ext4: add tracepoint for ext4_forget()
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63 * Test whether an inode is a fast symlink.
64 */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
77 *
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
81 *
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
84 */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88 int err;
89
90 might_sleep();
91
92 trace_ext4_forget(inode, is_metadata, blocknr);
93 BUFFER_TRACE(bh, "enter");
94
95 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 "data mode %x\n",
97 bh, is_metadata, inode->i_mode,
98 test_opt(inode->i_sb, DATA_FLAGS));
99
100 /* Never use the revoke function if we are doing full data
101 * journaling: there is no need to, and a V1 superblock won't
102 * support it. Otherwise, only skip the revoke on un-journaled
103 * data blocks. */
104
105 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
106 (!is_metadata && !ext4_should_journal_data(inode))) {
107 if (bh) {
108 BUFFER_TRACE(bh, "call jbd2_journal_forget");
109 return ext4_journal_forget(handle, bh);
110 }
111 return 0;
112 }
113
114 /*
115 * data!=journal && (is_metadata || should_journal_data(inode))
116 */
117 BUFFER_TRACE(bh, "call ext4_journal_revoke");
118 err = ext4_journal_revoke(handle, blocknr, bh);
119 if (err)
120 ext4_abort(inode->i_sb, __func__,
121 "error %d when attempting revoke", err);
122 BUFFER_TRACE(bh, "exit");
123 return err;
124 }
125
126 /*
127 * Work out how many blocks we need to proceed with the next chunk of a
128 * truncate transaction.
129 */
130 static unsigned long blocks_for_truncate(struct inode *inode)
131 {
132 ext4_lblk_t needed;
133
134 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135
136 /* Give ourselves just enough room to cope with inodes in which
137 * i_blocks is corrupt: we've seen disk corruptions in the past
138 * which resulted in random data in an inode which looked enough
139 * like a regular file for ext4 to try to delete it. Things
140 * will go a bit crazy if that happens, but at least we should
141 * try not to panic the whole kernel. */
142 if (needed < 2)
143 needed = 2;
144
145 /* But we need to bound the transaction so we don't overflow the
146 * journal. */
147 if (needed > EXT4_MAX_TRANS_DATA)
148 needed = EXT4_MAX_TRANS_DATA;
149
150 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
151 }
152
153 /*
154 * Truncate transactions can be complex and absolutely huge. So we need to
155 * be able to restart the transaction at a conventient checkpoint to make
156 * sure we don't overflow the journal.
157 *
158 * start_transaction gets us a new handle for a truncate transaction,
159 * and extend_transaction tries to extend the existing one a bit. If
160 * extend fails, we need to propagate the failure up and restart the
161 * transaction in the top-level truncate loop. --sct
162 */
163 static handle_t *start_transaction(struct inode *inode)
164 {
165 handle_t *result;
166
167 result = ext4_journal_start(inode, blocks_for_truncate(inode));
168 if (!IS_ERR(result))
169 return result;
170
171 ext4_std_error(inode->i_sb, PTR_ERR(result));
172 return result;
173 }
174
175 /*
176 * Try to extend this transaction for the purposes of truncation.
177 *
178 * Returns 0 if we managed to create more room. If we can't create more
179 * room, and the transaction must be restarted we return 1.
180 */
181 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 {
183 if (!ext4_handle_valid(handle))
184 return 0;
185 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
186 return 0;
187 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
188 return 0;
189 return 1;
190 }
191
192 /*
193 * Restart the transaction associated with *handle. This does a commit,
194 * so before we call here everything must be consistently dirtied against
195 * this transaction.
196 */
197 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
198 int nblocks)
199 {
200 int ret;
201
202 /*
203 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
204 * moment, get_block can be called only for blocks inside i_size since
205 * page cache has been already dropped and writes are blocked by
206 * i_mutex. So we can safely drop the i_data_sem here.
207 */
208 BUG_ON(EXT4_JOURNAL(inode) == NULL);
209 jbd_debug(2, "restarting handle %p\n", handle);
210 up_write(&EXT4_I(inode)->i_data_sem);
211 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
212 down_write(&EXT4_I(inode)->i_data_sem);
213 ext4_discard_preallocations(inode);
214
215 return ret;
216 }
217
218 /*
219 * Called at the last iput() if i_nlink is zero.
220 */
221 void ext4_delete_inode(struct inode *inode)
222 {
223 handle_t *handle;
224 int err;
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
233 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
234 if (IS_ERR(handle)) {
235 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 /*
237 * If we're going to skip the normal cleanup, we still need to
238 * make sure that the in-core orphan linked list is properly
239 * cleaned up.
240 */
241 ext4_orphan_del(NULL, inode);
242 goto no_delete;
243 }
244
245 if (IS_SYNC(inode))
246 ext4_handle_sync(handle);
247 inode->i_size = 0;
248 err = ext4_mark_inode_dirty(handle, inode);
249 if (err) {
250 ext4_warning(inode->i_sb, __func__,
251 "couldn't mark inode dirty (err %d)", err);
252 goto stop_handle;
253 }
254 if (inode->i_blocks)
255 ext4_truncate(inode);
256
257 /*
258 * ext4_ext_truncate() doesn't reserve any slop when it
259 * restarts journal transactions; therefore there may not be
260 * enough credits left in the handle to remove the inode from
261 * the orphan list and set the dtime field.
262 */
263 if (!ext4_handle_has_enough_credits(handle, 3)) {
264 err = ext4_journal_extend(handle, 3);
265 if (err > 0)
266 err = ext4_journal_restart(handle, 3);
267 if (err != 0) {
268 ext4_warning(inode->i_sb, __func__,
269 "couldn't extend journal (err %d)", err);
270 stop_handle:
271 ext4_journal_stop(handle);
272 goto no_delete;
273 }
274 }
275
276 /*
277 * Kill off the orphan record which ext4_truncate created.
278 * AKPM: I think this can be inside the above `if'.
279 * Note that ext4_orphan_del() has to be able to cope with the
280 * deletion of a non-existent orphan - this is because we don't
281 * know if ext4_truncate() actually created an orphan record.
282 * (Well, we could do this if we need to, but heck - it works)
283 */
284 ext4_orphan_del(handle, inode);
285 EXT4_I(inode)->i_dtime = get_seconds();
286
287 /*
288 * One subtle ordering requirement: if anything has gone wrong
289 * (transaction abort, IO errors, whatever), then we can still
290 * do these next steps (the fs will already have been marked as
291 * having errors), but we can't free the inode if the mark_dirty
292 * fails.
293 */
294 if (ext4_mark_inode_dirty(handle, inode))
295 /* If that failed, just do the required in-core inode clear. */
296 clear_inode(inode);
297 else
298 ext4_free_inode(handle, inode);
299 ext4_journal_stop(handle);
300 return;
301 no_delete:
302 clear_inode(inode); /* We must guarantee clearing of inode... */
303 }
304
305 typedef struct {
306 __le32 *p;
307 __le32 key;
308 struct buffer_head *bh;
309 } Indirect;
310
311 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 {
313 p->key = *(p->p = v);
314 p->bh = bh;
315 }
316
317 /**
318 * ext4_block_to_path - parse the block number into array of offsets
319 * @inode: inode in question (we are only interested in its superblock)
320 * @i_block: block number to be parsed
321 * @offsets: array to store the offsets in
322 * @boundary: set this non-zero if the referred-to block is likely to be
323 * followed (on disk) by an indirect block.
324 *
325 * To store the locations of file's data ext4 uses a data structure common
326 * for UNIX filesystems - tree of pointers anchored in the inode, with
327 * data blocks at leaves and indirect blocks in intermediate nodes.
328 * This function translates the block number into path in that tree -
329 * return value is the path length and @offsets[n] is the offset of
330 * pointer to (n+1)th node in the nth one. If @block is out of range
331 * (negative or too large) warning is printed and zero returned.
332 *
333 * Note: function doesn't find node addresses, so no IO is needed. All
334 * we need to know is the capacity of indirect blocks (taken from the
335 * inode->i_sb).
336 */
337
338 /*
339 * Portability note: the last comparison (check that we fit into triple
340 * indirect block) is spelled differently, because otherwise on an
341 * architecture with 32-bit longs and 8Kb pages we might get into trouble
342 * if our filesystem had 8Kb blocks. We might use long long, but that would
343 * kill us on x86. Oh, well, at least the sign propagation does not matter -
344 * i_block would have to be negative in the very beginning, so we would not
345 * get there at all.
346 */
347
348 static int ext4_block_to_path(struct inode *inode,
349 ext4_lblk_t i_block,
350 ext4_lblk_t offsets[4], int *boundary)
351 {
352 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
353 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
354 const long direct_blocks = EXT4_NDIR_BLOCKS,
355 indirect_blocks = ptrs,
356 double_blocks = (1 << (ptrs_bits * 2));
357 int n = 0;
358 int final = 0;
359
360 if (i_block < direct_blocks) {
361 offsets[n++] = i_block;
362 final = direct_blocks;
363 } else if ((i_block -= direct_blocks) < indirect_blocks) {
364 offsets[n++] = EXT4_IND_BLOCK;
365 offsets[n++] = i_block;
366 final = ptrs;
367 } else if ((i_block -= indirect_blocks) < double_blocks) {
368 offsets[n++] = EXT4_DIND_BLOCK;
369 offsets[n++] = i_block >> ptrs_bits;
370 offsets[n++] = i_block & (ptrs - 1);
371 final = ptrs;
372 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
373 offsets[n++] = EXT4_TIND_BLOCK;
374 offsets[n++] = i_block >> (ptrs_bits * 2);
375 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
376 offsets[n++] = i_block & (ptrs - 1);
377 final = ptrs;
378 } else {
379 ext4_warning(inode->i_sb, "ext4_block_to_path",
380 "block %lu > max in inode %lu",
381 i_block + direct_blocks +
382 indirect_blocks + double_blocks, inode->i_ino);
383 }
384 if (boundary)
385 *boundary = final - 1 - (i_block & (ptrs - 1));
386 return n;
387 }
388
389 static int __ext4_check_blockref(const char *function, struct inode *inode,
390 __le32 *p, unsigned int max)
391 {
392 __le32 *bref = p;
393 unsigned int blk;
394
395 while (bref < p+max) {
396 blk = le32_to_cpu(*bref++);
397 if (blk &&
398 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
399 blk, 1))) {
400 ext4_error(inode->i_sb, function,
401 "invalid block reference %u "
402 "in inode #%lu", blk, inode->i_ino);
403 return -EIO;
404 }
405 }
406 return 0;
407 }
408
409
410 #define ext4_check_indirect_blockref(inode, bh) \
411 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
412 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413
414 #define ext4_check_inode_blockref(inode) \
415 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
416 EXT4_NDIR_BLOCKS)
417
418 /**
419 * ext4_get_branch - read the chain of indirect blocks leading to data
420 * @inode: inode in question
421 * @depth: depth of the chain (1 - direct pointer, etc.)
422 * @offsets: offsets of pointers in inode/indirect blocks
423 * @chain: place to store the result
424 * @err: here we store the error value
425 *
426 * Function fills the array of triples <key, p, bh> and returns %NULL
427 * if everything went OK or the pointer to the last filled triple
428 * (incomplete one) otherwise. Upon the return chain[i].key contains
429 * the number of (i+1)-th block in the chain (as it is stored in memory,
430 * i.e. little-endian 32-bit), chain[i].p contains the address of that
431 * number (it points into struct inode for i==0 and into the bh->b_data
432 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
433 * block for i>0 and NULL for i==0. In other words, it holds the block
434 * numbers of the chain, addresses they were taken from (and where we can
435 * verify that chain did not change) and buffer_heads hosting these
436 * numbers.
437 *
438 * Function stops when it stumbles upon zero pointer (absent block)
439 * (pointer to last triple returned, *@err == 0)
440 * or when it gets an IO error reading an indirect block
441 * (ditto, *@err == -EIO)
442 * or when it reads all @depth-1 indirect blocks successfully and finds
443 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 *
445 * Need to be called with
446 * down_read(&EXT4_I(inode)->i_data_sem)
447 */
448 static Indirect *ext4_get_branch(struct inode *inode, int depth,
449 ext4_lblk_t *offsets,
450 Indirect chain[4], int *err)
451 {
452 struct super_block *sb = inode->i_sb;
453 Indirect *p = chain;
454 struct buffer_head *bh;
455
456 *err = 0;
457 /* i_data is not going away, no lock needed */
458 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
459 if (!p->key)
460 goto no_block;
461 while (--depth) {
462 bh = sb_getblk(sb, le32_to_cpu(p->key));
463 if (unlikely(!bh))
464 goto failure;
465
466 if (!bh_uptodate_or_lock(bh)) {
467 if (bh_submit_read(bh) < 0) {
468 put_bh(bh);
469 goto failure;
470 }
471 /* validate block references */
472 if (ext4_check_indirect_blockref(inode, bh)) {
473 put_bh(bh);
474 goto failure;
475 }
476 }
477
478 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
479 /* Reader: end */
480 if (!p->key)
481 goto no_block;
482 }
483 return NULL;
484
485 failure:
486 *err = -EIO;
487 no_block:
488 return p;
489 }
490
491 /**
492 * ext4_find_near - find a place for allocation with sufficient locality
493 * @inode: owner
494 * @ind: descriptor of indirect block.
495 *
496 * This function returns the preferred place for block allocation.
497 * It is used when heuristic for sequential allocation fails.
498 * Rules are:
499 * + if there is a block to the left of our position - allocate near it.
500 * + if pointer will live in indirect block - allocate near that block.
501 * + if pointer will live in inode - allocate in the same
502 * cylinder group.
503 *
504 * In the latter case we colour the starting block by the callers PID to
505 * prevent it from clashing with concurrent allocations for a different inode
506 * in the same block group. The PID is used here so that functionally related
507 * files will be close-by on-disk.
508 *
509 * Caller must make sure that @ind is valid and will stay that way.
510 */
511 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 {
513 struct ext4_inode_info *ei = EXT4_I(inode);
514 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
515 __le32 *p;
516 ext4_fsblk_t bg_start;
517 ext4_fsblk_t last_block;
518 ext4_grpblk_t colour;
519 ext4_group_t block_group;
520 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521
522 /* Try to find previous block */
523 for (p = ind->p - 1; p >= start; p--) {
524 if (*p)
525 return le32_to_cpu(*p);
526 }
527
528 /* No such thing, so let's try location of indirect block */
529 if (ind->bh)
530 return ind->bh->b_blocknr;
531
532 /*
533 * It is going to be referred to from the inode itself? OK, just put it
534 * into the same cylinder group then.
535 */
536 block_group = ei->i_block_group;
537 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
538 block_group &= ~(flex_size-1);
539 if (S_ISREG(inode->i_mode))
540 block_group++;
541 }
542 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
543 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
544
545 /*
546 * If we are doing delayed allocation, we don't need take
547 * colour into account.
548 */
549 if (test_opt(inode->i_sb, DELALLOC))
550 return bg_start;
551
552 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
553 colour = (current->pid % 16) *
554 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
555 else
556 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
557 return bg_start + colour;
558 }
559
560 /**
561 * ext4_find_goal - find a preferred place for allocation.
562 * @inode: owner
563 * @block: block we want
564 * @partial: pointer to the last triple within a chain
565 *
566 * Normally this function find the preferred place for block allocation,
567 * returns it.
568 * Because this is only used for non-extent files, we limit the block nr
569 * to 32 bits.
570 */
571 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
572 Indirect *partial)
573 {
574 ext4_fsblk_t goal;
575
576 /*
577 * XXX need to get goal block from mballoc's data structures
578 */
579
580 goal = ext4_find_near(inode, partial);
581 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
582 return goal;
583 }
584
585 /**
586 * ext4_blks_to_allocate: Look up the block map and count the number
587 * of direct blocks need to be allocated for the given branch.
588 *
589 * @branch: chain of indirect blocks
590 * @k: number of blocks need for indirect blocks
591 * @blks: number of data blocks to be mapped.
592 * @blocks_to_boundary: the offset in the indirect block
593 *
594 * return the total number of blocks to be allocate, including the
595 * direct and indirect blocks.
596 */
597 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
598 int blocks_to_boundary)
599 {
600 unsigned int count = 0;
601
602 /*
603 * Simple case, [t,d]Indirect block(s) has not allocated yet
604 * then it's clear blocks on that path have not allocated
605 */
606 if (k > 0) {
607 /* right now we don't handle cross boundary allocation */
608 if (blks < blocks_to_boundary + 1)
609 count += blks;
610 else
611 count += blocks_to_boundary + 1;
612 return count;
613 }
614
615 count++;
616 while (count < blks && count <= blocks_to_boundary &&
617 le32_to_cpu(*(branch[0].p + count)) == 0) {
618 count++;
619 }
620 return count;
621 }
622
623 /**
624 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
625 * @indirect_blks: the number of blocks need to allocate for indirect
626 * blocks
627 *
628 * @new_blocks: on return it will store the new block numbers for
629 * the indirect blocks(if needed) and the first direct block,
630 * @blks: on return it will store the total number of allocated
631 * direct blocks
632 */
633 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
634 ext4_lblk_t iblock, ext4_fsblk_t goal,
635 int indirect_blks, int blks,
636 ext4_fsblk_t new_blocks[4], int *err)
637 {
638 struct ext4_allocation_request ar;
639 int target, i;
640 unsigned long count = 0, blk_allocated = 0;
641 int index = 0;
642 ext4_fsblk_t current_block = 0;
643 int ret = 0;
644
645 /*
646 * Here we try to allocate the requested multiple blocks at once,
647 * on a best-effort basis.
648 * To build a branch, we should allocate blocks for
649 * the indirect blocks(if not allocated yet), and at least
650 * the first direct block of this branch. That's the
651 * minimum number of blocks need to allocate(required)
652 */
653 /* first we try to allocate the indirect blocks */
654 target = indirect_blks;
655 while (target > 0) {
656 count = target;
657 /* allocating blocks for indirect blocks and direct blocks */
658 current_block = ext4_new_meta_blocks(handle, inode,
659 goal, &count, err);
660 if (*err)
661 goto failed_out;
662
663 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664
665 target -= count;
666 /* allocate blocks for indirect blocks */
667 while (index < indirect_blks && count) {
668 new_blocks[index++] = current_block++;
669 count--;
670 }
671 if (count > 0) {
672 /*
673 * save the new block number
674 * for the first direct block
675 */
676 new_blocks[index] = current_block;
677 printk(KERN_INFO "%s returned more blocks than "
678 "requested\n", __func__);
679 WARN_ON(1);
680 break;
681 }
682 }
683
684 target = blks - count ;
685 blk_allocated = count;
686 if (!target)
687 goto allocated;
688 /* Now allocate data blocks */
689 memset(&ar, 0, sizeof(ar));
690 ar.inode = inode;
691 ar.goal = goal;
692 ar.len = target;
693 ar.logical = iblock;
694 if (S_ISREG(inode->i_mode))
695 /* enable in-core preallocation only for regular files */
696 ar.flags = EXT4_MB_HINT_DATA;
697
698 current_block = ext4_mb_new_blocks(handle, &ar, err);
699 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700
701 if (*err && (target == blks)) {
702 /*
703 * if the allocation failed and we didn't allocate
704 * any blocks before
705 */
706 goto failed_out;
707 }
708 if (!*err) {
709 if (target == blks) {
710 /*
711 * save the new block number
712 * for the first direct block
713 */
714 new_blocks[index] = current_block;
715 }
716 blk_allocated += ar.len;
717 }
718 allocated:
719 /* total number of blocks allocated for direct blocks */
720 ret = blk_allocated;
721 *err = 0;
722 return ret;
723 failed_out:
724 for (i = 0; i < index; i++)
725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726 return ret;
727 }
728
729 /**
730 * ext4_alloc_branch - allocate and set up a chain of blocks.
731 * @inode: owner
732 * @indirect_blks: number of allocated indirect blocks
733 * @blks: number of allocated direct blocks
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
736 *
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
748 *
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0.
753 */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch)
758 {
759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0;
761 int err = 0;
762 struct buffer_head *bh;
763 int num;
764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block;
766
767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 *blks, new_blocks, &err);
769 if (err)
770 return err;
771
772 branch[0].key = cpu_to_le32(new_blocks[0]);
773 /*
774 * metadata blocks and data blocks are allocated.
775 */
776 for (n = 1; n <= indirect_blks; n++) {
777 /*
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
780 * parent to disk.
781 */
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 branch[n].bh = bh;
784 lock_buffer(bh);
785 BUFFER_TRACE(bh, "call get_create_access");
786 err = ext4_journal_get_create_access(handle, bh);
787 if (err) {
788 /* Don't brelse(bh) here; it's done in
789 * ext4_journal_forget() below */
790 unlock_buffer(bh);
791 goto failed;
792 }
793
794 memset(bh->b_data, 0, blocksize);
795 branch[n].p = (__le32 *) bh->b_data + offsets[n];
796 branch[n].key = cpu_to_le32(new_blocks[n]);
797 *branch[n].p = branch[n].key;
798 if (n == indirect_blks) {
799 current_block = new_blocks[n];
800 /*
801 * End of chain, update the last new metablock of
802 * the chain to point to the new allocated
803 * data blocks numbers
804 */
805 for (i = 1; i < num; i++)
806 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 }
808 BUFFER_TRACE(bh, "marking uptodate");
809 set_buffer_uptodate(bh);
810 unlock_buffer(bh);
811
812 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
813 err = ext4_handle_dirty_metadata(handle, inode, bh);
814 if (err)
815 goto failed;
816 }
817 *blks = num;
818 return err;
819 failed:
820 /* Allocation failed, free what we already allocated */
821 for (i = 1; i <= n ; i++) {
822 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
823 ext4_journal_forget(handle, branch[i].bh);
824 }
825 for (i = 0; i < indirect_blks; i++)
826 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827
828 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829
830 return err;
831 }
832
833 /**
834 * ext4_splice_branch - splice the allocated branch onto inode.
835 * @inode: owner
836 * @block: (logical) number of block we are adding
837 * @chain: chain of indirect blocks (with a missing link - see
838 * ext4_alloc_branch)
839 * @where: location of missing link
840 * @num: number of indirect blocks we are adding
841 * @blks: number of direct blocks we are adding
842 *
843 * This function fills the missing link and does all housekeeping needed in
844 * inode (->i_blocks, etc.). In case of success we end up with the full
845 * chain to new block and return 0.
