Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "ext4_extents.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 return jbd2_journal_begin_ordered_truncate(
56 EXT4_SB(inode->i_sb)->s_journal,
57 &EXT4_I(inode)->jinode,
58 new_size);
59 }
60
61 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62
63 /*
64 * Test whether an inode is a fast symlink.
65 */
66 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 {
68 int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 (inode->i_sb->s_blocksize >> 9) : 0;
70
71 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
72 }
73
74 /*
75 * Work out how many blocks we need to proceed with the next chunk of a
76 * truncate transaction.
77 */
78 static unsigned long blocks_for_truncate(struct inode *inode)
79 {
80 ext4_lblk_t needed;
81
82 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83
84 /* Give ourselves just enough room to cope with inodes in which
85 * i_blocks is corrupt: we've seen disk corruptions in the past
86 * which resulted in random data in an inode which looked enough
87 * like a regular file for ext4 to try to delete it. Things
88 * will go a bit crazy if that happens, but at least we should
89 * try not to panic the whole kernel. */
90 if (needed < 2)
91 needed = 2;
92
93 /* But we need to bound the transaction so we don't overflow the
94 * journal. */
95 if (needed > EXT4_MAX_TRANS_DATA)
96 needed = EXT4_MAX_TRANS_DATA;
97
98 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 }
100
101 /*
102 * Truncate transactions can be complex and absolutely huge. So we need to
103 * be able to restart the transaction at a conventient checkpoint to make
104 * sure we don't overflow the journal.
105 *
106 * start_transaction gets us a new handle for a truncate transaction,
107 * and extend_transaction tries to extend the existing one a bit. If
108 * extend fails, we need to propagate the failure up and restart the
109 * transaction in the top-level truncate loop. --sct
110 */
111 static handle_t *start_transaction(struct inode *inode)
112 {
113 handle_t *result;
114
115 result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 if (!IS_ERR(result))
117 return result;
118
119 ext4_std_error(inode->i_sb, PTR_ERR(result));
120 return result;
121 }
122
123 /*
124 * Try to extend this transaction for the purposes of truncation.
125 *
126 * Returns 0 if we managed to create more room. If we can't create more
127 * room, and the transaction must be restarted we return 1.
128 */
129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 {
131 if (!ext4_handle_valid(handle))
132 return 0;
133 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134 return 0;
135 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 return 0;
137 return 1;
138 }
139
140 /*
141 * Restart the transaction associated with *handle. This does a commit,
142 * so before we call here everything must be consistently dirtied against
143 * this transaction.
144 */
145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146 int nblocks)
147 {
148 int ret;
149
150 /*
151 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152 * moment, get_block can be called only for blocks inside i_size since
153 * page cache has been already dropped and writes are blocked by
154 * i_mutex. So we can safely drop the i_data_sem here.
155 */
156 BUG_ON(EXT4_JOURNAL(inode) == NULL);
157 jbd_debug(2, "restarting handle %p\n", handle);
158 up_write(&EXT4_I(inode)->i_data_sem);
159 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
160 down_write(&EXT4_I(inode)->i_data_sem);
161 ext4_discard_preallocations(inode);
162
163 return ret;
164 }
165
166 /*
167 * Called at the last iput() if i_nlink is zero.
168 */
169 void ext4_delete_inode(struct inode *inode)
170 {
171 handle_t *handle;
172 int err;
173
174 if (ext4_should_order_data(inode))
175 ext4_begin_ordered_truncate(inode, 0);
176 truncate_inode_pages(&inode->i_data, 0);
177
178 if (is_bad_inode(inode))
179 goto no_delete;
180
181 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
182 if (IS_ERR(handle)) {
183 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 /*
185 * If we're going to skip the normal cleanup, we still need to
186 * make sure that the in-core orphan linked list is properly
187 * cleaned up.
188 */
189 ext4_orphan_del(NULL, inode);
190 goto no_delete;
191 }
192
193 if (IS_SYNC(inode))
194 ext4_handle_sync(handle);
195 inode->i_size = 0;
196 err = ext4_mark_inode_dirty(handle, inode);
197 if (err) {
198 ext4_warning(inode->i_sb,
199 "couldn't mark inode dirty (err %d)", err);
200 goto stop_handle;
201 }
202 if (inode->i_blocks)
203 ext4_truncate(inode);
204
205 /*
206 * ext4_ext_truncate() doesn't reserve any slop when it
207 * restarts journal transactions; therefore there may not be
208 * enough credits left in the handle to remove the inode from
209 * the orphan list and set the dtime field.
210 */
211 if (!ext4_handle_has_enough_credits(handle, 3)) {
212 err = ext4_journal_extend(handle, 3);
213 if (err > 0)
214 err = ext4_journal_restart(handle, 3);
215 if (err != 0) {
216 ext4_warning(inode->i_sb,
217 "couldn't extend journal (err %d)", err);
218 stop_handle:
219 ext4_journal_stop(handle);
220 goto no_delete;
221 }
222 }
223
224 /*
225 * Kill off the orphan record which ext4_truncate created.
226 * AKPM: I think this can be inside the above `if'.
227 * Note that ext4_orphan_del() has to be able to cope with the
228 * deletion of a non-existent orphan - this is because we don't
229 * know if ext4_truncate() actually created an orphan record.
230 * (Well, we could do this if we need to, but heck - it works)
231 */
232 ext4_orphan_del(handle, inode);
233 EXT4_I(inode)->i_dtime = get_seconds();
234
235 /*
236 * One subtle ordering requirement: if anything has gone wrong
237 * (transaction abort, IO errors, whatever), then we can still
238 * do these next steps (the fs will already have been marked as
239 * having errors), but we can't free the inode if the mark_dirty
240 * fails.
241 */
242 if (ext4_mark_inode_dirty(handle, inode))
243 /* If that failed, just do the required in-core inode clear. */
244 clear_inode(inode);
245 else
246 ext4_free_inode(handle, inode);
247 ext4_journal_stop(handle);
248 return;
249 no_delete:
250 clear_inode(inode); /* We must guarantee clearing of inode... */
251 }
252
253 typedef struct {
254 __le32 *p;
255 __le32 key;
256 struct buffer_head *bh;
257 } Indirect;
258
259 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 {
261 p->key = *(p->p = v);
262 p->bh = bh;
263 }
264
265 /**
266 * ext4_block_to_path - parse the block number into array of offsets
267 * @inode: inode in question (we are only interested in its superblock)
268 * @i_block: block number to be parsed
269 * @offsets: array to store the offsets in
270 * @boundary: set this non-zero if the referred-to block is likely to be
271 * followed (on disk) by an indirect block.
272 *
273 * To store the locations of file's data ext4 uses a data structure common
274 * for UNIX filesystems - tree of pointers anchored in the inode, with
275 * data blocks at leaves and indirect blocks in intermediate nodes.
276 * This function translates the block number into path in that tree -
277 * return value is the path length and @offsets[n] is the offset of
278 * pointer to (n+1)th node in the nth one. If @block is out of range
279 * (negative or too large) warning is printed and zero returned.
280 *
281 * Note: function doesn't find node addresses, so no IO is needed. All
282 * we need to know is the capacity of indirect blocks (taken from the
283 * inode->i_sb).
284 */
285
286 /*
287 * Portability note: the last comparison (check that we fit into triple
288 * indirect block) is spelled differently, because otherwise on an
289 * architecture with 32-bit longs and 8Kb pages we might get into trouble
290 * if our filesystem had 8Kb blocks. We might use long long, but that would
291 * kill us on x86. Oh, well, at least the sign propagation does not matter -
292 * i_block would have to be negative in the very beginning, so we would not
293 * get there at all.
294 */
295
296 static int ext4_block_to_path(struct inode *inode,
297 ext4_lblk_t i_block,
298 ext4_lblk_t offsets[4], int *boundary)
299 {
300 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
301 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
302 const long direct_blocks = EXT4_NDIR_BLOCKS,
303 indirect_blocks = ptrs,
304 double_blocks = (1 << (ptrs_bits * 2));
305 int n = 0;
306 int final = 0;
307
308 if (i_block < direct_blocks) {
309 offsets[n++] = i_block;
310 final = direct_blocks;
311 } else if ((i_block -= direct_blocks) < indirect_blocks) {
312 offsets[n++] = EXT4_IND_BLOCK;
313 offsets[n++] = i_block;
314 final = ptrs;
315 } else if ((i_block -= indirect_blocks) < double_blocks) {
316 offsets[n++] = EXT4_DIND_BLOCK;
317 offsets[n++] = i_block >> ptrs_bits;
318 offsets[n++] = i_block & (ptrs - 1);
319 final = ptrs;
320 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
321 offsets[n++] = EXT4_TIND_BLOCK;
322 offsets[n++] = i_block >> (ptrs_bits * 2);
323 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
324 offsets[n++] = i_block & (ptrs - 1);
325 final = ptrs;
326 } else {
327 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
330 }
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
338 {
339 __le32 *bref = p;
340 unsigned int blk;
341
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 __ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
351 }
352 }
353 return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
364
365 /**
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
372 *
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
384 *
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
391 *
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
394 */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
398 {
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
402
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
412
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
417 }
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
422 }
423 }
424
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
429 }
430 return NULL;
431
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
436 }
437
438 /**
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
442 *
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
450 *
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
455 *
456 * Caller must make sure that @ind is valid and will stay that way.
457 */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
473 }
474
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
478
479 /*
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
482 */
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
488 }
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492 /*
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
495 */
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
498
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
505 }
506
507 /**
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
512 *
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
517 */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
520 {
521 ext4_fsblk_t goal;
522
523 /*
524 * XXX need to get goal block from mballoc's data structures
525 */
526
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
530 }
531
532 /**
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
535 *
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
540 *
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
543 */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
546 {
547 unsigned int count = 0;
548
549 /*
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
552 */
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
560 }
561
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
566 }
567 return count;
568 }
569
570 /**
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
574 *
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
579 */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
584 {
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
591
592 /*
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
599 */
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
609
610 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
611 EXT4_ERROR_INODE(inode,
612 "current_block %llu + count %lu > %d!",
613 current_block, count,
614 EXT4_MAX_BLOCK_FILE_PHYS);
615 *err = -EIO;
616 goto failed_out;
617 }
618
619 target -= count;
620 /* allocate blocks for indirect blocks */
621 while (index < indirect_blks && count) {
622 new_blocks[index++] = current_block++;
623 count--;
624 }
625 if (count > 0) {
626 /*
627 * save the new block number
628 * for the first direct block
629 */
630 new_blocks[index] = current_block;
631 printk(KERN_INFO "%s returned more blocks than "
632 "requested\n", __func__);
633 WARN_ON(1);
634 break;
635 }
636 }
637
638 target = blks - count ;
639 blk_allocated = count;
640 if (!target)
641 goto allocated;
642 /* Now allocate data blocks */
643 memset(&ar, 0, sizeof(ar));
644 ar.inode = inode;
645 ar.goal = goal;
646 ar.len = target;
647 ar.logical = iblock;
648 if (S_ISREG(inode->i_mode))
649 /* enable in-core preallocation only for regular files */
650 ar.flags = EXT4_MB_HINT_DATA;
651
652 current_block = ext4_mb_new_blocks(handle, &ar, err);
653 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
654 EXT4_ERROR_INODE(inode,
655 "current_block %llu + ar.len %d > %d!",
656 current_block, ar.len,
657 EXT4_MAX_BLOCK_FILE_PHYS);
658 *err = -EIO;
659 goto failed_out;
660 }
661
662 if (*err && (target == blks)) {
663 /*
664 * if the allocation failed and we didn't allocate
665 * any blocks before
666 */
667 goto failed_out;
668 }
669 if (!*err) {
670 if (target == blks) {
671 /*
672 * save the new block number
673 * for the first direct block
674 */
675 new_blocks[index] = current_block;
676 }
677 blk_allocated += ar.len;
678 }
679 allocated:
680 /* total number of blocks allocated for direct blocks */
681 ret = blk_allocated;
682 *err = 0;
683 return ret;
684 failed_out:
685 for (i = 0; i < index; i++)
686 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
687 return ret;
688 }
689
690 /**
691 * ext4_alloc_branch - allocate and set up a chain of blocks.
692 * @inode: owner
693 * @indirect_blks: number of allocated indirect blocks
694 * @blks: number of allocated direct blocks
695 * @offsets: offsets (in the blocks) to store the pointers to next.
696 * @branch: place to store the chain in.
697 *
698 * This function allocates blocks, zeroes out all but the last one,
699 * links them into chain and (if we are synchronous) writes them to disk.
700 * In other words, it prepares a branch that can be spliced onto the
701 * inode. It stores the information about that chain in the branch[], in
702 * the same format as ext4_get_branch() would do. We are calling it after
703 * we had read the existing part of chain and partial points to the last
704 * triple of that (one with zero ->key). Upon the exit we have the same
705 * picture as after the successful ext4_get_block(), except that in one
706 * place chain is disconnected - *branch->p is still zero (we did not
707 * set the last link), but branch->key contains the number that should
708 * be placed into *branch->p to fill that gap.
709 *
710 * If allocation fails we free all blocks we've allocated (and forget
711 * their buffer_heads) and return the error value the from failed
712 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
713 * as described above and return 0.
714 */
715 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
716 ext4_lblk_t iblock, int indirect_blks,
717 int *blks, ext4_fsblk_t goal,
718 ext4_lblk_t *offsets, Indirect *branch)
719 {
720 int blocksize = inode->i_sb->s_blocksize;
721 int i, n = 0;
722 int err = 0;
723 struct buffer_head *bh;
724 int num;
725 ext4_fsblk_t new_blocks[4];
726 ext4_fsblk_t current_block;
727
728 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
729 *blks, new_blocks, &err);
730 if (err)
731 return err;
732
733 branch[0].key = cpu_to_le32(new_blocks[0]);
734 /*
735 * metadata blocks and data blocks are allocated.
736 */
737 for (n = 1; n <= indirect_blks; n++) {
738 /*
739 * Get buffer_head for parent block, zero it out
740 * and set the pointer to new one, then send
741 * parent to disk.
742 */
743 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
744 branch[n].bh = bh;
745 lock_buffer(bh);
746 BUFFER_TRACE(bh, "call get_create_access");
747 err = ext4_journal_get_create_access(handle, bh);
748 if (err) {
749 /* Don't brelse(bh) here; it's done in
750 * ext4_journal_forget() below */
751 unlock_buffer(bh);
752 goto failed;
753 }
754
755 memset(bh->b_data, 0, blocksize);
756 branch[n].p = (__le32 *) bh->b_data + offsets[n];
757 branch[n].key = cpu_to_le32(new_blocks[n]);
758 *branch[n].p = branch[n].key;
759 if (n == indirect_blks) {
760 current_block = new_blocks[n];
761 /*
762 * End of chain, update the last new metablock of
763 * the chain to point to the new allocated
764 * data blocks numbers
765 */
766 for (i = 1; i < num; i++)
767 *(branch[n].p + i) = cpu_to_le32(++current_block);
768 }
769 BUFFER_TRACE(bh, "marking uptodate");
770 set_buffer_uptodate(bh);
771 unlock_buffer(bh);
772
773 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
774 err = ext4_handle_dirty_metadata(handle, inode, bh);
775 if (err)
776 goto failed;
777 }
778 *blks = num;
779 return err;
780 failed:
781 /* Allocation failed, free what we already allocated */
782 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
783 for (i = 1; i <= n ; i++) {
784 /*
785 * branch[i].bh is newly allocated, so there is no
786 * need to revoke the block, which is why we don't
787 * need to set EXT4_FREE_BLOCKS_METADATA.
788 */
789 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
790 EXT4_FREE_BLOCKS_FORGET);
791 }
792 for (i = n+1; i < indirect_blks; i++)
793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
794
795 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
796
797 return err;
798 }
799
800 /**
801 * ext4_splice_branch - splice the allocated branch onto inode.
802 * @inode: owner
803 * @block: (logical) number of block we are adding
804 * @chain: chain of indirect blocks (with a missing link - see
805 * ext4_alloc_branch)
806 * @where: location of missing link
807 * @num: number of indirect blocks we are adding
808 * @blks: number of direct blocks we are adding
809 *
810 * This function fills the missing link and does all housekeeping needed in
811 * inode (->i_blocks, etc.). In case of success we end up with the full
812 * chain to new block and return 0.
813 */
814 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
815 ext4_lblk_t block, Indirect *where, int num,
816 int blks)
817 {
818 int i;
819 int err = 0;
820 ext4_fsblk_t current_block;
821
822 /*
823 * If we're splicing into a [td]indirect block (as opposed to the
824 * inode) then we need to get write access to the [td]indirect block
825 * before the splice.
826 */
827 if (where->bh) {
828 BUFFER_TRACE(where->bh, "get_write_access");
829 err = ext4_journal_get_write_access(handle, where->bh);
830 if (err)
831 goto err_out;
832 }
833 /* That's it */
834
835 *where->p = where->key;
836
837 /*
838 * Update the host buffer_head or inode to point to more just allocated
839 * direct blocks blocks
840 */
841 if (num == 0 && blks > 1) {
842 current_block = le32_to_cpu(where->key) + 1;
843 for (i = 1; i < blks; i++)
844 *(where->p + i) = cpu_to_le32(current_block++);
845 }
846
847 /* We are done with atomic stuff, now do the rest of housekeeping */
848 /* had we spliced it onto indirect block? */
849 if (where->bh) {
850 /*
851 * If we spliced it onto an indirect block, we haven't
852 * altered the inode. Note however that if it is being spliced
853 * onto an indirect block at the very end of the file (the
854 * file is growing) then we *will* alter the inode to reflect
855 * the new i_size. But that is not done here - it is done in
856 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
857 */
858 jbd_debug(5, "splicing indirect only\n");
859 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
860 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
861 if (err)
862 goto err_out;
863 } else {
864 /*
865 * OK, we spliced it into the inode itself on a direct block.
866 */
867 ext4_mark_inode_dirty(handle, inode);
868 jbd_debug(5, "splicing direct\n");
869 }
870 return err;
871
872 err_out:
873 for (i = 1; i <= num; i++) {
874 /*
875 * branch[i].bh is newly allocated, so there is no
876 * need to revoke the block, which is why we don't
877 * need to set EXT4_FREE_BLOCKS_METADATA.
878 */
879 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
880 EXT4_FREE_BLOCKS_FORGET);
881 }
882 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
883 blks, 0);
884
885 return err;
886 }
887
888 /*
889 * The ext4_ind_get_blocks() function handles non-extents inodes
890 * (i.e., using the traditional indirect/double-indirect i_blocks
891 * scheme) for ext4_get_blocks().
892 *
893 * Allocation strategy is simple: if we have to allocate something, we will
894 * have to go the whole way to leaf. So let's do it before attaching anything
895 * to tree, set linkage between the newborn blocks, write them if sync is
896 * required, recheck the path, free and repeat if check fails, otherwise
897 * set the last missing link (that will protect us from any truncate-generated
898 * removals - all blocks on the path are immune now) and possibly force the
899 * write on the parent block.
900 * That has a nice additional property: no special recovery from the failed
901 * allocations is needed - we simply release blocks and do not touch anything
902 * reachable from inode.
903 *
904 * `handle' can be NULL if create == 0.
905 *
906 * return > 0, # of blocks mapped or allocated.
907 * return = 0, if plain lookup failed.
908 * return < 0, error case.
909 *
910 * The ext4_ind_get_blocks() function should be called with
911 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
912 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
913 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
914 * blocks.
915 */
916 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
917 ext4_lblk_t iblock, unsigned int maxblocks,
918 struct buffer_head *bh_result,
919 int flags)
920 {
921 int err = -EIO;
922 ext4_lblk_t offsets[4];
923 Indirect chain[4];
924 Indirect *partial;
925 ext4_fsblk_t goal;
926 int indirect_blks;
927 int blocks_to_boundary = 0;
928 int depth;
929 int count = 0;
930 ext4_fsblk_t first_block = 0;
931
932 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
933 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
934 depth = ext4_block_to_path(inode, iblock, offsets,
935 &blocks_to_boundary);
936
937 if (depth == 0)
938 goto out;
939
940 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
941
942 /* Simplest case - block found, no allocation needed */
943 if (!partial) {
944 first_block = le32_to_cpu(chain[depth - 1].key);
945 clear_buffer_new(bh_result);
946 count++;
947 /*map more blocks*/
948 while (count < maxblocks && count <= blocks_to_boundary) {
949 ext4_fsblk_t blk;
950
951 blk = le32_to_cpu(*(chain[depth-1].p + count));
952
953 if (blk == first_block + count)
954 count++;
955 else
956 break;
957 }
958 goto got_it;
959 }
960
961 /* Next simple case - plain lookup or failed read of indirect block */
962 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
963 goto cleanup;
964
965 /*
966 * Okay, we need to do block allocation.
967 */
968 goal = ext4_find_goal(inode, iblock, partial);
969
970 /* the number of blocks need to allocate for [d,t]indirect blocks */
971 indirect_blks = (chain + depth) - partial - 1;
972
973 /*
974 * Next look up the indirect map to count the totoal number of
975 * direct blocks to allocate for this branch.
976 */
977 count = ext4_blks_to_allocate(partial, indirect_blks,
978 maxblocks, blocks_to_boundary);
979 /*
980 * Block out ext4_truncate while we alter the tree
981 */
982 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
983 &count, goal,
984 offsets + (partial - chain), partial);
985
986 /*
987 * The ext4_splice_branch call will free and forget any buffers
988 * on the new chain if there is a failure, but that risks using
989 * up transaction credits, especially for bitmaps where the
990 * credits cannot be returned. Can we handle this somehow? We
991 * may need to return -EAGAIN upwards in the worst case. --sct
992 */
993 if (!err)
994 err = ext4_splice_branch(handle, inode, iblock,
995 partial, indirect_blks, count);
996 if (err)
997 goto cleanup;
998
999 set_buffer_new(bh_result);
1000
1001 ext4_update_inode_fsync_trans(handle, inode, 1);
1002 got_it:
1003 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1004 if (count > blocks_to_boundary)
1005 set_buffer_boundary(bh_result);
1006 err = count;
1007 /* Clean up and exit */
1008 partial = chain + depth - 1; /* the whole chain */
1009 cleanup:
1010 while (partial > chain) {
1011 BUFFER_TRACE(partial->bh, "call brelse");
1012 brelse(partial->bh);
1013 partial--;
1014 }
1015 BUFFER_TRACE(bh_result, "returned");
1016 out:
1017 return err;
1018 }
1019
1020 #ifdef CONFIG_QUOTA
1021 qsize_t *ext4_get_reserved_space(struct inode *inode)
1022 {
1023 return &EXT4_I(inode)->i_reserved_quota;
1024 }
1025 #endif
1026
1027 /*
1028 * Calculate the number of metadata blocks need to reserve
1029 * to allocate a new block at @lblocks for non extent file based file
1030 */
1031 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1032 sector_t lblock)
1033 {
1034 struct ext4_inode_info *ei = EXT4_I(inode);
1035 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1036 int blk_bits;
1037
1038 if (lblock < EXT4_NDIR_BLOCKS)
1039 return 0;
1040
1041 lblock -= EXT4_NDIR_BLOCKS;
1042
1043 if (ei->i_da_metadata_calc_len &&
1044 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1045 ei->i_da_metadata_calc_len++;
1046 return 0;
1047 }
1048 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1049 ei->i_da_metadata_calc_len = 1;
1050 blk_bits = roundup_pow_of_two(lblock + 1);
1051 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1052 }
1053
1054 /*
1055 * Calculate the number of metadata blocks need to reserve
1056 * to allocate a block located at @lblock
1057 */
1058 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1059 {
1060 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1061 return ext4_ext_calc_metadata_amount(inode, lblock);
1062
1063 return ext4_indirect_calc_metadata_amount(inode, lblock);
1064 }
1065
1066 /*
1067 * Called with i_data_sem down, which is important since we can call
1068 * ext4_discard_preallocations() from here.
