le32 *magic = (void *)raw_inode +
3869 EXT4_GOOD_OLD_INODE_SIZE +
3870 ei->i_extra_isize;
3871 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3872 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3873 }
3874 } else
3875 ei->i_extra_isize = 0;
3876
3877 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3878 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3879 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3880 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3881
3882 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3883 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3884 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3885 inode->i_version |=
3886 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3887 }
3888
3889 ret = 0;
3890 if (ei->i_file_acl &&
3891 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3892 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3893 ei->i_file_acl);
3894 ret = -EIO;
3895 goto bad_inode;
3896 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3897 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3898 (S_ISLNK(inode->i_mode) &&
3899 !ext4_inode_is_fast_symlink(inode)))
3900 /* Validate extent which is part of inode */
3901 ret = ext4_ext_check_inode(inode);
3902 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3903 (S_ISLNK(inode->i_mode) &&
3904 !ext4_inode_is_fast_symlink(inode))) {
3905 /* Validate block references which are part of inode */
3906 ret = ext4_ind_check_inode(inode);
3907 }
3908 if (ret)
3909 goto bad_inode;
3910
3911 if (S_ISREG(inode->i_mode)) {
3912 inode->i_op = &ext4_file_inode_operations;
3913 inode->i_fop = &ext4_file_operations;
3914 ext4_set_aops(inode);
3915 } else if (S_ISDIR(inode->i_mode)) {
3916 inode->i_op = &ext4_dir_inode_operations;
3917 inode->i_fop = &ext4_dir_operations;
3918 } else if (S_ISLNK(inode->i_mode)) {
3919 if (ext4_inode_is_fast_symlink(inode)) {
3920 inode->i_op = &ext4_fast_symlink_inode_operations;
3921 nd_terminate_link(ei->i_data, inode->i_size,
3922 sizeof(ei->i_data) - 1);
3923 } else {
3924 inode->i_op = &ext4_symlink_inode_operations;
3925 ext4_set_aops(inode);
3926 }
3927 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3928 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3929 inode->i_op = &ext4_special_inode_operations;
3930 if (raw_inode->i_block[0])
3931 init_special_inode(inode, inode->i_mode,
3932 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3933 else
3934 init_special_inode(inode, inode->i_mode,
3935 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3936 } else {
3937 ret = -EIO;
3938 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3939 goto bad_inode;
3940 }
3941 brelse(iloc.bh);
3942 ext4_set_inode_flags(inode);
3943 unlock_new_inode(inode);
3944 return inode;
3945
3946 bad_inode:
3947 brelse(iloc.bh);
3948 iget_failed(inode);
3949 return ERR_PTR(ret);
3950 }
3951
3952 static int ext4_inode_blocks_set(handle_t *handle,
3953 struct ext4_inode *raw_inode,
3954 struct ext4_inode_info *ei)
3955 {
3956 struct inode *inode = &(ei->vfs_inode);
3957 u64 i_blocks = inode->i_blocks;
3958 struct super_block *sb = inode->i_sb;
3959
3960 if (i_blocks <= ~0U) {
3961 /*
3962 * i_blocks can be represnted in a 32 bit variable
3963 * as multiple of 512 bytes
3964 */
3965 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3966 raw_inode->i_blocks_high = 0;
3967 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3968 return 0;
3969 }
3970 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3971 return -EFBIG;
3972
3973 if (i_blocks <= 0xffffffffffffULL) {
3974 /*
3975 * i_blocks can be represented in a 48 bit variable
3976 * as multiple of 512 bytes
3977 */
3978 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3979 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3980 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3981 } else {
3982 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3983 /* i_block is stored in file system block size */
3984 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3985 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3986 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3987 }
3988 return 0;
3989 }
3990
3991 /*
3992 * Post the struct inode info into an on-disk inode location in the
3993 * buffer-cache. This gobbles the caller's reference to the
3994 * buffer_head in the inode location struct.
3995 *
3996 * The caller must have write access to iloc->bh.
