ext4: Use direct_IO_no_locking in ext4 dio read
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "ext4_extents.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 return jbd2_journal_begin_ordered_truncate(
56 EXT4_SB(inode->i_sb)->s_journal,
57 &EXT4_I(inode)->jinode,
58 new_size);
59 }
60
61 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62
63 /*
64 * Test whether an inode is a fast symlink.
65 */
66 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 {
68 int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 (inode->i_sb->s_blocksize >> 9) : 0;
70
71 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
72 }
73
74 /*
75 * Work out how many blocks we need to proceed with the next chunk of a
76 * truncate transaction.
77 */
78 static unsigned long blocks_for_truncate(struct inode *inode)
79 {
80 ext4_lblk_t needed;
81
82 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83
84 /* Give ourselves just enough room to cope with inodes in which
85 * i_blocks is corrupt: we've seen disk corruptions in the past
86 * which resulted in random data in an inode which looked enough
87 * like a regular file for ext4 to try to delete it. Things
88 * will go a bit crazy if that happens, but at least we should
89 * try not to panic the whole kernel. */
90 if (needed < 2)
91 needed = 2;
92
93 /* But we need to bound the transaction so we don't overflow the
94 * journal. */
95 if (needed > EXT4_MAX_TRANS_DATA)
96 needed = EXT4_MAX_TRANS_DATA;
97
98 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 }
100
101 /*
102 * Truncate transactions can be complex and absolutely huge. So we need to
103 * be able to restart the transaction at a conventient checkpoint to make
104 * sure we don't overflow the journal.
105 *
106 * start_transaction gets us a new handle for a truncate transaction,
107 * and extend_transaction tries to extend the existing one a bit. If
108 * extend fails, we need to propagate the failure up and restart the
109 * transaction in the top-level truncate loop. --sct
110 */
111 static handle_t *start_transaction(struct inode *inode)
112 {
113 handle_t *result;
114
115 result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 if (!IS_ERR(result))
117 return result;
118
119 ext4_std_error(inode->i_sb, PTR_ERR(result));
120 return result;
121 }
122
123 /*
124 * Try to extend this transaction for the purposes of truncation.
125 *
126 * Returns 0 if we managed to create more room. If we can't create more
127 * room, and the transaction must be restarted we return 1.
128 */
129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 {
131 if (!ext4_handle_valid(handle))
132 return 0;
133 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134 return 0;
135 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 return 0;
137 return 1;
138 }
139
140 /*
141 * Restart the transaction associated with *handle. This does a commit,
142 * so before we call here everything must be consistently dirtied against
143 * this transaction.
144 */
145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146 int nblocks)
147 {
148 int ret;
149
150 /*
151 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152 * moment, get_block can be called only for blocks inside i_size since
153 * page cache has been already dropped and writes are blocked by
154 * i_mutex. So we can safely drop the i_data_sem here.
155 */
156 BUG_ON(EXT4_JOURNAL(inode) == NULL);
157 jbd_debug(2, "restarting handle %p\n", handle);
158 up_write(&EXT4_I(inode)->i_data_sem);
159 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
160 down_write(&EXT4_I(inode)->i_data_sem);
161 ext4_discard_preallocations(inode);
162
163 return ret;
164 }
165
166 /*
167 * Called at the last iput() if i_nlink is zero.
168 */
169 void ext4_delete_inode(struct inode *inode)
170 {
171 handle_t *handle;
172 int err;
173
174 if (ext4_should_order_data(inode))
175 ext4_begin_ordered_truncate(inode, 0);
176 truncate_inode_pages(&inode->i_data, 0);
177
178 if (is_bad_inode(inode))
179 goto no_delete;
180
181 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
182 if (IS_ERR(handle)) {
183 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 /*
185 * If we're going to skip the normal cleanup, we still need to
186 * make sure that the in-core orphan linked list is properly
187 * cleaned up.
188 */
189 ext4_orphan_del(NULL, inode);
190 goto no_delete;
191 }
192
193 if (IS_SYNC(inode))
194 ext4_handle_sync(handle);
195 inode->i_size = 0;
196 err = ext4_mark_inode_dirty(handle, inode);
197 if (err) {
198 ext4_warning(inode->i_sb,
199 "couldn't mark inode dirty (err %d)", err);
200 goto stop_handle;
201 }
202 if (inode->i_blocks)
203 ext4_truncate(inode);
204
205 /*
206 * ext4_ext_truncate() doesn't reserve any slop when it
207 * restarts journal transactions; therefore there may not be
208 * enough credits left in the handle to remove the inode from
209 * the orphan list and set the dtime field.
210 */
211 if (!ext4_handle_has_enough_credits(handle, 3)) {
212 err = ext4_journal_extend(handle, 3);
213 if (err > 0)
214 err = ext4_journal_restart(handle, 3);
215 if (err != 0) {
216 ext4_warning(inode->i_sb,
217 "couldn't extend journal (err %d)", err);
218 stop_handle:
219 ext4_journal_stop(handle);
220 goto no_delete;
221 }
222 }
223
224 /*
225 * Kill off the orphan record which ext4_truncate created.
226 * AKPM: I think this can be inside the above `if'.
227 * Note that ext4_orphan_del() has to be able to cope with the
228 * deletion of a non-existent orphan - this is because we don't
229 * know if ext4_truncate() actually created an orphan record.
230 * (Well, we could do this if we need to, but heck - it works)
231 */
232 ext4_orphan_del(handle, inode);
233 EXT4_I(inode)->i_dtime = get_seconds();
234
235 /*
236 * One subtle ordering requirement: if anything has gone wrong
237 * (transaction abort, IO errors, whatever), then we can still
238 * do these next steps (the fs will already have been marked as
239 * having errors), but we can't free the inode if the mark_dirty
240 * fails.
241 */
242 if (ext4_mark_inode_dirty(handle, inode))
243 /* If that failed, just do the required in-core inode clear. */
244 clear_inode(inode);
245 else
246 ext4_free_inode(handle, inode);
247 ext4_journal_stop(handle);
248 return;
249 no_delete:
250 clear_inode(inode); /* We must guarantee clearing of inode... */
251 }
252
253 typedef struct {
254 __le32 *p;
255 __le32 key;
256 struct buffer_head *bh;
257 } Indirect;
258
259 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 {
261 p->key = *(p->p = v);
262 p->bh = bh;
263 }
264
265 /**
266 * ext4_block_to_path - parse the block number into array of offsets
267 * @inode: inode in question (we are only interested in its superblock)
268 * @i_block: block number to be parsed
269 * @offsets: array to store the offsets in
270 * @boundary: set this non-zero if the referred-to block is likely to be
271 * followed (on disk) by an indirect block.
272 *
273 * To store the locations of file's data ext4 uses a data structure common
274 * for UNIX filesystems - tree of pointers anchored in the inode, with
275 * data blocks at leaves and indirect blocks in intermediate nodes.
276 * This function translates the block number into path in that tree -
277 * return value is the path length and @offsets[n] is the offset of
278 * pointer to (n+1)th node in the nth one. If @block is out of range
279 * (negative or too large) warning is printed and zero returned.
280 *
281 * Note: function doesn't find node addresses, so no IO is needed. All
282 * we need to know is the capacity of indirect blocks (taken from the
283 * inode->i_sb).
284 */
285
286 /*
287 * Portability note: the last comparison (check that we fit into triple
288 * indirect block) is spelled differently, because otherwise on an
289 * architecture with 32-bit longs and 8Kb pages we might get into trouble
290 * if our filesystem had 8Kb blocks. We might use long long, but that would
291 * kill us on x86. Oh, well, at least the sign propagation does not matter -
292 * i_block would have to be negative in the very beginning, so we would not
293 * get there at all.
294 */
295
296 static int ext4_block_to_path(struct inode *inode,
297 ext4_lblk_t i_block,
298 ext4_lblk_t offsets[4], int *boundary)
299 {
300 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
301 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
302 const long direct_blocks = EXT4_NDIR_BLOCKS,
303 indirect_blocks = ptrs,
304 double_blocks = (1 << (ptrs_bits * 2));
305 int n = 0;
306 int final = 0;
307
308 if (i_block < direct_blocks) {
309 offsets[n++] = i_block;
310 final = direct_blocks;
311 } else if ((i_block -= direct_blocks) < indirect_blocks) {
312 offsets[n++] = EXT4_IND_BLOCK;
313 offsets[n++] = i_block;
314 final = ptrs;
315 } else if ((i_block -= indirect_blocks) < double_blocks) {
316 offsets[n++] = EXT4_DIND_BLOCK;
317 offsets[n++] = i_block >> ptrs_bits;
318 offsets[n++] = i_block & (ptrs - 1);
319 final = ptrs;
320 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
321 offsets[n++] = EXT4_TIND_BLOCK;
322 offsets[n++] = i_block >> (ptrs_bits * 2);
323 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
324 offsets[n++] = i_block & (ptrs - 1);
325 final = ptrs;
326 } else {
327 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
330 }
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
338 {
339 __le32 *bref = p;
340 unsigned int blk;
341
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 __ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
351 }
352 }
353 return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
364
365 /**
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
372 *
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
384 *
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
391 *
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
394 */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
398 {
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
402
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
412
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
417 }
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
422 }
423 }
424
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
429 }
430 return NULL;
431
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
436 }
437
438 /**
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
442 *
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
450 *
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
455 *
456 * Caller must make sure that @ind is valid and will stay that way.
457 */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
473 }
474
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
478
479 /*
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
482 */
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
488 }
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492 /*
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
495 */
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
498
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
505 }
506
507 /**
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
512 *
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
517 */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
520 {
521 ext4_fsblk_t goal;
522
523 /*
524 * XXX need to get goal block from mballoc's data structures
525 */
526
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
530 }
531
532 /**
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
535 *
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
540 *
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
543 */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
546 {
547 unsigned int count = 0;
548
549 /*
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
552 */
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
560 }
561
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
566 }
567 return count;
568 }
569
570 /**
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
574 *
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
579 */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
584 {
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
591
592 /*
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
599 */
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
609
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
617 }
618 if (count > 0) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
628 }
629 }
630
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
644
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648 if (*err && (target == blks)) {
649 /*
650 * if the allocation failed and we didn't allocate
651 * any blocks before
652 */
653 goto failed_out;
654 }
655 if (!*err) {
656 if (target == blks) {
657 /*
658 * save the new block number
659 * for the first direct block
660 */
661 new_blocks[index] = current_block;
662 }
663 blk_allocated += ar.len;
664 }
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
674 }
675
676 /**
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
683 *
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
695 *
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
700 */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
705 {
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
713
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
718
719 branch[0].key = cpu_to_le32(new_blocks[0]);
720 /*
721 * metadata blocks and data blocks are allocated.
722 */
723 for (n = 1; n <= indirect_blks; n++) {
724 /*
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
728 */
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
739 }
740
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
747 /*
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
751 */
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
754 }
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
758
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
763 }
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
770 /*
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
774 */
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
777 }
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782
783 return err;
784 }
785
786 /**
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
795 *
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
799 */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
803 {
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
807
808 /*
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
812 */
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
818 }
819 /* That's it */
820
821 *where->p = where->key;
822
823 /*
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
826 */
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
831 }
832
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
836 /*
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 */
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
850 /*
851 * OK, we spliced it into the inode itself on a direct block.
852 */
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
855 }
856 return err;
857
858 err_out:
859 for (i = 1; i <= num; i++) {
860 /*
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
864 */
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
867 }
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
870
871 return err;
872 }
873
874 /*
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
878 *
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
889 *
890 * `handle' can be NULL if create == 0.
891 *
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
895 *
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
901 */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
906 {
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
917
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
922
923 if (depth == 0)
924 goto out;
925
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
936
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
943 }
944 goto got_it;
945 }
946
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
950
951 /*
952 * Okay, we need to do block allocation.
953 */
954 goal = ext4_find_goal(inode, iblock, partial);
955
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
958
959 /*
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
962 */
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
965 /*
966 * Block out ext4_truncate while we alter the tree
967 */
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
971
972 /*
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
978 */
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
984
985 set_buffer_new(bh_result);
986
987 ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995 cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1000 }
1001 BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 return err;
1004 }
1005
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009 return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012
1013 /*
1014 * Calculate the number of metadata blocks need to reserve
1015 * to allocate a new block at @lblocks for non extent file based file
1016 */
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 sector_t lblock)
1019 {
1020 struct ext4_inode_info *ei = EXT4_I(inode);
1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 int blk_bits;
1023
1024 if (lblock < EXT4_NDIR_BLOCKS)
1025 return 0;
1026
1027 lblock -= EXT4_NDIR_BLOCKS;
1028
1029 if (ei->i_da_metadata_calc_len &&
1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 ei->i_da_metadata_calc_len++;
1032 return 0;
1033 }
1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 ei->i_da_metadata_calc_len = 1;
1036 blk_bits = roundup_pow_of_two(lblock + 1);
1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 }
1039
1040 /*
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate a block located at @lblock
1043 */
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 {
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 return ext4_ext_calc_metadata_amount(inode, lblock);
1048
1049 return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 }
1051
1052 /*
1053 * Called with i_data_sem down, which is important since we can call
1054 * ext4_discard_preallocations() from here.
1055 */
1056 void ext4_da_update_reserve_space(struct inode *inode,
1057 int used, int quota_claim)
1058 {
1059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1060 struct ext4_inode_info *ei = EXT4_I(inode);
1061 int mdb_free = 0, allocated_meta_blocks = 0;
1062
1063 spin_lock(&ei->i_block_reservation_lock);
1064 trace_ext4_da_update_reserve_space(inode, used);
1065 if (unlikely(used > ei->i_reserved_data_blocks)) {
1066 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1067 "with only %d reserved data blocks\n",
1068 __func__, inode->i_ino, used,
1069 ei->i_reserved_data_blocks);
1070 WARN_ON(1);
1071 used = ei->i_reserved_data_blocks;
1072 }
1073
1074 /* Update per-inode reservations */
1075 ei->i_reserved_data_blocks -= used;
1076 used += ei->i_allocated_meta_blocks;
1077 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1078 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1079 ei->i_allocated_meta_blocks = 0;
1080 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1081
1082 if (ei->i_reserved_data_blocks == 0) {
1083 /*
1084 * We can release all of the reserved metadata blocks
1085 * only when we have written all of the delayed
1086 * allocation blocks.
1087 */
1088 mdb_free = ei->i_reserved_meta_blocks;
1089 ei->i_reserved_meta_blocks = 0;
1090 ei->i_da_metadata_calc_len = 0;
1091 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1092 }
1093 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1094
1095 /* Update quota subsystem */
1096 if (quota_claim) {
1097 vfs_dq_claim_block(inode, used);
1098 if (mdb_free)
1099 vfs_dq_release_reservation_block(inode, mdb_free);
1100 } else {
1101 /*
1102 * We did fallocate with an offset that is already delayed
1103 * allocated. So on delayed allocated writeback we should
1104 * not update the quota for allocated blocks. But then
1105 * converting an fallocate region to initialized region would
1106 * have caused a metadata allocation. So claim quota for
1107 * that
1108 */
1109 if (allocated_meta_blocks)
1110 vfs_dq_claim_block(inode, allocated_meta_blocks);
1111 vfs_dq_release_reservation_block(inode, mdb_free + used);
1112 }
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if ((ei->i_reserved_data_blocks == 0) &&
1120 (atomic_read(&inode->i_writecount) == 0))
1121 ext4_discard_preallocations(inode);
1122 }
1123
1124 static int check_block_validity(struct inode *inode, const char *msg,
1125 sector_t logical, sector_t phys, int len)
1126 {
1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1128 __ext4_error(inode->i_sb, msg,
1129 "inode #%lu logical block %llu mapped to %llu "
1130 "(size %d)", inode->i_ino,
1131 (unsigned long long) logical,
1132 (unsigned long long) phys, len);
1133 return -EIO;
1134 }
1135 return 0;
1136 }
1137
1138 /*
1139 * Return the number of contiguous dirty pages in a given inode
1140 * starting at page frame idx.
1141 */
1142 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1143 unsigned int max_pages)
1144 {
1145 struct address_space *mapping = inode->i_mapping;
1146 pgoff_t index;
1147 struct pagevec pvec;
1148 pgoff_t num = 0;
1149 int i, nr_pages, done = 0;
1150
1151 if (max_pages == 0)
1152 return 0;
1153 pagevec_init(&pvec, 0);
1154 while (!done) {
1155 index = idx;
1156 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1157 PAGECACHE_TAG_DIRTY,
1158 (pgoff_t)PAGEVEC_SIZE);
1159 if (nr_pages == 0)
1160 break;
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1163 struct buffer_head *bh, *head;
1164
1165 lock_page(page);
1166 if (unlikely(page->mapping != mapping) ||
1167 !PageDirty(page) ||
1168 PageWriteback(page) ||
1169 page->index != idx) {
1170 done = 1;
1171 unlock_page(page);
1172 break;
1173 }
1174 if (page_has_buffers(page)) {
1175 bh = head = page_buffers(page);
1176 do {
1177 if (!buffer_delay(bh) &&
1178 !buffer_unwritten(bh))
1179 done = 1;
1180 bh = bh->b_this_page;
1181 } while (!done && (bh != head));
1182 }
1183 unlock_page(page);
1184 if (done)
1185 break;
1186 idx++;
1187 num++;
1188 if (num >= max_pages)
1189 break;
1190 }
1191 pagevec_release(&pvec);
1192 }
1193 return num;
1194 }
1195
1196 /*
1197 * The ext4_get_blocks() function tries to look up the requested blocks,
1198 * and returns if the blocks are already mapped.
1199 *
1200 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1201 * and store the allocated blocks in the result buffer head and mark it
1202 * mapped.
1203 *
1204 * If file type is extents based, it will call ext4_ext_get_blocks(),
1205 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1206 * based files
1207 *
1208 * On success, it returns the number of blocks being mapped or allocate.
1209 * if create==0 and the blocks are pre-allocated and uninitialized block,
1210 * the result buffer head is unmapped. If the create ==1, it will make sure
1211 * the buffer head is mapped.
1212 *
1213 * It returns 0 if plain look up failed (blocks have not been allocated), in
1214 * that casem, buffer head is unmapped
1215 *
1216 * It returns the error in case of allocation failure.
1217 */
1218 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1219 unsigned int max_blocks, struct buffer_head *bh,
1220 int flags)
1221 {
1222 int retval;
1223
1224 clear_buffer_mapped(bh);
1225 clear_buffer_unwritten(bh);
1226
1227 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1228 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1229 (unsigned long)block);
1230 /*
1231 * Try to see if we can get the block without requesting a new
1232 * file system block.
1233 */
1234 down_read((&EXT4_I(inode)->i_data_sem));
1235 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1236 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1237 bh, 0);
1238 } else {
1239 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1240 bh, 0);
1241 }
1242 up_read((&EXT4_I(inode)->i_data_sem));
1243
1244 if (retval > 0 && buffer_mapped(bh)) {
1245 int ret = check_block_validity(inode, "file system corruption",
1246 block, bh->b_blocknr, retval);
1247 if (ret != 0)
1248 return ret;
1249 }
1250
1251 /* If it is only a block(s) look up */
1252 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1253 return retval;
1254
1255 /*
1256 * Returns if the blocks have already allocated
1257 *
1258 * Note that if blocks have been preallocated
1259 * ext4_ext_get_block() returns th create = 0
1260 * with buffer head unmapped.
1261 */
1262 if (retval > 0 && buffer_mapped(bh))
1263 return retval;
1264
1265 /*
1266 * When we call get_blocks without the create flag, the
1267 * BH_Unwritten flag could have gotten set if the blocks
1268 * requested were part of a uninitialized extent. We need to
1269 * clear this flag now that we are committed to convert all or
1270 * part of the uninitialized extent to be an initialized
1271 * extent. This is because we need to avoid the combination
1272 * of BH_Unwritten and BH_Mapped flags being simultaneously
1273 * set on the buffer_head.
1274 */
1275 clear_buffer_unwritten(bh);
1276
1277 /*
1278 * New blocks allocate and/or writing to uninitialized extent
1279 * will possibly result in updating i_data, so we take
1280 * the write lock of i_data_sem, and call get_blocks()
1281 * with create == 1 flag.
1282 */
1283 down_write((&EXT4_I(inode)->i_data_sem));
1284
1285 /*
1286 * if the caller is from delayed allocation writeout path
1287 * we have already reserved fs blocks for allocation
1288 * let the underlying get_block() function know to
1289 * avoid double accounting
1290 */
1291 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1292 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1293 /*
1294 * We need to check for EXT4 here because migrate
1295 * could have changed the inode type in between
1296 */
1297 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1298 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1299 bh, flags);
1300 } else {
1301 retval = ext4_ind_get_blocks(handle, inode, block,
1302 max_blocks, bh, flags);
1303
1304 if (retval > 0 && buffer_new(bh)) {
1305 /*
1306 * We allocated new blocks which will result in
1307 * i_data's format changing. Force the migrate
1308 * to fail by clearing migrate flags
1309 */
1310 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1311 }
1312
1313 /*
1314 * Update reserved blocks/metadata blocks after successful
1315 * block allocation which had been deferred till now. We don't
1316 * support fallocate for non extent files. So we can update
1317 * reserve space here.