1069 */
1070 void ext4_da_update_reserve_space(struct inode *inode,
1071 int used, int quota_claim)
1072 {
1073 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1074 struct ext4_inode_info *ei = EXT4_I(inode);
1075 int mdb_free = 0, allocated_meta_blocks = 0;
1076
1077 spin_lock(&ei->i_block_reservation_lock);
1078 trace_ext4_da_update_reserve_space(inode, used);
1079 if (unlikely(used > ei->i_reserved_data_blocks)) {
1080 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1081 "with only %d reserved data blocks\n",
1082 __func__, inode->i_ino, used,
1083 ei->i_reserved_data_blocks);
1084 WARN_ON(1);
1085 used = ei->i_reserved_data_blocks;
1086 }
1087
1088 /* Update per-inode reservations */
1089 ei->i_reserved_data_blocks -= used;
1090 used += ei->i_allocated_meta_blocks;
1091 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1093 ei->i_allocated_meta_blocks = 0;
1094 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1095
1096 if (ei->i_reserved_data_blocks == 0) {
1097 /*
1098 * We can release all of the reserved metadata blocks
1099 * only when we have written all of the delayed
1100 * allocation blocks.
1101 */
1102 mdb_free = ei->i_reserved_meta_blocks;
1103 ei->i_reserved_meta_blocks = 0;
1104 ei->i_da_metadata_calc_len = 0;
1105 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1106 }
1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108
1109 /* Update quota subsystem */
1110 if (quota_claim) {
1111 vfs_dq_claim_block(inode, used);
1112 if (mdb_free)
1113 vfs_dq_release_reservation_block(inode, mdb_free);
1114 } else {
1115 /*
1116 * We did fallocate with an offset that is already delayed
1117 * allocated. So on delayed allocated writeback we should
1118 * not update the quota for allocated blocks. But then
1119 * converting an fallocate region to initialized region would
1120 * have caused a metadata allocation. So claim quota for
1121 * that
1122 */
1123 if (allocated_meta_blocks)
1124 vfs_dq_claim_block(inode, allocated_meta_blocks);
1125 vfs_dq_release_reservation_block(inode, mdb_free + used);
1126 }
1127
1128 /*
1129 * If we have done all the pending block allocations and if
1130 * there aren't any writers on the inode, we can discard the
1131 * inode's preallocations.
1132 */
1133 if ((ei->i_reserved_data_blocks == 0) &&
1134 (atomic_read(&inode->i_writecount) == 0))
1135 ext4_discard_preallocations(inode);
1136 }
1137
1138 static int check_block_validity(struct inode *inode, const char *msg,
1139 sector_t logical, sector_t phys, int len)
1140 {
1141 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1142 __ext4_error(inode->i_sb, msg,
1143 "inode #%lu logical block %llu mapped to %llu "
1144 "(size %d)", inode->i_ino,
1145 (unsigned long long) logical,
1146 (unsigned long long) phys, len);
1147 return -EIO;
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * Return the number of contiguous dirty pages in a given inode
1154 * starting at page frame idx.
1155 */
1156 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1157 unsigned int max_pages)
1158 {
1159 struct address_space *mapping = inode->i_mapping;
1160 pgoff_t index;
1161 struct pagevec pvec;
1162 pgoff_t num = 0;
1163 int i, nr_pages, done = 0;
1164
1165 if (max_pages == 0)
1166 return 0;
1167 pagevec_init(&pvec, 0);
1168 while (!done) {
1169 index = idx;
1170 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1171 PAGECACHE_TAG_DIRTY,
1172 (pgoff_t)PAGEVEC_SIZE);
1173 if (nr_pages == 0)
1174 break;
1175 for (i = 0; i < nr_pages; i++) {
1176 struct page *page = pvec.pages[i];
1177 struct buffer_head *bh, *head;
1178
1179 lock_page(page);
1180 if (unlikely(page->mapping != mapping) ||
1181 !PageDirty(page) ||
1182 PageWriteback(page) ||
1183 page->index != idx) {
1184 done = 1;
1185 unlock_page(page);
1186 break;
1187 }
1188 if (page_has_buffers(page)) {
1189 bh = head = page_buffers(page);
1190 do {
1191 if (!buffer_delay(bh) &&
1192 !buffer_unwritten(bh))
1193 done = 1;
1194 bh = bh->b_this_page;
1195 } while (!done && (bh != head));
1196 }
1197 unlock_page(page);
1198 if (done)
1199 break;
1200 idx++;
1201 num++;
1202 if (num >= max_pages)
1203 break;
1204 }
1205 pagevec_release(&pvec);
1206 }
1207 return num;
1208 }
1209
1210 /*
1211 * The ext4_get_blocks() function tries to look up the requested blocks,
1212 * and returns if the blocks are already mapped.
1213 *
1214 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1215 * and store the allocated blocks in the result buffer head and mark it
1216 * mapped.
1217 *
1218 * If file type is extents based, it will call ext4_ext_get_blocks(),
1219 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1220 * based files
1221 *
1222 * On success, it returns the number of blocks being mapped or allocate.
1223 * if create==0 and the blocks are pre-allocated and uninitialized block,
1224 * the result buffer head is unmapped. If the create ==1, it will make sure
1225 * the buffer head is mapped.
1226 *
1227 * It returns 0 if plain look up failed (blocks have not been allocated), in
1228 * that casem, buffer head is unmapped
1229 *
1230 * It returns the error in case of allocation failure.
1231 */
1232 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1233 unsigned int max_blocks, struct buffer_head *bh,
1234 int flags)
1235 {
1236 int retval;
1237
1238 clear_buffer_mapped(bh);
1239 clear_buffer_unwritten(bh);
1240
1241 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1242 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1243 (unsigned long)block);
1244 /*
1245 * Try to see if we can get the block without requesting a new
1246 * file system block.
1247 */
1248 down_read((&EXT4_I(inode)->i_data_sem));
1249 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1250 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1251 bh, 0);
1252 } else {
1253 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1254 bh, 0);
1255 }
1256 up_read((&EXT4_I(inode)->i_data_sem));
1257
1258 if (retval > 0 && buffer_mapped(bh)) {
1259 int ret = check_block_validity(inode, "file system corruption",
1260 block, bh->b_blocknr, retval);
1261 if (ret != 0)
1262 return ret;
1263 }
1264
1265 /* If it is only a block(s) look up */
1266 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1267 return retval;
1268
1269 /*
1270 * Returns if the blocks have already allocated
1271 *
1272 * Note that if blocks have been preallocated
1273 * ext4_ext_get_block() returns th create = 0
1274 * with buffer head unmapped.
1275 */
1276 if (retval > 0 && buffer_mapped(bh))
1277 return retval;
1278
1279 /*
1280 * When we call get_blocks without the create flag, the
1281 * BH_Unwritten flag could have gotten set if the blocks
1282 * requested were part of a uninitialized extent. We need to
1283 * clear this flag now that we are committed to convert all or
1284 * part of the uninitialized extent to be an initialized
1285 * extent. This is because we need to avoid the combination
1286 * of BH_Unwritten and BH_Mapped flags being simultaneously
1287 * set on the buffer_head.
1288 */
1289 clear_buffer_unwritten(bh);
1290
1291 /*
1292 * New blocks allocate and/or writing to uninitialized extent
1293 * will possibly result in updating i_data, so we take
1294 * the write lock of i_data_sem, and call get_blocks()
1295 * with create == 1 flag.
1296 */
1297 down_write((&EXT4_I(inode)->i_data_sem));
1298
1299 /*
1300 * if the caller is from delayed allocation writeout path
1301 * we have already reserved fs blocks for allocation
1302 * let the underlying get_block() function know to
1303 * avoid double accounting
1304 */
1305 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1306 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1307 /*
1308 * We need to check for EXT4 here because migrate
1309 * could have changed the inode type in between
1310 */
1311 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1312 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1313 bh, flags);
1314 } else {
1315 retval = ext4_ind_get_blocks(handle, inode, block,
1316 max_blocks, bh, flags);
1317
1318 if (retval > 0 && buffer_new(bh)) {
1319 /*
1320 * We allocated new blocks which will result in
1321 * i_data's format changing. Force the migrate
1322 * to fail by clearing migrate flags
1323 */
1324 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1325 }
1326
1327 /*
1328 * Update reserved blocks/metadata blocks after successful
1329 * block allocation which had been deferred till now. We don't
1330 * support fallocate for non extent files. So we can update
1331 * reserve space here.
1332 */
1333 if ((retval > 0) &&
1334 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1335 ext4_da_update_reserve_space(inode, retval, 1);
1336 }
1337 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1338 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1339
1340 up_write((&EXT4_I(inode)->i_data_sem));
1341 if (retval > 0 && buffer_mapped(bh)) {
1342 int ret = check_block_validity(inode, "file system "
1343 "corruption after allocation",
1344 block, bh->b_blocknr, retval);
1345 if (ret != 0)
1346 return ret;
1347 }
1348 return retval;
1349 }
1350
1351 /* Maximum number of blocks we map for direct IO at once. */
1352 #define DIO_MAX_BLOCKS 4096
1353
1354 int ext4_get_block(struct inode *inode, sector_t iblock,
1355 struct buffer_head *bh_result, int create)
1356 {
1357 handle_t *handle = ext4_journal_current_handle();
1358 int ret = 0, started = 0;
1359 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1360 int dio_credits;
1361
1362 if (create && !handle) {
1363 /* Direct IO write... */
1364 if (max_blocks > DIO_MAX_BLOCKS)
1365 max_blocks = DIO_MAX_BLOCKS;
1366 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1367 handle = ext4_journal_start(inode, dio_credits);
1368 if (IS_ERR(handle)) {
1369 ret = PTR_ERR(handle);
1370 goto out;
1371 }
1372 started = 1;
1373 }
1374
1375 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1376 create ? EXT4_GET_BLOCKS_CREATE : 0);
1377 if (ret > 0) {
1378 bh_result->b_size = (ret << inode->i_blkbits);
1379 ret = 0;
1380 }
1381 if (started)
1382 ext4_journal_stop(handle);
1383 out:
1384 return ret;
1385 }
1386
1387 /*
1388 * `handle' can be NULL if create is zero
1389 */
1390 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1391 ext4_lblk_t block, int create, int *errp)
1392 {
1393 struct buffer_head dummy;
1394 int fatal = 0, err;
1395 int flags = 0;
1396
1397 J_ASSERT(handle != NULL || create == 0);
1398
1399 dummy.b_state = 0;
1400 dummy.b_blocknr = -1000;
1401 buffer_trace_init(&dummy.b_history);
1402 if (create)
1403 flags |= EXT4_GET_BLOCKS_CREATE;
1404 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1405 /*
1406 * ext4_get_blocks() returns number of blocks mapped. 0 in
1407 * case of a HOLE.
1408 */
1409 if (err > 0) {
1410 if (err > 1)
1411 WARN_ON(1);
1412 err = 0;
1413 }
1414 *errp = err;
1415 if (!err && buffer_mapped(&dummy)) {
1416 struct buffer_head *bh;
1417 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1418 if (!bh) {
1419 *errp = -EIO;
1420 goto err;
1421 }
1422 if (buffer_new(&dummy)) {
1423 J_ASSERT(create != 0);
1424 J_ASSERT(handle != NULL);
1425
1426 /*
1427 * Now that we do not always journal data, we should
1428 * keep in mind whether this should always journal the
1429 * new buffer as metadata. For now, regular file
1430 * writes use ext4_get_block instead, so it's not a
1431 * problem.
1432 */
1433 lock_buffer(bh);
1434 BUFFER_TRACE(bh, "call get_create_access");
1435 fatal = ext4_journal_get_create_access(handle, bh);
1436 if (!fatal && !buffer_uptodate(bh)) {
1437 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1438 set_buffer_uptodate(bh);
1439 }
1440 unlock_buffer(bh);
1441 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1442 err = ext4_handle_dirty_metadata(handle, inode, bh);
1443 if (!fatal)
1444 fatal = err;
1445 } else {
1446 BUFFER_TRACE(bh, "not a new buffer");
1447 }
1448 if (fatal) {
1449 *errp = fatal;
1450 brelse(bh);
1451 bh = NULL;
1452 }
1453 return bh;
1454 }
1455 err:
1456 return NULL;
1457 }
1458
1459 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1460 ext4_lblk_t block, int create, int *err)
1461 {
1462 struct buffer_head *bh;
1463
1464 bh = ext4_getblk(handle, inode, block, create, err);
1465 if (!bh)
1466 return bh;
1467 if (buffer_uptodate(bh))
1468 return bh;
1469 ll_rw_block(READ_META, 1, &bh);
1470 wait_on_buffer(bh);
1471 if (buffer_uptodate(bh))
1472 return bh;
1473 put_bh(bh);
1474 *err = -EIO;
1475 return NULL;
1476 }
1477
1478 static int walk_page_buffers(handle_t *handle,
1479 struct buffer_head *head,
1480 unsigned from,
1481 unsigned to,
1482 int *partial,
1483 int (*fn)(handle_t *handle,
1484 struct buffer_head *bh))
1485 {
1486 struct buffer_head *bh;
1487 unsigned block_start, block_end;
1488 unsigned blocksize = head->b_size;
1489 int err, ret = 0;
1490 struct buffer_head *next;
1491
1492 for (bh = head, block_start = 0;
1493 ret == 0 && (bh != head || !block_start);
1494 block_start = block_end, bh = next) {
1495 next = bh->b_this_page;
1496 block_end = block_start + blocksize;
1497 if (block_end <= from || block_start >= to) {
1498 if (partial && !buffer_uptodate(bh))
1499 *partial = 1;
1500 continue;
1501 }
1502 err = (*fn)(handle, bh);
1503 if (!ret)
1504 ret = err;
1505 }
1506 return ret;
1507 }
1508
1509 /*
1510 * To preserve ordering, it is essential that the hole instantiation and
1511 * the data write be encapsulated in a single transaction. We cannot
1512 * close off a transaction and start a new one between the ext4_get_block()
1513 * and the commit_write(). So doing the jbd2_journal_start at the start of
1514 * prepare_write() is the right place.
1515 *
1516 * Also, this function can nest inside ext4_writepage() ->
1517 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518 * has generated enough buffer credits to do the whole page. So we won't
1519 * block on the journal in that case, which is good, because the caller may
1520 * be PF_MEMALLOC.
1521 *
1522 * By accident, ext4 can be reentered when a transaction is open via
1523 * quota file writes. If we were to commit the transaction while thus
1524 * reentered, there can be a deadlock - we would be holding a quota
1525 * lock, and the commit would never complete if another thread had a
1526 * transaction open and was blocking on the quota lock - a ranking
1527 * violation.
1528 *
1529 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530 * will _not_ run commit under these circumstances because handle->h_ref
1531 * is elevated. We'll still have enough credits for the tiny quotafile
1532 * write.
1533 */
1534 static int do_journal_get_write_access(handle_t *handle,
1535 struct buffer_head *bh)
1536 {
1537 if (!buffer_mapped(bh) || buffer_freed(bh))
1538 return 0;
1539 return ext4_journal_get_write_access(handle, bh);
1540 }
1541
1542 /*
1543 * Truncate blocks that were not used by write. We have to truncate the
1544 * pagecache as well so that corresponding buffers get properly unmapped.
1545 */
1546 static void ext4_truncate_failed_write(struct inode *inode)
1547 {
1548 truncate_inode_pages(inode->i_mapping, inode->i_size);
1549 ext4_truncate(inode);
1550 }
1551
1552 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1553 struct buffer_head *bh_result, int create);
1554 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1555 loff_t pos, unsigned len, unsigned flags,
1556 struct page **pagep, void **fsdata)
1557 {
1558 struct inode *inode = mapping->host;
1559 int ret, needed_blocks;
1560 handle_t *handle;
1561 int retries = 0;
1562 struct page *page;
1563 pgoff_t index;
1564 unsigned from, to;
1565
1566 trace_ext4_write_begin(inode, pos, len, flags);
1567 /*
1568 * Reserve one block more for addition to orphan list in case
1569 * we allocate blocks but write fails for some reason
1570 */
1571 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1572 index = pos >> PAGE_CACHE_SHIFT;
1573 from = pos & (PAGE_CACHE_SIZE - 1);
1574 to = from + len;
1575
1576 retry:
1577 handle = ext4_journal_start(inode, needed_blocks);
1578 if (IS_ERR(handle)) {
1579 ret = PTR_ERR(handle);
1580 goto out;
1581 }
1582
1583 /* We cannot recurse into the filesystem as the transaction is already
1584 * started */
1585 flags |= AOP_FLAG_NOFS;
1586
1587 page = grab_cache_page_write_begin(mapping, index, flags);
1588 if (!page) {
1589 ext4_journal_stop(handle);
1590 ret = -ENOMEM;
1591 goto out;
1592 }
1593 *pagep = page;
1594
1595 if (ext4_should_dioread_nolock(inode))
1596 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1597 fsdata, ext4_get_block_write);
1598 else
1599 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1600 fsdata, ext4_get_block);
1601
1602 if (!ret && ext4_should_journal_data(inode)) {
1603 ret = walk_page_buffers(handle, page_buffers(page),
1604 from, to, NULL, do_journal_get_write_access);
1605 }
1606
1607 if (ret) {
1608 unlock_page(page);
1609 page_cache_release(page);
1610 /*
1611 * block_write_begin may have instantiated a few blocks
1612 * outside i_size. Trim these off again. Don't need
1613 * i_size_read because we hold i_mutex.
1614 *
1615 * Add inode to orphan list in case we crash before
1616 * truncate finishes
1617 */
1618 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1619 ext4_orphan_add(handle, inode);
1620
1621 ext4_journal_stop(handle);
1622 if (pos + len > inode->i_size) {
1623 ext4_truncate_failed_write(inode);
1624 /*
1625 * If truncate failed early the inode might
1626 * still be on the orphan list; we need to
1627 * make sure the inode is removed from the
1628 * orphan list in that case.
1629 */
1630 if (inode->i_nlink)
1631 ext4_orphan_del(NULL, inode);
1632 }
1633 }
1634
1635 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1636 goto retry;
1637 out:
1638 return ret;
1639 }
1640
1641 /* For write_end() in data=journal mode */
1642 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1643 {
1644 if (!buffer_mapped(bh) || buffer_freed(bh))
1645 return 0;
1646 set_buffer_uptodate(bh);
1647 return ext4_handle_dirty_metadata(handle, NULL, bh);
1648 }
1649
1650 static int ext4_generic_write_end(struct file *file,
1651 struct address_space *mapping,
1652 loff_t pos, unsigned len, unsigned copied,
1653 struct page *page, void *fsdata)
1654 {
1655 int i_size_changed = 0;
1656 struct inode *inode = mapping->host;
1657 handle_t *handle = ext4_journal_current_handle();
1658
1659 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1660
1661 /*
1662 * No need to use i_size_read() here, the i_size
1663 * cannot change under us because we hold i_mutex.
1664 *
1665 * But it's important to update i_size while still holding page lock:
1666 * page writeout could otherwise come in and zero beyond i_size.
1667 */
1668 if (pos + copied > inode->i_size) {
1669 i_size_write(inode, pos + copied);
1670 i_size_changed = 1;
1671 }
1672
1673 if (pos + copied > EXT4_I(inode)->i_disksize) {
1674 /* We need to mark inode dirty even if
1675 * new_i_size is less that inode->i_size
1676 * bu greater than i_disksize.(hint delalloc)
1677 */
1678 ext4_update_i_disksize(inode, (pos + copied));
1679 i_size_changed = 1;
1680 }
1681 unlock_page(page);
1682 page_cache_release(page);
1683
1684 /*
1685 * Don't mark the inode dirty under page lock. First, it unnecessarily
1686 * makes the holding time of page lock longer. Second, it forces lock
1687 * ordering of page lock and transaction start for journaling
1688 * filesystems.
1689 */
1690 if (i_size_changed)
1691 ext4_mark_inode_dirty(handle, inode);
1692
1693 return copied;
1694 }
1695
1696 /*
1697 * We need to pick up the new inode size which generic_commit_write gave us
1698 * `file' can be NULL - eg, when called from page_symlink().
1699 *
1700 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1701 * buffers are managed internally.
1702 */
1703 static int ext4_ordered_write_end(struct file *file,
1704 struct address_space *mapping,
1705 loff_t pos, unsigned len, unsigned copied,
1706 struct page *page, void *fsdata)
1707 {
1708 handle_t *handle = ext4_journal_current_handle();
1709 struct inode *inode = mapping->host;
1710 int ret = 0, ret2;
1711
1712 trace_ext4_ordered_write_end(inode, pos, len, copied);
1713 ret = ext4_jbd2_file_inode(handle, inode);
1714
1715 if (ret == 0) {
1716 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1717 page, fsdata);
1718 copied = ret2;
1719 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1720 /* if we have allocated more blocks and copied
1721 * less. We will have blocks allocated outside
1722 * inode->i_size. So truncate them
1723 */
1724 ext4_orphan_add(handle, inode);
1725 if (ret2 < 0)
1726 ret = ret2;
1727 }
1728 ret2 = ext4_journal_stop(handle);
1729 if (!ret)
1730 ret = ret2;
1731
1732 if (pos + len > inode->i_size) {
1733 ext4_truncate_failed_write(inode);
1734 /*
1735 * If truncate failed early the inode might still be
1736 * on the orphan list; we need to make sure the inode
1737 * is removed from the orphan list in that case.
