Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
372
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 return addr;
385 }
386
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 /*
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
392 */
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
395 }
396
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
401 }
402
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
407 }
408
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
413 }
414
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426 }
427
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
434
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
439 }
440
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 char *bb;
444
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
447
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
451 }
452
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
457 }
458
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462 return bb;
463 }
464
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
468 {
469 int i;
470 struct super_block *sb = e4b->bd_sb;
471
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
478
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
487 }
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 }
490 }
491
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 int i;
495
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503 }
504
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
520 }
521 }
522 }
523 }
524
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
528 {
529 return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
533 {
534 return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 return;
539 }
540 #endif
541
542 #ifdef AGGRESSIVE_CHECK
543
544 #define MB_CHECK_ASSERT(assert) \
545 do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
551 } \
552 } while (0)
553
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
556 {
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
571
572 {
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
576 }
577
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
585
586 count = 0;
587 for (i = 0; i < max; i++) {
588
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
597 }
598 continue;
599 }
600
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
609 }
610 count++;
611 }
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
614 }
615
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
624 }
625 continue;
626 }
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 }
635 }
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 }
649 return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657
658 /*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
667 {
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned short border;
673
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676 border = 2 << sb->s_blocksize_bits;
677
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
681
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
684
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
688
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
694
695 len -= chunk;
696 first += chunk;
697 }
698 }
699
700 /*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 int i;
708 int bits;
709
710 grp->bb_largest_free_order = -1; /* uninit */
711
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
717 }
718 }
719 }
720
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
724 {
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
734
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
751 }
752 grp->bb_fragments = fragments;
753
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
759 /*
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
762 */
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 }
769 mb_set_largest_free_order(sb, grp);
770
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 int count;
783 int order = 1;
784 void *buddy;
785
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
788 }
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
793
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
796 }
797
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
835
836 mb_debug(1, "init page %lu\n", page->index);
837
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = 1 << inode->i_blkbits;
842 blocks_per_page = PAGE_SIZE / blocksize;
843
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
847
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, gfp);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
855 }
856 } else
857 bh = &bhs;
858
859 first_group = page->index * blocks_per_page / 2;
860
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
865
866 grinfo = ext4_get_group_info(sb, group);
867 /*
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
872 */
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
876 }
877 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 if (IS_ERR(bh[i])) {
879 err = PTR_ERR(bh[i]);
880 bh[i] = NULL;
881 goto out;
882 }
883 mb_debug(1, "read bitmap for group %u\n", group);
884 }
885
886 /* wait for I/O completion */
887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 int err2;
889
890 if (!bh[i])
891 continue;
892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 if (!err)
894 err = err2;
895 }
896
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 group = (first_block + i) >> 1;
900 if (group >= ngroups)
901 break;
902
903 if (!bh[group - first_group])
904 /* skip initialized uptodate buddy */
905 continue;
906
907 if (!buffer_verified(bh[group - first_group]))
908 /* Skip faulty bitmaps */
909 continue;
910 err = 0;
911
912 /*
913 * data carry information regarding this
914 * particular group in the format specified
915 * above
916 *
917 */
918 data = page_address(page) + (i * blocksize);
919 bitmap = bh[group - first_group]->b_data;
920
921 /*
922 * We place the buddy block and bitmap block
923 * close together
924 */
925 if ((first_block + i) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore == NULL);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_buddy_bitmap_load(sb, group);
931 grinfo = ext4_get_group_info(sb, group);
932 grinfo->bb_fragments = 0;
933 memset(grinfo->bb_counters, 0,
934 sizeof(*grinfo->bb_counters) *
935 (sb->s_blocksize_bits+2));
936 /*
937 * incore got set to the group block bitmap below
938 */
939 ext4_lock_group(sb, group);
940 /* init the buddy */
941 memset(data, 0xff, blocksize);
942 ext4_mb_generate_buddy(sb, data, incore, group);
943 ext4_unlock_group(sb, group);
944 incore = NULL;
945 } else {
946 /* this is block of bitmap */
947 BUG_ON(incore != NULL);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group, page->index, i * blocksize);
950 trace_ext4_mb_bitmap_load(sb, group);
951
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb, group);
954 memcpy(data, bitmap, blocksize);
955
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb, data, group);
958 ext4_mb_generate_from_freelist(sb, data, group);
959 ext4_unlock_group(sb, group);
960
961 /* set incore so that the buddy information can be
962 * generated using this
963 */
964 incore = data;
965 }
966 }
967 SetPageUptodate(page);
968
969 out:
970 if (bh) {
971 for (i = 0; i < groups_per_page; i++)
972 brelse(bh[i]);
973 if (bh != &bhs)
974 kfree(bh);
975 }
976 return err;
977 }
978
979 /*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 int block, pnum, poff;
990 int blocks_per_page;
991 struct page *page;
992
993 e4b->bd_buddy_page = NULL;
994 e4b->bd_bitmap_page = NULL;
995
996 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 /*
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1001 */
1002 block = group * 2;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 if (!page)
1007 return -ENOMEM;
1008 BUG_ON(page->mapping != inode->i_mapping);
1009 e4b->bd_bitmap_page = page;
1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012 if (blocks_per_page >= 2) {
1013 /* buddy and bitmap are on the same page */
1014 return 0;
1015 }
1016
1017 block++;
1018 pnum = block / blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 if (!page)
1021 return -ENOMEM;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025 }
1026
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 put_page(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 put_page(e4b->bd_buddy_page);
1036 }
1037 }
1038
1039 /*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 might_sleep();
1054 mb_debug(1, "init group %u\n", group);
1055 this_grp = ext4_get_group_info(sb, group);
1056 /*
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1062 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 * page accessed.
1064 */
1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 /*
1068 * somebody initialized the group
1069 * return without doing anything
1070 */
1071 goto err;
1072 }
1073
1074 page = e4b.bd_bitmap_page;
1075 ret = ext4_mb_init_cache(page, NULL, gfp);
1076 if (ret)
1077 goto err;
1078 if (!PageUptodate(page)) {
1079 ret = -EIO;
1080 goto err;
1081 }
1082
1083 if (e4b.bd_buddy_page == NULL) {
1084 /*
1085 * If both the bitmap and buddy are in
1086 * the same page we don't need to force
1087 * init the buddy
1088 */
1089 ret = 0;
1090 goto err;
1091 }
1092 /* init buddy cache */
1093 page = e4b.bd_buddy_page;
1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 if (ret)
1096 goto err;
1097 if (!PageUptodate(page)) {
1098 ret = -EIO;
1099 goto err;
1100 }
1101 err:
1102 ext4_mb_put_buddy_page_lock(&e4b);
1103 return ret;
1104 }
1105
1106 /*
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 int blocks_per_page;
1116 int block;
1117 int pnum;
1118 int poff;
1119 struct page *page;
1120 int ret;
1121 struct ext4_group_info *grp;
1122 struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 struct inode *inode = sbi->s_buddy_cache;
1124
1125 might_sleep();
1126 mb_debug(1, "load group %u\n", group);
1127
1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 grp = ext4_get_group_info(sb, group);
1130
1131 e4b->bd_blkbits = sb->s_blocksize_bits;
1132 e4b->bd_info = grp;
1133 e4b->bd_sb = sb;
1134 e4b->bd_group = group;
1135 e4b->bd_buddy_page = NULL;
1136 e4b->bd_bitmap_page = NULL;
1137
1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 /*
1140 * we need full data about the group
1141 * to make a good selection
1142 */
1143 ret = ext4_mb_init_group(sb, group, gfp);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 /*
1149 * the buddy cache inode stores the block bitmap
1150 * and buddy information in consecutive blocks.
1151 * So for each group we need two blocks.
1152 */
1153 block = group * 2;
1154 pnum = block / blocks_per_page;
1155 poff = block % blocks_per_page;
1156
1157 /* we could use find_or_create_page(), but it locks page
1158 * what we'd like to avoid in fast path ... */
1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 if (page == NULL || !PageUptodate(page)) {
1161 if (page)
1162 /*
1163 * drop the page reference and try
1164 * to get the page with lock. If we
1165 * are not uptodate that implies
1166 * somebody just created the page but
1167 * is yet to initialize the same. So
1168 * wait for it to initialize.
1169 */
1170 put_page(page);
1171 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 if (page) {
1173 BUG_ON(page->mapping != inode->i_mapping);
1174 if (!PageUptodate(page)) {
1175 ret = ext4_mb_init_cache(page, NULL, gfp);
1176 if (ret) {
1177 unlock_page(page);
1178 goto err;
1179 }
1180 mb_cmp_bitmaps(e4b, page_address(page) +
1181 (poff * sb->s_blocksize));
1182 }
1183 unlock_page(page);
1184 }
1185 }
1186 if (page == NULL) {
1187 ret = -ENOMEM;
1188 goto err;
1189 }
1190 if (!PageUptodate(page)) {
1191 ret = -EIO;
1192 goto err;
1193 }
1194
1195 /* Pages marked accessed already */
1196 e4b->bd_bitmap_page = page;
1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199 block++;
1200 pnum = block / blocks_per_page;
1201 poff = block % blocks_per_page;
1202
1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 if (page == NULL || !PageUptodate(page)) {
1205 if (page)
1206 put_page(page);
1207 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 if (page) {
1209 BUG_ON(page->mapping != inode->i_mapping);
1210 if (!PageUptodate(page)) {
1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 gfp);
1213 if (ret) {
1214 unlock_page(page);
1215 goto err;
1216 }
1217 }
1218 unlock_page(page);
1219 }
1220 }
1221 if (page == NULL) {
1222 ret = -ENOMEM;
1223 goto err;
1224 }
1225 if (!PageUptodate(page)) {
1226 ret = -EIO;
1227 goto err;
1228 }
1229
1230 /* Pages marked accessed already */
1231 e4b->bd_buddy_page = page;
1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234 BUG_ON(e4b->bd_bitmap_page == NULL);
1235 BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237 return 0;
1238
1239 err:
1240 if (page)
1241 put_page(page);
1242 if (e4b->bd_bitmap_page)
1243 put_page(e4b->bd_bitmap_page);
1244 if (e4b->bd_buddy_page)
1245 put_page(e4b->bd_buddy_page);
1246 e4b->bd_buddy = NULL;
1247 e4b->bd_bitmap = NULL;
1248 return ret;
1249 }
1250
1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 struct ext4_buddy *e4b)
1253 {
1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256
1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 if (e4b->bd_bitmap_page)
1260 put_page(e4b->bd_bitmap_page);
1261 if (e4b->bd_buddy_page)
1262 put_page(e4b->bd_buddy_page);
1263 }
1264
1265
1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 int order = 1;
1269 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 void *bb;
1271
1272 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274
1275 bb = e4b->bd_buddy;
1276 while (order <= e4b->bd_blkbits + 1) {
1277 block = block >> 1;
1278 if (!mb_test_bit(block, bb)) {
1279 /* this block is part of buddy of order 'order' */
1280 return order;
1281 }
1282 bb += bb_incr;
1283 bb_incr >>= 1;
1284 order++;
1285 }
1286 return 0;
1287 }
1288
1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 __u32 *addr;
1292
1293 len = cur + len;
1294 while (cur < len) {
1295 if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 /* fast path: clear whole word at once */
1297 addr = bm + (cur >> 3);
1298 *addr = 0;
1299 cur += 32;
1300 continue;
1301 }
1302 mb_clear_bit(cur, bm);
1303 cur++;
1304 }
1305 }
1306
1307 /* clear bits in given range
1308 * will return first found zero bit if any, -1 otherwise
1309 */
1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 __u32 *addr;
1313 int zero_bit = -1;
1314
1315 len = cur + len;
1316 while (cur < len) {
1317 if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 /* fast path: clear whole word at once */
1319 addr = bm + (cur >> 3);
1320 if (*addr != (__u32)(-1) && zero_bit == -1)
1321 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 *addr = 0;
1323 cur += 32;
1324 continue;
1325 }
1326 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 zero_bit = cur;
1328 cur++;
1329 }
1330
1331 return zero_bit;
1332 }
1333
1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 __u32 *addr;
1337
1338 len = cur + len;
1339 while (cur < len) {
1340 if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 /* fast path: set whole word at once */
1342 addr = bm + (cur >> 3);
1343 *addr = 0xffffffff;
1344 cur += 32;
1345 continue;
1346 }
1347 mb_set_bit(cur, bm);
1348 cur++;
1349 }
1350 }
1351
1352 /*
1353 * _________________________________________________________________ */
1354
1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 if (mb_test_bit(*bit + side, bitmap)) {
1358 mb_clear_bit(*bit, bitmap);
1359 (*bit) -= side;
1360 return 1;
1361 }
1362 else {
1363 (*bit) += side;
1364 mb_set_bit(*bit, bitmap);
1365 return -1;
1366 }
1367 }
1368
1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 int max;
1372 int order = 1;
1373 void *buddy = mb_find_buddy(e4b, order, &max);
1374
1375 while (buddy) {
1376 void *buddy2;
1377
1378 /* Bits in range [first; last] are known to be set since
1379 * corresponding blocks were allocated. Bits in range
1380 * (first; last) will stay set because they form buddies on
1381 * upper layer. We just deal with borders if they don't
1382 * align with upper layer and then go up.
1383 * Releasing entire group is all about clearing
1384 * single bit of highest order buddy.
1385 */
1386
1387 /* Example:
1388 * ---------------------------------
1389 * | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 * ---------------------------------
1393 * 0 1 2 3 4 5 6 7
1394 * \_____________________/
1395 *
1396 * Neither [1] nor [6] is aligned to above layer.
1397 * Left neighbour [0] is free, so mark it busy,
1398 * decrease bb_counters and extend range to
1399 * [0; 6]
1400 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 * mark [6] free, increase bb_counters and shrink range to
1402 * [0; 5].
1403 * Then shift range to [0; 2], go up and do the same.
1404 */
1405
1406
1407 if (first & 1)
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 if (!(last & 1))
1410 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 if (first > last)
1412 break;
1413 order++;
1414
1415 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 mb_clear_bits(buddy, first, last - first + 1);
1417 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 break;
1419 }
1420 first >>= 1;
1421 last >>= 1;
1422 buddy = buddy2;
1423 }
1424 }
1425
1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 int first, int count)
1428 {
1429 int left_is_free = 0;
1430 int right_is_free = 0;
1431 int block;
1432 int last = first + count - 1;
1433 struct super_block *sb = e4b->bd_sb;
1434
1435 if (WARN_ON(count == 0))
1436 return;
1437 BUG_ON(last >= (sb->s_blocksize << 3));
1438 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 /* Don't bother if the block group is corrupt. */
1440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 return;
1442
1443 mb_check_buddy(e4b);
1444 mb_free_blocks_double(inode, e4b, first, count);
1445
1446 e4b->bd_info->bb_free += count;
1447 if (first < e4b->bd_info->bb_first_free)
1448 e4b->bd_info->bb_first_free = first;
1449
1450 /* access memory sequentially: check left neighbour,
1451 * clear range and then check right neighbour
1452 */
1453 if (first != 0)
1454 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458
1459 if (unlikely(block != -1)) {
1460 struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 ext4_fsblk_t blocknr;
1462
1463 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 ext4_grp_locked_error(sb, e4b->bd_group,
1466 inode ? inode->i_ino : 0,
1467 blocknr,
1468 "freeing already freed block "
1469 "(bit %u); block bitmap corrupt.",
1470 block);
1471 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 e4b->bd_info->bb_free);
1474 /* Mark the block group as corrupt. */
1475 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 &e4b->bd_info->bb_state);
1477 mb_regenerate_buddy(e4b);
1478 goto done;
1479 }
1480
1481 /* let's maintain fragments counter */
1482 if (left_is_free && right_is_free)
1483 e4b->bd_info->bb_fragments--;
1484 else if (!left_is_free && !right_is_free)
1485 e4b->bd_info->bb_fragments++;
1486
1487 /* buddy[0] == bd_bitmap is a special case, so handle
1488 * it right away and let mb_buddy_mark_free stay free of
1489 * zero order checks.