3997 */
3998 static int ext4_do_update_inode(handle_t *handle,
3999 struct inode *inode,
4000 struct ext4_iloc *iloc)
4001 {
4002 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4003 struct ext4_inode_info *ei = EXT4_I(inode);
4004 struct buffer_head *bh = iloc->bh;
4005 int err = 0, rc, block;
4006
4007 /* For fields not not tracking in the in-memory inode,
4008 * initialise them to zero for new inodes. */
4009 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4010 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4011
4012 ext4_get_inode_flags(ei);
4013 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4014 if (!(test_opt(inode->i_sb, NO_UID32))) {
4015 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4016 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4017 /*
4018 * Fix up interoperability with old kernels. Otherwise, old inodes get
4019 * re-used with the upper 16 bits of the uid/gid intact
4020 */
4021 if (!ei->i_dtime) {
4022 raw_inode->i_uid_high =
4023 cpu_to_le16(high_16_bits(inode->i_uid));
4024 raw_inode->i_gid_high =
4025 cpu_to_le16(high_16_bits(inode->i_gid));
4026 } else {
4027 raw_inode->i_uid_high = 0;
4028 raw_inode->i_gid_high = 0;
4029 }
4030 } else {
4031 raw_inode->i_uid_low =
4032 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4033 raw_inode->i_gid_low =
4034 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4035 raw_inode->i_uid_high = 0;
4036 raw_inode->i_gid_high = 0;
4037 }
4038 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4039
4040 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4041 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4042 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4043 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4044
4045 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4046 goto out_brelse;
4047 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4048 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4049 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4050 cpu_to_le32(EXT4_OS_HURD))
4051 raw_inode->i_file_acl_high =
4052 cpu_to_le16(ei->i_file_acl >> 32);
4053 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4054 ext4_isize_set(raw_inode, ei->i_disksize);
4055 if (ei->i_disksize > 0x7fffffffULL) {
4056 struct super_block *sb = inode->i_sb;
4057 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4058 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4059 EXT4_SB(sb)->s_es->s_rev_level ==
4060 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4061 /* If this is the first large file
4062 * created, add a flag to the superblock.
4063 */
4064 err = ext4_journal_get_write_access(handle,
4065 EXT4_SB(sb)->s_sbh);
4066 if (err)
4067 goto out_brelse;
4068 ext4_update_dynamic_rev(sb);
4069 EXT4_SET_RO_COMPAT_FEATURE(sb,
4070 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4071 sb->s_dirt = 1;
4072 ext4_handle_sync(handle);
4073 err = ext4_handle_dirty_metadata(handle, NULL,
4074 EXT4_SB(sb)->s_sbh);
4075 }
4076 }
4077 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4078 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4079 if (old_valid_dev(inode->i_rdev)) {
4080 raw_inode->i_block[0] =
4081 cpu_to_le32(old_encode_dev(inode->i_rdev));
4082 raw_inode->i_block[1] = 0;
4083 } else {
4084 raw_inode->i_block[0] = 0;
4085 raw_inode->i_block[1] =
4086 cpu_to_le32(new_encode_dev(inode->i_rdev));
4087 raw_inode->i_block[2] = 0;
4088 }
4089 } else
4090 for (block = 0; block < EXT4_N_BLOCKS; block++)
4091 raw_inode->i_block[block] = ei->i_data[block];
4092
4093 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4094 if (ei->i_extra_isize) {
4095 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4096 raw_inode->i_version_hi =
4097 cpu_to_le32(inode->i_version >> 32);
4098 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4099 }
4100
4101 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4102 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4103 if (!err)
4104 err = rc;
4105 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4106
4107 ext4_update_inode_fsync_trans(handle, inode, 0);
4108 out_brelse:
4109 brelse(bh);
4110 ext4_std_error(inode->i_sb, err);
4111 return err;
4112 }
4113
4114 /*
4115 * ext4_write_inode()
4116 *
4117 * We are called from a few places:
4118 *
4119 * - Within generic_file_write() for O_SYNC files.
4120 * Here, there will be no transaction running. We wait for any running
4121 * trasnaction to commit.
4122 *
4123 * - Within sys_sync(), kupdate and such.
4124 * We wait on commit, if tol to.
4125 *
4126 * - Within prune_icache() (PF_MEMALLOC == true)
4127 * Here we simply return. We can't afford to block kswapd on the
4128 * journal commit.
4129 *
4130 * In all cases it is actually safe for us to return without doing anything,
4131 * because the inode has been copied into a raw inode buffer in
4132 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4133 * knfsd.