1738 */
1739 if (inode->i_nlink)
1740 ext4_orphan_del(NULL, inode);
1741 }
1742
1743
1744 return ret ? ret : copied;
1745 }
1746
1747 static int ext4_writeback_write_end(struct file *file,
1748 struct address_space *mapping,
1749 loff_t pos, unsigned len, unsigned copied,
1750 struct page *page, void *fsdata)
1751 {
1752 handle_t *handle = ext4_journal_current_handle();
1753 struct inode *inode = mapping->host;
1754 int ret = 0, ret2;
1755
1756 trace_ext4_writeback_write_end(inode, pos, len, copied);
1757 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1758 page, fsdata);
1759 copied = ret2;
1760 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1761 /* if we have allocated more blocks and copied
1762 * less. We will have blocks allocated outside
1763 * inode->i_size. So truncate them
1764 */
1765 ext4_orphan_add(handle, inode);
1766
1767 if (ret2 < 0)
1768 ret = ret2;
1769
1770 ret2 = ext4_journal_stop(handle);
1771 if (!ret)
1772 ret = ret2;
1773
1774 if (pos + len > inode->i_size) {
1775 ext4_truncate_failed_write(inode);
1776 /*
1777 * If truncate failed early the inode might still be
1778 * on the orphan list; we need to make sure the inode
1779 * is removed from the orphan list in that case.
1780 */
1781 if (inode->i_nlink)
1782 ext4_orphan_del(NULL, inode);
1783 }
1784
1785 return ret ? ret : copied;
1786 }
1787
1788 static int ext4_journalled_write_end(struct file *file,
1789 struct address_space *mapping,
1790 loff_t pos, unsigned len, unsigned copied,
1791 struct page *page, void *fsdata)
1792 {
1793 handle_t *handle = ext4_journal_current_handle();
1794 struct inode *inode = mapping->host;
1795 int ret = 0, ret2;
1796 int partial = 0;
1797 unsigned from, to;
1798 loff_t new_i_size;
1799
1800 trace_ext4_journalled_write_end(inode, pos, len, copied);
1801 from = pos & (PAGE_CACHE_SIZE - 1);
1802 to = from + len;
1803
1804 if (copied < len) {
1805 if (!PageUptodate(page))
1806 copied = 0;
1807 page_zero_new_buffers(page, from+copied, to);
1808 }
1809
1810 ret = walk_page_buffers(handle, page_buffers(page), from,
1811 to, &partial, write_end_fn);
1812 if (!partial)
1813 SetPageUptodate(page);
1814 new_i_size = pos + copied;
1815 if (new_i_size > inode->i_size)
1816 i_size_write(inode, pos+copied);
1817 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1818 if (new_i_size > EXT4_I(inode)->i_disksize) {
1819 ext4_update_i_disksize(inode, new_i_size);
1820 ret2 = ext4_mark_inode_dirty(handle, inode);
1821 if (!ret)
1822 ret = ret2;
1823 }
1824
1825 unlock_page(page);
1826 page_cache_release(page);
1827 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1828 /* if we have allocated more blocks and copied
1829 * less. We will have blocks allocated outside
1830 * inode->i_size. So truncate them
1831 */
1832 ext4_orphan_add(handle, inode);
1833
1834 ret2 = ext4_journal_stop(handle);
1835 if (!ret)
1836 ret = ret2;
1837 if (pos + len > inode->i_size) {
1838 ext4_truncate_failed_write(inode);
1839 /*
1840 * If truncate failed early the inode might still be
1841 * on the orphan list; we need to make sure the inode
1842 * is removed from the orphan list in that case.
1843 */
1844 if (inode->i_nlink)
1845 ext4_orphan_del(NULL, inode);
1846 }
1847
1848 return ret ? ret : copied;
1849 }
1850
1851 /*
1852 * Reserve a single block located at lblock
1853 */
1854 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1855 {
1856 int retries = 0;
1857 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1858 struct ext4_inode_info *ei = EXT4_I(inode);
1859 unsigned long md_needed, md_reserved;
1860
1861 /*
1862 * recalculate the amount of metadata blocks to reserve
1863 * in order to allocate nrblocks
1864 * worse case is one extent per block
1865 */
1866 repeat:
1867 spin_lock(&ei->i_block_reservation_lock);
1868 md_reserved = ei->i_reserved_meta_blocks;
1869 md_needed = ext4_calc_metadata_amount(inode, lblock);
1870 trace_ext4_da_reserve_space(inode, md_needed);
1871 spin_unlock(&ei->i_block_reservation_lock);
1872
1873 /*
1874 * Make quota reservation here to prevent quota overflow
1875 * later. Real quota accounting is done at pages writeout
1876 * time.
1877 */
1878 if (vfs_dq_reserve_block(inode, md_needed + 1))
1879 return -EDQUOT;
1880
1881 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1882 vfs_dq_release_reservation_block(inode, md_needed + 1);
1883 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1884 yield();
1885 goto repeat;
1886 }
1887 return -ENOSPC;
1888 }
1889 spin_lock(&ei->i_block_reservation_lock);
1890 ei->i_reserved_data_blocks++;
1891 ei->i_reserved_meta_blocks += md_needed;
1892 spin_unlock(&ei->i_block_reservation_lock);
1893
1894 return 0; /* success */
1895 }
1896
1897 static void ext4_da_release_space(struct inode *inode, int to_free)
1898 {
1899 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1900 struct ext4_inode_info *ei = EXT4_I(inode);
1901
1902 if (!to_free)
1903 return; /* Nothing to release, exit */
1904
1905 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1906
1907 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1908 /*
1909 * if there aren't enough reserved blocks, then the
1910 * counter is messed up somewhere. Since this
1911 * function is called from invalidate page, it's
1912 * harmless to return without any action.
1913 */
1914 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1915 "ino %lu, to_free %d with only %d reserved "
1916 "data blocks\n", inode->i_ino, to_free,
1917 ei->i_reserved_data_blocks);
1918 WARN_ON(1);
1919 to_free = ei->i_reserved_data_blocks;
1920 }
1921 ei->i_reserved_data_blocks -= to_free;
1922
1923 if (ei->i_reserved_data_blocks == 0) {
1924 /*
1925 * We can release all of the reserved metadata blocks
1926 * only when we have written all of the delayed
1927 * allocation blocks.
1928 */
1929 to_free += ei->i_reserved_meta_blocks;
1930 ei->i_reserved_meta_blocks = 0;
1931 ei->i_da_metadata_calc_len = 0;
1932 }
1933
1934 /* update fs dirty blocks counter */
1935 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1936
1937 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1938
1939 vfs_dq_release_reservation_block(inode, to_free);
1940 }
1941
1942 static void ext4_da_page_release_reservation(struct page *page,
1943 unsigned long offset)
1944 {
1945 int to_release = 0;
1946 struct buffer_head *head, *bh;
1947 unsigned int curr_off = 0;
1948
1949 head = page_buffers(page);
1950 bh = head;
1951 do {
1952 unsigned int next_off = curr_off + bh->b_size;
1953
1954 if ((offset <= curr_off) && (buffer_delay(bh))) {
1955 to_release++;
1956 clear_buffer_delay(bh);
1957 }
1958 curr_off = next_off;
1959 } while ((bh = bh->b_this_page) != head);
1960 ext4_da_release_space(page->mapping->host, to_release);
1961 }
1962
1963 /*
1964 * Delayed allocation stuff
1965 */
1966
1967 /*
1968 * mpage_da_submit_io - walks through extent of pages and try to write
1969 * them with writepage() call back
1970 *
1971 * @mpd->inode: inode
1972 * @mpd->first_page: first page of the extent
1973 * @mpd->next_page: page after the last page of the extent
1974 *
1975 * By the time mpage_da_submit_io() is called we expect all blocks
1976 * to be allocated. this may be wrong if allocation failed.
1977 *
1978 * As pages are already locked by write_cache_pages(), we can't use it
1979 */
1980 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1981 {
1982 long pages_skipped;
1983 struct pagevec pvec;
1984 unsigned long index, end;
1985 int ret = 0, err, nr_pages, i;
1986 struct inode *inode = mpd->inode;
1987 struct address_space *mapping = inode->i_mapping;
1988
1989 BUG_ON(mpd->next_page <= mpd->first_page);
1990 /*
1991 * We need to start from the first_page to the next_page - 1
1992 * to make sure we also write the mapped dirty buffer_heads.
1993 * If we look at mpd->b_blocknr we would only be looking
1994 * at the currently mapped buffer_heads.
1995 */
1996 index = mpd->first_page;
1997 end = mpd->next_page - 1;
1998
1999 pagevec_init(&pvec, 0);
2000 while (index <= end) {
2001 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2002 if (nr_pages == 0)
2003 break;
2004 for (i = 0; i < nr_pages; i++) {
2005 struct page *page = pvec.pages[i];
2006
2007 index = page->index;
2008 if (index > end)
2009 break;
2010 index++;
2011
2012 BUG_ON(!PageLocked(page));
2013 BUG_ON(PageWriteback(page));
2014
2015 pages_skipped = mpd->wbc->pages_skipped;
2016 err = mapping->a_ops->writepage(page, mpd->wbc);
2017 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2018 /*
2019 * have successfully written the page
2020 * without skipping the same
2021 */
2022 mpd->pages_written++;
2023 /*
2024 * In error case, we have to continue because
2025 * remaining pages are still locked
2026 * XXX: unlock and re-dirty them?
2027 */
2028 if (ret == 0)
2029 ret = err;
2030 }
2031 pagevec_release(&pvec);
2032 }
2033 return ret;
2034 }
2035
2036 /*
2037 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2038 *
2039 * @mpd->inode - inode to walk through
2040 * @exbh->b_blocknr - first block on a disk
2041 * @exbh->b_size - amount of space in bytes
2042 * @logical - first logical block to start assignment with
2043 *
2044 * the function goes through all passed space and put actual disk
2045 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2046 */
2047 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2048 struct buffer_head *exbh)
2049 {
2050 struct inode *inode = mpd->inode;
2051 struct address_space *mapping = inode->i_mapping;
2052 int blocks = exbh->b_size >> inode->i_blkbits;
2053 sector_t pblock = exbh->b_blocknr, cur_logical;
2054 struct buffer_head *head, *bh;
2055 pgoff_t index, end;
2056 struct pagevec pvec;
2057 int nr_pages, i;
2058
2059 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062
2063 pagevec_init(&pvec, 0);
2064
2065 while (index <= end) {
2066 /* XXX: optimize tail */
2067 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068 if (nr_pages == 0)
2069 break;
2070 for (i = 0; i < nr_pages; i++) {
2071 struct page *page = pvec.pages[i];
2072
2073 index = page->index;
2074 if (index > end)
2075 break;
2076 index++;
2077
2078 BUG_ON(!PageLocked(page));
2079 BUG_ON(PageWriteback(page));
2080 BUG_ON(!page_has_buffers(page));
2081
2082 bh = page_buffers(page);
2083 head = bh;
2084
2085 /* skip blocks out of the range */
2086 do {
2087 if (cur_logical >= logical)
2088 break;
2089 cur_logical++;
2090 } while ((bh = bh->b_this_page) != head);
2091
2092 do {
2093 if (cur_logical >= logical + blocks)
2094 break;
2095
2096 if (buffer_delay(bh) ||
2097 buffer_unwritten(bh)) {
2098
2099 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2100
2101 if (buffer_delay(bh)) {
2102 clear_buffer_delay(bh);
2103 bh->b_blocknr = pblock;
2104 } else {
2105 /*
2106 * unwritten already should have
2107 * blocknr assigned. Verify that
2108 */
2109 clear_buffer_unwritten(bh);
2110 BUG_ON(bh->b_blocknr != pblock);
2111 }
2112
2113 } else if (buffer_mapped(bh))
2114 BUG_ON(bh->b_blocknr != pblock);
2115
2116 if (buffer_uninit(exbh))
2117 set_buffer_uninit(bh);
2118 cur_logical++;
2119 pblock++;
2120 } while ((bh = bh->b_this_page) != head);
2121 }
2122 pagevec_release(&pvec);
2123 }
2124 }
2125
2126
2127 /*
2128 * __unmap_underlying_blocks - just a helper function to unmap
2129 * set of blocks described by @bh
2130 */
2131 static inline void __unmap_underlying_blocks(struct inode *inode,
2132 struct buffer_head *bh)
2133 {
2134 struct block_device *bdev = inode->i_sb->s_bdev;
2135 int blocks, i;
2136
2137 blocks = bh->b_size >> inode->i_blkbits;
2138 for (i = 0; i < blocks; i++)
2139 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2140 }
2141
2142 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143 sector_t logical, long blk_cnt)
2144 {
2145 int nr_pages, i;
2146 pgoff_t index, end;
2147 struct pagevec pvec;
2148 struct inode *inode = mpd->inode;
2149 struct address_space *mapping = inode->i_mapping;
2150
2151 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 end = (logical + blk_cnt - 1) >>
2153 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154 while (index <= end) {
2155 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156 if (nr_pages == 0)
2157 break;
2158 for (i = 0; i < nr_pages; i++) {
2159 struct page *page = pvec.pages[i];
2160 if (page->index > end)
2161 break;
2162 BUG_ON(!PageLocked(page));
2163 BUG_ON(PageWriteback(page));
2164 block_invalidatepage(page, 0);
2165 ClearPageUptodate(page);
2166 unlock_page(page);
2167 }
2168 index = pvec.pages[nr_pages - 1]->index + 1;
2169 pagevec_release(&pvec);
2170 }
2171 return;
2172 }
2173
2174 static void ext4_print_free_blocks(struct inode *inode)
2175 {
2176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2177 printk(KERN_CRIT "Total free blocks count %lld\n",
2178 ext4_count_free_blocks(inode->i_sb));
2179 printk(KERN_CRIT "Free/Dirty block details\n");
2180 printk(KERN_CRIT "free_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2182 printk(KERN_CRIT "dirty_blocks=%lld\n",
2183 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2184 printk(KERN_CRIT "Block reservation details\n");
2185 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_data_blocks);
2187 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2188 EXT4_I(inode)->i_reserved_meta_blocks);
2189 return;
2190 }
2191
2192 /*
2193 * mpage_da_map_blocks - go through given space
2194 *
2195 * @mpd - bh describing space
2196 *
2197 * The function skips space we know is already mapped to disk blocks.
2198 *
2199 */
2200 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2201 {
2202 int err, blks, get_blocks_flags;
2203 struct buffer_head new;
2204 sector_t next = mpd->b_blocknr;
2205 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2206 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2207 handle_t *handle = NULL;
2208
2209 /*
2210 * We consider only non-mapped and non-allocated blocks
2211 */
2212 if ((mpd->b_state & (1 << BH_Mapped)) &&
2213 !(mpd->b_state & (1 << BH_Delay)) &&
2214 !(mpd->b_state & (1 << BH_Unwritten)))
2215 return 0;
2216
2217 /*
2218 * If we didn't accumulate anything to write simply return
2219 */
2220 if (!mpd->b_size)
2221 return 0;
2222
2223 handle = ext4_journal_current_handle();
2224 BUG_ON(!handle);
2225
2226 /*
2227 * Call ext4_get_blocks() to allocate any delayed allocation
2228 * blocks, or to convert an uninitialized extent to be
2229 * initialized (in the case where we have written into
2230 * one or more preallocated blocks).
2231 *
2232 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2233 * indicate that we are on the delayed allocation path. This
2234 * affects functions in many different parts of the allocation
2235 * call path. This flag exists primarily because we don't
2236 * want to change *many* call functions, so ext4_get_blocks()
2237 * will set the magic i_delalloc_reserved_flag once the
2238 * inode's allocation semaphore is taken.
2239 *
2240 * If the blocks in questions were delalloc blocks, set
2241 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2242 * variables are updated after the blocks have been allocated.
2243 */
2244 new.b_state = 0;
2245 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2246 if (ext4_should_dioread_nolock(mpd->inode))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2248 if (mpd->b_state & (1 << BH_Delay))
2249 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2250
2251 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2252 &new, get_blocks_flags);
2253 if (blks < 0) {
2254 err = blks;
2255 /*
2256 * If get block returns with error we simply
2257 * return. Later writepage will redirty the page and
2258 * writepages will find the dirty page again
2259 */
2260 if (err == -EAGAIN)
2261 return 0;
2262
2263 if (err == -ENOSPC &&
2264 ext4_count_free_blocks(mpd->inode->i_sb)) {
2265 mpd->retval = err;
2266 return 0;
2267 }
2268
2269 /*
2270 * get block failure will cause us to loop in
2271 * writepages, because a_ops->writepage won't be able
2272 * to make progress. The page will be redirtied by
2273 * writepage and writepages will again try to write
2274 * the same.
2275 */
2276 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2277 "delayed block allocation failed for inode %lu at "
2278 "logical offset %llu with max blocks %zd with "
2279 "error %d\n", mpd->inode->i_ino,
2280 (unsigned long long) next,
2281 mpd->b_size >> mpd->inode->i_blkbits, err);
2282 printk(KERN_CRIT "This should not happen!! "
2283 "Data will be lost\n");
2284 if (err == -ENOSPC) {
2285 ext4_print_free_blocks(mpd->inode);
2286 }
2287 /* invalidate all the pages */
2288 ext4_da_block_invalidatepages(mpd, next,
2289 mpd->b_size >> mpd->inode->i_blkbits);
2290 return err;
2291 }
2292 BUG_ON(blks == 0);
2293
2294 new.b_size = (blks << mpd->inode->i_blkbits);
2295
2296 if (buffer_new(&new))
2297 __unmap_underlying_blocks(mpd->inode, &new);
2298
2299 /*
2300 * If blocks are delayed marked, we need to
2301 * put actual blocknr and drop delayed bit
2302 */
2303 if ((mpd->b_state & (1 << BH_Delay)) ||
2304 (mpd->b_state & (1 << BH_Unwritten)))
2305 mpage_put_bnr_to_bhs(mpd, next, &new);
2306
2307 if (ext4_should_order_data(mpd->inode)) {
2308 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309 if (err)
2310 return err;
2311 }
2312
2313 /*
2314 * Update on-disk size along with block allocation.
2315 */
2316 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2317 if (disksize > i_size_read(mpd->inode))
2318 disksize = i_size_read(mpd->inode);
2319 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2320 ext4_update_i_disksize(mpd->inode, disksize);
2321 return ext4_mark_inode_dirty(handle, mpd->inode);
2322 }
2323
2324 return 0;
2325 }
2326
2327 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2328 (1 << BH_Delay) | (1 << BH_Unwritten))
2329
2330 /*
2331 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2332 *
2333 * @mpd->lbh - extent of blocks
2334 * @logical - logical number of the block in the file
2335 * @bh - bh of the block (used to access block's state)
2336 *
2337 * the function is used to collect contig. blocks in same state
2338 */
2339 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2340 sector_t logical, size_t b_size,
2341 unsigned long b_state)
2342 {
2343 sector_t next;
2344 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2345
2346 /* check if thereserved journal credits might overflow */
2347 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2348 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2349 /*
2350 * With non-extent format we are limited by the journal
2351 * credit available. Total credit needed to insert
2352 * nrblocks contiguous blocks is dependent on the
2353 * nrblocks. So limit nrblocks.
2354 */
2355 goto flush_it;
2356 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2357 EXT4_MAX_TRANS_DATA) {
2358 /*
2359 * Adding the new buffer_head would make it cross the
2360 * allowed limit for which we have journal credit
2361 * reserved. So limit the new bh->b_size
2362 */
2363 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2364 mpd->inode->i_blkbits;
2365 /* we will do mpage_da_submit_io in the next loop */
2366 }
2367 }
2368 /*
2369 * First block in the extent
2370 */
2371 if (mpd->b_size == 0) {
2372 mpd->b_blocknr = logical;
2373 mpd->b_size = b_size;
2374 mpd->b_state = b_state & BH_FLAGS;
2375 return;
2376 }
2377
2378 next = mpd->b_blocknr + nrblocks;
2379 /*
2380 * Can we merge the block to our big extent?
2381 */
2382 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2383 mpd->b_size += b_size;
2384 return;
2385 }
2386
2387 flush_it:
2388 /*
2389 * We couldn't merge the block to our extent, so we
2390 * need to flush current extent and start new one
2391 */
2392 if (mpage_da_map_blocks(mpd) == 0)
2393 mpage_da_submit_io(mpd);
2394 mpd->io_done = 1;
2395 return;
2396 }
2397
2398 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2399 {
2400 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2401 }
2402
2403 /*
2404 * __mpage_da_writepage - finds extent of pages and blocks
2405 *
2406 * @page: page to consider
2407 * @wbc: not used, we just follow rules
2408 * @data: context
2409 *
2410 * The function finds extents of pages and scan them for all blocks.
2411 */
2412 static int __mpage_da_writepage(struct page *page,
2413 struct writeback_control *wbc, void *data)
2414 {
2415 struct mpage_da_data *mpd = data;
2416 struct inode *inode = mpd->inode;
2417 struct buffer_head *bh, *head;
2418 sector_t logical;
2419
2420 if (mpd->io_done) {
2421 /*
2422 * Rest of the page in the page_vec
2423 * redirty then and skip then. We will
2424 * try to write them again after
2425 * starting a new transaction
2426 */
2427 redirty_page_for_writepage(wbc, page);
2428 unlock_page(page);
2429 return MPAGE_DA_EXTENT_TAIL;
2430 }
2431 /*
2432 * Can we merge this page to current extent?
2433 */
2434 if (mpd->next_page != page->index) {
2435 /*
2436 * Nope, we can't. So, we map non-allocated blocks
2437 * and start IO on them using writepage()
2438 */
2439 if (mpd->next_page != mpd->first_page) {
2440 if (mpage_da_map_blocks(mpd) == 0)
2441 mpage_da_submit_io(mpd);
2442 /*
2443 * skip rest of the page in the page_vec
2444 */
2445 mpd->io_done = 1;
2446 redirty_page_for_writepage(wbc, page);
2447 unlock_page(page);
2448 return MPAGE_DA_EXTENT_TAIL;
2449 }
2450
2451 /*
2452 * Start next extent of pages ...
2453 */
2454 mpd->first_page = page->index;
2455
2456 /*
2457 * ... and blocks
2458 */
2459 mpd->b_size = 0;
2460 mpd->b_state = 0;
2461 mpd->b_blocknr = 0;
2462 }
2463
2464 mpd->next_page = page->index + 1;
2465 logical = (sector_t) page->index <<
2466 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2467
2468 if (!page_has_buffers(page)) {
2469 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2470 (1 << BH_Dirty) | (1 << BH_Uptodate));
2471 if (mpd->io_done)
2472 return MPAGE_DA_EXTENT_TAIL;
2473 } else {
2474 /*
2475 * Page with regular buffer heads, just add all dirty ones
2476 */
2477 head = page_buffers(page);
2478 bh = head;
2479 do {
2480 BUG_ON(buffer_locked(bh));
2481 /*
2482 * We need to try to allocate
2483 * unmapped blocks in the same page.