1490 * Check if neighbours are to be coaleasced,
1491 * adjust bitmap bb_counters and borders appropriately.
1492 */
1493 if (first & 1) {
1494 first += !left_is_free;
1495 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 }
1497 if (!(last & 1)) {
1498 last -= !right_is_free;
1499 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 }
1501
1502 if (first <= last)
1503 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504
1505 done:
1506 mb_set_largest_free_order(sb, e4b->bd_info);
1507 mb_check_buddy(e4b);
1508 }
1509
1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 int needed, struct ext4_free_extent *ex)
1512 {
1513 int next = block;
1514 int max, order;
1515 void *buddy;
1516
1517 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 BUG_ON(ex == NULL);
1519
1520 buddy = mb_find_buddy(e4b, 0, &max);
1521 BUG_ON(buddy == NULL);
1522 BUG_ON(block >= max);
1523 if (mb_test_bit(block, buddy)) {
1524 ex->fe_len = 0;
1525 ex->fe_start = 0;
1526 ex->fe_group = 0;
1527 return 0;
1528 }
1529
1530 /* find actual order */
1531 order = mb_find_order_for_block(e4b, block);
1532 block = block >> order;
1533
1534 ex->fe_len = 1 << order;
1535 ex->fe_start = block << order;
1536 ex->fe_group = e4b->bd_group;
1537
1538 /* calc difference from given start */
1539 next = next - ex->fe_start;
1540 ex->fe_len -= next;
1541 ex->fe_start += next;
1542
1543 while (needed > ex->fe_len &&
1544 mb_find_buddy(e4b, order, &max)) {
1545
1546 if (block + 1 >= max)
1547 break;
1548
1549 next = (block + 1) * (1 << order);
1550 if (mb_test_bit(next, e4b->bd_bitmap))
1551 break;
1552
1553 order = mb_find_order_for_block(e4b, next);
1554
1555 block = next >> order;
1556 ex->fe_len += 1 << order;
1557 }
1558
1559 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 return ex->fe_len;
1561 }
1562
1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 int ord;
1566 int mlen = 0;
1567 int max = 0;
1568 int cur;
1569 int start = ex->fe_start;
1570 int len = ex->fe_len;
1571 unsigned ret = 0;
1572 int len0 = len;
1573 void *buddy;
1574
1575 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 BUG_ON(e4b->bd_group != ex->fe_group);
1577 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 mb_check_buddy(e4b);
1579 mb_mark_used_double(e4b, start, len);
1580
1581 e4b->bd_info->bb_free -= len;
1582 if (e4b->bd_info->bb_first_free == start)
1583 e4b->bd_info->bb_first_free += len;
1584
1585 /* let's maintain fragments counter */
1586 if (start != 0)
1587 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 if (mlen && max)
1591 e4b->bd_info->bb_fragments++;
1592 else if (!mlen && !max)
1593 e4b->bd_info->bb_fragments--;
1594
1595 /* let's maintain buddy itself */
1596 while (len) {
1597 ord = mb_find_order_for_block(e4b, start);
1598
1599 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 /* the whole chunk may be allocated at once! */
1601 mlen = 1 << ord;
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 BUG_ON((start >> ord) >= max);
1604 mb_set_bit(start >> ord, buddy);
1605 e4b->bd_info->bb_counters[ord]--;
1606 start += mlen;
1607 len -= mlen;
1608 BUG_ON(len < 0);
1609 continue;
1610 }
1611
1612 /* store for history */
1613 if (ret == 0)
1614 ret = len | (ord << 16);
1615
1616 /* we have to split large buddy */
1617 BUG_ON(ord <= 0);
1618 buddy = mb_find_buddy(e4b, ord, &max);
1619 mb_set_bit(start >> ord, buddy);
1620 e4b->bd_info->bb_counters[ord]--;
1621
1622 ord--;
1623 cur = (start >> ord) & ~1U;
1624 buddy = mb_find_buddy(e4b, ord, &max);
1625 mb_clear_bit(cur, buddy);
1626 mb_clear_bit(cur + 1, buddy);
1627 e4b->bd_info->bb_counters[ord]++;
1628 e4b->bd_info->bb_counters[ord]++;
1629 }
1630 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631
1632 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 mb_check_buddy(e4b);
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Must be called under group lock!
1640 */
1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 struct ext4_buddy *e4b)
1643 {
1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 int ret;
1646
1647 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649
1650 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653
1654 /* preallocation can change ac_b_ex, thus we store actually
1655 * allocated blocks for history */
1656 ac->ac_f_ex = ac->ac_b_ex;
1657
1658 ac->ac_status = AC_STATUS_FOUND;
1659 ac->ac_tail = ret & 0xffff;
1660 ac->ac_buddy = ret >> 16;
1661
1662 /*
1663 * take the page reference. We want the page to be pinned
1664 * so that we don't get a ext4_mb_init_cache_call for this
1665 * group until we update the bitmap. That would mean we
1666 * double allocate blocks. The reference is dropped
1667 * in ext4_mb_release_context
1668 */
1669 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 get_page(ac->ac_bitmap_page);
1671 ac->ac_buddy_page = e4b->bd_buddy_page;
1672 get_page(ac->ac_buddy_page);
1673 /* store last allocated for subsequent stream allocation */
1674 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 spin_lock(&sbi->s_md_lock);
1676 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 spin_unlock(&sbi->s_md_lock);
1679 }
1680 }
1681
1682 /*
1683 * regular allocator, for general purposes allocation
1684 */
1685
1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 struct ext4_buddy *e4b,
1688 int finish_group)
1689 {
1690 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 struct ext4_free_extent ex;
1694 int max;
1695
1696 if (ac->ac_status == AC_STATUS_FOUND)
1697 return;
1698 /*
1699 * We don't want to scan for a whole year
1700 */
1701 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 ac->ac_status = AC_STATUS_BREAK;
1704 return;
1705 }
1706
1707 /*
1708 * Haven't found good chunk so far, let's continue
1709 */
1710 if (bex->fe_len < gex->fe_len)
1711 return;
1712
1713 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 && bex->fe_group == e4b->bd_group) {
1715 /* recheck chunk's availability - we don't know
1716 * when it was found (within this lock-unlock
1717 * period or not) */
1718 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 if (max >= gex->fe_len) {
1720 ext4_mb_use_best_found(ac, e4b);
1721 return;
1722 }
1723 }
1724 }
1725
1726 /*
1727 * The routine checks whether found extent is good enough. If it is,
1728 * then the extent gets marked used and flag is set to the context
1729 * to stop scanning. Otherwise, the extent is compared with the
1730 * previous found extent and if new one is better, then it's stored
1731 * in the context. Later, the best found extent will be used, if
1732 * mballoc can't find good enough extent.
1733 *
1734 * FIXME: real allocation policy is to be designed yet!
1735 */
1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 struct ext4_free_extent *ex,
1738 struct ext4_buddy *e4b)
1739 {
1740 struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 struct ext4_free_extent *gex = &ac->ac_g_ex;
1742
1743 BUG_ON(ex->fe_len <= 0);
1744 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747
1748 ac->ac_found++;
1749
1750 /*
1751 * The special case - take what you catch first
1752 */
1753 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 *bex = *ex;
1755 ext4_mb_use_best_found(ac, e4b);
1756 return;
1757 }
1758
1759 /*
1760 * Let's check whether the chuck is good enough
1761 */
1762 if (ex->fe_len == gex->fe_len) {
1763 *bex = *ex;
1764 ext4_mb_use_best_found(ac, e4b);
1765 return;
1766 }
1767
1768 /*
1769 * If this is first found extent, just store it in the context
1770 */
1771 if (bex->fe_len == 0) {
1772 *bex = *ex;
1773 return;
1774 }
1775
1776 /*
1777 * If new found extent is better, store it in the context
1778 */
1779 if (bex->fe_len < gex->fe_len) {
1780 /* if the request isn't satisfied, any found extent
1781 * larger than previous best one is better */
1782 if (ex->fe_len > bex->fe_len)
1783 *bex = *ex;
1784 } else if (ex->fe_len > gex->fe_len) {
1785 /* if the request is satisfied, then we try to find
1786 * an extent that still satisfy the request, but is
1787 * smaller than previous one */
1788 if (ex->fe_len < bex->fe_len)
1789 *bex = *ex;
1790 }
1791
1792 ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794
1795 static noinline_for_stack
1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 struct ext4_buddy *e4b)
1798 {
1799 struct ext4_free_extent ex = ac->ac_b_ex;
1800 ext4_group_t group = ex.fe_group;
1801 int max;
1802 int err;
1803
1804 BUG_ON(ex.fe_len <= 0);
1805 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 if (err)
1807 return err;
1808
1809 ext4_lock_group(ac->ac_sb, group);
1810 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811
1812 if (max > 0) {
1813 ac->ac_b_ex = ex;
1814 ext4_mb_use_best_found(ac, e4b);
1815 }
1816
1817 ext4_unlock_group(ac->ac_sb, group);
1818 ext4_mb_unload_buddy(e4b);
1819
1820 return 0;
1821 }
1822
1823 static noinline_for_stack
1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 struct ext4_buddy *e4b)
1826 {
1827 ext4_group_t group = ac->ac_g_ex.fe_group;
1828 int max;
1829 int err;
1830 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 struct ext4_free_extent ex;
1833
1834 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 return 0;
1836 if (grp->bb_free == 0)
1837 return 0;
1838
1839 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 if (err)
1841 return err;
1842
1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 ext4_mb_unload_buddy(e4b);
1845 return 0;
1846 }
1847
1848 ext4_lock_group(ac->ac_sb, group);
1849 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 ac->ac_g_ex.fe_len, &ex);
1851 ex.fe_logical = 0xDEADFA11; /* debug value */
1852
1853 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 ext4_fsblk_t start;
1855
1856 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 ex.fe_start;
1858 /* use do_div to get remainder (would be 64-bit modulo) */
1859 if (do_div(start, sbi->s_stripe) == 0) {
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 } else if (max >= ac->ac_g_ex.fe_len) {
1865 BUG_ON(ex.fe_len <= 0);
1866 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 /* Sometimes, caller may want to merge even small
1873 * number of blocks to an existing extent */
1874 BUG_ON(ex.fe_len <= 0);
1875 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 ac->ac_found++;
1878 ac->ac_b_ex = ex;
1879 ext4_mb_use_best_found(ac, e4b);
1880 }
1881 ext4_unlock_group(ac->ac_sb, group);
1882 ext4_mb_unload_buddy(e4b);
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * The routine scans buddy structures (not bitmap!) from given order
1889 * to max order and tries to find big enough chunk to satisfy the req
1890 */
1891 static noinline_for_stack
1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 struct ext4_buddy *e4b)
1894 {
1895 struct super_block *sb = ac->ac_sb;
1896 struct ext4_group_info *grp = e4b->bd_info;
1897 void *buddy;
1898 int i;
1899 int k;
1900 int max;
1901
1902 BUG_ON(ac->ac_2order <= 0);
1903 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 if (grp->bb_counters[i] == 0)
1905 continue;
1906
1907 buddy = mb_find_buddy(e4b, i, &max);
1908 BUG_ON(buddy == NULL);
1909
1910 k = mb_find_next_zero_bit(buddy, max, 0);
1911 BUG_ON(k >= max);
1912
1913 ac->ac_found++;
1914
1915 ac->ac_b_ex.fe_len = 1 << i;
1916 ac->ac_b_ex.fe_start = k << i;
1917 ac->ac_b_ex.fe_group = e4b->bd_group;
1918
1919 ext4_mb_use_best_found(ac, e4b);
1920
1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922
1923 if (EXT4_SB(sb)->s_mb_stats)
1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925
1926 break;
1927 }
1928 }
1929
1930 /*
1931 * The routine scans the group and measures all found extents.
1932 * In order to optimize scanning, caller must pass number of
1933 * free blocks in the group, so the routine can know upper limit.
1934 */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 struct ext4_buddy *e4b)
1938 {
1939 struct super_block *sb = ac->ac_sb;
1940 void *bitmap = e4b->bd_bitmap;
1941 struct ext4_free_extent ex;
1942 int i;
1943 int free;
1944
1945 free = e4b->bd_info->bb_free;
1946 BUG_ON(free <= 0);
1947
1948 i = e4b->bd_info->bb_first_free;
1949
1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 i = mb_find_next_zero_bit(bitmap,
1952 EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 /*
1955 * IF we have corrupt bitmap, we won't find any
1956 * free blocks even though group info says we
1957 * we have free blocks
1958 */
1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 "%d free clusters as per "
1961 "group info. But bitmap says 0",
1962 free);
1963 break;
1964 }
1965
1966 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 BUG_ON(ex.fe_len <= 0);
1968 if (free < ex.fe_len) {
1969 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 "%d free clusters as per "
1971 "group info. But got %d blocks",
1972 free, ex.fe_len);
1973 /*
1974 * The number of free blocks differs. This mostly
1975 * indicate that the bitmap is corrupt. So exit
1976 * without claiming the space.
1977 */
1978 break;
1979 }
1980 ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 ext4_mb_measure_extent(ac, &ex, e4b);
1982
1983 i += ex.fe_len;
1984 free -= ex.fe_len;
1985 }
1986
1987 ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989
1990 /*
1991 * This is a special case for storages like raid5
1992 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993 */
1994 static noinline_for_stack
1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 struct ext4_buddy *e4b)
1997 {
1998 struct super_block *sb = ac->ac_sb;
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 void *bitmap = e4b->bd_bitmap;
2001 struct ext4_free_extent ex;
2002 ext4_fsblk_t first_group_block;
2003 ext4_fsblk_t a;
2004 ext4_grpblk_t i;
2005 int max;
2006
2007 BUG_ON(sbi->s_stripe == 0);
2008
2009 /* find first stripe-aligned block in group */
2010 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011
2012 a = first_group_block + sbi->s_stripe - 1;
2013 do_div(a, sbi->s_stripe);
2014 i = (a * sbi->s_stripe) - first_group_block;
2015
2016 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 if (!mb_test_bit(i, bitmap)) {
2018 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 if (max >= sbi->s_stripe) {
2020 ac->ac_found++;
2021 ex.fe_logical = 0xDEADF00D; /* debug value */
2022 ac->ac_b_ex = ex;
2023 ext4_mb_use_best_found(ac, e4b);
2024 break;
2025 }
2026 }
2027 i += sbi->s_stripe;
2028 }
2029 }
2030
2031 /*
2032 * This is now called BEFORE we load the buddy bitmap.
2033 * Returns either 1 or 0 indicating that the group is either suitable
2034 * for the allocation or not. In addition it can also return negative
2035 * error code when something goes wrong.