846 */
847 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
848 ext4_lblk_t block, Indirect *where, int num,
849 int blks)
850 {
851 int i;
852 int err = 0;
853 ext4_fsblk_t current_block;
854
855 /*
856 * If we're splicing into a [td]indirect block (as opposed to the
857 * inode) then we need to get write access to the [td]indirect block
858 * before the splice.
859 */
860 if (where->bh) {
861 BUFFER_TRACE(where->bh, "get_write_access");
862 err = ext4_journal_get_write_access(handle, where->bh);
863 if (err)
864 goto err_out;
865 }
866 /* That's it */
867
868 *where->p = where->key;
869
870 /*
871 * Update the host buffer_head or inode to point to more just allocated
872 * direct blocks blocks
873 */
874 if (num == 0 && blks > 1) {
875 current_block = le32_to_cpu(where->key) + 1;
876 for (i = 1; i < blks; i++)
877 *(where->p + i) = cpu_to_le32(current_block++);
878 }
879
880 /* We are done with atomic stuff, now do the rest of housekeeping */
881 /* had we spliced it onto indirect block? */
882 if (where->bh) {
883 /*
884 * If we spliced it onto an indirect block, we haven't
885 * altered the inode. Note however that if it is being spliced
886 * onto an indirect block at the very end of the file (the
887 * file is growing) then we *will* alter the inode to reflect
888 * the new i_size. But that is not done here - it is done in
889 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 */
891 jbd_debug(5, "splicing indirect only\n");
892 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
893 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
894 if (err)
895 goto err_out;
896 } else {
897 /*
898 * OK, we spliced it into the inode itself on a direct block.
899 */
900 ext4_mark_inode_dirty(handle, inode);
901 jbd_debug(5, "splicing direct\n");
902 }
903 return err;
904
905 err_out:
906 for (i = 1; i <= num; i++) {
907 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
908 ext4_journal_forget(handle, where[i].bh);
909 ext4_free_blocks(handle, inode,
910 le32_to_cpu(where[i-1].key), 1, 0);
911 }
912 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913
914 return err;
915 }
916
917 /*
918 * The ext4_ind_get_blocks() function handles non-extents inodes
919 * (i.e., using the traditional indirect/double-indirect i_blocks
920 * scheme) for ext4_get_blocks().
921 *
922 * Allocation strategy is simple: if we have to allocate something, we will
923 * have to go the whole way to leaf. So let's do it before attaching anything
924 * to tree, set linkage between the newborn blocks, write them if sync is
925 * required, recheck the path, free and repeat if check fails, otherwise
926 * set the last missing link (that will protect us from any truncate-generated
927 * removals - all blocks on the path are immune now) and possibly force the
928 * write on the parent block.
929 * That has a nice additional property: no special recovery from the failed
930 * allocations is needed - we simply release blocks and do not touch anything
931 * reachable from inode.
932 *
933 * `handle' can be NULL if create == 0.
934 *
935 * return > 0, # of blocks mapped or allocated.
936 * return = 0, if plain lookup failed.
937 * return < 0, error case.
938 *
939 * The ext4_ind_get_blocks() function should be called with
940 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
941 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
942 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
943 * blocks.
944 */
945 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
946 ext4_lblk_t iblock, unsigned int maxblocks,
947 struct buffer_head *bh_result,
948 int flags)
949 {
950 int err = -EIO;
951 ext4_lblk_t offsets[4];
952 Indirect chain[4];
953 Indirect *partial;
954 ext4_fsblk_t goal;
955 int indirect_blks;
956 int blocks_to_boundary = 0;
957 int depth;
958 int count = 0;
959 ext4_fsblk_t first_block = 0;
960
961 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
962 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
963 depth = ext4_block_to_path(inode, iblock, offsets,
964 &blocks_to_boundary);
965
966 if (depth == 0)
967 goto out;
968
969 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970
971 /* Simplest case - block found, no allocation needed */
972 if (!partial) {
973 first_block = le32_to_cpu(chain[depth - 1].key);
974 clear_buffer_new(bh_result);
975 count++;
976 /*map more blocks*/
977 while (count < maxblocks && count <= blocks_to_boundary) {
978 ext4_fsblk_t blk;
979
980 blk = le32_to_cpu(*(chain[depth-1].p + count));
981
982 if (blk == first_block + count)
983 count++;
984 else
985 break;
986 }
987 goto got_it;
988 }
989
990 /* Next simple case - plain lookup or failed read of indirect block */
991 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
992 goto cleanup;
993
994 /*
995 * Okay, we need to do block allocation.
996 */
997 goal = ext4_find_goal(inode, iblock, partial);
998
999 /* the number of blocks need to allocate for [d,t]indirect blocks */
1000 indirect_blks = (chain + depth) - partial - 1;
1001
1002 /*
1003 * Next look up the indirect map to count the totoal number of
1004 * direct blocks to allocate for this branch.
1005 */
1006 count = ext4_blks_to_allocate(partial, indirect_blks,
1007 maxblocks, blocks_to_boundary);
1008 /*
1009 * Block out ext4_truncate while we alter the tree
1010 */
1011 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1012 &count, goal,
1013 offsets + (partial - chain), partial);
1014
1015 /*
1016 * The ext4_splice_branch call will free and forget any buffers
1017 * on the new chain if there is a failure, but that risks using
1018 * up transaction credits, especially for bitmaps where the
1019 * credits cannot be returned. Can we handle this somehow? We
1020 * may need to return -EAGAIN upwards in the worst case. --sct
1021 */
1022 if (!err)
1023 err = ext4_splice_branch(handle, inode, iblock,
1024 partial, indirect_blks, count);
1025 else
1026 goto cleanup;
1027
1028 set_buffer_new(bh_result);
1029 got_it:
1030 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1031 if (count > blocks_to_boundary)
1032 set_buffer_boundary(bh_result);
1033 err = count;
1034 /* Clean up and exit */
1035 partial = chain + depth - 1; /* the whole chain */
1036 cleanup:
1037 while (partial > chain) {
1038 BUFFER_TRACE(partial->bh, "call brelse");
1039 brelse(partial->bh);
1040 partial--;
1041 }
1042 BUFFER_TRACE(bh_result, "returned");
1043 out:
1044 return err;
1045 }
1046
1047 qsize_t ext4_get_reserved_space(struct inode *inode)
1048 {
1049 unsigned long long total;
1050
1051 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1052 total = EXT4_I(inode)->i_reserved_data_blocks +
1053 EXT4_I(inode)->i_reserved_meta_blocks;
1054 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1055
1056 return total;
1057 }
1058 /*
1059 * Calculate the number of metadata blocks need to reserve
1060 * to allocate @blocks for non extent file based file
1061 */
1062 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1063 {
1064 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1065 int ind_blks, dind_blks, tind_blks;
1066
1067 /* number of new indirect blocks needed */
1068 ind_blks = (blocks + icap - 1) / icap;
1069
1070 dind_blks = (ind_blks + icap - 1) / icap;
1071
1072 tind_blks = 1;
1073
1074 return ind_blks + dind_blks + tind_blks;
1075 }
1076
1077 /*
1078 * Calculate the number of metadata blocks need to reserve
1079 * to allocate given number of blocks
1080 */
1081 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1082 {
1083 if (!blocks)
1084 return 0;
1085
1086 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1087 return ext4_ext_calc_metadata_amount(inode, blocks);
1088
1089 return ext4_indirect_calc_metadata_amount(inode, blocks);
1090 }
1091
1092 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1093 {
1094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1095 int total, mdb, mdb_free;
1096
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098 /* recalculate the number of metablocks still need to be reserved */
1099 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1100 mdb = ext4_calc_metadata_amount(inode, total);
1101
1102 /* figure out how many metablocks to release */
1103 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1104 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1105
1106 if (mdb_free) {
1107 /* Account for allocated meta_blocks */
1108 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1109
1110 /* update fs dirty blocks counter */
1111 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1112 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1113 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1114 }
1115
1116 /* update per-inode reservations */
1117 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1118 EXT4_I(inode)->i_reserved_data_blocks -= used;
1119 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1120
1121 /*
1122 * free those over-booking quota for metadata blocks
1123 */
1124 if (mdb_free)
1125 vfs_dq_release_reservation_block(inode, mdb_free);
1126
1127 /*
1128 * If we have done all the pending block allocations and if
1129 * there aren't any writers on the inode, we can discard the
1130 * inode's preallocations.
1131 */
1132 if (!total && (atomic_read(&inode->i_writecount) == 0))
1133 ext4_discard_preallocations(inode);
1134 }
1135
1136 static int check_block_validity(struct inode *inode, const char *msg,
1137 sector_t logical, sector_t phys, int len)
1138 {
1139 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1140 ext4_error(inode->i_sb, msg,
1141 "inode #%lu logical block %llu mapped to %llu "
1142 "(size %d)", inode->i_ino,
1143 (unsigned long long) logical,
1144 (unsigned long long) phys, len);
1145 return -EIO;
1146 }
1147 return 0;
1148 }
1149
1150 /*
1151 * Return the number of contiguous dirty pages in a given inode
1152 * starting at page frame idx.
1153 */
1154 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1155 unsigned int max_pages)
1156 {
1157 struct address_space *mapping = inode->i_mapping;
1158 pgoff_t index;
1159 struct pagevec pvec;
1160 pgoff_t num = 0;
1161 int i, nr_pages, done = 0;
1162
1163 if (max_pages == 0)
1164 return 0;
1165 pagevec_init(&pvec, 0);
1166 while (!done) {
1167 index = idx;
1168 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1169 PAGECACHE_TAG_DIRTY,
1170 (pgoff_t)PAGEVEC_SIZE);
1171 if (nr_pages == 0)
1172 break;
1173 for (i = 0; i < nr_pages; i++) {
1174 struct page *page = pvec.pages[i];
1175 struct buffer_head *bh, *head;
1176
1177 lock_page(page);
1178 if (unlikely(page->mapping != mapping) ||
1179 !PageDirty(page) ||
1180 PageWriteback(page) ||
1181 page->index != idx) {
1182 done = 1;
1183 unlock_page(page);
1184 break;
1185 }
1186 if (page_has_buffers(page)) {
1187 bh = head = page_buffers(page);
1188 do {
1189 if (!buffer_delay(bh) &&
1190 !buffer_unwritten(bh))
1191 done = 1;
1192 bh = bh->b_this_page;
1193 } while (!done && (bh != head));
1194 }
1195 unlock_page(page);
1196 if (done)
1197 break;
1198 idx++;
1199 num++;
1200 if (num >= max_pages)
1201 break;
1202 }
1203 pagevec_release(&pvec);
1204 }
1205 return num;
1206 }
1207
1208 /*
1209 * The ext4_get_blocks() function tries to look up the requested blocks,
1210 * and returns if the blocks are already mapped.
1211 *
1212 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1213 * and store the allocated blocks in the result buffer head and mark it
1214 * mapped.
1215 *
1216 * If file type is extents based, it will call ext4_ext_get_blocks(),
1217 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1218 * based files
1219 *
1220 * On success, it returns the number of blocks being mapped or allocate.
1221 * if create==0 and the blocks are pre-allocated and uninitialized block,
1222 * the result buffer head is unmapped. If the create ==1, it will make sure
1223 * the buffer head is mapped.
1224 *
1225 * It returns 0 if plain look up failed (blocks have not been allocated), in
1226 * that casem, buffer head is unmapped
1227 *
1228 * It returns the error in case of allocation failure.
1229 */
1230 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1231 unsigned int max_blocks, struct buffer_head *bh,
1232 int flags)
1233 {
1234 int retval;
1235
1236 clear_buffer_mapped(bh);
1237 clear_buffer_unwritten(bh);
1238
1239 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1240 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1241 (unsigned long)block);
1242 /*
1243 * Try to see if we can get the block without requesting a new
1244 * file system block.
1245 */
1246 down_read((&EXT4_I(inode)->i_data_sem));
1247 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1248 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1249 bh, 0);
1250 } else {
1251 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1252 bh, 0);
1253 }
1254 up_read((&EXT4_I(inode)->i_data_sem));
1255
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, "file system corruption",
1258 block, bh->b_blocknr, retval);
1259 if (ret != 0)
1260 return ret;
1261 }
1262
1263 /* If it is only a block(s) look up */
1264 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1265 return retval;
1266
1267 /*
1268 * Returns if the blocks have already allocated
1269 *
1270 * Note that if blocks have been preallocated
1271 * ext4_ext_get_block() returns th create = 0
1272 * with buffer head unmapped.
1273 */
1274 if (retval > 0 && buffer_mapped(bh))
1275 return retval;
1276
1277 /*
1278 * When we call get_blocks without the create flag, the
1279 * BH_Unwritten flag could have gotten set if the blocks
1280 * requested were part of a uninitialized extent. We need to
1281 * clear this flag now that we are committed to convert all or
1282 * part of the uninitialized extent to be an initialized
1283 * extent. This is because we need to avoid the combination
1284 * of BH_Unwritten and BH_Mapped flags being simultaneously
1285 * set on the buffer_head.
1286 */
1287 clear_buffer_unwritten(bh);
1288
1289 /*
1290 * New blocks allocate and/or writing to uninitialized extent
1291 * will possibly result in updating i_data, so we take
1292 * the write lock of i_data_sem, and call get_blocks()
1293 * with create == 1 flag.
1294 */
1295 down_write((&EXT4_I(inode)->i_data_sem));
1296
1297 /*
1298 * if the caller is from delayed allocation writeout path
1299 * we have already reserved fs blocks for allocation
1300 * let the underlying get_block() function know to
1301 * avoid double accounting
1302 */
1303 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1304 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1305 /*
1306 * We need to check for EXT4 here because migrate
1307 * could have changed the inode type in between
1308 */
1309 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1310 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1311 bh, flags);
1312 } else {
1313 retval = ext4_ind_get_blocks(handle, inode, block,
1314 max_blocks, bh, flags);
1315
1316 if (retval > 0 && buffer_new(bh)) {
1317 /*
1318 * We allocated new blocks which will result in
1319 * i_data's format changing. Force the migrate
1320 * to fail by clearing migrate flags
1321 */
1322 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1323 }
1324 }
1325
1326 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1327 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1328
1329 /*
1330 * Update reserved blocks/metadata blocks after successful
1331 * block allocation which had been deferred till now.
1332 */
1333 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1334 ext4_da_update_reserve_space(inode, retval);
1335
1336 up_write((&EXT4_I(inode)->i_data_sem));
1337 if (retval > 0 && buffer_mapped(bh)) {
1338 int ret = check_block_validity(inode, "file system "
1339 "corruption after allocation",
1340 block, bh->b_blocknr, retval);
1341 if (ret != 0)
1342 return ret;
1343 }
1344 return retval;
1345 }
1346
1347 /* Maximum number of blocks we map for direct IO at once. */
1348 #define DIO_MAX_BLOCKS 4096
1349
1350 int ext4_get_block(struct inode *inode, sector_t iblock,
1351 struct buffer_head *bh_result, int create)
1352 {
1353 handle_t *handle = ext4_journal_current_handle();
1354 int ret = 0, started = 0;
1355 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1356 int dio_credits;
1357
1358 if (create && !handle) {
1359 /* Direct IO write... */
1360 if (max_blocks > DIO_MAX_BLOCKS)
1361 max_blocks = DIO_MAX_BLOCKS;
1362 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1363 handle = ext4_journal_start(inode, dio_credits);
1364 if (IS_ERR(handle)) {
1365 ret = PTR_ERR(handle);
1366 goto out;
1367 }
1368 started = 1;
1369 }
1370
1371 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1372 create ? EXT4_GET_BLOCKS_CREATE : 0);
1373 if (ret > 0) {
1374 bh_result->b_size = (ret << inode->i_blkbits);
1375 ret = 0;
1376 }
1377 if (started)
1378 ext4_journal_stop(handle);
1379 out:
1380 return ret;
1381 }
1382
1383 /*
1384 * `handle' can be NULL if create is zero
1385 */
1386 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1387 ext4_lblk_t block, int create, int *errp)
1388 {
1389 struct buffer_head dummy;
1390 int fatal = 0, err;
1391 int flags = 0;
1392
1393 J_ASSERT(handle != NULL || create == 0);
1394
1395 dummy.b_state = 0;
1396 dummy.b_blocknr = -1000;
1397 buffer_trace_init(&dummy.b_history);
1398 if (create)
1399 flags |= EXT4_GET_BLOCKS_CREATE;
1400 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1401 /*
1402 * ext4_get_blocks() returns number of blocks mapped. 0 in
1403 * case of a HOLE.
1404 */
1405 if (err > 0) {
1406 if (err > 1)
1407 WARN_ON(1);
1408 err = 0;
1409 }
1410 *errp = err;
1411 if (!err && buffer_mapped(&dummy)) {
1412 struct buffer_head *bh;
1413 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1414 if (!bh) {
1415 *errp = -EIO;
1416 goto err;
1417 }
1418 if (buffer_new(&dummy)) {
1419 J_ASSERT(create != 0);
1420 J_ASSERT(handle != NULL);
1421
1422 /*
1423 * Now that we do not always journal data, we should
1424 * keep in mind whether this should always journal the
1425 * new buffer as metadata. For now, regular file
1426 * writes use ext4_get_block instead, so it's not a
1427 * problem.
1428 */
1429 lock_buffer(bh);
1430 BUFFER_TRACE(bh, "call get_create_access");
1431 fatal = ext4_journal_get_create_access(handle, bh);
1432 if (!fatal && !buffer_uptodate(bh)) {
1433 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1434 set_buffer_uptodate(bh);
1435 }
1436 unlock_buffer(bh);
1437 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1438 err = ext4_handle_dirty_metadata(handle, inode, bh);
1439 if (!fatal)
1440 fatal = err;
1441 } else {
1442 BUFFER_TRACE(bh, "not a new buffer");
1443 }
1444 if (fatal) {
1445 *errp = fatal;
1446 brelse(bh);
1447 bh = NULL;
1448 }
1449 return bh;
1450 }
1451 err:
1452 return NULL;
1453 }
1454
1455 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1456 ext4_lblk_t block, int create, int *err)
1457 {
1458 struct buffer_head *bh;
1459
1460 bh = ext4_getblk(handle, inode, block, create, err);
1461 if (!bh)
1462 return bh;
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 ll_rw_block(READ_META, 1, &bh);
1466 wait_on_buffer(bh);
1467 if (buffer_uptodate(bh))
1468 return bh;
1469 put_bh(bh);
1470 *err = -EIO;
1471 return NULL;
1472 }
1473
1474 static int walk_page_buffers(handle_t *handle,
1475 struct buffer_head *head,
1476 unsigned from,
1477 unsigned to,
1478 int *partial,
1479 int (*fn)(handle_t *handle,
1480 struct buffer_head *bh))
1481 {
1482 struct buffer_head *bh;
1483 unsigned block_start, block_end;
1484 unsigned blocksize = head->b_size;
1485 int err, ret = 0;
1486 struct buffer_head *next;
1487
1488 for (bh = head, block_start = 0;
1489 ret == 0 && (bh != head || !block_start);
1490 block_start = block_end, bh = next) {
1491 next = bh->b_this_page;
1492 block_end = block_start + blocksize;
1493 if (block_end <= from || block_start >= to) {
1494 if (partial && !buffer_uptodate(bh))
1495 *partial = 1;
1496 continue;
1497 }
1498 err = (*fn)(handle, bh);
1499 if (!ret)
1500 ret = err;
1501 }
1502 return ret;
1503 }
1504
1505 /*
1506 * To preserve ordering, it is essential that the hole instantiation and
1507 * the data write be encapsulated in a single transaction. We cannot
1508 * close off a transaction and start a new one between the ext4_get_block()
1509 * and the commit_write(). So doing the jbd2_journal_start at the start of
1510 * prepare_write() is the right place.
1511 *
1512 * Also, this function can nest inside ext4_writepage() ->
1513 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1514 * has generated enough buffer credits to do the whole page. So we won't
1515 * block on the journal in that case, which is good, because the caller may
1516 * be PF_MEMALLOC.
1517 *
1518 * By accident, ext4 can be reentered when a transaction is open via
1519 * quota file writes. If we were to commit the transaction while thus
1520 * reentered, there can be a deadlock - we would be holding a quota
1521 * lock, and the commit would never complete if another thread had a
1522 * transaction open and was blocking on the quota lock - a ranking
1523 * violation.
1524 *
1525 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1526 * will _not_ run commit under these circumstances because handle->h_ref
1527 * is elevated. We'll still have enough credits for the tiny quotafile
1528 * write.
1529 */
1530 static int do_journal_get_write_access(handle_t *handle,
1531 struct buffer_head *bh)
1532 {
1533 if (!buffer_mapped(bh) || buffer_freed(bh))
1534 return 0;
1535 return ext4_journal_get_write_access(handle, bh);
1536 }
1537
1538 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1539 loff_t pos, unsigned len, unsigned flags,
1540 struct page **pagep, void **fsdata)
1541 {
1542 struct inode *inode = mapping->host;
1543 int ret, needed_blocks;
1544 handle_t *handle;
1545 int retries = 0;
1546 struct page *page;
1547 pgoff_t index;
1548 unsigned from, to;
1549
1550 trace_ext4_write_begin(inode, pos, len, flags);
1551 /*
1552 * Reserve one block more for addition to orphan list in case
1553 * we allocate blocks but write fails for some reason
1554 */
1555 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1556 index = pos >> PAGE_CACHE_SHIFT;
1557 from = pos & (PAGE_CACHE_SIZE - 1);
1558 to = from + len;
1559
1560 retry:
1561 handle = ext4_journal_start(inode, needed_blocks);
1562 if (IS_ERR(handle)) {
1563 ret = PTR_ERR(handle);
1564 goto out;
1565 }
1566
1567 /* We cannot recurse into the filesystem as the transaction is already
1568 * started */
1569 flags |= AOP_FLAG_NOFS;
1570
1571 page = grab_cache_page_write_begin(mapping, index, flags);
1572 if (!page) {
1573 ext4_journal_stop(handle);
1574 ret = -ENOMEM;
1575 goto out;
1576 }
1577 *pagep = page;
1578
1579 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1580 ext4_get_block);
1581
1582 if (!ret && ext4_should_journal_data(inode)) {
1583 ret = walk_page_buffers(handle, page_buffers(page),
1584 from, to, NULL, do_journal_get_write_access);
1585 }
1586
1587 if (ret) {
1588 unlock_page(page);
1589 page_cache_release(page);
1590 /*
1591 * block_write_begin may have instantiated a few blocks
1592 * outside i_size. Trim these off again. Don't need
1593 * i_size_read because we hold i_mutex.
