ext4: Don't use 'struct dentry' for internal lookups
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 /*
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
29 *
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
36 *
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
43 */
44
45 /*
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
48 *
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
58 *
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
61 *
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
65 *
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
70 *
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
75 *
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
79 *
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
83 *
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 *
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
88 *
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
91 *
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
101 *
102 * { page }
103 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104 *
105 *
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
110 *
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
113 *
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
117 *
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
130 *
131 * The regular allocator(using the buddy cache) support few tunables.
132 *
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
136 *
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
152 *
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
157 */
158
159 /*
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
164 *
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
180 *
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
183 *
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
187 *
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
191 *
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 *
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
205 *
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
217 *
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 *
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 *
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
261 *
262 */
263
264 /*
265 * Logic in few words:
266 *
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
272 *
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
279 *
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 *
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
292 *
293 * - discard inode's preallocations:
294 */
295
296 /*
297 * Locking rules
298 *
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
303 *
304 * Paths:
305 * - new pa
306 * object
307 * group
308 *
309 * - find and use pa:
310 * pa
311 *
312 * - release consumed pa:
313 * pa
314 * group
315 * object
316 *
317 * - generate in-core bitmap:
318 * group
319 * pa
320 *
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
325 *
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
331 *
332 */
333
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337 *bit += ((unsigned long) addr & 7UL) << 3;
338 addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340 *bit += ((unsigned long) addr & 3UL) << 3;
341 addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345 return addr;
346 }
347
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350 /*
351 * ext4_test_bit on architecture like powerpc
352 * needs unsigned long aligned address
353 */
354 addr = mb_correct_addr_and_bit(&bit, addr);
355 return ext4_test_bit(bit, addr);
356 }
357
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360 addr = mb_correct_addr_and_bit(&bit, addr);
361 ext4_set_bit(bit, addr);
362 }
363
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 ext4_set_bit_atomic(lock, bit, addr);
368 }
369
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_clear_bit(bit, addr);
374 }
375
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_clear_bit_atomic(lock, bit, addr);
380 }
381
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 int fix = 0, ret, tmpmax;
385 addr = mb_correct_addr_and_bit(&fix, addr);
386 tmpmax = max + fix;
387 start += fix;
388
389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 if (ret > max)
391 return max;
392 return ret;
393 }
394
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 int fix = 0, ret, tmpmax;
398 addr = mb_correct_addr_and_bit(&fix, addr);
399 tmpmax = max + fix;
400 start += fix;
401
402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 if (ret > max)
404 return max;
405 return ret;
406 }
407
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 char *bb;
411
412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 BUG_ON(max == NULL);
414
415 if (order > e4b->bd_blkbits + 1) {
416 *max = 0;
417 return NULL;
418 }
419
420 /* at order 0 we see each particular block */
421 *max = 1 << (e4b->bd_blkbits + 3);
422 if (order == 0)
423 return EXT4_MB_BITMAP(e4b);
424
425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427
428 return bb;
429 }
430
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 int first, int count)
434 {
435 int i;
436 struct super_block *sb = e4b->bd_sb;
437
438 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 return;
440 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441 for (i = 0; i < count; i++) {
442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 ext4_fsblk_t blocknr;
444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 blocknr += first + i;
446 blocknr +=
447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448
449 ext4_error(sb, __func__, "double-free of inode"
450 " %lu's block %llu(bit %u in group %lu)\n",
451 inode ? inode->i_ino : 0, blocknr,
452 first + i, e4b->bd_group);
453 }
454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 int i;
461
462 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 return;
464 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465 for (i = 0; i < count; i++) {
466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 unsigned char *b1, *b2;
475 int i;
476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 b2 = (unsigned char *) bitmap;
478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 if (b1[i] != b2[i]) {
480 printk(KERN_ERR "corruption in group %lu "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 BUG();
485 }
486 }
487 }
488 }
489
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 struct ext4_buddy *e4b, int first, int count)
493 {
494 return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 int first, int count)
498 {
499 return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 return;
504 }
505 #endif
506
507 #ifdef AGGRESSIVE_CHECK
508
509 #define MB_CHECK_ASSERT(assert) \
510 do { \
511 if (!(assert)) { \
512 printk(KERN_EMERG \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
515 BUG(); \