2036 */
2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 ext4_group_t group, int cr)
2039 {
2040 unsigned free, fragments;
2041 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043
2044 BUG_ON(cr < 0 || cr >= 4);
2045
2046 free = grp->bb_free;
2047 if (free == 0)
2048 return 0;
2049 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 return 0;
2051
2052 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 return 0;
2054
2055 /* We only do this if the grp has never been initialized */
2056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 if (ret)
2059 return ret;
2060 }
2061
2062 fragments = grp->bb_fragments;
2063 if (fragments == 0)
2064 return 0;
2065
2066 switch (cr) {
2067 case 0:
2068 BUG_ON(ac->ac_2order == 0);
2069
2070 /* Avoid using the first bg of a flexgroup for data files */
2071 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 ((group % flex_size) == 0))
2074 return 0;
2075
2076 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 (free / fragments) >= ac->ac_g_ex.fe_len)
2078 return 1;
2079
2080 if (grp->bb_largest_free_order < ac->ac_2order)
2081 return 0;
2082
2083 return 1;
2084 case 1:
2085 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087 break;
2088 case 2:
2089 if (free >= ac->ac_g_ex.fe_len)
2090 return 1;
2091 break;
2092 case 3:
2093 return 1;
2094 default:
2095 BUG();
2096 }
2097
2098 return 0;
2099 }
2100
2101 static noinline_for_stack int
2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 ext4_group_t ngroups, group, i;
2105 int cr;
2106 int err = 0, first_err = 0;
2107 struct ext4_sb_info *sbi;
2108 struct super_block *sb;
2109 struct ext4_buddy e4b;
2110
2111 sb = ac->ac_sb;
2112 sbi = EXT4_SB(sb);
2113 ngroups = ext4_get_groups_count(sb);
2114 /* non-extent files are limited to low blocks/groups */
2115 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 ngroups = sbi->s_blockfile_groups;
2117
2118 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119
2120 /* first, try the goal */
2121 err = ext4_mb_find_by_goal(ac, &e4b);
2122 if (err || ac->ac_status == AC_STATUS_FOUND)
2123 goto out;
2124
2125 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 goto out;
2127
2128 /*
2129 * ac->ac2_order is set only if the fe_len is a power of 2
2130 * if ac2_order is set we also set criteria to 0 so that we
2131 * try exact allocation using buddy.
2132 */
2133 i = fls(ac->ac_g_ex.fe_len);
2134 ac->ac_2order = 0;
2135 /*
2136 * We search using buddy data only if the order of the request
2137 * is greater than equal to the sbi_s_mb_order2_reqs
2138 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 */
2140 if (i >= sbi->s_mb_order2_reqs) {
2141 /*
2142 * This should tell if fe_len is exactly power of 2
2143 */
2144 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2145 ac->ac_2order = i - 1;
2146 }
2147
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2155 }
2156
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2159 /*
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2162 */
2163 repeat:
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2166 /*
2167 * searching for the right group start
2168 * from the goal value specified
2169 */
2170 group = ac->ac_g_ex.fe_group;
2171
2172 for (i = 0; i < ngroups; group++, i++) {
2173 int ret = 0;
2174 cond_resched();
2175 /*
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2178 */
2179 if (group >= ngroups)
2180 group = 0;
2181
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 if (!first_err)
2186 first_err = ret;
2187 continue;
2188 }
2189
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2191 if (err)
2192 goto out;
2193
2194 ext4_lock_group(sb, group);
2195
2196 /*
2197 * We need to check again after locking the
2198 * block group
2199 */
2200 ret = ext4_mb_good_group(ac, group, cr);
2201 if (ret <= 0) {
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2204 if (!first_err)
2205 first_err = ret;
2206 continue;
2207 }
2208
2209 ac->ac_groups_scanned++;
2210 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2215 else
2216 ext4_mb_complex_scan_group(ac, &e4b);
2217
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2220
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2222 break;
2223 }
2224 }
2225
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 /*
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2231 */
2232
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2235 /*
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2238 * found block(s)
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 */
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 cr = 3;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2248 goto repeat;
2249 }
2250 }
2251 out:
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 err = first_err;
2254 return err;
2255 }
2256
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 struct super_block *sb = seq->private;
2260 ext4_group_t group;
2261
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 return NULL;
2264 group = *pos + 1;
2265 return (void *) ((unsigned long) group);
2266 }
2267
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 struct super_block *sb = seq->private;
2271 ext4_group_t group;
2272
2273 ++*pos;
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return NULL;
2276 group = *pos + 1;
2277 return (void *) ((unsigned long) group);
2278 }
2279
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 struct super_block *sb = seq->private;
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 int i;
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 struct sg {
2289 struct ext4_group_info info;
2290 ext4_grpblk_t counters[16];
2291 } sg;
2292
2293 group--;
2294 if (group == 0)
2295 seq_puts(seq, "#group: free frags first ["
2296 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2297 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2298
2299 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2300 sizeof(struct ext4_group_info);
2301 grinfo = ext4_get_group_info(sb, group);
2302 /* Load the group info in memory only if not already loaded. */
2303 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2304 err = ext4_mb_load_buddy(sb, group, &e4b);
2305 if (err) {
2306 seq_printf(seq, "#%-5u: I/O error\n", group);
2307 return 0;
2308 }
2309 buddy_loaded = 1;
2310 }
2311
2312 memcpy(&sg, ext4_get_group_info(sb, group), i);
2313
2314 if (buddy_loaded)
2315 ext4_mb_unload_buddy(&e4b);
2316
2317 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 sg.info.bb_fragments, sg.info.bb_first_free);
2319 for (i = 0; i <= 13; i++)
2320 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2321 sg.info.bb_counters[i] : 0);
2322 seq_printf(seq, " ]\n");
2323
2324 return 0;
2325 }
2326
2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2328 {
2329 }
2330
2331 static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 .start = ext4_mb_seq_groups_start,
2333 .next = ext4_mb_seq_groups_next,
2334 .stop = ext4_mb_seq_groups_stop,
2335 .show = ext4_mb_seq_groups_show,
2336 };
2337
2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2339 {
2340 struct super_block *sb = PDE_DATA(inode);
2341 int rc;
2342
2343 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2344 if (rc == 0) {
2345 struct seq_file *m = file->private_data;
2346 m->private = sb;
2347 }
2348 return rc;
2349
2350 }
2351
2352 const struct file_operations ext4_seq_mb_groups_fops = {
2353 .owner = THIS_MODULE,
2354 .open = ext4_mb_seq_groups_open,
2355 .read = seq_read,
2356 .llseek = seq_lseek,
2357 .release = seq_release,
2358 };
2359
2360 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2361 {
2362 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2363 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2364
2365 BUG_ON(!cachep);
2366 return cachep;
2367 }
2368
2369 /*
2370 * Allocate the top-level s_group_info array for the specified number
2371 * of groups
2372 */
2373 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2374 {
2375 struct ext4_sb_info *sbi = EXT4_SB(sb);
2376 unsigned size;
2377 struct ext4_group_info ***new_groupinfo;
2378
2379 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2380 EXT4_DESC_PER_BLOCK_BITS(sb);
2381 if (size <= sbi->s_group_info_size)
2382 return 0;
2383
2384 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2385 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2386 if (!new_groupinfo) {
2387 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2388 return -ENOMEM;
2389 }
2390 if (sbi->s_group_info) {
2391 memcpy(new_groupinfo, sbi->s_group_info,
2392 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2393 kvfree(sbi->s_group_info);
2394 }
2395 sbi->s_group_info = new_groupinfo;
2396 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2397 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2398 sbi->s_group_info_size);
2399 return 0;
2400 }
2401
2402 /* Create and initialize ext4_group_info data for the given group. */
2403 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2404 struct ext4_group_desc *desc)
2405 {
2406 int i;
2407 int metalen = 0;
2408 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 struct ext4_group_info **meta_group_info;
2410 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411
2412 /*
2413 * First check if this group is the first of a reserved block.
2414 * If it's true, we have to allocate a new table of pointers
2415 * to ext4_group_info structures
2416 */
2417 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2418 metalen = sizeof(*meta_group_info) <<
2419 EXT4_DESC_PER_BLOCK_BITS(sb);
2420 meta_group_info = kmalloc(metalen, GFP_NOFS);
2421 if (meta_group_info == NULL) {
2422 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423 "for a buddy group");
2424 goto exit_meta_group_info;
2425 }
2426 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2427 meta_group_info;
2428 }
2429
2430 meta_group_info =
2431 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2432 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2433
2434 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435 if (meta_group_info[i] == NULL) {
2436 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 goto exit_group_info;
2438 }
2439 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2440 &(meta_group_info[i]->bb_state));
2441
2442 /*
2443 * initialize bb_free to be able to skip
2444 * empty groups without initialization
2445 */
2446 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2447 meta_group_info[i]->bb_free =
2448 ext4_free_clusters_after_init(sb, group, desc);
2449 } else {
2450 meta_group_info[i]->bb_free =
2451 ext4_free_group_clusters(sb, desc);
2452 }
2453
2454 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2455 init_rwsem(&meta_group_info[i]->alloc_sem);
2456 meta_group_info[i]->bb_free_root = RB_ROOT;
2457 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2458
2459 #ifdef DOUBLE_CHECK
2460 {
2461 struct buffer_head *bh;
2462 meta_group_info[i]->bb_bitmap =
2463 kmalloc(sb->s_blocksize, GFP_NOFS);
2464 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2465 bh = ext4_read_block_bitmap(sb, group);
2466 BUG_ON(IS_ERR_OR_NULL(bh));
2467 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2468 sb->s_blocksize);
2469 put_bh(bh);
2470 }
2471 #endif
2472
2473 return 0;
2474
2475 exit_group_info:
2476 /* If a meta_group_info table has been allocated, release it now */
2477 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2478 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2479 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2480 }
2481 exit_meta_group_info:
2482 return -ENOMEM;
2483 } /* ext4_mb_add_groupinfo */
2484
2485 static int ext4_mb_init_backend(struct super_block *sb)
2486 {
2487 ext4_group_t ngroups = ext4_get_groups_count(sb);
2488 ext4_group_t i;
2489 struct ext4_sb_info *sbi = EXT4_SB(sb);
2490 int err;
2491 struct ext4_group_desc *desc;
2492 struct kmem_cache *cachep;
2493
2494 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2495 if (err)
2496 return err;
2497
2498 sbi->s_buddy_cache = new_inode(sb);
2499 if (sbi->s_buddy_cache == NULL) {
2500 ext4_msg(sb, KERN_ERR, "can't get new inode");
2501 goto err_freesgi;
2502 }
2503 /* To avoid potentially colliding with an valid on-disk inode number,
2504 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2505 * not in the inode hash, so it should never be found by iget(), but
2506 * this will avoid confusion if it ever shows up during debugging. */
2507 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2508 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2509 for (i = 0; i < ngroups; i++) {
2510 desc = ext4_get_group_desc(sb, i, NULL);
2511 if (desc == NULL) {
2512 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2513 goto err_freebuddy;
2514 }
2515 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2516 goto err_freebuddy;
2517 }
2518
2519 return 0;
2520
2521 err_freebuddy:
2522 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2523 while (i-- > 0)
2524 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2525 i = sbi->s_group_info_size;
2526 while (i-- > 0)
2527 kfree(sbi->s_group_info[i]);
2528 iput(sbi->s_buddy_cache);
2529 err_freesgi:
2530 kvfree(sbi->s_group_info);
2531 return -ENOMEM;
2532 }
2533
2534 static void ext4_groupinfo_destroy_slabs(void)
2535 {
2536 int i;
2537
2538 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2539 if (ext4_groupinfo_caches[i])
2540 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2541 ext4_groupinfo_caches[i] = NULL;
2542 }
2543 }
2544
2545 static int ext4_groupinfo_create_slab(size_t size)
2546 {
2547 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2548 int slab_size;
2549 int blocksize_bits = order_base_2(size);
2550 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2551 struct kmem_cache *cachep;
2552
2553 if (cache_index >= NR_GRPINFO_CACHES)
2554 return -EINVAL;
2555
2556 if (unlikely(cache_index < 0))
2557 cache_index = 0;
2558
2559 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2560 if (ext4_groupinfo_caches[cache_index]) {
2561 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2562 return 0; /* Already created */
2563 }
2564
2565 slab_size = offsetof(struct ext4_group_info,
2566 bb_counters[blocksize_bits + 2]);
2567
2568 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2569 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2570 NULL);
2571
2572 ext4_groupinfo_caches[cache_index] = cachep;
2573
2574 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2575 if (!cachep) {
2576 printk(KERN_EMERG
2577 "EXT4-fs: no memory for groupinfo slab cache\n");
2578 return -ENOMEM;
2579 }
2580
2581 return 0;
2582 }
2583
2584 int ext4_mb_init(struct super_block *sb)
2585 {
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 unsigned i, j;
2588 unsigned offset, offset_incr;
2589 unsigned max;
2590 int ret;
2591
2592 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2593
2594 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2595 if (sbi->s_mb_offsets == NULL) {
2596 ret = -ENOMEM;
2597 goto out;
2598 }
2599
2600 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2601 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2602 if (sbi->s_mb_maxs == NULL) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606
2607 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2608 if (ret < 0)
2609 goto out;
2610
2611 /* order 0 is regular bitmap */
2612 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2613 sbi->s_mb_offsets[0] = 0;
2614
2615 i = 1;
2616 offset = 0;
2617 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2618 max = sb->s_blocksize << 2;
2619 do {
2620 sbi->s_mb_offsets[i] = offset;
2621 sbi->s_mb_maxs[i] = max;
2622 offset += offset_incr;
2623 offset_incr = offset_incr >> 1;
2624 max = max >> 1;
2625 i++;
2626 } while (i <= sb->s_blocksize_bits + 1);
2627
2628 spin_lock_init(&sbi->s_md_lock);
2629 spin_lock_init(&sbi->s_bal_lock);
2630 sbi->s_mb_free_pending = 0;
2631
2632 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2633 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2634 sbi->s_mb_stats = MB_DEFAULT_STATS;
2635 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2636 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2637 /*
2638 * The default group preallocation is 512, which for 4k block
2639 * sizes translates to 2 megabytes. However for bigalloc file
2640 * systems, this is probably too big (i.e, if the cluster size
2641 * is 1 megabyte, then group preallocation size becomes half a
2642 * gigabyte!). As a default, we will keep a two megabyte
2643 * group pralloc size for cluster sizes up to 64k, and after
2644 * that, we will force a minimum group preallocation size of
2645 * 32 clusters. This translates to 8 megs when the cluster
2646 * size is 256k, and 32 megs when the cluster size is 1 meg,
2647 * which seems reasonable as a default.
2648 */
2649 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2650 sbi->s_cluster_bits, 32);
2651 /*
2652 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2653 * to the lowest multiple of s_stripe which is bigger than
2654 * the s_mb_group_prealloc as determined above. We want
2655 * the preallocation size to be an exact multiple of the
2656 * RAID stripe size so that preallocations don't fragment
2657 * the stripes.