2484 * Otherwise we won't make progress
2485 * with the page in ext4_writepage
2486 */
2487 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2488 mpage_add_bh_to_extent(mpd, logical,
2489 bh->b_size,
2490 bh->b_state);
2491 if (mpd->io_done)
2492 return MPAGE_DA_EXTENT_TAIL;
2493 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2494 /*
2495 * mapped dirty buffer. We need to update
2496 * the b_state because we look at
2497 * b_state in mpage_da_map_blocks. We don't
2498 * update b_size because if we find an
2499 * unmapped buffer_head later we need to
2500 * use the b_state flag of that buffer_head.
2501 */
2502 if (mpd->b_size == 0)
2503 mpd->b_state = bh->b_state & BH_FLAGS;
2504 }
2505 logical++;
2506 } while ((bh = bh->b_this_page) != head);
2507 }
2508
2509 return 0;
2510 }
2511
2512 /*
2513 * This is a special get_blocks_t callback which is used by
2514 * ext4_da_write_begin(). It will either return mapped block or
2515 * reserve space for a single block.
2516 *
2517 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2518 * We also have b_blocknr = -1 and b_bdev initialized properly
2519 *
2520 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2521 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2522 * initialized properly.
2523 */
2524 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2525 struct buffer_head *bh_result, int create)
2526 {
2527 int ret = 0;
2528 sector_t invalid_block = ~((sector_t) 0xffff);
2529
2530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2531 invalid_block = ~0;
2532
2533 BUG_ON(create == 0);
2534 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2535
2536 /*
2537 * first, we need to know whether the block is allocated already
2538 * preallocated blocks are unmapped but should treated
2539 * the same as allocated blocks.
2540 */
2541 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2542 if ((ret == 0) && !buffer_delay(bh_result)) {
2543 /* the block isn't (pre)allocated yet, let's reserve space */
2544 /*
2545 * XXX: __block_prepare_write() unmaps passed block,
2546 * is it OK?
2547 */
2548 ret = ext4_da_reserve_space(inode, iblock);
2549 if (ret)
2550 /* not enough space to reserve */
2551 return ret;
2552
2553 map_bh(bh_result, inode->i_sb, invalid_block);
2554 set_buffer_new(bh_result);
2555 set_buffer_delay(bh_result);
2556 } else if (ret > 0) {
2557 bh_result->b_size = (ret << inode->i_blkbits);
2558 if (buffer_unwritten(bh_result)) {
2559 /* A delayed write to unwritten bh should
2560 * be marked new and mapped. Mapped ensures
2561 * that we don't do get_block multiple times
2562 * when we write to the same offset and new
2563 * ensures that we do proper zero out for
2564 * partial write.
2565 */
2566 set_buffer_new(bh_result);
2567 set_buffer_mapped(bh_result);
2568 }
2569 ret = 0;
2570 }
2571
2572 return ret;
2573 }
2574
2575 /*
2576 * This function is used as a standard get_block_t calback function
2577 * when there is no desire to allocate any blocks. It is used as a
2578 * callback function for block_prepare_write(), nobh_writepage(), and
2579 * block_write_full_page(). These functions should only try to map a
2580 * single block at a time.
2581 *
2582 * Since this function doesn't do block allocations even if the caller
2583 * requests it by passing in create=1, it is critically important that
2584 * any caller checks to make sure that any buffer heads are returned
2585 * by this function are either all already mapped or marked for
2586 * delayed allocation before calling nobh_writepage() or
2587 * block_write_full_page(). Otherwise, b_blocknr could be left
2588 * unitialized, and the page write functions will be taken by
2589 * surprise.
2590 */
2591 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2592 struct buffer_head *bh_result, int create)
2593 {
2594 int ret = 0;
2595 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2596
2597 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2598
2599 /*
2600 * we don't want to do block allocation in writepage
2601 * so call get_block_wrap with create = 0
2602 */
2603 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2604 if (ret > 0) {
2605 bh_result->b_size = (ret << inode->i_blkbits);
2606 ret = 0;
2607 }
2608 return ret;
2609 }
2610
2611 static int bget_one(handle_t *handle, struct buffer_head *bh)
2612 {
2613 get_bh(bh);
2614 return 0;
2615 }
2616
2617 static int bput_one(handle_t *handle, struct buffer_head *bh)
2618 {
2619 put_bh(bh);
2620 return 0;
2621 }
2622
2623 static int __ext4_journalled_writepage(struct page *page,
2624 unsigned int len)
2625 {
2626 struct address_space *mapping = page->mapping;
2627 struct inode *inode = mapping->host;
2628 struct buffer_head *page_bufs;
2629 handle_t *handle = NULL;
2630 int ret = 0;
2631 int err;
2632
2633 page_bufs = page_buffers(page);
2634 BUG_ON(!page_bufs);
2635 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2636 /* As soon as we unlock the page, it can go away, but we have
2637 * references to buffers so we are safe */
2638 unlock_page(page);
2639
2640 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2641 if (IS_ERR(handle)) {
2642 ret = PTR_ERR(handle);
2643 goto out;
2644 }
2645
2646 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2647 do_journal_get_write_access);
2648
2649 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2650 write_end_fn);
2651 if (ret == 0)
2652 ret = err;
2653 err = ext4_journal_stop(handle);
2654 if (!ret)
2655 ret = err;
2656
2657 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2658 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2659 out:
2660 return ret;
2661 }
2662
2663 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2664 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2665
2666 /*
2667 * Note that we don't need to start a transaction unless we're journaling data
2668 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2669 * need to file the inode to the transaction's list in ordered mode because if
2670 * we are writing back data added by write(), the inode is already there and if
2671 * we are writing back data modified via mmap(), noone guarantees in which
2672 * transaction the data will hit the disk. In case we are journaling data, we
2673 * cannot start transaction directly because transaction start ranks above page
2674 * lock so we have to do some magic.
2675 *
2676 * This function can get called via...
2677 * - ext4_da_writepages after taking page lock (have journal handle)
2678 * - journal_submit_inode_data_buffers (no journal handle)
2679 * - shrink_page_list via pdflush (no journal handle)
2680 * - grab_page_cache when doing write_begin (have journal handle)
2681 *
2682 * We don't do any block allocation in this function. If we have page with
2683 * multiple blocks we need to write those buffer_heads that are mapped. This
2684 * is important for mmaped based write. So if we do with blocksize 1K
2685 * truncate(f, 1024);
2686 * a = mmap(f, 0, 4096);
2687 * a[0] = 'a';
2688 * truncate(f, 4096);
2689 * we have in the page first buffer_head mapped via page_mkwrite call back
2690 * but other bufer_heads would be unmapped but dirty(dirty done via the
2691 * do_wp_page). So writepage should write the first block. If we modify
2692 * the mmap area beyond 1024 we will again get a page_fault and the
2693 * page_mkwrite callback will do the block allocation and mark the
2694 * buffer_heads mapped.
2695 *
2696 * We redirty the page if we have any buffer_heads that is either delay or
2697 * unwritten in the page.
2698 *
2699 * We can get recursively called as show below.
2700 *
2701 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2702 * ext4_writepage()
2703 *
2704 * But since we don't do any block allocation we should not deadlock.
2705 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2706 */
2707 static int ext4_writepage(struct page *page,
2708 struct writeback_control *wbc)
2709 {
2710 int ret = 0;
2711 loff_t size;
2712 unsigned int len;
2713 struct buffer_head *page_bufs = NULL;
2714 struct inode *inode = page->mapping->host;
2715
2716 trace_ext4_writepage(inode, page);
2717 size = i_size_read(inode);
2718 if (page->index == size >> PAGE_CACHE_SHIFT)
2719 len = size & ~PAGE_CACHE_MASK;
2720 else
2721 len = PAGE_CACHE_SIZE;
2722
2723 if (page_has_buffers(page)) {
2724 page_bufs = page_buffers(page);
2725 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2726 ext4_bh_delay_or_unwritten)) {
2727 /*
2728 * We don't want to do block allocation
2729 * So redirty the page and return
2730 * We may reach here when we do a journal commit
2731 * via journal_submit_inode_data_buffers.
2732 * If we don't have mapping block we just ignore
2733 * them. We can also reach here via shrink_page_list
2734 */
2735 redirty_page_for_writepage(wbc, page);
2736 unlock_page(page);
2737 return 0;
2738 }
2739 } else {
2740 /*
2741 * The test for page_has_buffers() is subtle:
2742 * We know the page is dirty but it lost buffers. That means
2743 * that at some moment in time after write_begin()/write_end()
2744 * has been called all buffers have been clean and thus they
2745 * must have been written at least once. So they are all
2746 * mapped and we can happily proceed with mapping them
2747 * and writing the page.
2748 *
2749 * Try to initialize the buffer_heads and check whether
2750 * all are mapped and non delay. We don't want to
2751 * do block allocation here.
2752 */
2753 ret = block_prepare_write(page, 0, len,
2754 noalloc_get_block_write);
2755 if (!ret) {
2756 page_bufs = page_buffers(page);
2757 /* check whether all are mapped and non delay */
2758 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2759 ext4_bh_delay_or_unwritten)) {
2760 redirty_page_for_writepage(wbc, page);
2761 unlock_page(page);
2762 return 0;
2763 }
2764 } else {
2765 /*
2766 * We can't do block allocation here
2767 * so just redity the page and unlock
2768 * and return
2769 */
2770 redirty_page_for_writepage(wbc, page);
2771 unlock_page(page);
2772 return 0;
2773 }
2774 /* now mark the buffer_heads as dirty and uptodate */
2775 block_commit_write(page, 0, len);
2776 }
2777
2778 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2779 /*
2780 * It's mmapped pagecache. Add buffers and journal it. There
2781 * doesn't seem much point in redirtying the page here.
2782 */
2783 ClearPageChecked(page);
2784 return __ext4_journalled_writepage(page, len);
2785 }
2786
2787 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2788 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2789 else if (page_bufs && buffer_uninit(page_bufs)) {
2790 ext4_set_bh_endio(page_bufs, inode);
2791 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2792 wbc, ext4_end_io_buffer_write);
2793 } else
2794 ret = block_write_full_page(page, noalloc_get_block_write,
2795 wbc);
2796
2797 return ret;
2798 }
2799
2800 /*
2801 * This is called via ext4_da_writepages() to
2802 * calulate the total number of credits to reserve to fit
2803 * a single extent allocation into a single transaction,
2804 * ext4_da_writpeages() will loop calling this before
2805 * the block allocation.
2806 */
2807
2808 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2809 {
2810 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2811
2812 /*
2813 * With non-extent format the journal credit needed to
2814 * insert nrblocks contiguous block is dependent on
2815 * number of contiguous block. So we will limit
2816 * number of contiguous block to a sane value
2817 */
2818 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2819 (max_blocks > EXT4_MAX_TRANS_DATA))
2820 max_blocks = EXT4_MAX_TRANS_DATA;
2821
2822 return ext4_chunk_trans_blocks(inode, max_blocks);
2823 }
2824
2825 static int ext4_da_writepages(struct address_space *mapping,
2826 struct writeback_control *wbc)
2827 {
2828 pgoff_t index;
2829 int range_whole = 0;
2830 handle_t *handle = NULL;
2831 struct mpage_da_data mpd;
2832 struct inode *inode = mapping->host;
2833 int no_nrwrite_index_update;
2834 int pages_written = 0;
2835 long pages_skipped;
2836 unsigned int max_pages;
2837 int range_cyclic, cycled = 1, io_done = 0;
2838 int needed_blocks, ret = 0;
2839 long desired_nr_to_write, nr_to_writebump = 0;
2840 loff_t range_start = wbc->range_start;
2841 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2842
2843 trace_ext4_da_writepages(inode, wbc);
2844
2845 /*
2846 * No pages to write? This is mainly a kludge to avoid starting
2847 * a transaction for special inodes like journal inode on last iput()
2848 * because that could violate lock ordering on umount
2849 */
2850 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2851 return 0;
2852
2853 /*
2854 * If the filesystem has aborted, it is read-only, so return
2855 * right away instead of dumping stack traces later on that
2856 * will obscure the real source of the problem. We test
2857 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2858 * the latter could be true if the filesystem is mounted
2859 * read-only, and in that case, ext4_da_writepages should
2860 * *never* be called, so if that ever happens, we would want
2861 * the stack trace.
2862 */
2863 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2864 return -EROFS;
2865
2866 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2867 range_whole = 1;
2868
2869 range_cyclic = wbc->range_cyclic;
2870 if (wbc->range_cyclic) {
2871 index = mapping->writeback_index;
2872 if (index)
2873 cycled = 0;
2874 wbc->range_start = index << PAGE_CACHE_SHIFT;
2875 wbc->range_end = LLONG_MAX;
2876 wbc->range_cyclic = 0;
2877 } else
2878 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2879
2880 /*
2881 * This works around two forms of stupidity. The first is in
2882 * the writeback code, which caps the maximum number of pages
2883 * written to be 1024 pages. This is wrong on multiple
2884 * levels; different architectues have a different page size,
2885 * which changes the maximum amount of data which gets
2886 * written. Secondly, 4 megabytes is way too small. XFS
2887 * forces this value to be 16 megabytes by multiplying
2888 * nr_to_write parameter by four, and then relies on its
2889 * allocator to allocate larger extents to make them
2890 * contiguous. Unfortunately this brings us to the second
2891 * stupidity, which is that ext4's mballoc code only allocates
2892 * at most 2048 blocks. So we force contiguous writes up to
2893 * the number of dirty blocks in the inode, or
2894 * sbi->max_writeback_mb_bump whichever is smaller.
2895 */
2896 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2897 if (!range_cyclic && range_whole)
2898 desired_nr_to_write = wbc->nr_to_write * 8;
2899 else
2900 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2901 max_pages);
2902 if (desired_nr_to_write > max_pages)
2903 desired_nr_to_write = max_pages;
2904
2905 if (wbc->nr_to_write < desired_nr_to_write) {
2906 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2907 wbc->nr_to_write = desired_nr_to_write;
2908 }
2909
2910 mpd.wbc = wbc;
2911 mpd.inode = mapping->host;
2912
2913 /*
2914 * we don't want write_cache_pages to update
2915 * nr_to_write and writeback_index
2916 */
2917 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2918 wbc->no_nrwrite_index_update = 1;
2919 pages_skipped = wbc->pages_skipped;
2920
2921 retry:
2922 while (!ret && wbc->nr_to_write > 0) {
2923
2924 /*
2925 * we insert one extent at a time. So we need
2926 * credit needed for single extent allocation.
2927 * journalled mode is currently not supported
2928 * by delalloc
2929 */
2930 BUG_ON(ext4_should_journal_data(inode));
2931 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2932
2933 /* start a new transaction*/
2934 handle = ext4_journal_start(inode, needed_blocks);
2935 if (IS_ERR(handle)) {
2936 ret = PTR_ERR(handle);
2937 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2938 "%ld pages, ino %lu; err %d\n", __func__,
2939 wbc->nr_to_write, inode->i_ino, ret);
2940 goto out_writepages;
2941 }
2942
2943 /*
2944 * Now call __mpage_da_writepage to find the next
2945 * contiguous region of logical blocks that need
2946 * blocks to be allocated by ext4. We don't actually
2947 * submit the blocks for I/O here, even though
2948 * write_cache_pages thinks it will, and will set the
2949 * pages as clean for write before calling
2950 * __mpage_da_writepage().
2951 */
2952 mpd.b_size = 0;
2953 mpd.b_state = 0;
2954 mpd.b_blocknr = 0;
2955 mpd.first_page = 0;
2956 mpd.next_page = 0;
2957 mpd.io_done = 0;
2958 mpd.pages_written = 0;
2959 mpd.retval = 0;
2960 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2961 &mpd);
2962 /*
2963 * If we have a contiguous extent of pages and we
2964 * haven't done the I/O yet, map the blocks and submit
2965 * them for I/O.
2966 */
2967 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2968 if (mpage_da_map_blocks(&mpd) == 0)
2969 mpage_da_submit_io(&mpd);
2970 mpd.io_done = 1;
2971 ret = MPAGE_DA_EXTENT_TAIL;
2972 }
2973 trace_ext4_da_write_pages(inode, &mpd);
2974 wbc->nr_to_write -= mpd.pages_written;
2975
2976 ext4_journal_stop(handle);
2977
2978 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2979 /* commit the transaction which would
2980 * free blocks released in the transaction
2981 * and try again
2982 */
2983 jbd2_journal_force_commit_nested(sbi->s_journal);
2984 wbc->pages_skipped = pages_skipped;
2985 ret = 0;
2986 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2987 /*
2988 * got one extent now try with
2989 * rest of the pages
2990 */
2991 pages_written += mpd.pages_written;
2992 wbc->pages_skipped = pages_skipped;
2993 ret = 0;
2994 io_done = 1;
2995 } else if (wbc->nr_to_write)
2996 /*
2997 * There is no more writeout needed
2998 * or we requested for a noblocking writeout
2999 * and we found the device congested
3000 */
3001 break;
3002 }
3003 if (!io_done && !cycled) {
3004 cycled = 1;
3005 index = 0;
3006 wbc->range_start = index << PAGE_CACHE_SHIFT;
3007 wbc->range_end = mapping->writeback_index - 1;
3008 goto retry;
3009 }
3010 if (pages_skipped != wbc->pages_skipped)
3011 ext4_msg(inode->i_sb, KERN_CRIT,
3012 "This should not happen leaving %s "
3013 "with nr_to_write = %ld ret = %d\n",
3014 __func__, wbc->nr_to_write, ret);
3015
3016 /* Update index */
3017 index += pages_written;
3018 wbc->range_cyclic = range_cyclic;
3019 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3020 /*
3021 * set the writeback_index so that range_cyclic
3022 * mode will write it back later
3023 */
3024 mapping->writeback_index = index;
3025
3026 out_writepages:
3027 if (!no_nrwrite_index_update)
3028 wbc->no_nrwrite_index_update = 0;
3029 wbc->nr_to_write -= nr_to_writebump;
3030 wbc->range_start = range_start;
3031 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3032 return ret;
3033 }
3034
3035 #define FALL_BACK_TO_NONDELALLOC 1
3036 static int ext4_nonda_switch(struct super_block *sb)
3037 {
3038 s64 free_blocks, dirty_blocks;
3039 struct ext4_sb_info *sbi = EXT4_SB(sb);
3040
3041 /*
3042 * switch to non delalloc mode if we are running low
3043 * on free block. The free block accounting via percpu
3044 * counters can get slightly wrong with percpu_counter_batch getting
3045 * accumulated on each CPU without updating global counters
3046 * Delalloc need an accurate free block accounting. So switch
3047 * to non delalloc when we are near to error range.
3048 */
3049 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3050 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3051 if (2 * free_blocks < 3 * dirty_blocks ||
3052 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3053 /*
3054 * free block count is less than 150% of dirty blocks
3055 * or free blocks is less than watermark
3056 */
3057 return 1;
3058 }
3059 /*
3060 * Even if we don't switch but are nearing capacity,
3061 * start pushing delalloc when 1/2 of free blocks are dirty.
3062 */
3063 if (free_blocks < 2 * dirty_blocks)
3064 writeback_inodes_sb_if_idle(sb);
3065
3066 return 0;
3067 }
3068
3069 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3070 loff_t pos, unsigned len, unsigned flags,
3071 struct page **pagep, void **fsdata)
3072 {
3073 int ret, retries = 0, quota_retries = 0;
3074 struct page *page;
3075 pgoff_t index;
3076 unsigned from, to;
3077 struct inode *inode = mapping->host;
3078 handle_t *handle;
3079
3080 index = pos >> PAGE_CACHE_SHIFT;
3081 from = pos & (PAGE_CACHE_SIZE - 1);
3082 to = from + len;
3083
3084 if (ext4_nonda_switch(inode->i_sb)) {
3085 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3086 return ext4_write_begin(file, mapping, pos,
3087 len, flags, pagep, fsdata);
3088 }
3089 *fsdata = (void *)0;
3090 trace_ext4_da_write_begin(inode, pos, len, flags);
3091 retry:
3092 /*
3093 * With delayed allocation, we don't log the i_disksize update
3094 * if there is delayed block allocation. But we still need
3095 * to journalling the i_disksize update if writes to the end
3096 * of file which has an already mapped buffer.
3097 */
3098 handle = ext4_journal_start(inode, 1);
3099 if (IS_ERR(handle)) {
3100 ret = PTR_ERR(handle);
3101 goto out;
3102 }
3103 /* We cannot recurse into the filesystem as the transaction is already
3104 * started */
3105 flags |= AOP_FLAG_NOFS;
3106
3107 page = grab_cache_page_write_begin(mapping, index, flags);
3108 if (!page) {
3109 ext4_journal_stop(handle);
3110 ret = -ENOMEM;
3111 goto out;
3112 }
3113 *pagep = page;
3114
3115 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3116 ext4_da_get_block_prep);
3117 if (ret < 0) {
3118 unlock_page(page);
3119 ext4_journal_stop(handle);
3120 page_cache_release(page);
3121 /*
3122 * block_write_begin may have instantiated a few blocks
3123 * outside i_size. Trim these off again. Don't need
3124 * i_size_read because we hold i_mutex.
3125 */
3126 if (pos + len > inode->i_size)
3127 ext4_truncate_failed_write(inode);
3128 }
3129
3130 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3131 goto retry;
3132
3133 if ((ret == -EDQUOT) &&
3134 EXT4_I(inode)->i_reserved_meta_blocks &&
3135 (quota_retries++ < 3)) {
3136 /*
3137 * Since we often over-estimate the number of meta
3138 * data blocks required, we may sometimes get a
3139 * spurios out of quota error even though there would
3140 * be enough space once we write the data blocks and
3141 * find out how many meta data blocks were _really_
3142 * required. So try forcing the inode write to see if
3143 * that helps.