4134 *
4135 * Note that we are absolutely dependent upon all inode dirtiers doing the
4136 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4137 * which we are interested.
4138 *
4139 * It would be a bug for them to not do this. The code:
4140 *
4141 * mark_inode_dirty(inode)
4142 * stuff();
4143 * inode->i_size = expr;
4144 *
4145 * is in error because a kswapd-driven write_inode() could occur while
4146 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4147 * will no longer be on the superblock's dirty inode list.
4148 */
4149 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4150 {
4151 int err;
4152
4153 if (current->flags & PF_MEMALLOC)
4154 return 0;
4155
4156 if (EXT4_SB(inode->i_sb)->s_journal) {
4157 if (ext4_journal_current_handle()) {
4158 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4159 dump_stack();
4160 return -EIO;
4161 }
4162
4163 if (wbc->sync_mode != WB_SYNC_ALL)
4164 return 0;
4165
4166 err = ext4_force_commit(inode->i_sb);
4167 } else {
4168 struct ext4_iloc iloc;
4169
4170 err = __ext4_get_inode_loc(inode, &iloc, 0);
4171 if (err)
4172 return err;
4173 if (wbc->sync_mode == WB_SYNC_ALL)
4174 sync_dirty_buffer(iloc.bh);
4175 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4176 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4177 "IO error syncing inode");
4178 err = -EIO;
4179 }
4180 brelse(iloc.bh);
4181 }
4182 return err;
4183 }
4184
4185 /*
4186 * ext4_setattr()
4187 *
4188 * Called from notify_change.
4189 *
4190 * We want to trap VFS attempts to truncate the file as soon as
4191 * possible. In particular, we want to make sure that when the VFS
4192 * shrinks i_size, we put the inode on the orphan list and modify
4193 * i_disksize immediately, so that during the subsequent flushing of
4194 * dirty pages and freeing of disk blocks, we can guarantee that any
4195 * commit will leave the blocks being flushed in an unused state on
4196 * disk. (On recovery, the inode will get truncated and the blocks will
4197 * be freed, so we have a strong guarantee that no future commit will
4198 * leave these blocks visible to the user.)
4199 *
4200 * Another thing we have to assure is that if we are in ordered mode
4201 * and inode is still attached to the committing transaction, we must
4202 * we start writeout of all the dirty pages which are being truncated.
4203 * This way we are sure that all the data written in the previous
4204 * transaction are already on disk (truncate waits for pages under
4205 * writeback).
4206 *
4207 * Called with inode->i_mutex down.
4208 */
4209 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4210 {
4211 struct inode *inode = dentry->d_inode;
4212 int error, rc = 0;
4213 int orphan = 0;
4214 const unsigned int ia_valid = attr->ia_valid;
4215
4216 error = inode_change_ok(inode, attr);
4217 if (error)
4218 return error;
4219
4220 if (is_quota_modification(inode, attr))
4221 dquot_initialize(inode);
4222 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4223 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4224 handle_t *handle;
4225
4226 /* (user+group)*(old+new) structure, inode write (sb,
4227 * inode block, ? - but truncate inode update has it) */
4228 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4229 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4230 if (IS_ERR(handle)) {
4231 error = PTR_ERR(handle);
4232 goto err_out;
4233 }
4234 error = dquot_transfer(inode, attr);
4235 if (error) {
4236 ext4_journal_stop(handle);
4237 return error;
4238 }
4239 /* Update corresponding info in inode so that everything is in
4240 * one transaction */
4241 if (attr->ia_valid & ATTR_UID)
4242 inode->i_uid = attr->ia_uid;
4243 if (attr->ia_valid & ATTR_GID)
4244 inode->i_gid = attr->ia_gid;
4245 error = ext4_mark_inode_dirty(handle, inode);
4246 ext4_journal_stop(handle);
4247 }
4248
4249 if (attr->ia_valid & ATTR_SIZE) {
4250 inode_dio_wait(inode);
4251
4252 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4254
4255 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4256 return -EFBIG;
4257 }
4258 }
4259
4260 if (S_ISREG(inode->i_mode) &&
4261 attr->ia_valid & ATTR_SIZE &&
4262 (attr->ia_size < inode->i_size)) {
4263 handle_t *handle;
4264
4265 handle = ext4_journal_start(inode, 3);
4266 if (IS_ERR(handle)) {
4267 error = PTR_ERR(handle);
4268 goto err_out;
4269 }
4270 if (ext4_handle_valid(handle)) {
4271 error = ext4_orphan_add(handle, inode);
4272 orphan = 1;