2658 */
2659 if (sbi->s_stripe > 1) {
2660 sbi->s_mb_group_prealloc = roundup(
2661 sbi->s_mb_group_prealloc, sbi->s_stripe);
2662 }
2663
2664 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2665 if (sbi->s_locality_groups == NULL) {
2666 ret = -ENOMEM;
2667 goto out;
2668 }
2669 for_each_possible_cpu(i) {
2670 struct ext4_locality_group *lg;
2671 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2672 mutex_init(&lg->lg_mutex);
2673 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2674 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2675 spin_lock_init(&lg->lg_prealloc_lock);
2676 }
2677
2678 /* init file for buddy data */
2679 ret = ext4_mb_init_backend(sb);
2680 if (ret != 0)
2681 goto out_free_locality_groups;
2682
2683 return 0;
2684
2685 out_free_locality_groups:
2686 free_percpu(sbi->s_locality_groups);
2687 sbi->s_locality_groups = NULL;
2688 out:
2689 kfree(sbi->s_mb_offsets);
2690 sbi->s_mb_offsets = NULL;
2691 kfree(sbi->s_mb_maxs);
2692 sbi->s_mb_maxs = NULL;
2693 return ret;
2694 }
2695
2696 /* need to called with the ext4 group lock held */
2697 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2698 {
2699 struct ext4_prealloc_space *pa;
2700 struct list_head *cur, *tmp;
2701 int count = 0;
2702
2703 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2704 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2705 list_del(&pa->pa_group_list);
2706 count++;
2707 kmem_cache_free(ext4_pspace_cachep, pa);
2708 }
2709 if (count)
2710 mb_debug(1, "mballoc: %u PAs left\n", count);
2711
2712 }
2713
2714 int ext4_mb_release(struct super_block *sb)
2715 {
2716 ext4_group_t ngroups = ext4_get_groups_count(sb);
2717 ext4_group_t i;
2718 int num_meta_group_infos;
2719 struct ext4_group_info *grinfo;
2720 struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2722
2723 if (sbi->s_group_info) {
2724 for (i = 0; i < ngroups; i++) {
2725 grinfo = ext4_get_group_info(sb, i);
2726 #ifdef DOUBLE_CHECK
2727 kfree(grinfo->bb_bitmap);
2728 #endif
2729 ext4_lock_group(sb, i);
2730 ext4_mb_cleanup_pa(grinfo);
2731 ext4_unlock_group(sb, i);
2732 kmem_cache_free(cachep, grinfo);
2733 }
2734 num_meta_group_infos = (ngroups +
2735 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2736 EXT4_DESC_PER_BLOCK_BITS(sb);
2737 for (i = 0; i < num_meta_group_infos; i++)
2738 kfree(sbi->s_group_info[i]);
2739 kvfree(sbi->s_group_info);
2740 }
2741 kfree(sbi->s_mb_offsets);
2742 kfree(sbi->s_mb_maxs);
2743 iput(sbi->s_buddy_cache);
2744 if (sbi->s_mb_stats) {
2745 ext4_msg(sb, KERN_INFO,
2746 "mballoc: %u blocks %u reqs (%u success)",
2747 atomic_read(&sbi->s_bal_allocated),
2748 atomic_read(&sbi->s_bal_reqs),
2749 atomic_read(&sbi->s_bal_success));
2750 ext4_msg(sb, KERN_INFO,
2751 "mballoc: %u extents scanned, %u goal hits, "
2752 "%u 2^N hits, %u breaks, %u lost",
2753 atomic_read(&sbi->s_bal_ex_scanned),
2754 atomic_read(&sbi->s_bal_goals),
2755 atomic_read(&sbi->s_bal_2orders),
2756 atomic_read(&sbi->s_bal_breaks),
2757 atomic_read(&sbi->s_mb_lost_chunks));
2758 ext4_msg(sb, KERN_INFO,
2759 "mballoc: %lu generated and it took %Lu",
2760 sbi->s_mb_buddies_generated,
2761 sbi->s_mb_generation_time);
2762 ext4_msg(sb, KERN_INFO,
2763 "mballoc: %u preallocated, %u discarded",
2764 atomic_read(&sbi->s_mb_preallocated),
2765 atomic_read(&sbi->s_mb_discarded));
2766 }
2767
2768 free_percpu(sbi->s_locality_groups);
2769
2770 return 0;
2771 }
2772
2773 static inline int ext4_issue_discard(struct super_block *sb,
2774 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2775 {
2776 ext4_fsblk_t discard_block;
2777
2778 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2779 ext4_group_first_block_no(sb, block_group));
2780 count = EXT4_C2B(EXT4_SB(sb), count);
2781 trace_ext4_discard_blocks(sb,
2782 (unsigned long long) discard_block, count);
2783 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2784 }
2785
2786 /*
2787 * This function is called by the jbd2 layer once the commit has finished,
2788 * so we know we can free the blocks that were released with that commit.
2789 */
2790 static void ext4_free_data_callback(struct super_block *sb,
2791 struct ext4_journal_cb_entry *jce,
2792 int rc)
2793 {
2794 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2795 struct ext4_buddy e4b;
2796 struct ext4_group_info *db;
2797 int err, count = 0, count2 = 0;
2798
2799 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2800 entry->efd_count, entry->efd_group, entry);
2801
2802 if (test_opt(sb, DISCARD)) {
2803 err = ext4_issue_discard(sb, entry->efd_group,
2804 entry->efd_start_cluster,
2805 entry->efd_count);
2806 if (err && err != -EOPNOTSUPP)
2807 ext4_msg(sb, KERN_WARNING, "discard request in"
2808 " group:%d block:%d count:%d failed"
2809 " with %d", entry->efd_group,
2810 entry->efd_start_cluster,
2811 entry->efd_count, err);
2812 }
2813
2814 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2815 /* we expect to find existing buddy because it's pinned */
2816 BUG_ON(err != 0);
2817
2818 spin_lock(&EXT4_SB(sb)->s_md_lock);
2819 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2820 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2821
2822 db = e4b.bd_info;
2823 /* there are blocks to put in buddy to make them really free */
2824 count += entry->efd_count;
2825 count2++;
2826 ext4_lock_group(sb, entry->efd_group);
2827 /* Take it out of per group rb tree */
2828 rb_erase(&entry->efd_node, &(db->bb_free_root));
2829 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2830
2831 /*
2832 * Clear the trimmed flag for the group so that the next
2833 * ext4_trim_fs can trim it.
2834 * If the volume is mounted with -o discard, online discard
2835 * is supported and the free blocks will be trimmed online.
2836 */
2837 if (!test_opt(sb, DISCARD))
2838 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2839
2840 if (!db->bb_free_root.rb_node) {
2841 /* No more items in the per group rb tree
2842 * balance refcounts from ext4_mb_free_metadata()
2843 */
2844 put_page(e4b.bd_buddy_page);
2845 put_page(e4b.bd_bitmap_page);
2846 }
2847 ext4_unlock_group(sb, entry->efd_group);
2848 kmem_cache_free(ext4_free_data_cachep, entry);
2849 ext4_mb_unload_buddy(&e4b);
2850
2851 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2852 }
2853
2854 int __init ext4_init_mballoc(void)
2855 {
2856 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2857 SLAB_RECLAIM_ACCOUNT);
2858 if (ext4_pspace_cachep == NULL)
2859 return -ENOMEM;
2860
2861 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2862 SLAB_RECLAIM_ACCOUNT);
2863 if (ext4_ac_cachep == NULL) {
2864 kmem_cache_destroy(ext4_pspace_cachep);
2865 return -ENOMEM;
2866 }
2867
2868 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2869 SLAB_RECLAIM_ACCOUNT);
2870 if (ext4_free_data_cachep == NULL) {
2871 kmem_cache_destroy(ext4_pspace_cachep);
2872 kmem_cache_destroy(ext4_ac_cachep);
2873 return -ENOMEM;
2874 }
2875 return 0;
2876 }
2877
2878 void ext4_exit_mballoc(void)
2879 {
2880 /*
2881 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2882 * before destroying the slab cache.
2883 */
2884 rcu_barrier();
2885 kmem_cache_destroy(ext4_pspace_cachep);
2886 kmem_cache_destroy(ext4_ac_cachep);
2887 kmem_cache_destroy(ext4_free_data_cachep);
2888 ext4_groupinfo_destroy_slabs();
2889 }
2890
2891
2892 /*
2893 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2894 * Returns 0 if success or error code
2895 */
2896 static noinline_for_stack int
2897 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2898 handle_t *handle, unsigned int reserv_clstrs)
2899 {
2900 struct buffer_head *bitmap_bh = NULL;
2901 struct ext4_group_desc *gdp;
2902 struct buffer_head *gdp_bh;
2903 struct ext4_sb_info *sbi;
2904 struct super_block *sb;
2905 ext4_fsblk_t block;
2906 int err, len;
2907
2908 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2909 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2910
2911 sb = ac->ac_sb;
2912 sbi = EXT4_SB(sb);
2913
2914 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2915 if (IS_ERR(bitmap_bh)) {
2916 err = PTR_ERR(bitmap_bh);
2917 bitmap_bh = NULL;
2918 goto out_err;
2919 }
2920
2921 BUFFER_TRACE(bitmap_bh, "getting write access");
2922 err = ext4_journal_get_write_access(handle, bitmap_bh);
2923 if (err)
2924 goto out_err;
2925
2926 err = -EIO;
2927 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2928 if (!gdp)
2929 goto out_err;
2930
2931 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2932 ext4_free_group_clusters(sb, gdp));
2933
2934 BUFFER_TRACE(gdp_bh, "get_write_access");
2935 err = ext4_journal_get_write_access(handle, gdp_bh);
2936 if (err)
2937 goto out_err;
2938
2939 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2940
2941 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2942 if (!ext4_data_block_valid(sbi, block, len)) {
2943 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2944 "fs metadata", block, block+len);
2945 /* File system mounted not to panic on error
2946 * Fix the bitmap and return EFSCORRUPTED
2947 * We leak some of the blocks here.
2948 */
2949 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2950 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2951 ac->ac_b_ex.fe_len);
2952 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2953 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2954 if (!err)
2955 err = -EFSCORRUPTED;
2956 goto out_err;
2957 }
2958
2959 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2960 #ifdef AGGRESSIVE_CHECK
2961 {
2962 int i;
2963 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2964 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2965 bitmap_bh->b_data));
2966 }
2967 }
2968 #endif
2969 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2970 ac->ac_b_ex.fe_len);
2971 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2972 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2973 ext4_free_group_clusters_set(sb, gdp,
2974 ext4_free_clusters_after_init(sb,
2975 ac->ac_b_ex.fe_group, gdp));
2976 }
2977 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2978 ext4_free_group_clusters_set(sb, gdp, len);
2979 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2980 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2981
2982 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2983 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2984 /*
2985 * Now reduce the dirty block count also. Should not go negative
2986 */
2987 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2988 /* release all the reserved blocks if non delalloc */
2989 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2990 reserv_clstrs);
2991
2992 if (sbi->s_log_groups_per_flex) {
2993 ext4_group_t flex_group = ext4_flex_group(sbi,
2994 ac->ac_b_ex.fe_group);
2995 atomic64_sub(ac->ac_b_ex.fe_len,
2996 &sbi->s_flex_groups[flex_group].free_clusters);
2997 }
2998
2999 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3000 if (err)
3001 goto out_err;
3002 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3003
3004 out_err:
3005 brelse(bitmap_bh);
3006 return err;
3007 }
3008
3009 /*
3010 * here we normalize request for locality group
3011 * Group request are normalized to s_mb_group_prealloc, which goes to
3012 * s_strip if we set the same via mount option.
3013 * s_mb_group_prealloc can be configured via
3014 * /sys/fs/ext4/<partition>/mb_group_prealloc
3015 *
3016 * XXX: should we try to preallocate more than the group has now?
3017 */
3018 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3019 {
3020 struct super_block *sb = ac->ac_sb;
3021 struct ext4_locality_group *lg = ac->ac_lg;
3022
3023 BUG_ON(lg == NULL);
3024 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3025 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3026 current->pid, ac->ac_g_ex.fe_len);
3027 }
3028
3029 /*
3030 * Normalization means making request better in terms of
3031 * size and alignment
3032 */
3033 static noinline_for_stack void
3034 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3035 struct ext4_allocation_request *ar)
3036 {
3037 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3038 int bsbits, max;
3039 ext4_lblk_t end;
3040 loff_t size, start_off;
3041 loff_t orig_size __maybe_unused;
3042 ext4_lblk_t start;
3043 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3044 struct ext4_prealloc_space *pa;
3045
3046 /* do normalize only data requests, metadata requests
3047 do not need preallocation */
3048 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3049 return;
3050
3051 /* sometime caller may want exact blocks */
3052 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3053 return;
3054
3055 /* caller may indicate that preallocation isn't
3056 * required (it's a tail, for example) */
3057 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3058 return;
3059
3060 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3061 ext4_mb_normalize_group_request(ac);
3062 return ;
3063 }
3064
3065 bsbits = ac->ac_sb->s_blocksize_bits;
3066
3067 /* first, let's learn actual file size
3068 * given current request is allocated */
3069 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3070 size = size << bsbits;
3071 if (size < i_size_read(ac->ac_inode))
3072 size = i_size_read(ac->ac_inode);
3073 orig_size = size;
3074
3075 /* max size of free chunks */
3076 max = 2 << bsbits;
3077
3078 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3079 (req <= (size) || max <= (chunk_size))
3080
3081 /* first, try to predict filesize */
3082 /* XXX: should this table be tunable? */
3083 start_off = 0;
3084 if (size <= 16 * 1024) {
3085 size = 16 * 1024;
3086 } else if (size <= 32 * 1024) {
3087 size = 32 * 1024;
3088 } else if (size <= 64 * 1024) {
3089 size = 64 * 1024;
3090 } else if (size <= 128 * 1024) {
3091 size = 128 * 1024;
3092 } else if (size <= 256 * 1024) {
3093 size = 256 * 1024;
3094 } else if (size <= 512 * 1024) {
3095 size = 512 * 1024;
3096 } else if (size <= 1024 * 1024) {
3097 size = 1024 * 1024;
3098 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3099 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3100 (21 - bsbits)) << 21;
3101 size = 2 * 1024 * 1024;
3102 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3103 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3104 (22 - bsbits)) << 22;
3105 size = 4 * 1024 * 1024;
3106 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3107 (8<<20)>>bsbits, max, 8 * 1024)) {
3108 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3109 (23 - bsbits)) << 23;
3110 size = 8 * 1024 * 1024;
3111 } else {
3112 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3113 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3114 ac->ac_o_ex.fe_len) << bsbits;
3115 }
3116 size = size >> bsbits;
3117 start = start_off >> bsbits;
3118
3119 /* don't cover already allocated blocks in selected range */
3120 if (ar->pleft && start <= ar->lleft) {
3121 size -= ar->lleft + 1 - start;
3122 start = ar->lleft + 1;
3123 }
3124 if (ar->pright && start + size - 1 >= ar->lright)
3125 size -= start + size - ar->lright;
3126
3127 end = start + size;
3128
3129 /* check we don't cross already preallocated blocks */
3130 rcu_read_lock();
3131 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3132 ext4_lblk_t pa_end;
3133
3134 if (pa->pa_deleted)
3135 continue;
3136 spin_lock(&pa->pa_lock);
3137 if (pa->pa_deleted) {
3138 spin_unlock(&pa->pa_lock);
3139 continue;
3140 }
3141
3142 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3143 pa->pa_len);
3144
3145 /* PA must not overlap original request */
3146 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3147 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3148
3149 /* skip PAs this normalized request doesn't overlap with */
3150 if (pa->pa_lstart >= end || pa_end <= start) {
3151 spin_unlock(&pa->pa_lock);
3152 continue;
3153 }
3154 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3155
3156 /* adjust start or end to be adjacent to this pa */
3157 if (pa_end <= ac->ac_o_ex.fe_logical) {
3158 BUG_ON(pa_end < start);
3159 start = pa_end;
3160 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3161 BUG_ON(pa->pa_lstart > end);
3162 end = pa->pa_lstart;
3163 }
3164 spin_unlock(&pa->pa_lock);
3165 }
3166 rcu_read_unlock();
3167 size = end - start;
3168
3169 /* XXX: extra loop to check we really don't overlap preallocations */
3170 rcu_read_lock();
3171 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3172 ext4_lblk_t pa_end;
3173
3174 spin_lock(&pa->pa_lock);
3175 if (pa->pa_deleted == 0) {
3176 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3177 pa->pa_len);
3178 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3179 }
3180 spin_unlock(&pa->pa_lock);
3181 }
3182 rcu_read_unlock();
3183
3184 if (start + size <= ac->ac_o_ex.fe_logical &&
3185 start > ac->ac_o_ex.fe_logical) {
3186 ext4_msg(ac->ac_sb, KERN_ERR,
3187 "start %lu, size %lu, fe_logical %lu",
3188 (unsigned long) start, (unsigned long) size,
3189 (unsigned long) ac->ac_o_ex.fe_logical);
3190 BUG();
3191 }
3192 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3193
3194 /* now prepare goal request */
3195
3196 /* XXX: is it better to align blocks WRT to logical
3197 * placement or satisfy big request as is */
3198 ac->ac_g_ex.fe_logical = start;
3199 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3200
3201 /* define goal start in order to merge */
3202 if (ar->pright && (ar->lright == (start + size))) {
3203 /* merge to the right */
3204 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3205 &ac->ac_f_ex.fe_group,
3206 &ac->ac_f_ex.fe_start);
3207 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3208 }
3209 if (ar->pleft && (ar->lleft + 1 == start)) {
3210 /* merge to the left */
3211 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3212 &ac->ac_f_ex.fe_group,
3213 &ac->ac_f_ex.fe_start);
3214 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3215 }
3216
3217 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3218 (unsigned) orig_size, (unsigned) start);
3219 }
3220
3221 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3222 {
3223 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3224
3225 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3226 atomic_inc(&sbi->s_bal_reqs);
3227 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3228 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3229 atomic_inc(&sbi->s_bal_success);
3230 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3231 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3232 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3233 atomic_inc(&sbi->s_bal_goals);
3234 if (ac->ac_found > sbi->s_mb_max_to_scan)
3235 atomic_inc(&sbi->s_bal_breaks);
3236 }
3237
3238 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3239 trace_ext4_mballoc_alloc(ac);
3240 else
3241 trace_ext4_mballoc_prealloc(ac);
3242 }
3243
3244 /*
3245 * Called on failure; free up any blocks from the inode PA for this
3246 * context. We don't need this for MB_GROUP_PA because we only change
3247 * pa_free in ext4_mb_release_context(), but on failure, we've already
3248 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3249 */
3250 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3251 {
3252 struct ext4_prealloc_space *pa = ac->ac_pa;
3253 struct ext4_buddy e4b;
3254 int err;
3255
3256 if (pa == NULL) {
3257 if (ac->ac_f_ex.fe_len == 0)
3258 return;
3259 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3260 if (err) {
3261 /*
3262 * This should never happen since we pin the
3263 * pages in the ext4_allocation_context so
3264 * ext4_mb_load_buddy() should never fail.