516 } \
517 } while (0)
518
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 const char *function, int line)
521 {
522 struct super_block *sb = e4b->bd_sb;
523 int order = e4b->bd_blkbits + 1;
524 int max;
525 int max2;
526 int i;
527 int j;
528 int k;
529 int count;
530 struct ext4_group_info *grp;
531 int fragments = 0;
532 int fstart;
533 struct list_head *cur;
534 void *buddy;
535 void *buddy2;
536
537 if (!test_opt(sb, MBALLOC))
538 return 0;
539
540 {
541 static int mb_check_counter;
542 if (mb_check_counter++ % 100 != 0)
543 return 0;
544 }
545
546 while (order > 1) {
547 buddy = mb_find_buddy(e4b, order, &max);
548 MB_CHECK_ASSERT(buddy);
549 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
550 MB_CHECK_ASSERT(buddy2);
551 MB_CHECK_ASSERT(buddy != buddy2);
552 MB_CHECK_ASSERT(max * 2 == max2);
553
554 count = 0;
555 for (i = 0; i < max; i++) {
556
557 if (mb_test_bit(i, buddy)) {
558 /* only single bit in buddy2 may be 1 */
559 if (!mb_test_bit(i << 1, buddy2)) {
560 MB_CHECK_ASSERT(
561 mb_test_bit((i<<1)+1, buddy2));
562 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
563 MB_CHECK_ASSERT(
564 mb_test_bit(i << 1, buddy2));
565 }
566 continue;
567 }
568
569 /* both bits in buddy2 must be 0 */
570 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
571 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
572
573 for (j = 0; j < (1 << order); j++) {
574 k = (i * (1 << order)) + j;
575 MB_CHECK_ASSERT(
576 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
577 }
578 count++;
579 }
580 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
581 order--;
582 }
583
584 fstart = -1;
585 buddy = mb_find_buddy(e4b, 0, &max);
586 for (i = 0; i < max; i++) {
587 if (!mb_test_bit(i, buddy)) {
588 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
589 if (fstart == -1) {
590 fragments++;
591 fstart = i;
592 }
593 continue;
594 }
595 fstart = -1;
596 /* check used bits only */
597 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
598 buddy2 = mb_find_buddy(e4b, j, &max2);
599 k = i >> j;
600 MB_CHECK_ASSERT(k < max2);
601 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
602 }
603 }
604 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
605 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
606
607 grp = ext4_get_group_info(sb, e4b->bd_group);
608 buddy = mb_find_buddy(e4b, 0, &max);
609 list_for_each(cur, &grp->bb_prealloc_list) {
610 ext4_group_t groupnr;
611 struct ext4_prealloc_space *pa;
612 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
613 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
614 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
615 for (i = 0; i < pa->pa_len; i++)
616 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
617 }
618 return 0;
619 }
620 #undef MB_CHECK_ASSERT
621 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
622 __FILE__, __func__, __LINE__)
623 #else
624 #define mb_check_buddy(e4b)
625 #endif
626
627 /* FIXME!! need more doc */
628 static void ext4_mb_mark_free_simple(struct super_block *sb,
629 void *buddy, unsigned first, int len,
630 struct ext4_group_info *grp)
631 {
632 struct ext4_sb_info *sbi = EXT4_SB(sb);
633 unsigned short min;
634 unsigned short max;
635 unsigned short chunk;
636 unsigned short border;
637
638 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
639
640 border = 2 << sb->s_blocksize_bits;
641
642 while (len > 0) {
643 /* find how many blocks can be covered since this position */
644 max = ffs(first | border) - 1;
645
646 /* find how many blocks of power 2 we need to mark */
647 min = fls(len) - 1;
648
649 if (max < min)
650 min = max;
651 chunk = 1 << min;
652
653 /* mark multiblock chunks only */
654 grp->bb_counters[min]++;
655 if (min > 0)
656 mb_clear_bit(first >> min,
657 buddy + sbi->s_mb_offsets[min]);
658
659 len -= chunk;
660 first += chunk;
661 }
662 }
663
664 static void ext4_mb_generate_buddy(struct super_block *sb,
665 void *buddy, void *bitmap, ext4_group_t group)
666 {
667 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
668 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
669 unsigned short i = 0;
670 unsigned short first;
671 unsigned short len;
672 unsigned free = 0;
673 unsigned fragments = 0;
674 unsigned long long period = get_cycles();
675
676 /* initialize buddy from bitmap which is aggregation
677 * of on-disk bitmap and preallocations */
678 i = mb_find_next_zero_bit(bitmap, max, 0);
679 grp->bb_first_free = i;
680 while (i < max) {
681 fragments++;
682 first = i;
683 i = mb_find_next_bit(bitmap, max, i);
684 len = i - first;
685 free += len;
686 if (len > 1)
687 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
688 else
689 grp->bb_counters[0]++;
690 if (i < max)
691 i = mb_find_next_zero_bit(bitmap, max, i);
692 }
693 grp->bb_fragments = fragments;
694
695 if (free != grp->bb_free) {
696 ext4_error(sb, __func__,
697 "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
698 group, free, grp->bb_free);
699 /*
700 * If we intent to continue, we consider group descritor
701 * corrupt and update bb_free using bitmap value
702 */
703 grp->bb_free = free;
704 }
705
706 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
707
708 period = get_cycles() - period;
709 spin_lock(&EXT4_SB(sb)->s_bal_lock);
710 EXT4_SB(sb)->s_mb_buddies_generated++;
711 EXT4_SB(sb)->s_mb_generation_time += period;
712 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
713 }
714
715 /* The buddy information is attached the buddy cache inode
716 * for convenience. The information regarding each group
717 * is loaded via ext4_mb_load_buddy. The information involve
718 * block bitmap and buddy information. The information are
719 * stored in the inode as
720 *
721 * { page }
722 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
723 *
724 *
725 * one block each for bitmap and buddy information.
726 * So for each group we take up 2 blocks. A page can
727 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
728 * So it can have information regarding groups_per_page which
729 * is blocks_per_page/2
730 */
731
732 static int ext4_mb_init_cache(struct page *page, char *incore)
733 {
734 int blocksize;
735 int blocks_per_page;
736 int groups_per_page;
737 int err = 0;
738 int i;
739 ext4_group_t first_group;
740 int first_block;
741 struct super_block *sb;
742 struct buffer_head *bhs;
743 struct buffer_head **bh;
744 struct inode *inode;
745 char *data;
746 char *bitmap;
747
748 mb_debug("init page %lu\n", page->index);
749
750 inode = page->mapping->host;
751 sb = inode->i_sb;
752 blocksize = 1 << inode->i_blkbits;
753 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754
755 groups_per_page = blocks_per_page >> 1;
756 if (groups_per_page == 0)
757 groups_per_page = 1;
758
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page > 1) {
761 err = -ENOMEM;
762 i = sizeof(struct buffer_head *) * groups_per_page;