1594 *
1595 * Add inode to orphan list in case we crash before
1596 * truncate finishes
1597 */
1598 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1599 ext4_orphan_add(handle, inode);
1600
1601 ext4_journal_stop(handle);
1602 if (pos + len > inode->i_size) {
1603 ext4_truncate(inode);
1604 /*
1605 * If truncate failed early the inode might
1606 * still be on the orphan list; we need to
1607 * make sure the inode is removed from the
1608 * orphan list in that case.
1609 */
1610 if (inode->i_nlink)
1611 ext4_orphan_del(NULL, inode);
1612 }
1613 }
1614
1615 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1616 goto retry;
1617 out:
1618 return ret;
1619 }
1620
1621 /* For write_end() in data=journal mode */
1622 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1623 {
1624 if (!buffer_mapped(bh) || buffer_freed(bh))
1625 return 0;
1626 set_buffer_uptodate(bh);
1627 return ext4_handle_dirty_metadata(handle, NULL, bh);
1628 }
1629
1630 static int ext4_generic_write_end(struct file *file,
1631 struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned copied,
1633 struct page *page, void *fsdata)
1634 {
1635 int i_size_changed = 0;
1636 struct inode *inode = mapping->host;
1637 handle_t *handle = ext4_journal_current_handle();
1638
1639 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1640
1641 /*
1642 * No need to use i_size_read() here, the i_size
1643 * cannot change under us because we hold i_mutex.
1644 *
1645 * But it's important to update i_size while still holding page lock:
1646 * page writeout could otherwise come in and zero beyond i_size.
1647 */
1648 if (pos + copied > inode->i_size) {
1649 i_size_write(inode, pos + copied);
1650 i_size_changed = 1;
1651 }
1652
1653 if (pos + copied > EXT4_I(inode)->i_disksize) {
1654 /* We need to mark inode dirty even if
1655 * new_i_size is less that inode->i_size
1656 * bu greater than i_disksize.(hint delalloc)
1657 */
1658 ext4_update_i_disksize(inode, (pos + copied));
1659 i_size_changed = 1;
1660 }
1661 unlock_page(page);
1662 page_cache_release(page);
1663
1664 /*
1665 * Don't mark the inode dirty under page lock. First, it unnecessarily
1666 * makes the holding time of page lock longer. Second, it forces lock
1667 * ordering of page lock and transaction start for journaling
1668 * filesystems.
1669 */
1670 if (i_size_changed)
1671 ext4_mark_inode_dirty(handle, inode);
1672
1673 return copied;
1674 }
1675
1676 /*
1677 * We need to pick up the new inode size which generic_commit_write gave us
1678 * `file' can be NULL - eg, when called from page_symlink().
1679 *
1680 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1681 * buffers are managed internally.
1682 */
1683 static int ext4_ordered_write_end(struct file *file,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned copied,
1686 struct page *page, void *fsdata)
1687 {
1688 handle_t *handle = ext4_journal_current_handle();
1689 struct inode *inode = mapping->host;
1690 int ret = 0, ret2;
1691
1692 trace_ext4_ordered_write_end(inode, pos, len, copied);
1693 ret = ext4_jbd2_file_inode(handle, inode);
1694
1695 if (ret == 0) {
1696 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1697 page, fsdata);
1698 copied = ret2;
1699 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1700 /* if we have allocated more blocks and copied
1701 * less. We will have blocks allocated outside
1702 * inode->i_size. So truncate them
1703 */
1704 ext4_orphan_add(handle, inode);
1705 if (ret2 < 0)
1706 ret = ret2;
1707 }
1708 ret2 = ext4_journal_stop(handle);
1709 if (!ret)
1710 ret = ret2;
1711
1712 if (pos + len > inode->i_size) {
1713 ext4_truncate(inode);
1714 /*
1715 * If truncate failed early the inode might still be
1716 * on the orphan list; we need to make sure the inode
1717 * is removed from the orphan list in that case.
1718 */
1719 if (inode->i_nlink)
1720 ext4_orphan_del(NULL, inode);
1721 }
1722
1723
1724 return ret ? ret : copied;
1725 }
1726
1727 static int ext4_writeback_write_end(struct file *file,
1728 struct address_space *mapping,
1729 loff_t pos, unsigned len, unsigned copied,
1730 struct page *page, void *fsdata)
1731 {
1732 handle_t *handle = ext4_journal_current_handle();
1733 struct inode *inode = mapping->host;
1734 int ret = 0, ret2;
1735
1736 trace_ext4_writeback_write_end(inode, pos, len, copied);
1737 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1738 page, fsdata);
1739 copied = ret2;
1740 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1741 /* if we have allocated more blocks and copied
1742 * less. We will have blocks allocated outside
1743 * inode->i_size. So truncate them
1744 */
1745 ext4_orphan_add(handle, inode);
1746
1747 if (ret2 < 0)
1748 ret = ret2;
1749
1750 ret2 = ext4_journal_stop(handle);
1751 if (!ret)
1752 ret = ret2;
1753
1754 if (pos + len > inode->i_size) {
1755 ext4_truncate(inode);
1756 /*
1757 * If truncate failed early the inode might still be
1758 * on the orphan list; we need to make sure the inode
1759 * is removed from the orphan list in that case.
1760 */
1761 if (inode->i_nlink)
1762 ext4_orphan_del(NULL, inode);
1763 }
1764
1765 return ret ? ret : copied;
1766 }
1767
1768 static int ext4_journalled_write_end(struct file *file,
1769 struct address_space *mapping,
1770 loff_t pos, unsigned len, unsigned copied,
1771 struct page *page, void *fsdata)
1772 {
1773 handle_t *handle = ext4_journal_current_handle();
1774 struct inode *inode = mapping->host;
1775 int ret = 0, ret2;
1776 int partial = 0;
1777 unsigned from, to;
1778 loff_t new_i_size;
1779
1780 trace_ext4_journalled_write_end(inode, pos, len, copied);
1781 from = pos & (PAGE_CACHE_SIZE - 1);
1782 to = from + len;
1783
1784 if (copied < len) {
1785 if (!PageUptodate(page))
1786 copied = 0;
1787 page_zero_new_buffers(page, from+copied, to);
1788 }
1789
1790 ret = walk_page_buffers(handle, page_buffers(page), from,
1791 to, &partial, write_end_fn);
1792 if (!partial)
1793 SetPageUptodate(page);
1794 new_i_size = pos + copied;
1795 if (new_i_size > inode->i_size)
1796 i_size_write(inode, pos+copied);
1797 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1798 if (new_i_size > EXT4_I(inode)->i_disksize) {
1799 ext4_update_i_disksize(inode, new_i_size);
1800 ret2 = ext4_mark_inode_dirty(handle, inode);
1801 if (!ret)
1802 ret = ret2;
1803 }
1804
1805 unlock_page(page);
1806 page_cache_release(page);
1807 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1808 /* if we have allocated more blocks and copied
1809 * less. We will have blocks allocated outside
1810 * inode->i_size. So truncate them
1811 */
1812 ext4_orphan_add(handle, inode);
1813
1814 ret2 = ext4_journal_stop(handle);
1815 if (!ret)
1816 ret = ret2;
1817 if (pos + len > inode->i_size) {
1818 ext4_truncate(inode);
1819 /*
1820 * If truncate failed early the inode might still be
1821 * on the orphan list; we need to make sure the inode
1822 * is removed from the orphan list in that case.
1823 */
1824 if (inode->i_nlink)
1825 ext4_orphan_del(NULL, inode);
1826 }
1827
1828 return ret ? ret : copied;
1829 }
1830
1831 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1832 {
1833 int retries = 0;
1834 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1835 unsigned long md_needed, mdblocks, total = 0;
1836
1837 /*
1838 * recalculate the amount of metadata blocks to reserve
1839 * in order to allocate nrblocks
1840 * worse case is one extent per block
1841 */
1842 repeat:
1843 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1844 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1845 mdblocks = ext4_calc_metadata_amount(inode, total);
1846 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1847
1848 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1849 total = md_needed + nrblocks;
1850
1851 /*
1852 * Make quota reservation here to prevent quota overflow
1853 * later. Real quota accounting is done at pages writeout
1854 * time.
1855 */
1856 if (vfs_dq_reserve_block(inode, total)) {
1857 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1858 return -EDQUOT;
1859 }
1860
1861 if (ext4_claim_free_blocks(sbi, total)) {
1862 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1863 vfs_dq_release_reservation_block(inode, total);
1864 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1865 yield();
1866 goto repeat;
1867 }
1868 return -ENOSPC;
1869 }
1870 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1871 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1872
1873 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1874 return 0; /* success */
1875 }
1876
1877 static void ext4_da_release_space(struct inode *inode, int to_free)
1878 {
1879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1880 int total, mdb, mdb_free, release;
1881
1882 if (!to_free)
1883 return; /* Nothing to release, exit */
1884
1885 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1886
1887 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1888 /*
1889 * if there is no reserved blocks, but we try to free some
1890 * then the counter is messed up somewhere.
1891 * but since this function is called from invalidate
1892 * page, it's harmless to return without any action
1893 */
1894 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1895 "blocks for inode %lu, but there is no reserved "
1896 "data blocks\n", to_free, inode->i_ino);
1897 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1898 return;
1899 }
1900
1901 /* recalculate the number of metablocks still need to be reserved */
1902 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1903 mdb = ext4_calc_metadata_amount(inode, total);
1904
1905 /* figure out how many metablocks to release */
1906 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1907 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1908
1909 release = to_free + mdb_free;
1910
1911 /* update fs dirty blocks counter for truncate case */
1912 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1913
1914 /* update per-inode reservations */
1915 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1916 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1917
1918 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1919 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1920 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1921
1922 vfs_dq_release_reservation_block(inode, release);
1923 }
1924
1925 static void ext4_da_page_release_reservation(struct page *page,
1926 unsigned long offset)
1927 {
1928 int to_release = 0;
1929 struct buffer_head *head, *bh;
1930 unsigned int curr_off = 0;
1931
1932 head = page_buffers(page);
1933 bh = head;
1934 do {
1935 unsigned int next_off = curr_off + bh->b_size;
1936
1937 if ((offset <= curr_off) && (buffer_delay(bh))) {
1938 to_release++;
1939 clear_buffer_delay(bh);
1940 }
1941 curr_off = next_off;
1942 } while ((bh = bh->b_this_page) != head);
1943 ext4_da_release_space(page->mapping->host, to_release);
1944 }
1945
1946 /*
1947 * Delayed allocation stuff
1948 */
1949
1950 /*
1951 * mpage_da_submit_io - walks through extent of pages and try to write
1952 * them with writepage() call back
1953 *
1954 * @mpd->inode: inode
1955 * @mpd->first_page: first page of the extent
1956 * @mpd->next_page: page after the last page of the extent
1957 *
1958 * By the time mpage_da_submit_io() is called we expect all blocks
1959 * to be allocated. this may be wrong if allocation failed.
1960 *
1961 * As pages are already locked by write_cache_pages(), we can't use it
1962 */
1963 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1964 {
1965 long pages_skipped;
1966 struct pagevec pvec;
1967 unsigned long index, end;
1968 int ret = 0, err, nr_pages, i;
1969 struct inode *inode = mpd->inode;
1970 struct address_space *mapping = inode->i_mapping;
1971
1972 BUG_ON(mpd->next_page <= mpd->first_page);
1973 /*
1974 * We need to start from the first_page to the next_page - 1
1975 * to make sure we also write the mapped dirty buffer_heads.
1976 * If we look at mpd->b_blocknr we would only be looking
1977 * at the currently mapped buffer_heads.
1978 */
1979 index = mpd->first_page;
1980 end = mpd->next_page - 1;
1981
1982 pagevec_init(&pvec, 0);
1983 while (index <= end) {
1984 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1985 if (nr_pages == 0)
1986 break;
1987 for (i = 0; i < nr_pages; i++) {
1988 struct page *page = pvec.pages[i];
1989
1990 index = page->index;
1991 if (index > end)
1992 break;
1993 index++;
1994
1995 BUG_ON(!PageLocked(page));
1996 BUG_ON(PageWriteback(page));
1997
1998 pages_skipped = mpd->wbc->pages_skipped;
1999 err = mapping->a_ops->writepage(page, mpd->wbc);
2000 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2001 /*
2002 * have successfully written the page
2003 * without skipping the same
2004 */
2005 mpd->pages_written++;
2006 /*
2007 * In error case, we have to continue because
2008 * remaining pages are still locked
2009 * XXX: unlock and re-dirty them?
2010 */
2011 if (ret == 0)
2012 ret = err;
2013 }
2014 pagevec_release(&pvec);
2015 }
2016 return ret;
2017 }
2018
2019 /*
2020 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2021 *
2022 * @mpd->inode - inode to walk through
2023 * @exbh->b_blocknr - first block on a disk
2024 * @exbh->b_size - amount of space in bytes
2025 * @logical - first logical block to start assignment with
2026 *
2027 * the function goes through all passed space and put actual disk
2028 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2029 */
2030 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2031 struct buffer_head *exbh)
2032 {
2033 struct inode *inode = mpd->inode;
2034 struct address_space *mapping = inode->i_mapping;
2035 int blocks = exbh->b_size >> inode->i_blkbits;
2036 sector_t pblock = exbh->b_blocknr, cur_logical;
2037 struct buffer_head *head, *bh;
2038 pgoff_t index, end;
2039 struct pagevec pvec;
2040 int nr_pages, i;
2041
2042 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2044 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2045
2046 pagevec_init(&pvec, 0);
2047
2048 while (index <= end) {
2049 /* XXX: optimize tail */
2050 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2051 if (nr_pages == 0)
2052 break;
2053 for (i = 0; i < nr_pages; i++) {
2054 struct page *page = pvec.pages[i];
2055
2056 index = page->index;
2057 if (index > end)
2058 break;
2059 index++;
2060
2061 BUG_ON(!PageLocked(page));
2062 BUG_ON(PageWriteback(page));
2063 BUG_ON(!page_has_buffers(page));
2064
2065 bh = page_buffers(page);
2066 head = bh;
2067
2068 /* skip blocks out of the range */
2069 do {
2070 if (cur_logical >= logical)
2071 break;
2072 cur_logical++;
2073 } while ((bh = bh->b_this_page) != head);
2074
2075 do {
2076 if (cur_logical >= logical + blocks)
2077 break;
2078
2079 if (buffer_delay(bh) ||
2080 buffer_unwritten(bh)) {
2081
2082 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2083
2084 if (buffer_delay(bh)) {
2085 clear_buffer_delay(bh);
2086 bh->b_blocknr = pblock;
2087 } else {
2088 /*
2089 * unwritten already should have
2090 * blocknr assigned. Verify that
2091 */
2092 clear_buffer_unwritten(bh);
2093 BUG_ON(bh->b_blocknr != pblock);
2094 }
2095
2096 } else if (buffer_mapped(bh))
2097 BUG_ON(bh->b_blocknr != pblock);
2098
2099 cur_logical++;
2100 pblock++;
2101 } while ((bh = bh->b_this_page) != head);
2102 }
2103 pagevec_release(&pvec);
2104 }
2105 }
2106
2107
2108 /*
2109 * __unmap_underlying_blocks - just a helper function to unmap
2110 * set of blocks described by @bh
2111 */
2112 static inline void __unmap_underlying_blocks(struct inode *inode,
2113 struct buffer_head *bh)
2114 {
2115 struct block_device *bdev = inode->i_sb->s_bdev;
2116 int blocks, i;
2117
2118 blocks = bh->b_size >> inode->i_blkbits;
2119 for (i = 0; i < blocks; i++)
2120 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2121 }
2122
2123 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2124 sector_t logical, long blk_cnt)
2125 {
2126 int nr_pages, i;
2127 pgoff_t index, end;
2128 struct pagevec pvec;
2129 struct inode *inode = mpd->inode;
2130 struct address_space *mapping = inode->i_mapping;
2131
2132 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2133 end = (logical + blk_cnt - 1) >>
2134 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2135 while (index <= end) {
2136 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2137 if (nr_pages == 0)
2138 break;
2139 for (i = 0; i < nr_pages; i++) {
2140 struct page *page = pvec.pages[i];
2141 index = page->index;
2142 if (index > end)
2143 break;
2144 index++;
2145
2146 BUG_ON(!PageLocked(page));
2147 BUG_ON(PageWriteback(page));
2148 block_invalidatepage(page, 0);
2149 ClearPageUptodate(page);
2150 unlock_page(page);
2151 }
2152 }
2153 return;
2154 }
2155
2156 static void ext4_print_free_blocks(struct inode *inode)
2157 {
2158 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2159 printk(KERN_CRIT "Total free blocks count %lld\n",
2160 ext4_count_free_blocks(inode->i_sb));
2161 printk(KERN_CRIT "Free/Dirty block details\n");
2162 printk(KERN_CRIT "free_blocks=%lld\n",
2163 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2164 printk(KERN_CRIT "dirty_blocks=%lld\n",
2165 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2166 printk(KERN_CRIT "Block reservation details\n");
2167 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2168 EXT4_I(inode)->i_reserved_data_blocks);
2169 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2170 EXT4_I(inode)->i_reserved_meta_blocks);
2171 return;
2172 }
2173
2174 /*
2175 * mpage_da_map_blocks - go through given space
2176 *
2177 * @mpd - bh describing space
2178 *
2179 * The function skips space we know is already mapped to disk blocks.
2180 *
2181 */
2182 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2183 {
2184 int err, blks, get_blocks_flags;
2185 struct buffer_head new;
2186 sector_t next = mpd->b_blocknr;
2187 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2188 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2189 handle_t *handle = NULL;
2190
2191 /*
2192 * We consider only non-mapped and non-allocated blocks
2193 */
2194 if ((mpd->b_state & (1 << BH_Mapped)) &&
2195 !(mpd->b_state & (1 << BH_Delay)) &&
2196 !(mpd->b_state & (1 << BH_Unwritten)))
2197 return 0;
2198
2199 /*
2200 * If we didn't accumulate anything to write simply return
2201 */
2202 if (!mpd->b_size)
2203 return 0;
2204
2205 handle = ext4_journal_current_handle();
2206 BUG_ON(!handle);
2207
2208 /*
2209 * Call ext4_get_blocks() to allocate any delayed allocation
2210 * blocks, or to convert an uninitialized extent to be
2211 * initialized (in the case where we have written into
2212 * one or more preallocated blocks).
2213 *
2214 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2215 * indicate that we are on the delayed allocation path. This
2216 * affects functions in many different parts of the allocation
2217 * call path. This flag exists primarily because we don't
2218 * want to change *many* call functions, so ext4_get_blocks()
2219 * will set the magic i_delalloc_reserved_flag once the
2220 * inode's allocation semaphore is taken.
2221 *
2222 * If the blocks in questions were delalloc blocks, set
2223 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2224 * variables are updated after the blocks have been allocated.
2225 */
2226 new.b_state = 0;
2227 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2228 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2229 if (mpd->b_state & (1 << BH_Delay))
2230 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2231 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2232 &new, get_blocks_flags);
2233 if (blks < 0) {
2234 err = blks;
2235 /*
2236 * If get block returns with error we simply
2237 * return. Later writepage will redirty the page and
2238 * writepages will find the dirty page again
2239 */
2240 if (err == -EAGAIN)
2241 return 0;
2242
2243 if (err == -ENOSPC &&
2244 ext4_count_free_blocks(mpd->inode->i_sb)) {
2245 mpd->retval = err;
2246 return 0;
2247 }
2248
2249 /*
2250 * get block failure will cause us to loop in
2251 * writepages, because a_ops->writepage won't be able
2252 * to make progress. The page will be redirtied by
2253 * writepage and writepages will again try to write
2254 * the same.
2255 */
2256 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2257 "delayed block allocation failed for inode %lu at "
2258 "logical offset %llu with max blocks %zd with "
2259 "error %d\n", mpd->inode->i_ino,
2260 (unsigned long long) next,
2261 mpd->b_size >> mpd->inode->i_blkbits, err);
2262 printk(KERN_CRIT "This should not happen!! "
2263 "Data will be lost\n");
2264 if (err == -ENOSPC) {
2265 ext4_print_free_blocks(mpd->inode);
2266 }
2267 /* invalidate all the pages */
2268 ext4_da_block_invalidatepages(mpd, next,
2269 mpd->b_size >> mpd->inode->i_blkbits);
2270 return err;
2271 }
2272 BUG_ON(blks == 0);
2273
2274 new.b_size = (blks << mpd->inode->i_blkbits);
2275
2276 if (buffer_new(&new))
2277 __unmap_underlying_blocks(mpd->inode, &new);
2278
2279 /*
2280 * If blocks are delayed marked, we need to
2281 * put actual blocknr and drop delayed bit
2282 */
2283 if ((mpd->b_state & (1 << BH_Delay)) ||
2284 (mpd->b_state & (1 << BH_Unwritten)))
2285 mpage_put_bnr_to_bhs(mpd, next, &new);
2286
2287 if (ext4_should_order_data(mpd->inode)) {
2288 err = ext4_jbd2_file_inode(handle, mpd->inode);
2289 if (err)
2290 return err;
2291 }
2292
2293 /*
2294 * Update on-disk size along with block allocation.
2295 */
2296 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2297 if (disksize > i_size_read(mpd->inode))
2298 disksize = i_size_read(mpd->inode);
2299 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2300 ext4_update_i_disksize(mpd->inode, disksize);
2301 return ext4_mark_inode_dirty(handle, mpd->inode);
2302 }
2303
2304 return 0;
2305 }
2306
2307 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2308 (1 << BH_Delay) | (1 << BH_Unwritten))
2309
2310 /*
2311 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2312 *
2313 * @mpd->lbh - extent of blocks
2314 * @logical - logical number of the block in the file
2315 * @bh - bh of the block (used to access block's state)
2316 *
2317 * the function is used to collect contig. blocks in same state
2318 */
2319 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2320 sector_t logical, size_t b_size,
2321 unsigned long b_state)
2322 {
2323 sector_t next;
2324 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2325
2326 /* check if thereserved journal credits might overflow */
2327 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2328 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2329 /*
2330 * With non-extent format we are limited by the journal
2331 * credit available. Total credit needed to insert
2332 * nrblocks contiguous blocks is dependent on the
2333 * nrblocks. So limit nrblocks.