3144 */
3145 write_inode_now(inode, (quota_retries == 3));
3146 goto retry;
3147 }
3148 out:
3149 return ret;
3150 }
3151
3152 /*
3153 * Check if we should update i_disksize
3154 * when write to the end of file but not require block allocation
3155 */
3156 static int ext4_da_should_update_i_disksize(struct page *page,
3157 unsigned long offset)
3158 {
3159 struct buffer_head *bh;
3160 struct inode *inode = page->mapping->host;
3161 unsigned int idx;
3162 int i;
3163
3164 bh = page_buffers(page);
3165 idx = offset >> inode->i_blkbits;
3166
3167 for (i = 0; i < idx; i++)
3168 bh = bh->b_this_page;
3169
3170 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3171 return 0;
3172 return 1;
3173 }
3174
3175 static int ext4_da_write_end(struct file *file,
3176 struct address_space *mapping,
3177 loff_t pos, unsigned len, unsigned copied,
3178 struct page *page, void *fsdata)
3179 {
3180 struct inode *inode = mapping->host;
3181 int ret = 0, ret2;
3182 handle_t *handle = ext4_journal_current_handle();
3183 loff_t new_i_size;
3184 unsigned long start, end;
3185 int write_mode = (int)(unsigned long)fsdata;
3186
3187 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3188 if (ext4_should_order_data(inode)) {
3189 return ext4_ordered_write_end(file, mapping, pos,
3190 len, copied, page, fsdata);
3191 } else if (ext4_should_writeback_data(inode)) {
3192 return ext4_writeback_write_end(file, mapping, pos,
3193 len, copied, page, fsdata);
3194 } else {
3195 BUG();
3196 }
3197 }
3198
3199 trace_ext4_da_write_end(inode, pos, len, copied);
3200 start = pos & (PAGE_CACHE_SIZE - 1);
3201 end = start + copied - 1;
3202
3203 /*
3204 * generic_write_end() will run mark_inode_dirty() if i_size
3205 * changes. So let's piggyback the i_disksize mark_inode_dirty
3206 * into that.
3207 */
3208
3209 new_i_size = pos + copied;
3210 if (new_i_size > EXT4_I(inode)->i_disksize) {
3211 if (ext4_da_should_update_i_disksize(page, end)) {
3212 down_write(&EXT4_I(inode)->i_data_sem);
3213 if (new_i_size > EXT4_I(inode)->i_disksize) {
3214 /*
3215 * Updating i_disksize when extending file
3216 * without needing block allocation
3217 */
3218 if (ext4_should_order_data(inode))
3219 ret = ext4_jbd2_file_inode(handle,
3220 inode);
3221
3222 EXT4_I(inode)->i_disksize = new_i_size;
3223 }
3224 up_write(&EXT4_I(inode)->i_data_sem);
3225 /* We need to mark inode dirty even if
3226 * new_i_size is less that inode->i_size
3227 * bu greater than i_disksize.(hint delalloc)
3228 */
3229 ext4_mark_inode_dirty(handle, inode);
3230 }
3231 }
3232 ret2 = generic_write_end(file, mapping, pos, len, copied,
3233 page, fsdata);
3234 copied = ret2;
3235 if (ret2 < 0)
3236 ret = ret2;
3237 ret2 = ext4_journal_stop(handle);
3238 if (!ret)
3239 ret = ret2;
3240
3241 return ret ? ret : copied;
3242 }
3243
3244 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3245 {
3246 /*
3247 * Drop reserved blocks
3248 */
3249 BUG_ON(!PageLocked(page));
3250 if (!page_has_buffers(page))
3251 goto out;
3252
3253 ext4_da_page_release_reservation(page, offset);
3254
3255 out:
3256 ext4_invalidatepage(page, offset);
3257
3258 return;
3259 }
3260
3261 /*
3262 * Force all delayed allocation blocks to be allocated for a given inode.
3263 */
3264 int ext4_alloc_da_blocks(struct inode *inode)
3265 {
3266 trace_ext4_alloc_da_blocks(inode);
3267
3268 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3269 !EXT4_I(inode)->i_reserved_meta_blocks)
3270 return 0;
3271
3272 /*
3273 * We do something simple for now. The filemap_flush() will
3274 * also start triggering a write of the data blocks, which is
3275 * not strictly speaking necessary (and for users of
3276 * laptop_mode, not even desirable). However, to do otherwise
3277 * would require replicating code paths in:
3278 *
3279 * ext4_da_writepages() ->
3280 * write_cache_pages() ---> (via passed in callback function)
3281 * __mpage_da_writepage() -->
3282 * mpage_add_bh_to_extent()
3283 * mpage_da_map_blocks()
3284 *
3285 * The problem is that write_cache_pages(), located in
3286 * mm/page-writeback.c, marks pages clean in preparation for
3287 * doing I/O, which is not desirable if we're not planning on
3288 * doing I/O at all.
3289 *
3290 * We could call write_cache_pages(), and then redirty all of
3291 * the pages by calling redirty_page_for_writeback() but that
3292 * would be ugly in the extreme. So instead we would need to
3293 * replicate parts of the code in the above functions,
3294 * simplifying them becuase we wouldn't actually intend to
3295 * write out the pages, but rather only collect contiguous
3296 * logical block extents, call the multi-block allocator, and
3297 * then update the buffer heads with the block allocations.
3298 *
3299 * For now, though, we'll cheat by calling filemap_flush(),
3300 * which will map the blocks, and start the I/O, but not
3301 * actually wait for the I/O to complete.
3302 */
3303 return filemap_flush(inode->i_mapping);
3304 }
3305
3306 /*
3307 * bmap() is special. It gets used by applications such as lilo and by
3308 * the swapper to find the on-disk block of a specific piece of data.
3309 *
3310 * Naturally, this is dangerous if the block concerned is still in the
3311 * journal. If somebody makes a swapfile on an ext4 data-journaling
3312 * filesystem and enables swap, then they may get a nasty shock when the
3313 * data getting swapped to that swapfile suddenly gets overwritten by
3314 * the original zero's written out previously to the journal and
3315 * awaiting writeback in the kernel's buffer cache.
3316 *
3317 * So, if we see any bmap calls here on a modified, data-journaled file,
3318 * take extra steps to flush any blocks which might be in the cache.
3319 */
3320 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3321 {
3322 struct inode *inode = mapping->host;
3323 journal_t *journal;
3324 int err;
3325
3326 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3327 test_opt(inode->i_sb, DELALLOC)) {
3328 /*
3329 * With delalloc we want to sync the file
3330 * so that we can make sure we allocate
3331 * blocks for file
3332 */
3333 filemap_write_and_wait(mapping);
3334 }
3335
3336 if (EXT4_JOURNAL(inode) &&
3337 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3338 /*
3339 * This is a REALLY heavyweight approach, but the use of
3340 * bmap on dirty files is expected to be extremely rare:
3341 * only if we run lilo or swapon on a freshly made file
3342 * do we expect this to happen.
3343 *
3344 * (bmap requires CAP_SYS_RAWIO so this does not
3345 * represent an unprivileged user DOS attack --- we'd be
3346 * in trouble if mortal users could trigger this path at
3347 * will.)
3348 *
3349 * NB. EXT4_STATE_JDATA is not set on files other than
3350 * regular files. If somebody wants to bmap a directory
3351 * or symlink and gets confused because the buffer
3352 * hasn't yet been flushed to disk, they deserve
3353 * everything they get.
3354 */
3355
3356 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3357 journal = EXT4_JOURNAL(inode);
3358 jbd2_journal_lock_updates(journal);
3359 err = jbd2_journal_flush(journal);
3360 jbd2_journal_unlock_updates(journal);
3361
3362 if (err)
3363 return 0;
3364 }
3365
3366 return generic_block_bmap(mapping, block, ext4_get_block);
3367 }
3368
3369 static int ext4_readpage(struct file *file, struct page *page)
3370 {
3371 return mpage_readpage(page, ext4_get_block);
3372 }
3373
3374 static int
3375 ext4_readpages(struct file *file, struct address_space *mapping,
3376 struct list_head *pages, unsigned nr_pages)
3377 {
3378 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3379 }
3380
3381 static void ext4_free_io_end(ext4_io_end_t *io)
3382 {
3383 BUG_ON(!io);
3384 if (io->page)
3385 put_page(io->page);
3386 iput(io->inode);
3387 kfree(io);
3388 }
3389
3390 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3391 {
3392 struct buffer_head *head, *bh;
3393 unsigned int curr_off = 0;
3394
3395 if (!page_has_buffers(page))
3396 return;
3397 head = bh = page_buffers(page);
3398 do {
3399 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3400 && bh->b_private) {
3401 ext4_free_io_end(bh->b_private);
3402 bh->b_private = NULL;
3403 bh->b_end_io = NULL;
3404 }
3405 curr_off = curr_off + bh->b_size;
3406 bh = bh->b_this_page;
3407 } while (bh != head);
3408 }
3409
3410 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3411 {
3412 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3413
3414 /*
3415 * free any io_end structure allocated for buffers to be discarded
3416 */
3417 if (ext4_should_dioread_nolock(page->mapping->host))
3418 ext4_invalidatepage_free_endio(page, offset);
3419 /*
3420 * If it's a full truncate we just forget about the pending dirtying
3421 */
3422 if (offset == 0)
3423 ClearPageChecked(page);
3424
3425 if (journal)
3426 jbd2_journal_invalidatepage(journal, page, offset);
3427 else
3428 block_invalidatepage(page, offset);
3429 }
3430
3431 static int ext4_releasepage(struct page *page, gfp_t wait)
3432 {
3433 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3434
3435 WARN_ON(PageChecked(page));
3436 if (!page_has_buffers(page))
3437 return 0;
3438 if (journal)
3439 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3440 else
3441 return try_to_free_buffers(page);
3442 }
3443
3444 /*
3445 * O_DIRECT for ext3 (or indirect map) based files
3446 *
3447 * If the O_DIRECT write will extend the file then add this inode to the
3448 * orphan list. So recovery will truncate it back to the original size
3449 * if the machine crashes during the write.
3450 *
3451 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3452 * crashes then stale disk data _may_ be exposed inside the file. But current
3453 * VFS code falls back into buffered path in that case so we are safe.
3454 */
3455 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3456 const struct iovec *iov, loff_t offset,
3457 unsigned long nr_segs)
3458 {
3459 struct file *file = iocb->ki_filp;
3460 struct inode *inode = file->f_mapping->host;
3461 struct ext4_inode_info *ei = EXT4_I(inode);
3462 handle_t *handle;
3463 ssize_t ret;
3464 int orphan = 0;
3465 size_t count = iov_length(iov, nr_segs);
3466 int retries = 0;
3467
3468 if (rw == WRITE) {
3469 loff_t final_size = offset + count;
3470
3471 if (final_size > inode->i_size) {
3472 /* Credits for sb + inode write */
3473 handle = ext4_journal_start(inode, 2);
3474 if (IS_ERR(handle)) {
3475 ret = PTR_ERR(handle);
3476 goto out;
3477 }
3478 ret = ext4_orphan_add(handle, inode);
3479 if (ret) {
3480 ext4_journal_stop(handle);
3481 goto out;
3482 }
3483 orphan = 1;
3484 ei->i_disksize = inode->i_size;
3485 ext4_journal_stop(handle);
3486 }
3487 }
3488
3489 retry:
3490 if (rw == READ && ext4_should_dioread_nolock(inode))
3491 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3492 inode->i_sb->s_bdev, iov,
3493 offset, nr_segs,
3494 ext4_get_block, NULL);
3495 else
3496 ret = blockdev_direct_IO(rw, iocb, inode,
3497 inode->i_sb->s_bdev, iov,
3498 offset, nr_segs,
3499 ext4_get_block, NULL);
3500 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3501 goto retry;
3502
3503 if (orphan) {
3504 int err;
3505
3506 /* Credits for sb + inode write */
3507 handle = ext4_journal_start(inode, 2);
3508 if (IS_ERR(handle)) {
3509 /* This is really bad luck. We've written the data
3510 * but cannot extend i_size. Bail out and pretend
3511 * the write failed... */
3512 ret = PTR_ERR(handle);
3513 if (inode->i_nlink)
3514 ext4_orphan_del(NULL, inode);
3515
3516 goto out;
3517 }
3518 if (inode->i_nlink)
3519 ext4_orphan_del(handle, inode);
3520 if (ret > 0) {
3521 loff_t end = offset + ret;
3522 if (end > inode->i_size) {
3523 ei->i_disksize = end;
3524 i_size_write(inode, end);
3525 /*
3526 * We're going to return a positive `ret'
3527 * here due to non-zero-length I/O, so there's
3528 * no way of reporting error returns from
3529 * ext4_mark_inode_dirty() to userspace. So
3530 * ignore it.
3531 */
3532 ext4_mark_inode_dirty(handle, inode);
3533 }
3534 }
3535 err = ext4_journal_stop(handle);
3536 if (ret == 0)
3537 ret = err;
3538 }
3539 out:
3540 return ret;
3541 }
3542
3543 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3544 struct buffer_head *bh_result, int create)
3545 {
3546 handle_t *handle = ext4_journal_current_handle();
3547 int ret = 0;
3548 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3549 int dio_credits;
3550 int started = 0;
3551
3552 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3553 inode->i_ino, create);
3554 /*
3555 * ext4_get_block in prepare for a DIO write or buffer write.
3556 * We allocate an uinitialized extent if blocks haven't been allocated.
3557 * The extent will be converted to initialized after IO complete.
3558 */
3559 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3560
3561 if (!handle) {
3562 if (max_blocks > DIO_MAX_BLOCKS)
3563 max_blocks = DIO_MAX_BLOCKS;
3564 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3565 handle = ext4_journal_start(inode, dio_credits);
3566 if (IS_ERR(handle)) {
3567 ret = PTR_ERR(handle);
3568 goto out;
3569 }
3570 started = 1;
3571 }
3572
3573 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3574 create);
3575 if (ret > 0) {
3576 bh_result->b_size = (ret << inode->i_blkbits);
3577 ret = 0;
3578 }
3579 if (started)
3580 ext4_journal_stop(handle);
3581 out:
3582 return ret;
3583 }
3584
3585 static void dump_completed_IO(struct inode * inode)
3586 {
3587 #ifdef EXT4_DEBUG
3588 struct list_head *cur, *before, *after;
3589 ext4_io_end_t *io, *io0, *io1;
3590 unsigned long flags;
3591
3592 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3593 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3594 return;
3595 }
3596
3597 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3598 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3599 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3600 cur = &io->list;
3601 before = cur->prev;
3602 io0 = container_of(before, ext4_io_end_t, list);
3603 after = cur->next;
3604 io1 = container_of(after, ext4_io_end_t, list);
3605
3606 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3607 io, inode->i_ino, io0, io1);
3608 }
3609 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3610 #endif
3611 }
3612
3613 /*
3614 * check a range of space and convert unwritten extents to written.
3615 */
3616 static int ext4_end_io_nolock(ext4_io_end_t *io)
3617 {
3618 struct inode *inode = io->inode;
3619 loff_t offset = io->offset;
3620 ssize_t size = io->size;
3621 int ret = 0;
3622
3623 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3624 "list->prev 0x%p\n",
3625 io, inode->i_ino, io->list.next, io->list.prev);
3626
3627 if (list_empty(&io->list))
3628 return ret;
3629
3630 if (io->flag != EXT4_IO_UNWRITTEN)
3631 return ret;
3632
3633 ret = ext4_convert_unwritten_extents(inode, offset, size);
3634 if (ret < 0) {
3635 printk(KERN_EMERG "%s: failed to convert unwritten"
3636 "extents to written extents, error is %d"
3637 " io is still on inode %lu aio dio list\n",
3638 __func__, ret, inode->i_ino);
3639 return ret;
3640 }
3641
3642 /* clear the DIO AIO unwritten flag */
3643 io->flag = 0;
3644 return ret;
3645 }
3646
3647 /*
3648 * work on completed aio dio IO, to convert unwritten extents to extents
3649 */
3650 static void ext4_end_io_work(struct work_struct *work)
3651 {
3652 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3653 struct inode *inode = io->inode;
3654 struct ext4_inode_info *ei = EXT4_I(inode);
3655 unsigned long flags;
3656 int ret;
3657
3658 mutex_lock(&inode->i_mutex);
3659 ret = ext4_end_io_nolock(io);
3660 if (ret < 0) {
3661 mutex_unlock(&inode->i_mutex);
3662 return;
3663 }
3664
3665 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3666 if (!list_empty(&io->list))
3667 list_del_init(&io->list);
3668 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3669 mutex_unlock(&inode->i_mutex);
3670 ext4_free_io_end(io);
3671 }
3672
3673 /*
3674 * This function is called from ext4_sync_file().
3675 *
3676 * When IO is completed, the work to convert unwritten extents to
3677 * written is queued on workqueue but may not get immediately
3678 * scheduled. When fsync is called, we need to ensure the
3679 * conversion is complete before fsync returns.
3680 * The inode keeps track of a list of pending/completed IO that
3681 * might needs to do the conversion. This function walks through
3682 * the list and convert the related unwritten extents for completed IO
3683 * to written.
3684 * The function return the number of pending IOs on success.
3685 */
3686 int flush_completed_IO(struct inode *inode)
3687 {
3688 ext4_io_end_t *io;
3689 struct ext4_inode_info *ei = EXT4_I(inode);
3690 unsigned long flags;
3691 int ret = 0;
3692 int ret2 = 0;
3693
3694 if (list_empty(&ei->i_completed_io_list))
3695 return ret;
3696
3697 dump_completed_IO(inode);
3698 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3699 while (!list_empty(&ei->i_completed_io_list)){
3700 io = list_entry(ei->i_completed_io_list.next,
3701 ext4_io_end_t, list);
3702 /*
3703 * Calling ext4_end_io_nolock() to convert completed
3704 * IO to written.
3705 *
3706 * When ext4_sync_file() is called, run_queue() may already
3707 * about to flush the work corresponding to this io structure.
3708 * It will be upset if it founds the io structure related
3709 * to the work-to-be schedule is freed.
3710 *
3711 * Thus we need to keep the io structure still valid here after
3712 * convertion finished. The io structure has a flag to
3713 * avoid double converting from both fsync and background work
3714 * queue work.
3715 */
3716 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3717 ret = ext4_end_io_nolock(io);
3718 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3719 if (ret < 0)
3720 ret2 = ret;
3721 else
3722 list_del_init(&io->list);
3723 }
3724 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3725 return (ret2 < 0) ? ret2 : 0;
3726 }
3727
3728 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3729 {
3730 ext4_io_end_t *io = NULL;
3731
3732 io = kmalloc(sizeof(*io), flags);
3733
3734 if (io) {
3735 igrab(inode);
3736 io->inode = inode;
3737 io->flag = 0;
3738 io->offset = 0;
3739 io->size = 0;
3740 io->page = NULL;
3741 INIT_WORK(&io->work, ext4_end_io_work);
3742 INIT_LIST_HEAD(&io->list);
3743 }
3744
3745 return io;
3746 }
3747
3748 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3749 ssize_t size, void *private)
3750 {
3751 ext4_io_end_t *io_end = iocb->private;
3752 struct workqueue_struct *wq;
3753 unsigned long flags;
3754 struct ext4_inode_info *ei;
3755
3756 /* if not async direct IO or dio with 0 bytes write, just return */
3757 if (!io_end || !size)
3758 return;
3759
3760 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3761 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3762 iocb->private, io_end->inode->i_ino, iocb, offset,
3763 size);
3764
3765 /* if not aio dio with unwritten extents, just free io and return */
3766 if (io_end->flag != EXT4_IO_UNWRITTEN){
3767 ext4_free_io_end(io_end);
3768 iocb->private = NULL;
3769 return;
3770 }
3771
3772 io_end->offset = offset;
3773 io_end->size = size;
3774 io_end->flag = EXT4_IO_UNWRITTEN;
3775 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3776
3777 /* queue the work to convert unwritten extents to written */
3778 queue_work(wq, &io_end->work);
3779
3780 /* Add the io_end to per-inode completed aio dio list*/
3781 ei = EXT4_I(io_end->inode);
3782 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3783 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3784 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3785 iocb->private = NULL;
3786 }
3787
3788 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3789 {
3790 ext4_io_end_t *io_end = bh->b_private;
3791 struct workqueue_struct *wq;
3792 struct inode *inode;
3793 unsigned long flags;
3794
3795 if (!test_clear_buffer_uninit(bh) || !io_end)
3796 goto out;
3797
3798 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3799 printk("sb umounted, discard end_io request for inode %lu\n",
3800 io_end->inode->i_ino);
3801 ext4_free_io_end(io_end);
3802 goto out;
3803 }
3804
3805 io_end->flag = EXT4_IO_UNWRITTEN;
3806 inode = io_end->inode;
3807
3808 /* Add the io_end to per-inode completed io list*/
3809 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3810 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3811 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3812
3813 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3814 /* queue the work to convert unwritten extents to written */
3815 queue_work(wq, &io_end->work);
3816 out:
3817 bh->b_private = NULL;
3818 bh->b_end_io = NULL;
3819 clear_buffer_uninit(bh);
3820 end_buffer_async_write(bh, uptodate);
3821 }
3822
3823 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3824 {
3825 ext4_io_end_t *io_end;
3826 struct page *page = bh->b_page;
3827 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3828 size_t size = bh->b_size;
3829
3830 retry:
3831 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3832 if (!io_end) {
3833 if (printk_ratelimit())
3834 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3835 schedule();
3836 goto retry;
3837 }
3838 io_end->offset = offset;
3839 io_end->size = size;
3840 /*
3841 * We need to hold a reference to the page to make sure it
3842 * doesn't get evicted before ext4_end_io_work() has a chance
3843 * to convert the extent from written to unwritten.
3844 */
3845 io_end->page = page;
3846 get_page(io_end->page);
3847
3848 bh->b_private = io_end;
3849 bh->b_end_io = ext4_end_io_buffer_write;
3850 return 0;
3851 }
3852
3853 /*
3854 * For ext4 extent files, ext4 will do direct-io write to holes,
3855 * preallocated extents, and those write extend the file, no need to
3856 * fall back to buffered IO.
3857 *
3858 * For holes, we fallocate those blocks, mark them as unintialized
3859 * If those blocks were preallocated, we mark sure they are splited, but
3860 * still keep the range to write as unintialized.
3861 *
3862 * The unwrritten extents will be converted to written when DIO is completed.
3863 * For async direct IO, since the IO may still pending when return, we
3864 * set up an end_io call back function, which will do the convertion
3865 * when async direct IO completed.
3866 *
3867 * If the O_DIRECT write will extend the file then add this inode to the
3868 * orphan list. So recovery will truncate it back to the original size
3869 * if the machine crashes during the write.
3870 *
3871 */
3872 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3873 const struct iovec *iov, loff_t offset,
3874 unsigned long nr_segs)
3875 {
3876 struct file *file = iocb->ki_filp;
3877 struct inode *inode = file->f_mapping->host;
3878 ssize_t ret;
3879 size_t count = iov_length(iov, nr_segs);
3880
3881 loff_t final_size = offset + count;
3882 if (rw == WRITE && final_size <= inode->i_size) {
3883 /*
3884 * We could direct write to holes and fallocate.
3885 *
3886 * Allocated blocks to fill the hole are marked as uninitialized
3887 * to prevent paralel buffered read to expose the stale data
3888 * before DIO complete the data IO.
3889 *
3890 * As to previously fallocated extents, ext4 get_block
3891 * will just simply mark the buffer mapped but still
3892 * keep the extents uninitialized.