763 bh = kzalloc(i, GFP_NOFS);
764 if (bh == NULL)
765 goto out;
766 } else
767 bh = &bhs;
768
769 first_group = page->index * blocks_per_page / 2;
770
771 /* read all groups the page covers into the cache */
772 for (i = 0; i < groups_per_page; i++) {
773 struct ext4_group_desc *desc;
774
775 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
776 break;
777
778 err = -EIO;
779 desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 if (desc == NULL)
781 goto out;
782
783 err = -ENOMEM;
784 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 if (bh[i] == NULL)
786 goto out;
787
788 if (bh_uptodate_or_lock(bh[i]))
789 continue;
790
791 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
792 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
793 ext4_init_block_bitmap(sb, bh[i],
794 first_group + i, desc);
795 set_buffer_uptodate(bh[i]);
796 unlock_buffer(bh[i]);
797 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
798 continue;
799 }
800 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
801 get_bh(bh[i]);
802 bh[i]->b_end_io = end_buffer_read_sync;
803 submit_bh(READ, bh[i]);
804 mb_debug("read bitmap for group %lu\n", first_group + i);
805 }
806
807 /* wait for I/O completion */
808 for (i = 0; i < groups_per_page && bh[i]; i++)
809 wait_on_buffer(bh[i]);
810
811 err = -EIO;
812 for (i = 0; i < groups_per_page && bh[i]; i++)
813 if (!buffer_uptodate(bh[i]))
814 goto out;
815
816 err = 0;
817 first_block = page->index * blocks_per_page;
818 for (i = 0; i < blocks_per_page; i++) {
819 int group;
820 struct ext4_group_info *grinfo;
821
822 group = (first_block + i) >> 1;
823 if (group >= EXT4_SB(sb)->s_groups_count)
824 break;
825
826 /*
827 * data carry information regarding this
828 * particular group in the format specified
829 * above
830 *
831 */
832 data = page_address(page) + (i * blocksize);
833 bitmap = bh[group - first_group]->b_data;
834
835 /*
836 * We place the buddy block and bitmap block
837 * close together
838 */
839 if ((first_block + i) & 1) {
840 /* this is block of buddy */
841 BUG_ON(incore == NULL);
842 mb_debug("put buddy for group %u in page %lu/%x\n",
843 group, page->index, i * blocksize);
844 memset(data, 0xff, blocksize);
845 grinfo = ext4_get_group_info(sb, group);
846 grinfo->bb_fragments = 0;
847 memset(grinfo->bb_counters, 0,
848 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
849 /*
850 * incore got set to the group block bitmap below
851 */
852 ext4_mb_generate_buddy(sb, data, incore, group);
853 incore = NULL;
854 } else {
855 /* this is block of bitmap */
856 BUG_ON(incore != NULL);
857 mb_debug("put bitmap for group %u in page %lu/%x\n",
858 group, page->index, i * blocksize);
859
860 /* see comments in ext4_mb_put_pa() */
861 ext4_lock_group(sb, group);
862 memcpy(data, bitmap, blocksize);
863
864 /* mark all preallocated blks used in in-core bitmap */
865 ext4_mb_generate_from_pa(sb, data, group);
866 ext4_unlock_group(sb, group);
867
868 /* set incore so that the buddy information can be
869 * generated using this
870 */
871 incore = data;
872 }
873 }
874 SetPageUptodate(page);
875
876 out:
877 if (bh) {
878 for (i = 0; i < groups_per_page && bh[i]; i++)
879 brelse(bh[i]);
880 if (bh != &bhs)
881 kfree(bh);
882 }
883 return err;
884 }
885
886 static noinline_for_stack int
887 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
888 struct ext4_buddy *e4b)
889 {
890 struct ext4_sb_info *sbi = EXT4_SB(sb);
891 struct inode *inode = sbi->s_buddy_cache;
892 int blocks_per_page;
893 int block;
894 int pnum;
895 int poff;
896 struct page *page;
897 int ret;
898
899 mb_debug("load group %lu\n", group);
900
901 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
902
903 e4b->bd_blkbits = sb->s_blocksize_bits;
904 e4b->bd_info = ext4_get_group_info(sb, group);
905 e4b->bd_sb = sb;
906 e4b->bd_group = group;
907 e4b->bd_buddy_page = NULL;
908 e4b->bd_bitmap_page = NULL;
909
910 /*
911 * the buddy cache inode stores the block bitmap
912 * and buddy information in consecutive blocks.
913 * So for each group we need two blocks.
914 */
915 block = group * 2;
916 pnum = block / blocks_per_page;
917 poff = block % blocks_per_page;
918
919 /* we could use find_or_create_page(), but it locks page
920 * what we'd like to avoid in fast path ... */
921 page = find_get_page(inode->i_mapping, pnum);
922 if (page == NULL || !PageUptodate(page)) {
923 if (page)
924 page_cache_release(page);
925 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
926 if (page) {
927 BUG_ON(page->mapping != inode->i_mapping);
928 if (!PageUptodate(page)) {
929 ret = ext4_mb_init_cache(page, NULL);
930 if (ret) {
931 unlock_page(page);
932 goto err;
933 }
934 mb_cmp_bitmaps(e4b, page_address(page) +
935 (poff * sb->s_blocksize));
936 }
937 unlock_page(page);
938 }
939 }
940 if (page == NULL || !PageUptodate(page)) {
941 ret = -EIO;
942 goto err;
943 }
944 e4b->bd_bitmap_page = page;
945 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
946 mark_page_accessed(page);
947
948 block++;
949 pnum = block / blocks_per_page;
950 poff = block % blocks_per_page;
951
952 page = find_get_page(inode->i_mapping, pnum);
953 if (page == NULL || !PageUptodate(page)) {
954 if (page)
955 page_cache_release(page);
956 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
957 if (page) {
958 BUG_ON(page->mapping != inode->i_mapping);
959 if (!PageUptodate(page)) {
960 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
961 if (ret) {
962 unlock_page(page);
963 goto err;
964 }
965 }
966 unlock_page(page);
967 }
968 }
969 if (page == NULL || !PageUptodate(page)) {
970 ret = -EIO;
971 goto err;
972 }
973 e4b->bd_buddy_page = page;
974 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
975 mark_page_accessed(page);
976
977 BUG_ON(e4b->bd_bitmap_page == NULL);
978 BUG_ON(e4b->bd_buddy_page == NULL);
979
980 return 0;
981
982 err:
983 if (e4b->bd_bitmap_page)
984 page_cache_release(e4b->bd_bitmap_page);
985 if (e4b->bd_buddy_page)
986 page_cache_release(e4b->bd_buddy_page);
987 e4b->bd_buddy = NULL;
988 e4b->bd_bitmap = NULL;
989 return ret;
990 }
991
992 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
993 {
994 if (e4b->bd_bitmap_page)
995 page_cache_release(e4b->bd_bitmap_page);
996 if (e4b->bd_buddy_page)
997 page_cache_release(e4b->bd_buddy_page);
998 }
999
1000
1001 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1002 {
1003 int order = 1;
1004 void *bb;
1005
1006 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1007 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1008
1009 bb = EXT4_MB_BUDDY(e4b);
1010 while (order <= e4b->bd_blkbits + 1) {
1011 block = block >> 1;
1012 if (!mb_test_bit(block, bb)) {
1013 /* this block is part of buddy of order 'order' */
1014 return order;
1015 }
1016 bb += 1 << (e4b->bd_blkbits - order);
1017 order++;
1018 }
1019 return 0;
1020 }
1021