4273 }
4274 EXT4_I(inode)->i_disksize = attr->ia_size;
4275 rc = ext4_mark_inode_dirty(handle, inode);
4276 if (!error)
4277 error = rc;
4278 ext4_journal_stop(handle);
4279
4280 if (ext4_should_order_data(inode)) {
4281 error = ext4_begin_ordered_truncate(inode,
4282 attr->ia_size);
4283 if (error) {
4284 /* Do as much error cleanup as possible */
4285 handle = ext4_journal_start(inode, 3);
4286 if (IS_ERR(handle)) {
4287 ext4_orphan_del(NULL, inode);
4288 goto err_out;
4289 }
4290 ext4_orphan_del(handle, inode);
4291 orphan = 0;
4292 ext4_journal_stop(handle);
4293 goto err_out;
4294 }
4295 }
4296 }
4297
4298 if (attr->ia_valid & ATTR_SIZE) {
4299 if (attr->ia_size != i_size_read(inode)) {
4300 truncate_setsize(inode, attr->ia_size);
4301 ext4_truncate(inode);
4302 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4303 ext4_truncate(inode);
4304 }
4305
4306 if (!rc) {
4307 setattr_copy(inode, attr);
4308 mark_inode_dirty(inode);
4309 }
4310
4311 /*
4312 * If the call to ext4_truncate failed to get a transaction handle at
4313 * all, we need to clean up the in-core orphan list manually.
4314 */
4315 if (orphan && inode->i_nlink)
4316 ext4_orphan_del(NULL, inode);
4317
4318 if (!rc && (ia_valid & ATTR_MODE))
4319 rc = ext4_acl_chmod(inode);
4320
4321 err_out:
4322 ext4_std_error(inode->i_sb, error);
4323 if (!error)
4324 error = rc;
4325 return error;
4326 }
4327
4328 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4329 struct kstat *stat)
4330 {
4331 struct inode *inode;
4332 unsigned long delalloc_blocks;
4333
4334 inode = dentry->d_inode;
4335 generic_fillattr(inode, stat);
4336
4337 /*
4338 * We can't update i_blocks if the block allocation is delayed
4339 * otherwise in the case of system crash before the real block
4340 * allocation is done, we will have i_blocks inconsistent with
4341 * on-disk file blocks.
4342 * We always keep i_blocks updated together with real
4343 * allocation. But to not confuse with user, stat
4344 * will return the blocks that include the delayed allocation
4345 * blocks for this file.
4346 */
4347 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4348
4349 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4350 return 0;
4351 }
4352
4353 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4354 {
4355 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4356 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4357 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4358 }
4359
4360 /*
4361 * Account for index blocks, block groups bitmaps and block group
4362 * descriptor blocks if modify datablocks and index blocks
4363 * worse case, the indexs blocks spread over different block groups
4364 *
4365 * If datablocks are discontiguous, they are possible to spread over
4366 * different block groups too. If they are contiuguous, with flexbg,
4367 * they could still across block group boundary.
4368 *
4369 * Also account for superblock, inode, quota and xattr blocks
4370 */
4371 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4372 {
4373 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4374 int gdpblocks;
4375 int idxblocks;
4376 int ret = 0;
4377
4378 /*
4379 * How many index blocks need to touch to modify nrblocks?
4380 * The "Chunk" flag indicating whether the nrblocks is
4381 * physically contiguous on disk
4382 *
4383 * For Direct IO and fallocate, they calls get_block to allocate
4384 * one single extent at a time, so they could set the "Chunk" flag
4385 */
4386 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4387
4388 ret = idxblocks;
4389
4390 /*
4391 * Now let's see how many group bitmaps and group descriptors need
4392 * to account
4393 */
4394 groups = idxblocks;
4395 if (chunk)
4396 groups += 1;
4397 else
4398 groups += nrblocks;
4399
4400 gdpblocks = groups;
4401 if (groups > ngroups)
4402 groups = ngroups;
4403 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4404 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4405
4406 /* bitmaps and block group descriptor blocks */
4407 ret += groups + gdpblocks;
4408
4409 /* Blocks for super block, inode, quota and xattr blocks */
4410 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4411
4412 return ret;
4413 }
4414
4415 /*
4416 * Calculate the total number of credits to reserve to fit
4417 * the modification of a single pages into a single transaction,
4418 * which may include multiple chunks of block allocations.