3893 *
3894 * for non AIO case, we will convert those unwritten extents
3895 * to written after return back from blockdev_direct_IO.
3896 *
3897 * for async DIO, the conversion needs to be defered when
3898 * the IO is completed. The ext4 end_io callback function
3899 * will be called to take care of the conversion work.
3900 * Here for async case, we allocate an io_end structure to
3901 * hook to the iocb.
3902 */
3903 iocb->private = NULL;
3904 EXT4_I(inode)->cur_aio_dio = NULL;
3905 if (!is_sync_kiocb(iocb)) {
3906 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3907 if (!iocb->private)
3908 return -ENOMEM;
3909 /*
3910 * we save the io structure for current async
3911 * direct IO, so that later ext4_get_blocks()
3912 * could flag the io structure whether there
3913 * is a unwritten extents needs to be converted
3914 * when IO is completed.
3915 */
3916 EXT4_I(inode)->cur_aio_dio = iocb->private;
3917 }
3918
3919 ret = blockdev_direct_IO(rw, iocb, inode,
3920 inode->i_sb->s_bdev, iov,
3921 offset, nr_segs,
3922 ext4_get_block_write,
3923 ext4_end_io_dio);
3924 if (iocb->private)
3925 EXT4_I(inode)->cur_aio_dio = NULL;
3926 /*
3927 * The io_end structure takes a reference to the inode,
3928 * that structure needs to be destroyed and the
3929 * reference to the inode need to be dropped, when IO is
3930 * complete, even with 0 byte write, or failed.
3931 *
3932 * In the successful AIO DIO case, the io_end structure will be
3933 * desctroyed and the reference to the inode will be dropped
3934 * after the end_io call back function is called.
3935 *
3936 * In the case there is 0 byte write, or error case, since
3937 * VFS direct IO won't invoke the end_io call back function,
3938 * we need to free the end_io structure here.
3939 */
3940 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3941 ext4_free_io_end(iocb->private);
3942 iocb->private = NULL;
3943 } else if (ret > 0 && ext4_test_inode_state(inode,
3944 EXT4_STATE_DIO_UNWRITTEN)) {
3945 int err;
3946 /*
3947 * for non AIO case, since the IO is already
3948 * completed, we could do the convertion right here
3949 */
3950 err = ext4_convert_unwritten_extents(inode,
3951 offset, ret);
3952 if (err < 0)
3953 ret = err;
3954 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3955 }
3956 return ret;
3957 }
3958
3959 /* for write the the end of file case, we fall back to old way */
3960 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3961 }
3962
3963 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3964 const struct iovec *iov, loff_t offset,
3965 unsigned long nr_segs)
3966 {
3967 struct file *file = iocb->ki_filp;
3968 struct inode *inode = file->f_mapping->host;
3969
3970 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3971 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3972
3973 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3974 }
3975
3976 /*
3977 * Pages can be marked dirty completely asynchronously from ext4's journalling
3978 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3979 * much here because ->set_page_dirty is called under VFS locks. The page is
3980 * not necessarily locked.
3981 *
3982 * We cannot just dirty the page and leave attached buffers clean, because the
3983 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3984 * or jbddirty because all the journalling code will explode.
3985 *
3986 * So what we do is to mark the page "pending dirty" and next time writepage
3987 * is called, propagate that into the buffers appropriately.
3988 */
3989 static int ext4_journalled_set_page_dirty(struct page *page)
3990 {
3991 SetPageChecked(page);
3992 return __set_page_dirty_nobuffers(page);
3993 }
3994
3995 static const struct address_space_operations ext4_ordered_aops = {
3996 .readpage = ext4_readpage,
3997 .readpages = ext4_readpages,
3998 .writepage = ext4_writepage,
3999 .sync_page = block_sync_page,
4000 .write_begin = ext4_write_begin,
4001 .write_end = ext4_ordered_write_end,
4002 .bmap = ext4_bmap,
4003 .invalidatepage = ext4_invalidatepage,
4004 .releasepage = ext4_releasepage,
4005 .direct_IO = ext4_direct_IO,
4006 .migratepage = buffer_migrate_page,
4007 .is_partially_uptodate = block_is_partially_uptodate,
4008 .error_remove_page = generic_error_remove_page,
4009 };
4010
4011 static const struct address_space_operations ext4_writeback_aops = {
4012 .readpage = ext4_readpage,
4013 .readpages = ext4_readpages,
4014 .writepage = ext4_writepage,
4015 .sync_page = block_sync_page,
4016 .write_begin = ext4_write_begin,
4017 .write_end = ext4_writeback_write_end,
4018 .bmap = ext4_bmap,
4019 .invalidatepage = ext4_invalidatepage,
4020 .releasepage = ext4_releasepage,
4021 .direct_IO = ext4_direct_IO,
4022 .migratepage = buffer_migrate_page,
4023 .is_partially_uptodate = block_is_partially_uptodate,
4024 .error_remove_page = generic_error_remove_page,
4025 };
4026
4027 static const struct address_space_operations ext4_journalled_aops = {
4028 .readpage = ext4_readpage,
4029 .readpages = ext4_readpages,
4030 .writepage = ext4_writepage,
4031 .sync_page = block_sync_page,
4032 .write_begin = ext4_write_begin,
4033 .write_end = ext4_journalled_write_end,
4034 .set_page_dirty = ext4_journalled_set_page_dirty,
4035 .bmap = ext4_bmap,
4036 .invalidatepage = ext4_invalidatepage,
4037 .releasepage = ext4_releasepage,
4038 .is_partially_uptodate = block_is_partially_uptodate,
4039 .error_remove_page = generic_error_remove_page,
4040 };
4041
4042 static const struct address_space_operations ext4_da_aops = {
4043 .readpage = ext4_readpage,
4044 .readpages = ext4_readpages,
4045 .writepage = ext4_writepage,
4046 .writepages = ext4_da_writepages,
4047 .sync_page = block_sync_page,
4048 .write_begin = ext4_da_write_begin,
4049 .write_end = ext4_da_write_end,
4050 .bmap = ext4_bmap,
4051 .invalidatepage = ext4_da_invalidatepage,
4052 .releasepage = ext4_releasepage,
4053 .direct_IO = ext4_direct_IO,
4054 .migratepage = buffer_migrate_page,
4055 .is_partially_uptodate = block_is_partially_uptodate,
4056 .error_remove_page = generic_error_remove_page,
4057 };
4058
4059 void ext4_set_aops(struct inode *inode)
4060 {
4061 if (ext4_should_order_data(inode) &&
4062 test_opt(inode->i_sb, DELALLOC))
4063 inode->i_mapping->a_ops = &ext4_da_aops;
4064 else if (ext4_should_order_data(inode))
4065 inode->i_mapping->a_ops = &ext4_ordered_aops;
4066 else if (ext4_should_writeback_data(inode) &&
4067 test_opt(inode->i_sb, DELALLOC))
4068 inode->i_mapping->a_ops = &ext4_da_aops;
4069 else if (ext4_should_writeback_data(inode))
4070 inode->i_mapping->a_ops = &ext4_writeback_aops;
4071 else
4072 inode->i_mapping->a_ops = &ext4_journalled_aops;
4073 }
4074
4075 /*
4076 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4077 * up to the end of the block which corresponds to `from'.
4078 * This required during truncate. We need to physically zero the tail end
4079 * of that block so it doesn't yield old data if the file is later grown.
4080 */
4081 int ext4_block_truncate_page(handle_t *handle,
4082 struct address_space *mapping, loff_t from)
4083 {
4084 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4085 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4086 unsigned blocksize, length, pos;
4087 ext4_lblk_t iblock;
4088 struct inode *inode = mapping->host;
4089 struct buffer_head *bh;
4090 struct page *page;
4091 int err = 0;
4092
4093 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4094 mapping_gfp_mask(mapping) & ~__GFP_FS);
4095 if (!page)
4096 return -EINVAL;
4097
4098 blocksize = inode->i_sb->s_blocksize;
4099 length = blocksize - (offset & (blocksize - 1));
4100 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4101
4102 /*
4103 * For "nobh" option, we can only work if we don't need to
4104 * read-in the page - otherwise we create buffers to do the IO.
4105 */
4106 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4107 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4108 zero_user(page, offset, length);
4109 set_page_dirty(page);
4110 goto unlock;
4111 }
4112
4113 if (!page_has_buffers(page))
4114 create_empty_buffers(page, blocksize, 0);
4115
4116 /* Find the buffer that contains "offset" */
4117 bh = page_buffers(page);
4118 pos = blocksize;
4119 while (offset >= pos) {
4120 bh = bh->b_this_page;
4121 iblock++;
4122 pos += blocksize;
4123 }
4124
4125 err = 0;
4126 if (buffer_freed(bh)) {
4127 BUFFER_TRACE(bh, "freed: skip");
4128 goto unlock;
4129 }
4130
4131 if (!buffer_mapped(bh)) {
4132 BUFFER_TRACE(bh, "unmapped");
4133 ext4_get_block(inode, iblock, bh, 0);
4134 /* unmapped? It's a hole - nothing to do */
4135 if (!buffer_mapped(bh)) {
4136 BUFFER_TRACE(bh, "still unmapped");
4137 goto unlock;
4138 }
4139 }
4140
4141 /* Ok, it's mapped. Make sure it's up-to-date */
4142 if (PageUptodate(page))
4143 set_buffer_uptodate(bh);
4144
4145 if (!buffer_uptodate(bh)) {
4146 err = -EIO;
4147 ll_rw_block(READ, 1, &bh);
4148 wait_on_buffer(bh);
4149 /* Uhhuh. Read error. Complain and punt. */
4150 if (!buffer_uptodate(bh))
4151 goto unlock;
4152 }
4153
4154 if (ext4_should_journal_data(inode)) {
4155 BUFFER_TRACE(bh, "get write access");
4156 err = ext4_journal_get_write_access(handle, bh);
4157 if (err)
4158 goto unlock;
4159 }
4160
4161 zero_user(page, offset, length);
4162
4163 BUFFER_TRACE(bh, "zeroed end of block");
4164
4165 err = 0;
4166 if (ext4_should_journal_data(inode)) {
4167 err = ext4_handle_dirty_metadata(handle, inode, bh);
4168 } else {
4169 if (ext4_should_order_data(inode))
4170 err = ext4_jbd2_file_inode(handle, inode);
4171 mark_buffer_dirty(bh);
4172 }
4173
4174 unlock:
4175 unlock_page(page);
4176 page_cache_release(page);
4177 return err;
4178 }
4179
4180 /*
4181 * Probably it should be a library function... search for first non-zero word
4182 * or memcmp with zero_page, whatever is better for particular architecture.
4183 * Linus?
4184 */
4185 static inline int all_zeroes(__le32 *p, __le32 *q)
4186 {
4187 while (p < q)
4188 if (*p++)
4189 return 0;
4190 return 1;
4191 }
4192
4193 /**
4194 * ext4_find_shared - find the indirect blocks for partial truncation.
4195 * @inode: inode in question
4196 * @depth: depth of the affected branch
4197 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4198 * @chain: place to store the pointers to partial indirect blocks
4199 * @top: place to the (detached) top of branch
4200 *
4201 * This is a helper function used by ext4_truncate().
4202 *
4203 * When we do truncate() we may have to clean the ends of several
4204 * indirect blocks but leave the blocks themselves alive. Block is
4205 * partially truncated if some data below the new i_size is refered
4206 * from it (and it is on the path to the first completely truncated
4207 * data block, indeed). We have to free the top of that path along
4208 * with everything to the right of the path. Since no allocation
4209 * past the truncation point is possible until ext4_truncate()
4210 * finishes, we may safely do the latter, but top of branch may
4211 * require special attention - pageout below the truncation point
4212 * might try to populate it.
4213 *
4214 * We atomically detach the top of branch from the tree, store the
4215 * block number of its root in *@top, pointers to buffer_heads of
4216 * partially truncated blocks - in @chain[].bh and pointers to
4217 * their last elements that should not be removed - in
4218 * @chain[].p. Return value is the pointer to last filled element
4219 * of @chain.
4220 *
4221 * The work left to caller to do the actual freeing of subtrees:
4222 * a) free the subtree starting from *@top
4223 * b) free the subtrees whose roots are stored in
4224 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4225 * c) free the subtrees growing from the inode past the @chain[0].
4226 * (no partially truncated stuff there). */
4227
4228 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4229 ext4_lblk_t offsets[4], Indirect chain[4],
4230 __le32 *top)
4231 {
4232 Indirect *partial, *p;
4233 int k, err;
4234
4235 *top = 0;
4236 /* Make k index the deepest non-null offset + 1 */
4237 for (k = depth; k > 1 && !offsets[k-1]; k--)
4238 ;
4239 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4240 /* Writer: pointers */
4241 if (!partial)
4242 partial = chain + k-1;
4243 /*
4244 * If the branch acquired continuation since we've looked at it -
4245 * fine, it should all survive and (new) top doesn't belong to us.
4246 */
4247 if (!partial->key && *partial->p)
4248 /* Writer: end */
4249 goto no_top;
4250 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4251 ;
4252 /*
4253 * OK, we've found the last block that must survive. The rest of our
4254 * branch should be detached before unlocking. However, if that rest
4255 * of branch is all ours and does not grow immediately from the inode
4256 * it's easier to cheat and just decrement partial->p.
4257 */
4258 if (p == chain + k - 1 && p > chain) {
4259 p->p--;
4260 } else {
4261 *top = *p->p;
4262 /* Nope, don't do this in ext4. Must leave the tree intact */
4263 #if 0
4264 *p->p = 0;
4265 #endif
4266 }
4267 /* Writer: end */
4268
4269 while (partial > p) {
4270 brelse(partial->bh);
4271 partial--;
4272 }
4273 no_top:
4274 return partial;
4275 }
4276
4277 /*
4278 * Zero a number of block pointers in either an inode or an indirect block.
4279 * If we restart the transaction we must again get write access to the
4280 * indirect block for further modification.
4281 *
4282 * We release `count' blocks on disk, but (last - first) may be greater
4283 * than `count' because there can be holes in there.
4284 */
4285 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4286 struct buffer_head *bh,
4287 ext4_fsblk_t block_to_free,
4288 unsigned long count, __le32 *first,
4289 __le32 *last)
4290 {
4291 __le32 *p;
4292 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4293
4294 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4295 flags |= EXT4_FREE_BLOCKS_METADATA;
4296
4297 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4298 count)) {
4299 ext4_error(inode->i_sb, "inode #%lu: "
4300 "attempt to clear blocks %llu len %lu, invalid",
4301 inode->i_ino, (unsigned long long) block_to_free,
4302 count);
4303 return 1;
4304 }
4305
4306 if (try_to_extend_transaction(handle, inode)) {
4307 if (bh) {
4308 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4309 ext4_handle_dirty_metadata(handle, inode, bh);
4310 }
4311 ext4_mark_inode_dirty(handle, inode);
4312 ext4_truncate_restart_trans(handle, inode,
4313 blocks_for_truncate(inode));
4314 if (bh) {
4315 BUFFER_TRACE(bh, "retaking write access");
4316 ext4_journal_get_write_access(handle, bh);
4317 }
4318 }
4319
4320 for (p = first; p < last; p++)
4321 *p = 0;
4322
4323 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4324 return 0;
4325 }
4326
4327 /**
4328 * ext4_free_data - free a list of data blocks
4329 * @handle: handle for this transaction
4330 * @inode: inode we are dealing with
4331 * @this_bh: indirect buffer_head which contains *@first and *@last
4332 * @first: array of block numbers
4333 * @last: points immediately past the end of array
4334 *
4335 * We are freeing all blocks refered from that array (numbers are stored as
4336 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4337 *
4338 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4339 * blocks are contiguous then releasing them at one time will only affect one
4340 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4341 * actually use a lot of journal space.
4342 *
4343 * @this_bh will be %NULL if @first and @last point into the inode's direct
4344 * block pointers.
4345 */
4346 static void ext4_free_data(handle_t *handle, struct inode *inode,
4347 struct buffer_head *this_bh,
4348 __le32 *first, __le32 *last)
4349 {
4350 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4351 unsigned long count = 0; /* Number of blocks in the run */
4352 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4353 corresponding to
4354 block_to_free */
4355 ext4_fsblk_t nr; /* Current block # */
4356 __le32 *p; /* Pointer into inode/ind
4357 for current block */
4358 int err;
4359
4360 if (this_bh) { /* For indirect block */
4361 BUFFER_TRACE(this_bh, "get_write_access");
4362 err = ext4_journal_get_write_access(handle, this_bh);
4363 /* Important: if we can't update the indirect pointers
4364 * to the blocks, we can't free them. */
4365 if (err)
4366 return;
4367 }
4368
4369 for (p = first; p < last; p++) {
4370 nr = le32_to_cpu(*p);
4371 if (nr) {
4372 /* accumulate blocks to free if they're contiguous */
4373 if (count == 0) {
4374 block_to_free = nr;
4375 block_to_free_p = p;
4376 count = 1;
4377 } else if (nr == block_to_free + count) {
4378 count++;
4379 } else {
4380 if (ext4_clear_blocks(handle, inode, this_bh,
4381 block_to_free, count,
4382 block_to_free_p, p))
4383 break;
4384 block_to_free = nr;
4385 block_to_free_p = p;
4386 count = 1;
4387 }
4388 }
4389 }
4390
4391 if (count > 0)
4392 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4393 count, block_to_free_p, p);
4394
4395 if (this_bh) {
4396 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4397
4398 /*
4399 * The buffer head should have an attached journal head at this
4400 * point. However, if the data is corrupted and an indirect
4401 * block pointed to itself, it would have been detached when
4402 * the block was cleared. Check for this instead of OOPSing.
4403 */
4404 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4405 ext4_handle_dirty_metadata(handle, inode, this_bh);
4406 else
4407 ext4_error(inode->i_sb,
4408 "circular indirect block detected, "
4409 "inode=%lu, block=%llu",
4410 inode->i_ino,
4411 (unsigned long long) this_bh->b_blocknr);
4412 }
4413 }
4414
4415 /**
4416 * ext4_free_branches - free an array of branches
4417 * @handle: JBD handle for this transaction
4418 * @inode: inode we are dealing with
4419 * @parent_bh: the buffer_head which contains *@first and *@last
4420 * @first: array of block numbers
4421 * @last: pointer immediately past the end of array
4422 * @depth: depth of the branches to free
4423 *
4424 * We are freeing all blocks refered from these branches (numbers are
4425 * stored as little-endian 32-bit) and updating @inode->i_blocks
4426 * appropriately.
4427 */
4428 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4429 struct buffer_head *parent_bh,
4430 __le32 *first, __le32 *last, int depth)
4431 {
4432 ext4_fsblk_t nr;
4433 __le32 *p;
4434
4435 if (ext4_handle_is_aborted(handle))
4436 return;
4437
4438 if (depth--) {
4439 struct buffer_head *bh;
4440 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4441 p = last;
4442 while (--p >= first) {
4443 nr = le32_to_cpu(*p);
4444 if (!nr)
4445 continue; /* A hole */
4446
4447 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4448 nr, 1)) {
4449 ext4_error(inode->i_sb,
4450 "indirect mapped block in inode "
4451 "#%lu invalid (level %d, blk #%lu)",
4452 inode->i_ino, depth,
4453 (unsigned long) nr);
4454 break;
4455 }
4456
4457 /* Go read the buffer for the next level down */
4458 bh = sb_bread(inode->i_sb, nr);
4459
4460 /*
4461 * A read failure? Report error and clear slot
4462 * (should be rare).
4463 */
4464 if (!bh) {
4465 ext4_error(inode->i_sb,
4466 "Read failure, inode=%lu, block=%llu",
4467 inode->i_ino, nr);
4468 continue;
4469 }
4470
4471 /* This zaps the entire block. Bottom up. */
4472 BUFFER_TRACE(bh, "free child branches");
4473 ext4_free_branches(handle, inode, bh,
4474 (__le32 *) bh->b_data,
4475 (__le32 *) bh->b_data + addr_per_block,
4476 depth);
4477
4478 /*
4479 * We've probably journalled the indirect block several
4480 * times during the truncate. But it's no longer
4481 * needed and we now drop it from the transaction via
4482 * jbd2_journal_revoke().
4483 *
4484 * That's easy if it's exclusively part of this
4485 * transaction. But if it's part of the committing
4486 * transaction then jbd2_journal_forget() will simply
4487 * brelse() it. That means that if the underlying
4488 * block is reallocated in ext4_get_block(),
4489 * unmap_underlying_metadata() will find this block
4490 * and will try to get rid of it. damn, damn.
4491 *
4492 * If this block has already been committed to the
4493 * journal, a revoke record will be written. And
4494 * revoke records must be emitted *before* clearing
4495 * this block's bit in the bitmaps.
4496 */
4497 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4498
4499 /*
4500 * Everything below this this pointer has been
4501 * released. Now let this top-of-subtree go.
4502 *
4503 * We want the freeing of this indirect block to be
4504 * atomic in the journal with the updating of the
4505 * bitmap block which owns it. So make some room in
4506 * the journal.
4507 *
4508 * We zero the parent pointer *after* freeing its
4509 * pointee in the bitmaps, so if extend_transaction()
4510 * for some reason fails to put the bitmap changes and
4511 * the release into the same transaction, recovery
4512 * will merely complain about releasing a free block,
4513 * rather than leaking blocks.
4514 */
4515 if (ext4_handle_is_aborted(handle))
4516 return;
4517 if (try_to_extend_transaction(handle, inode)) {
4518 ext4_mark_inode_dirty(handle, inode);
4519 ext4_truncate_restart_trans(handle, inode,
4520 blocks_for_truncate(inode));
4521 }
4522
4523 ext4_free_blocks(handle, inode, 0, nr, 1,
4524 EXT4_FREE_BLOCKS_METADATA);
4525
4526 if (parent_bh) {
4527 /*
4528 * The block which we have just freed is
4529 * pointed to by an indirect block: journal it
4530 */
4531 BUFFER_TRACE(parent_bh, "get_write_access");
4532 if (!ext4_journal_get_write_access(handle,
4533 parent_bh)){
4534 *p = 0;
4535 BUFFER_TRACE(parent_bh,
4536 "call ext4_handle_dirty_metadata");
4537 ext4_handle_dirty_metadata(handle,
4538 inode,
4539 parent_bh);
4540 }
4541 }
4542 }
4543 } else {
4544 /* We have reached the bottom of the tree. */
4545 BUFFER_TRACE(parent_bh, "free data blocks");
4546 ext4_free_data(handle, inode, parent_bh, first, last);
4547 }
4548 }
4549
4550 int ext4_can_truncate(struct inode *inode)
4551 {
4552 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4553 return 0;
4554 if (S_ISREG(inode->i_mode))
4555 return 1;
4556 if (S_ISDIR(inode->i_mode))
4557 return 1;
4558 if (S_ISLNK(inode->i_mode))
4559 return !ext4_inode_is_fast_symlink(inode);
4560 return 0;
4561 }
4562
4563 /*
4564 * ext4_truncate()
4565 *
4566 * We block out ext4_get_block() block instantiations across the entire
4567 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4568 * simultaneously on behalf of the same inode.