1022 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1023 {
1024 __u32 *addr;
1025
1026 len = cur + len;
1027 while (cur < len) {
1028 if ((cur & 31) == 0 && (len - cur) >= 32) {
1029 /* fast path: clear whole word at once */
1030 addr = bm + (cur >> 3);
1031 *addr = 0;
1032 cur += 32;
1033 continue;
1034 }
1035 mb_clear_bit_atomic(lock, cur, bm);
1036 cur++;
1037 }
1038 }
1039
1040 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1041 {
1042 __u32 *addr;
1043
1044 len = cur + len;
1045 while (cur < len) {
1046 if ((cur & 31) == 0 && (len - cur) >= 32) {
1047 /* fast path: set whole word at once */
1048 addr = bm + (cur >> 3);
1049 *addr = 0xffffffff;
1050 cur += 32;
1051 continue;
1052 }
1053 mb_set_bit_atomic(lock, cur, bm);
1054 cur++;
1055 }
1056 }
1057
1058 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1059 int first, int count)
1060 {
1061 int block = 0;
1062 int max = 0;
1063 int order;
1064 void *buddy;
1065 void *buddy2;
1066 struct super_block *sb = e4b->bd_sb;
1067
1068 BUG_ON(first + count > (sb->s_blocksize << 3));
1069 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1070 mb_check_buddy(e4b);
1071 mb_free_blocks_double(inode, e4b, first, count);
1072
1073 e4b->bd_info->bb_free += count;
1074 if (first < e4b->bd_info->bb_first_free)
1075 e4b->bd_info->bb_first_free = first;
1076
1077 /* let's maintain fragments counter */
1078 if (first != 0)
1079 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1080 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1081 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1082 if (block && max)
1083 e4b->bd_info->bb_fragments--;
1084 else if (!block && !max)
1085 e4b->bd_info->bb_fragments++;
1086
1087 /* let's maintain buddy itself */
1088 while (count-- > 0) {
1089 block = first++;
1090 order = 0;
1091
1092 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1093 ext4_fsblk_t blocknr;
1094 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1095 blocknr += block;
1096 blocknr +=
1097 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1098 ext4_unlock_group(sb, e4b->bd_group);
1099 ext4_error(sb, __func__, "double-free of inode"
1100 " %lu's block %llu(bit %u in group %lu)\n",
1101 inode ? inode->i_ino : 0, blocknr, block,
1102 e4b->bd_group);
1103 ext4_lock_group(sb, e4b->bd_group);
1104 }
1105 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1106 e4b->bd_info->bb_counters[order]++;
1107
1108 /* start of the buddy */
1109 buddy = mb_find_buddy(e4b, order, &max);
1110
1111 do {
1112 block &= ~1UL;
1113 if (mb_test_bit(block, buddy) ||
1114 mb_test_bit(block + 1, buddy))
1115 break;
1116
1117 /* both the buddies are free, try to coalesce them */
1118 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1119
1120 if (!buddy2)
1121 break;
1122
1123 if (order > 0) {
1124 /* for special purposes, we don't set
1125 * free bits in bitmap */
1126 mb_set_bit(block, buddy);
1127 mb_set_bit(block + 1, buddy);
1128 }
1129 e4b->bd_info->bb_counters[order]--;
1130 e4b->bd_info->bb_counters[order]--;
1131
1132 block = block >> 1;
1133 order++;
1134 e4b->bd_info->bb_counters[order]++;
1135
1136 mb_clear_bit(block, buddy2);
1137 buddy = buddy2;
1138 } while (1);
1139 }
1140 mb_check_buddy(e4b);
1141 }
1142
1143 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1144 int needed, struct ext4_free_extent *ex)
1145 {
1146 int next = block;
1147 int max;
1148 int ord;
1149 void *buddy;
1150
1151 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1152 BUG_ON(ex == NULL);
1153
1154 buddy = mb_find_buddy(e4b, order, &max);
1155 BUG_ON(buddy == NULL);
1156 BUG_ON(block >= max);
1157 if (mb_test_bit(block, buddy)) {
1158 ex->fe_len = 0;
1159 ex->fe_start = 0;
1160 ex->fe_group = 0;
1161 return 0;
1162 }
1163
1164 /* FIXME dorp order completely ? */
1165 if (likely(order == 0)) {
1166 /* find actual order */
1167 order = mb_find_order_for_block(e4b, block);
1168 block = block >> order;
1169 }
1170
1171 ex->fe_len = 1 << order;
1172 ex->fe_start = block << order;
1173 ex->fe_group = e4b->bd_group;
1174
1175 /* calc difference from given start */
1176 next = next - ex->fe_start;
1177 ex->fe_len -= next;
1178 ex->fe_start += next;
1179
1180 while (needed > ex->fe_len &&
1181 (buddy = mb_find_buddy(e4b, order, &max))) {
1182
1183 if (block + 1 >= max)
1184 break;
1185
1186 next = (block + 1) * (1 << order);
1187 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1188 break;
1189
1190 ord = mb_find_order_for_block(e4b, next);
1191
1192 order = ord;
1193 block = next >> order;
1194 ex->fe_len += 1 << order;
1195 }
1196
1197 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1198 return ex->fe_len;
1199 }
1200
1201 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1202 {
1203 int ord;
1204 int mlen = 0;
1205 int max = 0;
1206 int cur;
1207 int start = ex->fe_start;
1208 int len = ex->fe_len;
1209 unsigned ret = 0;
1210 int len0 = len;
1211 void *buddy;
1212
1213 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1214 BUG_ON(e4b->bd_group != ex->fe_group);
1215 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1216 mb_check_buddy(e4b);
1217 mb_mark_used_double(e4b, start, len);
1218
1219 e4b->bd_info->bb_free -= len;
1220 if (e4b->bd_info->bb_first_free == start)
1221 e4b->bd_info->bb_first_free += len;
1222
1223 /* let's maintain fragments counter */
1224 if (start != 0)
1225 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1226 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1227 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1228 if (mlen && max)
1229 e4b->bd_info->bb_fragments++;
1230 else if (!mlen && !max)
1231 e4b->bd_info->bb_fragments--;
1232
1233 /* let's maintain buddy itself */
1234 while (len) {
1235 ord = mb_find_order_for_block(e4b, start);
1236
1237 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1238 /* the whole chunk may be allocated at once! */
1239 mlen = 1 << ord;
1240 buddy = mb_find_buddy(e4b, ord, &max);
1241 BUG_ON((start >> ord) >= max);
1242 mb_set_bit(start >> ord, buddy);
1243 e4b->bd_info->bb_counters[ord]--;
1244 start += mlen;
1245 len -= mlen;
1246 BUG_ON(len < 0);
1247 continue;
1248 }
1249
1250 /* store for history */
1251 if (ret == 0)
1252 ret = len | (ord << 16);
1253
1254 /* we have to split large buddy */
1255 BUG_ON(ord <= 0);
1256 buddy = mb_find_buddy(e4b, ord, &max);
1257 mb_set_bit(start >> ord, buddy);
1258 e4b->bd_info->bb_counters[ord]--;
1259
1260 ord--;
1261 cur = (start >> ord) & ~1U;
1262 buddy = mb_find_buddy(e4b, ord, &max);
1263 mb_clear_bit(cur, buddy);
1264 mb_clear_bit(cur + 1, buddy);
1265 e4b->bd_info->bb_counters[ord]++;
1266 e4b->bd_info->bb_counters[ord]++;
1267 }
1268
1269 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1270 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1271 mb_check_buddy(e4b);
1272
1273 return ret;
1274 }
1275
1276 /*
1277 * Must be called under group lock!