3265 */
3266 WARN(1, "mb_load_buddy failed (%d)", err);
3267 return;
3268 }
3269 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3270 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3271 ac->ac_f_ex.fe_len);
3272 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3273 ext4_mb_unload_buddy(&e4b);
3274 return;
3275 }
3276 if (pa->pa_type == MB_INODE_PA)
3277 pa->pa_free += ac->ac_b_ex.fe_len;
3278 }
3279
3280 /*
3281 * use blocks preallocated to inode
3282 */
3283 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3284 struct ext4_prealloc_space *pa)
3285 {
3286 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3287 ext4_fsblk_t start;
3288 ext4_fsblk_t end;
3289 int len;
3290
3291 /* found preallocated blocks, use them */
3292 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3293 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3294 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3295 len = EXT4_NUM_B2C(sbi, end - start);
3296 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3297 &ac->ac_b_ex.fe_start);
3298 ac->ac_b_ex.fe_len = len;
3299 ac->ac_status = AC_STATUS_FOUND;
3300 ac->ac_pa = pa;
3301
3302 BUG_ON(start < pa->pa_pstart);
3303 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3304 BUG_ON(pa->pa_free < len);
3305 pa->pa_free -= len;
3306
3307 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3308 }
3309
3310 /*
3311 * use blocks preallocated to locality group
3312 */
3313 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3314 struct ext4_prealloc_space *pa)
3315 {
3316 unsigned int len = ac->ac_o_ex.fe_len;
3317
3318 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3319 &ac->ac_b_ex.fe_group,
3320 &ac->ac_b_ex.fe_start);
3321 ac->ac_b_ex.fe_len = len;
3322 ac->ac_status = AC_STATUS_FOUND;
3323 ac->ac_pa = pa;
3324
3325 /* we don't correct pa_pstart or pa_plen here to avoid
3326 * possible race when the group is being loaded concurrently
3327 * instead we correct pa later, after blocks are marked
3328 * in on-disk bitmap -- see ext4_mb_release_context()
3329 * Other CPUs are prevented from allocating from this pa by lg_mutex
3330 */
3331 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3332 }
3333
3334 /*
3335 * Return the prealloc space that have minimal distance
3336 * from the goal block. @cpa is the prealloc
3337 * space that is having currently known minimal distance
3338 * from the goal block.
3339 */
3340 static struct ext4_prealloc_space *
3341 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3342 struct ext4_prealloc_space *pa,
3343 struct ext4_prealloc_space *cpa)
3344 {
3345 ext4_fsblk_t cur_distance, new_distance;
3346
3347 if (cpa == NULL) {
3348 atomic_inc(&pa->pa_count);
3349 return pa;
3350 }
3351 cur_distance = abs(goal_block - cpa->pa_pstart);
3352 new_distance = abs(goal_block - pa->pa_pstart);
3353
3354 if (cur_distance <= new_distance)
3355 return cpa;
3356
3357 /* drop the previous reference */
3358 atomic_dec(&cpa->pa_count);
3359 atomic_inc(&pa->pa_count);
3360 return pa;
3361 }
3362
3363 /*
3364 * search goal blocks in preallocated space
3365 */
3366 static noinline_for_stack int
3367 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3368 {
3369 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3370 int order, i;
3371 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3372 struct ext4_locality_group *lg;
3373 struct ext4_prealloc_space *pa, *cpa = NULL;
3374 ext4_fsblk_t goal_block;
3375
3376 /* only data can be preallocated */
3377 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3378 return 0;
3379
3380 /* first, try per-file preallocation */
3381 rcu_read_lock();
3382 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3383
3384 /* all fields in this condition don't change,
3385 * so we can skip locking for them */
3386 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3387 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3388 EXT4_C2B(sbi, pa->pa_len)))
3389 continue;
3390
3391 /* non-extent files can't have physical blocks past 2^32 */
3392 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3393 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3394 EXT4_MAX_BLOCK_FILE_PHYS))
3395 continue;
3396
3397 /* found preallocated blocks, use them */
3398 spin_lock(&pa->pa_lock);
3399 if (pa->pa_deleted == 0 && pa->pa_free) {
3400 atomic_inc(&pa->pa_count);
3401 ext4_mb_use_inode_pa(ac, pa);
3402 spin_unlock(&pa->pa_lock);
3403 ac->ac_criteria = 10;
3404 rcu_read_unlock();
3405 return 1;
3406 }
3407 spin_unlock(&pa->pa_lock);
3408 }
3409 rcu_read_unlock();
3410
3411 /* can we use group allocation? */
3412 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3413 return 0;
3414
3415 /* inode may have no locality group for some reason */
3416 lg = ac->ac_lg;
3417 if (lg == NULL)
3418 return 0;
3419 order = fls(ac->ac_o_ex.fe_len) - 1;
3420 if (order > PREALLOC_TB_SIZE - 1)
3421 /* The max size of hash table is PREALLOC_TB_SIZE */
3422 order = PREALLOC_TB_SIZE - 1;
3423
3424 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3425 /*
3426 * search for the prealloc space that is having
3427 * minimal distance from the goal block.
3428 */
3429 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3430 rcu_read_lock();
3431 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3432 pa_inode_list) {
3433 spin_lock(&pa->pa_lock);
3434 if (pa->pa_deleted == 0 &&
3435 pa->pa_free >= ac->ac_o_ex.fe_len) {
3436
3437 cpa = ext4_mb_check_group_pa(goal_block,
3438 pa, cpa);
3439 }
3440 spin_unlock(&pa->pa_lock);
3441 }
3442 rcu_read_unlock();
3443 }
3444 if (cpa) {
3445 ext4_mb_use_group_pa(ac, cpa);
3446 ac->ac_criteria = 20;
3447 return 1;
3448 }
3449 return 0;
3450 }
3451
3452 /*
3453 * the function goes through all block freed in the group
3454 * but not yet committed and marks them used in in-core bitmap.
3455 * buddy must be generated from this bitmap
3456 * Need to be called with the ext4 group lock held
3457 */
3458 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3459 ext4_group_t group)
3460 {
3461 struct rb_node *n;
3462 struct ext4_group_info *grp;
3463 struct ext4_free_data *entry;
3464
3465 grp = ext4_get_group_info(sb, group);
3466 n = rb_first(&(grp->bb_free_root));
3467
3468 while (n) {
3469 entry = rb_entry(n, struct ext4_free_data, efd_node);
3470 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3471 n = rb_next(n);
3472 }
3473 return;
3474 }
3475
3476 /*
3477 * the function goes through all preallocation in this group and marks them
3478 * used in in-core bitmap. buddy must be generated from this bitmap
3479 * Need to be called with ext4 group lock held
3480 */
3481 static noinline_for_stack
3482 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3483 ext4_group_t group)
3484 {
3485 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3486 struct ext4_prealloc_space *pa;
3487 struct list_head *cur;
3488 ext4_group_t groupnr;
3489 ext4_grpblk_t start;
3490 int preallocated = 0;
3491 int len;
3492
3493 /* all form of preallocation discards first load group,
3494 * so the only competing code is preallocation use.
3495 * we don't need any locking here
3496 * notice we do NOT ignore preallocations with pa_deleted
3497 * otherwise we could leave used blocks available for
3498 * allocation in buddy when concurrent ext4_mb_put_pa()
3499 * is dropping preallocation
3500 */
3501 list_for_each(cur, &grp->bb_prealloc_list) {
3502 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3503 spin_lock(&pa->pa_lock);
3504 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3505 &groupnr, &start);
3506 len = pa->pa_len;
3507 spin_unlock(&pa->pa_lock);
3508 if (unlikely(len == 0))
3509 continue;
3510 BUG_ON(groupnr != group);
3511 ext4_set_bits(bitmap, start, len);
3512 preallocated += len;
3513 }
3514 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3515 }
3516
3517 static void ext4_mb_pa_callback(struct rcu_head *head)
3518 {
3519 struct ext4_prealloc_space *pa;
3520 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3521
3522 BUG_ON(atomic_read(&pa->pa_count));
3523 BUG_ON(pa->pa_deleted == 0);
3524 kmem_cache_free(ext4_pspace_cachep, pa);
3525 }
3526
3527 /*
3528 * drops a reference to preallocated space descriptor
3529 * if this was the last reference and the space is consumed
3530 */
3531 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3532 struct super_block *sb, struct ext4_prealloc_space *pa)
3533 {
3534 ext4_group_t grp;
3535 ext4_fsblk_t grp_blk;
3536
3537 /* in this short window concurrent discard can set pa_deleted */
3538 spin_lock(&pa->pa_lock);
3539 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3540 spin_unlock(&pa->pa_lock);
3541 return;
3542 }
3543
3544 if (pa->pa_deleted == 1) {
3545 spin_unlock(&pa->pa_lock);
3546 return;
3547 }
3548
3549 pa->pa_deleted = 1;
3550 spin_unlock(&pa->pa_lock);
3551
3552 grp_blk = pa->pa_pstart;
3553 /*
3554 * If doing group-based preallocation, pa_pstart may be in the
3555 * next group when pa is used up
3556 */
3557 if (pa->pa_type == MB_GROUP_PA)
3558 grp_blk--;
3559
3560 grp = ext4_get_group_number(sb, grp_blk);
3561
3562 /*
3563 * possible race:
3564 *
3565 * P1 (buddy init) P2 (regular allocation)
3566 * find block B in PA
3567 * copy on-disk bitmap to buddy
3568 * mark B in on-disk bitmap
3569 * drop PA from group
3570 * mark all PAs in buddy
3571 *
3572 * thus, P1 initializes buddy with B available. to prevent this
3573 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3574 * against that pair
3575 */
3576 ext4_lock_group(sb, grp);
3577 list_del(&pa->pa_group_list);
3578 ext4_unlock_group(sb, grp);
3579
3580 spin_lock(pa->pa_obj_lock);
3581 list_del_rcu(&pa->pa_inode_list);
3582 spin_unlock(pa->pa_obj_lock);
3583
3584 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3585 }
3586
3587 /*
3588 * creates new preallocated space for given inode
3589 */
3590 static noinline_for_stack int
3591 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3592 {
3593 struct super_block *sb = ac->ac_sb;
3594 struct ext4_sb_info *sbi = EXT4_SB(sb);
3595 struct ext4_prealloc_space *pa;
3596 struct ext4_group_info *grp;
3597 struct ext4_inode_info *ei;
3598
3599 /* preallocate only when found space is larger then requested */
3600 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3601 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3602 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3603
3604 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3605 if (pa == NULL)
3606 return -ENOMEM;
3607
3608 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3609 int winl;
3610 int wins;
3611 int win;
3612 int offs;
3613
3614 /* we can't allocate as much as normalizer wants.
3615 * so, found space must get proper lstart
3616 * to cover original request */
3617 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3618 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3619
3620 /* we're limited by original request in that
3621 * logical block must be covered any way
3622 * winl is window we can move our chunk within */
3623 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3624
3625 /* also, we should cover whole original request */
3626 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3627
3628 /* the smallest one defines real window */
3629 win = min(winl, wins);
3630
3631 offs = ac->ac_o_ex.fe_logical %
3632 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3633 if (offs && offs < win)
3634 win = offs;
3635
3636 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3637 EXT4_NUM_B2C(sbi, win);
3638 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3639 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3640 }
3641
3642 /* preallocation can change ac_b_ex, thus we store actually
3643 * allocated blocks for history */
3644 ac->ac_f_ex = ac->ac_b_ex;
3645
3646 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3647 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3648 pa->pa_len = ac->ac_b_ex.fe_len;
3649 pa->pa_free = pa->pa_len;
3650 atomic_set(&pa->pa_count, 1);
3651 spin_lock_init(&pa->pa_lock);
3652 INIT_LIST_HEAD(&pa->pa_inode_list);
3653 INIT_LIST_HEAD(&pa->pa_group_list);
3654 pa->pa_deleted = 0;
3655 pa->pa_type = MB_INODE_PA;
3656
3657 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3658 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3659 trace_ext4_mb_new_inode_pa(ac, pa);
3660
3661 ext4_mb_use_inode_pa(ac, pa);
3662 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3663
3664 ei = EXT4_I(ac->ac_inode);
3665 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3666
3667 pa->pa_obj_lock = &ei->i_prealloc_lock;
3668 pa->pa_inode = ac->ac_inode;
3669
3670 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3671 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3672 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3673
3674 spin_lock(pa->pa_obj_lock);
3675 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3676 spin_unlock(pa->pa_obj_lock);
3677
3678 return 0;
3679 }
3680
3681 /*
3682 * creates new preallocated space for locality group inodes belongs to
3683 */
3684 static noinline_for_stack int
3685 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3686 {
3687 struct super_block *sb = ac->ac_sb;
3688 struct ext4_locality_group *lg;
3689 struct ext4_prealloc_space *pa;
3690 struct ext4_group_info *grp;
3691
3692 /* preallocate only when found space is larger then requested */
3693 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3694 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3695 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3696
3697 BUG_ON(ext4_pspace_cachep == NULL);
3698 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3699 if (pa == NULL)
3700 return -ENOMEM;
3701
3702 /* preallocation can change ac_b_ex, thus we store actually
3703 * allocated blocks for history */
3704 ac->ac_f_ex = ac->ac_b_ex;
3705
3706 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3707 pa->pa_lstart = pa->pa_pstart;
3708 pa->pa_len = ac->ac_b_ex.fe_len;
3709 pa->pa_free = pa->pa_len;
3710 atomic_set(&pa->pa_count, 1);
3711 spin_lock_init(&pa->pa_lock);
3712 INIT_LIST_HEAD(&pa->pa_inode_list);
3713 INIT_LIST_HEAD(&pa->pa_group_list);
3714 pa->pa_deleted = 0;
3715 pa->pa_type = MB_GROUP_PA;
3716
3717 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3718 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3719 trace_ext4_mb_new_group_pa(ac, pa);
3720
3721 ext4_mb_use_group_pa(ac, pa);
3722 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3723
3724 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3725 lg = ac->ac_lg;
3726 BUG_ON(lg == NULL);
3727
3728 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3729 pa->pa_inode = NULL;
3730
3731 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3732 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3733 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3734
3735 /*
3736 * We will later add the new pa to the right bucket
3737 * after updating the pa_free in ext4_mb_release_context
3738 */
3739 return 0;
3740 }
3741
3742 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3743 {
3744 int err;
3745
3746 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3747 err = ext4_mb_new_group_pa(ac);
3748 else
3749 err = ext4_mb_new_inode_pa(ac);
3750 return err;
3751 }
3752
3753 /*
3754 * finds all unused blocks in on-disk bitmap, frees them in
3755 * in-core bitmap and buddy.