4569 *
4570 * As we work through the truncate and commmit bits of it to the journal there
4571 * is one core, guiding principle: the file's tree must always be consistent on
4572 * disk. We must be able to restart the truncate after a crash.
4573 *
4574 * The file's tree may be transiently inconsistent in memory (although it
4575 * probably isn't), but whenever we close off and commit a journal transaction,
4576 * the contents of (the filesystem + the journal) must be consistent and
4577 * restartable. It's pretty simple, really: bottom up, right to left (although
4578 * left-to-right works OK too).
4579 *
4580 * Note that at recovery time, journal replay occurs *before* the restart of
4581 * truncate against the orphan inode list.
4582 *
4583 * The committed inode has the new, desired i_size (which is the same as
4584 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4585 * that this inode's truncate did not complete and it will again call
4586 * ext4_truncate() to have another go. So there will be instantiated blocks
4587 * to the right of the truncation point in a crashed ext4 filesystem. But
4588 * that's fine - as long as they are linked from the inode, the post-crash
4589 * ext4_truncate() run will find them and release them.
4590 */
4591 void ext4_truncate(struct inode *inode)
4592 {
4593 handle_t *handle;
4594 struct ext4_inode_info *ei = EXT4_I(inode);
4595 __le32 *i_data = ei->i_data;
4596 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4597 struct address_space *mapping = inode->i_mapping;
4598 ext4_lblk_t offsets[4];
4599 Indirect chain[4];
4600 Indirect *partial;
4601 __le32 nr = 0;
4602 int n;
4603 ext4_lblk_t last_block;
4604 unsigned blocksize = inode->i_sb->s_blocksize;
4605
4606 if (!ext4_can_truncate(inode))
4607 return;
4608
4609 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4610
4611 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4612 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4613
4614 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4615 ext4_ext_truncate(inode);
4616 return;
4617 }
4618
4619 handle = start_transaction(inode);
4620 if (IS_ERR(handle))
4621 return; /* AKPM: return what? */
4622
4623 last_block = (inode->i_size + blocksize-1)
4624 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4625
4626 if (inode->i_size & (blocksize - 1))
4627 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4628 goto out_stop;
4629
4630 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4631 if (n == 0)
4632 goto out_stop; /* error */
4633
4634 /*
4635 * OK. This truncate is going to happen. We add the inode to the
4636 * orphan list, so that if this truncate spans multiple transactions,
4637 * and we crash, we will resume the truncate when the filesystem
4638 * recovers. It also marks the inode dirty, to catch the new size.
4639 *
4640 * Implication: the file must always be in a sane, consistent
4641 * truncatable state while each transaction commits.
4642 */
4643 if (ext4_orphan_add(handle, inode))
4644 goto out_stop;
4645
4646 /*
4647 * From here we block out all ext4_get_block() callers who want to
4648 * modify the block allocation tree.
4649 */
4650 down_write(&ei->i_data_sem);
4651
4652 ext4_discard_preallocations(inode);
4653
4654 /*
4655 * The orphan list entry will now protect us from any crash which
4656 * occurs before the truncate completes, so it is now safe to propagate
4657 * the new, shorter inode size (held for now in i_size) into the
4658 * on-disk inode. We do this via i_disksize, which is the value which
4659 * ext4 *really* writes onto the disk inode.
4660 */
4661 ei->i_disksize = inode->i_size;
4662
4663 if (n == 1) { /* direct blocks */
4664 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4665 i_data + EXT4_NDIR_BLOCKS);
4666 goto do_indirects;
4667 }
4668
4669 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4670 /* Kill the top of shared branch (not detached) */
4671 if (nr) {
4672 if (partial == chain) {
4673 /* Shared branch grows from the inode */
4674 ext4_free_branches(handle, inode, NULL,
4675 &nr, &nr+1, (chain+n-1) - partial);
4676 *partial->p = 0;
4677 /*
4678 * We mark the inode dirty prior to restart,
4679 * and prior to stop. No need for it here.
4680 */
4681 } else {
4682 /* Shared branch grows from an indirect block */
4683 BUFFER_TRACE(partial->bh, "get_write_access");
4684 ext4_free_branches(handle, inode, partial->bh,
4685 partial->p,
4686 partial->p+1, (chain+n-1) - partial);
4687 }
4688 }
4689 /* Clear the ends of indirect blocks on the shared branch */
4690 while (partial > chain) {
4691 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4692 (__le32*)partial->bh->b_data+addr_per_block,
4693 (chain+n-1) - partial);
4694 BUFFER_TRACE(partial->bh, "call brelse");
4695 brelse(partial->bh);
4696 partial--;
4697 }
4698 do_indirects:
4699 /* Kill the remaining (whole) subtrees */
4700 switch (offsets[0]) {
4701 default:
4702 nr = i_data[EXT4_IND_BLOCK];
4703 if (nr) {
4704 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4705 i_data[EXT4_IND_BLOCK] = 0;
4706 }
4707 case EXT4_IND_BLOCK:
4708 nr = i_data[EXT4_DIND_BLOCK];
4709 if (nr) {
4710 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4711 i_data[EXT4_DIND_BLOCK] = 0;
4712 }
4713 case EXT4_DIND_BLOCK:
4714 nr = i_data[EXT4_TIND_BLOCK];
4715 if (nr) {
4716 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4717 i_data[EXT4_TIND_BLOCK] = 0;
4718 }
4719 case EXT4_TIND_BLOCK:
4720 ;
4721 }
4722
4723 up_write(&ei->i_data_sem);
4724 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4725 ext4_mark_inode_dirty(handle, inode);
4726
4727 /*
4728 * In a multi-transaction truncate, we only make the final transaction
4729 * synchronous
4730 */
4731 if (IS_SYNC(inode))
4732 ext4_handle_sync(handle);
4733 out_stop:
4734 /*
4735 * If this was a simple ftruncate(), and the file will remain alive
4736 * then we need to clear up the orphan record which we created above.
4737 * However, if this was a real unlink then we were called by
4738 * ext4_delete_inode(), and we allow that function to clean up the
4739 * orphan info for us.
4740 */
4741 if (inode->i_nlink)
4742 ext4_orphan_del(handle, inode);
4743
4744 ext4_journal_stop(handle);
4745 }
4746
4747 /*
4748 * ext4_get_inode_loc returns with an extra refcount against the inode's
4749 * underlying buffer_head on success. If 'in_mem' is true, we have all
4750 * data in memory that is needed to recreate the on-disk version of this
4751 * inode.
4752 */
4753 static int __ext4_get_inode_loc(struct inode *inode,
4754 struct ext4_iloc *iloc, int in_mem)
4755 {
4756 struct ext4_group_desc *gdp;
4757 struct buffer_head *bh;
4758 struct super_block *sb = inode->i_sb;
4759 ext4_fsblk_t block;
4760 int inodes_per_block, inode_offset;
4761
4762 iloc->bh = NULL;
4763 if (!ext4_valid_inum(sb, inode->i_ino))
4764 return -EIO;
4765
4766 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4767 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4768 if (!gdp)
4769 return -EIO;
4770
4771 /*
4772 * Figure out the offset within the block group inode table
4773 */
4774 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4775 inode_offset = ((inode->i_ino - 1) %
4776 EXT4_INODES_PER_GROUP(sb));
4777 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4778 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4779
4780 bh = sb_getblk(sb, block);
4781 if (!bh) {
4782 ext4_error(sb, "unable to read inode block - "
4783 "inode=%lu, block=%llu", inode->i_ino, block);
4784 return -EIO;
4785 }
4786 if (!buffer_uptodate(bh)) {
4787 lock_buffer(bh);
4788
4789 /*
4790 * If the buffer has the write error flag, we have failed
4791 * to write out another inode in the same block. In this
4792 * case, we don't have to read the block because we may
4793 * read the old inode data successfully.
4794 */
4795 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4796 set_buffer_uptodate(bh);
4797
4798 if (buffer_uptodate(bh)) {
4799 /* someone brought it uptodate while we waited */
4800 unlock_buffer(bh);
4801 goto has_buffer;
4802 }
4803
4804 /*
4805 * If we have all information of the inode in memory and this
4806 * is the only valid inode in the block, we need not read the
4807 * block.
4808 */
4809 if (in_mem) {
4810 struct buffer_head *bitmap_bh;
4811 int i, start;
4812
4813 start = inode_offset & ~(inodes_per_block - 1);
4814
4815 /* Is the inode bitmap in cache? */
4816 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4817 if (!bitmap_bh)
4818 goto make_io;
4819
4820 /*
4821 * If the inode bitmap isn't in cache then the
4822 * optimisation may end up performing two reads instead
4823 * of one, so skip it.
4824 */
4825 if (!buffer_uptodate(bitmap_bh)) {
4826 brelse(bitmap_bh);
4827 goto make_io;
4828 }
4829 for (i = start; i < start + inodes_per_block; i++) {
4830 if (i == inode_offset)
4831 continue;
4832 if (ext4_test_bit(i, bitmap_bh->b_data))
4833 break;
4834 }
4835 brelse(bitmap_bh);
4836 if (i == start + inodes_per_block) {
4837 /* all other inodes are free, so skip I/O */
4838 memset(bh->b_data, 0, bh->b_size);
4839 set_buffer_uptodate(bh);
4840 unlock_buffer(bh);
4841 goto has_buffer;
4842 }
4843 }
4844
4845 make_io:
4846 /*
4847 * If we need to do any I/O, try to pre-readahead extra
4848 * blocks from the inode table.
4849 */
4850 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4851 ext4_fsblk_t b, end, table;
4852 unsigned num;
4853
4854 table = ext4_inode_table(sb, gdp);
4855 /* s_inode_readahead_blks is always a power of 2 */
4856 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4857 if (table > b)
4858 b = table;
4859 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4860 num = EXT4_INODES_PER_GROUP(sb);
4861 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4862 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4863 num -= ext4_itable_unused_count(sb, gdp);
4864 table += num / inodes_per_block;
4865 if (end > table)
4866 end = table;
4867 while (b <= end)
4868 sb_breadahead(sb, b++);
4869 }
4870
4871 /*
4872 * There are other valid inodes in the buffer, this inode
4873 * has in-inode xattrs, or we don't have this inode in memory.
4874 * Read the block from disk.
4875 */
4876 get_bh(bh);
4877 bh->b_end_io = end_buffer_read_sync;
4878 submit_bh(READ_META, bh);
4879 wait_on_buffer(bh);
4880 if (!buffer_uptodate(bh)) {
4881 ext4_error(sb, "unable to read inode block - inode=%lu,"
4882 " block=%llu", inode->i_ino, block);
4883 brelse(bh);
4884 return -EIO;
4885 }
4886 }
4887 has_buffer:
4888 iloc->bh = bh;
4889 return 0;
4890 }
4891
4892 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4893 {
4894 /* We have all inode data except xattrs in memory here. */
4895 return __ext4_get_inode_loc(inode, iloc,
4896 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4897 }
4898
4899 void ext4_set_inode_flags(struct inode *inode)
4900 {
4901 unsigned int flags = EXT4_I(inode)->i_flags;
4902
4903 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4904 if (flags & EXT4_SYNC_FL)
4905 inode->i_flags |= S_SYNC;
4906 if (flags & EXT4_APPEND_FL)
4907 inode->i_flags |= S_APPEND;
4908 if (flags & EXT4_IMMUTABLE_FL)
4909 inode->i_flags |= S_IMMUTABLE;
4910 if (flags & EXT4_NOATIME_FL)
4911 inode->i_flags |= S_NOATIME;
4912 if (flags & EXT4_DIRSYNC_FL)
4913 inode->i_flags |= S_DIRSYNC;
4914 }
4915
4916 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4917 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4918 {
4919 unsigned int flags = ei->vfs_inode.i_flags;
4920
4921 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4922 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4923 if (flags & S_SYNC)
4924 ei->i_flags |= EXT4_SYNC_FL;
4925 if (flags & S_APPEND)
4926 ei->i_flags |= EXT4_APPEND_FL;
4927 if (flags & S_IMMUTABLE)
4928 ei->i_flags |= EXT4_IMMUTABLE_FL;
4929 if (flags & S_NOATIME)
4930 ei->i_flags |= EXT4_NOATIME_FL;
4931 if (flags & S_DIRSYNC)
4932 ei->i_flags |= EXT4_DIRSYNC_FL;
4933 }
4934
4935 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4936 struct ext4_inode_info *ei)
4937 {
4938 blkcnt_t i_blocks ;
4939 struct inode *inode = &(ei->vfs_inode);
4940 struct super_block *sb = inode->i_sb;
4941
4942 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4943 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4944 /* we are using combined 48 bit field */
4945 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4946 le32_to_cpu(raw_inode->i_blocks_lo);
4947 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4948 /* i_blocks represent file system block size */
4949 return i_blocks << (inode->i_blkbits - 9);
4950 } else {
4951 return i_blocks;
4952 }
4953 } else {
4954 return le32_to_cpu(raw_inode->i_blocks_lo);
4955 }
4956 }
4957
4958 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4959 {
4960 struct ext4_iloc iloc;
4961 struct ext4_inode *raw_inode;
4962 struct ext4_inode_info *ei;
4963 struct inode *inode;
4964 journal_t *journal = EXT4_SB(sb)->s_journal;
4965 long ret;
4966 int block;
4967
4968 inode = iget_locked(sb, ino);
4969 if (!inode)
4970 return ERR_PTR(-ENOMEM);
4971 if (!(inode->i_state & I_NEW))
4972 return inode;
4973
4974 ei = EXT4_I(inode);
4975 iloc.bh = 0;
4976
4977 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4978 if (ret < 0)
4979 goto bad_inode;
4980 raw_inode = ext4_raw_inode(&iloc);
4981 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4982 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4983 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4984 if (!(test_opt(inode->i_sb, NO_UID32))) {
4985 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4986 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4987 }
4988 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4989
4990 ei->i_state_flags = 0;
4991 ei->i_dir_start_lookup = 0;
4992 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4993 /* We now have enough fields to check if the inode was active or not.
4994 * This is needed because nfsd might try to access dead inodes
4995 * the test is that same one that e2fsck uses
4996 * NeilBrown 1999oct15
4997 */
4998 if (inode->i_nlink == 0) {
4999 if (inode->i_mode == 0 ||
5000 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5001 /* this inode is deleted */
5002 ret = -ESTALE;
5003 goto bad_inode;
5004 }
5005 /* The only unlinked inodes we let through here have
5006 * valid i_mode and are being read by the orphan
5007 * recovery code: that's fine, we're about to complete
5008 * the process of deleting those. */
5009 }
5010 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5011 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5012 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5013 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5014 ei->i_file_acl |=
5015 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5016 inode->i_size = ext4_isize(raw_inode);
5017 ei->i_disksize = inode->i_size;
5018 #ifdef CONFIG_QUOTA
5019 ei->i_reserved_quota = 0;
5020 #endif
5021 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5022 ei->i_block_group = iloc.block_group;
5023 ei->i_last_alloc_group = ~0;
5024 /*
5025 * NOTE! The in-memory inode i_data array is in little-endian order
5026 * even on big-endian machines: we do NOT byteswap the block numbers!
5027 */
5028 for (block = 0; block < EXT4_N_BLOCKS; block++)
5029 ei->i_data[block] = raw_inode->i_block[block];
5030 INIT_LIST_HEAD(&ei->i_orphan);
5031
5032 /*
5033 * Set transaction id's of transactions that have to be committed
5034 * to finish f[data]sync. We set them to currently running transaction
5035 * as we cannot be sure that the inode or some of its metadata isn't
5036 * part of the transaction - the inode could have been reclaimed and
5037 * now it is reread from disk.
5038 */
5039 if (journal) {
5040 transaction_t *transaction;
5041 tid_t tid;
5042
5043 spin_lock(&journal->j_state_lock);
5044 if (journal->j_running_transaction)
5045 transaction = journal->j_running_transaction;
5046 else
5047 transaction = journal->j_committing_transaction;
5048 if (transaction)
5049 tid = transaction->t_tid;
5050 else
5051 tid = journal->j_commit_sequence;
5052 spin_unlock(&journal->j_state_lock);
5053 ei->i_sync_tid = tid;
5054 ei->i_datasync_tid = tid;
5055 }
5056
5057 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5058 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5059 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5060 EXT4_INODE_SIZE(inode->i_sb)) {
5061 ret = -EIO;
5062 goto bad_inode;
5063 }
5064 if (ei->i_extra_isize == 0) {
5065 /* The extra space is currently unused. Use it. */
5066 ei->i_extra_isize = sizeof(struct ext4_inode) -
5067 EXT4_GOOD_OLD_INODE_SIZE;
5068 } else {
5069 __le32 *magic = (void *)raw_inode +
5070 EXT4_GOOD_OLD_INODE_SIZE +
5071 ei->i_extra_isize;
5072 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5073 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5074 }
5075 } else
5076 ei->i_extra_isize = 0;
5077
5078 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5079 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5080 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5081 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5082
5083 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5084 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5085 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5086 inode->i_version |=
5087 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5088 }
5089
5090 ret = 0;
5091 if (ei->i_file_acl &&
5092 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5093 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5094 ei->i_file_acl, inode->i_ino);
5095 ret = -EIO;
5096 goto bad_inode;
5097 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5098 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5099 (S_ISLNK(inode->i_mode) &&
5100 !ext4_inode_is_fast_symlink(inode)))
5101 /* Validate extent which is part of inode */
5102 ret = ext4_ext_check_inode(inode);
5103 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5104 (S_ISLNK(inode->i_mode) &&
5105 !ext4_inode_is_fast_symlink(inode))) {
5106 /* Validate block references which are part of inode */
5107 ret = ext4_check_inode_blockref(inode);
5108 }
5109 if (ret)
5110 goto bad_inode;
5111
5112 if (S_ISREG(inode->i_mode)) {
5113 inode->i_op = &ext4_file_inode_operations;
5114 inode->i_fop = &ext4_file_operations;
5115 ext4_set_aops(inode);
5116 } else if (S_ISDIR(inode->i_mode)) {
5117 inode->i_op = &ext4_dir_inode_operations;
5118 inode->i_fop = &ext4_dir_operations;
5119 } else if (S_ISLNK(inode->i_mode)) {
5120 if (ext4_inode_is_fast_symlink(inode)) {
5121 inode->i_op = &ext4_fast_symlink_inode_operations;
5122 nd_terminate_link(ei->i_data, inode->i_size,
5123 sizeof(ei->i_data) - 1);
5124 } else {
5125 inode->i_op = &ext4_symlink_inode_operations;
5126 ext4_set_aops(inode);
5127 }
5128 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5129 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5130 inode->i_op = &ext4_special_inode_operations;
5131 if (raw_inode->i_block[0])
5132 init_special_inode(inode, inode->i_mode,
5133 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5134 else
5135 init_special_inode(inode, inode->i_mode,
5136 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5137 } else {
5138 ret = -EIO;
5139 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5140 inode->i_mode, inode->i_ino);
5141 goto bad_inode;
5142 }
5143 brelse(iloc.bh);
5144 ext4_set_inode_flags(inode);
5145 unlock_new_inode(inode);
5146 return inode;
5147
5148 bad_inode:
5149 brelse(iloc.bh);
5150 iget_failed(inode);
5151 return ERR_PTR(ret);
5152 }
5153
5154 static int ext4_inode_blocks_set(handle_t *handle,
5155 struct ext4_inode *raw_inode,
5156 struct ext4_inode_info *ei)
5157 {
5158 struct inode *inode = &(ei->vfs_inode);
5159 u64 i_blocks = inode->i_blocks;
5160 struct super_block *sb = inode->i_sb;
5161
5162 if (i_blocks <= ~0U) {
5163 /*
5164 * i_blocks can be represnted in a 32 bit variable
5165 * as multiple of 512 bytes
5166 */
5167 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5168 raw_inode->i_blocks_high = 0;
5169 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5170 return 0;
5171 }
5172 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5173 return -EFBIG;
5174
5175 if (i_blocks <= 0xffffffffffffULL) {
5176 /*
5177 * i_blocks can be represented in a 48 bit variable
5178 * as multiple of 512 bytes
5179 */
5180 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5181 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5182 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5183 } else {
5184 ei->i_flags |= EXT4_HUGE_FILE_FL;
5185 /* i_block is stored in file system block size */
5186 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5187 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5188 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5189 }
5190 return 0;
5191 }
5192
5193 /*
5194 * Post the struct inode info into an on-disk inode location in the
5195 * buffer-cache. This gobbles the caller's reference to the
5196 * buffer_head in the inode location struct.
5197 *
5198 * The caller must have write access to iloc->bh.
5199 */
5200 static int ext4_do_update_inode(handle_t *handle,
5201 struct inode *inode,
5202 struct ext4_iloc *iloc)
5203 {
5204 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5205 struct ext4_inode_info *ei = EXT4_I(inode);
5206 struct buffer_head *bh = iloc->bh;
5207 int err = 0, rc, block;
5208
5209 /* For fields not not tracking in the in-memory inode,
5210 * initialise them to zero for new inodes. */
5211 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5212 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5213
5214 ext4_get_inode_flags(ei);
5215 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5216 if (!(test_opt(inode->i_sb, NO_UID32))) {
5217 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5218 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5219 /*
5220 * Fix up interoperability with old kernels. Otherwise, old inodes get
5221 * re-used with the upper 16 bits of the uid/gid intact
5222 */
5223 if (!ei->i_dtime) {
5224 raw_inode->i_uid_high =
5225 cpu_to_le16(high_16_bits(inode->i_uid));
5226 raw_inode->i_gid_high =
5227 cpu_to_le16(high_16_bits(inode->i_gid));
5228 } else {
5229 raw_inode->i_uid_high = 0;
5230 raw_inode->i_gid_high = 0;
5231 }
5232 } else {
5233 raw_inode->i_uid_low =
5234 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5235 raw_inode->i_gid_low =
5236 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5237 raw_inode->i_uid_high = 0;
5238 raw_inode->i_gid_high = 0;
5239 }
5240 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5241
5242 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5243 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5244 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5245 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5246
5247 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5248 goto out_brelse;
5249 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5250 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5251 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5252 cpu_to_le32(EXT4_OS_HURD))
5253 raw_inode->i_file_acl_high =
5254 cpu_to_le16(ei->i_file_acl >> 32);
5255 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5256 ext4_isize_set(raw_inode, ei->i_disksize);
5257 if (ei->i_disksize > 0x7fffffffULL) {
5258 struct super_block *sb = inode->i_sb;
5259 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5260 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5261 EXT4_SB(sb)->s_es->s_rev_level ==
5262 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5263 /* If this is the first large file
5264 * created, add a flag to the superblock.