1278 */
1279 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1280 struct ext4_buddy *e4b)
1281 {
1282 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1283 int ret;
1284
1285 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1286 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1287
1288 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1289 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1290 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1291
1292 /* preallocation can change ac_b_ex, thus we store actually
1293 * allocated blocks for history */
1294 ac->ac_f_ex = ac->ac_b_ex;
1295
1296 ac->ac_status = AC_STATUS_FOUND;
1297 ac->ac_tail = ret & 0xffff;
1298 ac->ac_buddy = ret >> 16;
1299
1300 /* XXXXXXX: SUCH A HORRIBLE **CK */
1301 /*FIXME!! Why ? */
1302 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1303 get_page(ac->ac_bitmap_page);
1304 ac->ac_buddy_page = e4b->bd_buddy_page;
1305 get_page(ac->ac_buddy_page);
1306
1307 /* store last allocated for subsequent stream allocation */
1308 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1309 spin_lock(&sbi->s_md_lock);
1310 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1311 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1312 spin_unlock(&sbi->s_md_lock);
1313 }
1314 }
1315
1316 /*
1317 * regular allocator, for general purposes allocation
1318 */
1319
1320 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1321 struct ext4_buddy *e4b,
1322 int finish_group)
1323 {
1324 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1325 struct ext4_free_extent *bex = &ac->ac_b_ex;
1326 struct ext4_free_extent *gex = &ac->ac_g_ex;
1327 struct ext4_free_extent ex;
1328 int max;
1329
1330 /*
1331 * We don't want to scan for a whole year
1332 */
1333 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1334 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1335 ac->ac_status = AC_STATUS_BREAK;
1336 return;
1337 }
1338
1339 /*
1340 * Haven't found good chunk so far, let's continue
1341 */
1342 if (bex->fe_len < gex->fe_len)
1343 return;
1344
1345 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1346 && bex->fe_group == e4b->bd_group) {
1347 /* recheck chunk's availability - we don't know
1348 * when it was found (within this lock-unlock
1349 * period or not) */
1350 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1351 if (max >= gex->fe_len) {
1352 ext4_mb_use_best_found(ac, e4b);
1353 return;
1354 }
1355 }
1356 }
1357
1358 /*
1359 * The routine checks whether found extent is good enough. If it is,
1360 * then the extent gets marked used and flag is set to the context
1361 * to stop scanning. Otherwise, the extent is compared with the
1362 * previous found extent and if new one is better, then it's stored
1363 * in the context. Later, the best found extent will be used, if
1364 * mballoc can't find good enough extent.
1365 *
1366 * FIXME: real allocation policy is to be designed yet!
1367 */
1368 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1369 struct ext4_free_extent *ex,
1370 struct ext4_buddy *e4b)
1371 {
1372 struct ext4_free_extent *bex = &ac->ac_b_ex;
1373 struct ext4_free_extent *gex = &ac->ac_g_ex;
1374
1375 BUG_ON(ex->fe_len <= 0);
1376 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1377 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1378 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1379
1380 ac->ac_found++;
1381
1382 /*
1383 * The special case - take what you catch first
1384 */
1385 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1386 *bex = *ex;
1387 ext4_mb_use_best_found(ac, e4b);
1388 return;
1389 }
1390
1391 /*
1392 * Let's check whether the chuck is good enough
1393 */
1394 if (ex->fe_len == gex->fe_len) {
1395 *bex = *ex;
1396 ext4_mb_use_best_found(ac, e4b);
1397 return;
1398 }
1399
1400 /*
1401 * If this is first found extent, just store it in the context
1402 */
1403 if (bex->fe_len == 0) {
1404 *bex = *ex;
1405 return;
1406 }
1407
1408 /*
1409 * If new found extent is better, store it in the context
1410 */
1411 if (bex->fe_len < gex->fe_len) {
1412 /* if the request isn't satisfied, any found extent
1413 * larger than previous best one is better */
1414 if (ex->fe_len > bex->fe_len)
1415 *bex = *ex;
1416 } else if (ex->fe_len > gex->fe_len) {
1417 /* if the request is satisfied, then we try to find
1418 * an extent that still satisfy the request, but is
1419 * smaller than previous one */
1420 if (ex->fe_len < bex->fe_len)
1421 *bex = *ex;
1422 }
1423
1424 ext4_mb_check_limits(ac, e4b, 0);
1425 }
1426
1427 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1428 struct ext4_buddy *e4b)
1429 {
1430 struct ext4_free_extent ex = ac->ac_b_ex;
1431 ext4_group_t group = ex.fe_group;
1432 int max;
1433 int err;
1434
1435 BUG_ON(ex.fe_len <= 0);
1436 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1437 if (err)
1438 return err;
1439
1440 ext4_lock_group(ac->ac_sb, group);
1441 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1442
1443 if (max > 0) {
1444 ac->ac_b_ex = ex;
1445 ext4_mb_use_best_found(ac, e4b);
1446 }
1447
1448 ext4_unlock_group(ac->ac_sb, group);
1449 ext4_mb_release_desc(e4b);
1450
1451 return 0;
1452 }
1453
1454 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1455 struct ext4_buddy *e4b)
1456 {
1457 ext4_group_t group = ac->ac_g_ex.fe_group;
1458 int max;
1459 int err;
1460 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1461 struct ext4_super_block *es = sbi->s_es;
1462 struct ext4_free_extent ex;
1463
1464 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1465 return 0;
1466
1467 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1468 if (err)
1469 return err;
1470
1471 ext4_lock_group(ac->ac_sb, group);
1472 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1473 ac->ac_g_ex.fe_len, &ex);
1474
1475 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1476 ext4_fsblk_t start;
1477
1478 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1479 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1480 /* use do_div to get remainder (would be 64-bit modulo) */
1481 if (do_div(start, sbi->s_stripe) == 0) {
1482 ac->ac_found++;
1483 ac->ac_b_ex = ex;
1484 ext4_mb_use_best_found(ac, e4b);
1485 }
1486 } else if (max >= ac->ac_g_ex.fe_len) {
1487 BUG_ON(ex.fe_len <= 0);
1488 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1489 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1490 ac->ac_found++;
1491 ac->ac_b_ex = ex;
1492 ext4_mb_use_best_found(ac, e4b);
1493 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1494 /* Sometimes, caller may want to merge even small
1495 * number of blocks to an existing extent */
1496 BUG_ON(ex.fe_len <= 0);
1497 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1498 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1499 ac->ac_found++;
1500 ac->ac_b_ex = ex;
1501 ext4_mb_use_best_found(ac, e4b);
1502 }
1503 ext4_unlock_group(ac->ac_sb, group);
1504 ext4_mb_release_desc(e4b);
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * The routine scans buddy structures (not bitmap!) from given order
1511 * to max order and tries to find big enough chunk to satisfy the req
1512 */
1513 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1514 struct ext4_buddy *e4b)
1515 {
1516 struct super_block *sb = ac->ac_sb;
1517 struct ext4_group_info *grp = e4b->bd_info;
1518 void *buddy;
1519 int i;
1520 int k;
1521 int max;
1522
1523 BUG_ON(ac->ac_2order <= 0);
1524 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1525 if (grp->bb_counters[i] == 0)
1526 continue;
1527
1528 buddy = mb_find_buddy(e4b, i, &max);
1529 BUG_ON(buddy == NULL);
1530
1531 k = mb_find_next_zero_bit(buddy, max, 0);
1532 BUG_ON(k >= max);
1533
1534 ac->ac_found++;
1535
1536 ac->ac_b_ex.fe_len = 1 << i;
1537 ac->ac_b_ex.fe_start = k << i;
1538 ac->ac_b_ex.fe_group = e4b->bd_group;
1539
1540 ext4_mb_use_best_found(ac, e4b);
1541
1542 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1543
1544 if (EXT4_SB(sb)->s_mb_stats)
1545 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1546
1547 break;
1548 }
1549 }
1550
1551 /*
1552 * The routine scans the group and measures all found extents.