1318 */
1319 if ((retval > 0) &&
1320 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1321 ext4_da_update_reserve_space(inode, retval, 1);
1322 }
1323 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1325
1326 up_write((&EXT4_I(inode)->i_data_sem));
1327 if (retval > 0 && buffer_mapped(bh)) {
1328 int ret = check_block_validity(inode, "file system "
1329 "corruption after allocation",
1330 block, bh->b_blocknr, retval);
1331 if (ret != 0)
1332 return ret;
1333 }
1334 return retval;
1335 }
1336
1337 /* Maximum number of blocks we map for direct IO at once. */
1338 #define DIO_MAX_BLOCKS 4096
1339
1340 int ext4_get_block(struct inode *inode, sector_t iblock,
1341 struct buffer_head *bh_result, int create)
1342 {
1343 handle_t *handle = ext4_journal_current_handle();
1344 int ret = 0, started = 0;
1345 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1346 int dio_credits;
1347
1348 if (create && !handle) {
1349 /* Direct IO write... */
1350 if (max_blocks > DIO_MAX_BLOCKS)
1351 max_blocks = DIO_MAX_BLOCKS;
1352 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1353 handle = ext4_journal_start(inode, dio_credits);
1354 if (IS_ERR(handle)) {
1355 ret = PTR_ERR(handle);
1356 goto out;
1357 }
1358 started = 1;
1359 }
1360
1361 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1362 create ? EXT4_GET_BLOCKS_CREATE : 0);
1363 if (ret > 0) {
1364 bh_result->b_size = (ret << inode->i_blkbits);
1365 ret = 0;
1366 }
1367 if (started)
1368 ext4_journal_stop(handle);
1369 out:
1370 return ret;
1371 }
1372
1373 /*
1374 * `handle' can be NULL if create is zero
1375 */
1376 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1377 ext4_lblk_t block, int create, int *errp)
1378 {
1379 struct buffer_head dummy;
1380 int fatal = 0, err;
1381 int flags = 0;
1382
1383 J_ASSERT(handle != NULL || create == 0);
1384
1385 dummy.b_state = 0;
1386 dummy.b_blocknr = -1000;
1387 buffer_trace_init(&dummy.b_history);
1388 if (create)
1389 flags |= EXT4_GET_BLOCKS_CREATE;
1390 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1391 /*
1392 * ext4_get_blocks() returns number of blocks mapped. 0 in
1393 * case of a HOLE.
1394 */
1395 if (err > 0) {
1396 if (err > 1)
1397 WARN_ON(1);
1398 err = 0;
1399 }
1400 *errp = err;
1401 if (!err && buffer_mapped(&dummy)) {
1402 struct buffer_head *bh;
1403 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1404 if (!bh) {
1405 *errp = -EIO;
1406 goto err;
1407 }
1408 if (buffer_new(&dummy)) {
1409 J_ASSERT(create != 0);
1410 J_ASSERT(handle != NULL);
1411
1412 /*
1413 * Now that we do not always journal data, we should
1414 * keep in mind whether this should always journal the
1415 * new buffer as metadata. For now, regular file
1416 * writes use ext4_get_block instead, so it's not a
1417 * problem.
1418 */
1419 lock_buffer(bh);
1420 BUFFER_TRACE(bh, "call get_create_access");
1421 fatal = ext4_journal_get_create_access(handle, bh);
1422 if (!fatal && !buffer_uptodate(bh)) {
1423 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1424 set_buffer_uptodate(bh);
1425 }
1426 unlock_buffer(bh);
1427 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1428 err = ext4_handle_dirty_metadata(handle, inode, bh);
1429 if (!fatal)
1430 fatal = err;
1431 } else {
1432 BUFFER_TRACE(bh, "not a new buffer");
1433 }
1434 if (fatal) {
1435 *errp = fatal;
1436 brelse(bh);
1437 bh = NULL;
1438 }
1439 return bh;
1440 }
1441 err:
1442 return NULL;
1443 }
1444
1445 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1446 ext4_lblk_t block, int create, int *err)
1447 {
1448 struct buffer_head *bh;
1449
1450 bh = ext4_getblk(handle, inode, block, create, err);
1451 if (!bh)
1452 return bh;
1453 if (buffer_uptodate(bh))
1454 return bh;
1455 ll_rw_block(READ_META, 1, &bh);
1456 wait_on_buffer(bh);
1457 if (buffer_uptodate(bh))
1458 return bh;
1459 put_bh(bh);
1460 *err = -EIO;
1461 return NULL;
1462 }
1463
1464 static int walk_page_buffers(handle_t *handle,
1465 struct buffer_head *head,
1466 unsigned from,
1467 unsigned to,
1468 int *partial,
1469 int (*fn)(handle_t *handle,
1470 struct buffer_head *bh))
1471 {
1472 struct buffer_head *bh;
1473 unsigned block_start, block_end;
1474 unsigned blocksize = head->b_size;
1475 int err, ret = 0;
1476 struct buffer_head *next;
1477
1478 for (bh = head, block_start = 0;
1479 ret == 0 && (bh != head || !block_start);
1480 block_start = block_end, bh = next) {
1481 next = bh->b_this_page;
1482 block_end = block_start + blocksize;
1483 if (block_end <= from || block_start >= to) {
1484 if (partial && !buffer_uptodate(bh))
1485 *partial = 1;
1486 continue;
1487 }
1488 err = (*fn)(handle, bh);
1489 if (!ret)
1490 ret = err;
1491 }
1492 return ret;
1493 }
1494
1495 /*
1496 * To preserve ordering, it is essential that the hole instantiation and
1497 * the data write be encapsulated in a single transaction. We cannot
1498 * close off a transaction and start a new one between the ext4_get_block()
1499 * and the commit_write(). So doing the jbd2_journal_start at the start of
1500 * prepare_write() is the right place.
1501 *
1502 * Also, this function can nest inside ext4_writepage() ->
1503 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1504 * has generated enough buffer credits to do the whole page. So we won't
1505 * block on the journal in that case, which is good, because the caller may
1506 * be PF_MEMALLOC.
1507 *
1508 * By accident, ext4 can be reentered when a transaction is open via
1509 * quota file writes. If we were to commit the transaction while thus
1510 * reentered, there can be a deadlock - we would be holding a quota
1511 * lock, and the commit would never complete if another thread had a
1512 * transaction open and was blocking on the quota lock - a ranking
1513 * violation.
1514 *
1515 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1516 * will _not_ run commit under these circumstances because handle->h_ref
1517 * is elevated. We'll still have enough credits for the tiny quotafile
1518 * write.
1519 */
1520 static int do_journal_get_write_access(handle_t *handle,
1521 struct buffer_head *bh)
1522 {
1523 if (!buffer_mapped(bh) || buffer_freed(bh))
1524 return 0;
1525 return ext4_journal_get_write_access(handle, bh);
1526 }
1527
1528 /*
1529 * Truncate blocks that were not used by write. We have to truncate the
1530 * pagecache as well so that corresponding buffers get properly unmapped.
1531 */
1532 static void ext4_truncate_failed_write(struct inode *inode)
1533 {
1534 truncate_inode_pages(inode->i_mapping, inode->i_size);
1535 ext4_truncate(inode);
1536 }
1537
1538 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1539 struct buffer_head *bh_result, int create);
1540 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1541 loff_t pos, unsigned len, unsigned flags,
1542 struct page **pagep, void **fsdata)
1543 {
1544 struct inode *inode = mapping->host;
1545 int ret, needed_blocks;
1546 handle_t *handle;
1547 int retries = 0;
1548 struct page *page;
1549 pgoff_t index;
1550 unsigned from, to;
1551
1552 trace_ext4_write_begin(inode, pos, len, flags);
1553 /*
1554 * Reserve one block more for addition to orphan list in case
1555 * we allocate blocks but write fails for some reason
1556 */
1557 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1558 index = pos >> PAGE_CACHE_SHIFT;
1559 from = pos & (PAGE_CACHE_SIZE - 1);
1560 to = from + len;
1561
1562 retry:
1563 handle = ext4_journal_start(inode, needed_blocks);
1564 if (IS_ERR(handle)) {
1565 ret = PTR_ERR(handle);
1566 goto out;
1567 }
1568
1569 /* We cannot recurse into the filesystem as the transaction is already
1570 * started */
1571 flags |= AOP_FLAG_NOFS;
1572
1573 page = grab_cache_page_write_begin(mapping, index, flags);
1574 if (!page) {
1575 ext4_journal_stop(handle);
1576 ret = -ENOMEM;
1577 goto out;
1578 }
1579 *pagep = page;
1580
1581 if (ext4_should_dioread_nolock(inode))
1582 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1583 fsdata, ext4_get_block_write);
1584 else
1585 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1586 fsdata, ext4_get_block);
1587
1588 if (!ret && ext4_should_journal_data(inode)) {
1589 ret = walk_page_buffers(handle, page_buffers(page),
1590 from, to, NULL, do_journal_get_write_access);
1591 }
1592
1593 if (ret) {
1594 unlock_page(page);
1595 page_cache_release(page);
1596 /*
1597 * block_write_begin may have instantiated a few blocks
1598 * outside i_size. Trim these off again. Don't need
1599 * i_size_read because we hold i_mutex.
1600 *
1601 * Add inode to orphan list in case we crash before
1602 * truncate finishes
1603 */
1604 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1605 ext4_orphan_add(handle, inode);
1606
1607 ext4_journal_stop(handle);
1608 if (pos + len > inode->i_size) {
1609 ext4_truncate_failed_write(inode);
1610 /*
1611 * If truncate failed early the inode might
1612 * still be on the orphan list; we need to
1613 * make sure the inode is removed from the
1614 * orphan list in that case.
1615 */
1616 if (inode->i_nlink)
1617 ext4_orphan_del(NULL, inode);
1618 }
1619 }
1620
1621 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1622 goto retry;
1623 out:
1624 return ret;
1625 }
1626
1627 /* For write_end() in data=journal mode */
1628 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1629 {
1630 if (!buffer_mapped(bh) || buffer_freed(bh))
1631 return 0;
1632 set_buffer_uptodate(bh);
1633 return ext4_handle_dirty_metadata(handle, NULL, bh);
1634 }
1635
1636 static int ext4_generic_write_end(struct file *file,
1637 struct address_space *mapping,
1638 loff_t pos, unsigned len, unsigned copied,
1639 struct page *page, void *fsdata)
1640 {
1641 int i_size_changed = 0;
1642 struct inode *inode = mapping->host;
1643 handle_t *handle = ext4_journal_current_handle();
1644
1645 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1646
1647 /*
1648 * No need to use i_size_read() here, the i_size
1649 * cannot change under us because we hold i_mutex.
1650 *
1651 * But it's important to update i_size while still holding page lock:
1652 * page writeout could otherwise come in and zero beyond i_size.
1653 */
1654 if (pos + copied > inode->i_size) {
1655 i_size_write(inode, pos + copied);
1656 i_size_changed = 1;
1657 }
1658
1659 if (pos + copied > EXT4_I(inode)->i_disksize) {
1660 /* We need to mark inode dirty even if
1661 * new_i_size is less that inode->i_size
1662 * bu greater than i_disksize.(hint delalloc)
1663 */
1664 ext4_update_i_disksize(inode, (pos + copied));
1665 i_size_changed = 1;
1666 }
1667 unlock_page(page);
1668 page_cache_release(page);
1669
1670 /*
1671 * Don't mark the inode dirty under page lock. First, it unnecessarily
1672 * makes the holding time of page lock longer. Second, it forces lock
1673 * ordering of page lock and transaction start for journaling
1674 * filesystems.
1675 */
1676 if (i_size_changed)
1677 ext4_mark_inode_dirty(handle, inode);
1678
1679 return copied;
1680 }
1681
1682 /*
1683 * We need to pick up the new inode size which generic_commit_write gave us
1684 * `file' can be NULL - eg, when called from page_symlink().
1685 *
1686 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1687 * buffers are managed internally.
1688 */
1689 static int ext4_ordered_write_end(struct file *file,
1690 struct address_space *mapping,
1691 loff_t pos, unsigned len, unsigned copied,
1692 struct page *page, void *fsdata)
1693 {
1694 handle_t *handle = ext4_journal_current_handle();
1695 struct inode *inode = mapping->host;
1696 int ret = 0, ret2;
1697
1698 trace_ext4_ordered_write_end(inode, pos, len, copied);
1699 ret = ext4_jbd2_file_inode(handle, inode);
1700
1701 if (ret == 0) {
1702 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1703 page, fsdata);
1704 copied = ret2;
1705 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1706 /* if we have allocated more blocks and copied
1707 * less. We will have blocks allocated outside
1708 * inode->i_size. So truncate them
1709 */
1710 ext4_orphan_add(handle, inode);
1711 if (ret2 < 0)
1712 ret = ret2;
1713 }
1714 ret2 = ext4_journal_stop(handle);
1715 if (!ret)
1716 ret = ret2;
1717
1718 if (pos + len > inode->i_size) {
1719 ext4_truncate_failed_write(inode);
1720 /*
1721 * If truncate failed early the inode might still be
1722 * on the orphan list; we need to make sure the inode
1723 * is removed from the orphan list in that case.
1724 */
1725 if (inode->i_nlink)
1726 ext4_orphan_del(NULL, inode);
1727 }
1728
1729
1730 return ret ? ret : copied;
1731 }
1732
1733 static int ext4_writeback_write_end(struct file *file,
1734 struct address_space *mapping,
1735 loff_t pos, unsigned len, unsigned copied,
1736 struct page *page, void *fsdata)
1737 {
1738 handle_t *handle = ext4_journal_current_handle();
1739 struct inode *inode = mapping->host;
1740 int ret = 0, ret2;
1741
1742 trace_ext4_writeback_write_end(inode, pos, len, copied);
1743 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1744 page, fsdata);
1745 copied = ret2;
1746 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 /* if we have allocated more blocks and copied
1748 * less. We will have blocks allocated outside
1749 * inode->i_size. So truncate them
1750 */
1751 ext4_orphan_add(handle, inode);
1752
1753 if (ret2 < 0)
1754 ret = ret2;
1755
1756 ret2 = ext4_journal_stop(handle);
1757 if (!ret)
1758 ret = ret2;
1759
1760 if (pos + len > inode->i_size) {
1761 ext4_truncate_failed_write(inode);
1762 /*
1763 * If truncate failed early the inode might still be
1764 * on the orphan list; we need to make sure the inode
1765 * is removed from the orphan list in that case.
1766 */
1767 if (inode->i_nlink)
1768 ext4_orphan_del(NULL, inode);
1769 }
1770
1771 return ret ? ret : copied;
1772 }
1773
1774 static int ext4_journalled_write_end(struct file *file,
1775 struct address_space *mapping,
1776 loff_t pos, unsigned len, unsigned copied,
1777 struct page *page, void *fsdata)
1778 {
1779 handle_t *handle = ext4_journal_current_handle();
1780 struct inode *inode = mapping->host;
1781 int ret = 0, ret2;
1782 int partial = 0;
1783 unsigned from, to;
1784 loff_t new_i_size;
1785
1786 trace_ext4_journalled_write_end(inode, pos, len, copied);
1787 from = pos & (PAGE_CACHE_SIZE - 1);
1788 to = from + len;
1789
1790 if (copied < len) {
1791 if (!PageUptodate(page))
1792 copied = 0;
1793 page_zero_new_buffers(page, from+copied, to);
1794 }
1795
1796 ret = walk_page_buffers(handle, page_buffers(page), from,
1797 to, &partial, write_end_fn);
1798 if (!partial)
1799 SetPageUptodate(page);
1800 new_i_size = pos + copied;
1801 if (new_i_size > inode->i_size)
1802 i_size_write(inode, pos+copied);
1803 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1804 if (new_i_size > EXT4_I(inode)->i_disksize) {
1805 ext4_update_i_disksize(inode, new_i_size);
1806 ret2 = ext4_mark_inode_dirty(handle, inode);
1807 if (!ret)
1808 ret = ret2;
1809 }
1810
1811 unlock_page(page);
1812 page_cache_release(page);
1813 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1814 /* if we have allocated more blocks and copied
1815 * less. We will have blocks allocated outside
1816 * inode->i_size. So truncate them
1817 */
1818 ext4_orphan_add(handle, inode);
1819
1820 ret2 = ext4_journal_stop(handle);
1821 if (!ret)
1822 ret = ret2;
1823 if (pos + len > inode->i_size) {
1824 ext4_truncate_failed_write(inode);
1825 /*
1826 * If truncate failed early the inode might still be
1827 * on the orphan list; we need to make sure the inode
1828 * is removed from the orphan list in that case.
1829 */
1830 if (inode->i_nlink)
1831 ext4_orphan_del(NULL, inode);
1832 }
1833
1834 return ret ? ret : copied;
1835 }
1836
1837 /*
1838 * Reserve a single block located at lblock
1839 */
1840 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1841 {
1842 int retries = 0;
1843 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844 struct ext4_inode_info *ei = EXT4_I(inode);
1845 unsigned long md_needed, md_reserved;
1846
1847 /*
1848 * recalculate the amount of metadata blocks to reserve
1849 * in order to allocate nrblocks
1850 * worse case is one extent per block
1851 */
1852 repeat:
1853 spin_lock(&ei->i_block_reservation_lock);
1854 md_reserved = ei->i_reserved_meta_blocks;
1855 md_needed = ext4_calc_metadata_amount(inode, lblock);
1856 trace_ext4_da_reserve_space(inode, md_needed);
1857 spin_unlock(&ei->i_block_reservation_lock);
1858
1859 /*
1860 * Make quota reservation here to prevent quota overflow
1861 * later. Real quota accounting is done at pages writeout
1862 * time.
1863 */
1864 if (vfs_dq_reserve_block(inode, md_needed + 1))
1865 return -EDQUOT;
1866
1867 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1868 vfs_dq_release_reservation_block(inode, md_needed + 1);
1869 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1870 yield();
1871 goto repeat;
1872 }
1873 return -ENOSPC;
1874 }
1875 spin_lock(&ei->i_block_reservation_lock);
1876 ei->i_reserved_data_blocks++;
1877 ei->i_reserved_meta_blocks += md_needed;
1878 spin_unlock(&ei->i_block_reservation_lock);
1879
1880 return 0; /* success */
1881 }
1882
1883 static void ext4_da_release_space(struct inode *inode, int to_free)
1884 {
1885 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1886 struct ext4_inode_info *ei = EXT4_I(inode);
1887
1888 if (!to_free)
1889 return; /* Nothing to release, exit */
1890
1891 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1892
1893 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1894 /*
1895 * if there aren't enough reserved blocks, then the
1896 * counter is messed up somewhere. Since this
1897 * function is called from invalidate page, it's
1898 * harmless to return without any action.
1899 */
1900 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1901 "ino %lu, to_free %d with only %d reserved "
1902 "data blocks\n", inode->i_ino, to_free,
1903 ei->i_reserved_data_blocks);
1904 WARN_ON(1);
1905 to_free = ei->i_reserved_data_blocks;
1906 }
1907 ei->i_reserved_data_blocks -= to_free;
1908
1909 if (ei->i_reserved_data_blocks == 0) {
1910 /*
1911 * We can release all of the reserved metadata blocks
1912 * only when we have written all of the delayed
1913 * allocation blocks.
1914 */
1915 to_free += ei->i_reserved_meta_blocks;
1916 ei->i_reserved_meta_blocks = 0;
1917 ei->i_da_metadata_calc_len = 0;
1918 }
1919
1920 /* update fs dirty blocks counter */
1921 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1922
1923 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1924
1925 vfs_dq_release_reservation_block(inode, to_free);
1926 }
1927
1928 static void ext4_da_page_release_reservation(struct page *page,
1929 unsigned long offset)
1930 {
1931 int to_release = 0;
1932 struct buffer_head *head, *bh;
1933 unsigned int curr_off = 0;
1934
1935 head = page_buffers(page);
1936 bh = head;
1937 do {
1938 unsigned int next_off = curr_off + bh->b_size;
1939
1940 if ((offset <= curr_off) && (buffer_delay(bh))) {
1941 to_release++;
1942 clear_buffer_delay(bh);
1943 }
1944 curr_off = next_off;
1945 } while ((bh = bh->b_this_page) != head);
1946 ext4_da_release_space(page->mapping->host, to_release);
1947 }
1948
1949 /*
1950 * Delayed allocation stuff
1951 */
1952
1953 /*
1954 * mpage_da_submit_io - walks through extent of pages and try to write
1955 * them with writepage() call back
1956 *
1957 * @mpd->inode: inode
1958 * @mpd->first_page: first page of the extent
1959 * @mpd->next_page: page after the last page of the extent
1960 *
1961 * By the time mpage_da_submit_io() is called we expect all blocks
1962 * to be allocated. this may be wrong if allocation failed.
1963 *
1964 * As pages are already locked by write_cache_pages(), we can't use it
1965 */
1966 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1967 {
1968 long pages_skipped;
1969 struct pagevec pvec;
1970 unsigned long index, end;
1971 int ret = 0, err, nr_pages, i;
1972 struct inode *inode = mpd->inode;
1973 struct address_space *mapping = inode->i_mapping;
1974
1975 BUG_ON(mpd->next_page <= mpd->first_page);
1976 /*
1977 * We need to start from the first_page to the next_page - 1
1978 * to make sure we also write the mapped dirty buffer_heads.
1979 * If we look at mpd->b_blocknr we would only be looking
1980 * at the currently mapped buffer_heads.