4419 *
4420 * This could be called via ext4_write_begin()
4421 *
4422 * We need to consider the worse case, when
4423 * one new block per extent.
4424 */
4425 int ext4_writepage_trans_blocks(struct inode *inode)
4426 {
4427 int bpp = ext4_journal_blocks_per_page(inode);
4428 int ret;
4429
4430 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4431
4432 /* Account for data blocks for journalled mode */
4433 if (ext4_should_journal_data(inode))
4434 ret += bpp;
4435 return ret;
4436 }
4437
4438 /*
4439 * Calculate the journal credits for a chunk of data modification.
4440 *
4441 * This is called from DIO, fallocate or whoever calling
4442 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4443 *
4444 * journal buffers for data blocks are not included here, as DIO
4445 * and fallocate do no need to journal data buffers.
4446 */
4447 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4448 {
4449 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4450 }
4451
4452 /*
4453 * The caller must have previously called ext4_reserve_inode_write().
4454 * Give this, we know that the caller already has write access to iloc->bh.
4455 */
4456 int ext4_mark_iloc_dirty(handle_t *handle,
4457 struct inode *inode, struct ext4_iloc *iloc)
4458 {
4459 int err = 0;
4460
4461 if (test_opt(inode->i_sb, I_VERSION))
4462 inode_inc_iversion(inode);
4463
4464 /* the do_update_inode consumes one bh->b_count */
4465 get_bh(iloc->bh);
4466
4467 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4468 err = ext4_do_update_inode(handle, inode, iloc);
4469 put_bh(iloc->bh);
4470 return err;
4471 }
4472
4473 /*
4474 * On success, We end up with an outstanding reference count against
4475 * iloc->bh. This _must_ be cleaned up later.
4476 */
4477
4478 int
4479 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4480 struct ext4_iloc *iloc)
4481 {
4482 int err;
4483
4484 err = ext4_get_inode_loc(inode, iloc);
4485 if (!err) {
4486 BUFFER_TRACE(iloc->bh, "get_write_access");
4487 err = ext4_journal_get_write_access(handle, iloc->bh);
4488 if (err) {
4489 brelse(iloc->bh);
4490 iloc->bh = NULL;
4491 }
4492 }
4493 ext4_std_error(inode->i_sb, err);
4494 return err;
4495 }
4496
4497 /*
4498 * Expand an inode by new_extra_isize bytes.
4499 * Returns 0 on success or negative error number on failure.
4500 */
4501 static int ext4_expand_extra_isize(struct inode *inode,
4502 unsigned int new_extra_isize,
4503 struct ext4_iloc iloc,
4504 handle_t *handle)
4505 {
4506 struct ext4_inode *raw_inode;
4507 struct ext4_xattr_ibody_header *header;
4508
4509 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4510 return 0;
4511
4512 raw_inode = ext4_raw_inode(&iloc);
4513
4514 header = IHDR(inode, raw_inode);
4515
4516 /* No extended attributes present */
4517 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4518 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4519 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4520 new_extra_isize);
4521 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4522 return 0;
4523 }
4524
4525 /* try to expand with EAs present */
4526 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4527 raw_inode, handle);
4528 }
4529
4530 /*
4531 * What we do here is to mark the in-core inode as clean with respect to inode
4532 * dirtiness (it may still be data-dirty).
4533 * This means that the in-core inode may be reaped by prune_icache
4534 * without having to perform any I/O. This is a very good thing,
4535 * because *any* task may call prune_icache - even ones which
4536 * have a transaction open against a different journal.
4537 *
4538 * Is this cheating? Not really. Sure, we haven't written the
4539 * inode out, but prune_icache isn't a user-visible syncing function.
4540 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4541 * we start and wait on commits.