1553 * In order to optimize scanning, caller must pass number of
1554 * free blocks in the group, so the routine can know upper limit.
1555 */
1556 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1557 struct ext4_buddy *e4b)
1558 {
1559 struct super_block *sb = ac->ac_sb;
1560 void *bitmap = EXT4_MB_BITMAP(e4b);
1561 struct ext4_free_extent ex;
1562 int i;
1563 int free;
1564
1565 free = e4b->bd_info->bb_free;
1566 BUG_ON(free <= 0);
1567
1568 i = e4b->bd_info->bb_first_free;
1569
1570 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1571 i = mb_find_next_zero_bit(bitmap,
1572 EXT4_BLOCKS_PER_GROUP(sb), i);
1573 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1574 /*
1575 * IF we have corrupt bitmap, we won't find any
1576 * free blocks even though group info says we
1577 * we have free blocks
1578 */
1579 ext4_error(sb, __func__, "%d free blocks as per "
1580 "group info. But bitmap says 0\n",
1581 free);
1582 break;
1583 }
1584
1585 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1586 BUG_ON(ex.fe_len <= 0);
1587 if (free < ex.fe_len) {
1588 ext4_error(sb, __func__, "%d free blocks as per "
1589 "group info. But got %d blocks\n",
1590 free, ex.fe_len);
1591 /*
1592 * The number of free blocks differs. This mostly
1593 * indicate that the bitmap is corrupt. So exit
1594 * without claiming the space.
1595 */
1596 break;
1597 }
1598
1599 ext4_mb_measure_extent(ac, &ex, e4b);
1600
1601 i += ex.fe_len;
1602 free -= ex.fe_len;
1603 }
1604
1605 ext4_mb_check_limits(ac, e4b, 1);
1606 }
1607
1608 /*
1609 * This is a special case for storages like raid5
1610 * we try to find stripe-aligned chunks for stripe-size requests
1611 * XXX should do so at least for multiples of stripe size as well
1612 */
1613 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1614 struct ext4_buddy *e4b)
1615 {
1616 struct super_block *sb = ac->ac_sb;
1617 struct ext4_sb_info *sbi = EXT4_SB(sb);
1618 void *bitmap = EXT4_MB_BITMAP(e4b);
1619 struct ext4_free_extent ex;
1620 ext4_fsblk_t first_group_block;
1621 ext4_fsblk_t a;
1622 ext4_grpblk_t i;
1623 int max;
1624
1625 BUG_ON(sbi->s_stripe == 0);
1626
1627 /* find first stripe-aligned block in group */
1628 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1629 + le32_to_cpu(sbi->s_es->s_first_data_block);
1630 a = first_group_block + sbi->s_stripe - 1;
1631 do_div(a, sbi->s_stripe);
1632 i = (a * sbi->s_stripe) - first_group_block;
1633
1634 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1635 if (!mb_test_bit(i, bitmap)) {
1636 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1637 if (max >= sbi->s_stripe) {
1638 ac->ac_found++;
1639 ac->ac_b_ex = ex;
1640 ext4_mb_use_best_found(ac, e4b);
1641 break;
1642 }
1643 }
1644 i += sbi->s_stripe;
1645 }
1646 }
1647
1648 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1649 ext4_group_t group, int cr)
1650 {
1651 unsigned free, fragments;
1652 unsigned i, bits;
1653 struct ext4_group_desc *desc;
1654 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1655
1656 BUG_ON(cr < 0 || cr >= 4);
1657 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1658
1659 free = grp->bb_free;
1660 fragments = grp->bb_fragments;
1661 if (free == 0)
1662 return 0;
1663 if (fragments == 0)
1664 return 0;
1665
1666 switch (cr) {
1667 case 0:
1668 BUG_ON(ac->ac_2order == 0);
1669 /* If this group is uninitialized, skip it initially */
1670 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1671 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1672 return 0;
1673
1674 bits = ac->ac_sb->s_blocksize_bits + 1;
1675 for (i = ac->ac_2order; i <= bits; i++)
1676 if (grp->bb_counters[i] > 0)
1677 return 1;
1678 break;
1679 case 1:
1680 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1681 return 1;
1682 break;
1683 case 2:
1684 if (free >= ac->ac_g_ex.fe_len)
1685 return 1;
1686 break;
1687 case 3:
1688 return 1;
1689 default:
1690 BUG();
1691 }
1692
1693 return 0;
1694 }
1695
1696 static noinline_for_stack int
1697 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1698 {
1699 ext4_group_t group;
1700 ext4_group_t i;
1701 int cr;
1702 int err = 0;
1703 int bsbits;
1704 struct ext4_sb_info *sbi;
1705 struct super_block *sb;
1706 struct ext4_buddy e4b;
1707 loff_t size, isize;
1708
1709 sb = ac->ac_sb;
1710 sbi = EXT4_SB(sb);
1711 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1712
1713 /* first, try the goal */
1714 err = ext4_mb_find_by_goal(ac, &e4b);
1715 if (err || ac->ac_status == AC_STATUS_FOUND)
1716 goto out;
1717
1718 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1719 goto out;
1720
1721 /*
1722 * ac->ac2_order is set only if the fe_len is a power of 2
1723 * if ac2_order is set we also set criteria to 0 so that we
1724 * try exact allocation using buddy.