2334 */
2335 goto flush_it;
2336 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2337 EXT4_MAX_TRANS_DATA) {
2338 /*
2339 * Adding the new buffer_head would make it cross the
2340 * allowed limit for which we have journal credit
2341 * reserved. So limit the new bh->b_size
2342 */
2343 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2344 mpd->inode->i_blkbits;
2345 /* we will do mpage_da_submit_io in the next loop */
2346 }
2347 }
2348 /*
2349 * First block in the extent
2350 */
2351 if (mpd->b_size == 0) {
2352 mpd->b_blocknr = logical;
2353 mpd->b_size = b_size;
2354 mpd->b_state = b_state & BH_FLAGS;
2355 return;
2356 }
2357
2358 next = mpd->b_blocknr + nrblocks;
2359 /*
2360 * Can we merge the block to our big extent?
2361 */
2362 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2363 mpd->b_size += b_size;
2364 return;
2365 }
2366
2367 flush_it:
2368 /*
2369 * We couldn't merge the block to our extent, so we
2370 * need to flush current extent and start new one
2371 */
2372 if (mpage_da_map_blocks(mpd) == 0)
2373 mpage_da_submit_io(mpd);
2374 mpd->io_done = 1;
2375 return;
2376 }
2377
2378 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2379 {
2380 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2381 }
2382
2383 /*
2384 * __mpage_da_writepage - finds extent of pages and blocks
2385 *
2386 * @page: page to consider
2387 * @wbc: not used, we just follow rules
2388 * @data: context
2389 *
2390 * The function finds extents of pages and scan them for all blocks.
2391 */
2392 static int __mpage_da_writepage(struct page *page,
2393 struct writeback_control *wbc, void *data)
2394 {
2395 struct mpage_da_data *mpd = data;
2396 struct inode *inode = mpd->inode;
2397 struct buffer_head *bh, *head;
2398 sector_t logical;
2399
2400 if (mpd->io_done) {
2401 /*
2402 * Rest of the page in the page_vec
2403 * redirty then and skip then. We will
2404 * try to write them again after
2405 * starting a new transaction
2406 */
2407 redirty_page_for_writepage(wbc, page);
2408 unlock_page(page);
2409 return MPAGE_DA_EXTENT_TAIL;
2410 }
2411 /*
2412 * Can we merge this page to current extent?
2413 */
2414 if (mpd->next_page != page->index) {
2415 /*
2416 * Nope, we can't. So, we map non-allocated blocks
2417 * and start IO on them using writepage()
2418 */
2419 if (mpd->next_page != mpd->first_page) {
2420 if (mpage_da_map_blocks(mpd) == 0)
2421 mpage_da_submit_io(mpd);
2422 /*
2423 * skip rest of the page in the page_vec
2424 */
2425 mpd->io_done = 1;
2426 redirty_page_for_writepage(wbc, page);
2427 unlock_page(page);
2428 return MPAGE_DA_EXTENT_TAIL;
2429 }
2430
2431 /*
2432 * Start next extent of pages ...
2433 */
2434 mpd->first_page = page->index;
2435
2436 /*
2437 * ... and blocks
2438 */
2439 mpd->b_size = 0;
2440 mpd->b_state = 0;
2441 mpd->b_blocknr = 0;
2442 }
2443
2444 mpd->next_page = page->index + 1;
2445 logical = (sector_t) page->index <<
2446 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2447
2448 if (!page_has_buffers(page)) {
2449 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2450 (1 << BH_Dirty) | (1 << BH_Uptodate));
2451 if (mpd->io_done)
2452 return MPAGE_DA_EXTENT_TAIL;
2453 } else {
2454 /*
2455 * Page with regular buffer heads, just add all dirty ones
2456 */
2457 head = page_buffers(page);
2458 bh = head;
2459 do {
2460 BUG_ON(buffer_locked(bh));
2461 /*
2462 * We need to try to allocate
2463 * unmapped blocks in the same page.
2464 * Otherwise we won't make progress
2465 * with the page in ext4_writepage
2466 */
2467 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2468 mpage_add_bh_to_extent(mpd, logical,
2469 bh->b_size,
2470 bh->b_state);
2471 if (mpd->io_done)
2472 return MPAGE_DA_EXTENT_TAIL;
2473 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2474 /*
2475 * mapped dirty buffer. We need to update
2476 * the b_state because we look at
2477 * b_state in mpage_da_map_blocks. We don't
2478 * update b_size because if we find an
2479 * unmapped buffer_head later we need to
2480 * use the b_state flag of that buffer_head.
2481 */
2482 if (mpd->b_size == 0)
2483 mpd->b_state = bh->b_state & BH_FLAGS;
2484 }
2485 logical++;
2486 } while ((bh = bh->b_this_page) != head);
2487 }
2488
2489 return 0;
2490 }
2491
2492 /*
2493 * This is a special get_blocks_t callback which is used by
2494 * ext4_da_write_begin(). It will either return mapped block or
2495 * reserve space for a single block.
2496 *
2497 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2498 * We also have b_blocknr = -1 and b_bdev initialized properly
2499 *
2500 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2501 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2502 * initialized properly.
2503 */
2504 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2505 struct buffer_head *bh_result, int create)
2506 {
2507 int ret = 0;
2508 sector_t invalid_block = ~((sector_t) 0xffff);
2509
2510 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2511 invalid_block = ~0;
2512
2513 BUG_ON(create == 0);
2514 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2515
2516 /*
2517 * first, we need to know whether the block is allocated already
2518 * preallocated blocks are unmapped but should treated
2519 * the same as allocated blocks.
2520 */
2521 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2522 if ((ret == 0) && !buffer_delay(bh_result)) {
2523 /* the block isn't (pre)allocated yet, let's reserve space */
2524 /*
2525 * XXX: __block_prepare_write() unmaps passed block,
2526 * is it OK?
2527 */
2528 ret = ext4_da_reserve_space(inode, 1);
2529 if (ret)
2530 /* not enough space to reserve */
2531 return ret;
2532
2533 map_bh(bh_result, inode->i_sb, invalid_block);
2534 set_buffer_new(bh_result);
2535 set_buffer_delay(bh_result);
2536 } else if (ret > 0) {
2537 bh_result->b_size = (ret << inode->i_blkbits);
2538 if (buffer_unwritten(bh_result)) {
2539 /* A delayed write to unwritten bh should
2540 * be marked new and mapped. Mapped ensures
2541 * that we don't do get_block multiple times
2542 * when we write to the same offset and new
2543 * ensures that we do proper zero out for
2544 * partial write.
2545 */
2546 set_buffer_new(bh_result);
2547 set_buffer_mapped(bh_result);
2548 }
2549 ret = 0;
2550 }
2551
2552 return ret;
2553 }
2554
2555 /*
2556 * This function is used as a standard get_block_t calback function
2557 * when there is no desire to allocate any blocks. It is used as a
2558 * callback function for block_prepare_write(), nobh_writepage(), and
2559 * block_write_full_page(). These functions should only try to map a
2560 * single block at a time.
2561 *
2562 * Since this function doesn't do block allocations even if the caller
2563 * requests it by passing in create=1, it is critically important that
2564 * any caller checks to make sure that any buffer heads are returned
2565 * by this function are either all already mapped or marked for
2566 * delayed allocation before calling nobh_writepage() or
2567 * block_write_full_page(). Otherwise, b_blocknr could be left
2568 * unitialized, and the page write functions will be taken by
2569 * surprise.
2570 */
2571 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2572 struct buffer_head *bh_result, int create)
2573 {
2574 int ret = 0;
2575 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2576
2577 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2578
2579 /*
2580 * we don't want to do block allocation in writepage
2581 * so call get_block_wrap with create = 0
2582 */
2583 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2584 if (ret > 0) {
2585 bh_result->b_size = (ret << inode->i_blkbits);
2586 ret = 0;
2587 }
2588 return ret;
2589 }
2590
2591 static int bget_one(handle_t *handle, struct buffer_head *bh)
2592 {
2593 get_bh(bh);
2594 return 0;
2595 }
2596
2597 static int bput_one(handle_t *handle, struct buffer_head *bh)
2598 {
2599 put_bh(bh);
2600 return 0;
2601 }
2602
2603 static int __ext4_journalled_writepage(struct page *page,
2604 struct writeback_control *wbc,
2605 unsigned int len)
2606 {
2607 struct address_space *mapping = page->mapping;
2608 struct inode *inode = mapping->host;
2609 struct buffer_head *page_bufs;
2610 handle_t *handle = NULL;
2611 int ret = 0;
2612 int err;
2613
2614 page_bufs = page_buffers(page);
2615 BUG_ON(!page_bufs);
2616 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2617 /* As soon as we unlock the page, it can go away, but we have
2618 * references to buffers so we are safe */
2619 unlock_page(page);
2620
2621 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2622 if (IS_ERR(handle)) {
2623 ret = PTR_ERR(handle);
2624 goto out;
2625 }
2626
2627 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2628 do_journal_get_write_access);
2629
2630 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2631 write_end_fn);
2632 if (ret == 0)
2633 ret = err;
2634 err = ext4_journal_stop(handle);
2635 if (!ret)
2636 ret = err;
2637
2638 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2639 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2640 out:
2641 return ret;
2642 }
2643
2644 /*
2645 * Note that we don't need to start a transaction unless we're journaling data
2646 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2647 * need to file the inode to the transaction's list in ordered mode because if
2648 * we are writing back data added by write(), the inode is already there and if
2649 * we are writing back data modified via mmap(), noone guarantees in which
2650 * transaction the data will hit the disk. In case we are journaling data, we
2651 * cannot start transaction directly because transaction start ranks above page
2652 * lock so we have to do some magic.
2653 *
2654 * This function can get called via...
2655 * - ext4_da_writepages after taking page lock (have journal handle)
2656 * - journal_submit_inode_data_buffers (no journal handle)
2657 * - shrink_page_list via pdflush (no journal handle)
2658 * - grab_page_cache when doing write_begin (have journal handle)
2659 *
2660 * We don't do any block allocation in this function. If we have page with
2661 * multiple blocks we need to write those buffer_heads that are mapped. This
2662 * is important for mmaped based write. So if we do with blocksize 1K
2663 * truncate(f, 1024);
2664 * a = mmap(f, 0, 4096);
2665 * a[0] = 'a';
2666 * truncate(f, 4096);
2667 * we have in the page first buffer_head mapped via page_mkwrite call back
2668 * but other bufer_heads would be unmapped but dirty(dirty done via the
2669 * do_wp_page). So writepage should write the first block. If we modify
2670 * the mmap area beyond 1024 we will again get a page_fault and the
2671 * page_mkwrite callback will do the block allocation and mark the
2672 * buffer_heads mapped.
2673 *
2674 * We redirty the page if we have any buffer_heads that is either delay or
2675 * unwritten in the page.
2676 *
2677 * We can get recursively called as show below.
2678 *
2679 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2680 * ext4_writepage()
2681 *
2682 * But since we don't do any block allocation we should not deadlock.
2683 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2684 */
2685 static int ext4_writepage(struct page *page,
2686 struct writeback_control *wbc)
2687 {
2688 int ret = 0;
2689 loff_t size;
2690 unsigned int len;
2691 struct buffer_head *page_bufs;
2692 struct inode *inode = page->mapping->host;
2693
2694 trace_ext4_writepage(inode, page);
2695 size = i_size_read(inode);
2696 if (page->index == size >> PAGE_CACHE_SHIFT)
2697 len = size & ~PAGE_CACHE_MASK;
2698 else
2699 len = PAGE_CACHE_SIZE;
2700
2701 if (page_has_buffers(page)) {
2702 page_bufs = page_buffers(page);
2703 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2704 ext4_bh_delay_or_unwritten)) {
2705 /*
2706 * We don't want to do block allocation
2707 * So redirty the page and return
2708 * We may reach here when we do a journal commit
2709 * via journal_submit_inode_data_buffers.
2710 * If we don't have mapping block we just ignore
2711 * them. We can also reach here via shrink_page_list
2712 */
2713 redirty_page_for_writepage(wbc, page);
2714 unlock_page(page);
2715 return 0;
2716 }
2717 } else {
2718 /*
2719 * The test for page_has_buffers() is subtle:
2720 * We know the page is dirty but it lost buffers. That means
2721 * that at some moment in time after write_begin()/write_end()
2722 * has been called all buffers have been clean and thus they
2723 * must have been written at least once. So they are all
2724 * mapped and we can happily proceed with mapping them
2725 * and writing the page.
2726 *
2727 * Try to initialize the buffer_heads and check whether
2728 * all are mapped and non delay. We don't want to
2729 * do block allocation here.
2730 */
2731 ret = block_prepare_write(page, 0, len,
2732 noalloc_get_block_write);
2733 if (!ret) {
2734 page_bufs = page_buffers(page);
2735 /* check whether all are mapped and non delay */
2736 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2737 ext4_bh_delay_or_unwritten)) {
2738 redirty_page_for_writepage(wbc, page);
2739 unlock_page(page);
2740 return 0;
2741 }
2742 } else {
2743 /*
2744 * We can't do block allocation here
2745 * so just redity the page and unlock
2746 * and return
2747 */
2748 redirty_page_for_writepage(wbc, page);
2749 unlock_page(page);
2750 return 0;
2751 }
2752 /* now mark the buffer_heads as dirty and uptodate */
2753 block_commit_write(page, 0, len);
2754 }
2755
2756 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2757 /*
2758 * It's mmapped pagecache. Add buffers and journal it. There
2759 * doesn't seem much point in redirtying the page here.
2760 */
2761 ClearPageChecked(page);
2762 return __ext4_journalled_writepage(page, wbc, len);
2763 }
2764
2765 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2766 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2767 else
2768 ret = block_write_full_page(page, noalloc_get_block_write,
2769 wbc);
2770
2771 return ret;
2772 }
2773
2774 /*
2775 * This is called via ext4_da_writepages() to
2776 * calulate the total number of credits to reserve to fit
2777 * a single extent allocation into a single transaction,
2778 * ext4_da_writpeages() will loop calling this before
2779 * the block allocation.
2780 */
2781
2782 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2783 {
2784 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2785
2786 /*
2787 * With non-extent format the journal credit needed to
2788 * insert nrblocks contiguous block is dependent on
2789 * number of contiguous block. So we will limit
2790 * number of contiguous block to a sane value
2791 */
2792 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2793 (max_blocks > EXT4_MAX_TRANS_DATA))
2794 max_blocks = EXT4_MAX_TRANS_DATA;
2795
2796 return ext4_chunk_trans_blocks(inode, max_blocks);
2797 }
2798
2799 static int ext4_da_writepages(struct address_space *mapping,
2800 struct writeback_control *wbc)
2801 {
2802 pgoff_t index;
2803 int range_whole = 0;
2804 handle_t *handle = NULL;
2805 struct mpage_da_data mpd;
2806 struct inode *inode = mapping->host;
2807 int no_nrwrite_index_update;
2808 int pages_written = 0;
2809 long pages_skipped;
2810 unsigned int max_pages;
2811 int range_cyclic, cycled = 1, io_done = 0;
2812 int needed_blocks, ret = 0;
2813 long desired_nr_to_write, nr_to_writebump = 0;
2814 loff_t range_start = wbc->range_start;
2815 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2816
2817 trace_ext4_da_writepages(inode, wbc);
2818
2819 /*
2820 * No pages to write? This is mainly a kludge to avoid starting
2821 * a transaction for special inodes like journal inode on last iput()
2822 * because that could violate lock ordering on umount
2823 */
2824 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2825 return 0;
2826
2827 /*
2828 * If the filesystem has aborted, it is read-only, so return
2829 * right away instead of dumping stack traces later on that
2830 * will obscure the real source of the problem. We test
2831 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2832 * the latter could be true if the filesystem is mounted
2833 * read-only, and in that case, ext4_da_writepages should
2834 * *never* be called, so if that ever happens, we would want
2835 * the stack trace.
2836 */
2837 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2838 return -EROFS;
2839
2840 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2841 range_whole = 1;
2842
2843 range_cyclic = wbc->range_cyclic;
2844 if (wbc->range_cyclic) {
2845 index = mapping->writeback_index;
2846 if (index)
2847 cycled = 0;
2848 wbc->range_start = index << PAGE_CACHE_SHIFT;
2849 wbc->range_end = LLONG_MAX;
2850 wbc->range_cyclic = 0;
2851 } else
2852 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2853
2854 /*
2855 * This works around two forms of stupidity. The first is in
2856 * the writeback code, which caps the maximum number of pages
2857 * written to be 1024 pages. This is wrong on multiple
2858 * levels; different architectues have a different page size,
2859 * which changes the maximum amount of data which gets
2860 * written. Secondly, 4 megabytes is way too small. XFS
2861 * forces this value to be 16 megabytes by multiplying
2862 * nr_to_write parameter by four, and then relies on its
2863 * allocator to allocate larger extents to make them
2864 * contiguous. Unfortunately this brings us to the second
2865 * stupidity, which is that ext4's mballoc code only allocates
2866 * at most 2048 blocks. So we force contiguous writes up to
2867 * the number of dirty blocks in the inode, or
2868 * sbi->max_writeback_mb_bump whichever is smaller.
2869 */
2870 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2871 if (!range_cyclic && range_whole)
2872 desired_nr_to_write = wbc->nr_to_write * 8;
2873 else
2874 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2875 max_pages);
2876 if (desired_nr_to_write > max_pages)
2877 desired_nr_to_write = max_pages;
2878
2879 if (wbc->nr_to_write < desired_nr_to_write) {
2880 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2881 wbc->nr_to_write = desired_nr_to_write;
2882 }
2883
2884 mpd.wbc = wbc;
2885 mpd.inode = mapping->host;
2886
2887 /*
2888 * we don't want write_cache_pages to update
2889 * nr_to_write and writeback_index
2890 */
2891 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2892 wbc->no_nrwrite_index_update = 1;
2893 pages_skipped = wbc->pages_skipped;
2894
2895 retry:
2896 while (!ret && wbc->nr_to_write > 0) {
2897
2898 /*
2899 * we insert one extent at a time. So we need
2900 * credit needed for single extent allocation.
2901 * journalled mode is currently not supported
2902 * by delalloc
2903 */
2904 BUG_ON(ext4_should_journal_data(inode));
2905 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2906
2907 /* start a new transaction*/
2908 handle = ext4_journal_start(inode, needed_blocks);
2909 if (IS_ERR(handle)) {
2910 ret = PTR_ERR(handle);
2911 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2912 "%ld pages, ino %lu; err %d\n", __func__,
2913 wbc->nr_to_write, inode->i_ino, ret);
2914 goto out_writepages;
2915 }
2916
2917 /*
2918 * Now call __mpage_da_writepage to find the next
2919 * contiguous region of logical blocks that need
2920 * blocks to be allocated by ext4. We don't actually
2921 * submit the blocks for I/O here, even though
2922 * write_cache_pages thinks it will, and will set the
2923 * pages as clean for write before calling
2924 * __mpage_da_writepage().
2925 */
2926 mpd.b_size = 0;
2927 mpd.b_state = 0;
2928 mpd.b_blocknr = 0;
2929 mpd.first_page = 0;
2930 mpd.next_page = 0;
2931 mpd.io_done = 0;
2932 mpd.pages_written = 0;
2933 mpd.retval = 0;
2934 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2935 &mpd);
2936 /*
2937 * If we have a contigous extent of pages and we
2938 * haven't done the I/O yet, map the blocks and submit
2939 * them for I/O.
2940 */
2941 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2942 if (mpage_da_map_blocks(&mpd) == 0)
2943 mpage_da_submit_io(&mpd);
2944 mpd.io_done = 1;
2945 ret = MPAGE_DA_EXTENT_TAIL;
2946 }
2947 trace_ext4_da_write_pages(inode, &mpd);
2948 wbc->nr_to_write -= mpd.pages_written;
2949
2950 ext4_journal_stop(handle);
2951
2952 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2953 /* commit the transaction which would
2954 * free blocks released in the transaction
2955 * and try again
2956 */
2957 jbd2_journal_force_commit_nested(sbi->s_journal);
2958 wbc->pages_skipped = pages_skipped;
2959 ret = 0;
2960 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2961 /*
2962 * got one extent now try with
2963 * rest of the pages
2964 */
2965 pages_written += mpd.pages_written;
2966 wbc->pages_skipped = pages_skipped;
2967 ret = 0;
2968 io_done = 1;
2969 } else if (wbc->nr_to_write)
2970 /*
2971 * There is no more writeout needed
2972 * or we requested for a noblocking writeout
2973 * and we found the device congested
2974 */
2975 break;
2976 }
2977 if (!io_done && !cycled) {
2978 cycled = 1;
2979 index = 0;
2980 wbc->range_start = index << PAGE_CACHE_SHIFT;
2981 wbc->range_end = mapping->writeback_index - 1;
2982 goto retry;
2983 }
2984 if (pages_skipped != wbc->pages_skipped)
2985 ext4_msg(inode->i_sb, KERN_CRIT,
2986 "This should not happen leaving %s "
2987 "with nr_to_write = %ld ret = %d\n",
2988 __func__, wbc->nr_to_write, ret);
2989
2990 /* Update index */
2991 index += pages_written;
2992 wbc->range_cyclic = range_cyclic;
2993 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2994 /*
2995 * set the writeback_index so that range_cyclic
2996 * mode will write it back later
2997 */
2998 mapping->writeback_index = index;
2999
3000 out_writepages:
3001 if (!no_nrwrite_index_update)
3002 wbc->no_nrwrite_index_update = 0;
3003 if (wbc->nr_to_write > nr_to_writebump)
3004 wbc->nr_to_write -= nr_to_writebump;
3005 wbc->range_start = range_start;
3006 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3007 return ret;
3008 }
3009
3010 #define FALL_BACK_TO_NONDELALLOC 1
3011 static int ext4_nonda_switch(struct super_block *sb)
3012 {
3013 s64 free_blocks, dirty_blocks;
3014 struct ext4_sb_info *sbi = EXT4_SB(sb);
3015
3016 /*
3017 * switch to non delalloc mode if we are running low
3018 * on free block. The free block accounting via percpu
3019 * counters can get slightly wrong with percpu_counter_batch getting
3020 * accumulated on each CPU without updating global counters
3021 * Delalloc need an accurate free block accounting. So switch
3022 * to non delalloc when we are near to error range.