3756 * @pa must be unlinked from inode and group lists, so that
3757 * nobody else can find/use it.
3758 * the caller MUST hold group/inode locks.
3759 * TODO: optimize the case when there are no in-core structures yet
3760 */
3761 static noinline_for_stack int
3762 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3763 struct ext4_prealloc_space *pa)
3764 {
3765 struct super_block *sb = e4b->bd_sb;
3766 struct ext4_sb_info *sbi = EXT4_SB(sb);
3767 unsigned int end;
3768 unsigned int next;
3769 ext4_group_t group;
3770 ext4_grpblk_t bit;
3771 unsigned long long grp_blk_start;
3772 int err = 0;
3773 int free = 0;
3774
3775 BUG_ON(pa->pa_deleted == 0);
3776 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3777 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3778 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3779 end = bit + pa->pa_len;
3780
3781 while (bit < end) {
3782 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3783 if (bit >= end)
3784 break;
3785 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3786 mb_debug(1, " free preallocated %u/%u in group %u\n",
3787 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3788 (unsigned) next - bit, (unsigned) group);
3789 free += next - bit;
3790
3791 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3792 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3793 EXT4_C2B(sbi, bit)),
3794 next - bit);
3795 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3796 bit = next + 1;
3797 }
3798 if (free != pa->pa_free) {
3799 ext4_msg(e4b->bd_sb, KERN_CRIT,
3800 "pa %p: logic %lu, phys. %lu, len %lu",
3801 pa, (unsigned long) pa->pa_lstart,
3802 (unsigned long) pa->pa_pstart,
3803 (unsigned long) pa->pa_len);
3804 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3805 free, pa->pa_free);
3806 /*
3807 * pa is already deleted so we use the value obtained
3808 * from the bitmap and continue.
3809 */
3810 }
3811 atomic_add(free, &sbi->s_mb_discarded);
3812
3813 return err;
3814 }
3815
3816 static noinline_for_stack int
3817 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3818 struct ext4_prealloc_space *pa)
3819 {
3820 struct super_block *sb = e4b->bd_sb;
3821 ext4_group_t group;
3822 ext4_grpblk_t bit;
3823
3824 trace_ext4_mb_release_group_pa(sb, pa);
3825 BUG_ON(pa->pa_deleted == 0);
3826 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3827 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3828 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3829 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3830 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3831
3832 return 0;
3833 }
3834
3835 /*
3836 * releases all preallocations in given group
3837 *
3838 * first, we need to decide discard policy:
3839 * - when do we discard
3840 * 1) ENOSPC
3841 * - how many do we discard
3842 * 1) how many requested
3843 */
3844 static noinline_for_stack int
3845 ext4_mb_discard_group_preallocations(struct super_block *sb,
3846 ext4_group_t group, int needed)
3847 {
3848 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3849 struct buffer_head *bitmap_bh = NULL;
3850 struct ext4_prealloc_space *pa, *tmp;
3851 struct list_head list;
3852 struct ext4_buddy e4b;
3853 int err;
3854 int busy = 0;
3855 int free = 0;
3856
3857 mb_debug(1, "discard preallocation for group %u\n", group);
3858
3859 if (list_empty(&grp->bb_prealloc_list))
3860 return 0;
3861
3862 bitmap_bh = ext4_read_block_bitmap(sb, group);
3863 if (IS_ERR(bitmap_bh)) {
3864 err = PTR_ERR(bitmap_bh);
3865 ext4_error(sb, "Error %d reading block bitmap for %u",
3866 err, group);
3867 return 0;
3868 }
3869
3870 err = ext4_mb_load_buddy(sb, group, &e4b);
3871 if (err) {
3872 ext4_error(sb, "Error loading buddy information for %u", group);
3873 put_bh(bitmap_bh);
3874 return 0;
3875 }
3876
3877 if (needed == 0)
3878 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3879
3880 INIT_LIST_HEAD(&list);
3881 repeat:
3882 ext4_lock_group(sb, group);
3883 list_for_each_entry_safe(pa, tmp,
3884 &grp->bb_prealloc_list, pa_group_list) {
3885 spin_lock(&pa->pa_lock);
3886 if (atomic_read(&pa->pa_count)) {
3887 spin_unlock(&pa->pa_lock);
3888 busy = 1;
3889 continue;
3890 }
3891 if (pa->pa_deleted) {
3892 spin_unlock(&pa->pa_lock);
3893 continue;
3894 }
3895
3896 /* seems this one can be freed ... */
3897 pa->pa_deleted = 1;
3898
3899 /* we can trust pa_free ... */
3900 free += pa->pa_free;
3901
3902 spin_unlock(&pa->pa_lock);
3903
3904 list_del(&pa->pa_group_list);
3905 list_add(&pa->u.pa_tmp_list, &list);
3906 }
3907
3908 /* if we still need more blocks and some PAs were used, try again */
3909 if (free < needed && busy) {
3910 busy = 0;
3911 ext4_unlock_group(sb, group);
3912 cond_resched();
3913 goto repeat;
3914 }
3915
3916 /* found anything to free? */
3917 if (list_empty(&list)) {
3918 BUG_ON(free != 0);
3919 goto out;
3920 }
3921
3922 /* now free all selected PAs */
3923 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3924
3925 /* remove from object (inode or locality group) */
3926 spin_lock(pa->pa_obj_lock);
3927 list_del_rcu(&pa->pa_inode_list);
3928 spin_unlock(pa->pa_obj_lock);
3929
3930 if (pa->pa_type == MB_GROUP_PA)
3931 ext4_mb_release_group_pa(&e4b, pa);
3932 else
3933 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3934
3935 list_del(&pa->u.pa_tmp_list);
3936 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3937 }
3938
3939 out:
3940 ext4_unlock_group(sb, group);
3941 ext4_mb_unload_buddy(&e4b);
3942 put_bh(bitmap_bh);
3943 return free;
3944 }
3945
3946 /*
3947 * releases all non-used preallocated blocks for given inode
3948 *
3949 * It's important to discard preallocations under i_data_sem
3950 * We don't want another block to be served from the prealloc
3951 * space when we are discarding the inode prealloc space.
3952 *
3953 * FIXME!! Make sure it is valid at all the call sites
3954 */
3955 void ext4_discard_preallocations(struct inode *inode)
3956 {
3957 struct ext4_inode_info *ei = EXT4_I(inode);
3958 struct super_block *sb = inode->i_sb;
3959 struct buffer_head *bitmap_bh = NULL;
3960 struct ext4_prealloc_space *pa, *tmp;
3961 ext4_group_t group = 0;
3962 struct list_head list;
3963 struct ext4_buddy e4b;
3964 int err;
3965
3966 if (!S_ISREG(inode->i_mode)) {
3967 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3968 return;
3969 }
3970
3971 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3972 trace_ext4_discard_preallocations(inode);
3973
3974 INIT_LIST_HEAD(&list);
3975
3976 repeat:
3977 /* first, collect all pa's in the inode */
3978 spin_lock(&ei->i_prealloc_lock);
3979 while (!list_empty(&ei->i_prealloc_list)) {
3980 pa = list_entry(ei->i_prealloc_list.next,
3981 struct ext4_prealloc_space, pa_inode_list);
3982 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3983 spin_lock(&pa->pa_lock);
3984 if (atomic_read(&pa->pa_count)) {
3985 /* this shouldn't happen often - nobody should
3986 * use preallocation while we're discarding it */
3987 spin_unlock(&pa->pa_lock);
3988 spin_unlock(&ei->i_prealloc_lock);
3989 ext4_msg(sb, KERN_ERR,
3990 "uh-oh! used pa while discarding");
3991 WARN_ON(1);
3992 schedule_timeout_uninterruptible(HZ);
3993 goto repeat;
3994
3995 }
3996 if (pa->pa_deleted == 0) {
3997 pa->pa_deleted = 1;
3998 spin_unlock(&pa->pa_lock);
3999 list_del_rcu(&pa->pa_inode_list);
4000 list_add(&pa->u.pa_tmp_list, &list);
4001 continue;
4002 }
4003
4004 /* someone is deleting pa right now */
4005 spin_unlock(&pa->pa_lock);
4006 spin_unlock(&ei->i_prealloc_lock);
4007
4008 /* we have to wait here because pa_deleted
4009 * doesn't mean pa is already unlinked from
4010 * the list. as we might be called from
4011 * ->clear_inode() the inode will get freed
4012 * and concurrent thread which is unlinking
4013 * pa from inode's list may access already
4014 * freed memory, bad-bad-bad */
4015
4016 /* XXX: if this happens too often, we can
4017 * add a flag to force wait only in case
4018 * of ->clear_inode(), but not in case of
4019 * regular truncate */
4020 schedule_timeout_uninterruptible(HZ);
4021 goto repeat;
4022 }
4023 spin_unlock(&ei->i_prealloc_lock);
4024
4025 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4026 BUG_ON(pa->pa_type != MB_INODE_PA);
4027 group = ext4_get_group_number(sb, pa->pa_pstart);
4028
4029 err = ext4_mb_load_buddy(sb, group, &e4b);
4030 if (err) {
4031 ext4_error(sb, "Error loading buddy information for %u",
4032 group);
4033 continue;
4034 }
4035
4036 bitmap_bh = ext4_read_block_bitmap(sb, group);
4037 if (IS_ERR(bitmap_bh)) {
4038 err = PTR_ERR(bitmap_bh);
4039 ext4_error(sb, "Error %d reading block bitmap for %u",
4040 err, group);
4041 ext4_mb_unload_buddy(&e4b);
4042 continue;
4043 }
4044
4045 ext4_lock_group(sb, group);
4046 list_del(&pa->pa_group_list);
4047 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4048 ext4_unlock_group(sb, group);
4049
4050 ext4_mb_unload_buddy(&e4b);
4051 put_bh(bitmap_bh);
4052
4053 list_del(&pa->u.pa_tmp_list);
4054 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4055 }
4056 }
4057
4058 #ifdef CONFIG_EXT4_DEBUG
4059 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4060 {
4061 struct super_block *sb = ac->ac_sb;
4062 ext4_group_t ngroups, i;
4063
4064 if (!ext4_mballoc_debug ||
4065 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4066 return;
4067
4068 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4069 " Allocation context details:");
4070 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4071 ac->ac_status, ac->ac_flags);
4072 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4073 "goal %lu/%lu/%lu@%lu, "
4074 "best %lu/%lu/%lu@%lu cr %d",
4075 (unsigned long)ac->ac_o_ex.fe_group,
4076 (unsigned long)ac->ac_o_ex.fe_start,
4077 (unsigned long)ac->ac_o_ex.fe_len,
4078 (unsigned long)ac->ac_o_ex.fe_logical,
4079 (unsigned long)ac->ac_g_ex.fe_group,
4080 (unsigned long)ac->ac_g_ex.fe_start,
4081 (unsigned long)ac->ac_g_ex.fe_len,
4082 (unsigned long)ac->ac_g_ex.fe_logical,
4083 (unsigned long)ac->ac_b_ex.fe_group,
4084 (unsigned long)ac->ac_b_ex.fe_start,
4085 (unsigned long)ac->ac_b_ex.fe_len,
4086 (unsigned long)ac->ac_b_ex.fe_logical,
4087 (int)ac->ac_criteria);
4088 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4089 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4090 ngroups = ext4_get_groups_count(sb);
4091 for (i = 0; i < ngroups; i++) {
4092 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4093 struct ext4_prealloc_space *pa;
4094 ext4_grpblk_t start;
4095 struct list_head *cur;
4096 ext4_lock_group(sb, i);
4097 list_for_each(cur, &grp->bb_prealloc_list) {
4098 pa = list_entry(cur, struct ext4_prealloc_space,
4099 pa_group_list);
4100 spin_lock(&pa->pa_lock);
4101 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4102 NULL, &start);
4103 spin_unlock(&pa->pa_lock);
4104 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4105 start, pa->pa_len);
4106 }
4107 ext4_unlock_group(sb, i);
4108
4109 if (grp->bb_free == 0)
4110 continue;
4111 printk(KERN_ERR "%u: %d/%d \n",
4112 i, grp->bb_free, grp->bb_fragments);
4113 }
4114 printk(KERN_ERR "\n");
4115 }
4116 #else
4117 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4118 {
4119 return;
4120 }
4121 #endif
4122
4123 /*
4124 * We use locality group preallocation for small size file. The size of the
4125 * file is determined by the current size or the resulting size after
4126 * allocation which ever is larger
4127 *
4128 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4129 */
4130 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4131 {
4132 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4133 int bsbits = ac->ac_sb->s_blocksize_bits;
4134 loff_t size, isize;
4135
4136 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4137 return;
4138
4139 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4140 return;
4141
4142 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4143 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4144 >> bsbits;
4145
4146 if ((size == isize) &&
4147 !ext4_fs_is_busy(sbi) &&
4148 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4149 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4150 return;
4151 }
4152
4153 if (sbi->s_mb_group_prealloc <= 0) {
4154 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4155 return;
4156 }
4157
4158 /* don't use group allocation for large files */
4159 size = max(size, isize);
4160 if (size > sbi->s_mb_stream_request) {
4161 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4162 return;
4163 }
4164
4165 BUG_ON(ac->ac_lg != NULL);
4166 /*
4167 * locality group prealloc space are per cpu. The reason for having
4168 * per cpu locality group is to reduce the contention between block
4169 * request from multiple CPUs.
4170 */
4171 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4172
4173 /* we're going to use group allocation */
4174 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4175
4176 /* serialize all allocations in the group */
4177 mutex_lock(&ac->ac_lg->lg_mutex);
4178 }
4179
4180 static noinline_for_stack int
4181 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4182 struct ext4_allocation_request *ar)
4183 {
4184 struct super_block *sb = ar->inode->i_sb;
4185 struct ext4_sb_info *sbi = EXT4_SB(sb);
4186 struct ext4_super_block *es = sbi->s_es;
4187 ext4_group_t group;
4188 unsigned int len;
4189 ext4_fsblk_t goal;
4190 ext4_grpblk_t block;
4191
4192 /* we can't allocate > group size */
4193 len = ar->len;
4194
4195 /* just a dirty hack to filter too big requests */
4196 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4197 len = EXT4_CLUSTERS_PER_GROUP(sb);
4198
4199 /* start searching from the goal */
4200 goal = ar->goal;
4201 if (goal < le32_to_cpu(es->s_first_data_block) ||
4202 goal >= ext4_blocks_count(es))
4203 goal = le32_to_cpu(es->s_first_data_block);
4204 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4205
4206 /* set up allocation goals */
4207 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4208 ac->ac_status = AC_STATUS_CONTINUE;
4209 ac->ac_sb = sb;
4210 ac->ac_inode = ar->inode;
4211 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4212 ac->ac_o_ex.fe_group = group;
4213 ac->ac_o_ex.fe_start = block;
4214 ac->ac_o_ex.fe_len = len;
4215 ac->ac_g_ex = ac->ac_o_ex;
4216 ac->ac_flags = ar->flags;
4217
4218 /* we have to define context: we'll we work with a file or
4219 * locality group. this is a policy, actually */
4220 ext4_mb_group_or_file(ac);
4221
4222 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4223 "left: %u/%u, right %u/%u to %swritable\n",
4224 (unsigned) ar->len, (unsigned) ar->logical,
4225 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4226 (unsigned) ar->lleft, (unsigned) ar->pleft,
4227 (unsigned) ar->lright, (unsigned) ar->pright,
4228 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4229 return 0;
4230
4231 }
4232
4233 static noinline_for_stack void
4234 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4235 struct ext4_locality_group *lg,
4236 int order, int total_entries)
4237 {
4238 ext4_group_t group = 0;
4239 struct ext4_buddy e4b;
4240 struct list_head discard_list;
4241 struct ext4_prealloc_space *pa, *tmp;
4242
4243 mb_debug(1, "discard locality group preallocation\n");
4244
4245 INIT_LIST_HEAD(&discard_list);
4246
4247 spin_lock(&lg->lg_prealloc_lock);
4248 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4249 pa_inode_list) {
4250 spin_lock(&pa->pa_lock);
4251 if (atomic_read(&pa->pa_count)) {
4252 /*
4253 * This is the pa that we just used
4254 * for block allocation. So don't
4255 * free that
4256 */
4257 spin_unlock(&pa->pa_lock);
4258 continue;
4259 }
4260 if (pa->pa_deleted) {
4261 spin_unlock(&pa->pa_lock);
4262 continue;
4263 }
4264 /* only lg prealloc space */
4265 BUG_ON(pa->pa_type != MB_GROUP_PA);
4266
4267 /* seems this one can be freed ... */
4268 pa->pa_deleted = 1;
4269 spin_unlock(&pa->pa_lock);
4270
4271 list_del_rcu(&pa->pa_inode_list);
4272 list_add(&pa->u.pa_tmp_list, &discard_list);
4273
4274 total_entries--;
4275 if (total_entries <= 5) {
4276 /*
4277 * we want to keep only 5 entries
4278 * allowing it to grow to 8. This
4279 * mak sure we don't call discard
4280 * soon for this list.