5265 */
5266 err = ext4_journal_get_write_access(handle,
5267 EXT4_SB(sb)->s_sbh);
5268 if (err)
5269 goto out_brelse;
5270 ext4_update_dynamic_rev(sb);
5271 EXT4_SET_RO_COMPAT_FEATURE(sb,
5272 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5273 sb->s_dirt = 1;
5274 ext4_handle_sync(handle);
5275 err = ext4_handle_dirty_metadata(handle, NULL,
5276 EXT4_SB(sb)->s_sbh);
5277 }
5278 }
5279 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5280 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5281 if (old_valid_dev(inode->i_rdev)) {
5282 raw_inode->i_block[0] =
5283 cpu_to_le32(old_encode_dev(inode->i_rdev));
5284 raw_inode->i_block[1] = 0;
5285 } else {
5286 raw_inode->i_block[0] = 0;
5287 raw_inode->i_block[1] =
5288 cpu_to_le32(new_encode_dev(inode->i_rdev));
5289 raw_inode->i_block[2] = 0;
5290 }
5291 } else
5292 for (block = 0; block < EXT4_N_BLOCKS; block++)
5293 raw_inode->i_block[block] = ei->i_data[block];
5294
5295 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5296 if (ei->i_extra_isize) {
5297 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5298 raw_inode->i_version_hi =
5299 cpu_to_le32(inode->i_version >> 32);
5300 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5301 }
5302
5303 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5304 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5305 if (!err)
5306 err = rc;
5307 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5308
5309 ext4_update_inode_fsync_trans(handle, inode, 0);
5310 out_brelse:
5311 brelse(bh);
5312 ext4_std_error(inode->i_sb, err);
5313 return err;
5314 }
5315
5316 /*
5317 * ext4_write_inode()
5318 *
5319 * We are called from a few places:
5320 *
5321 * - Within generic_file_write() for O_SYNC files.
5322 * Here, there will be no transaction running. We wait for any running
5323 * trasnaction to commit.
5324 *
5325 * - Within sys_sync(), kupdate and such.
5326 * We wait on commit, if tol to.
5327 *
5328 * - Within prune_icache() (PF_MEMALLOC == true)
5329 * Here we simply return. We can't afford to block kswapd on the
5330 * journal commit.
5331 *
5332 * In all cases it is actually safe for us to return without doing anything,
5333 * because the inode has been copied into a raw inode buffer in
5334 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5335 * knfsd.
5336 *
5337 * Note that we are absolutely dependent upon all inode dirtiers doing the
5338 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5339 * which we are interested.
5340 *
5341 * It would be a bug for them to not do this. The code:
5342 *
5343 * mark_inode_dirty(inode)
5344 * stuff();
5345 * inode->i_size = expr;
5346 *
5347 * is in error because a kswapd-driven write_inode() could occur while
5348 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5349 * will no longer be on the superblock's dirty inode list.
5350 */
5351 int ext4_write_inode(struct inode *inode, int wait)
5352 {
5353 int err;
5354
5355 if (current->flags & PF_MEMALLOC)
5356 return 0;
5357
5358 if (EXT4_SB(inode->i_sb)->s_journal) {
5359 if (ext4_journal_current_handle()) {
5360 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5361 dump_stack();
5362 return -EIO;
5363 }
5364
5365 if (!wait)
5366 return 0;
5367
5368 err = ext4_force_commit(inode->i_sb);
5369 } else {
5370 struct ext4_iloc iloc;
5371
5372 err = ext4_get_inode_loc(inode, &iloc);
5373 if (err)
5374 return err;
5375 if (wait)
5376 sync_dirty_buffer(iloc.bh);
5377 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5378 ext4_error(inode->i_sb, "IO error syncing inode, "
5379 "inode=%lu, block=%llu", inode->i_ino,
5380 (unsigned long long)iloc.bh->b_blocknr);
5381 err = -EIO;
5382 }
5383 }
5384 return err;
5385 }
5386
5387 /*
5388 * ext4_setattr()
5389 *
5390 * Called from notify_change.
5391 *
5392 * We want to trap VFS attempts to truncate the file as soon as
5393 * possible. In particular, we want to make sure that when the VFS
5394 * shrinks i_size, we put the inode on the orphan list and modify
5395 * i_disksize immediately, so that during the subsequent flushing of
5396 * dirty pages and freeing of disk blocks, we can guarantee that any
5397 * commit will leave the blocks being flushed in an unused state on
5398 * disk. (On recovery, the inode will get truncated and the blocks will
5399 * be freed, so we have a strong guarantee that no future commit will
5400 * leave these blocks visible to the user.)
5401 *
5402 * Another thing we have to assure is that if we are in ordered mode
5403 * and inode is still attached to the committing transaction, we must
5404 * we start writeout of all the dirty pages which are being truncated.
5405 * This way we are sure that all the data written in the previous
5406 * transaction are already on disk (truncate waits for pages under
5407 * writeback).
5408 *
5409 * Called with inode->i_mutex down.
5410 */
5411 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5412 {
5413 struct inode *inode = dentry->d_inode;
5414 int error, rc = 0;
5415 const unsigned int ia_valid = attr->ia_valid;
5416
5417 error = inode_change_ok(inode, attr);
5418 if (error)
5419 return error;
5420
5421 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5422 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5423 handle_t *handle;
5424
5425 /* (user+group)*(old+new) structure, inode write (sb,
5426 * inode block, ? - but truncate inode update has it) */
5427 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5428 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5429 if (IS_ERR(handle)) {
5430 error = PTR_ERR(handle);
5431 goto err_out;
5432 }
5433 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5434 if (error) {
5435 ext4_journal_stop(handle);
5436 return error;
5437 }
5438 /* Update corresponding info in inode so that everything is in
5439 * one transaction */
5440 if (attr->ia_valid & ATTR_UID)
5441 inode->i_uid = attr->ia_uid;
5442 if (attr->ia_valid & ATTR_GID)
5443 inode->i_gid = attr->ia_gid;
5444 error = ext4_mark_inode_dirty(handle, inode);
5445 ext4_journal_stop(handle);
5446 }
5447
5448 if (attr->ia_valid & ATTR_SIZE) {
5449 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5450 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5451
5452 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5453 error = -EFBIG;
5454 goto err_out;
5455 }
5456 }
5457 }
5458
5459 if (S_ISREG(inode->i_mode) &&
5460 attr->ia_valid & ATTR_SIZE &&
5461 (attr->ia_size < inode->i_size ||
5462 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5463 handle_t *handle;
5464
5465 handle = ext4_journal_start(inode, 3);
5466 if (IS_ERR(handle)) {
5467 error = PTR_ERR(handle);
5468 goto err_out;
5469 }
5470
5471 error = ext4_orphan_add(handle, inode);
5472 EXT4_I(inode)->i_disksize = attr->ia_size;
5473 rc = ext4_mark_inode_dirty(handle, inode);
5474 if (!error)
5475 error = rc;
5476 ext4_journal_stop(handle);
5477
5478 if (ext4_should_order_data(inode)) {
5479 error = ext4_begin_ordered_truncate(inode,
5480 attr->ia_size);
5481 if (error) {
5482 /* Do as much error cleanup as possible */
5483 handle = ext4_journal_start(inode, 3);
5484 if (IS_ERR(handle)) {
5485 ext4_orphan_del(NULL, inode);
5486 goto err_out;
5487 }
5488 ext4_orphan_del(handle, inode);
5489 ext4_journal_stop(handle);
5490 goto err_out;
5491 }
5492 }
5493 /* ext4_truncate will clear the flag */
5494 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5495 ext4_truncate(inode);
5496 }
5497
5498 rc = inode_setattr(inode, attr);
5499
5500 /* If inode_setattr's call to ext4_truncate failed to get a
5501 * transaction handle at all, we need to clean up the in-core
5502 * orphan list manually. */
5503 if (inode->i_nlink)
5504 ext4_orphan_del(NULL, inode);
5505
5506 if (!rc && (ia_valid & ATTR_MODE))
5507 rc = ext4_acl_chmod(inode);
5508
5509 err_out:
5510 ext4_std_error(inode->i_sb, error);
5511 if (!error)
5512 error = rc;
5513 return error;
5514 }
5515
5516 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5517 struct kstat *stat)
5518 {
5519 struct inode *inode;
5520 unsigned long delalloc_blocks;
5521
5522 inode = dentry->d_inode;
5523 generic_fillattr(inode, stat);
5524
5525 /*
5526 * We can't update i_blocks if the block allocation is delayed
5527 * otherwise in the case of system crash before the real block
5528 * allocation is done, we will have i_blocks inconsistent with
5529 * on-disk file blocks.
5530 * We always keep i_blocks updated together with real
5531 * allocation. But to not confuse with user, stat
5532 * will return the blocks that include the delayed allocation
5533 * blocks for this file.
5534 */
5535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5536 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5537 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5538
5539 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5540 return 0;
5541 }
5542
5543 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5544 int chunk)
5545 {
5546 int indirects;
5547
5548 /* if nrblocks are contiguous */
5549 if (chunk) {
5550 /*
5551 * With N contiguous data blocks, it need at most
5552 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5553 * 2 dindirect blocks
5554 * 1 tindirect block
5555 */
5556 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5557 return indirects + 3;
5558 }
5559 /*
5560 * if nrblocks are not contiguous, worse case, each block touch
5561 * a indirect block, and each indirect block touch a double indirect
5562 * block, plus a triple indirect block
5563 */
5564 indirects = nrblocks * 2 + 1;
5565 return indirects;
5566 }
5567
5568 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5569 {
5570 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5571 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5572 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5573 }
5574
5575 /*
5576 * Account for index blocks, block groups bitmaps and block group
5577 * descriptor blocks if modify datablocks and index blocks
5578 * worse case, the indexs blocks spread over different block groups
5579 *
5580 * If datablocks are discontiguous, they are possible to spread over
5581 * different block groups too. If they are contiuguous, with flexbg,
5582 * they could still across block group boundary.
5583 *
5584 * Also account for superblock, inode, quota and xattr blocks
5585 */
5586 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5587 {
5588 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5589 int gdpblocks;
5590 int idxblocks;
5591 int ret = 0;
5592
5593 /*
5594 * How many index blocks need to touch to modify nrblocks?
5595 * The "Chunk" flag indicating whether the nrblocks is
5596 * physically contiguous on disk
5597 *
5598 * For Direct IO and fallocate, they calls get_block to allocate
5599 * one single extent at a time, so they could set the "Chunk" flag
5600 */
5601 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5602
5603 ret = idxblocks;
5604
5605 /*
5606 * Now let's see how many group bitmaps and group descriptors need
5607 * to account
5608 */
5609 groups = idxblocks;
5610 if (chunk)
5611 groups += 1;
5612 else
5613 groups += nrblocks;
5614
5615 gdpblocks = groups;
5616 if (groups > ngroups)
5617 groups = ngroups;
5618 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5619 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5620
5621 /* bitmaps and block group descriptor blocks */
5622 ret += groups + gdpblocks;
5623
5624 /* Blocks for super block, inode, quota and xattr blocks */
5625 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5626
5627 return ret;
5628 }
5629
5630 /*
5631 * Calulate the total number of credits to reserve to fit
5632 * the modification of a single pages into a single transaction,
5633 * which may include multiple chunks of block allocations.
5634 *
5635 * This could be called via ext4_write_begin()
5636 *
5637 * We need to consider the worse case, when
5638 * one new block per extent.
5639 */
5640 int ext4_writepage_trans_blocks(struct inode *inode)
5641 {
5642 int bpp = ext4_journal_blocks_per_page(inode);
5643 int ret;
5644
5645 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5646
5647 /* Account for data blocks for journalled mode */
5648 if (ext4_should_journal_data(inode))
5649 ret += bpp;
5650 return ret;
5651 }
5652
5653 /*
5654 * Calculate the journal credits for a chunk of data modification.
5655 *
5656 * This is called from DIO, fallocate or whoever calling
5657 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5658 *
5659 * journal buffers for data blocks are not included here, as DIO
5660 * and fallocate do no need to journal data buffers.
5661 */
5662 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5663 {
5664 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5665 }
5666
5667 /*
5668 * The caller must have previously called ext4_reserve_inode_write().
5669 * Give this, we know that the caller already has write access to iloc->bh.
5670 */
5671 int ext4_mark_iloc_dirty(handle_t *handle,
5672 struct inode *inode, struct ext4_iloc *iloc)
5673 {
5674 int err = 0;
5675
5676 if (test_opt(inode->i_sb, I_VERSION))
5677 inode_inc_iversion(inode);
5678
5679 /* the do_update_inode consumes one bh->b_count */
5680 get_bh(iloc->bh);
5681
5682 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5683 err = ext4_do_update_inode(handle, inode, iloc);
5684 put_bh(iloc->bh);
5685 return err;
5686 }
5687
5688 /*
5689 * On success, We end up with an outstanding reference count against
5690 * iloc->bh. This _must_ be cleaned up later.
5691 */
5692
5693 int
5694 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5695 struct ext4_iloc *iloc)
5696 {
5697 int err;
5698
5699 err = ext4_get_inode_loc(inode, iloc);
5700 if (!err) {
5701 BUFFER_TRACE(iloc->bh, "get_write_access");
5702 err = ext4_journal_get_write_access(handle, iloc->bh);
5703 if (err) {
5704 brelse(iloc->bh);
5705 iloc->bh = NULL;
5706 }
5707 }
5708 ext4_std_error(inode->i_sb, err);
5709 return err;
5710 }
5711
5712 /*
5713 * Expand an inode by new_extra_isize bytes.
5714 * Returns 0 on success or negative error number on failure.
5715 */
5716 static int ext4_expand_extra_isize(struct inode *inode,
5717 unsigned int new_extra_isize,
5718 struct ext4_iloc iloc,
5719 handle_t *handle)
5720 {
5721 struct ext4_inode *raw_inode;
5722 struct ext4_xattr_ibody_header *header;
5723 struct ext4_xattr_entry *entry;
5724
5725 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5726 return 0;
5727
5728 raw_inode = ext4_raw_inode(&iloc);
5729
5730 header = IHDR(inode, raw_inode);
5731 entry = IFIRST(header);
5732
5733 /* No extended attributes present */
5734 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5735 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5736 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5737 new_extra_isize);
5738 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5739 return 0;
5740 }
5741
5742 /* try to expand with EAs present */
5743 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5744 raw_inode, handle);
5745 }
5746
5747 /*
5748 * What we do here is to mark the in-core inode as clean with respect to inode
5749 * dirtiness (it may still be data-dirty).
5750 * This means that the in-core inode may be reaped by prune_icache
5751 * without having to perform any I/O. This is a very good thing,
5752 * because *any* task may call prune_icache - even ones which
5753 * have a transaction open against a different journal.
5754 *
5755 * Is this cheating? Not really. Sure, we haven't written the
5756 * inode out, but prune_icache isn't a user-visible syncing function.
5757 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5758 * we start and wait on commits.
5759 *
5760 * Is this efficient/effective? Well, we're being nice to the system
5761 * by cleaning up our inodes proactively so they can be reaped
5762 * without I/O. But we are potentially leaving up to five seconds'
5763 * worth of inodes floating about which prune_icache wants us to
5764 * write out. One way to fix that would be to get prune_icache()
5765 * to do a write_super() to free up some memory. It has the desired
5766 * effect.
5767 */
5768 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5769 {
5770 struct ext4_iloc iloc;
5771 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5772 static unsigned int mnt_count;
5773 int err, ret;
5774
5775 might_sleep();
5776 err = ext4_reserve_inode_write(handle, inode, &iloc);
5777 if (ext4_handle_valid(handle) &&
5778 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5779 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5780 /*
5781 * We need extra buffer credits since we may write into EA block
5782 * with this same handle. If journal_extend fails, then it will
5783 * only result in a minor loss of functionality for that inode.
5784 * If this is felt to be critical, then e2fsck should be run to
5785 * force a large enough s_min_extra_isize.
5786 */
5787 if ((jbd2_journal_extend(handle,
5788 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5789 ret = ext4_expand_extra_isize(inode,
5790 sbi->s_want_extra_isize,
5791 iloc, handle);
5792 if (ret) {
5793 ext4_set_inode_state(inode,
5794 EXT4_STATE_NO_EXPAND);
5795 if (mnt_count !=
5796 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5797 ext4_warning(inode->i_sb,
5798 "Unable to expand inode %lu. Delete"
5799 " some EAs or run e2fsck.",
5800 inode->i_ino);
5801 mnt_count =
5802 le16_to_cpu(sbi->s_es->s_mnt_count);
5803 }
5804 }
5805 }
5806 }
5807 if (!err)
5808 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5809 return err;
5810 }
5811
5812 /*
5813 * ext4_dirty_inode() is called from __mark_inode_dirty()
5814 *
5815 * We're really interested in the case where a file is being extended.
5816 * i_size has been changed by generic_commit_write() and we thus need
5817 * to include the updated inode in the current transaction.
5818 *
5819 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5820 * are allocated to the file.
5821 *
5822 * If the inode is marked synchronous, we don't honour that here - doing
5823 * so would cause a commit on atime updates, which we don't bother doing.
5824 * We handle synchronous inodes at the highest possible level.
5825 */
5826 void ext4_dirty_inode(struct inode *inode)
5827 {
5828 handle_t *handle;
5829
5830 handle = ext4_journal_start(inode, 2);
5831 if (IS_ERR(handle))
5832 goto out;
5833
5834 ext4_mark_inode_dirty(handle, inode);
5835
5836 ext4_journal_stop(handle);
5837 out:
5838 return;
5839 }
5840
5841 #if 0
5842 /*
5843 * Bind an inode's backing buffer_head into this transaction, to prevent
5844 * it from being flushed to disk early. Unlike
5845 * ext4_reserve_inode_write, this leaves behind no bh reference and
5846 * returns no iloc structure, so the caller needs to repeat the iloc
5847 * lookup to mark the inode dirty later.
5848 */
5849 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5850 {
5851 struct ext4_iloc iloc;
5852
5853 int err = 0;
5854 if (handle) {
5855 err = ext4_get_inode_loc(inode, &iloc);
5856 if (!err) {
5857 BUFFER_TRACE(iloc.bh, "get_write_access");
5858 err = jbd2_journal_get_write_access(handle, iloc.bh);
5859 if (!err)
5860 err = ext4_handle_dirty_metadata(handle,
5861 NULL,
5862 iloc.bh);
5863 brelse(iloc.bh);
5864 }
5865 }
5866 ext4_std_error(inode->i_sb, err);
5867 return err;
5868 }
5869 #endif
5870
5871 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5872 {
5873 journal_t *journal;
5874 handle_t *handle;
5875 int err;
5876
5877 /*
5878 * We have to be very careful here: changing a data block's
5879 * journaling status dynamically is dangerous. If we write a
5880 * data block to the journal, change the status and then delete
5881 * that block, we risk forgetting to revoke the old log record
5882 * from the journal and so a subsequent replay can corrupt data.
5883 * So, first we make sure that the journal is empty and that
5884 * nobody is changing anything.
5885 */
5886
5887 journal = EXT4_JOURNAL(inode);
5888 if (!journal)
5889 return 0;
5890 if (is_journal_aborted(journal))
5891 return -EROFS;
5892
5893 jbd2_journal_lock_updates(journal);
5894 jbd2_journal_flush(journal);
5895
5896 /*
5897 * OK, there are no updates running now, and all cached data is
5898 * synced to disk. We are now in a completely consistent state
5899 * which doesn't have anything in the journal, and we know that
5900 * no filesystem updates are running, so it is safe to modify
5901 * the inode's in-core data-journaling state flag now.
5902 */
5903
5904 if (val)
5905 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5906 else
5907 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5908 ext4_set_aops(inode);
5909
5910 jbd2_journal_unlock_updates(journal);
5911
5912 /* Finally we can mark the inode as dirty. */
5913
5914 handle = ext4_journal_start(inode, 1);
5915 if (IS_ERR(handle))
5916 return PTR_ERR(handle);
5917
5918 err = ext4_mark_inode_dirty(handle, inode);
5919 ext4_handle_sync(handle);
5920 ext4_journal_stop(handle);
5921 ext4_std_error(inode->i_sb, err);
5922
5923 return err;
5924 }
5925
5926 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5927 {
5928 return !buffer_mapped(bh);
5929 }
5930
5931 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5932 {
5933 struct page *page = vmf->page;
5934 loff_t size;
5935 unsigned long len;
5936 int ret = -EINVAL;
5937 void *fsdata;
5938 struct file *file = vma->vm_file;
5939 struct inode *inode = file->f_path.dentry->d_inode;
5940 struct address_space *mapping = inode->i_mapping;
5941
5942 /*
5943 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5944 * get i_mutex because we are already holding mmap_sem.
5945 */
5946 down_read(&inode->i_alloc_sem);
5947 size = i_size_read(inode);
5948 if (page->mapping != mapping || size <= page_offset(page)
5949 || !PageUptodate(page)) {
5950 /* page got truncated from under us? */
5951 goto out_unlock;
5952 }
5953 ret = 0;
5954 if (PageMappedToDisk(page))
5955 goto out_unlock;
5956
5957 if (page->index == size >> PAGE_CACHE_SHIFT)
5958 len = size & ~PAGE_CACHE_MASK;
5959 else
5960 len = PAGE_CACHE_SIZE;
5961
5962 lock_page(page);
5963 /*
5964 * return if we have all the buffers mapped. This avoid
5965 * the need to call write_begin/write_end which does a
5966 * journal_start/journal_stop which can block and take
5967 * long time
5968 */
5969 if (page_has_buffers(page)) {
5970 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5971 ext4_bh_unmapped)) {
5972 unlock_page(page);
5973 goto out_unlock;
5974 }
5975 }
5976 unlock_page(page);
5977 /*
5978 * OK, we need to fill the hole... Do write_begin write_end
5979 * to do block allocation/reservation.We are not holding
5980 * inode.i__mutex here. That allow * parallel write_begin,
5981 * write_end call. lock_page prevent this from happening
5982 * on the same page though
5983 */
5984 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5985 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5986 if (ret < 0)
5987 goto out_unlock;
5988 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5989 len, len, page, fsdata);
5990 if (ret < 0)
5991 goto out_unlock;
5992 ret = 0;
5993 out_unlock:
5994 if (ret)
5995 ret = VM_FAULT_SIGBUS;
5996 up_read(&inode->i_alloc_sem);
5997 return ret;
5998 }
This page took 0.173705 seconds and 6 git commands to generate.