3023 */
3024 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3025 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3026 if (2 * free_blocks < 3 * dirty_blocks ||
3027 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3028 /*
3029 * free block count is less that 150% of dirty blocks
3030 * or free blocks is less that watermark
3031 */
3032 return 1;
3033 }
3034 return 0;
3035 }
3036
3037 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3038 loff_t pos, unsigned len, unsigned flags,
3039 struct page **pagep, void **fsdata)
3040 {
3041 int ret, retries = 0;
3042 struct page *page;
3043 pgoff_t index;
3044 unsigned from, to;
3045 struct inode *inode = mapping->host;
3046 handle_t *handle;
3047
3048 index = pos >> PAGE_CACHE_SHIFT;
3049 from = pos & (PAGE_CACHE_SIZE - 1);
3050 to = from + len;
3051
3052 if (ext4_nonda_switch(inode->i_sb)) {
3053 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3054 return ext4_write_begin(file, mapping, pos,
3055 len, flags, pagep, fsdata);
3056 }
3057 *fsdata = (void *)0;
3058 trace_ext4_da_write_begin(inode, pos, len, flags);
3059 retry:
3060 /*
3061 * With delayed allocation, we don't log the i_disksize update
3062 * if there is delayed block allocation. But we still need
3063 * to journalling the i_disksize update if writes to the end
3064 * of file which has an already mapped buffer.
3065 */
3066 handle = ext4_journal_start(inode, 1);
3067 if (IS_ERR(handle)) {
3068 ret = PTR_ERR(handle);
3069 goto out;
3070 }
3071 /* We cannot recurse into the filesystem as the transaction is already
3072 * started */
3073 flags |= AOP_FLAG_NOFS;
3074
3075 page = grab_cache_page_write_begin(mapping, index, flags);
3076 if (!page) {
3077 ext4_journal_stop(handle);
3078 ret = -ENOMEM;
3079 goto out;
3080 }
3081 *pagep = page;
3082
3083 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3084 ext4_da_get_block_prep);
3085 if (ret < 0) {
3086 unlock_page(page);
3087 ext4_journal_stop(handle);
3088 page_cache_release(page);
3089 /*
3090 * block_write_begin may have instantiated a few blocks
3091 * outside i_size. Trim these off again. Don't need
3092 * i_size_read because we hold i_mutex.
3093 */
3094 if (pos + len > inode->i_size)
3095 ext4_truncate(inode);
3096 }
3097
3098 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3099 goto retry;
3100 out:
3101 return ret;
3102 }
3103
3104 /*
3105 * Check if we should update i_disksize
3106 * when write to the end of file but not require block allocation
3107 */
3108 static int ext4_da_should_update_i_disksize(struct page *page,
3109 unsigned long offset)
3110 {
3111 struct buffer_head *bh;
3112 struct inode *inode = page->mapping->host;
3113 unsigned int idx;
3114 int i;
3115
3116 bh = page_buffers(page);
3117 idx = offset >> inode->i_blkbits;
3118
3119 for (i = 0; i < idx; i++)
3120 bh = bh->b_this_page;
3121
3122 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3123 return 0;
3124 return 1;
3125 }
3126
3127 static int ext4_da_write_end(struct file *file,
3128 struct address_space *mapping,
3129 loff_t pos, unsigned len, unsigned copied,
3130 struct page *page, void *fsdata)
3131 {
3132 struct inode *inode = mapping->host;
3133 int ret = 0, ret2;
3134 handle_t *handle = ext4_journal_current_handle();
3135 loff_t new_i_size;
3136 unsigned long start, end;
3137 int write_mode = (int)(unsigned long)fsdata;
3138
3139 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3140 if (ext4_should_order_data(inode)) {
3141 return ext4_ordered_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
3143 } else if (ext4_should_writeback_data(inode)) {
3144 return ext4_writeback_write_end(file, mapping, pos,
3145 len, copied, page, fsdata);
3146 } else {
3147 BUG();
3148 }
3149 }
3150
3151 trace_ext4_da_write_end(inode, pos, len, copied);
3152 start = pos & (PAGE_CACHE_SIZE - 1);
3153 end = start + copied - 1;
3154
3155 /*
3156 * generic_write_end() will run mark_inode_dirty() if i_size
3157 * changes. So let's piggyback the i_disksize mark_inode_dirty
3158 * into that.
3159 */
3160
3161 new_i_size = pos + copied;
3162 if (new_i_size > EXT4_I(inode)->i_disksize) {
3163 if (ext4_da_should_update_i_disksize(page, end)) {
3164 down_write(&EXT4_I(inode)->i_data_sem);
3165 if (new_i_size > EXT4_I(inode)->i_disksize) {
3166 /*
3167 * Updating i_disksize when extending file
3168 * without needing block allocation
3169 */
3170 if (ext4_should_order_data(inode))
3171 ret = ext4_jbd2_file_inode(handle,
3172 inode);
3173
3174 EXT4_I(inode)->i_disksize = new_i_size;
3175 }
3176 up_write(&EXT4_I(inode)->i_data_sem);
3177 /* We need to mark inode dirty even if
3178 * new_i_size is less that inode->i_size
3179 * bu greater than i_disksize.(hint delalloc)
3180 */
3181 ext4_mark_inode_dirty(handle, inode);
3182 }
3183 }
3184 ret2 = generic_write_end(file, mapping, pos, len, copied,
3185 page, fsdata);
3186 copied = ret2;
3187 if (ret2 < 0)
3188 ret = ret2;
3189 ret2 = ext4_journal_stop(handle);
3190 if (!ret)
3191 ret = ret2;
3192
3193 return ret ? ret : copied;
3194 }
3195
3196 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3197 {
3198 /*
3199 * Drop reserved blocks
3200 */
3201 BUG_ON(!PageLocked(page));
3202 if (!page_has_buffers(page))
3203 goto out;
3204
3205 ext4_da_page_release_reservation(page, offset);
3206
3207 out:
3208 ext4_invalidatepage(page, offset);
3209
3210 return;
3211 }
3212
3213 /*
3214 * Force all delayed allocation blocks to be allocated for a given inode.
3215 */
3216 int ext4_alloc_da_blocks(struct inode *inode)
3217 {
3218 trace_ext4_alloc_da_blocks(inode);
3219
3220 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3221 !EXT4_I(inode)->i_reserved_meta_blocks)
3222 return 0;
3223
3224 /*
3225 * We do something simple for now. The filemap_flush() will
3226 * also start triggering a write of the data blocks, which is
3227 * not strictly speaking necessary (and for users of
3228 * laptop_mode, not even desirable). However, to do otherwise
3229 * would require replicating code paths in:
3230 *
3231 * ext4_da_writepages() ->
3232 * write_cache_pages() ---> (via passed in callback function)
3233 * __mpage_da_writepage() -->
3234 * mpage_add_bh_to_extent()
3235 * mpage_da_map_blocks()
3236 *
3237 * The problem is that write_cache_pages(), located in
3238 * mm/page-writeback.c, marks pages clean in preparation for
3239 * doing I/O, which is not desirable if we're not planning on
3240 * doing I/O at all.
3241 *
3242 * We could call write_cache_pages(), and then redirty all of
3243 * the pages by calling redirty_page_for_writeback() but that
3244 * would be ugly in the extreme. So instead we would need to
3245 * replicate parts of the code in the above functions,
3246 * simplifying them becuase we wouldn't actually intend to
3247 * write out the pages, but rather only collect contiguous
3248 * logical block extents, call the multi-block allocator, and
3249 * then update the buffer heads with the block allocations.
3250 *
3251 * For now, though, we'll cheat by calling filemap_flush(),
3252 * which will map the blocks, and start the I/O, but not
3253 * actually wait for the I/O to complete.
3254 */
3255 return filemap_flush(inode->i_mapping);
3256 }
3257
3258 /*
3259 * bmap() is special. It gets used by applications such as lilo and by
3260 * the swapper to find the on-disk block of a specific piece of data.
3261 *
3262 * Naturally, this is dangerous if the block concerned is still in the
3263 * journal. If somebody makes a swapfile on an ext4 data-journaling
3264 * filesystem and enables swap, then they may get a nasty shock when the
3265 * data getting swapped to that swapfile suddenly gets overwritten by
3266 * the original zero's written out previously to the journal and
3267 * awaiting writeback in the kernel's buffer cache.
3268 *
3269 * So, if we see any bmap calls here on a modified, data-journaled file,
3270 * take extra steps to flush any blocks which might be in the cache.
3271 */
3272 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3273 {
3274 struct inode *inode = mapping->host;
3275 journal_t *journal;
3276 int err;
3277
3278 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3279 test_opt(inode->i_sb, DELALLOC)) {
3280 /*
3281 * With delalloc we want to sync the file
3282 * so that we can make sure we allocate
3283 * blocks for file
3284 */
3285 filemap_write_and_wait(mapping);
3286 }
3287
3288 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3289 /*
3290 * This is a REALLY heavyweight approach, but the use of
3291 * bmap on dirty files is expected to be extremely rare:
3292 * only if we run lilo or swapon on a freshly made file
3293 * do we expect this to happen.
3294 *
3295 * (bmap requires CAP_SYS_RAWIO so this does not
3296 * represent an unprivileged user DOS attack --- we'd be
3297 * in trouble if mortal users could trigger this path at
3298 * will.)
3299 *
3300 * NB. EXT4_STATE_JDATA is not set on files other than
3301 * regular files. If somebody wants to bmap a directory
3302 * or symlink and gets confused because the buffer
3303 * hasn't yet been flushed to disk, they deserve
3304 * everything they get.
3305 */
3306
3307 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3308 journal = EXT4_JOURNAL(inode);
3309 jbd2_journal_lock_updates(journal);
3310 err = jbd2_journal_flush(journal);
3311 jbd2_journal_unlock_updates(journal);
3312
3313 if (err)
3314 return 0;
3315 }
3316
3317 return generic_block_bmap(mapping, block, ext4_get_block);
3318 }
3319
3320 static int ext4_readpage(struct file *file, struct page *page)
3321 {
3322 return mpage_readpage(page, ext4_get_block);
3323 }
3324
3325 static int
3326 ext4_readpages(struct file *file, struct address_space *mapping,
3327 struct list_head *pages, unsigned nr_pages)
3328 {
3329 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3330 }
3331
3332 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3333 {
3334 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3335
3336 /*
3337 * If it's a full truncate we just forget about the pending dirtying
3338 */
3339 if (offset == 0)
3340 ClearPageChecked(page);
3341
3342 if (journal)
3343 jbd2_journal_invalidatepage(journal, page, offset);
3344 else
3345 block_invalidatepage(page, offset);
3346 }
3347
3348 static int ext4_releasepage(struct page *page, gfp_t wait)
3349 {
3350 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3351
3352 WARN_ON(PageChecked(page));
3353 if (!page_has_buffers(page))
3354 return 0;
3355 if (journal)
3356 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3357 else
3358 return try_to_free_buffers(page);
3359 }
3360
3361 /*
3362 * O_DIRECT for ext3 (or indirect map) based files
3363 *
3364 * If the O_DIRECT write will extend the file then add this inode to the
3365 * orphan list. So recovery will truncate it back to the original size
3366 * if the machine crashes during the write.
3367 *
3368 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3369 * crashes then stale disk data _may_ be exposed inside the file. But current
3370 * VFS code falls back into buffered path in that case so we are safe.
3371 */
3372 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3373 const struct iovec *iov, loff_t offset,
3374 unsigned long nr_segs)
3375 {
3376 struct file *file = iocb->ki_filp;
3377 struct inode *inode = file->f_mapping->host;
3378 struct ext4_inode_info *ei = EXT4_I(inode);
3379 handle_t *handle;
3380 ssize_t ret;
3381 int orphan = 0;
3382 size_t count = iov_length(iov, nr_segs);
3383 int retries = 0;
3384
3385 if (rw == WRITE) {
3386 loff_t final_size = offset + count;
3387
3388 if (final_size > inode->i_size) {
3389 /* Credits for sb + inode write */
3390 handle = ext4_journal_start(inode, 2);
3391 if (IS_ERR(handle)) {
3392 ret = PTR_ERR(handle);
3393 goto out;
3394 }
3395 ret = ext4_orphan_add(handle, inode);
3396 if (ret) {
3397 ext4_journal_stop(handle);
3398 goto out;
3399 }
3400 orphan = 1;
3401 ei->i_disksize = inode->i_size;
3402 ext4_journal_stop(handle);
3403 }
3404 }
3405
3406 retry:
3407 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3408 offset, nr_segs,
3409 ext4_get_block, NULL);
3410 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3411 goto retry;
3412
3413 if (orphan) {
3414 int err;
3415
3416 /* Credits for sb + inode write */
3417 handle = ext4_journal_start(inode, 2);
3418 if (IS_ERR(handle)) {
3419 /* This is really bad luck. We've written the data
3420 * but cannot extend i_size. Bail out and pretend
3421 * the write failed... */
3422 ret = PTR_ERR(handle);
3423 goto out;
3424 }
3425 if (inode->i_nlink)
3426 ext4_orphan_del(handle, inode);
3427 if (ret > 0) {
3428 loff_t end = offset + ret;
3429 if (end > inode->i_size) {
3430 ei->i_disksize = end;
3431 i_size_write(inode, end);
3432 /*
3433 * We're going to return a positive `ret'
3434 * here due to non-zero-length I/O, so there's
3435 * no way of reporting error returns from
3436 * ext4_mark_inode_dirty() to userspace. So
3437 * ignore it.
3438 */
3439 ext4_mark_inode_dirty(handle, inode);
3440 }
3441 }
3442 err = ext4_journal_stop(handle);
3443 if (ret == 0)
3444 ret = err;
3445 }
3446 out:
3447 return ret;
3448 }
3449
3450 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3451 struct buffer_head *bh_result, int create)
3452 {
3453 handle_t *handle = NULL;
3454 int ret = 0;
3455 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3456 int dio_credits;
3457
3458 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3459 inode->i_ino, create);
3460 /*
3461 * DIO VFS code passes create = 0 flag for write to
3462 * the middle of file. It does this to avoid block
3463 * allocation for holes, to prevent expose stale data
3464 * out when there is parallel buffered read (which does
3465 * not hold the i_mutex lock) while direct IO write has
3466 * not completed. DIO request on holes finally falls back
3467 * to buffered IO for this reason.
3468 *
3469 * For ext4 extent based file, since we support fallocate,
3470 * new allocated extent as uninitialized, for holes, we
3471 * could fallocate blocks for holes, thus parallel
3472 * buffered IO read will zero out the page when read on
3473 * a hole while parallel DIO write to the hole has not completed.
3474 *
3475 * when we come here, we know it's a direct IO write to
3476 * to the middle of file (<i_size)
3477 * so it's safe to override the create flag from VFS.
3478 */
3479 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3480
3481 if (max_blocks > DIO_MAX_BLOCKS)
3482 max_blocks = DIO_MAX_BLOCKS;
3483 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3484 handle = ext4_journal_start(inode, dio_credits);
3485 if (IS_ERR(handle)) {
3486 ret = PTR_ERR(handle);
3487 goto out;
3488 }
3489 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3490 create);
3491 if (ret > 0) {
3492 bh_result->b_size = (ret << inode->i_blkbits);
3493 ret = 0;
3494 }
3495 ext4_journal_stop(handle);
3496 out:
3497 return ret;
3498 }
3499
3500 static void ext4_free_io_end(ext4_io_end_t *io)
3501 {
3502 BUG_ON(!io);
3503 iput(io->inode);
3504 kfree(io);
3505 }
3506 static void dump_aio_dio_list(struct inode * inode)
3507 {
3508 #ifdef EXT4_DEBUG
3509 struct list_head *cur, *before, *after;
3510 ext4_io_end_t *io, *io0, *io1;
3511
3512 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3513 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3514 return;
3515 }
3516
3517 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3518 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3519 cur = &io->list;
3520 before = cur->prev;
3521 io0 = container_of(before, ext4_io_end_t, list);
3522 after = cur->next;
3523 io1 = container_of(after, ext4_io_end_t, list);
3524
3525 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3526 io, inode->i_ino, io0, io1);
3527 }
3528 #endif
3529 }
3530
3531 /*
3532 * check a range of space and convert unwritten extents to written.
3533 */
3534 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3535 {
3536 struct inode *inode = io->inode;
3537 loff_t offset = io->offset;
3538 size_t size = io->size;
3539 int ret = 0;
3540
3541 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3542 "list->prev 0x%p\n",
3543 io, inode->i_ino, io->list.next, io->list.prev);
3544
3545 if (list_empty(&io->list))
3546 return ret;
3547
3548 if (io->flag != DIO_AIO_UNWRITTEN)
3549 return ret;
3550
3551 if (offset + size <= i_size_read(inode))
3552 ret = ext4_convert_unwritten_extents(inode, offset, size);
3553
3554 if (ret < 0) {
3555 printk(KERN_EMERG "%s: failed to convert unwritten"
3556 "extents to written extents, error is %d"
3557 " io is still on inode %lu aio dio list\n",
3558 __func__, ret, inode->i_ino);
3559 return ret;
3560 }
3561
3562 /* clear the DIO AIO unwritten flag */
3563 io->flag = 0;
3564 return ret;
3565 }
3566 /*
3567 * work on completed aio dio IO, to convert unwritten extents to extents
3568 */
3569 static void ext4_end_aio_dio_work(struct work_struct *work)
3570 {
3571 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3572 struct inode *inode = io->inode;
3573 int ret = 0;
3574
3575 mutex_lock(&inode->i_mutex);
3576 ret = ext4_end_aio_dio_nolock(io);
3577 if (ret >= 0) {
3578 if (!list_empty(&io->list))
3579 list_del_init(&io->list);
3580 ext4_free_io_end(io);
3581 }
3582 mutex_unlock(&inode->i_mutex);
3583 }
3584 /*
3585 * This function is called from ext4_sync_file().
3586 *
3587 * When AIO DIO IO is completed, the work to convert unwritten
3588 * extents to written is queued on workqueue but may not get immediately
3589 * scheduled. When fsync is called, we need to ensure the
3590 * conversion is complete before fsync returns.
3591 * The inode keeps track of a list of completed AIO from DIO path
3592 * that might needs to do the conversion. This function walks through
3593 * the list and convert the related unwritten extents to written.
3594 */
3595 int flush_aio_dio_completed_IO(struct inode *inode)
3596 {
3597 ext4_io_end_t *io;
3598 int ret = 0;
3599 int ret2 = 0;
3600
3601 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3602 return ret;
3603
3604 dump_aio_dio_list(inode);
3605 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3606 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3607 ext4_io_end_t, list);
3608 /*
3609 * Calling ext4_end_aio_dio_nolock() to convert completed
3610 * IO to written.
3611 *
3612 * When ext4_sync_file() is called, run_queue() may already
3613 * about to flush the work corresponding to this io structure.
3614 * It will be upset if it founds the io structure related
3615 * to the work-to-be schedule is freed.
3616 *
3617 * Thus we need to keep the io structure still valid here after
3618 * convertion finished. The io structure has a flag to
3619 * avoid double converting from both fsync and background work
3620 * queue work.
3621 */
3622 ret = ext4_end_aio_dio_nolock(io);
3623 if (ret < 0)
3624 ret2 = ret;
3625 else
3626 list_del_init(&io->list);
3627 }
3628 return (ret2 < 0) ? ret2 : 0;
3629 }
3630
3631 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3632 {
3633 ext4_io_end_t *io = NULL;
3634
3635 io = kmalloc(sizeof(*io), GFP_NOFS);
3636
3637 if (io) {
3638 igrab(inode);
3639 io->inode = inode;
3640 io->flag = 0;
3641 io->offset = 0;
3642 io->size = 0;
3643 io->error = 0;
3644 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3645 INIT_LIST_HEAD(&io->list);
3646 }
3647
3648 return io;
3649 }
3650
3651 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3652 ssize_t size, void *private)
3653 {
3654 ext4_io_end_t *io_end = iocb->private;
3655 struct workqueue_struct *wq;
3656
3657 /* if not async direct IO or dio with 0 bytes write, just return */
3658 if (!io_end || !size)
3659 return;
3660
3661 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3662 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3663 iocb->private, io_end->inode->i_ino, iocb, offset,
3664 size);
3665
3666 /* if not aio dio with unwritten extents, just free io and return */
3667 if (io_end->flag != DIO_AIO_UNWRITTEN){
3668 ext4_free_io_end(io_end);
3669 iocb->private = NULL;
3670 return;
3671 }
3672
3673 io_end->offset = offset;
3674 io_end->size = size;
3675 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3676
3677 /* queue the work to convert unwritten extents to written */
3678 queue_work(wq, &io_end->work);
3679
3680 /* Add the io_end to per-inode completed aio dio list*/
3681 list_add_tail(&io_end->list,
3682 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3683 iocb->private = NULL;
3684 }
3685 /*
3686 * For ext4 extent files, ext4 will do direct-io write to holes,
3687 * preallocated extents, and those write extend the file, no need to
3688 * fall back to buffered IO.
3689 *
3690 * For holes, we fallocate those blocks, mark them as unintialized
3691 * If those blocks were preallocated, we mark sure they are splited, but
3692 * still keep the range to write as unintialized.
3693 *
3694 * The unwrritten extents will be converted to written when DIO is completed.
3695 * For async direct IO, since the IO may still pending when return, we
3696 * set up an end_io call back function, which will do the convertion
3697 * when async direct IO completed.
3698 *
3699 * If the O_DIRECT write will extend the file then add this inode to the
3700 * orphan list. So recovery will truncate it back to the original size
3701 * if the machine crashes during the write.
3702 *
3703 */
3704 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3705 const struct iovec *iov, loff_t offset,
3706 unsigned long nr_segs)
3707 {
3708 struct file *file = iocb->ki_filp;
3709 struct inode *inode = file->f_mapping->host;
3710 ssize_t ret;
3711 size_t count = iov_length(iov, nr_segs);
3712
3713 loff_t final_size = offset + count;
3714 if (rw == WRITE && final_size <= inode->i_size) {
3715 /*
3716 * We could direct write to holes and fallocate.
3717 *
3718 * Allocated blocks to fill the hole are marked as uninitialized
3719 * to prevent paralel buffered read to expose the stale data
3720 * before DIO complete the data IO.
3721 *
3722 * As to previously fallocated extents, ext4 get_block
3723 * will just simply mark the buffer mapped but still
3724 * keep the extents uninitialized.