4281 */
4282 break;
4283 }
4284 }
4285 spin_unlock(&lg->lg_prealloc_lock);
4286
4287 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4288
4289 group = ext4_get_group_number(sb, pa->pa_pstart);
4290 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4291 ext4_error(sb, "Error loading buddy information for %u",
4292 group);
4293 continue;
4294 }
4295 ext4_lock_group(sb, group);
4296 list_del(&pa->pa_group_list);
4297 ext4_mb_release_group_pa(&e4b, pa);
4298 ext4_unlock_group(sb, group);
4299
4300 ext4_mb_unload_buddy(&e4b);
4301 list_del(&pa->u.pa_tmp_list);
4302 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4303 }
4304 }
4305
4306 /*
4307 * We have incremented pa_count. So it cannot be freed at this
4308 * point. Also we hold lg_mutex. So no parallel allocation is
4309 * possible from this lg. That means pa_free cannot be updated.
4310 *
4311 * A parallel ext4_mb_discard_group_preallocations is possible.
4312 * which can cause the lg_prealloc_list to be updated.
4313 */
4314
4315 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4316 {
4317 int order, added = 0, lg_prealloc_count = 1;
4318 struct super_block *sb = ac->ac_sb;
4319 struct ext4_locality_group *lg = ac->ac_lg;
4320 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4321
4322 order = fls(pa->pa_free) - 1;
4323 if (order > PREALLOC_TB_SIZE - 1)
4324 /* The max size of hash table is PREALLOC_TB_SIZE */
4325 order = PREALLOC_TB_SIZE - 1;
4326 /* Add the prealloc space to lg */
4327 spin_lock(&lg->lg_prealloc_lock);
4328 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4329 pa_inode_list) {
4330 spin_lock(&tmp_pa->pa_lock);
4331 if (tmp_pa->pa_deleted) {
4332 spin_unlock(&tmp_pa->pa_lock);
4333 continue;
4334 }
4335 if (!added && pa->pa_free < tmp_pa->pa_free) {
4336 /* Add to the tail of the previous entry */
4337 list_add_tail_rcu(&pa->pa_inode_list,
4338 &tmp_pa->pa_inode_list);
4339 added = 1;
4340 /*
4341 * we want to count the total
4342 * number of entries in the list
4343 */
4344 }
4345 spin_unlock(&tmp_pa->pa_lock);
4346 lg_prealloc_count++;
4347 }
4348 if (!added)
4349 list_add_tail_rcu(&pa->pa_inode_list,
4350 &lg->lg_prealloc_list[order]);
4351 spin_unlock(&lg->lg_prealloc_lock);
4352
4353 /* Now trim the list to be not more than 8 elements */
4354 if (lg_prealloc_count > 8) {
4355 ext4_mb_discard_lg_preallocations(sb, lg,
4356 order, lg_prealloc_count);
4357 return;
4358 }
4359 return ;
4360 }
4361
4362 /*
4363 * release all resource we used in allocation
4364 */
4365 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4366 {
4367 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4368 struct ext4_prealloc_space *pa = ac->ac_pa;
4369 if (pa) {
4370 if (pa->pa_type == MB_GROUP_PA) {
4371 /* see comment in ext4_mb_use_group_pa() */
4372 spin_lock(&pa->pa_lock);
4373 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4374 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4375 pa->pa_free -= ac->ac_b_ex.fe_len;
4376 pa->pa_len -= ac->ac_b_ex.fe_len;
4377 spin_unlock(&pa->pa_lock);
4378 }
4379 }
4380 if (pa) {
4381 /*
4382 * We want to add the pa to the right bucket.
4383 * Remove it from the list and while adding
4384 * make sure the list to which we are adding
4385 * doesn't grow big.
4386 */
4387 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4388 spin_lock(pa->pa_obj_lock);
4389 list_del_rcu(&pa->pa_inode_list);
4390 spin_unlock(pa->pa_obj_lock);
4391 ext4_mb_add_n_trim(ac);
4392 }
4393 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4394 }
4395 if (ac->ac_bitmap_page)
4396 put_page(ac->ac_bitmap_page);
4397 if (ac->ac_buddy_page)
4398 put_page(ac->ac_buddy_page);
4399 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4400 mutex_unlock(&ac->ac_lg->lg_mutex);
4401 ext4_mb_collect_stats(ac);
4402 return 0;
4403 }
4404
4405 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4406 {
4407 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4408 int ret;
4409 int freed = 0;
4410
4411 trace_ext4_mb_discard_preallocations(sb, needed);
4412 for (i = 0; i < ngroups && needed > 0; i++) {
4413 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4414 freed += ret;
4415 needed -= ret;
4416 }
4417
4418 return freed;
4419 }
4420
4421 /*
4422 * Main entry point into mballoc to allocate blocks
4423 * it tries to use preallocation first, then falls back
4424 * to usual allocation
4425 */
4426 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4427 struct ext4_allocation_request *ar, int *errp)
4428 {
4429 int freed;
4430 struct ext4_allocation_context *ac = NULL;
4431 struct ext4_sb_info *sbi;
4432 struct super_block *sb;
4433 ext4_fsblk_t block = 0;
4434 unsigned int inquota = 0;
4435 unsigned int reserv_clstrs = 0;
4436
4437 might_sleep();
4438 sb = ar->inode->i_sb;
4439 sbi = EXT4_SB(sb);
4440
4441 trace_ext4_request_blocks(ar);
4442
4443 /* Allow to use superuser reservation for quota file */
4444 if (IS_NOQUOTA(ar->inode))
4445 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4446
4447 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4448 /* Without delayed allocation we need to verify
4449 * there is enough free blocks to do block allocation
4450 * and verify allocation doesn't exceed the quota limits.
4451 */
4452 while (ar->len &&
4453 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4454
4455 /* let others to free the space */
4456 cond_resched();
4457 ar->len = ar->len >> 1;
4458 }
4459 if (!ar->len) {
4460 *errp = -ENOSPC;
4461 return 0;
4462 }
4463 reserv_clstrs = ar->len;
4464 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4465 dquot_alloc_block_nofail(ar->inode,
4466 EXT4_C2B(sbi, ar->len));
4467 } else {
4468 while (ar->len &&
4469 dquot_alloc_block(ar->inode,
4470 EXT4_C2B(sbi, ar->len))) {
4471
4472 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4473 ar->len--;
4474 }
4475 }
4476 inquota = ar->len;
4477 if (ar->len == 0) {
4478 *errp = -EDQUOT;
4479 goto out;
4480 }
4481 }
4482
4483 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4484 if (!ac) {
4485 ar->len = 0;
4486 *errp = -ENOMEM;
4487 goto out;
4488 }
4489
4490 *errp = ext4_mb_initialize_context(ac, ar);
4491 if (*errp) {
4492 ar->len = 0;
4493 goto out;
4494 }
4495
4496 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4497 if (!ext4_mb_use_preallocated(ac)) {
4498 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4499 ext4_mb_normalize_request(ac, ar);
4500 repeat:
4501 /* allocate space in core */
4502 *errp = ext4_mb_regular_allocator(ac);
4503 if (*errp)
4504 goto discard_and_exit;
4505
4506 /* as we've just preallocated more space than
4507 * user requested originally, we store allocated
4508 * space in a special descriptor */
4509 if (ac->ac_status == AC_STATUS_FOUND &&
4510 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4511 *errp = ext4_mb_new_preallocation(ac);
4512 if (*errp) {
4513 discard_and_exit:
4514 ext4_discard_allocated_blocks(ac);
4515 goto errout;
4516 }
4517 }
4518 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4519 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4520 if (*errp) {
4521 ext4_discard_allocated_blocks(ac);
4522 goto errout;
4523 } else {
4524 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4525 ar->len = ac->ac_b_ex.fe_len;
4526 }
4527 } else {
4528 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4529 if (freed)
4530 goto repeat;
4531 *errp = -ENOSPC;
4532 }
4533
4534 errout:
4535 if (*errp) {
4536 ac->ac_b_ex.fe_len = 0;
4537 ar->len = 0;
4538 ext4_mb_show_ac(ac);
4539 }
4540 ext4_mb_release_context(ac);
4541 out:
4542 if (ac)
4543 kmem_cache_free(ext4_ac_cachep, ac);
4544 if (inquota && ar->len < inquota)
4545 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4546 if (!ar->len) {
4547 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4548 /* release all the reserved blocks if non delalloc */
4549 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4550 reserv_clstrs);
4551 }
4552
4553 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4554
4555 return block;
4556 }
4557
4558 /*
4559 * We can merge two free data extents only if the physical blocks
4560 * are contiguous, AND the extents were freed by the same transaction,
4561 * AND the blocks are associated with the same group.
4562 */
4563 static int can_merge(struct ext4_free_data *entry1,
4564 struct ext4_free_data *entry2)
4565 {
4566 if ((entry1->efd_tid == entry2->efd_tid) &&
4567 (entry1->efd_group == entry2->efd_group) &&
4568 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4569 return 1;
4570 return 0;
4571 }
4572
4573 static noinline_for_stack int
4574 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4575 struct ext4_free_data *new_entry)
4576 {
4577 ext4_group_t group = e4b->bd_group;
4578 ext4_grpblk_t cluster;
4579 ext4_grpblk_t clusters = new_entry->efd_count;
4580 struct ext4_free_data *entry;
4581 struct ext4_group_info *db = e4b->bd_info;
4582 struct super_block *sb = e4b->bd_sb;
4583 struct ext4_sb_info *sbi = EXT4_SB(sb);
4584 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4585 struct rb_node *parent = NULL, *new_node;
4586
4587 BUG_ON(!ext4_handle_valid(handle));
4588 BUG_ON(e4b->bd_bitmap_page == NULL);
4589 BUG_ON(e4b->bd_buddy_page == NULL);
4590
4591 new_node = &new_entry->efd_node;
4592 cluster = new_entry->efd_start_cluster;
4593
4594 if (!*n) {
4595 /* first free block exent. We need to
4596 protect buddy cache from being freed,
4597 * otherwise we'll refresh it from
4598 * on-disk bitmap and lose not-yet-available
4599 * blocks */
4600 get_page(e4b->bd_buddy_page);
4601 get_page(e4b->bd_bitmap_page);
4602 }
4603 while (*n) {
4604 parent = *n;
4605 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4606 if (cluster < entry->efd_start_cluster)
4607 n = &(*n)->rb_left;
4608 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4609 n = &(*n)->rb_right;
4610 else {
4611 ext4_grp_locked_error(sb, group, 0,
4612 ext4_group_first_block_no(sb, group) +
4613 EXT4_C2B(sbi, cluster),
4614 "Block already on to-be-freed list");
4615 return 0;
4616 }
4617 }
4618
4619 rb_link_node(new_node, parent, n);
4620 rb_insert_color(new_node, &db->bb_free_root);
4621
4622 /* Now try to see the extent can be merged to left and right */
4623 node = rb_prev(new_node);
4624 if (node) {
4625 entry = rb_entry(node, struct ext4_free_data, efd_node);
4626 if (can_merge(entry, new_entry) &&
4627 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4628 new_entry->efd_start_cluster = entry->efd_start_cluster;
4629 new_entry->efd_count += entry->efd_count;
4630 rb_erase(node, &(db->bb_free_root));
4631 kmem_cache_free(ext4_free_data_cachep, entry);
4632 }
4633 }
4634
4635 node = rb_next(new_node);
4636 if (node) {
4637 entry = rb_entry(node, struct ext4_free_data, efd_node);
4638 if (can_merge(new_entry, entry) &&
4639 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4640 new_entry->efd_count += entry->efd_count;
4641 rb_erase(node, &(db->bb_free_root));
4642 kmem_cache_free(ext4_free_data_cachep, entry);
4643 }
4644 }
4645 /* Add the extent to transaction's private list */
4646 new_entry->efd_jce.jce_func = ext4_free_data_callback;
4647 spin_lock(&sbi->s_md_lock);
4648 _ext4_journal_callback_add(handle, &new_entry->efd_jce);
4649 sbi->s_mb_free_pending += clusters;
4650 spin_unlock(&sbi->s_md_lock);
4651 return 0;
4652 }
4653
4654 /**
4655 * ext4_free_blocks() -- Free given blocks and update quota
4656 * @handle: handle for this transaction
4657 * @inode: inode
4658 * @block: start physical block to free
4659 * @count: number of blocks to count
4660 * @flags: flags used by ext4_free_blocks
4661 */
4662 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4663 struct buffer_head *bh, ext4_fsblk_t block,
4664 unsigned long count, int flags)
4665 {
4666 struct buffer_head *bitmap_bh = NULL;
4667 struct super_block *sb = inode->i_sb;
4668 struct ext4_group_desc *gdp;
4669 unsigned int overflow;
4670 ext4_grpblk_t bit;
4671 struct buffer_head *gd_bh;
4672 ext4_group_t block_group;
4673 struct ext4_sb_info *sbi;
4674 struct ext4_buddy e4b;
4675 unsigned int count_clusters;
4676 int err = 0;
4677 int ret;
4678
4679 might_sleep();
4680 if (bh) {
4681 if (block)
4682 BUG_ON(block != bh->b_blocknr);
4683 else
4684 block = bh->b_blocknr;
4685 }
4686
4687 sbi = EXT4_SB(sb);
4688 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4689 !ext4_data_block_valid(sbi, block, count)) {
4690 ext4_error(sb, "Freeing blocks not in datazone - "
4691 "block = %llu, count = %lu", block, count);
4692 goto error_return;
4693 }
4694
4695 ext4_debug("freeing block %llu\n", block);
4696 trace_ext4_free_blocks(inode, block, count, flags);
4697
4698 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4699 BUG_ON(count > 1);
4700
4701 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4702 inode, bh, block);
4703 }
4704
4705 /*
4706 * If the extent to be freed does not begin on a cluster
4707 * boundary, we need to deal with partial clusters at the
4708 * beginning and end of the extent. Normally we will free
4709 * blocks at the beginning or the end unless we are explicitly
4710 * requested to avoid doing so.