1725 */
1726 i = fls(ac->ac_g_ex.fe_len);
1727 ac->ac_2order = 0;
1728 /*
1729 * We search using buddy data only if the order of the request
1730 * is greater than equal to the sbi_s_mb_order2_reqs
1731 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1732 */
1733 if (i >= sbi->s_mb_order2_reqs) {
1734 /*
1735 * This should tell if fe_len is exactly power of 2
1736 */
1737 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1738 ac->ac_2order = i - 1;
1739 }
1740
1741 bsbits = ac->ac_sb->s_blocksize_bits;
1742 /* if stream allocation is enabled, use global goal */
1743 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1744 isize = i_size_read(ac->ac_inode) >> bsbits;
1745 if (size < isize)
1746 size = isize;
1747
1748 if (size < sbi->s_mb_stream_request &&
1749 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1750 /* TBD: may be hot point */
1751 spin_lock(&sbi->s_md_lock);
1752 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1753 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1754 spin_unlock(&sbi->s_md_lock);
1755 }
1756 /* Let's just scan groups to find more-less suitable blocks */
1757 cr = ac->ac_2order ? 0 : 1;
1758 /*
1759 * cr == 0 try to get exact allocation,
1760 * cr == 3 try to get anything
1761 */
1762 repeat:
1763 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1764 ac->ac_criteria = cr;
1765 /*
1766 * searching for the right group start
1767 * from the goal value specified
1768 */
1769 group = ac->ac_g_ex.fe_group;
1770
1771 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1772 struct ext4_group_info *grp;
1773 struct ext4_group_desc *desc;
1774
1775 if (group == EXT4_SB(sb)->s_groups_count)
1776 group = 0;
1777
1778 /* quick check to skip empty groups */
1779 grp = ext4_get_group_info(ac->ac_sb, group);
1780 if (grp->bb_free == 0)
1781 continue;
1782
1783 /*
1784 * if the group is already init we check whether it is
1785 * a good group and if not we don't load the buddy
1786 */
1787 if (EXT4_MB_GRP_NEED_INIT(grp)) {
1788 /*
1789 * we need full data about the group
1790 * to make a good selection
1791 */
1792 err = ext4_mb_load_buddy(sb, group, &e4b);
1793 if (err)
1794 goto out;
1795 ext4_mb_release_desc(&e4b);
1796 }
1797
1798 /*
1799 * If the particular group doesn't satisfy our
1800 * criteria we continue with the next group
1801 */
1802 if (!ext4_mb_good_group(ac, group, cr))
1803 continue;
1804
1805 err = ext4_mb_load_buddy(sb, group, &e4b);
1806 if (err)
1807 goto out;
1808
1809 ext4_lock_group(sb, group);
1810 if (!ext4_mb_good_group(ac, group, cr)) {
1811 /* someone did allocation from this group */
1812 ext4_unlock_group(sb, group);
1813 ext4_mb_release_desc(&e4b);
1814 continue;
1815 }
1816
1817 ac->ac_groups_scanned++;
1818 desc = ext4_get_group_desc(sb, group, NULL);
1819 if (cr == 0 || (desc->bg_flags &
1820 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1821 ac->ac_2order != 0))
1822 ext4_mb_simple_scan_group(ac, &e4b);
1823 else if (cr == 1 &&
1824 ac->ac_g_ex.fe_len == sbi->s_stripe)
1825 ext4_mb_scan_aligned(ac, &e4b);
1826 else
1827 ext4_mb_complex_scan_group(ac, &e4b);
1828
1829 ext4_unlock_group(sb, group);
1830 ext4_mb_release_desc(&e4b);
1831
1832 if (ac->ac_status != AC_STATUS_CONTINUE)
1833 break;
1834 }
1835 }
1836
1837 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1838 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1839 /*
1840 * We've been searching too long. Let's try to allocate
1841 * the best chunk we've found so far
1842 */
1843
1844 ext4_mb_try_best_found(ac, &e4b);
1845 if (ac->ac_status != AC_STATUS_FOUND) {
1846 /*
1847 * Someone more lucky has already allocated it.
1848 * The only thing we can do is just take first
1849 * found block(s)
1850 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1851 */
1852 ac->ac_b_ex.fe_group = 0;
1853 ac->ac_b_ex.fe_start = 0;
1854 ac->ac_b_ex.fe_len = 0;
1855 ac->ac_status = AC_STATUS_CONTINUE;
1856 ac->ac_flags |= EXT4_MB_HINT_FIRST;
1857 cr = 3;
1858 atomic_inc(&sbi->s_mb_lost_chunks);
1859 goto repeat;
1860 }
1861 }
1862 out:
1863 return err;
1864 }
1865
1866 #ifdef EXT4_MB_HISTORY
1867 struct ext4_mb_proc_session {
1868 struct ext4_mb_history *history;
1869 struct super_block *sb;
1870 int start;
1871 int max;
1872 };
1873
1874 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1875 struct ext4_mb_history *hs,
1876 int first)
1877 {
1878 if (hs == s->history + s->max)
1879 hs = s->history;
1880 if (!first && hs == s->history + s->start)
1881 return NULL;
1882 while (hs->orig.fe_len == 0) {
1883 hs++;
1884 if (hs == s->history + s->max)
1885 hs = s->history;
1886 if (hs == s->history + s->start)
1887 return NULL;
1888 }
1889 return hs;
1890 }
1891
1892 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1893 {
1894 struct ext4_mb_proc_session *s = seq->private;
1895 struct ext4_mb_history *hs;
1896 int l = *pos;
1897
1898 if (l == 0)
1899 return SEQ_START_TOKEN;
1900 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1901 if (!hs)
1902 return NULL;
1903 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1904 return hs;
1905 }
1906
1907 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1908 loff_t *pos)
1909 {
1910 struct ext4_mb_proc_session *s = seq->private;
1911 struct ext4_mb_history *hs = v;
1912
1913 ++*pos;
1914 if (v == SEQ_START_TOKEN)
1915 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1916 else
1917 return ext4_mb_history_skip_empty(s, ++hs, 0);
1918 }
1919
1920 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1921 {
1922 char buf[25], buf2[25], buf3[25], *fmt;
1923 struct ext4_mb_history *hs = v;
1924
1925 if (v == SEQ_START_TOKEN) {
1926 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1927 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
1928 "pid", "inode", "original", "goal", "result", "found",
1929 "grps", "cr", "flags", "merge", "tail", "broken");
1930 return 0;
1931 }
1932
1933 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1934 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1935 "%-5u %-5s %-5u %-6u\n";
1936 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1937 hs->result.fe_start, hs->result.fe_len,
1938 hs->result.fe_logical);
1939 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1940 hs->orig.fe_start, hs->orig.fe_len,
1941 hs->orig.fe_logical);
1942 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1943 hs->goal.fe_start, hs->goal.fe_len,
1944 hs->goal.fe_logical);
1945 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1946 hs->found, hs->groups, hs->cr, hs->flags,
1947 hs->merged ? "M" : "", hs->tail,
1948 hs->buddy ? 1 << hs->buddy : 0);