3725 *
3726 * for non AIO case, we will convert those unwritten extents
3727 * to written after return back from blockdev_direct_IO.
3728 *
3729 * for async DIO, the conversion needs to be defered when
3730 * the IO is completed. The ext4 end_io callback function
3731 * will be called to take care of the conversion work.
3732 * Here for async case, we allocate an io_end structure to
3733 * hook to the iocb.
3734 */
3735 iocb->private = NULL;
3736 EXT4_I(inode)->cur_aio_dio = NULL;
3737 if (!is_sync_kiocb(iocb)) {
3738 iocb->private = ext4_init_io_end(inode);
3739 if (!iocb->private)
3740 return -ENOMEM;
3741 /*
3742 * we save the io structure for current async
3743 * direct IO, so that later ext4_get_blocks()
3744 * could flag the io structure whether there
3745 * is a unwritten extents needs to be converted
3746 * when IO is completed.
3747 */
3748 EXT4_I(inode)->cur_aio_dio = iocb->private;
3749 }
3750
3751 ret = blockdev_direct_IO(rw, iocb, inode,
3752 inode->i_sb->s_bdev, iov,
3753 offset, nr_segs,
3754 ext4_get_block_dio_write,
3755 ext4_end_io_dio);
3756 if (iocb->private)
3757 EXT4_I(inode)->cur_aio_dio = NULL;
3758 /*
3759 * The io_end structure takes a reference to the inode,
3760 * that structure needs to be destroyed and the
3761 * reference to the inode need to be dropped, when IO is
3762 * complete, even with 0 byte write, or failed.
3763 *
3764 * In the successful AIO DIO case, the io_end structure will be
3765 * desctroyed and the reference to the inode will be dropped
3766 * after the end_io call back function is called.
3767 *
3768 * In the case there is 0 byte write, or error case, since
3769 * VFS direct IO won't invoke the end_io call back function,
3770 * we need to free the end_io structure here.
3771 */
3772 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3773 ext4_free_io_end(iocb->private);
3774 iocb->private = NULL;
3775 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3776 EXT4_STATE_DIO_UNWRITTEN)) {
3777 int err;
3778 /*
3779 * for non AIO case, since the IO is already
3780 * completed, we could do the convertion right here
3781 */
3782 err = ext4_convert_unwritten_extents(inode,
3783 offset, ret);
3784 if (err < 0)
3785 ret = err;
3786 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3787 }
3788 return ret;
3789 }
3790
3791 /* for write the the end of file case, we fall back to old way */
3792 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3793 }
3794
3795 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3796 const struct iovec *iov, loff_t offset,
3797 unsigned long nr_segs)
3798 {
3799 struct file *file = iocb->ki_filp;
3800 struct inode *inode = file->f_mapping->host;
3801
3802 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3803 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3804
3805 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3806 }
3807
3808 /*
3809 * Pages can be marked dirty completely asynchronously from ext4's journalling
3810 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3811 * much here because ->set_page_dirty is called under VFS locks. The page is
3812 * not necessarily locked.
3813 *
3814 * We cannot just dirty the page and leave attached buffers clean, because the
3815 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3816 * or jbddirty because all the journalling code will explode.
3817 *
3818 * So what we do is to mark the page "pending dirty" and next time writepage
3819 * is called, propagate that into the buffers appropriately.
3820 */
3821 static int ext4_journalled_set_page_dirty(struct page *page)
3822 {
3823 SetPageChecked(page);
3824 return __set_page_dirty_nobuffers(page);
3825 }
3826
3827 static const struct address_space_operations ext4_ordered_aops = {
3828 .readpage = ext4_readpage,
3829 .readpages = ext4_readpages,
3830 .writepage = ext4_writepage,
3831 .sync_page = block_sync_page,
3832 .write_begin = ext4_write_begin,
3833 .write_end = ext4_ordered_write_end,
3834 .bmap = ext4_bmap,
3835 .invalidatepage = ext4_invalidatepage,
3836 .releasepage = ext4_releasepage,
3837 .direct_IO = ext4_direct_IO,
3838 .migratepage = buffer_migrate_page,
3839 .is_partially_uptodate = block_is_partially_uptodate,
3840 .error_remove_page = generic_error_remove_page,
3841 };
3842
3843 static const struct address_space_operations ext4_writeback_aops = {
3844 .readpage = ext4_readpage,
3845 .readpages = ext4_readpages,
3846 .writepage = ext4_writepage,
3847 .sync_page = block_sync_page,
3848 .write_begin = ext4_write_begin,
3849 .write_end = ext4_writeback_write_end,
3850 .bmap = ext4_bmap,
3851 .invalidatepage = ext4_invalidatepage,
3852 .releasepage = ext4_releasepage,
3853 .direct_IO = ext4_direct_IO,
3854 .migratepage = buffer_migrate_page,
3855 .is_partially_uptodate = block_is_partially_uptodate,
3856 .error_remove_page = generic_error_remove_page,
3857 };
3858
3859 static const struct address_space_operations ext4_journalled_aops = {
3860 .readpage = ext4_readpage,
3861 .readpages = ext4_readpages,
3862 .writepage = ext4_writepage,
3863 .sync_page = block_sync_page,
3864 .write_begin = ext4_write_begin,
3865 .write_end = ext4_journalled_write_end,
3866 .set_page_dirty = ext4_journalled_set_page_dirty,
3867 .bmap = ext4_bmap,
3868 .invalidatepage = ext4_invalidatepage,
3869 .releasepage = ext4_releasepage,
3870 .is_partially_uptodate = block_is_partially_uptodate,
3871 .error_remove_page = generic_error_remove_page,
3872 };
3873
3874 static const struct address_space_operations ext4_da_aops = {
3875 .readpage = ext4_readpage,
3876 .readpages = ext4_readpages,
3877 .writepage = ext4_writepage,
3878 .writepages = ext4_da_writepages,
3879 .sync_page = block_sync_page,
3880 .write_begin = ext4_da_write_begin,
3881 .write_end = ext4_da_write_end,
3882 .bmap = ext4_bmap,
3883 .invalidatepage = ext4_da_invalidatepage,
3884 .releasepage = ext4_releasepage,
3885 .direct_IO = ext4_direct_IO,
3886 .migratepage = buffer_migrate_page,
3887 .is_partially_uptodate = block_is_partially_uptodate,
3888 .error_remove_page = generic_error_remove_page,
3889 };
3890
3891 void ext4_set_aops(struct inode *inode)
3892 {
3893 if (ext4_should_order_data(inode) &&
3894 test_opt(inode->i_sb, DELALLOC))
3895 inode->i_mapping->a_ops = &ext4_da_aops;
3896 else if (ext4_should_order_data(inode))
3897 inode->i_mapping->a_ops = &ext4_ordered_aops;
3898 else if (ext4_should_writeback_data(inode) &&
3899 test_opt(inode->i_sb, DELALLOC))
3900 inode->i_mapping->a_ops = &ext4_da_aops;
3901 else if (ext4_should_writeback_data(inode))
3902 inode->i_mapping->a_ops = &ext4_writeback_aops;
3903 else
3904 inode->i_mapping->a_ops = &ext4_journalled_aops;
3905 }
3906
3907 /*
3908 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3909 * up to the end of the block which corresponds to `from'.
3910 * This required during truncate. We need to physically zero the tail end
3911 * of that block so it doesn't yield old data if the file is later grown.
3912 */
3913 int ext4_block_truncate_page(handle_t *handle,
3914 struct address_space *mapping, loff_t from)
3915 {
3916 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3917 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3918 unsigned blocksize, length, pos;
3919 ext4_lblk_t iblock;
3920 struct inode *inode = mapping->host;
3921 struct buffer_head *bh;
3922 struct page *page;
3923 int err = 0;
3924
3925 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3926 mapping_gfp_mask(mapping) & ~__GFP_FS);
3927 if (!page)
3928 return -EINVAL;
3929
3930 blocksize = inode->i_sb->s_blocksize;
3931 length = blocksize - (offset & (blocksize - 1));
3932 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3933
3934 /*
3935 * For "nobh" option, we can only work if we don't need to
3936 * read-in the page - otherwise we create buffers to do the IO.
3937 */
3938 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3939 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3940 zero_user(page, offset, length);
3941 set_page_dirty(page);
3942 goto unlock;
3943 }
3944
3945 if (!page_has_buffers(page))
3946 create_empty_buffers(page, blocksize, 0);
3947
3948 /* Find the buffer that contains "offset" */
3949 bh = page_buffers(page);
3950 pos = blocksize;
3951 while (offset >= pos) {
3952 bh = bh->b_this_page;
3953 iblock++;
3954 pos += blocksize;
3955 }
3956
3957 err = 0;
3958 if (buffer_freed(bh)) {
3959 BUFFER_TRACE(bh, "freed: skip");
3960 goto unlock;
3961 }
3962
3963 if (!buffer_mapped(bh)) {
3964 BUFFER_TRACE(bh, "unmapped");
3965 ext4_get_block(inode, iblock, bh, 0);
3966 /* unmapped? It's a hole - nothing to do */
3967 if (!buffer_mapped(bh)) {
3968 BUFFER_TRACE(bh, "still unmapped");
3969 goto unlock;
3970 }
3971 }
3972
3973 /* Ok, it's mapped. Make sure it's up-to-date */
3974 if (PageUptodate(page))
3975 set_buffer_uptodate(bh);
3976
3977 if (!buffer_uptodate(bh)) {
3978 err = -EIO;
3979 ll_rw_block(READ, 1, &bh);
3980 wait_on_buffer(bh);
3981 /* Uhhuh. Read error. Complain and punt. */
3982 if (!buffer_uptodate(bh))
3983 goto unlock;
3984 }
3985
3986 if (ext4_should_journal_data(inode)) {
3987 BUFFER_TRACE(bh, "get write access");
3988 err = ext4_journal_get_write_access(handle, bh);
3989 if (err)
3990 goto unlock;
3991 }
3992
3993 zero_user(page, offset, length);
3994
3995 BUFFER_TRACE(bh, "zeroed end of block");
3996
3997 err = 0;
3998 if (ext4_should_journal_data(inode)) {
3999 err = ext4_handle_dirty_metadata(handle, inode, bh);
4000 } else {
4001 if (ext4_should_order_data(inode))
4002 err = ext4_jbd2_file_inode(handle, inode);
4003 mark_buffer_dirty(bh);
4004 }
4005
4006 unlock:
4007 unlock_page(page);
4008 page_cache_release(page);
4009 return err;
4010 }
4011
4012 /*
4013 * Probably it should be a library function... search for first non-zero word
4014 * or memcmp with zero_page, whatever is better for particular architecture.
4015 * Linus?
4016 */
4017 static inline int all_zeroes(__le32 *p, __le32 *q)
4018 {
4019 while (p < q)
4020 if (*p++)
4021 return 0;
4022 return 1;
4023 }
4024
4025 /**
4026 * ext4_find_shared - find the indirect blocks for partial truncation.
4027 * @inode: inode in question
4028 * @depth: depth of the affected branch
4029 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4030 * @chain: place to store the pointers to partial indirect blocks
4031 * @top: place to the (detached) top of branch
4032 *
4033 * This is a helper function used by ext4_truncate().
4034 *
4035 * When we do truncate() we may have to clean the ends of several
4036 * indirect blocks but leave the blocks themselves alive. Block is
4037 * partially truncated if some data below the new i_size is refered
4038 * from it (and it is on the path to the first completely truncated
4039 * data block, indeed). We have to free the top of that path along
4040 * with everything to the right of the path. Since no allocation
4041 * past the truncation point is possible until ext4_truncate()
4042 * finishes, we may safely do the latter, but top of branch may
4043 * require special attention - pageout below the truncation point
4044 * might try to populate it.
4045 *
4046 * We atomically detach the top of branch from the tree, store the
4047 * block number of its root in *@top, pointers to buffer_heads of
4048 * partially truncated blocks - in @chain[].bh and pointers to
4049 * their last elements that should not be removed - in
4050 * @chain[].p. Return value is the pointer to last filled element
4051 * of @chain.
4052 *
4053 * The work left to caller to do the actual freeing of subtrees:
4054 * a) free the subtree starting from *@top
4055 * b) free the subtrees whose roots are stored in
4056 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4057 * c) free the subtrees growing from the inode past the @chain[0].
4058 * (no partially truncated stuff there). */
4059
4060 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4061 ext4_lblk_t offsets[4], Indirect chain[4],
4062 __le32 *top)
4063 {
4064 Indirect *partial, *p;
4065 int k, err;
4066
4067 *top = 0;
4068 /* Make k index the deepest non-null offest + 1 */
4069 for (k = depth; k > 1 && !offsets[k-1]; k--)
4070 ;
4071 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4072 /* Writer: pointers */
4073 if (!partial)
4074 partial = chain + k-1;
4075 /*
4076 * If the branch acquired continuation since we've looked at it -
4077 * fine, it should all survive and (new) top doesn't belong to us.
4078 */
4079 if (!partial->key && *partial->p)
4080 /* Writer: end */
4081 goto no_top;
4082 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4083 ;
4084 /*
4085 * OK, we've found the last block that must survive. The rest of our
4086 * branch should be detached before unlocking. However, if that rest
4087 * of branch is all ours and does not grow immediately from the inode
4088 * it's easier to cheat and just decrement partial->p.
4089 */
4090 if (p == chain + k - 1 && p > chain) {
4091 p->p--;
4092 } else {
4093 *top = *p->p;
4094 /* Nope, don't do this in ext4. Must leave the tree intact */
4095 #if 0
4096 *p->p = 0;
4097 #endif
4098 }
4099 /* Writer: end */
4100
4101 while (partial > p) {
4102 brelse(partial->bh);
4103 partial--;
4104 }
4105 no_top:
4106 return partial;
4107 }
4108
4109 /*
4110 * Zero a number of block pointers in either an inode or an indirect block.
4111 * If we restart the transaction we must again get write access to the
4112 * indirect block for further modification.
4113 *
4114 * We release `count' blocks on disk, but (last - first) may be greater
4115 * than `count' because there can be holes in there.
4116 */
4117 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4118 struct buffer_head *bh,
4119 ext4_fsblk_t block_to_free,
4120 unsigned long count, __le32 *first,
4121 __le32 *last)
4122 {
4123 __le32 *p;
4124 if (try_to_extend_transaction(handle, inode)) {
4125 if (bh) {
4126 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4127 ext4_handle_dirty_metadata(handle, inode, bh);
4128 }
4129 ext4_mark_inode_dirty(handle, inode);
4130 ext4_truncate_restart_trans(handle, inode,
4131 blocks_for_truncate(inode));
4132 if (bh) {
4133 BUFFER_TRACE(bh, "retaking write access");
4134 ext4_journal_get_write_access(handle, bh);
4135 }
4136 }
4137
4138 /*
4139 * Any buffers which are on the journal will be in memory. We
4140 * find them on the hash table so jbd2_journal_revoke() will
4141 * run jbd2_journal_forget() on them. We've already detached
4142 * each block from the file, so bforget() in
4143 * jbd2_journal_forget() should be safe.
4144 *
4145 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4146 */
4147 for (p = first; p < last; p++) {
4148 u32 nr = le32_to_cpu(*p);
4149 if (nr) {
4150 struct buffer_head *tbh;
4151
4152 *p = 0;
4153 tbh = sb_find_get_block(inode->i_sb, nr);
4154 ext4_forget(handle, 0, inode, tbh, nr);
4155 }
4156 }
4157
4158 ext4_free_blocks(handle, inode, block_to_free, count, 0);
4159 }
4160
4161 /**
4162 * ext4_free_data - free a list of data blocks
4163 * @handle: handle for this transaction
4164 * @inode: inode we are dealing with
4165 * @this_bh: indirect buffer_head which contains *@first and *@last
4166 * @first: array of block numbers
4167 * @last: points immediately past the end of array
4168 *
4169 * We are freeing all blocks refered from that array (numbers are stored as
4170 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4171 *
4172 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4173 * blocks are contiguous then releasing them at one time will only affect one
4174 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4175 * actually use a lot of journal space.
4176 *
4177 * @this_bh will be %NULL if @first and @last point into the inode's direct
4178 * block pointers.
4179 */
4180 static void ext4_free_data(handle_t *handle, struct inode *inode,
4181 struct buffer_head *this_bh,
4182 __le32 *first, __le32 *last)
4183 {
4184 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4185 unsigned long count = 0; /* Number of blocks in the run */
4186 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4187 corresponding to
4188 block_to_free */
4189 ext4_fsblk_t nr; /* Current block # */
4190 __le32 *p; /* Pointer into inode/ind
4191 for current block */
4192 int err;
4193
4194 if (this_bh) { /* For indirect block */
4195 BUFFER_TRACE(this_bh, "get_write_access");
4196 err = ext4_journal_get_write_access(handle, this_bh);
4197 /* Important: if we can't update the indirect pointers
4198 * to the blocks, we can't free them. */
4199 if (err)
4200 return;
4201 }
4202
4203 for (p = first; p < last; p++) {
4204 nr = le32_to_cpu(*p);
4205 if (nr) {
4206 /* accumulate blocks to free if they're contiguous */
4207 if (count == 0) {
4208 block_to_free = nr;
4209 block_to_free_p = p;
4210 count = 1;
4211 } else if (nr == block_to_free + count) {
4212 count++;
4213 } else {
4214 ext4_clear_blocks(handle, inode, this_bh,
4215 block_to_free,
4216 count, block_to_free_p, p);
4217 block_to_free = nr;
4218 block_to_free_p = p;
4219 count = 1;
4220 }
4221 }
4222 }
4223
4224 if (count > 0)
4225 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4226 count, block_to_free_p, p);
4227
4228 if (this_bh) {
4229 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4230
4231 /*
4232 * The buffer head should have an attached journal head at this
4233 * point. However, if the data is corrupted and an indirect
4234 * block pointed to itself, it would have been detached when
4235 * the block was cleared. Check for this instead of OOPSing.
4236 */
4237 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4238 ext4_handle_dirty_metadata(handle, inode, this_bh);
4239 else
4240 ext4_error(inode->i_sb, __func__,
4241 "circular indirect block detected, "
4242 "inode=%lu, block=%llu",
4243 inode->i_ino,
4244 (unsigned long long) this_bh->b_blocknr);
4245 }
4246 }
4247
4248 /**
4249 * ext4_free_branches - free an array of branches
4250 * @handle: JBD handle for this transaction
4251 * @inode: inode we are dealing with
4252 * @parent_bh: the buffer_head which contains *@first and *@last
4253 * @first: array of block numbers
4254 * @last: pointer immediately past the end of array
4255 * @depth: depth of the branches to free
4256 *
4257 * We are freeing all blocks refered from these branches (numbers are
4258 * stored as little-endian 32-bit) and updating @inode->i_blocks
4259 * appropriately.
4260 */
4261 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4262 struct buffer_head *parent_bh,
4263 __le32 *first, __le32 *last, int depth)
4264 {
4265 ext4_fsblk_t nr;
4266 __le32 *p;
4267
4268 if (ext4_handle_is_aborted(handle))
4269 return;
4270
4271 if (depth--) {
4272 struct buffer_head *bh;
4273 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4274 p = last;
4275 while (--p >= first) {
4276 nr = le32_to_cpu(*p);
4277 if (!nr)
4278 continue; /* A hole */
4279
4280 /* Go read the buffer for the next level down */
4281 bh = sb_bread(inode->i_sb, nr);
4282
4283 /*
4284 * A read failure? Report error and clear slot
4285 * (should be rare).
4286 */
4287 if (!bh) {
4288 ext4_error(inode->i_sb, "ext4_free_branches",
4289 "Read failure, inode=%lu, block=%llu",
4290 inode->i_ino, nr);
4291 continue;
4292 }
4293
4294 /* This zaps the entire block. Bottom up. */
4295 BUFFER_TRACE(bh, "free child branches");
4296 ext4_free_branches(handle, inode, bh,
4297 (__le32 *) bh->b_data,
4298 (__le32 *) bh->b_data + addr_per_block,
4299 depth);
4300
4301 /*
4302 * We've probably journalled the indirect block several
4303 * times during the truncate. But it's no longer
4304 * needed and we now drop it from the transaction via
4305 * jbd2_journal_revoke().
4306 *
4307 * That's easy if it's exclusively part of this
4308 * transaction. But if it's part of the committing
4309 * transaction then jbd2_journal_forget() will simply
4310 * brelse() it. That means that if the underlying
4311 * block is reallocated in ext4_get_block(),
4312 * unmap_underlying_metadata() will find this block
4313 * and will try to get rid of it. damn, damn.
4314 *
4315 * If this block has already been committed to the
4316 * journal, a revoke record will be written. And
4317 * revoke records must be emitted *before* clearing
4318 * this block's bit in the bitmaps.
4319 */
4320 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4321
4322 /*
4323 * Everything below this this pointer has been
4324 * released. Now let this top-of-subtree go.
4325 *
4326 * We want the freeing of this indirect block to be
4327 * atomic in the journal with the updating of the
4328 * bitmap block which owns it. So make some room in
4329 * the journal.
4330 *
4331 * We zero the parent pointer *after* freeing its
4332 * pointee in the bitmaps, so if extend_transaction()
4333 * for some reason fails to put the bitmap changes and
4334 * the release into the same transaction, recovery
4335 * will merely complain about releasing a free block,
4336 * rather than leaking blocks.
4337 */
4338 if (ext4_handle_is_aborted(handle))
4339 return;
4340 if (try_to_extend_transaction(handle, inode)) {
4341 ext4_mark_inode_dirty(handle, inode);
4342 ext4_truncate_restart_trans(handle, inode,
4343 blocks_for_truncate(inode));
4344 }
4345
4346 ext4_free_blocks(handle, inode, nr, 1, 1);
4347
4348 if (parent_bh) {
4349 /*
4350 * The block which we have just freed is
4351 * pointed to by an indirect block: journal it
4352 */
4353 BUFFER_TRACE(parent_bh, "get_write_access");
4354 if (!ext4_journal_get_write_access(handle,
4355 parent_bh)){
4356 *p = 0;
4357 BUFFER_TRACE(parent_bh,
4358 "call ext4_handle_dirty_metadata");
4359 ext4_handle_dirty_metadata(handle,
4360 inode,
4361 parent_bh);
4362 }
4363 }
4364 }
4365 } else {
4366 /* We have reached the bottom of the tree. */
4367 BUFFER_TRACE(parent_bh, "free data blocks");
4368 ext4_free_data(handle, inode, parent_bh, first, last);
4369 }
4370 }
4371
4372 int ext4_can_truncate(struct inode *inode)
4373 {
4374 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4375 return 0;
4376 if (S_ISREG(inode->i_mode))
4377 return 1;
4378 if (S_ISDIR(inode->i_mode))
4379 return 1;
4380 if (S_ISLNK(inode->i_mode))
4381 return !ext4_inode_is_fast_symlink(inode);
4382 return 0;
4383 }
4384
4385 /*
4386 * ext4_truncate()
4387 *
4388 * We block out ext4_get_block() block instantiations across the entire
4389 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4390 * simultaneously on behalf of the same inode.