4542 *
4543 * Is this efficient/effective? Well, we're being nice to the system
4544 * by cleaning up our inodes proactively so they can be reaped
4545 * without I/O. But we are potentially leaving up to five seconds'
4546 * worth of inodes floating about which prune_icache wants us to
4547 * write out. One way to fix that would be to get prune_icache()
4548 * to do a write_super() to free up some memory. It has the desired
4549 * effect.
4550 */
4551 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4552 {
4553 struct ext4_iloc iloc;
4554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4555 static unsigned int mnt_count;
4556 int err, ret;
4557
4558 might_sleep();
4559 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4560 err = ext4_reserve_inode_write(handle, inode, &iloc);
4561 if (ext4_handle_valid(handle) &&
4562 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4563 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4564 /*
4565 * We need extra buffer credits since we may write into EA block
4566 * with this same handle. If journal_extend fails, then it will
4567 * only result in a minor loss of functionality for that inode.
4568 * If this is felt to be critical, then e2fsck should be run to
4569 * force a large enough s_min_extra_isize.
4570 */
4571 if ((jbd2_journal_extend(handle,
4572 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4573 ret = ext4_expand_extra_isize(inode,
4574 sbi->s_want_extra_isize,
4575 iloc, handle);
4576 if (ret) {
4577 ext4_set_inode_state(inode,
4578 EXT4_STATE_NO_EXPAND);
4579 if (mnt_count !=
4580 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4581 ext4_warning(inode->i_sb,
4582 "Unable to expand inode %lu. Delete"
4583 " some EAs or run e2fsck.",
4584 inode->i_ino);
4585 mnt_count =
4586 le16_to_cpu(sbi->s_es->s_mnt_count);
4587 }
4588 }
4589 }
4590 }
4591 if (!err)
4592 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4593 return err;
4594 }
4595
4596 /*
4597 * ext4_dirty_inode() is called from __mark_inode_dirty()
4598 *
4599 * We're really interested in the case where a file is being extended.
4600 * i_size has been changed by generic_commit_write() and we thus need
4601 * to include the updated inode in the current transaction.
4602 *
4603 * Also, dquot_alloc_block() will always dirty the inode when blocks
4604 * are allocated to the file.
4605 *
4606 * If the inode is marked synchronous, we don't honour that here - doing
4607 * so would cause a commit on atime updates, which we don't bother doing.
4608 * We handle synchronous inodes at the highest possible level.
4609 */
4610 void ext4_dirty_inode(struct inode *inode, int flags)
4611 {
4612 handle_t *handle;
4613
4614 handle = ext4_journal_start(inode, 2);
4615 if (IS_ERR(handle))
4616 goto out;
4617
4618 ext4_mark_inode_dirty(handle, inode);
4619
4620 ext4_journal_stop(handle);
4621 out:
4622 return;
4623 }
4624
4625 #if 0
4626 /*
4627 * Bind an inode's backing buffer_head into this transaction, to prevent
4628 * it from being flushed to disk early. Unlike
4629 * ext4_reserve_inode_write, this leaves behind no bh reference and
4630 * returns no iloc structure, so the caller needs to repeat the iloc
4631 * lookup to mark the inode dirty later.
4632 */
4633 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4634 {
4635 struct ext4_iloc iloc;
4636
4637 int err = 0;
4638 if (handle) {
4639 err = ext4_get_inode_loc(inode, &iloc);
4640 if (!err) {
4641 BUFFER_TRACE(iloc.bh, "get_write_access");
4642 err = jbd2_journal_get_write_access(handle, iloc.bh);
4643 if (!err)
4644 err = ext4_handle_dirty_metadata(handle,
4645 NULL,
4646 iloc.bh);
4647 brelse(iloc.bh);
4648 }
4649 }
4650 ext4_std_error(inode->i_sb, err);
4651 return err;
4652 }
4653 #endif
4654
4655 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4656 {
4657 journal_t *journal;
4658 handle_t *handle;
4659 int err;
4660
4661 /*
4662 * We have to be very careful here: changing a data block's
4663 * journaling status dynamically is dangerous. If we write a
4664 * data block to the journal, change the status and then delete
4665 * that block, we risk forgetting to revoke the old log record
4666 * from the journal and so a subsequent replay can corrupt data.
4667 * So, first we make sure that the journal is empty and that
4668 * nobody is changing anything.