1981 */
1982 index = mpd->first_page;
1983 end = mpd->next_page - 1;
1984
1985 pagevec_init(&pvec, 0);
1986 while (index <= end) {
1987 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1988 if (nr_pages == 0)
1989 break;
1990 for (i = 0; i < nr_pages; i++) {
1991 struct page *page = pvec.pages[i];
1992
1993 index = page->index;
1994 if (index > end)
1995 break;
1996 index++;
1997
1998 BUG_ON(!PageLocked(page));
1999 BUG_ON(PageWriteback(page));
2000
2001 pages_skipped = mpd->wbc->pages_skipped;
2002 err = mapping->a_ops->writepage(page, mpd->wbc);
2003 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2004 /*
2005 * have successfully written the page
2006 * without skipping the same
2007 */
2008 mpd->pages_written++;
2009 /*
2010 * In error case, we have to continue because
2011 * remaining pages are still locked
2012 * XXX: unlock and re-dirty them?
2013 */
2014 if (ret == 0)
2015 ret = err;
2016 }
2017 pagevec_release(&pvec);
2018 }
2019 return ret;
2020 }
2021
2022 /*
2023 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2024 *
2025 * @mpd->inode - inode to walk through
2026 * @exbh->b_blocknr - first block on a disk
2027 * @exbh->b_size - amount of space in bytes
2028 * @logical - first logical block to start assignment with
2029 *
2030 * the function goes through all passed space and put actual disk
2031 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2032 */
2033 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2034 struct buffer_head *exbh)
2035 {
2036 struct inode *inode = mpd->inode;
2037 struct address_space *mapping = inode->i_mapping;
2038 int blocks = exbh->b_size >> inode->i_blkbits;
2039 sector_t pblock = exbh->b_blocknr, cur_logical;
2040 struct buffer_head *head, *bh;
2041 pgoff_t index, end;
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044
2045 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2046 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2047 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048
2049 pagevec_init(&pvec, 0);
2050
2051 while (index <= end) {
2052 /* XXX: optimize tail */
2053 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2054 if (nr_pages == 0)
2055 break;
2056 for (i = 0; i < nr_pages; i++) {
2057 struct page *page = pvec.pages[i];
2058
2059 index = page->index;
2060 if (index > end)
2061 break;
2062 index++;
2063
2064 BUG_ON(!PageLocked(page));
2065 BUG_ON(PageWriteback(page));
2066 BUG_ON(!page_has_buffers(page));
2067
2068 bh = page_buffers(page);
2069 head = bh;
2070
2071 /* skip blocks out of the range */
2072 do {
2073 if (cur_logical >= logical)
2074 break;
2075 cur_logical++;
2076 } while ((bh = bh->b_this_page) != head);
2077
2078 do {
2079 if (cur_logical >= logical + blocks)
2080 break;
2081
2082 if (buffer_delay(bh) ||
2083 buffer_unwritten(bh)) {
2084
2085 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2086
2087 if (buffer_delay(bh)) {
2088 clear_buffer_delay(bh);
2089 bh->b_blocknr = pblock;
2090 } else {
2091 /*
2092 * unwritten already should have
2093 * blocknr assigned. Verify that
2094 */
2095 clear_buffer_unwritten(bh);
2096 BUG_ON(bh->b_blocknr != pblock);
2097 }
2098
2099 } else if (buffer_mapped(bh))
2100 BUG_ON(bh->b_blocknr != pblock);
2101
2102 if (buffer_uninit(exbh))
2103 set_buffer_uninit(bh);
2104 cur_logical++;
2105 pblock++;
2106 } while ((bh = bh->b_this_page) != head);
2107 }
2108 pagevec_release(&pvec);
2109 }
2110 }
2111
2112
2113 /*
2114 * __unmap_underlying_blocks - just a helper function to unmap
2115 * set of blocks described by @bh
2116 */
2117 static inline void __unmap_underlying_blocks(struct inode *inode,
2118 struct buffer_head *bh)
2119 {
2120 struct block_device *bdev = inode->i_sb->s_bdev;
2121 int blocks, i;
2122
2123 blocks = bh->b_size >> inode->i_blkbits;
2124 for (i = 0; i < blocks; i++)
2125 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2126 }
2127
2128 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2129 sector_t logical, long blk_cnt)
2130 {
2131 int nr_pages, i;
2132 pgoff_t index, end;
2133 struct pagevec pvec;
2134 struct inode *inode = mpd->inode;
2135 struct address_space *mapping = inode->i_mapping;
2136
2137 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2138 end = (logical + blk_cnt - 1) >>
2139 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2140 while (index <= end) {
2141 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2142 if (nr_pages == 0)
2143 break;
2144 for (i = 0; i < nr_pages; i++) {
2145 struct page *page = pvec.pages[i];
2146 index = page->index;
2147 if (index > end)
2148 break;
2149 index++;
2150
2151 BUG_ON(!PageLocked(page));
2152 BUG_ON(PageWriteback(page));
2153 block_invalidatepage(page, 0);
2154 ClearPageUptodate(page);
2155 unlock_page(page);
2156 }
2157 }
2158 return;
2159 }
2160
2161 static void ext4_print_free_blocks(struct inode *inode)
2162 {
2163 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2164 printk(KERN_CRIT "Total free blocks count %lld\n",
2165 ext4_count_free_blocks(inode->i_sb));
2166 printk(KERN_CRIT "Free/Dirty block details\n");
2167 printk(KERN_CRIT "free_blocks=%lld\n",
2168 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2169 printk(KERN_CRIT "dirty_blocks=%lld\n",
2170 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2171 printk(KERN_CRIT "Block reservation details\n");
2172 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2173 EXT4_I(inode)->i_reserved_data_blocks);
2174 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2175 EXT4_I(inode)->i_reserved_meta_blocks);
2176 return;
2177 }
2178
2179 /*
2180 * mpage_da_map_blocks - go through given space
2181 *
2182 * @mpd - bh describing space
2183 *
2184 * The function skips space we know is already mapped to disk blocks.
2185 *
2186 */
2187 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2188 {
2189 int err, blks, get_blocks_flags;
2190 struct buffer_head new;
2191 sector_t next = mpd->b_blocknr;
2192 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2193 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2194 handle_t *handle = NULL;
2195
2196 /*
2197 * We consider only non-mapped and non-allocated blocks
2198 */
2199 if ((mpd->b_state & (1 << BH_Mapped)) &&
2200 !(mpd->b_state & (1 << BH_Delay)) &&
2201 !(mpd->b_state & (1 << BH_Unwritten)))
2202 return 0;
2203
2204 /*
2205 * If we didn't accumulate anything to write simply return
2206 */
2207 if (!mpd->b_size)
2208 return 0;
2209
2210 handle = ext4_journal_current_handle();
2211 BUG_ON(!handle);
2212
2213 /*
2214 * Call ext4_get_blocks() to allocate any delayed allocation
2215 * blocks, or to convert an uninitialized extent to be
2216 * initialized (in the case where we have written into
2217 * one or more preallocated blocks).
2218 *
2219 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2220 * indicate that we are on the delayed allocation path. This
2221 * affects functions in many different parts of the allocation
2222 * call path. This flag exists primarily because we don't
2223 * want to change *many* call functions, so ext4_get_blocks()
2224 * will set the magic i_delalloc_reserved_flag once the
2225 * inode's allocation semaphore is taken.
2226 *
2227 * If the blocks in questions were delalloc blocks, set
2228 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2229 * variables are updated after the blocks have been allocated.
2230 */
2231 new.b_state = 0;
2232 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2233 if (ext4_should_dioread_nolock(mpd->inode))
2234 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2235 if (mpd->b_state & (1 << BH_Delay))
2236 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2237
2238 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2239 &new, get_blocks_flags);
2240 if (blks < 0) {
2241 err = blks;
2242 /*
2243 * If get block returns with error we simply
2244 * return. Later writepage will redirty the page and
2245 * writepages will find the dirty page again
2246 */
2247 if (err == -EAGAIN)
2248 return 0;
2249
2250 if (err == -ENOSPC &&
2251 ext4_count_free_blocks(mpd->inode->i_sb)) {
2252 mpd->retval = err;
2253 return 0;
2254 }
2255
2256 /*
2257 * get block failure will cause us to loop in
2258 * writepages, because a_ops->writepage won't be able
2259 * to make progress. The page will be redirtied by
2260 * writepage and writepages will again try to write
2261 * the same.
2262 */
2263 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2264 "delayed block allocation failed for inode %lu at "
2265 "logical offset %llu with max blocks %zd with "
2266 "error %d\n", mpd->inode->i_ino,
2267 (unsigned long long) next,
2268 mpd->b_size >> mpd->inode->i_blkbits, err);
2269 printk(KERN_CRIT "This should not happen!! "
2270 "Data will be lost\n");
2271 if (err == -ENOSPC) {
2272 ext4_print_free_blocks(mpd->inode);
2273 }
2274 /* invalidate all the pages */
2275 ext4_da_block_invalidatepages(mpd, next,
2276 mpd->b_size >> mpd->inode->i_blkbits);
2277 return err;
2278 }
2279 BUG_ON(blks == 0);
2280
2281 new.b_size = (blks << mpd->inode->i_blkbits);
2282
2283 if (buffer_new(&new))
2284 __unmap_underlying_blocks(mpd->inode, &new);
2285
2286 /*
2287 * If blocks are delayed marked, we need to
2288 * put actual blocknr and drop delayed bit
2289 */
2290 if ((mpd->b_state & (1 << BH_Delay)) ||
2291 (mpd->b_state & (1 << BH_Unwritten)))
2292 mpage_put_bnr_to_bhs(mpd, next, &new);
2293
2294 if (ext4_should_order_data(mpd->inode)) {
2295 err = ext4_jbd2_file_inode(handle, mpd->inode);
2296 if (err)
2297 return err;
2298 }
2299
2300 /*
2301 * Update on-disk size along with block allocation.
2302 */
2303 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2304 if (disksize > i_size_read(mpd->inode))
2305 disksize = i_size_read(mpd->inode);
2306 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2307 ext4_update_i_disksize(mpd->inode, disksize);
2308 return ext4_mark_inode_dirty(handle, mpd->inode);
2309 }
2310
2311 return 0;
2312 }
2313
2314 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2315 (1 << BH_Delay) | (1 << BH_Unwritten))
2316
2317 /*
2318 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2319 *
2320 * @mpd->lbh - extent of blocks
2321 * @logical - logical number of the block in the file
2322 * @bh - bh of the block (used to access block's state)
2323 *
2324 * the function is used to collect contig. blocks in same state
2325 */
2326 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2327 sector_t logical, size_t b_size,
2328 unsigned long b_state)
2329 {
2330 sector_t next;
2331 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2332
2333 /* check if thereserved journal credits might overflow */
2334 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2335 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2336 /*
2337 * With non-extent format we are limited by the journal
2338 * credit available. Total credit needed to insert
2339 * nrblocks contiguous blocks is dependent on the
2340 * nrblocks. So limit nrblocks.
2341 */
2342 goto flush_it;
2343 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2344 EXT4_MAX_TRANS_DATA) {
2345 /*
2346 * Adding the new buffer_head would make it cross the
2347 * allowed limit for which we have journal credit
2348 * reserved. So limit the new bh->b_size
2349 */
2350 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2351 mpd->inode->i_blkbits;
2352 /* we will do mpage_da_submit_io in the next loop */
2353 }
2354 }
2355 /*
2356 * First block in the extent
2357 */
2358 if (mpd->b_size == 0) {
2359 mpd->b_blocknr = logical;
2360 mpd->b_size = b_size;
2361 mpd->b_state = b_state & BH_FLAGS;
2362 return;
2363 }
2364
2365 next = mpd->b_blocknr + nrblocks;
2366 /*
2367 * Can we merge the block to our big extent?
2368 */
2369 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2370 mpd->b_size += b_size;
2371 return;
2372 }
2373
2374 flush_it:
2375 /*
2376 * We couldn't merge the block to our extent, so we
2377 * need to flush current extent and start new one
2378 */
2379 if (mpage_da_map_blocks(mpd) == 0)
2380 mpage_da_submit_io(mpd);
2381 mpd->io_done = 1;
2382 return;
2383 }
2384
2385 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2386 {
2387 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2388 }
2389
2390 /*
2391 * __mpage_da_writepage - finds extent of pages and blocks
2392 *
2393 * @page: page to consider
2394 * @wbc: not used, we just follow rules
2395 * @data: context
2396 *
2397 * The function finds extents of pages and scan them for all blocks.
2398 */
2399 static int __mpage_da_writepage(struct page *page,
2400 struct writeback_control *wbc, void *data)
2401 {
2402 struct mpage_da_data *mpd = data;
2403 struct inode *inode = mpd->inode;
2404 struct buffer_head *bh, *head;
2405 sector_t logical;
2406
2407 if (mpd->io_done) {
2408 /*
2409 * Rest of the page in the page_vec
2410 * redirty then and skip then. We will
2411 * try to write them again after
2412 * starting a new transaction
2413 */
2414 redirty_page_for_writepage(wbc, page);
2415 unlock_page(page);
2416 return MPAGE_DA_EXTENT_TAIL;
2417 }
2418 /*
2419 * Can we merge this page to current extent?
2420 */
2421 if (mpd->next_page != page->index) {
2422 /*
2423 * Nope, we can't. So, we map non-allocated blocks
2424 * and start IO on them using writepage()
2425 */
2426 if (mpd->next_page != mpd->first_page) {
2427 if (mpage_da_map_blocks(mpd) == 0)
2428 mpage_da_submit_io(mpd);
2429 /*
2430 * skip rest of the page in the page_vec
2431 */
2432 mpd->io_done = 1;
2433 redirty_page_for_writepage(wbc, page);
2434 unlock_page(page);
2435 return MPAGE_DA_EXTENT_TAIL;
2436 }
2437
2438 /*
2439 * Start next extent of pages ...
2440 */
2441 mpd->first_page = page->index;
2442
2443 /*
2444 * ... and blocks
2445 */
2446 mpd->b_size = 0;
2447 mpd->b_state = 0;
2448 mpd->b_blocknr = 0;
2449 }
2450
2451 mpd->next_page = page->index + 1;
2452 logical = (sector_t) page->index <<
2453 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2454
2455 if (!page_has_buffers(page)) {
2456 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2457 (1 << BH_Dirty) | (1 << BH_Uptodate));
2458 if (mpd->io_done)
2459 return MPAGE_DA_EXTENT_TAIL;
2460 } else {
2461 /*
2462 * Page with regular buffer heads, just add all dirty ones
2463 */
2464 head = page_buffers(page);
2465 bh = head;
2466 do {
2467 BUG_ON(buffer_locked(bh));
2468 /*
2469 * We need to try to allocate
2470 * unmapped blocks in the same page.
2471 * Otherwise we won't make progress
2472 * with the page in ext4_writepage
2473 */
2474 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2475 mpage_add_bh_to_extent(mpd, logical,
2476 bh->b_size,
2477 bh->b_state);
2478 if (mpd->io_done)
2479 return MPAGE_DA_EXTENT_TAIL;
2480 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2481 /*
2482 * mapped dirty buffer. We need to update
2483 * the b_state because we look at
2484 * b_state in mpage_da_map_blocks. We don't
2485 * update b_size because if we find an
2486 * unmapped buffer_head later we need to
2487 * use the b_state flag of that buffer_head.
2488 */
2489 if (mpd->b_size == 0)
2490 mpd->b_state = bh->b_state & BH_FLAGS;
2491 }
2492 logical++;
2493 } while ((bh = bh->b_this_page) != head);
2494 }
2495
2496 return 0;
2497 }
2498
2499 /*
2500 * This is a special get_blocks_t callback which is used by
2501 * ext4_da_write_begin(). It will either return mapped block or
2502 * reserve space for a single block.
2503 *
2504 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2505 * We also have b_blocknr = -1 and b_bdev initialized properly
2506 *
2507 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2508 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2509 * initialized properly.
2510 */
2511 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2512 struct buffer_head *bh_result, int create)
2513 {
2514 int ret = 0;
2515 sector_t invalid_block = ~((sector_t) 0xffff);
2516
2517 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2518 invalid_block = ~0;
2519
2520 BUG_ON(create == 0);
2521 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2522
2523 /*
2524 * first, we need to know whether the block is allocated already
2525 * preallocated blocks are unmapped but should treated
2526 * the same as allocated blocks.
2527 */
2528 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2529 if ((ret == 0) && !buffer_delay(bh_result)) {
2530 /* the block isn't (pre)allocated yet, let's reserve space */
2531 /*
2532 * XXX: __block_prepare_write() unmaps passed block,
2533 * is it OK?
2534 */
2535 ret = ext4_da_reserve_space(inode, iblock);
2536 if (ret)
2537 /* not enough space to reserve */
2538 return ret;
2539
2540 map_bh(bh_result, inode->i_sb, invalid_block);
2541 set_buffer_new(bh_result);
2542 set_buffer_delay(bh_result);
2543 } else if (ret > 0) {
2544 bh_result->b_size = (ret << inode->i_blkbits);
2545 if (buffer_unwritten(bh_result)) {
2546 /* A delayed write to unwritten bh should
2547 * be marked new and mapped. Mapped ensures
2548 * that we don't do get_block multiple times
2549 * when we write to the same offset and new
2550 * ensures that we do proper zero out for
2551 * partial write.
2552 */
2553 set_buffer_new(bh_result);
2554 set_buffer_mapped(bh_result);
2555 }
2556 ret = 0;
2557 }
2558
2559 return ret;
2560 }
2561
2562 /*
2563 * This function is used as a standard get_block_t calback function
2564 * when there is no desire to allocate any blocks. It is used as a
2565 * callback function for block_prepare_write(), nobh_writepage(), and
2566 * block_write_full_page(). These functions should only try to map a
2567 * single block at a time.
2568 *
2569 * Since this function doesn't do block allocations even if the caller
2570 * requests it by passing in create=1, it is critically important that
2571 * any caller checks to make sure that any buffer heads are returned
2572 * by this function are either all already mapped or marked for
2573 * delayed allocation before calling nobh_writepage() or
2574 * block_write_full_page(). Otherwise, b_blocknr could be left
2575 * unitialized, and the page write functions will be taken by
2576 * surprise.
2577 */
2578 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2579 struct buffer_head *bh_result, int create)
2580 {
2581 int ret = 0;
2582 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2583
2584 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2585
2586 /*
2587 * we don't want to do block allocation in writepage
2588 * so call get_block_wrap with create = 0
2589 */
2590 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2591 if (ret > 0) {
2592 bh_result->b_size = (ret << inode->i_blkbits);
2593 ret = 0;
2594 }
2595 return ret;
2596 }
2597
2598 static int bget_one(handle_t *handle, struct buffer_head *bh)
2599 {
2600 get_bh(bh);
2601 return 0;
2602 }
2603
2604 static int bput_one(handle_t *handle, struct buffer_head *bh)
2605 {
2606 put_bh(bh);
2607 return 0;
2608 }
2609
2610 static int __ext4_journalled_writepage(struct page *page,
2611 unsigned int len)
2612 {
2613 struct address_space *mapping = page->mapping;
2614 struct inode *inode = mapping->host;
2615 struct buffer_head *page_bufs;
2616 handle_t *handle = NULL;
2617 int ret = 0;
2618 int err;
2619
2620 page_bufs = page_buffers(page);
2621 BUG_ON(!page_bufs);
2622 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2623 /* As soon as we unlock the page, it can go away, but we have
2624 * references to buffers so we are safe */
2625 unlock_page(page);
2626
2627 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2628 if (IS_ERR(handle)) {
2629 ret = PTR_ERR(handle);
2630 goto out;
2631 }
2632
2633 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2634 do_journal_get_write_access);
2635
2636 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2637 write_end_fn);
2638 if (ret == 0)
2639 ret = err;
2640 err = ext4_journal_stop(handle);
2641 if (!ret)
2642 ret = err;
2643
2644 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2645 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2646 out:
2647 return ret;
2648 }
2649
2650 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2651 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2652
2653 /*
2654 * Note that we don't need to start a transaction unless we're journaling data
2655 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2656 * need to file the inode to the transaction's list in ordered mode because if
2657 * we are writing back data added by write(), the inode is already there and if
2658 * we are writing back data modified via mmap(), noone guarantees in which
2659 * transaction the data will hit the disk. In case we are journaling data, we
2660 * cannot start transaction directly because transaction start ranks above page
2661 * lock so we have to do some magic.
2662 *
2663 * This function can get called via...
2664 * - ext4_da_writepages after taking page lock (have journal handle)
2665 * - journal_submit_inode_data_buffers (no journal handle)
2666 * - shrink_page_list via pdflush (no journal handle)
2667 * - grab_page_cache when doing write_begin (have journal handle)
2668 *
2669 * We don't do any block allocation in this function. If we have page with
2670 * multiple blocks we need to write those buffer_heads that are mapped. This
2671 * is important for mmaped based write. So if we do with blocksize 1K
2672 * truncate(f, 1024);
2673 * a = mmap(f, 0, 4096);
2674 * a[0] = 'a';
2675 * truncate(f, 4096);
2676 * we have in the page first buffer_head mapped via page_mkwrite call back
2677 * but other bufer_heads would be unmapped but dirty(dirty done via the
2678 * do_wp_page). So writepage should write the first block. If we modify
2679 * the mmap area beyond 1024 we will again get a page_fault and the
2680 * page_mkwrite callback will do the block allocation and mark the
2681 * buffer_heads mapped.