4391 *
4392 * As we work through the truncate and commmit bits of it to the journal there
4393 * is one core, guiding principle: the file's tree must always be consistent on
4394 * disk. We must be able to restart the truncate after a crash.
4395 *
4396 * The file's tree may be transiently inconsistent in memory (although it
4397 * probably isn't), but whenever we close off and commit a journal transaction,
4398 * the contents of (the filesystem + the journal) must be consistent and
4399 * restartable. It's pretty simple, really: bottom up, right to left (although
4400 * left-to-right works OK too).
4401 *
4402 * Note that at recovery time, journal replay occurs *before* the restart of
4403 * truncate against the orphan inode list.
4404 *
4405 * The committed inode has the new, desired i_size (which is the same as
4406 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4407 * that this inode's truncate did not complete and it will again call
4408 * ext4_truncate() to have another go. So there will be instantiated blocks
4409 * to the right of the truncation point in a crashed ext4 filesystem. But
4410 * that's fine - as long as they are linked from the inode, the post-crash
4411 * ext4_truncate() run will find them and release them.
4412 */
4413 void ext4_truncate(struct inode *inode)
4414 {
4415 handle_t *handle;
4416 struct ext4_inode_info *ei = EXT4_I(inode);
4417 __le32 *i_data = ei->i_data;
4418 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4419 struct address_space *mapping = inode->i_mapping;
4420 ext4_lblk_t offsets[4];
4421 Indirect chain[4];
4422 Indirect *partial;
4423 __le32 nr = 0;
4424 int n;
4425 ext4_lblk_t last_block;
4426 unsigned blocksize = inode->i_sb->s_blocksize;
4427
4428 if (!ext4_can_truncate(inode))
4429 return;
4430
4431 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4432 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4433
4434 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4435 ext4_ext_truncate(inode);
4436 return;
4437 }
4438
4439 handle = start_transaction(inode);
4440 if (IS_ERR(handle))
4441 return; /* AKPM: return what? */
4442
4443 last_block = (inode->i_size + blocksize-1)
4444 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4445
4446 if (inode->i_size & (blocksize - 1))
4447 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4448 goto out_stop;
4449
4450 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4451 if (n == 0)
4452 goto out_stop; /* error */
4453
4454 /*
4455 * OK. This truncate is going to happen. We add the inode to the
4456 * orphan list, so that if this truncate spans multiple transactions,
4457 * and we crash, we will resume the truncate when the filesystem
4458 * recovers. It also marks the inode dirty, to catch the new size.
4459 *
4460 * Implication: the file must always be in a sane, consistent
4461 * truncatable state while each transaction commits.
4462 */
4463 if (ext4_orphan_add(handle, inode))
4464 goto out_stop;
4465
4466 /*
4467 * From here we block out all ext4_get_block() callers who want to
4468 * modify the block allocation tree.
4469 */
4470 down_write(&ei->i_data_sem);
4471
4472 ext4_discard_preallocations(inode);
4473
4474 /*
4475 * The orphan list entry will now protect us from any crash which
4476 * occurs before the truncate completes, so it is now safe to propagate
4477 * the new, shorter inode size (held for now in i_size) into the
4478 * on-disk inode. We do this via i_disksize, which is the value which
4479 * ext4 *really* writes onto the disk inode.
4480 */
4481 ei->i_disksize = inode->i_size;
4482
4483 if (n == 1) { /* direct blocks */
4484 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4485 i_data + EXT4_NDIR_BLOCKS);
4486 goto do_indirects;
4487 }
4488
4489 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4490 /* Kill the top of shared branch (not detached) */
4491 if (nr) {
4492 if (partial == chain) {
4493 /* Shared branch grows from the inode */
4494 ext4_free_branches(handle, inode, NULL,
4495 &nr, &nr+1, (chain+n-1) - partial);
4496 *partial->p = 0;
4497 /*
4498 * We mark the inode dirty prior to restart,
4499 * and prior to stop. No need for it here.
4500 */
4501 } else {
4502 /* Shared branch grows from an indirect block */
4503 BUFFER_TRACE(partial->bh, "get_write_access");
4504 ext4_free_branches(handle, inode, partial->bh,
4505 partial->p,
4506 partial->p+1, (chain+n-1) - partial);
4507 }
4508 }
4509 /* Clear the ends of indirect blocks on the shared branch */
4510 while (partial > chain) {
4511 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4512 (__le32*)partial->bh->b_data+addr_per_block,
4513 (chain+n-1) - partial);
4514 BUFFER_TRACE(partial->bh, "call brelse");
4515 brelse(partial->bh);
4516 partial--;
4517 }
4518 do_indirects:
4519 /* Kill the remaining (whole) subtrees */
4520 switch (offsets[0]) {
4521 default:
4522 nr = i_data[EXT4_IND_BLOCK];
4523 if (nr) {
4524 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4525 i_data[EXT4_IND_BLOCK] = 0;
4526 }
4527 case EXT4_IND_BLOCK:
4528 nr = i_data[EXT4_DIND_BLOCK];
4529 if (nr) {
4530 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4531 i_data[EXT4_DIND_BLOCK] = 0;
4532 }
4533 case EXT4_DIND_BLOCK:
4534 nr = i_data[EXT4_TIND_BLOCK];
4535 if (nr) {
4536 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4537 i_data[EXT4_TIND_BLOCK] = 0;
4538 }
4539 case EXT4_TIND_BLOCK:
4540 ;
4541 }
4542
4543 up_write(&ei->i_data_sem);
4544 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4545 ext4_mark_inode_dirty(handle, inode);
4546
4547 /*
4548 * In a multi-transaction truncate, we only make the final transaction
4549 * synchronous
4550 */
4551 if (IS_SYNC(inode))
4552 ext4_handle_sync(handle);
4553 out_stop:
4554 /*
4555 * If this was a simple ftruncate(), and the file will remain alive
4556 * then we need to clear up the orphan record which we created above.
4557 * However, if this was a real unlink then we were called by
4558 * ext4_delete_inode(), and we allow that function to clean up the
4559 * orphan info for us.
4560 */
4561 if (inode->i_nlink)
4562 ext4_orphan_del(handle, inode);
4563
4564 ext4_journal_stop(handle);
4565 }
4566
4567 /*
4568 * ext4_get_inode_loc returns with an extra refcount against the inode's
4569 * underlying buffer_head on success. If 'in_mem' is true, we have all
4570 * data in memory that is needed to recreate the on-disk version of this
4571 * inode.
4572 */
4573 static int __ext4_get_inode_loc(struct inode *inode,
4574 struct ext4_iloc *iloc, int in_mem)
4575 {
4576 struct ext4_group_desc *gdp;
4577 struct buffer_head *bh;
4578 struct super_block *sb = inode->i_sb;
4579 ext4_fsblk_t block;
4580 int inodes_per_block, inode_offset;
4581
4582 iloc->bh = NULL;
4583 if (!ext4_valid_inum(sb, inode->i_ino))
4584 return -EIO;
4585
4586 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4587 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4588 if (!gdp)
4589 return -EIO;
4590
4591 /*
4592 * Figure out the offset within the block group inode table
4593 */
4594 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4595 inode_offset = ((inode->i_ino - 1) %
4596 EXT4_INODES_PER_GROUP(sb));
4597 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4598 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4599
4600 bh = sb_getblk(sb, block);
4601 if (!bh) {
4602 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4603 "inode block - inode=%lu, block=%llu",
4604 inode->i_ino, block);
4605 return -EIO;
4606 }
4607 if (!buffer_uptodate(bh)) {
4608 lock_buffer(bh);
4609
4610 /*
4611 * If the buffer has the write error flag, we have failed
4612 * to write out another inode in the same block. In this
4613 * case, we don't have to read the block because we may
4614 * read the old inode data successfully.
4615 */
4616 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4617 set_buffer_uptodate(bh);
4618
4619 if (buffer_uptodate(bh)) {
4620 /* someone brought it uptodate while we waited */
4621 unlock_buffer(bh);
4622 goto has_buffer;
4623 }
4624
4625 /*
4626 * If we have all information of the inode in memory and this
4627 * is the only valid inode in the block, we need not read the
4628 * block.
4629 */
4630 if (in_mem) {
4631 struct buffer_head *bitmap_bh;
4632 int i, start;
4633
4634 start = inode_offset & ~(inodes_per_block - 1);
4635
4636 /* Is the inode bitmap in cache? */
4637 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4638 if (!bitmap_bh)
4639 goto make_io;
4640
4641 /*
4642 * If the inode bitmap isn't in cache then the
4643 * optimisation may end up performing two reads instead
4644 * of one, so skip it.
4645 */
4646 if (!buffer_uptodate(bitmap_bh)) {
4647 brelse(bitmap_bh);
4648 goto make_io;
4649 }
4650 for (i = start; i < start + inodes_per_block; i++) {
4651 if (i == inode_offset)
4652 continue;
4653 if (ext4_test_bit(i, bitmap_bh->b_data))
4654 break;
4655 }
4656 brelse(bitmap_bh);
4657 if (i == start + inodes_per_block) {
4658 /* all other inodes are free, so skip I/O */
4659 memset(bh->b_data, 0, bh->b_size);
4660 set_buffer_uptodate(bh);
4661 unlock_buffer(bh);
4662 goto has_buffer;
4663 }
4664 }
4665
4666 make_io:
4667 /*
4668 * If we need to do any I/O, try to pre-readahead extra
4669 * blocks from the inode table.
4670 */
4671 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4672 ext4_fsblk_t b, end, table;
4673 unsigned num;
4674
4675 table = ext4_inode_table(sb, gdp);
4676 /* s_inode_readahead_blks is always a power of 2 */
4677 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4678 if (table > b)
4679 b = table;
4680 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4681 num = EXT4_INODES_PER_GROUP(sb);
4682 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4683 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4684 num -= ext4_itable_unused_count(sb, gdp);
4685 table += num / inodes_per_block;
4686 if (end > table)
4687 end = table;
4688 while (b <= end)
4689 sb_breadahead(sb, b++);
4690 }
4691
4692 /*
4693 * There are other valid inodes in the buffer, this inode
4694 * has in-inode xattrs, or we don't have this inode in memory.
4695 * Read the block from disk.
4696 */
4697 get_bh(bh);
4698 bh->b_end_io = end_buffer_read_sync;
4699 submit_bh(READ_META, bh);
4700 wait_on_buffer(bh);
4701 if (!buffer_uptodate(bh)) {
4702 ext4_error(sb, __func__,
4703 "unable to read inode block - inode=%lu, "
4704 "block=%llu", inode->i_ino, block);
4705 brelse(bh);
4706 return -EIO;
4707 }
4708 }
4709 has_buffer:
4710 iloc->bh = bh;
4711 return 0;
4712 }
4713
4714 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4715 {
4716 /* We have all inode data except xattrs in memory here. */
4717 return __ext4_get_inode_loc(inode, iloc,
4718 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4719 }
4720
4721 void ext4_set_inode_flags(struct inode *inode)
4722 {
4723 unsigned int flags = EXT4_I(inode)->i_flags;
4724
4725 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4726 if (flags & EXT4_SYNC_FL)
4727 inode->i_flags |= S_SYNC;
4728 if (flags & EXT4_APPEND_FL)
4729 inode->i_flags |= S_APPEND;
4730 if (flags & EXT4_IMMUTABLE_FL)
4731 inode->i_flags |= S_IMMUTABLE;
4732 if (flags & EXT4_NOATIME_FL)
4733 inode->i_flags |= S_NOATIME;
4734 if (flags & EXT4_DIRSYNC_FL)
4735 inode->i_flags |= S_DIRSYNC;
4736 }
4737
4738 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4739 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4740 {
4741 unsigned int flags = ei->vfs_inode.i_flags;
4742
4743 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4744 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4745 if (flags & S_SYNC)
4746 ei->i_flags |= EXT4_SYNC_FL;
4747 if (flags & S_APPEND)
4748 ei->i_flags |= EXT4_APPEND_FL;
4749 if (flags & S_IMMUTABLE)
4750 ei->i_flags |= EXT4_IMMUTABLE_FL;
4751 if (flags & S_NOATIME)
4752 ei->i_flags |= EXT4_NOATIME_FL;
4753 if (flags & S_DIRSYNC)
4754 ei->i_flags |= EXT4_DIRSYNC_FL;
4755 }
4756
4757 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4758 struct ext4_inode_info *ei)
4759 {
4760 blkcnt_t i_blocks ;
4761 struct inode *inode = &(ei->vfs_inode);
4762 struct super_block *sb = inode->i_sb;
4763
4764 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4765 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4766 /* we are using combined 48 bit field */
4767 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4768 le32_to_cpu(raw_inode->i_blocks_lo);
4769 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4770 /* i_blocks represent file system block size */
4771 return i_blocks << (inode->i_blkbits - 9);
4772 } else {
4773 return i_blocks;
4774 }
4775 } else {
4776 return le32_to_cpu(raw_inode->i_blocks_lo);
4777 }
4778 }
4779
4780 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4781 {
4782 struct ext4_iloc iloc;
4783 struct ext4_inode *raw_inode;
4784 struct ext4_inode_info *ei;
4785 struct inode *inode;
4786 long ret;
4787 int block;
4788
4789 inode = iget_locked(sb, ino);
4790 if (!inode)
4791 return ERR_PTR(-ENOMEM);
4792 if (!(inode->i_state & I_NEW))
4793 return inode;
4794
4795 ei = EXT4_I(inode);
4796 iloc.bh = 0;
4797
4798 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4799 if (ret < 0)
4800 goto bad_inode;
4801 raw_inode = ext4_raw_inode(&iloc);
4802 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4803 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4804 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4805 if (!(test_opt(inode->i_sb, NO_UID32))) {
4806 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4807 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4808 }
4809 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4810
4811 ei->i_state = 0;
4812 ei->i_dir_start_lookup = 0;
4813 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814 /* We now have enough fields to check if the inode was active or not.
4815 * This is needed because nfsd might try to access dead inodes
4816 * the test is that same one that e2fsck uses
4817 * NeilBrown 1999oct15
4818 */
4819 if (inode->i_nlink == 0) {
4820 if (inode->i_mode == 0 ||
4821 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4822 /* this inode is deleted */
4823 ret = -ESTALE;
4824 goto bad_inode;
4825 }
4826 /* The only unlinked inodes we let through here have
4827 * valid i_mode and are being read by the orphan
4828 * recovery code: that's fine, we're about to complete
4829 * the process of deleting those. */
4830 }
4831 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4832 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4833 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4834 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4835 ei->i_file_acl |=
4836 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4837 inode->i_size = ext4_isize(raw_inode);
4838 ei->i_disksize = inode->i_size;
4839 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4840 ei->i_block_group = iloc.block_group;
4841 ei->i_last_alloc_group = ~0;
4842 /*
4843 * NOTE! The in-memory inode i_data array is in little-endian order
4844 * even on big-endian machines: we do NOT byteswap the block numbers!
4845 */
4846 for (block = 0; block < EXT4_N_BLOCKS; block++)
4847 ei->i_data[block] = raw_inode->i_block[block];
4848 INIT_LIST_HEAD(&ei->i_orphan);
4849
4850 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4851 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4852 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4853 EXT4_INODE_SIZE(inode->i_sb)) {
4854 ret = -EIO;
4855 goto bad_inode;
4856 }
4857 if (ei->i_extra_isize == 0) {
4858 /* The extra space is currently unused. Use it. */
4859 ei->i_extra_isize = sizeof(struct ext4_inode) -
4860 EXT4_GOOD_OLD_INODE_SIZE;
4861 } else {
4862 __le32 *magic = (void *)raw_inode +
4863 EXT4_GOOD_OLD_INODE_SIZE +
4864 ei->i_extra_isize;
4865 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4866 ei->i_state |= EXT4_STATE_XATTR;
4867 }
4868 } else
4869 ei->i_extra_isize = 0;
4870
4871 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4872 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4873 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4874 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4875
4876 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4877 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4878 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4879 inode->i_version |=
4880 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4881 }
4882
4883 ret = 0;
4884 if (ei->i_file_acl &&
4885 ((ei->i_file_acl <
4886 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4887 EXT4_SB(sb)->s_gdb_count)) ||
4888 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4889 ext4_error(sb, __func__,
4890 "bad extended attribute block %llu in inode #%lu",
4891 ei->i_file_acl, inode->i_ino);
4892 ret = -EIO;
4893 goto bad_inode;
4894 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4895 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4896 (S_ISLNK(inode->i_mode) &&
4897 !ext4_inode_is_fast_symlink(inode)))
4898 /* Validate extent which is part of inode */
4899 ret = ext4_ext_check_inode(inode);
4900 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4901 (S_ISLNK(inode->i_mode) &&
4902 !ext4_inode_is_fast_symlink(inode))) {
4903 /* Validate block references which are part of inode */
4904 ret = ext4_check_inode_blockref(inode);
4905 }
4906 if (ret)
4907 goto bad_inode;
4908
4909 if (S_ISREG(inode->i_mode)) {
4910 inode->i_op = &ext4_file_inode_operations;
4911 inode->i_fop = &ext4_file_operations;
4912 ext4_set_aops(inode);
4913 } else if (S_ISDIR(inode->i_mode)) {
4914 inode->i_op = &ext4_dir_inode_operations;
4915 inode->i_fop = &ext4_dir_operations;
4916 } else if (S_ISLNK(inode->i_mode)) {
4917 if (ext4_inode_is_fast_symlink(inode)) {
4918 inode->i_op = &ext4_fast_symlink_inode_operations;
4919 nd_terminate_link(ei->i_data, inode->i_size,
4920 sizeof(ei->i_data) - 1);
4921 } else {
4922 inode->i_op = &ext4_symlink_inode_operations;
4923 ext4_set_aops(inode);
4924 }
4925 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4926 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4927 inode->i_op = &ext4_special_inode_operations;
4928 if (raw_inode->i_block[0])
4929 init_special_inode(inode, inode->i_mode,
4930 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4931 else
4932 init_special_inode(inode, inode->i_mode,
4933 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4934 } else {
4935 ret = -EIO;
4936 ext4_error(inode->i_sb, __func__,
4937 "bogus i_mode (%o) for inode=%lu",
4938 inode->i_mode, inode->i_ino);
4939 goto bad_inode;
4940 }
4941 brelse(iloc.bh);
4942 ext4_set_inode_flags(inode);
4943 unlock_new_inode(inode);
4944 return inode;
4945
4946 bad_inode:
4947 brelse(iloc.bh);
4948 iget_failed(inode);
4949 return ERR_PTR(ret);
4950 }
4951
4952 static int ext4_inode_blocks_set(handle_t *handle,
4953 struct ext4_inode *raw_inode,
4954 struct ext4_inode_info *ei)
4955 {
4956 struct inode *inode = &(ei->vfs_inode);
4957 u64 i_blocks = inode->i_blocks;
4958 struct super_block *sb = inode->i_sb;
4959
4960 if (i_blocks <= ~0U) {
4961 /*
4962 * i_blocks can be represnted in a 32 bit variable
4963 * as multiple of 512 bytes
4964 */
4965 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4966 raw_inode->i_blocks_high = 0;
4967 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4968 return 0;
4969 }
4970 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4971 return -EFBIG;
4972
4973 if (i_blocks <= 0xffffffffffffULL) {
4974 /*
4975 * i_blocks can be represented in a 48 bit variable
4976 * as multiple of 512 bytes
4977 */
4978 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4979 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4980 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4981 } else {
4982 ei->i_flags |= EXT4_HUGE_FILE_FL;
4983 /* i_block is stored in file system block size */
4984 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4985 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4986 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4987 }
4988 return 0;
4989 }
4990
4991 /*
4992 * Post the struct inode info into an on-disk inode location in the
4993 * buffer-cache. This gobbles the caller's reference to the
4994 * buffer_head in the inode location struct.
4995 *
4996 * The caller must have write access to iloc->bh.
4997 */
4998 static int ext4_do_update_inode(handle_t *handle,
4999 struct inode *inode,
5000 struct ext4_iloc *iloc)
5001 {
5002 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5003 struct ext4_inode_info *ei = EXT4_I(inode);
5004 struct buffer_head *bh = iloc->bh;
5005 int err = 0, rc, block;
5006
5007 /* For fields not not tracking in the in-memory inode,
5008 * initialise them to zero for new inodes. */
5009 if (ei->i_state & EXT4_STATE_NEW)
5010 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5011
5012 ext4_get_inode_flags(ei);
5013 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5014 if (!(test_opt(inode->i_sb, NO_UID32))) {
5015 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5016 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5017 /*
5018 * Fix up interoperability with old kernels. Otherwise, old inodes get
5019 * re-used with the upper 16 bits of the uid/gid intact
5020 */
5021 if (!ei->i_dtime) {
5022 raw_inode->i_uid_high =
5023 cpu_to_le16(high_16_bits(inode->i_uid));
5024 raw_inode->i_gid_high =
5025 cpu_to_le16(high_16_bits(inode->i_gid));
5026 } else {
5027 raw_inode->i_uid_high = 0;
5028 raw_inode->i_gid_high = 0;
5029 }
5030 } else {
5031 raw_inode->i_uid_low =
5032 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5033 raw_inode->i_gid_low =
5034 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5035 raw_inode->i_uid_high = 0;
5036 raw_inode->i_gid_high = 0;
5037 }
5038 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5039
5040 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5041 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5042 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5043 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5044
5045 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5046 goto out_brelse;
5047 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5048 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5049 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5050 cpu_to_le32(EXT4_OS_HURD))
5051 raw_inode->i_file_acl_high =
5052 cpu_to_le16(ei->i_file_acl >> 32);
5053 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5054 ext4_isize_set(raw_inode, ei->i_disksize);
5055 if (ei->i_disksize > 0x7fffffffULL) {
5056 struct super_block *sb = inode->i_sb;
5057 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5058 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5059 EXT4_SB(sb)->s_es->s_rev_level ==
5060 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5061 /* If this is the first large file
5062 * created, add a flag to the superblock.