4711 */
4712 overflow = EXT4_PBLK_COFF(sbi, block);
4713 if (overflow) {
4714 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4715 overflow = sbi->s_cluster_ratio - overflow;
4716 block += overflow;
4717 if (count > overflow)
4718 count -= overflow;
4719 else
4720 return;
4721 } else {
4722 block -= overflow;
4723 count += overflow;
4724 }
4725 }
4726 overflow = EXT4_LBLK_COFF(sbi, count);
4727 if (overflow) {
4728 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4729 if (count > overflow)
4730 count -= overflow;
4731 else
4732 return;
4733 } else
4734 count += sbi->s_cluster_ratio - overflow;
4735 }
4736
4737 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4738 int i;
4739 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4740
4741 for (i = 0; i < count; i++) {
4742 cond_resched();
4743 if (is_metadata)
4744 bh = sb_find_get_block(inode->i_sb, block + i);
4745 ext4_forget(handle, is_metadata, inode, bh, block + i);
4746 }
4747 }
4748
4749 do_more:
4750 overflow = 0;
4751 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4752
4753 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4754 ext4_get_group_info(sb, block_group))))
4755 return;
4756
4757 /*
4758 * Check to see if we are freeing blocks across a group
4759 * boundary.
4760 */
4761 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4762 overflow = EXT4_C2B(sbi, bit) + count -
4763 EXT4_BLOCKS_PER_GROUP(sb);
4764 count -= overflow;
4765 }
4766 count_clusters = EXT4_NUM_B2C(sbi, count);
4767 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4768 if (IS_ERR(bitmap_bh)) {
4769 err = PTR_ERR(bitmap_bh);
4770 bitmap_bh = NULL;
4771 goto error_return;
4772 }
4773 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4774 if (!gdp) {
4775 err = -EIO;
4776 goto error_return;
4777 }
4778
4779 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4780 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4781 in_range(block, ext4_inode_table(sb, gdp),
4782 EXT4_SB(sb)->s_itb_per_group) ||
4783 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4784 EXT4_SB(sb)->s_itb_per_group)) {
4785
4786 ext4_error(sb, "Freeing blocks in system zone - "
4787 "Block = %llu, count = %lu", block, count);
4788 /* err = 0. ext4_std_error should be a no op */
4789 goto error_return;
4790 }
4791
4792 BUFFER_TRACE(bitmap_bh, "getting write access");
4793 err = ext4_journal_get_write_access(handle, bitmap_bh);
4794 if (err)
4795 goto error_return;
4796
4797 /*
4798 * We are about to modify some metadata. Call the journal APIs
4799 * to unshare ->b_data if a currently-committing transaction is
4800 * using it
4801 */
4802 BUFFER_TRACE(gd_bh, "get_write_access");
4803 err = ext4_journal_get_write_access(handle, gd_bh);
4804 if (err)
4805 goto error_return;
4806 #ifdef AGGRESSIVE_CHECK
4807 {
4808 int i;
4809 for (i = 0; i < count_clusters; i++)
4810 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4811 }
4812 #endif
4813 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4814
4815 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4816 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4817 GFP_NOFS|__GFP_NOFAIL);
4818 if (err)
4819 goto error_return;
4820
4821 /*
4822 * We need to make sure we don't reuse the freed block until after the
4823 * transaction is committed. We make an exception if the inode is to be
4824 * written in writeback mode since writeback mode has weak data
4825 * consistency guarantees.
4826 */
4827 if (ext4_handle_valid(handle) &&
4828 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4829 !ext4_should_writeback_data(inode))) {
4830 struct ext4_free_data *new_entry;
4831 /*
4832 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4833 * to fail.
4834 */
4835 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4836 GFP_NOFS|__GFP_NOFAIL);
4837 new_entry->efd_start_cluster = bit;
4838 new_entry->efd_group = block_group;
4839 new_entry->efd_count = count_clusters;
4840 new_entry->efd_tid = handle->h_transaction->t_tid;
4841
4842 ext4_lock_group(sb, block_group);
4843 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4844 ext4_mb_free_metadata(handle, &e4b, new_entry);
4845 } else {
4846 /* need to update group_info->bb_free and bitmap
4847 * with group lock held. generate_buddy look at
4848 * them with group lock_held
4849 */
4850 if (test_opt(sb, DISCARD)) {
4851 err = ext4_issue_discard(sb, block_group, bit, count);
4852 if (err && err != -EOPNOTSUPP)
4853 ext4_msg(sb, KERN_WARNING, "discard request in"
4854 " group:%d block:%d count:%lu failed"
4855 " with %d", block_group, bit, count,
4856 err);
4857 } else
4858 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4859
4860 ext4_lock_group(sb, block_group);
4861 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4862 mb_free_blocks(inode, &e4b, bit, count_clusters);
4863 }
4864
4865 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4866 ext4_free_group_clusters_set(sb, gdp, ret);
4867 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4868 ext4_group_desc_csum_set(sb, block_group, gdp);
4869 ext4_unlock_group(sb, block_group);
4870
4871 if (sbi->s_log_groups_per_flex) {
4872 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4873 atomic64_add(count_clusters,
4874 &sbi->s_flex_groups[flex_group].free_clusters);
4875 }
4876
4877 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4878 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4879 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4880
4881 ext4_mb_unload_buddy(&e4b);
4882
4883 /* We dirtied the bitmap block */
4884 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4885 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4886
4887 /* And the group descriptor block */
4888 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4889 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4890 if (!err)
4891 err = ret;
4892
4893 if (overflow && !err) {
4894 block += count;
4895 count = overflow;
4896 put_bh(bitmap_bh);
4897 goto do_more;
4898 }
4899 error_return:
4900 brelse(bitmap_bh);
4901 ext4_std_error(sb, err);
4902 return;
4903 }
4904
4905 /**
4906 * ext4_group_add_blocks() -- Add given blocks to an existing group
4907 * @handle: handle to this transaction
4908 * @sb: super block
4909 * @block: start physical block to add to the block group
4910 * @count: number of blocks to free
4911 *
4912 * This marks the blocks as free in the bitmap and buddy.
4913 */
4914 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4915 ext4_fsblk_t block, unsigned long count)
4916 {
4917 struct buffer_head *bitmap_bh = NULL;
4918 struct buffer_head *gd_bh;
4919 ext4_group_t block_group;
4920 ext4_grpblk_t bit;
4921 unsigned int i;
4922 struct ext4_group_desc *desc;
4923 struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 struct ext4_buddy e4b;
4925 int err = 0, ret, blk_free_count;
4926 ext4_grpblk_t blocks_freed;
4927
4928 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4929
4930 if (count == 0)
4931 return 0;
4932
4933 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4934 /*
4935 * Check to see if we are freeing blocks across a group
4936 * boundary.
4937 */
4938 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4939 ext4_warning(sb, "too much blocks added to group %u",
4940 block_group);
4941 err = -EINVAL;
4942 goto error_return;
4943 }
4944
4945 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4946 if (IS_ERR(bitmap_bh)) {
4947 err = PTR_ERR(bitmap_bh);
4948 bitmap_bh = NULL;
4949 goto error_return;
4950 }
4951
4952 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4953 if (!desc) {
4954 err = -EIO;
4955 goto error_return;
4956 }
4957
4958 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4959 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4960 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4961 in_range(block + count - 1, ext4_inode_table(sb, desc),
4962 sbi->s_itb_per_group)) {
4963 ext4_error(sb, "Adding blocks in system zones - "
4964 "Block = %llu, count = %lu",
4965 block, count);
4966 err = -EINVAL;
4967 goto error_return;
4968 }
4969
4970 BUFFER_TRACE(bitmap_bh, "getting write access");
4971 err = ext4_journal_get_write_access(handle, bitmap_bh);
4972 if (err)
4973 goto error_return;
4974
4975 /*
4976 * We are about to modify some metadata. Call the journal APIs
4977 * to unshare ->b_data if a currently-committing transaction is
4978 * using it
4979 */
4980 BUFFER_TRACE(gd_bh, "get_write_access");
4981 err = ext4_journal_get_write_access(handle, gd_bh);
4982 if (err)
4983 goto error_return;
4984
4985 for (i = 0, blocks_freed = 0; i < count; i++) {
4986 BUFFER_TRACE(bitmap_bh, "clear bit");
4987 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4988 ext4_error(sb, "bit already cleared for block %llu",
4989 (ext4_fsblk_t)(block + i));
4990 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4991 } else {
4992 blocks_freed++;
4993 }
4994 }
4995
4996 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4997 if (err)
4998 goto error_return;
4999
5000 /*
5001 * need to update group_info->bb_free and bitmap
5002 * with group lock held. generate_buddy look at
5003 * them with group lock_held
5004 */
5005 ext4_lock_group(sb, block_group);
5006 mb_clear_bits(bitmap_bh->b_data, bit, count);
5007 mb_free_blocks(NULL, &e4b, bit, count);
5008 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5009 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5010 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5011 ext4_group_desc_csum_set(sb, block_group, desc);
5012 ext4_unlock_group(sb, block_group);
5013 percpu_counter_add(&sbi->s_freeclusters_counter,
5014 EXT4_NUM_B2C(sbi, blocks_freed));
5015
5016 if (sbi->s_log_groups_per_flex) {
5017 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5018 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5019 &sbi->s_flex_groups[flex_group].free_clusters);
5020 }
5021
5022 ext4_mb_unload_buddy(&e4b);
5023
5024 /* We dirtied the bitmap block */
5025 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5026 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5027
5028 /* And the group descriptor block */
5029 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5030 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5031 if (!err)
5032 err = ret;
5033
5034 error_return:
5035 brelse(bitmap_bh);
5036 ext4_std_error(sb, err);
5037 return err;
5038 }
5039
5040 /**
5041 * ext4_trim_extent -- function to TRIM one single free extent in the group
5042 * @sb: super block for the file system
5043 * @start: starting block of the free extent in the alloc. group
5044 * @count: number of blocks to TRIM
5045 * @group: alloc. group we are working with
5046 * @e4b: ext4 buddy for the group
5047 *
5048 * Trim "count" blocks starting at "start" in the "group". To assure that no
5049 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5050 * be called with under the group lock.
5051 */
5052 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5053 ext4_group_t group, struct ext4_buddy *e4b)
5054 __releases(bitlock)
5055 __acquires(bitlock)
5056 {
5057 struct ext4_free_extent ex;
5058 int ret = 0;
5059
5060 trace_ext4_trim_extent(sb, group, start, count);
5061
5062 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5063
5064 ex.fe_start = start;
5065 ex.fe_group = group;
5066 ex.fe_len = count;
5067
5068 /*
5069 * Mark blocks used, so no one can reuse them while
5070 * being trimmed.
5071 */
5072 mb_mark_used(e4b, &ex);
5073 ext4_unlock_group(sb, group);
5074 ret = ext4_issue_discard(sb, group, start, count);
5075 ext4_lock_group(sb, group);
5076 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5077 return ret;
5078 }
5079
5080 /**
5081 * ext4_trim_all_free -- function to trim all free space in alloc. group
5082 * @sb: super block for file system
5083 * @group: group to be trimmed
5084 * @start: first group block to examine
5085 * @max: last group block to examine
5086 * @minblocks: minimum extent block count
5087 *
5088 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5089 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5090 * the extent.
5091 *
5092 *
5093 * ext4_trim_all_free walks through group's block bitmap searching for free
5094 * extents. When the free extent is found, mark it as used in group buddy
5095 * bitmap. Then issue a TRIM command on this extent and free the extent in
5096 * the group buddy bitmap. This is done until whole group is scanned.
5097 */
5098 static ext4_grpblk_t
5099 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5100 ext4_grpblk_t start, ext4_grpblk_t max,
5101 ext4_grpblk_t minblocks)
5102 {
5103 void *bitmap;
5104 ext4_grpblk_t next, count = 0, free_count = 0;
5105 struct ext4_buddy e4b;
5106 int ret = 0;
5107
5108 trace_ext4_trim_all_free(sb, group, start, max);
5109
5110 ret = ext4_mb_load_buddy(sb, group, &e4b);
5111 if (ret) {
5112 ext4_error(sb, "Error in loading buddy "
5113 "information for %u", group);
5114 return ret;
5115 }
5116 bitmap = e4b.bd_bitmap;
5117
5118 ext4_lock_group(sb, group);
5119 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5120 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5121 goto out;
5122
5123 start = (e4b.bd_info->bb_first_free > start) ?
5124 e4b.bd_info->bb_first_free : start;
5125
5126 while (start <= max) {
5127 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5128 if (start > max)
5129 break;
5130 next = mb_find_next_bit(bitmap, max + 1, start);
5131
5132 if ((next - start) >= minblocks) {
5133 ret = ext4_trim_extent(sb, start,
5134 next - start, group, &e4b);
5135 if (ret && ret != -EOPNOTSUPP)
5136 break;
5137 ret = 0;
5138 count += next - start;
5139 }
5140 free_count += next - start;
5141 start = next + 1;
5142
5143 if (fatal_signal_pending(current)) {
5144 count = -ERESTARTSYS;
5145 break;
5146 }
5147
5148 if (need_resched()) {
5149 ext4_unlock_group(sb, group);
5150 cond_resched();
5151 ext4_lock_group(sb, group);
5152 }
5153
5154 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5155 break;
5156 }
5157
5158 if (!ret) {
5159 ret = count;
5160 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5161 }
5162 out:
5163 ext4_unlock_group(sb, group);
5164 ext4_mb_unload_buddy(&e4b);
5165
5166 ext4_debug("trimmed %d blocks in the group %d\n",
5167 count, group);
5168
5169 return ret;
5170 }
5171
5172 /**
5173 * ext4_trim_fs() -- trim ioctl handle function
5174 * @sb: superblock for filesystem
5175 * @range: fstrim_range structure
5176 *
5177 * start: First Byte to trim
5178 * len: number of Bytes to trim from start
5179 * minlen: minimum extent length in Bytes
5180 * ext4_trim_fs goes through all allocation groups containing Bytes from
5181 * start to start+len. For each such a group ext4_trim_all_free function
5182 * is invoked to trim all free space.
5183 */
5184 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5185 {
5186 struct ext4_group_info *grp;
5187 ext4_group_t group, first_group, last_group;
5188 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5189 uint64_t start, end, minlen, trimmed = 0;
5190 ext4_fsblk_t first_data_blk =
5191 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5192 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5193 int ret = 0;
5194
5195 start = range->start >> sb->s_blocksize_bits;
5196 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5197 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5198 range->minlen >> sb->s_blocksize_bits);
5199
5200 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5201 start >= max_blks ||
5202 range->len < sb->s_blocksize)
5203 return -EINVAL;
5204 if (end >= max_blks)
5205 end = max_blks - 1;
5206 if (end <= first_data_blk)
5207 goto out;
5208 if (start < first_data_blk)
5209 start = first_data_blk;
5210
5211 /* Determine first and last group to examine based on start and end */
5212 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5213 &first_group, &first_cluster);
5214 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5215 &last_group, &last_cluster);
5216
5217 /* end now represents the last cluster to discard in this group */
5218 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5219
5220 for (group = first_group; group <= last_group; group++) {
5221 grp = ext4_get_group_info(sb, group);
5222 /* We only do this if the grp has never been initialized */
5223 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5224 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5225 if (ret)
5226 break;
5227 }
5228
5229 /*
5230 * For all the groups except the last one, last cluster will
5231 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5232 * change it for the last group, note that last_cluster is
5233 * already computed earlier by ext4_get_group_no_and_offset()
5234 */
5235 if (group == last_group)
5236 end = last_cluster;
5237
5238 if (grp->bb_free >= minlen) {
5239 cnt = ext4_trim_all_free(sb, group, first_cluster,
5240 end, minlen);
5241 if (cnt < 0) {
5242 ret = cnt;
5243 break;
5244 }
5245 trimmed += cnt;
5246 }
5247
5248 /*
5249 * For every group except the first one, we are sure
5250 * that the first cluster to discard will be cluster #0.
5251 */
5252 first_cluster = 0;
5253 }
5254
5255 if (!ret)
5256 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5257
5258 out:
5259 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5260 return ret;
5261 }
This page took 0.144204 seconds and 5 git commands to generate.