2682 *
2683 * We redirty the page if we have any buffer_heads that is either delay or
2684 * unwritten in the page.
2685 *
2686 * We can get recursively called as show below.
2687 *
2688 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2689 * ext4_writepage()
2690 *
2691 * But since we don't do any block allocation we should not deadlock.
2692 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2693 */
2694 static int ext4_writepage(struct page *page,
2695 struct writeback_control *wbc)
2696 {
2697 int ret = 0;
2698 loff_t size;
2699 unsigned int len;
2700 struct buffer_head *page_bufs = NULL;
2701 struct inode *inode = page->mapping->host;
2702
2703 trace_ext4_writepage(inode, page);
2704 size = i_size_read(inode);
2705 if (page->index == size >> PAGE_CACHE_SHIFT)
2706 len = size & ~PAGE_CACHE_MASK;
2707 else
2708 len = PAGE_CACHE_SIZE;
2709
2710 if (page_has_buffers(page)) {
2711 page_bufs = page_buffers(page);
2712 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2713 ext4_bh_delay_or_unwritten)) {
2714 /*
2715 * We don't want to do block allocation
2716 * So redirty the page and return
2717 * We may reach here when we do a journal commit
2718 * via journal_submit_inode_data_buffers.
2719 * If we don't have mapping block we just ignore
2720 * them. We can also reach here via shrink_page_list
2721 */
2722 redirty_page_for_writepage(wbc, page);
2723 unlock_page(page);
2724 return 0;
2725 }
2726 } else {
2727 /*
2728 * The test for page_has_buffers() is subtle:
2729 * We know the page is dirty but it lost buffers. That means
2730 * that at some moment in time after write_begin()/write_end()
2731 * has been called all buffers have been clean and thus they
2732 * must have been written at least once. So they are all
2733 * mapped and we can happily proceed with mapping them
2734 * and writing the page.
2735 *
2736 * Try to initialize the buffer_heads and check whether
2737 * all are mapped and non delay. We don't want to
2738 * do block allocation here.
2739 */
2740 ret = block_prepare_write(page, 0, len,
2741 noalloc_get_block_write);
2742 if (!ret) {
2743 page_bufs = page_buffers(page);
2744 /* check whether all are mapped and non delay */
2745 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2746 ext4_bh_delay_or_unwritten)) {
2747 redirty_page_for_writepage(wbc, page);
2748 unlock_page(page);
2749 return 0;
2750 }
2751 } else {
2752 /*
2753 * We can't do block allocation here
2754 * so just redity the page and unlock
2755 * and return
2756 */
2757 redirty_page_for_writepage(wbc, page);
2758 unlock_page(page);
2759 return 0;
2760 }
2761 /* now mark the buffer_heads as dirty and uptodate */
2762 block_commit_write(page, 0, len);
2763 }
2764
2765 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2766 /*
2767 * It's mmapped pagecache. Add buffers and journal it. There
2768 * doesn't seem much point in redirtying the page here.
2769 */
2770 ClearPageChecked(page);
2771 return __ext4_journalled_writepage(page, len);
2772 }
2773
2774 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2775 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2776 else if (page_bufs && buffer_uninit(page_bufs)) {
2777 ext4_set_bh_endio(page_bufs, inode);
2778 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2779 wbc, ext4_end_io_buffer_write);
2780 } else
2781 ret = block_write_full_page(page, noalloc_get_block_write,
2782 wbc);
2783
2784 return ret;
2785 }
2786
2787 /*
2788 * This is called via ext4_da_writepages() to
2789 * calulate the total number of credits to reserve to fit
2790 * a single extent allocation into a single transaction,
2791 * ext4_da_writpeages() will loop calling this before
2792 * the block allocation.
2793 */
2794
2795 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2796 {
2797 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2798
2799 /*
2800 * With non-extent format the journal credit needed to
2801 * insert nrblocks contiguous block is dependent on
2802 * number of contiguous block. So we will limit
2803 * number of contiguous block to a sane value
2804 */
2805 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2806 (max_blocks > EXT4_MAX_TRANS_DATA))
2807 max_blocks = EXT4_MAX_TRANS_DATA;
2808
2809 return ext4_chunk_trans_blocks(inode, max_blocks);
2810 }
2811
2812 static int ext4_da_writepages(struct address_space *mapping,
2813 struct writeback_control *wbc)
2814 {
2815 pgoff_t index;
2816 int range_whole = 0;
2817 handle_t *handle = NULL;
2818 struct mpage_da_data mpd;
2819 struct inode *inode = mapping->host;
2820 int no_nrwrite_index_update;
2821 int pages_written = 0;
2822 long pages_skipped;
2823 unsigned int max_pages;
2824 int range_cyclic, cycled = 1, io_done = 0;
2825 int needed_blocks, ret = 0;
2826 long desired_nr_to_write, nr_to_writebump = 0;
2827 loff_t range_start = wbc->range_start;
2828 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2829
2830 trace_ext4_da_writepages(inode, wbc);
2831
2832 /*
2833 * No pages to write? This is mainly a kludge to avoid starting
2834 * a transaction for special inodes like journal inode on last iput()
2835 * because that could violate lock ordering on umount
2836 */
2837 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2838 return 0;
2839
2840 /*
2841 * If the filesystem has aborted, it is read-only, so return
2842 * right away instead of dumping stack traces later on that
2843 * will obscure the real source of the problem. We test
2844 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2845 * the latter could be true if the filesystem is mounted
2846 * read-only, and in that case, ext4_da_writepages should
2847 * *never* be called, so if that ever happens, we would want
2848 * the stack trace.
2849 */
2850 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2851 return -EROFS;
2852
2853 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2854 range_whole = 1;
2855
2856 range_cyclic = wbc->range_cyclic;
2857 if (wbc->range_cyclic) {
2858 index = mapping->writeback_index;
2859 if (index)
2860 cycled = 0;
2861 wbc->range_start = index << PAGE_CACHE_SHIFT;
2862 wbc->range_end = LLONG_MAX;
2863 wbc->range_cyclic = 0;
2864 } else
2865 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2866
2867 /*
2868 * This works around two forms of stupidity. The first is in
2869 * the writeback code, which caps the maximum number of pages
2870 * written to be 1024 pages. This is wrong on multiple
2871 * levels; different architectues have a different page size,
2872 * which changes the maximum amount of data which gets
2873 * written. Secondly, 4 megabytes is way too small. XFS
2874 * forces this value to be 16 megabytes by multiplying
2875 * nr_to_write parameter by four, and then relies on its
2876 * allocator to allocate larger extents to make them
2877 * contiguous. Unfortunately this brings us to the second
2878 * stupidity, which is that ext4's mballoc code only allocates
2879 * at most 2048 blocks. So we force contiguous writes up to
2880 * the number of dirty blocks in the inode, or
2881 * sbi->max_writeback_mb_bump whichever is smaller.
2882 */
2883 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2884 if (!range_cyclic && range_whole)
2885 desired_nr_to_write = wbc->nr_to_write * 8;
2886 else
2887 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2888 max_pages);
2889 if (desired_nr_to_write > max_pages)
2890 desired_nr_to_write = max_pages;
2891
2892 if (wbc->nr_to_write < desired_nr_to_write) {
2893 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2894 wbc->nr_to_write = desired_nr_to_write;
2895 }
2896
2897 mpd.wbc = wbc;
2898 mpd.inode = mapping->host;
2899
2900 /*
2901 * we don't want write_cache_pages to update
2902 * nr_to_write and writeback_index
2903 */
2904 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2905 wbc->no_nrwrite_index_update = 1;
2906 pages_skipped = wbc->pages_skipped;
2907
2908 retry:
2909 while (!ret && wbc->nr_to_write > 0) {
2910
2911 /*
2912 * we insert one extent at a time. So we need
2913 * credit needed for single extent allocation.
2914 * journalled mode is currently not supported
2915 * by delalloc
2916 */
2917 BUG_ON(ext4_should_journal_data(inode));
2918 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2919
2920 /* start a new transaction*/
2921 handle = ext4_journal_start(inode, needed_blocks);
2922 if (IS_ERR(handle)) {
2923 ret = PTR_ERR(handle);
2924 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2925 "%ld pages, ino %lu; err %d\n", __func__,
2926 wbc->nr_to_write, inode->i_ino, ret);
2927 goto out_writepages;
2928 }
2929
2930 /*
2931 * Now call __mpage_da_writepage to find the next
2932 * contiguous region of logical blocks that need
2933 * blocks to be allocated by ext4. We don't actually
2934 * submit the blocks for I/O here, even though
2935 * write_cache_pages thinks it will, and will set the
2936 * pages as clean for write before calling
2937 * __mpage_da_writepage().
2938 */
2939 mpd.b_size = 0;
2940 mpd.b_state = 0;
2941 mpd.b_blocknr = 0;
2942 mpd.first_page = 0;
2943 mpd.next_page = 0;
2944 mpd.io_done = 0;
2945 mpd.pages_written = 0;
2946 mpd.retval = 0;
2947 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2948 &mpd);
2949 /*
2950 * If we have a contiguous extent of pages and we
2951 * haven't done the I/O yet, map the blocks and submit
2952 * them for I/O.
2953 */
2954 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2955 if (mpage_da_map_blocks(&mpd) == 0)
2956 mpage_da_submit_io(&mpd);
2957 mpd.io_done = 1;
2958 ret = MPAGE_DA_EXTENT_TAIL;
2959 }
2960 trace_ext4_da_write_pages(inode, &mpd);
2961 wbc->nr_to_write -= mpd.pages_written;
2962
2963 ext4_journal_stop(handle);
2964
2965 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2966 /* commit the transaction which would
2967 * free blocks released in the transaction
2968 * and try again
2969 */
2970 jbd2_journal_force_commit_nested(sbi->s_journal);
2971 wbc->pages_skipped = pages_skipped;
2972 ret = 0;
2973 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2974 /*
2975 * got one extent now try with
2976 * rest of the pages
2977 */
2978 pages_written += mpd.pages_written;
2979 wbc->pages_skipped = pages_skipped;
2980 ret = 0;
2981 io_done = 1;
2982 } else if (wbc->nr_to_write)
2983 /*
2984 * There is no more writeout needed
2985 * or we requested for a noblocking writeout
2986 * and we found the device congested
2987 */
2988 break;
2989 }
2990 if (!io_done && !cycled) {
2991 cycled = 1;
2992 index = 0;
2993 wbc->range_start = index << PAGE_CACHE_SHIFT;
2994 wbc->range_end = mapping->writeback_index - 1;
2995 goto retry;
2996 }
2997 if (pages_skipped != wbc->pages_skipped)
2998 ext4_msg(inode->i_sb, KERN_CRIT,
2999 "This should not happen leaving %s "
3000 "with nr_to_write = %ld ret = %d\n",
3001 __func__, wbc->nr_to_write, ret);
3002
3003 /* Update index */
3004 index += pages_written;
3005 wbc->range_cyclic = range_cyclic;
3006 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3007 /*
3008 * set the writeback_index so that range_cyclic
3009 * mode will write it back later
3010 */
3011 mapping->writeback_index = index;
3012
3013 out_writepages:
3014 if (!no_nrwrite_index_update)
3015 wbc->no_nrwrite_index_update = 0;
3016 wbc->nr_to_write -= nr_to_writebump;
3017 wbc->range_start = range_start;
3018 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3019 return ret;
3020 }
3021
3022 #define FALL_BACK_TO_NONDELALLOC 1
3023 static int ext4_nonda_switch(struct super_block *sb)
3024 {
3025 s64 free_blocks, dirty_blocks;
3026 struct ext4_sb_info *sbi = EXT4_SB(sb);
3027
3028 /*
3029 * switch to non delalloc mode if we are running low
3030 * on free block. The free block accounting via percpu
3031 * counters can get slightly wrong with percpu_counter_batch getting
3032 * accumulated on each CPU without updating global counters
3033 * Delalloc need an accurate free block accounting. So switch
3034 * to non delalloc when we are near to error range.
3035 */
3036 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3037 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3038 if (2 * free_blocks < 3 * dirty_blocks ||
3039 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3040 /*
3041 * free block count is less than 150% of dirty blocks
3042 * or free blocks is less than watermark
3043 */
3044 return 1;
3045 }
3046 /*
3047 * Even if we don't switch but are nearing capacity,
3048 * start pushing delalloc when 1/2 of free blocks are dirty.
3049 */
3050 if (free_blocks < 2 * dirty_blocks)
3051 writeback_inodes_sb_if_idle(sb);
3052
3053 return 0;
3054 }
3055
3056 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3057 loff_t pos, unsigned len, unsigned flags,
3058 struct page **pagep, void **fsdata)
3059 {
3060 int ret, retries = 0, quota_retries = 0;
3061 struct page *page;
3062 pgoff_t index;
3063 unsigned from, to;
3064 struct inode *inode = mapping->host;
3065 handle_t *handle;
3066
3067 index = pos >> PAGE_CACHE_SHIFT;
3068 from = pos & (PAGE_CACHE_SIZE - 1);
3069 to = from + len;
3070
3071 if (ext4_nonda_switch(inode->i_sb)) {
3072 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3073 return ext4_write_begin(file, mapping, pos,
3074 len, flags, pagep, fsdata);
3075 }
3076 *fsdata = (void *)0;
3077 trace_ext4_da_write_begin(inode, pos, len, flags);
3078 retry:
3079 /*
3080 * With delayed allocation, we don't log the i_disksize update
3081 * if there is delayed block allocation. But we still need
3082 * to journalling the i_disksize update if writes to the end
3083 * of file which has an already mapped buffer.
3084 */
3085 handle = ext4_journal_start(inode, 1);
3086 if (IS_ERR(handle)) {
3087 ret = PTR_ERR(handle);
3088 goto out;
3089 }
3090 /* We cannot recurse into the filesystem as the transaction is already
3091 * started */
3092 flags |= AOP_FLAG_NOFS;
3093
3094 page = grab_cache_page_write_begin(mapping, index, flags);
3095 if (!page) {
3096 ext4_journal_stop(handle);
3097 ret = -ENOMEM;
3098 goto out;
3099 }
3100 *pagep = page;
3101
3102 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3103 ext4_da_get_block_prep);
3104 if (ret < 0) {
3105 unlock_page(page);
3106 ext4_journal_stop(handle);
3107 page_cache_release(page);
3108 /*
3109 * block_write_begin may have instantiated a few blocks
3110 * outside i_size. Trim these off again. Don't need
3111 * i_size_read because we hold i_mutex.
3112 */
3113 if (pos + len > inode->i_size)
3114 ext4_truncate_failed_write(inode);
3115 }
3116
3117 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3118 goto retry;
3119
3120 if ((ret == -EDQUOT) &&
3121 EXT4_I(inode)->i_reserved_meta_blocks &&
3122 (quota_retries++ < 3)) {
3123 /*
3124 * Since we often over-estimate the number of meta
3125 * data blocks required, we may sometimes get a
3126 * spurios out of quota error even though there would
3127 * be enough space once we write the data blocks and
3128 * find out how many meta data blocks were _really_
3129 * required. So try forcing the inode write to see if
3130 * that helps.
3131 */
3132 write_inode_now(inode, (quota_retries == 3));
3133 goto retry;
3134 }
3135 out:
3136 return ret;
3137 }
3138
3139 /*
3140 * Check if we should update i_disksize
3141 * when write to the end of file but not require block allocation
3142 */
3143 static int ext4_da_should_update_i_disksize(struct page *page,
3144 unsigned long offset)
3145 {
3146 struct buffer_head *bh;
3147 struct inode *inode = page->mapping->host;
3148 unsigned int idx;
3149 int i;
3150
3151 bh = page_buffers(page);
3152 idx = offset >> inode->i_blkbits;
3153
3154 for (i = 0; i < idx; i++)
3155 bh = bh->b_this_page;
3156
3157 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3158 return 0;
3159 return 1;
3160 }
3161
3162 static int ext4_da_write_end(struct file *file,
3163 struct address_space *mapping,
3164 loff_t pos, unsigned len, unsigned copied,
3165 struct page *page, void *fsdata)
3166 {
3167 struct inode *inode = mapping->host;
3168 int ret = 0, ret2;
3169 handle_t *handle = ext4_journal_current_handle();
3170 loff_t new_i_size;
3171 unsigned long start, end;
3172 int write_mode = (int)(unsigned long)fsdata;
3173
3174 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3175 if (ext4_should_order_data(inode)) {
3176 return ext4_ordered_write_end(file, mapping, pos,
3177 len, copied, page, fsdata);
3178 } else if (ext4_should_writeback_data(inode)) {
3179 return ext4_writeback_write_end(file, mapping, pos,
3180 len, copied, page, fsdata);
3181 } else {
3182 BUG();
3183 }
3184 }
3185
3186 trace_ext4_da_write_end(inode, pos, len, copied);
3187 start = pos & (PAGE_CACHE_SIZE - 1);
3188 end = start + copied - 1;
3189
3190 /*
3191 * generic_write_end() will run mark_inode_dirty() if i_size
3192 * changes. So let's piggyback the i_disksize mark_inode_dirty
3193 * into that.
3194 */
3195
3196 new_i_size = pos + copied;
3197 if (new_i_size > EXT4_I(inode)->i_disksize) {
3198 if (ext4_da_should_update_i_disksize(page, end)) {
3199 down_write(&EXT4_I(inode)->i_data_sem);
3200 if (new_i_size > EXT4_I(inode)->i_disksize) {
3201 /*
3202 * Updating i_disksize when extending file
3203 * without needing block allocation
3204 */
3205 if (ext4_should_order_data(inode))
3206 ret = ext4_jbd2_file_inode(handle,
3207 inode);
3208
3209 EXT4_I(inode)->i_disksize = new_i_size;
3210 }
3211 up_write(&EXT4_I(inode)->i_data_sem);
3212 /* We need to mark inode dirty even if
3213 * new_i_size is less that inode->i_size
3214 * bu greater than i_disksize.(hint delalloc)
3215 */
3216 ext4_mark_inode_dirty(handle, inode);
3217 }
3218 }
3219 ret2 = generic_write_end(file, mapping, pos, len, copied,
3220 page, fsdata);
3221 copied = ret2;
3222 if (ret2 < 0)
3223 ret = ret2;
3224 ret2 = ext4_journal_stop(handle);
3225 if (!ret)
3226 ret = ret2;
3227
3228 return ret ? ret : copied;
3229 }
3230
3231 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3232 {
3233 /*
3234 * Drop reserved blocks
3235 */
3236 BUG_ON(!PageLocked(page));
3237 if (!page_has_buffers(page))
3238 goto out;
3239
3240 ext4_da_page_release_reservation(page, offset);
3241
3242 out:
3243 ext4_invalidatepage(page, offset);
3244
3245 return;
3246 }
3247
3248 /*
3249 * Force all delayed allocation blocks to be allocated for a given inode.
3250 */
3251 int ext4_alloc_da_blocks(struct inode *inode)
3252 {
3253 trace_ext4_alloc_da_blocks(inode);
3254
3255 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3256 !EXT4_I(inode)->i_reserved_meta_blocks)
3257 return 0;
3258
3259 /*
3260 * We do something simple for now. The filemap_flush() will
3261 * also start triggering a write of the data blocks, which is
3262 * not strictly speaking necessary (and for users of
3263 * laptop_mode, not even desirable). However, to do otherwise
3264 * would require replicating code paths in:
3265 *
3266 * ext4_da_writepages() ->
3267 * write_cache_pages() ---> (via passed in callback function)
3268 * __mpage_da_writepage() -->
3269 * mpage_add_bh_to_extent()
3270 * mpage_da_map_blocks()
3271 *
3272 * The problem is that write_cache_pages(), located in
3273 * mm/page-writeback.c, marks pages clean in preparation for
3274 * doing I/O, which is not desirable if we're not planning on
3275 * doing I/O at all.
3276 *
3277 * We could call write_cache_pages(), and then redirty all of
3278 * the pages by calling redirty_page_for_writeback() but that
3279 * would be ugly in the extreme. So instead we would need to
3280 * replicate parts of the code in the above functions,
3281 * simplifying them becuase we wouldn't actually intend to
3282 * write out the pages, but rather only collect contiguous
3283 * logical block extents, call the multi-block allocator, and
3284 * then update the buffer heads with the block allocations.
3285 *
3286 * For now, though, we'll cheat by calling filemap_flush(),
3287 * which will map the blocks, and start the I/O, but not
3288 * actually wait for the I/O to complete.
3289 */
3290 return filemap_flush(inode->i_mapping);
3291 }
3292
3293 /*
3294 * bmap() is special. It gets used by applications such as lilo and by
3295 * the swapper to find the on-disk block of a specific piece of data.
3296 *
3297 * Naturally, this is dangerous if the block concerned is still in the
3298 * journal. If somebody makes a swapfile on an ext4 data-journaling
3299 * filesystem and enables swap, then they may get a nasty shock when the
3300 * data getting swapped to that swapfile suddenly gets overwritten by
3301 * the original zero's written out previously to the journal and
3302 * awaiting writeback in the kernel's buffer cache.
3303 *
3304 * So, if we see any bmap calls here on a modified, data-journaled file,
3305 * take extra steps to flush any blocks which might be in the cache.