5063 */
5064 err = ext4_journal_get_write_access(handle,
5065 EXT4_SB(sb)->s_sbh);
5066 if (err)
5067 goto out_brelse;
5068 ext4_update_dynamic_rev(sb);
5069 EXT4_SET_RO_COMPAT_FEATURE(sb,
5070 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5071 sb->s_dirt = 1;
5072 ext4_handle_sync(handle);
5073 err = ext4_handle_dirty_metadata(handle, inode,
5074 EXT4_SB(sb)->s_sbh);
5075 }
5076 }
5077 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5078 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5079 if (old_valid_dev(inode->i_rdev)) {
5080 raw_inode->i_block[0] =
5081 cpu_to_le32(old_encode_dev(inode->i_rdev));
5082 raw_inode->i_block[1] = 0;
5083 } else {
5084 raw_inode->i_block[0] = 0;
5085 raw_inode->i_block[1] =
5086 cpu_to_le32(new_encode_dev(inode->i_rdev));
5087 raw_inode->i_block[2] = 0;
5088 }
5089 } else
5090 for (block = 0; block < EXT4_N_BLOCKS; block++)
5091 raw_inode->i_block[block] = ei->i_data[block];
5092
5093 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5094 if (ei->i_extra_isize) {
5095 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5096 raw_inode->i_version_hi =
5097 cpu_to_le32(inode->i_version >> 32);
5098 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5099 }
5100
5101 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5102 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5103 if (!err)
5104 err = rc;
5105 ei->i_state &= ~EXT4_STATE_NEW;
5106
5107 out_brelse:
5108 brelse(bh);
5109 ext4_std_error(inode->i_sb, err);
5110 return err;
5111 }
5112
5113 /*
5114 * ext4_write_inode()
5115 *
5116 * We are called from a few places:
5117 *
5118 * - Within generic_file_write() for O_SYNC files.
5119 * Here, there will be no transaction running. We wait for any running
5120 * trasnaction to commit.
5121 *
5122 * - Within sys_sync(), kupdate and such.
5123 * We wait on commit, if tol to.
5124 *
5125 * - Within prune_icache() (PF_MEMALLOC == true)
5126 * Here we simply return. We can't afford to block kswapd on the
5127 * journal commit.
5128 *
5129 * In all cases it is actually safe for us to return without doing anything,
5130 * because the inode has been copied into a raw inode buffer in
5131 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5132 * knfsd.
5133 *
5134 * Note that we are absolutely dependent upon all inode dirtiers doing the
5135 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5136 * which we are interested.
5137 *
5138 * It would be a bug for them to not do this. The code:
5139 *
5140 * mark_inode_dirty(inode)
5141 * stuff();
5142 * inode->i_size = expr;
5143 *
5144 * is in error because a kswapd-driven write_inode() could occur while
5145 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5146 * will no longer be on the superblock's dirty inode list.
5147 */
5148 int ext4_write_inode(struct inode *inode, int wait)
5149 {
5150 int err;
5151
5152 if (current->flags & PF_MEMALLOC)
5153 return 0;
5154
5155 if (EXT4_SB(inode->i_sb)->s_journal) {
5156 if (ext4_journal_current_handle()) {
5157 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5158 dump_stack();
5159 return -EIO;
5160 }
5161
5162 if (!wait)
5163 return 0;
5164
5165 err = ext4_force_commit(inode->i_sb);
5166 } else {
5167 struct ext4_iloc iloc;
5168
5169 err = ext4_get_inode_loc(inode, &iloc);
5170 if (err)
5171 return err;
5172 if (wait)
5173 sync_dirty_buffer(iloc.bh);
5174 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5175 ext4_error(inode->i_sb, __func__,
5176 "IO error syncing inode, "
5177 "inode=%lu, block=%llu",
5178 inode->i_ino,
5179 (unsigned long long)iloc.bh->b_blocknr);
5180 err = -EIO;
5181 }
5182 }
5183 return err;
5184 }
5185
5186 /*
5187 * ext4_setattr()
5188 *
5189 * Called from notify_change.
5190 *
5191 * We want to trap VFS attempts to truncate the file as soon as
5192 * possible. In particular, we want to make sure that when the VFS
5193 * shrinks i_size, we put the inode on the orphan list and modify
5194 * i_disksize immediately, so that during the subsequent flushing of
5195 * dirty pages and freeing of disk blocks, we can guarantee that any
5196 * commit will leave the blocks being flushed in an unused state on
5197 * disk. (On recovery, the inode will get truncated and the blocks will
5198 * be freed, so we have a strong guarantee that no future commit will
5199 * leave these blocks visible to the user.)
5200 *
5201 * Another thing we have to assure is that if we are in ordered mode
5202 * and inode is still attached to the committing transaction, we must
5203 * we start writeout of all the dirty pages which are being truncated.
5204 * This way we are sure that all the data written in the previous
5205 * transaction are already on disk (truncate waits for pages under
5206 * writeback).
5207 *
5208 * Called with inode->i_mutex down.
5209 */
5210 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211 {
5212 struct inode *inode = dentry->d_inode;
5213 int error, rc = 0;
5214 const unsigned int ia_valid = attr->ia_valid;
5215
5216 error = inode_change_ok(inode, attr);
5217 if (error)
5218 return error;
5219
5220 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5221 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5222 handle_t *handle;
5223
5224 /* (user+group)*(old+new) structure, inode write (sb,
5225 * inode block, ? - but truncate inode update has it) */
5226 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5227 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5228 if (IS_ERR(handle)) {
5229 error = PTR_ERR(handle);
5230 goto err_out;
5231 }
5232 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5233 if (error) {
5234 ext4_journal_stop(handle);
5235 return error;
5236 }
5237 /* Update corresponding info in inode so that everything is in
5238 * one transaction */
5239 if (attr->ia_valid & ATTR_UID)
5240 inode->i_uid = attr->ia_uid;
5241 if (attr->ia_valid & ATTR_GID)
5242 inode->i_gid = attr->ia_gid;
5243 error = ext4_mark_inode_dirty(handle, inode);
5244 ext4_journal_stop(handle);
5245 }
5246
5247 if (attr->ia_valid & ATTR_SIZE) {
5248 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5249 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5250
5251 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5252 error = -EFBIG;
5253 goto err_out;
5254 }
5255 }
5256 }
5257
5258 if (S_ISREG(inode->i_mode) &&
5259 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5260 handle_t *handle;
5261
5262 handle = ext4_journal_start(inode, 3);
5263 if (IS_ERR(handle)) {
5264 error = PTR_ERR(handle);
5265 goto err_out;
5266 }
5267
5268 error = ext4_orphan_add(handle, inode);
5269 EXT4_I(inode)->i_disksize = attr->ia_size;
5270 rc = ext4_mark_inode_dirty(handle, inode);
5271 if (!error)
5272 error = rc;
5273 ext4_journal_stop(handle);
5274
5275 if (ext4_should_order_data(inode)) {
5276 error = ext4_begin_ordered_truncate(inode,
5277 attr->ia_size);
5278 if (error) {
5279 /* Do as much error cleanup as possible */
5280 handle = ext4_journal_start(inode, 3);
5281 if (IS_ERR(handle)) {
5282 ext4_orphan_del(NULL, inode);
5283 goto err_out;
5284 }
5285 ext4_orphan_del(handle, inode);
5286 ext4_journal_stop(handle);
5287 goto err_out;
5288 }
5289 }
5290 }
5291
5292 rc = inode_setattr(inode, attr);
5293
5294 /* If inode_setattr's call to ext4_truncate failed to get a
5295 * transaction handle at all, we need to clean up the in-core
5296 * orphan list manually. */
5297 if (inode->i_nlink)
5298 ext4_orphan_del(NULL, inode);
5299
5300 if (!rc && (ia_valid & ATTR_MODE))
5301 rc = ext4_acl_chmod(inode);
5302
5303 err_out:
5304 ext4_std_error(inode->i_sb, error);
5305 if (!error)
5306 error = rc;
5307 return error;
5308 }
5309
5310 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5311 struct kstat *stat)
5312 {
5313 struct inode *inode;
5314 unsigned long delalloc_blocks;
5315
5316 inode = dentry->d_inode;
5317 generic_fillattr(inode, stat);
5318
5319 /*
5320 * We can't update i_blocks if the block allocation is delayed
5321 * otherwise in the case of system crash before the real block
5322 * allocation is done, we will have i_blocks inconsistent with
5323 * on-disk file blocks.
5324 * We always keep i_blocks updated together with real
5325 * allocation. But to not confuse with user, stat
5326 * will return the blocks that include the delayed allocation
5327 * blocks for this file.
5328 */
5329 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5330 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5331 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5332
5333 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5334 return 0;
5335 }
5336
5337 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5338 int chunk)
5339 {
5340 int indirects;
5341
5342 /* if nrblocks are contiguous */
5343 if (chunk) {
5344 /*
5345 * With N contiguous data blocks, it need at most
5346 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5347 * 2 dindirect blocks
5348 * 1 tindirect block
5349 */
5350 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5351 return indirects + 3;
5352 }
5353 /*
5354 * if nrblocks are not contiguous, worse case, each block touch
5355 * a indirect block, and each indirect block touch a double indirect
5356 * block, plus a triple indirect block
5357 */
5358 indirects = nrblocks * 2 + 1;
5359 return indirects;
5360 }
5361
5362 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5363 {
5364 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5365 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5366 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5367 }
5368
5369 /*
5370 * Account for index blocks, block groups bitmaps and block group
5371 * descriptor blocks if modify datablocks and index blocks
5372 * worse case, the indexs blocks spread over different block groups
5373 *
5374 * If datablocks are discontiguous, they are possible to spread over
5375 * different block groups too. If they are contiugous, with flexbg,
5376 * they could still across block group boundary.
5377 *
5378 * Also account for superblock, inode, quota and xattr blocks
5379 */
5380 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5381 {
5382 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5383 int gdpblocks;
5384 int idxblocks;
5385 int ret = 0;
5386
5387 /*
5388 * How many index blocks need to touch to modify nrblocks?
5389 * The "Chunk" flag indicating whether the nrblocks is
5390 * physically contiguous on disk
5391 *
5392 * For Direct IO and fallocate, they calls get_block to allocate
5393 * one single extent at a time, so they could set the "Chunk" flag
5394 */
5395 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5396
5397 ret = idxblocks;
5398
5399 /*
5400 * Now let's see how many group bitmaps and group descriptors need
5401 * to account
5402 */
5403 groups = idxblocks;
5404 if (chunk)
5405 groups += 1;
5406 else
5407 groups += nrblocks;
5408
5409 gdpblocks = groups;
5410 if (groups > ngroups)
5411 groups = ngroups;
5412 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5413 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5414
5415 /* bitmaps and block group descriptor blocks */
5416 ret += groups + gdpblocks;
5417
5418 /* Blocks for super block, inode, quota and xattr blocks */
5419 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5420
5421 return ret;
5422 }
5423
5424 /*
5425 * Calulate the total number of credits to reserve to fit
5426 * the modification of a single pages into a single transaction,
5427 * which may include multiple chunks of block allocations.
5428 *
5429 * This could be called via ext4_write_begin()
5430 *
5431 * We need to consider the worse case, when
5432 * one new block per extent.
5433 */
5434 int ext4_writepage_trans_blocks(struct inode *inode)
5435 {
5436 int bpp = ext4_journal_blocks_per_page(inode);
5437 int ret;
5438
5439 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5440
5441 /* Account for data blocks for journalled mode */
5442 if (ext4_should_journal_data(inode))
5443 ret += bpp;
5444 return ret;
5445 }
5446
5447 /*
5448 * Calculate the journal credits for a chunk of data modification.
5449 *
5450 * This is called from DIO, fallocate or whoever calling
5451 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5452 *
5453 * journal buffers for data blocks are not included here, as DIO
5454 * and fallocate do no need to journal data buffers.
5455 */
5456 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5457 {
5458 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5459 }
5460
5461 /*
5462 * The caller must have previously called ext4_reserve_inode_write().
5463 * Give this, we know that the caller already has write access to iloc->bh.
5464 */
5465 int ext4_mark_iloc_dirty(handle_t *handle,
5466 struct inode *inode, struct ext4_iloc *iloc)
5467 {
5468 int err = 0;
5469
5470 if (test_opt(inode->i_sb, I_VERSION))
5471 inode_inc_iversion(inode);
5472
5473 /* the do_update_inode consumes one bh->b_count */
5474 get_bh(iloc->bh);
5475
5476 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5477 err = ext4_do_update_inode(handle, inode, iloc);
5478 put_bh(iloc->bh);
5479 return err;
5480 }
5481
5482 /*
5483 * On success, We end up with an outstanding reference count against
5484 * iloc->bh. This _must_ be cleaned up later.
5485 */
5486
5487 int
5488 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5489 struct ext4_iloc *iloc)
5490 {
5491 int err;
5492
5493 err = ext4_get_inode_loc(inode, iloc);
5494 if (!err) {
5495 BUFFER_TRACE(iloc->bh, "get_write_access");
5496 err = ext4_journal_get_write_access(handle, iloc->bh);
5497 if (err) {
5498 brelse(iloc->bh);
5499 iloc->bh = NULL;
5500 }
5501 }
5502 ext4_std_error(inode->i_sb, err);
5503 return err;
5504 }
5505
5506 /*
5507 * Expand an inode by new_extra_isize bytes.
5508 * Returns 0 on success or negative error number on failure.
5509 */
5510 static int ext4_expand_extra_isize(struct inode *inode,
5511 unsigned int new_extra_isize,
5512 struct ext4_iloc iloc,
5513 handle_t *handle)
5514 {
5515 struct ext4_inode *raw_inode;
5516 struct ext4_xattr_ibody_header *header;
5517 struct ext4_xattr_entry *entry;
5518
5519 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5520 return 0;
5521
5522 raw_inode = ext4_raw_inode(&iloc);
5523
5524 header = IHDR(inode, raw_inode);
5525 entry = IFIRST(header);
5526
5527 /* No extended attributes present */
5528 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5529 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5530 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5531 new_extra_isize);
5532 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5533 return 0;
5534 }
5535
5536 /* try to expand with EAs present */
5537 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5538 raw_inode, handle);
5539 }
5540
5541 /*
5542 * What we do here is to mark the in-core inode as clean with respect to inode
5543 * dirtiness (it may still be data-dirty).
5544 * This means that the in-core inode may be reaped by prune_icache
5545 * without having to perform any I/O. This is a very good thing,
5546 * because *any* task may call prune_icache - even ones which
5547 * have a transaction open against a different journal.
5548 *
5549 * Is this cheating? Not really. Sure, we haven't written the
5550 * inode out, but prune_icache isn't a user-visible syncing function.
5551 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5552 * we start and wait on commits.
5553 *
5554 * Is this efficient/effective? Well, we're being nice to the system
5555 * by cleaning up our inodes proactively so they can be reaped
5556 * without I/O. But we are potentially leaving up to five seconds'
5557 * worth of inodes floating about which prune_icache wants us to
5558 * write out. One way to fix that would be to get prune_icache()
5559 * to do a write_super() to free up some memory. It has the desired
5560 * effect.
5561 */
5562 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5563 {
5564 struct ext4_iloc iloc;
5565 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5566 static unsigned int mnt_count;
5567 int err, ret;
5568
5569 might_sleep();
5570 err = ext4_reserve_inode_write(handle, inode, &iloc);
5571 if (ext4_handle_valid(handle) &&
5572 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5573 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5574 /*
5575 * We need extra buffer credits since we may write into EA block
5576 * with this same handle. If journal_extend fails, then it will
5577 * only result in a minor loss of functionality for that inode.
5578 * If this is felt to be critical, then e2fsck should be run to
5579 * force a large enough s_min_extra_isize.
5580 */
5581 if ((jbd2_journal_extend(handle,
5582 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5583 ret = ext4_expand_extra_isize(inode,
5584 sbi->s_want_extra_isize,
5585 iloc, handle);
5586 if (ret) {
5587 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5588 if (mnt_count !=
5589 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5590 ext4_warning(inode->i_sb, __func__,
5591 "Unable to expand inode %lu. Delete"
5592 " some EAs or run e2fsck.",
5593 inode->i_ino);
5594 mnt_count =
5595 le16_to_cpu(sbi->s_es->s_mnt_count);
5596 }
5597 }
5598 }
5599 }
5600 if (!err)
5601 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5602 return err;
5603 }
5604
5605 /*
5606 * ext4_dirty_inode() is called from __mark_inode_dirty()
5607 *
5608 * We're really interested in the case where a file is being extended.
5609 * i_size has been changed by generic_commit_write() and we thus need
5610 * to include the updated inode in the current transaction.
5611 *
5612 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5613 * are allocated to the file.
5614 *
5615 * If the inode is marked synchronous, we don't honour that here - doing
5616 * so would cause a commit on atime updates, which we don't bother doing.
5617 * We handle synchronous inodes at the highest possible level.
5618 */
5619 void ext4_dirty_inode(struct inode *inode)
5620 {
5621 handle_t *handle;
5622
5623 handle = ext4_journal_start(inode, 2);
5624 if (IS_ERR(handle))
5625 goto out;
5626
5627 ext4_mark_inode_dirty(handle, inode);
5628
5629 ext4_journal_stop(handle);
5630 out:
5631 return;
5632 }
5633
5634 #if 0
5635 /*
5636 * Bind an inode's backing buffer_head into this transaction, to prevent
5637 * it from being flushed to disk early. Unlike
5638 * ext4_reserve_inode_write, this leaves behind no bh reference and
5639 * returns no iloc structure, so the caller needs to repeat the iloc
5640 * lookup to mark the inode dirty later.
5641 */
5642 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5643 {
5644 struct ext4_iloc iloc;
5645
5646 int err = 0;
5647 if (handle) {
5648 err = ext4_get_inode_loc(inode, &iloc);
5649 if (!err) {
5650 BUFFER_TRACE(iloc.bh, "get_write_access");
5651 err = jbd2_journal_get_write_access(handle, iloc.bh);
5652 if (!err)
5653 err = ext4_handle_dirty_metadata(handle,
5654 inode,
5655 iloc.bh);
5656 brelse(iloc.bh);
5657 }
5658 }
5659 ext4_std_error(inode->i_sb, err);
5660 return err;
5661 }
5662 #endif
5663
5664 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5665 {
5666 journal_t *journal;
5667 handle_t *handle;
5668 int err;
5669
5670 /*
5671 * We have to be very careful here: changing a data block's
5672 * journaling status dynamically is dangerous. If we write a
5673 * data block to the journal, change the status and then delete
5674 * that block, we risk forgetting to revoke the old log record
5675 * from the journal and so a subsequent replay can corrupt data.
5676 * So, first we make sure that the journal is empty and that
5677 * nobody is changing anything.
5678 */
5679
5680 journal = EXT4_JOURNAL(inode);
5681 if (!journal)
5682 return 0;
5683 if (is_journal_aborted(journal))
5684 return -EROFS;
5685
5686 jbd2_journal_lock_updates(journal);
5687 jbd2_journal_flush(journal);
5688
5689 /*
5690 * OK, there are no updates running now, and all cached data is
5691 * synced to disk. We are now in a completely consistent state
5692 * which doesn't have anything in the journal, and we know that
5693 * no filesystem updates are running, so it is safe to modify
5694 * the inode's in-core data-journaling state flag now.
5695 */
5696
5697 if (val)
5698 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5699 else
5700 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5701 ext4_set_aops(inode);
5702
5703 jbd2_journal_unlock_updates(journal);
5704
5705 /* Finally we can mark the inode as dirty. */
5706
5707 handle = ext4_journal_start(inode, 1);
5708 if (IS_ERR(handle))
5709 return PTR_ERR(handle);
5710
5711 err = ext4_mark_inode_dirty(handle, inode);
5712 ext4_handle_sync(handle);
5713 ext4_journal_stop(handle);
5714 ext4_std_error(inode->i_sb, err);
5715
5716 return err;
5717 }
5718
5719 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5720 {
5721 return !buffer_mapped(bh);
5722 }
5723
5724 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5725 {
5726 struct page *page = vmf->page;
5727 loff_t size;
5728 unsigned long len;
5729 int ret = -EINVAL;
5730 void *fsdata;
5731 struct file *file = vma->vm_file;
5732 struct inode *inode = file->f_path.dentry->d_inode;
5733 struct address_space *mapping = inode->i_mapping;
5734
5735 /*
5736 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5737 * get i_mutex because we are already holding mmap_sem.
5738 */
5739 down_read(&inode->i_alloc_sem);
5740 size = i_size_read(inode);
5741 if (page->mapping != mapping || size <= page_offset(page)
5742 || !PageUptodate(page)) {
5743 /* page got truncated from under us? */
5744 goto out_unlock;
5745 }
5746 ret = 0;
5747 if (PageMappedToDisk(page))
5748 goto out_unlock;
5749
5750 if (page->index == size >> PAGE_CACHE_SHIFT)
5751 len = size & ~PAGE_CACHE_MASK;
5752 else
5753 len = PAGE_CACHE_SIZE;
5754
5755 lock_page(page);
5756 /*
5757 * return if we have all the buffers mapped. This avoid
5758 * the need to call write_begin/write_end which does a
5759 * journal_start/journal_stop which can block and take
5760 * long time
5761 */
5762 if (page_has_buffers(page)) {
5763 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5764 ext4_bh_unmapped)) {
5765 unlock_page(page);
5766 goto out_unlock;
5767 }
5768 }
5769 unlock_page(page);
5770 /*
5771 * OK, we need to fill the hole... Do write_begin write_end
5772 * to do block allocation/reservation.We are not holding
5773 * inode.i__mutex here. That allow * parallel write_begin,
5774 * write_end call. lock_page prevent this from happening
5775 * on the same page though
5776 */
5777 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5778 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5779 if (ret < 0)
5780 goto out_unlock;
5781 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5782 len, len, page, fsdata);
5783 if (ret < 0)
5784 goto out_unlock;
5785 ret = 0;
5786 out_unlock:
5787 if (ret)
5788 ret = VM_FAULT_SIGBUS;
5789 up_read(&inode->i_alloc_sem);
5790 return ret;
5791 }
This page took 0.231685 seconds and 6 git commands to generate.