4669 */
4670
4671 journal = EXT4_JOURNAL(inode);
4672 if (!journal)
4673 return 0;
4674 if (is_journal_aborted(journal))
4675 return -EROFS;
4676
4677 jbd2_journal_lock_updates(journal);
4678 jbd2_journal_flush(journal);
4679
4680 /*
4681 * OK, there are no updates running now, and all cached data is
4682 * synced to disk. We are now in a completely consistent state
4683 * which doesn't have anything in the journal, and we know that
4684 * no filesystem updates are running, so it is safe to modify
4685 * the inode's in-core data-journaling state flag now.
4686 */
4687
4688 if (val)
4689 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4690 else
4691 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4692 ext4_set_aops(inode);
4693
4694 jbd2_journal_unlock_updates(journal);
4695
4696 /* Finally we can mark the inode as dirty. */
4697
4698 handle = ext4_journal_start(inode, 1);
4699 if (IS_ERR(handle))
4700 return PTR_ERR(handle);
4701
4702 err = ext4_mark_inode_dirty(handle, inode);
4703 ext4_handle_sync(handle);
4704 ext4_journal_stop(handle);
4705 ext4_std_error(inode->i_sb, err);
4706
4707 return err;
4708 }
4709
4710 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4711 {
4712 return !buffer_mapped(bh);
4713 }
4714
4715 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4716 {
4717 struct page *page = vmf->page;
4718 loff_t size;
4719 unsigned long len;
4720 int ret;
4721 struct file *file = vma->vm_file;
4722 struct inode *inode = file->f_path.dentry->d_inode;
4723 struct address_space *mapping = inode->i_mapping;
4724 handle_t *handle;
4725 get_block_t *get_block;
4726 int retries = 0;
4727
4728 /*
4729 * This check is racy but catches the common case. We rely on
4730 * __block_page_mkwrite() to do a reliable check.
4731 */
4732 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4733 /* Delalloc case is easy... */
4734 if (test_opt(inode->i_sb, DELALLOC) &&
4735 !ext4_should_journal_data(inode) &&
4736 !ext4_nonda_switch(inode->i_sb)) {
4737 do {
4738 ret = __block_page_mkwrite(vma, vmf,
4739 ext4_da_get_block_prep);
4740 } while (ret == -ENOSPC &&
4741 ext4_should_retry_alloc(inode->i_sb, &retries));
4742 goto out_ret;
4743 }
4744
4745 lock_page(page);
4746 size = i_size_read(inode);
4747 /* Page got truncated from under us? */
4748 if (page->mapping != mapping || page_offset(page) > size) {
4749 unlock_page(page);
4750 ret = VM_FAULT_NOPAGE;
4751 goto out;
4752 }
4753
4754 if (page->index == size >> PAGE_CACHE_SHIFT)
4755 len = size & ~PAGE_CACHE_MASK;
4756 else
4757 len = PAGE_CACHE_SIZE;
4758 /*
4759 * Return if we have all the buffers mapped. This avoids the need to do
4760 * journal_start/journal_stop which can block and take a long time
4761 */
4762 if (page_has_buffers(page)) {
4763 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4764 ext4_bh_unmapped)) {
4765 /* Wait so that we don't change page under IO */
4766 wait_on_page_writeback(page);
4767 ret = VM_FAULT_LOCKED;
4768 goto out;
4769 }
4770 }
4771 unlock_page(page);
4772 /* OK, we need to fill the hole... */
4773 if (ext4_should_dioread_nolock(inode))
4774 get_block = ext4_get_block_write;
4775 else
4776 get_block = ext4_get_block;
4777 retry_alloc:
4778 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4779 if (IS_ERR(handle)) {
4780 ret = VM_FAULT_SIGBUS;
4781 goto out;
4782 }
4783 ret = __block_page_mkwrite(vma, vmf, get_block);
4784 if (!ret && ext4_should_journal_data(inode)) {
4785 if (walk_page_buffers(handle, page_buffers(page), 0,
4786 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4787 unlock_page(page);
4788 ret = VM_FAULT_SIGBUS;
4789 goto out;
4790 }
4791 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4792 }
4793 ext4_journal_stop(handle);
4794 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4795 goto retry_alloc;
4796 out_ret:
4797 ret = block_page_mkwrite_return(ret);
4798 out:
4799 return ret;
4800 }
This page took 0.129041 seconds and 5 git commands to generate.