3306 */
3307 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3308 {
3309 struct inode *inode = mapping->host;
3310 journal_t *journal;
3311 int err;
3312
3313 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3314 test_opt(inode->i_sb, DELALLOC)) {
3315 /*
3316 * With delalloc we want to sync the file
3317 * so that we can make sure we allocate
3318 * blocks for file
3319 */
3320 filemap_write_and_wait(mapping);
3321 }
3322
3323 if (EXT4_JOURNAL(inode) &&
3324 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3325 /*
3326 * This is a REALLY heavyweight approach, but the use of
3327 * bmap on dirty files is expected to be extremely rare:
3328 * only if we run lilo or swapon on a freshly made file
3329 * do we expect this to happen.
3330 *
3331 * (bmap requires CAP_SYS_RAWIO so this does not
3332 * represent an unprivileged user DOS attack --- we'd be
3333 * in trouble if mortal users could trigger this path at
3334 * will.)
3335 *
3336 * NB. EXT4_STATE_JDATA is not set on files other than
3337 * regular files. If somebody wants to bmap a directory
3338 * or symlink and gets confused because the buffer
3339 * hasn't yet been flushed to disk, they deserve
3340 * everything they get.
3341 */
3342
3343 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3344 journal = EXT4_JOURNAL(inode);
3345 jbd2_journal_lock_updates(journal);
3346 err = jbd2_journal_flush(journal);
3347 jbd2_journal_unlock_updates(journal);
3348
3349 if (err)
3350 return 0;
3351 }
3352
3353 return generic_block_bmap(mapping, block, ext4_get_block);
3354 }
3355
3356 static int ext4_readpage(struct file *file, struct page *page)
3357 {
3358 return mpage_readpage(page, ext4_get_block);
3359 }
3360
3361 static int
3362 ext4_readpages(struct file *file, struct address_space *mapping,
3363 struct list_head *pages, unsigned nr_pages)
3364 {
3365 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3366 }
3367
3368 static void ext4_free_io_end(ext4_io_end_t *io)
3369 {
3370 BUG_ON(!io);
3371 if (io->page)
3372 put_page(io->page);
3373 iput(io->inode);
3374 kfree(io);
3375 }
3376
3377 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3378 {
3379 struct buffer_head *head, *bh;
3380 unsigned int curr_off = 0;
3381
3382 if (!page_has_buffers(page))
3383 return;
3384 head = bh = page_buffers(page);
3385 do {
3386 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3387 && bh->b_private) {
3388 ext4_free_io_end(bh->b_private);
3389 bh->b_private = NULL;
3390 bh->b_end_io = NULL;
3391 }
3392 curr_off = curr_off + bh->b_size;
3393 bh = bh->b_this_page;
3394 } while (bh != head);
3395 }
3396
3397 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3398 {
3399 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3400
3401 /*
3402 * free any io_end structure allocated for buffers to be discarded
3403 */
3404 if (ext4_should_dioread_nolock(page->mapping->host))
3405 ext4_invalidatepage_free_endio(page, offset);
3406 /*
3407 * If it's a full truncate we just forget about the pending dirtying
3408 */
3409 if (offset == 0)
3410 ClearPageChecked(page);
3411
3412 if (journal)
3413 jbd2_journal_invalidatepage(journal, page, offset);
3414 else
3415 block_invalidatepage(page, offset);
3416 }
3417
3418 static int ext4_releasepage(struct page *page, gfp_t wait)
3419 {
3420 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3421
3422 WARN_ON(PageChecked(page));
3423 if (!page_has_buffers(page))
3424 return 0;
3425 if (journal)
3426 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3427 else
3428 return try_to_free_buffers(page);
3429 }
3430
3431 /*
3432 * O_DIRECT for ext3 (or indirect map) based files
3433 *
3434 * If the O_DIRECT write will extend the file then add this inode to the
3435 * orphan list. So recovery will truncate it back to the original size
3436 * if the machine crashes during the write.
3437 *
3438 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3439 * crashes then stale disk data _may_ be exposed inside the file. But current
3440 * VFS code falls back into buffered path in that case so we are safe.
3441 */
3442 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3443 const struct iovec *iov, loff_t offset,
3444 unsigned long nr_segs)
3445 {
3446 struct file *file = iocb->ki_filp;
3447 struct inode *inode = file->f_mapping->host;
3448 struct ext4_inode_info *ei = EXT4_I(inode);
3449 handle_t *handle;
3450 ssize_t ret;
3451 int orphan = 0;
3452 size_t count = iov_length(iov, nr_segs);
3453 int retries = 0;
3454
3455 if (rw == WRITE) {
3456 loff_t final_size = offset + count;
3457
3458 if (final_size > inode->i_size) {
3459 /* Credits for sb + inode write */
3460 handle = ext4_journal_start(inode, 2);
3461 if (IS_ERR(handle)) {
3462 ret = PTR_ERR(handle);
3463 goto out;
3464 }
3465 ret = ext4_orphan_add(handle, inode);
3466 if (ret) {
3467 ext4_journal_stop(handle);
3468 goto out;
3469 }
3470 orphan = 1;
3471 ei->i_disksize = inode->i_size;
3472 ext4_journal_stop(handle);
3473 }
3474 }
3475
3476 retry:
3477 if (rw == READ && ext4_should_dioread_nolock(inode))
3478 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3479 inode->i_sb->s_bdev, iov,
3480 offset, nr_segs,
3481 ext4_get_block, NULL);
3482 else
3483 ret = blockdev_direct_IO(rw, iocb, inode,
3484 inode->i_sb->s_bdev, iov,
3485 offset, nr_segs,
3486 ext4_get_block, NULL);
3487 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3488 goto retry;
3489
3490 if (orphan) {
3491 int err;
3492
3493 /* Credits for sb + inode write */
3494 handle = ext4_journal_start(inode, 2);
3495 if (IS_ERR(handle)) {
3496 /* This is really bad luck. We've written the data
3497 * but cannot extend i_size. Bail out and pretend
3498 * the write failed... */
3499 ret = PTR_ERR(handle);
3500 if (inode->i_nlink)
3501 ext4_orphan_del(NULL, inode);
3502
3503 goto out;
3504 }
3505 if (inode->i_nlink)
3506 ext4_orphan_del(handle, inode);
3507 if (ret > 0) {
3508 loff_t end = offset + ret;
3509 if (end > inode->i_size) {
3510 ei->i_disksize = end;
3511 i_size_write(inode, end);
3512 /*
3513 * We're going to return a positive `ret'
3514 * here due to non-zero-length I/O, so there's
3515 * no way of reporting error returns from
3516 * ext4_mark_inode_dirty() to userspace. So
3517 * ignore it.
3518 */
3519 ext4_mark_inode_dirty(handle, inode);
3520 }
3521 }
3522 err = ext4_journal_stop(handle);
3523 if (ret == 0)
3524 ret = err;
3525 }
3526 out:
3527 return ret;
3528 }
3529
3530 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3531 struct buffer_head *bh_result, int create)
3532 {
3533 handle_t *handle = ext4_journal_current_handle();
3534 int ret = 0;
3535 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3536 int dio_credits;
3537 int started = 0;
3538
3539 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3540 inode->i_ino, create);
3541 /*
3542 * ext4_get_block in prepare for a DIO write or buffer write.
3543 * We allocate an uinitialized extent if blocks haven't been allocated.
3544 * The extent will be converted to initialized after IO complete.
3545 */
3546 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3547
3548 if (!handle) {
3549 if (max_blocks > DIO_MAX_BLOCKS)
3550 max_blocks = DIO_MAX_BLOCKS;
3551 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3552 handle = ext4_journal_start(inode, dio_credits);
3553 if (IS_ERR(handle)) {
3554 ret = PTR_ERR(handle);
3555 goto out;
3556 }
3557 started = 1;
3558 }
3559
3560 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3561 create);
3562 if (ret > 0) {
3563 bh_result->b_size = (ret << inode->i_blkbits);
3564 ret = 0;
3565 }
3566 if (started)
3567 ext4_journal_stop(handle);
3568 out:
3569 return ret;
3570 }
3571
3572 static void dump_completed_IO(struct inode * inode)
3573 {
3574 #ifdef EXT4_DEBUG
3575 struct list_head *cur, *before, *after;
3576 ext4_io_end_t *io, *io0, *io1;
3577 unsigned long flags;
3578
3579 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3580 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3581 return;
3582 }
3583
3584 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3585 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3586 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3587 cur = &io->list;
3588 before = cur->prev;
3589 io0 = container_of(before, ext4_io_end_t, list);
3590 after = cur->next;
3591 io1 = container_of(after, ext4_io_end_t, list);
3592
3593 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3594 io, inode->i_ino, io0, io1);
3595 }
3596 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3597 #endif
3598 }
3599
3600 /*
3601 * check a range of space and convert unwritten extents to written.
3602 */
3603 static int ext4_end_io_nolock(ext4_io_end_t *io)
3604 {
3605 struct inode *inode = io->inode;
3606 loff_t offset = io->offset;
3607 ssize_t size = io->size;
3608 int ret = 0;
3609
3610 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3611 "list->prev 0x%p\n",
3612 io, inode->i_ino, io->list.next, io->list.prev);
3613
3614 if (list_empty(&io->list))
3615 return ret;
3616
3617 if (io->flag != EXT4_IO_UNWRITTEN)
3618 return ret;
3619
3620 ret = ext4_convert_unwritten_extents(inode, offset, size);
3621 if (ret < 0) {
3622 printk(KERN_EMERG "%s: failed to convert unwritten"
3623 "extents to written extents, error is %d"
3624 " io is still on inode %lu aio dio list\n",
3625 __func__, ret, inode->i_ino);
3626 return ret;
3627 }
3628
3629 /* clear the DIO AIO unwritten flag */
3630 io->flag = 0;
3631 return ret;
3632 }
3633
3634 /*
3635 * work on completed aio dio IO, to convert unwritten extents to extents
3636 */
3637 static void ext4_end_io_work(struct work_struct *work)
3638 {
3639 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3640 struct inode *inode = io->inode;
3641 struct ext4_inode_info *ei = EXT4_I(inode);
3642 unsigned long flags;
3643 int ret;
3644
3645 mutex_lock(&inode->i_mutex);
3646 ret = ext4_end_io_nolock(io);
3647 if (ret < 0) {
3648 mutex_unlock(&inode->i_mutex);
3649 return;
3650 }
3651
3652 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3653 if (!list_empty(&io->list))
3654 list_del_init(&io->list);
3655 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3656 mutex_unlock(&inode->i_mutex);
3657 ext4_free_io_end(io);
3658 }
3659
3660 /*
3661 * This function is called from ext4_sync_file().
3662 *
3663 * When IO is completed, the work to convert unwritten extents to
3664 * written is queued on workqueue but may not get immediately
3665 * scheduled. When fsync is called, we need to ensure the
3666 * conversion is complete before fsync returns.
3667 * The inode keeps track of a list of pending/completed IO that
3668 * might needs to do the conversion. This function walks through
3669 * the list and convert the related unwritten extents for completed IO
3670 * to written.
3671 * The function return the number of pending IOs on success.
3672 */
3673 int flush_completed_IO(struct inode *inode)
3674 {
3675 ext4_io_end_t *io;
3676 struct ext4_inode_info *ei = EXT4_I(inode);
3677 unsigned long flags;
3678 int ret = 0;
3679 int ret2 = 0;
3680
3681 if (list_empty(&ei->i_completed_io_list))
3682 return ret;
3683
3684 dump_completed_IO(inode);
3685 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3686 while (!list_empty(&ei->i_completed_io_list)){
3687 io = list_entry(ei->i_completed_io_list.next,
3688 ext4_io_end_t, list);
3689 /*
3690 * Calling ext4_end_io_nolock() to convert completed
3691 * IO to written.
3692 *
3693 * When ext4_sync_file() is called, run_queue() may already
3694 * about to flush the work corresponding to this io structure.
3695 * It will be upset if it founds the io structure related
3696 * to the work-to-be schedule is freed.
3697 *
3698 * Thus we need to keep the io structure still valid here after
3699 * convertion finished. The io structure has a flag to
3700 * avoid double converting from both fsync and background work
3701 * queue work.
3702 */
3703 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3704 ret = ext4_end_io_nolock(io);
3705 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3706 if (ret < 0)
3707 ret2 = ret;
3708 else
3709 list_del_init(&io->list);
3710 }
3711 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3712 return (ret2 < 0) ? ret2 : 0;
3713 }
3714
3715 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3716 {
3717 ext4_io_end_t *io = NULL;
3718
3719 io = kmalloc(sizeof(*io), flags);
3720
3721 if (io) {
3722 igrab(inode);
3723 io->inode = inode;
3724 io->flag = 0;
3725 io->offset = 0;
3726 io->size = 0;
3727 io->page = NULL;
3728 INIT_WORK(&io->work, ext4_end_io_work);
3729 INIT_LIST_HEAD(&io->list);
3730 }
3731
3732 return io;
3733 }
3734
3735 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3736 ssize_t size, void *private)
3737 {
3738 ext4_io_end_t *io_end = iocb->private;
3739 struct workqueue_struct *wq;
3740 unsigned long flags;
3741 struct ext4_inode_info *ei;
3742
3743 /* if not async direct IO or dio with 0 bytes write, just return */
3744 if (!io_end || !size)
3745 return;
3746
3747 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3748 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3749 iocb->private, io_end->inode->i_ino, iocb, offset,
3750 size);
3751
3752 /* if not aio dio with unwritten extents, just free io and return */
3753 if (io_end->flag != EXT4_IO_UNWRITTEN){
3754 ext4_free_io_end(io_end);
3755 iocb->private = NULL;
3756 return;
3757 }
3758
3759 io_end->offset = offset;
3760 io_end->size = size;
3761 io_end->flag = EXT4_IO_UNWRITTEN;
3762 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3763
3764 /* queue the work to convert unwritten extents to written */
3765 queue_work(wq, &io_end->work);
3766
3767 /* Add the io_end to per-inode completed aio dio list*/
3768 ei = EXT4_I(io_end->inode);
3769 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3770 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3771 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3772 iocb->private = NULL;
3773 }
3774
3775 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3776 {
3777 ext4_io_end_t *io_end = bh->b_private;
3778 struct workqueue_struct *wq;
3779 struct inode *inode;
3780 unsigned long flags;
3781
3782 if (!test_clear_buffer_uninit(bh) || !io_end)
3783 goto out;
3784
3785 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3786 printk("sb umounted, discard end_io request for inode %lu\n",
3787 io_end->inode->i_ino);
3788 ext4_free_io_end(io_end);
3789 goto out;
3790 }
3791
3792 io_end->flag = EXT4_IO_UNWRITTEN;
3793 inode = io_end->inode;
3794
3795 /* Add the io_end to per-inode completed io list*/
3796 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3797 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3798 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3799
3800 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3801 /* queue the work to convert unwritten extents to written */
3802 queue_work(wq, &io_end->work);
3803 out:
3804 bh->b_private = NULL;
3805 bh->b_end_io = NULL;
3806 clear_buffer_uninit(bh);
3807 end_buffer_async_write(bh, uptodate);
3808 }
3809
3810 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3811 {
3812 ext4_io_end_t *io_end;
3813 struct page *page = bh->b_page;
3814 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3815 size_t size = bh->b_size;
3816
3817 retry:
3818 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3819 if (!io_end) {
3820 if (printk_ratelimit())
3821 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3822 schedule();
3823 goto retry;
3824 }
3825 io_end->offset = offset;
3826 io_end->size = size;
3827 /*
3828 * We need to hold a reference to the page to make sure it
3829 * doesn't get evicted before ext4_end_io_work() has a chance
3830 * to convert the extent from written to unwritten.
3831 */
3832 io_end->page = page;
3833 get_page(io_end->page);
3834
3835 bh->b_private = io_end;
3836 bh->b_end_io = ext4_end_io_buffer_write;
3837 return 0;
3838 }
3839
3840 /*
3841 * For ext4 extent files, ext4 will do direct-io write to holes,
3842 * preallocated extents, and those write extend the file, no need to
3843 * fall back to buffered IO.
3844 *
3845 * For holes, we fallocate those blocks, mark them as unintialized
3846 * If those blocks were preallocated, we mark sure they are splited, but
3847 * still keep the range to write as unintialized.
3848 *
3849 * The unwrritten extents will be converted to written when DIO is completed.
3850 * For async direct IO, since the IO may still pending when return, we
3851 * set up an end_io call back function, which will do the convertion
3852 * when async direct IO completed.
3853 *
3854 * If the O_DIRECT write will extend the file then add this inode to the
3855 * orphan list. So recovery will truncate it back to the original size
3856 * if the machine crashes during the write.
3857 *
3858 */
3859 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3860 const struct iovec *iov, loff_t offset,
3861 unsigned long nr_segs)
3862 {
3863 struct file *file = iocb->ki_filp;
3864 struct inode *inode = file->f_mapping->host;
3865 ssize_t ret;
3866 size_t count = iov_length(iov, nr_segs);
3867
3868 loff_t final_size = offset + count;
3869 if (rw == WRITE && final_size <= inode->i_size) {
3870 /*
3871 * We could direct write to holes and fallocate.
3872 *
3873 * Allocated blocks to fill the hole are marked as uninitialized
3874 * to prevent paralel buffered read to expose the stale data
3875 * before DIO complete the data IO.
3876 *
3877 * As to previously fallocated extents, ext4 get_block
3878 * will just simply mark the buffer mapped but still
3879 * keep the extents uninitialized.
3880 *
3881 * for non AIO case, we will convert those unwritten extents
3882 * to written after return back from blockdev_direct_IO.
3883 *
3884 * for async DIO, the conversion needs to be defered when
3885 * the IO is completed. The ext4 end_io callback function
3886 * will be called to take care of the conversion work.
3887 * Here for async case, we allocate an io_end structure to
3888 * hook to the iocb.
3889 */
3890 iocb->private = NULL;
3891 EXT4_I(inode)->cur_aio_dio = NULL;
3892 if (!is_sync_kiocb(iocb)) {
3893 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3894 if (!iocb->private)
3895 return -ENOMEM;
3896 /*
3897 * we save the io structure for current async
3898 * direct IO, so that later ext4_get_blocks()
3899 * could flag the io structure whether there
3900 * is a unwritten extents needs to be converted
3901 * when IO is completed.
3902 */
3903 EXT4_I(inode)->cur_aio_dio = iocb->private;
3904 }
3905
3906 ret = blockdev_direct_IO(rw, iocb, inode,
3907 inode->i_sb->s_bdev, iov,
3908 offset, nr_segs,
3909 ext4_get_block_write,
3910 ext4_end_io_dio);
3911 if (iocb->private)
3912 EXT4_I(inode)->cur_aio_dio = NULL;
3913 /*
3914 * The io_end structure takes a reference to the inode,
3915 * that structure needs to be destroyed and the
3916 * reference to the inode need to be dropped, when IO is
3917 * complete, even with 0 byte write, or failed.
3918 *
3919 * In the successful AIO DIO case, the io_end structure will be
3920 * desctroyed and the reference to the inode will be dropped
3921 * after the end_io call back function is called.
3922 *
3923 * In the case there is 0 byte write, or error case, since
3924 * VFS direct IO won't invoke the end_io call back function,
3925 * we need to free the end_io structure here.
3926 */
3927 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3928 ext4_free_io_end(iocb->private);
3929 iocb->private = NULL;
3930 } else if (ret > 0 && ext4_test_inode_state(inode,
3931 EXT4_STATE_DIO_UNWRITTEN)) {
3932 int err;
3933 /*
3934 * for non AIO case, since the IO is already
3935 * completed, we could do the convertion right here
3936 */
3937 err = ext4_convert_unwritten_extents(inode,
3938 offset, ret);
3939 if (err < 0)
3940 ret = err;
3941 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3942 }
3943 return ret;
3944 }
3945
3946 /* for write the the end of file case, we fall back to old way */
3947 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3948 }
3949
3950 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3951 const struct iovec *iov, loff_t offset,
3952 unsigned long nr_segs)
3953 {
3954 struct file *file = iocb->ki_filp;
3955 struct inode *inode = file->f_mapping->host;
3956
3957 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3958 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3959
3960 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3961 }
3962
3963 /*
3964 * Pages can be marked dirty completely asynchronously from ext4's journalling
3965 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3966 * much here because ->set_page_dirty is called under VFS locks. The page is
3967 * not necessarily locked.
3968 *
3969 * We cannot just dirty the page and leave attached buffers clean, because the
3970 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3971 * or jbddirty because all the journalling code will explode.
3972 *
3973 * So what we do is to mark the page "pending dirty" and next time writepage
3974 * is called, propagate that into the buffers appropriately.
3975 */
3976 static int ext4_journalled_set_page_dirty(struct page *page)
3977 {
3978 SetPageChecked(page);
3979 return __set_page_dirty_nobuffers(page);
3980 }
3981
3982 static const struct address_space_operations ext4_ordered_aops = {
3983 .readpage = ext4_readpage,
3984 .readpages = ext4_readpages,
3985 .writepage = ext4_writepage,
3986 .sync_page = block_sync_page,
3987 .write_begin = ext4_write_begin,
3988 .write_end = ext4_ordered_write_end,
3989 .bmap = ext4_bmap,
3990 .invalidatepage = ext4_invalidatepage,
3991 .releasepage = ext4_releasepage,
3992 .direct_IO = ext4_direct_IO,
3993 .migratepage = buffer_migrate_page,
3994 .is_partially_uptodate = block_is_partially_uptodate,
3995 .error_remove_page = generic_error_remove_page,
3996 };
3997
3998 static const struct address_space_operations ext4_writeback_aops = {
3999 .readpage = ext4_readpage,
4000 .readpages = ext4_readpages,
4001 .writepage = ext4_writepage,
4002 .sync_page = block_sync_page,
4003 .write_begin = ext4_write_begin,
4004 .write_end = ext4_writeback_write_end,
4005 .bmap = ext4_bmap,
4006 .invalidatepage = ext4_invalidatepage,
4007 .releasepage = ext4_releasepage,
4008 .direct_IO = ext4_direct_IO,
4009 .migratepage = buffer_migrate_page,
4010 .is_partially_uptodate = block_is_partially_uptodate,
4011 .error_remove_page = generic_error_remove_page,
4012 };
4013
4014 static const struct address_space_operations ext4_journalled_aops = {
4015 .readpage = ext4_readpage,
4016 .readpages = ext4_readpages,
4017 .writepage = ext4_writepage,
4018 .sync_page = block_sync_page,
4019 .write_begin = ext4_write_begin,
4020 .write_end = ext4_journalled_write_end,
4021 .set_page_dirty = ext4_journalled_set_page_dirty,
4022 .bmap = ext4_bmap,
4023 .invalidatepage = ext4_invalidatepage,
4024 .releasepage = ext4_releasepage,
4025 .is_partially_uptodate = block_is_partially_uptodate,
4026 .error_remove_page = generic_error_remove_page,
4027 };
4028
4029 static const struct address_space_operations ext4_da_aops = {
4030 .readpage = ext4_readpage,
4031 .readpages = ext4_readpages,
4032 .writepage = ext4_writepage,
4033 .writepages = ext4_da_writepages,
4034 .sync_page = block_sync_page,
4035 .write_begin = ext4_da_write_begin,
4036 .write_end = ext4_da_write_end,
4037 .bmap = ext4_bmap,
4038 .invalidatepage = ext4_da_invalidatepage,
4039 .releasepage = ext4_releasepage,
4040 .direct_IO = ext4_direct_IO,
4041 .migratepage = buffer_migrate_page,
4042 .is_partially_uptodate = block_is_partially_uptodate,
4043 .error_remove_page = generic_error_remove_page,
4044 };
4045
4046 void ext4_set_aops(struct inode *inode)
4047 {
4048 if (ext4_should_order_data(inode) &&
4049 test_opt(inode->i_sb, DELALLOC))
4050 inode->i_mapping->a_ops = &ext4_da_aops;
4051 else if (ext4_should_order_data(inode))
4052 inode->i_mapping->a_ops = &ext4_ordered_aops;
4053 else if (ext4_should_writeback_data(inode) &&
4054 test_opt(inode->i_sb, DELALLOC))
4055 inode->i_mapping->a_ops = &ext4_da_aops;
4056 else if (ext4_should_writeback_data(inode))
4057 inode->i_mapping->a_ops = &ext4_writeback_aops;
4058 else
4059 inode->i_mapping->a_ops = &ext4_journalled_aops;
4060 }
4061
4062 /*
4063 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4064 * up to the end of the block which corresponds to `from'.
4065 * This required during truncate. We need to physically zero the tail end
4066 * of that block so it doesn't yield old data if the file is later grown.
4067 */
4068 int ext4_block_truncate_page(handle_t *handle,
4069 struct address_space *mapping, loff_t from)
4070 {
4071 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4072 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4073 unsigned blocksize, length, pos;
4074 ext4_lblk_t iblock;
4075 struct inode *inode = mapping->host;
4076 struct buffer_head *bh;
4077 struct page *page;
4078 int err = 0;
4079
4080 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4081 mapping_gfp_mask(mapping) & ~__GFP_FS);
4082 if (!page)
4083 return -EINVAL;
4084
4085 blocksize = inode->i_sb->s_blocksize;
4086 length = blocksize - (offset & (blocksize - 1));
4087 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4088
4089 /*
4090 * For "nobh" option, we can only work if we don't need to
4091 * read-in the page - otherwise we create buffers to do the IO.
4092 */
4093 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4094 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4095 zero_user(page, offset, length);
4096 set_page_dirty(page);
4097 goto unlock;
4098 }
4099
4100 if (!page_has_buffers(page))
4101 create_empty_buffers(page, blocksize, 0);
4102
4103 /* Find the buffer that contains "offset" */
4104 bh = page_buffers(page);
4105 pos = blocksize;
4106 while (offset >= pos) {
4107 bh = bh->b_this_page;
4108 iblock++;
4109 pos += blocksize;
4110 }
4111
4112 err = 0;
4113 if (buffer_freed(bh)) {
4114 BUFFER_TRACE(bh, "freed: skip");
4115 goto unlock;
4116 }
4117
4118 if (!buffer_mapped(bh)) {
4119 BUFFER_TRACE(bh, "unmapped");
4120 ext4_get_block(inode, iblock, bh, 0);
4121 /* unmapped? It's a hole - nothing to do */
4122 if (!buffer_mapped(bh)) {
4123 BUFFER_TRACE(bh, "still unmapped");
4124 goto unlock;
4125 }
4126 }
4127
4128 /* Ok, it's mapped. Make sure it's up-to-date */
4129 if (PageUptodate(page))
4130 set_buffer_uptodate(bh);
4131
4132 if (!buffer_uptodate(bh)) {
4133 err = -EIO;
4134 ll_rw_block(READ, 1, &bh);
4135 wait_on_buffer(bh);
4136 /* Uhhuh. Read error. Complain and punt. */
4137 if (!buffer_uptodate(bh))
4138 goto unlock;
4139 }
4140
4141 if (ext4_should_journal_data(inode)) {
4142 BUFFER_TRACE(bh, "get write access");
4143 err = ext4_journal_get_write_access(handle, bh);
4144 if (err)
4145 goto unlock;
4146 }
4147
4148 zero_user(page, offset, length);
4149
4150 BUFFER_TRACE(bh, "zeroed end of block");
4151
4152 err = 0;
4153 if (ext4_should_journal_data(inode)) {
4154 err = ext4_handle_dirty_metadata(handle, inode, bh);
4155 } else {
4156 if (ext4_should_order_data(inode))
4157 err = ext4_jbd2_file_inode(handle, inode);
4158 mark_buffer_dirty(bh);
4159 }
4160
4161 unlock:
4162 unlock_page(page);
4163 page_cache_release(page);
4164 return err;
4165 }
4166
4167 /*
4168 * Probably it should be a library function... search for first non-zero word
4169 * or memcmp with zero_page, whatever is better for particular architecture.
4170 * Linus?
4171 */
4172 static inline int all_zeroes(__le32 *p, __le32 *q)
4173 {
4174 while (p < q)
4175 if (*p++)
4176 return 0;
4177 return 1;
4178 }
4179
4180 /**
4181 * ext4_find_shared - find the indirect blocks for partial truncation.
4182 * @inode: inode in question
4183 * @depth: depth of the affected branch
4184 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4185 * @chain: place to store the pointers to partial indirect blocks
4186 * @top: place to the (detached) top of branch
4187 *
4188 * This is a helper function used by ext4_truncate().
4189 *
4190 * When we do truncate() we may have to clean the ends of several
4191 * indirect blocks but leave the blocks themselves alive. Block is
4192 * partially truncated if some data below the new i_size is refered
4193 * from it (and it is on the path to the first completely truncated
4194 * data block, indeed). We have to free the top of that path along
4195 * with everything to the right of the path. Since no allocation
4196 * past the truncation point is possible until ext4_truncate()
4197 * finishes, we may safely do the latter, but top of branch may
4198 * require special attention - pageout below the truncation point
4199 * might try to populate it.
4200 *
4201 * We atomically detach the top of branch from the tree, store the
4202 * block number of its root in *@top, pointers to buffer_heads of
4203 * partially truncated blocks - in @chain[].bh and pointers to
4204 * their last elements that should not be removed - in
4205 * @chain[].p. Return value is the pointer to last filled element
4206 * of @chain.
4207 *
4208 * The work left to caller to do the actual freeing of subtrees:
4209 * a) free the subtree starting from *@top
4210 * b) free the subtrees whose roots are stored in
4211 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4212 * c) free the subtrees growing from the inode past the @chain[0].
4213 * (no partially truncated stuff there). */
4214
4215 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4216 ext4_lblk_t offsets[4], Indirect chain[4],
4217 __le32 *top)
4218 {
4219 Indirect *partial, *p;
4220 int k, err;
4221
4222 *top = 0;
4223 /* Make k index the deepest non-null offset + 1 */
4224 for (k = depth; k > 1 && !offsets[k-1]; k--)
4225 ;
4226 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4227 /* Writer: pointers */
4228 if (!partial)
4229 partial = chain + k-1;
4230 /*
4231 * If the branch acquired continuation since we've looked at it -
4232 * fine, it should all survive and (new) top doesn't belong to us.
4233 */
4234 if (!partial->key && *partial->p)
4235 /* Writer: end */
4236 goto no_top;
4237 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4238 ;
4239 /*
4240 * OK, we've found the last block that must survive. The rest of our
4241 * branch should be detached before unlocking. However, if that rest
4242 * of branch is all ours and does not grow immediately from the inode
4243 * it's easier to cheat and just decrement partial->p.
4244 */
4245 if (p == chain + k - 1 && p > chain) {
4246 p->p--;
4247 } else {
4248 *top = *p->p;
4249 /* Nope, don't do this in ext4. Must leave the tree intact */
4250 #if 0
4251 *p->p = 0;
4252 #endif
4253 }
4254 /* Writer: end */
4255
4256 while (partial > p) {
4257 brelse(partial->bh);
4258 partial--;
4259 }
4260 no_top:
4261 return partial;
4262 }
4263
4264 /*
4265 * Zero a number of block pointers in either an inode or an indirect block.
4266 * If we restart the transaction we must again get write access to the
4267 * indirect block for further modification.
4268 *
4269 * We release `count' blocks on disk, but (last - first) may be greater
4270 * than `count' because there can be holes in there.
4271 */
4272 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4273 struct buffer_head *bh,
4274 ext4_fsblk_t block_to_free,
4275 unsigned long count, __le32 *first,
4276 __le32 *last)
4277 {
4278 __le32 *p;
4279 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4280
4281 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4282 flags |= EXT4_FREE_BLOCKS_METADATA;
4283
4284 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4285 count)) {
4286 ext4_error(inode->i_sb, "inode #%lu: "
4287 "attempt to clear blocks %llu len %lu, invalid",
4288 inode->i_ino, (unsigned long long) block_to_free,
4289 count);
4290 return 1;
4291 }
4292
4293 if (try_to_extend_transaction(handle, inode)) {
4294 if (bh) {
4295 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4296 ext4_handle_dirty_metadata(handle, inode, bh);
4297 }
4298 ext4_mark_inode_dirty(handle, inode);
4299 ext4_truncate_restart_trans(handle, inode,
4300 blocks_for_truncate(inode));
4301 if (bh) {
4302 BUFFER_TRACE(bh, "retaking write access");
4303 ext4_journal_get_write_access(handle, bh);
4304 }
4305 }
4306
4307 for (p = first; p < last; p++)
4308 *p = 0;
4309
4310 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4311 return 0;
4312 }
4313
4314 /**
4315 * ext4_free_data - free a list of data blocks
4316 * @handle: handle for this transaction
4317 * @inode: inode we are dealing with
4318 * @this_bh: indirect buffer_head which contains *@first and *@last
4319 * @first: array of block numbers
4320 * @last: points immediately past the end of array
4321 *
4322 * We are freeing all blocks refered from that array (numbers are stored as
4323 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4324 *
4325 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4326 * blocks are contiguous then releasing them at one time will only affect one
4327 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4328 * actually use a lot of journal space.
4329 *
4330 * @this_bh will be %NULL if @first and @last point into the inode's direct
4331 * block pointers.
4332 */
4333 static void ext4_free_data(handle_t *handle, struct inode *inode,
4334 struct buffer_head *this_bh,
4335 __le32 *first, __le32 *last)
4336 {
4337 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4338 unsigned long count = 0; /* Number of blocks in the run */
4339 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4340 corresponding to
4341 block_to_free */
4342 ext4_fsblk_t nr; /* Current block # */
4343 __le32 *p; /* Pointer into inode/ind
4344 for current block */
4345 int err;
4346
4347 if (this_bh) { /* For indirect block */
4348 BUFFER_TRACE(this_bh, "get_write_access");
4349 err = ext4_journal_get_write_access(handle, this_bh);
4350 /* Important: if we can't update the indirect pointers
4351 * to the blocks, we can't free them. */
4352 if (err)
4353 return;
4354 }
4355
4356 for (p = first; p < last; p++) {
4357 nr = le32_to_cpu(*p);
4358 if (nr) {
4359 /* accumulate blocks to free if they're contiguous */
4360 if (count == 0) {
4361 block_to_free = nr;
4362 block_to_free_p = p;
4363 count = 1;
4364 } else if (nr == block_to_free + count) {
4365 count++;
4366 } else {
4367 if (ext4_clear_blocks(handle, inode, this_bh,
4368 block_to_free, count,
4369 block_to_free_p, p))
4370 break;
4371 block_to_free = nr;
4372 block_to_free_p = p;
4373 count = 1;
4374 }
4375 }
4376 }
4377
4378 if (count > 0)
4379 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4380 count, block_to_free_p, p);
4381
4382 if (this_bh) {
4383 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4384
4385 /*
4386 * The buffer head should have an attached journal head at this
4387 * point. However, if the data is corrupted and an indirect
4388 * block pointed to itself, it would have been detached when
4389 * the block was cleared. Check for this instead of OOPSing.
4390 */
4391 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4392 ext4_handle_dirty_metadata(handle, inode, this_bh);
4393 else
4394 ext4_error(inode->i_sb,
4395 "circular indirect block detected, "
4396 "inode=%lu, block=%llu",
4397 inode->i_ino,
4398 (unsigned long long) this_bh->b_blocknr);
4399 }
4400 }
4401
4402 /**
4403 * ext4_free_branches - free an array of branches
4404 * @handle: JBD handle for this transaction
4405 * @inode: inode we are dealing with
4406 * @parent_bh: the buffer_head which contains *@first and *@last
4407 * @first: array of block numbers
4408 * @last: pointer immediately past the end of array
4409 * @depth: depth of the branches to free
4410 *
4411 * We are freeing all blocks refered from these branches (numbers are
4412 * stored as little-endian 32-bit) and updating @inode->i_blocks
4413 * appropriately.
4414 */
4415 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4416 struct buffer_head *parent_bh,
4417 __le32 *first, __le32 *last, int depth)
4418 {
4419 ext4_fsblk_t nr;
4420 __le32 *p;
4421
4422 if (ext4_handle_is_aborted(handle))
4423 return;
4424
4425 if (depth--) {
4426 struct buffer_head *bh;
4427 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4428 p = last;
4429 while (--p >= first) {
4430 nr = le32_to_cpu(*p);
4431 if (!nr)
4432 continue; /* A hole */
4433
4434 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4435 nr, 1)) {
4436 ext4_error(inode->i_sb,
4437 "indirect mapped block in inode "
4438 "#%lu invalid (level %d, blk #%lu)",
4439 inode->i_ino, depth,
4440 (unsigned long) nr);
4441 break;
4442 }
4443
4444 /* Go read the buffer for the next level down */
4445 bh = sb_bread(inode->i_sb, nr);
4446
4447 /*
4448 * A read failure? Report error and clear slot
4449 * (should be rare).
4450 */
4451 if (!bh) {
4452 ext4_error(inode->i_sb,
4453 "Read failure, inode=%lu, block=%llu",
4454 inode->i_ino, nr);
4455 continue;
4456 }
4457
4458 /* This zaps the entire block. Bottom up. */
4459 BUFFER_TRACE(bh, "free child branches");
4460 ext4_free_branches(handle, inode, bh,
4461 (__le32 *) bh->b_data,
4462 (__le32 *) bh->b_data + addr_per_block,
4463 depth);
4464
4465 /*
4466 * We've probably journalled the indirect block several
4467 * times during the truncate. But it's no longer
4468 * needed and we now drop it from the transaction via
4469 * jbd2_journal_revoke().
4470 *
4471 * That's easy if it's exclusively part of this
4472 * transaction. But if it's part of the committing
4473 * transaction then jbd2_journal_forget() will simply
4474 * brelse() it. That means that if the underlying
4475 * block is reallocated in ext4_get_block(),
4476 * unmap_underlying_metadata() will find this block
4477 * and will try to get rid of it. damn, damn.
4478 *
4479 * If this block has already been committed to the
4480 * journal, a revoke record will be written. And
4481 * revoke records must be emitted *before* clearing
4482 * this block's bit in the bitmaps.
4483 */
4484 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4485
4486 /*
4487 * Everything below this this pointer has been
4488 * released. Now let this top-of-subtree go.
4489 *
4490 * We want the freeing of this indirect block to be
4491 * atomic in the journal with the updating of the
4492 * bitmap block which owns it. So make some room in
4493 * the journal.
4494 *
4495 * We zero the parent pointer *after* freeing its
4496 * pointee in the bitmaps, so if extend_transaction()
4497 * for some reason fails to put the bitmap changes and
4498 * the release into the same transaction, recovery
4499 * will merely complain about releasing a free block,
4500 * rather than leaking blocks.
4501 */
4502 if (ext4_handle_is_aborted(handle))
4503 return;
4504 if (try_to_extend_transaction(handle, inode)) {
4505 ext4_mark_inode_dirty(handle, inode);
4506 ext4_truncate_restart_trans(handle, inode,
4507 blocks_for_truncate(inode));
4508 }
4509
4510 ext4_free_blocks(handle, inode, 0, nr, 1,
4511 EXT4_FREE_BLOCKS_METADATA);
4512
4513 if (parent_bh) {
4514 /*
4515 * The block which we have just freed is
4516 * pointed to by an indirect block: journal it
4517 */
4518 BUFFER_TRACE(parent_bh, "get_write_access");
4519 if (!ext4_journal_get_write_access(handle,
4520 parent_bh)){
4521 *p = 0;
4522 BUFFER_TRACE(parent_bh,
4523 "call ext4_handle_dirty_metadata");
4524 ext4_handle_dirty_metadata(handle,
4525 inode,
4526 parent_bh);
4527 }
4528 }
4529 }
4530 } else {
4531 /* We have reached the bottom of the tree. */
4532 BUFFER_TRACE(parent_bh, "free data blocks");
4533 ext4_free_data(handle, inode, parent_bh, first, last);
4534 }
4535 }
4536
4537 int ext4_can_truncate(struct inode *inode)
4538 {
4539 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4540 return 0;
4541 if (S_ISREG(inode->i_mode))
4542 return 1;
4543 if (S_ISDIR(inode->i_mode))
4544 return 1;
4545 if (S_ISLNK(inode->i_mode))
4546 return !ext4_inode_is_fast_symlink(inode);
4547 return 0;
4548 }
4549
4550 /*
4551 * ext4_truncate()
4552 *
4553 * We block out ext4_get_block() block instantiations across the entire
4554 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4555 * simultaneously on behalf of the same inode.
4556 *
4557 * As we work through the truncate and commmit bits of it to the journal there
4558 * is one core, guiding principle: the file's tree must always be consistent on
4559 * disk. We must be able to restart the truncate after a crash.
4560 *
4561 * The file's tree may be transiently inconsistent in memory (although it
4562 * probably isn't), but whenever we close off and commit a journal transaction,
4563 * the contents of (the filesystem + the journal) must be consistent and
4564 * restartable. It's pretty simple, really: bottom up, right to left (although
4565 * left-to-right works OK too).
4566 *
4567 * Note that at recovery time, journal replay occurs *before* the restart of
4568 * truncate against the orphan inode list.
4569 *
4570 * The committed inode has the new, desired i_size (which is the same as
4571 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4572 * that this inode's truncate did not complete and it will again call
4573 * ext4_truncate() to have another go. So there will be instantiated blocks
4574 * to the right of the truncation point in a crashed ext4 filesystem. But
4575 * that's fine - as long as they are linked from the inode, the post-crash
4576 * ext4_truncate() run will find them and release them.
4577 */
4578 void ext4_truncate(struct inode *inode)
4579 {
4580 handle_t *handle;
4581 struct ext4_inode_info *ei = EXT4_I(inode);
4582 __le32 *i_data = ei->i_data;
4583 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4584 struct address_space *mapping = inode->i_mapping;
4585 ext4_lblk_t offsets[4];
4586 Indirect chain[4];
4587 Indirect *partial;
4588 __le32 nr = 0;
4589 int n;
4590 ext4_lblk_t last_block;
4591 unsigned blocksize = inode->i_sb->s_blocksize;
4592
4593 if (!ext4_can_truncate(inode))
4594 return;
4595
4596 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4597
4598 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4599 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4600
4601 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4602 ext4_ext_truncate(inode);
4603 return;
4604 }
4605
4606 handle = start_transaction(inode);
4607 if (IS_ERR(handle))
4608 return; /* AKPM: return what? */
4609
4610 last_block = (inode->i_size + blocksize-1)
4611 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4612
4613 if (inode->i_size & (blocksize - 1))
4614 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4615 goto out_stop;
4616
4617 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4618 if (n == 0)
4619 goto out_stop; /* error */
4620
4621 /*
4622 * OK. This truncate is going to happen. We add the inode to the
4623 * orphan list, so that if this truncate spans multiple transactions,
4624 * and we crash, we will resume the truncate when the filesystem
4625 * recovers. It also marks the inode dirty, to catch the new size.
4626 *
4627 * Implication: the file must always be in a sane, consistent
4628 * truncatable state while each transaction commits.
4629 */
4630 if (ext4_orphan_add(handle, inode))
4631 goto out_stop;
4632
4633 /*
4634 * From here we block out all ext4_get_block() callers who want to
4635 * modify the block allocation tree.
4636 */
4637 down_write(&ei->i_data_sem);
4638
4639 ext4_discard_preallocations(inode);
4640
4641 /*
4642 * The orphan list entry will now protect us from any crash which
4643 * occurs before the truncate completes, so it is now safe to propagate
4644 * the new, shorter inode size (held for now in i_size) into the
4645 * on-disk inode. We do this via i_disksize, which is the value which
4646 * ext4 *really* writes onto the disk inode.
4647 */
4648 ei->i_disksize = inode->i_size;
4649
4650 if (n == 1) { /* direct blocks */
4651 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4652 i_data + EXT4_NDIR_BLOCKS);
4653 goto do_indirects;
4654 }
4655
4656 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4657 /* Kill the top of shared branch (not detached) */
4658 if (nr) {
4659 if (partial == chain) {
4660 /* Shared branch grows from the inode */
4661 ext4_free_branches(handle, inode, NULL,
4662 &nr, &nr+1, (chain+n-1) - partial);
4663 *partial->p = 0;
4664 /*
4665 * We mark the inode dirty prior to restart,
4666 * and prior to stop. No need for it here.
4667 */
4668 } else {
4669 /* Shared branch grows from an indirect block */
4670 BUFFER_TRACE(partial->bh, "get_write_access");
4671 ext4_free_branches(handle, inode, partial->bh,
4672 partial->p,
4673 partial->p+1, (chain+n-1) - partial);
4674 }
4675 }
4676 /* Clear the ends of indirect blocks on the shared branch */
4677 while (partial > chain) {
4678 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4679 (__le32*)partial->bh->b_data+addr_per_block,
4680 (chain+n-1) - partial);
4681 BUFFER_TRACE(partial->bh, "call brelse");
4682 brelse(partial->bh);
4683 partial--;
4684 }
4685 do_indirects:
4686 /* Kill the remaining (whole) subtrees */
4687 switch (offsets[0]) {
4688 default:
4689 nr = i_data[EXT4_IND_BLOCK];
4690 if (nr) {
4691 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4692 i_data[EXT4_IND_BLOCK] = 0;
4693 }
4694 case EXT4_IND_BLOCK:
4695 nr = i_data[EXT4_DIND_BLOCK];
4696 if (nr) {
4697 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4698 i_data[EXT4_DIND_BLOCK] = 0;
4699 }
4700 case EXT4_DIND_BLOCK:
4701 nr = i_data[EXT4_TIND_BLOCK];
4702 if (nr) {
4703 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4704 i_data[EXT4_TIND_BLOCK] = 0;
4705 }
4706 case EXT4_TIND_BLOCK:
4707 ;
4708 }
4709
4710 up_write(&ei->i_data_sem);
4711 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4712 ext4_mark_inode_dirty(handle, inode);
4713
4714 /*
4715 * In a multi-transaction truncate, we only make the final transaction
4716 * synchronous
4717 */
4718 if (IS_SYNC(inode))
4719 ext4_handle_sync(handle);
4720 out_stop:
4721 /*
4722 * If this was a simple ftruncate(), and the file will remain alive
4723 * then we need to clear up the orphan record which we created above.
4724 * However, if this was a real unlink then we were called by
4725 * ext4_delete_inode(), and we allow that function to clean up the
4726 * orphan info for us.
4727 */
4728 if (inode->i_nlink)
4729 ext4_orphan_del(handle, inode);
4730
4731 ext4_journal_stop(handle);
4732 }
4733
4734 /*
4735 * ext4_get_inode_loc returns with an extra refcount against the inode's
4736 * underlying buffer_head on success. If 'in_mem' is true, we have all
4737 * data in memory that is needed to recreate the on-disk version of this
4738 * inode.
4739 */
4740 static int __ext4_get_inode_loc(struct inode *inode,
4741 struct ext4_iloc *iloc, int in_mem)
4742 {
4743 struct ext4_group_desc *gdp;
4744 struct buffer_head *bh;
4745 struct super_block *sb = inode->i_sb;
4746 ext4_fsblk_t block;
4747 int inodes_per_block, inode_offset;
4748
4749 iloc->bh = NULL;
4750 if (!ext4_valid_inum(sb, inode->i_ino))
4751 return -EIO;
4752
4753 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4754 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4755 if (!gdp)
4756 return -EIO;
4757
4758 /*
4759 * Figure out the offset within the block group inode table
4760 */
4761 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4762 inode_offset = ((inode->i_ino - 1) %
4763 EXT4_INODES_PER_GROUP(sb));
4764 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4765 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4766
4767 bh = sb_getblk(sb, block);
4768 if (!bh) {
4769 ext4_error(sb, "unable to read inode block - "
4770 "inode=%lu, block=%llu", inode->i_ino, block);
4771 return -EIO;
4772 }
4773 if (!buffer_uptodate(bh)) {
4774 lock_buffer(bh);
4775
4776 /*
4777 * If the buffer has the write error flag, we have failed
4778 * to write out another inode in the same block. In this
4779 * case, we don't have to read the block because we may
4780 * read the old inode data successfully.
4781 */
4782 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4783 set_buffer_uptodate(bh);
4784
4785 if (buffer_uptodate(bh)) {
4786 /* someone brought it uptodate while we waited */
4787 unlock_buffer(bh);
4788 goto has_buffer;
4789 }
4790
4791 /*
4792 * If we have all information of the inode in memory and this
4793 * is the only valid inode in the block, we need not read the
4794 * block.
4795 */
4796 if (in_mem) {
4797 struct buffer_head *bitmap_bh;
4798 int i, start;
4799
4800 start = inode_offset & ~(inodes_per_block - 1);
4801
4802 /* Is the inode bitmap in cache? */
4803 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4804 if (!bitmap_bh)
4805 goto make_io;
4806
4807 /*
4808 * If the inode bitmap isn't in cache then the
4809 * optimisation may end up performing two reads instead
4810 * of one, so skip it.
4811 */
4812 if (!buffer_uptodate(bitmap_bh)) {
4813 brelse(bitmap_bh);
4814 goto make_io;
4815 }
4816 for (i = start; i < start + inodes_per_block; i++) {
4817 if (i == inode_offset)
4818 continue;
4819 if (ext4_test_bit(i, bitmap_bh->b_data))
4820 break;
4821 }
4822 brelse(bitmap_bh);
4823 if (i == start + inodes_per_block) {
4824 /* all other inodes are free, so skip I/O */
4825 memset(bh->b_data, 0, bh->b_size);
4826 set_buffer_uptodate(bh);
4827 unlock_buffer(bh);
4828 goto has_buffer;
4829 }
4830 }
4831
4832 make_io:
4833 /*
4834 * If we need to do any I/O, try to pre-readahead extra
4835 * blocks from the inode table.
4836 */
4837 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4838 ext4_fsblk_t b, end, table;
4839 unsigned num;
4840
4841 table = ext4_inode_table(sb, gdp);
4842 /* s_inode_readahead_blks is always a power of 2 */
4843 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4844 if (table > b)
4845 b = table;
4846 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4847 num = EXT4_INODES_PER_GROUP(sb);
4848 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4849 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4850 num -= ext4_itable_unused_count(sb, gdp);
4851 table += num / inodes_per_block;
4852 if (end > table)
4853 end = table;
4854 while (b <= end)
4855 sb_breadahead(sb, b++);
4856 }
4857
4858 /*
4859 * There are other valid inodes in the buffer, this inode
4860 * has in-inode xattrs, or we don't have this inode in memory.
4861 * Read the block from disk.
4862 */
4863 get_bh(bh);
4864 bh->b_end_io = end_buffer_read_sync;
4865 submit_bh(READ_META, bh);
4866 wait_on_buffer(bh);
4867 if (!buffer_uptodate(bh)) {
4868 ext4_error(sb, "unable to read inode block - inode=%lu,"
4869 " block=%llu", inode->i_ino, block);
4870 brelse(bh);
4871 return -EIO;
4872 }
4873 }
4874 has_buffer:
4875 iloc->bh = bh;
4876 return 0;
4877 }
4878
4879 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4880 {
4881 /* We have all inode data except xattrs in memory here. */
4882 return __ext4_get_inode_loc(inode, iloc,
4883 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4884 }
4885
4886 void ext4_set_inode_flags(struct inode *inode)
4887 {
4888 unsigned int flags = EXT4_I(inode)->i_flags;
4889
4890 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4891 if (flags & EXT4_SYNC_FL)
4892 inode->i_flags |= S_SYNC;
4893 if (flags & EXT4_APPEND_FL)
4894 inode->i_flags |= S_APPEND;
4895 if (flags & EXT4_IMMUTABLE_FL)
4896 inode->i_flags |= S_IMMUTABLE;
4897 if (flags & EXT4_NOATIME_FL)
4898 inode->i_flags |= S_NOATIME;
4899 if (flags & EXT4_DIRSYNC_FL)
4900 inode->i_flags |= S_DIRSYNC;
4901 }
4902
4903 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4904 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4905 {
4906 unsigned int flags = ei->vfs_inode.i_flags;
4907
4908 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4909 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4910 if (flags & S_SYNC)
4911 ei->i_flags |= EXT4_SYNC_FL;
4912 if (flags & S_APPEND)
4913 ei->i_flags |= EXT4_APPEND_FL;
4914 if (flags & S_IMMUTABLE)
4915 ei->i_flags |= EXT4_IMMUTABLE_FL;
4916 if (flags & S_NOATIME)
4917 ei->i_flags |= EXT4_NOATIME_FL;
4918 if (flags & S_DIRSYNC)
4919 ei->i_flags |= EXT4_DIRSYNC_FL;
4920 }
4921
4922 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4923 struct ext4_inode_info *ei)
4924 {
4925 blkcnt_t i_blocks ;
4926 struct inode *inode = &(ei->vfs_inode);
4927 struct super_block *sb = inode->i_sb;
4928
4929 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4930 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4931 /* we are using combined 48 bit field */
4932 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4933 le32_to_cpu(raw_inode->i_blocks_lo);
4934 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4935 /* i_blocks represent file system block size */
4936 return i_blocks << (inode->i_blkbits - 9);
4937 } else {
4938 return i_blocks;
4939 }
4940 } else {
4941 return le32_to_cpu(raw_inode->i_blocks_lo);
4942 }
4943 }
4944
4945 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4946 {
4947 struct ext4_iloc iloc;
4948 struct ext4_inode *raw_inode;
4949 struct ext4_inode_info *ei;
4950 struct inode *inode;
4951 journal_t *journal = EXT4_SB(sb)->s_journal;
4952 long ret;
4953 int block;
4954
4955 inode = iget_locked(sb, ino);
4956 if (!inode)
4957 return ERR_PTR(-ENOMEM);
4958 if (!(inode->i_state & I_NEW))
4959 return inode;
4960
4961 ei = EXT4_I(inode);
4962 iloc.bh = 0;
4963
4964 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4965 if (ret < 0)
4966 goto bad_inode;
4967 raw_inode = ext4_raw_inode(&iloc);
4968 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4969 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4970 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4971 if (!(test_opt(inode->i_sb, NO_UID32))) {
4972 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4973 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4974 }
4975 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4976
4977 ei->i_state_flags = 0;
4978 ei->i_dir_start_lookup = 0;
4979 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4980 /* We now have enough fields to check if the inode was active or not.
4981 * This is needed because nfsd might try to access dead inodes
4982 * the test is that same one that e2fsck uses
4983 * NeilBrown 1999oct15
4984 */
4985 if (inode->i_nlink == 0) {
4986 if (inode->i_mode == 0 ||
4987 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4988 /* this inode is deleted */
4989 ret = -ESTALE;
4990 goto bad_inode;
4991 }
4992 /* The only unlinked inodes we let through here have
4993 * valid i_mode and are being read by the orphan
4994 * recovery code: that's fine, we're about to complete
4995 * the process of deleting those. */
4996 }
4997 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4998 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4999 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5000 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5001 ei->i_file_acl |=
5002 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5003 inode->i_size = ext4_isize(raw_inode);
5004 ei->i_disksize = inode->i_size;
5005 #ifdef CONFIG_QUOTA
5006 ei->i_reserved_quota = 0;
5007 #endif
5008 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5009 ei->i_block_group = iloc.block_group;
5010 ei->i_last_alloc_group = ~0;
5011 /*
5012 * NOTE! The in-memory inode i_data array is in little-endian order
5013 * even on big-endian machines: we do NOT byteswap the block numbers!
5014 */
5015 for (block = 0; block < EXT4_N_BLOCKS; block++)
5016 ei->i_data[block] = raw_inode->i_block[block];
5017 INIT_LIST_HEAD(&ei->i_orphan);
5018
5019 /*
5020 * Set transaction id's of transactions that have to be committed
5021 * to finish f[data]sync. We set them to currently running transaction
5022 * as we cannot be sure that the inode or some of its metadata isn't
5023 * part of the transaction - the inode could have been reclaimed and
5024 * now it is reread from disk.
5025 */
5026 if (journal) {
5027 transaction_t *transaction;
5028 tid_t tid;
5029
5030 spin_lock(&journal->j_state_lock);
5031 if (journal->j_running_transaction)
5032 transaction = journal->j_running_transaction;
5033 else
5034 transaction = journal->j_committing_transaction;
5035 if (transaction)
5036 tid = transaction->t_tid;
5037 else
5038 tid = journal->j_commit_sequence;
5039 spin_unlock(&journal->j_state_lock);
5040 ei->i_sync_tid = tid;
5041 ei->i_datasync_tid = tid;
5042 }
5043
5044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5045 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5046 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5047 EXT4_INODE_SIZE(inode->i_sb)) {
5048 ret = -EIO;
5049 goto bad_inode;
5050 }
5051 if (ei->i_extra_isize == 0) {
5052 /* The extra space is currently unused. Use it. */
5053 ei->i_extra_isize = sizeof(struct ext4_inode) -
5054 EXT4_GOOD_OLD_INODE_SIZE;
5055 } else {
5056 __le32 *magic = (void *)raw_inode +
5057 EXT4_GOOD_OLD_INODE_SIZE +
5058 ei->i_extra_isize;
5059 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5060 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5061 }
5062 } else
5063 ei->i_extra_isize = 0;
5064
5065 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5066 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5067 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5068 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5069
5070 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5071 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5072 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5073 inode->i_version |=
5074 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5075 }
5076
5077 ret = 0;
5078 if (ei->i_file_acl &&
5079 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5080 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5081 ei->i_file_acl, inode->i_ino);
5082 ret = -EIO;
5083 goto bad_inode;
5084 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5085 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5086 (S_ISLNK(inode->i_mode) &&
5087 !ext4_inode_is_fast_symlink(inode)))
5088 /* Validate extent which is part of inode */
5089 ret = ext4_ext_check_inode(inode);
5090 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5091 (S_ISLNK(inode->i_mode) &&
5092 !ext4_inode_is_fast_symlink(inode))) {
5093 /* Validate block references which are part of inode */
5094 ret = ext4_check_inode_blockref(inode);
5095 }
5096 if (ret)
5097 goto bad_inode;
5098
5099 if (S_ISREG(inode->i_mode)) {
5100 inode->i_op = &ext4_file_inode_operations;
5101 inode->i_fop = &ext4_file_operations;
5102 ext4_set_aops(inode);
5103 } else if (S_ISDIR(inode->i_mode)) {
5104 inode->i_op = &ext4_dir_inode_operations;
5105 inode->i_fop = &ext4_dir_operations;
5106 } else if (S_ISLNK(inode->i_mode)) {
5107 if (ext4_inode_is_fast_symlink(inode)) {
5108 inode->i_op = &ext4_fast_symlink_inode_operations;
5109 nd_terminate_link(ei->i_data, inode->i_size,
5110 sizeof(ei->i_data) - 1);
5111 } else {
5112 inode->i_op = &ext4_symlink_inode_operations;
5113 ext4_set_aops(inode);
5114 }
5115 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5116 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5117 inode->i_op = &ext4_special_inode_operations;
5118 if (raw_inode->i_block[0])
5119 init_special_inode(inode, inode->i_mode,
5120 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5121 else
5122 init_special_inode(inode, inode->i_mode,
5123 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5124 } else {
5125 ret = -EIO;
5126 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5127 inode->i_mode, inode->i_ino);
5128 goto bad_inode;
5129 }
5130 brelse(iloc.bh);
5131 ext4_set_inode_flags(inode);
5132 unlock_new_inode(inode);
5133 return inode;
5134
5135 bad_inode:
5136 brelse(iloc.bh);
5137 iget_failed(inode);
5138 return ERR_PTR(ret);
5139 }
5140
5141 static int ext4_inode_blocks_set(handle_t *handle,
5142 struct ext4_inode *raw_inode,
5143 struct ext4_inode_info *ei)
5144 {
5145 struct inode *inode = &(ei->vfs_inode);
5146 u64 i_blocks = inode->i_blocks;
5147 struct super_block *sb = inode->i_sb;
5148
5149 if (i_blocks <= ~0U) {
5150 /*
5151 * i_blocks can be represnted in a 32 bit variable
5152 * as multiple of 512 bytes
5153 */
5154 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5155 raw_inode->i_blocks_high = 0;
5156 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5157 return 0;
5158 }
5159 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5160 return -EFBIG;
5161
5162 if (i_blocks <= 0xffffffffffffULL) {
5163 /*
5164 * i_blocks can be represented in a 48 bit variable
5165 * as multiple of 512 bytes
5166 */
5167 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5168 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5169 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5170 } else {
5171 ei->i_flags |= EXT4_HUGE_FILE_FL;
5172 /* i_block is stored in file system block size */
5173 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5174 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5175 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5176 }
5177 return 0;
5178 }
5179
5180 /*
5181 * Post the struct inode info into an on-disk inode location in the
5182 * buffer-cache. This gobbles the caller's reference to the
5183 * buffer_head in the inode location struct.
5184 *
5185 * The caller must have write access to iloc->bh.
5186 */
5187 static int ext4_do_update_inode(handle_t *handle,
5188 struct inode *inode,
5189 struct ext4_iloc *iloc)
5190 {
5191 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5192 struct ext4_inode_info *ei = EXT4_I(inode);
5193 struct buffer_head *bh = iloc->bh;
5194 int err = 0, rc, block;
5195
5196 /* For fields not not tracking in the in-memory inode,
5197 * initialise them to zero for new inodes. */
5198 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5199 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5200
5201 ext4_get_inode_flags(ei);
5202 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5203 if (!(test_opt(inode->i_sb, NO_UID32))) {
5204 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5205 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5206 /*
5207 * Fix up interoperability with old kernels. Otherwise, old inodes get
5208 * re-used with the upper 16 bits of the uid/gid intact
5209 */
5210 if (!ei->i_dtime) {
5211 raw_inode->i_uid_high =
5212 cpu_to_le16(high_16_bits(inode->i_uid));
5213 raw_inode->i_gid_high =
5214 cpu_to_le16(high_16_bits(inode->i_gid));
5215 } else {
5216 raw_inode->i_uid_high = 0;
5217 raw_inode->i_gid_high = 0;
5218 }
5219 } else {
5220 raw_inode->i_uid_low =
5221 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5222 raw_inode->i_gid_low =
5223 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5224 raw_inode->i_uid_high = 0;
5225 raw_inode->i_gid_high = 0;
5226 }
5227 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5228
5229 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5230 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5231 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5232 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5233
5234 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5235 goto out_brelse;
5236 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5237 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5238 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5239 cpu_to_le32(EXT4_OS_HURD))
5240 raw_inode->i_file_acl_high =
5241 cpu_to_le16(ei->i_file_acl >> 32);
5242 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5243 ext4_isize_set(raw_inode, ei->i_disksize);
5244 if (ei->i_disksize > 0x7fffffffULL) {
5245 struct super_block *sb = inode->i_sb;
5246 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5247 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5248 EXT4_SB(sb)->s_es->s_rev_level ==
5249 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5250 /* If this is the first large file
5251 * created, add a flag to the superblock.
5252 */
5253 err = ext4_journal_get_write_access(handle,
5254 EXT4_SB(sb)->s_sbh);
5255 if (err)
5256 goto out_brelse;
5257 ext4_update_dynamic_rev(sb);
5258 EXT4_SET_RO_COMPAT_FEATURE(sb,
5259 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5260 sb->s_dirt = 1;
5261 ext4_handle_sync(handle);
5262 err = ext4_handle_dirty_metadata(handle, NULL,
5263 EXT4_SB(sb)->s_sbh);
5264 }
5265 }
5266 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5267 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5268 if (old_valid_dev(inode->i_rdev)) {
5269 raw_inode->i_block[0] =
5270 cpu_to_le32(old_encode_dev(inode->i_rdev));
5271 raw_inode->i_block[1] = 0;
5272 } else {
5273 raw_inode->i_block[0] = 0;
5274 raw_inode->i_block[1] =
5275 cpu_to_le32(new_encode_dev(inode->i_rdev));
5276 raw_inode->i_block[2] = 0;
5277 }
5278 } else
5279 for (block = 0; block < EXT4_N_BLOCKS; block++)
5280 raw_inode->i_block[block] = ei->i_data[block];
5281
5282 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5283 if (ei->i_extra_isize) {
5284 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5285 raw_inode->i_version_hi =
5286 cpu_to_le32(inode->i_version >> 32);
5287 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5288 }
5289
5290 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5291 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5292 if (!err)
5293 err = rc;
5294 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5295
5296 ext4_update_inode_fsync_trans(handle, inode, 0);
5297 out_brelse:
5298 brelse(bh);
5299 ext4_std_error(inode->i_sb, err);
5300 return err;
5301 }
5302
5303 /*
5304 * ext4_write_inode()
5305 *
5306 * We are called from a few places:
5307 *
5308 * - Within generic_file_write() for O_SYNC files.
5309 * Here, there will be no transaction running. We wait for any running
5310 * trasnaction to commit.
5311 *
5312 * - Within sys_sync(), kupdate and such.
5313 * We wait on commit, if tol to.
5314 *
5315 * - Within prune_icache() (PF_MEMALLOC == true)
5316 * Here we simply return. We can't afford to block kswapd on the
5317 * journal commit.
5318 *
5319 * In all cases it is actually safe for us to return without doing anything,
5320 * because the inode has been copied into a raw inode buffer in
5321 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5322 * knfsd.
5323 *
5324 * Note that we are absolutely dependent upon all inode dirtiers doing the
5325 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5326 * which we are interested.
5327 *
5328 * It would be a bug for them to not do this. The code:
5329 *
5330 * mark_inode_dirty(inode)
5331 * stuff();
5332 * inode->i_size = expr;
5333 *
5334 * is in error because a kswapd-driven write_inode() could occur while
5335 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5336 * will no longer be on the superblock's dirty inode list.
5337 */
5338 int ext4_write_inode(struct inode *inode, int wait)
5339 {
5340 int err;
5341
5342 if (current->flags & PF_MEMALLOC)
5343 return 0;
5344
5345 if (EXT4_SB(inode->i_sb)->s_journal) {
5346 if (ext4_journal_current_handle()) {
5347 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5348 dump_stack();
5349 return -EIO;
5350 }
5351
5352 if (!wait)
5353 return 0;
5354
5355 err = ext4_force_commit(inode->i_sb);
5356 } else {
5357 struct ext4_iloc iloc;
5358
5359 err = ext4_get_inode_loc(inode, &iloc);
5360 if (err)
5361 return err;
5362 if (wait)
5363 sync_dirty_buffer(iloc.bh);
5364 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5365 ext4_error(inode->i_sb, "IO error syncing inode, "
5366 "inode=%lu, block=%llu", inode->i_ino,
5367 (unsigned long long)iloc.bh->b_blocknr);
5368 err = -EIO;
5369 }
5370 }
5371 return err;
5372 }
5373
5374 /*
5375 * ext4_setattr()
5376 *
5377 * Called from notify_change.
5378 *
5379 * We want to trap VFS attempts to truncate the file as soon as
5380 * possible. In particular, we want to make sure that when the VFS
5381 * shrinks i_size, we put the inode on the orphan list and modify
5382 * i_disksize immediately, so that during the subsequent flushing of
5383 * dirty pages and freeing of disk blocks, we can guarantee that any
5384 * commit will leave the blocks being flushed in an unused state on
5385 * disk. (On recovery, the inode will get truncated and the blocks will
5386 * be freed, so we have a strong guarantee that no future commit will
5387 * leave these blocks visible to the user.)
5388 *
5389 * Another thing we have to assure is that if we are in ordered mode
5390 * and inode is still attached to the committing transaction, we must
5391 * we start writeout of all the dirty pages which are being truncated.
5392 * This way we are sure that all the data written in the previous
5393 * transaction are already on disk (truncate waits for pages under
5394 * writeback).
5395 *
5396 * Called with inode->i_mutex down.
5397 */
5398 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5399 {
5400 struct inode *inode = dentry->d_inode;
5401 int error, rc = 0;
5402 const unsigned int ia_valid = attr->ia_valid;
5403
5404 error = inode_change_ok(inode, attr);
5405 if (error)
5406 return error;
5407
5408 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5409 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5410 handle_t *handle;
5411
5412 /* (user+group)*(old+new) structure, inode write (sb,
5413 * inode block, ? - but truncate inode update has it) */
5414 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5415 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5416 if (IS_ERR(handle)) {
5417 error = PTR_ERR(handle);
5418 goto err_out;
5419 }
5420 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5421 if (error) {
5422 ext4_journal_stop(handle);
5423 return error;
5424 }
5425 /* Update corresponding info in inode so that everything is in
5426 * one transaction */
5427 if (attr->ia_valid & ATTR_UID)
5428 inode->i_uid = attr->ia_uid;
5429 if (attr->ia_valid & ATTR_GID)
5430 inode->i_gid = attr->ia_gid;
5431 error = ext4_mark_inode_dirty(handle, inode);
5432 ext4_journal_stop(handle);
5433 }
5434
5435 if (attr->ia_valid & ATTR_SIZE) {
5436 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5437 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5438
5439 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5440 error = -EFBIG;
5441 goto err_out;
5442 }
5443 }
5444 }
5445
5446 if (S_ISREG(inode->i_mode) &&
5447 attr->ia_valid & ATTR_SIZE &&
5448 (attr->ia_size < inode->i_size ||
5449 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5450 handle_t *handle;
5451
5452 handle = ext4_journal_start(inode, 3);
5453 if (IS_ERR(handle)) {
5454 error = PTR_ERR(handle);
5455 goto err_out;
5456 }
5457
5458 error = ext4_orphan_add(handle, inode);
5459 EXT4_I(inode)->i_disksize = attr->ia_size;
5460 rc = ext4_mark_inode_dirty(handle, inode);
5461 if (!error)
5462 error = rc;
5463 ext4_journal_stop(handle);
5464
5465 if (ext4_should_order_data(inode)) {
5466 error = ext4_begin_ordered_truncate(inode,
5467 attr->ia_size);
5468 if (error) {
5469 /* Do as much error cleanup as possible */
5470 handle = ext4_journal_start(inode, 3);
5471 if (IS_ERR(handle)) {
5472 ext4_orphan_del(NULL, inode);
5473 goto err_out;
5474 }
5475 ext4_orphan_del(handle, inode);
5476 ext4_journal_stop(handle);
5477 goto err_out;
5478 }
5479 }
5480 /* ext4_truncate will clear the flag */
5481 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5482 ext4_truncate(inode);
5483 }
5484
5485 rc = inode_setattr(inode, attr);
5486
5487 /* If inode_setattr's call to ext4_truncate failed to get a
5488 * transaction handle at all, we need to clean up the in-core
5489 * orphan list manually. */
5490 if (inode->i_nlink)
5491 ext4_orphan_del(NULL, inode);
5492
5493 if (!rc && (ia_valid & ATTR_MODE))
5494 rc = ext4_acl_chmod(inode);
5495
5496 err_out:
5497 ext4_std_error(inode->i_sb, error);
5498 if (!error)
5499 error = rc;
5500 return error;
5501 }
5502
5503 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5504 struct kstat *stat)
5505 {
5506 struct inode *inode;
5507 unsigned long delalloc_blocks;
5508
5509 inode = dentry->d_inode;
5510 generic_fillattr(inode, stat);
5511
5512 /*
5513 * We can't update i_blocks if the block allocation is delayed
5514 * otherwise in the case of system crash before the real block
5515 * allocation is done, we will have i_blocks inconsistent with
5516 * on-disk file blocks.
5517 * We always keep i_blocks updated together with real
5518 * allocation. But to not confuse with user, stat
5519 * will return the blocks that include the delayed allocation
5520 * blocks for this file.
5521 */
5522 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5523 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5524 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5525
5526 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5527 return 0;
5528 }
5529
5530 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5531 int chunk)
5532 {
5533 int indirects;
5534
5535 /* if nrblocks are contiguous */
5536 if (chunk) {
5537 /*
5538 * With N contiguous data blocks, it need at most
5539 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5540 * 2 dindirect blocks
5541 * 1 tindirect block
5542 */
5543 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5544 return indirects + 3;
5545 }
5546 /*
5547 * if nrblocks are not contiguous, worse case, each block touch
5548 * a indirect block, and each indirect block touch a double indirect
5549 * block, plus a triple indirect block
5550 */
5551 indirects = nrblocks * 2 + 1;
5552 return indirects;
5553 }
5554
5555 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5556 {
5557 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5558 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5559 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5560 }
5561
5562 /*
5563 * Account for index blocks, block groups bitmaps and block group
5564 * descriptor blocks if modify datablocks and index blocks
5565 * worse case, the indexs blocks spread over different block groups
5566 *
5567 * If datablocks are discontiguous, they are possible to spread over
5568 * different block groups too. If they are contiuguous, with flexbg,
5569 * they could still across block group boundary.
5570 *
5571 * Also account for superblock, inode, quota and xattr blocks
5572 */
5573 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5574 {
5575 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5576 int gdpblocks;
5577 int idxblocks;
5578 int ret = 0;
5579
5580 /*
5581 * How many index blocks need to touch to modify nrblocks?
5582 * The "Chunk" flag indicating whether the nrblocks is
5583 * physically contiguous on disk
5584 *
5585 * For Direct IO and fallocate, they calls get_block to allocate
5586 * one single extent at a time, so they could set the "Chunk" flag
5587 */
5588 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5589
5590 ret = idxblocks;
5591
5592 /*
5593 * Now let's see how many group bitmaps and group descriptors need
5594 * to account
5595 */
5596 groups = idxblocks;
5597 if (chunk)
5598 groups += 1;
5599 else
5600 groups += nrblocks;
5601
5602 gdpblocks = groups;
5603 if (groups > ngroups)
5604 groups = ngroups;
5605 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5606 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5607
5608 /* bitmaps and block group descriptor blocks */
5609 ret += groups + gdpblocks;
5610
5611 /* Blocks for super block, inode, quota and xattr blocks */
5612 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5613
5614 return ret;
5615 }
5616
5617 /*
5618 * Calulate the total number of credits to reserve to fit
5619 * the modification of a single pages into a single transaction,
5620 * which may include multiple chunks of block allocations.
5621 *
5622 * This could be called via ext4_write_begin()
5623 *
5624 * We need to consider the worse case, when
5625 * one new block per extent.
5626 */
5627 int ext4_writepage_trans_blocks(struct inode *inode)
5628 {
5629 int bpp = ext4_journal_blocks_per_page(inode);
5630 int ret;
5631
5632 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5633
5634 /* Account for data blocks for journalled mode */
5635 if (ext4_should_journal_data(inode))
5636 ret += bpp;
5637 return ret;
5638 }
5639
5640 /*
5641 * Calculate the journal credits for a chunk of data modification.
5642 *
5643 * This is called from DIO, fallocate or whoever calling
5644 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5645 *
5646 * journal buffers for data blocks are not included here, as DIO
5647 * and fallocate do no need to journal data buffers.
5648 */
5649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5650 {
5651 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5652 }
5653
5654 /*
5655 * The caller must have previously called ext4_reserve_inode_write().
5656 * Give this, we know that the caller already has write access to iloc->bh.
5657 */
5658 int ext4_mark_iloc_dirty(handle_t *handle,
5659 struct inode *inode, struct ext4_iloc *iloc)
5660 {
5661 int err = 0;
5662
5663 if (test_opt(inode->i_sb, I_VERSION))
5664 inode_inc_iversion(inode);
5665
5666 /* the do_update_inode consumes one bh->b_count */
5667 get_bh(iloc->bh);
5668
5669 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5670 err = ext4_do_update_inode(handle, inode, iloc);
5671 put_bh(iloc->bh);
5672 return err;
5673 }
5674
5675 /*
5676 * On success, We end up with an outstanding reference count against
5677 * iloc->bh. This _must_ be cleaned up later.
5678 */
5679
5680 int
5681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5682 struct ext4_iloc *iloc)
5683 {
5684 int err;
5685
5686 err = ext4_get_inode_loc(inode, iloc);
5687 if (!err) {
5688 BUFFER_TRACE(iloc->bh, "get_write_access");
5689 err = ext4_journal_get_write_access(handle, iloc->bh);
5690 if (err) {
5691 brelse(iloc->bh);
5692 iloc->bh = NULL;
5693 }
5694 }
5695 ext4_std_error(inode->i_sb, err);
5696 return err;
5697 }
5698
5699 /*
5700 * Expand an inode by new_extra_isize bytes.
5701 * Returns 0 on success or negative error number on failure.
5702 */
5703 static int ext4_expand_extra_isize(struct inode *inode,
5704 unsigned int new_extra_isize,
5705 struct ext4_iloc iloc,
5706 handle_t *handle)
5707 {
5708 struct ext4_inode *raw_inode;
5709 struct ext4_xattr_ibody_header *header;
5710 struct ext4_xattr_entry *entry;
5711
5712 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5713 return 0;
5714
5715 raw_inode = ext4_raw_inode(&iloc);
5716
5717 header = IHDR(inode, raw_inode);
5718 entry = IFIRST(header);
5719
5720 /* No extended attributes present */
5721 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5722 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5723 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5724 new_extra_isize);
5725 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5726 return 0;
5727 }
5728
5729 /* try to expand with EAs present */
5730 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5731 raw_inode, handle);
5732 }
5733
5734 /*
5735 * What we do here is to mark the in-core inode as clean with respect to inode
5736 * dirtiness (it may still be data-dirty).
5737 * This means that the in-core inode may be reaped by prune_icache
5738 * without having to perform any I/O. This is a very good thing,
5739 * because *any* task may call prune_icache - even ones which
5740 * have a transaction open against a different journal.
5741 *
5742 * Is this cheating? Not really. Sure, we haven't written the
5743 * inode out, but prune_icache isn't a user-visible syncing function.
5744 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5745 * we start and wait on commits.
5746 *
5747 * Is this efficient/effective? Well, we're being nice to the system
5748 * by cleaning up our inodes proactively so they can be reaped
5749 * without I/O. But we are potentially leaving up to five seconds'
5750 * worth of inodes floating about which prune_icache wants us to
5751 * write out. One way to fix that would be to get prune_icache()
5752 * to do a write_super() to free up some memory. It has the desired
5753 * effect.
5754 */
5755 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5756 {
5757 struct ext4_iloc iloc;
5758 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5759 static unsigned int mnt_count;
5760 int err, ret;
5761
5762 might_sleep();
5763 err = ext4_reserve_inode_write(handle, inode, &iloc);
5764 if (ext4_handle_valid(handle) &&
5765 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5766 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5767 /*
5768 * We need extra buffer credits since we may write into EA block
5769 * with this same handle. If journal_extend fails, then it will
5770 * only result in a minor loss of functionality for that inode.
5771 * If this is felt to be critical, then e2fsck should be run to
5772 * force a large enough s_min_extra_isize.
5773 */
5774 if ((jbd2_journal_extend(handle,
5775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5776 ret = ext4_expand_extra_isize(inode,
5777 sbi->s_want_extra_isize,
5778 iloc, handle);
5779 if (ret) {
5780 ext4_set_inode_state(inode,
5781 EXT4_STATE_NO_EXPAND);
5782 if (mnt_count !=
5783 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5784 ext4_warning(inode->i_sb,
5785 "Unable to expand inode %lu. Delete"
5786 " some EAs or run e2fsck.",
5787 inode->i_ino);
5788 mnt_count =
5789 le16_to_cpu(sbi->s_es->s_mnt_count);
5790 }
5791 }
5792 }
5793 }
5794 if (!err)
5795 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5796 return err;
5797 }
5798
5799 /*
5800 * ext4_dirty_inode() is called from __mark_inode_dirty()
5801 *
5802 * We're really interested in the case where a file is being extended.
5803 * i_size has been changed by generic_commit_write() and we thus need
5804 * to include the updated inode in the current transaction.
5805 *
5806 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5807 * are allocated to the file.
5808 *
5809 * If the inode is marked synchronous, we don't honour that here - doing
5810 * so would cause a commit on atime updates, which we don't bother doing.
5811 * We handle synchronous inodes at the highest possible level.
5812 */
5813 void ext4_dirty_inode(struct inode *inode)
5814 {
5815 handle_t *handle;
5816
5817 handle = ext4_journal_start(inode, 2);
5818 if (IS_ERR(handle))
5819 goto out;
5820
5821 ext4_mark_inode_dirty(handle, inode);
5822
5823 ext4_journal_stop(handle);
5824 out:
5825 return;
5826 }
5827
5828 #if 0
5829 /*
5830 * Bind an inode's backing buffer_head into this transaction, to prevent
5831 * it from being flushed to disk early. Unlike
5832 * ext4_reserve_inode_write, this leaves behind no bh reference and
5833 * returns no iloc structure, so the caller needs to repeat the iloc
5834 * lookup to mark the inode dirty later.
5835 */
5836 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5837 {
5838 struct ext4_iloc iloc;
5839
5840 int err = 0;
5841 if (handle) {
5842 err = ext4_get_inode_loc(inode, &iloc);
5843 if (!err) {
5844 BUFFER_TRACE(iloc.bh, "get_write_access");
5845 err = jbd2_journal_get_write_access(handle, iloc.bh);
5846 if (!err)
5847 err = ext4_handle_dirty_metadata(handle,
5848 NULL,
5849 iloc.bh);
5850 brelse(iloc.bh);
5851 }
5852 }
5853 ext4_std_error(inode->i_sb, err);
5854 return err;
5855 }
5856 #endif
5857
5858 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5859 {
5860 journal_t *journal;
5861 handle_t *handle;
5862 int err;
5863
5864 /*
5865 * We have to be very careful here: changing a data block's
5866 * journaling status dynamically is dangerous. If we write a
5867 * data block to the journal, change the status and then delete
5868 * that block, we risk forgetting to revoke the old log record
5869 * from the journal and so a subsequent replay can corrupt data.
5870 * So, first we make sure that the journal is empty and that
5871 * nobody is changing anything.
5872 */
5873
5874 journal = EXT4_JOURNAL(inode);
5875 if (!journal)
5876 return 0;
5877 if (is_journal_aborted(journal))
5878 return -EROFS;
5879
5880 jbd2_journal_lock_updates(journal);
5881 jbd2_journal_flush(journal);
5882
5883 /*
5884 * OK, there are no updates running now, and all cached data is
5885 * synced to disk. We are now in a completely consistent state
5886 * which doesn't have anything in the journal, and we know that
5887 * no filesystem updates are running, so it is safe to modify
5888 * the inode's in-core data-journaling state flag now.
5889 */
5890
5891 if (val)
5892 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5893 else
5894 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5895 ext4_set_aops(inode);
5896
5897 jbd2_journal_unlock_updates(journal);
5898
5899 /* Finally we can mark the inode as dirty. */
5900
5901 handle = ext4_journal_start(inode, 1);
5902 if (IS_ERR(handle))
5903 return PTR_ERR(handle);
5904
5905 err = ext4_mark_inode_dirty(handle, inode);
5906 ext4_handle_sync(handle);
5907 ext4_journal_stop(handle);
5908 ext4_std_error(inode->i_sb, err);
5909
5910 return err;
5911 }
5912
5913 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5914 {
5915 return !buffer_mapped(bh);
5916 }
5917
5918 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5919 {
5920 struct page *page = vmf->page;
5921 loff_t size;
5922 unsigned long len;
5923 int ret = -EINVAL;
5924 void *fsdata;
5925 struct file *file = vma->vm_file;
5926 struct inode *inode = file->f_path.dentry->d_inode;
5927 struct address_space *mapping = inode->i_mapping;
5928
5929 /*
5930 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5931 * get i_mutex because we are already holding mmap_sem.
5932 */
5933 down_read(&inode->i_alloc_sem);
5934 size = i_size_read(inode);
5935 if (page->mapping != mapping || size <= page_offset(page)
5936 || !PageUptodate(page)) {
5937 /* page got truncated from under us? */
5938 goto out_unlock;
5939 }
5940 ret = 0;
5941 if (PageMappedToDisk(page))
5942 goto out_unlock;
5943
5944 if (page->index == size >> PAGE_CACHE_SHIFT)
5945 len = size & ~PAGE_CACHE_MASK;
5946 else
5947 len = PAGE_CACHE_SIZE;
5948
5949 lock_page(page);
5950 /*
5951 * return if we have all the buffers mapped. This avoid
5952 * the need to call write_begin/write_end which does a
5953 * journal_start/journal_stop which can block and take
5954 * long time
5955 */
5956 if (page_has_buffers(page)) {
5957 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5958 ext4_bh_unmapped)) {
5959 unlock_page(page);
5960 goto out_unlock;
5961 }
5962 }
5963 unlock_page(page);
5964 /*
5965 * OK, we need to fill the hole... Do write_begin write_end
5966 * to do block allocation/reservation.We are not holding
5967 * inode.i__mutex here. That allow * parallel write_begin,
5968 * write_end call. lock_page prevent this from happening
5969 * on the same page though
5970 */
5971 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5972 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5973 if (ret < 0)
5974 goto out_unlock;
5975 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5976 len, len, page, fsdata);
5977 if (ret < 0)
5978 goto out_unlock;
5979 ret = 0;
5980 out_unlock:
5981 if (ret)
5982 ret = VM_FAULT_SIGBUS;
5983 up_read(&inode->i_alloc_sem);
5984 return ret;
5985 }
This page took 0.142266 seconds and 6 git commands to generate.