1949 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1950 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1951 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1952 hs->result.fe_start, hs->result.fe_len,
1953 hs->result.fe_logical);
1954 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1955 hs->orig.fe_start, hs->orig.fe_len,
1956 hs->orig.fe_logical);
1957 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1958 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1959 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1960 hs->result.fe_start, hs->result.fe_len);
1961 seq_printf(seq, "%-5u %-8u %-23s discard\n",
1962 hs->pid, hs->ino, buf2);
1963 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
1964 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1965 hs->result.fe_start, hs->result.fe_len);
1966 seq_printf(seq, "%-5u %-8u %-23s free\n",
1967 hs->pid, hs->ino, buf2);
1968 }
1969 return 0;
1970 }
1971
1972 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1973 {
1974 }
1975
1976 static struct seq_operations ext4_mb_seq_history_ops = {
1977 .start = ext4_mb_seq_history_start,
1978 .next = ext4_mb_seq_history_next,
1979 .stop = ext4_mb_seq_history_stop,
1980 .show = ext4_mb_seq_history_show,
1981 };
1982
1983 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1984 {
1985 struct super_block *sb = PDE(inode)->data;
1986 struct ext4_sb_info *sbi = EXT4_SB(sb);
1987 struct ext4_mb_proc_session *s;
1988 int rc;
1989 int size;
1990
1991 if (unlikely(sbi->s_mb_history == NULL))
1992 return -ENOMEM;
1993 s = kmalloc(sizeof(*s), GFP_KERNEL);
1994 if (s == NULL)
1995 return -ENOMEM;
1996 s->sb = sb;
1997 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1998 s->history = kmalloc(size, GFP_KERNEL);
1999 if (s->history == NULL) {
2000 kfree(s);
2001 return -ENOMEM;
2002 }
2003
2004 spin_lock(&sbi->s_mb_history_lock);
2005 memcpy(s->history, sbi->s_mb_history, size);
2006 s->max = sbi->s_mb_history_max;
2007 s->start = sbi->s_mb_history_cur % s->max;
2008 spin_unlock(&sbi->s_mb_history_lock);
2009
2010 rc = seq_open(file, &ext4_mb_seq_history_ops);
2011 if (rc == 0) {
2012 struct seq_file *m = (struct seq_file *)file->private_data;
2013 m->private = s;
2014 } else {
2015 kfree(s->history);
2016 kfree(s);
2017 }
2018 return rc;
2019
2020 }
2021
2022 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2023 {
2024 struct seq_file *seq = (struct seq_file *)file->private_data;
2025 struct ext4_mb_proc_session *s = seq->private;
2026 kfree(s->history);
2027 kfree(s);
2028 return seq_release(inode, file);
2029 }
2030
2031 static ssize_t ext4_mb_seq_history_write(struct file *file,
2032 const char __user *buffer,
2033 size_t count, loff_t *ppos)
2034 {
2035 struct seq_file *seq = (struct seq_file *)file->private_data;
2036 struct ext4_mb_proc_session *s = seq->private;
2037 struct super_block *sb = s->sb;
2038 char str[32];
2039 int value;
2040
2041 if (count >= sizeof(str)) {
2042 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2043 "mb_history", (int)sizeof(str));
2044 return -EOVERFLOW;
2045 }
2046
2047 if (copy_from_user(str, buffer, count))
2048 return -EFAULT;
2049
2050 value = simple_strtol(str, NULL, 0);
2051 if (value < 0)
2052 return -ERANGE;
2053 EXT4_SB(sb)->s_mb_history_filter = value;
2054
2055 return count;
2056 }
2057
2058 static struct file_operations ext4_mb_seq_history_fops = {
2059 .owner = THIS_MODULE,
2060 .open = ext4_mb_seq_history_open,
2061 .read = seq_read,
2062 .write = ext4_mb_seq_history_write,
2063 .llseek = seq_lseek,
2064 .release = ext4_mb_seq_history_release,
2065 };
2066
2067 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2068 {
2069 struct super_block *sb = seq->private;
2070 struct ext4_sb_info *sbi = EXT4_SB(sb);
2071 ext4_group_t group;
2072
2073 if (*pos < 0 || *pos >= sbi->s_groups_count)
2074 return NULL;
2075
2076 group = *pos + 1;
2077 return (void *) group;
2078 }
2079
2080 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2081 {
2082 struct super_block *sb = seq->private;
2083 struct ext4_sb_info *sbi = EXT4_SB(sb);
2084 ext4_group_t group;
2085
2086 ++*pos;
2087 if (*pos < 0 || *pos >= sbi->s_groups_count)
2088 return NULL;
2089 group = *pos + 1;
2090 return (void *) group;;
2091 }
2092
2093 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2094 {
2095 struct super_block *sb = seq->private;
2096 long group = (long) v;
2097 int i;
2098 int err;
2099 struct ext4_buddy e4b;
2100 struct sg {
2101 struct ext4_group_info info;
2102 unsigned short counters[16];
2103 } sg;
2104
2105 group--;
2106 if (group == 0)
2107 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2108 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2109 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2110 "group", "free", "frags", "first",
2111 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2112 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2113
2114 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2115 sizeof(struct ext4_group_info);
2116 err = ext4_mb_load_buddy(sb, group, &e4b);
2117 if (err) {
2118 seq_printf(seq, "#%-5lu: I/O error\n", group);
2119 return 0;
2120 }
2121 ext4_lock_group(sb, group);
2122 memcpy(&sg, ext4_get_group_info(sb, group), i);
2123 ext4_unlock_group(sb, group);
2124 ext4_mb_release_desc(&e4b);
2125
2126 seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2127 sg.info.bb_fragments, sg.info.bb_first_free);
2128 for (i = 0; i <= 13; i++)
2129 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2130 sg.info.bb_counters[i] : 0);
2131 seq_printf(seq, " ]\n");
2132
2133 return 0;
2134 }
2135
2136 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2137 {
2138 }
2139
2140 static struct seq_operations ext4_mb_seq_groups_ops = {
2141 .start = ext4_mb_seq_groups_start,
2142 .next = ext4_mb_seq_groups_next,
2143 .stop = ext4_mb_seq_groups_stop,
2144 .show = ext4_mb_seq_groups_show,
2145 };
2146
2147 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2148 {
2149 struct super_block *sb = PDE(inode)->data;
2150 int rc;
2151
2152 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2153 if (rc == 0) {
2154 struct seq_file *m = (struct seq_file *)file->private_data;
2155 m->private = sb;
2156 }
2157 return rc;
2158
2159 }
2160
2161 static struct file_operations ext4_mb_seq_groups_fops = {
2162 .owner = THIS_MODULE,
2163 .open = ext4_mb_seq_groups_open,
2164 .read = seq_read,
2165 .llseek = seq_lseek,
2166 .release = seq_release,
2167 };
2168
2169 static void ext4_mb_history_release(struct super_block *sb)
2170 {
2171 struct ext4_sb_info *sbi = EXT4_SB(sb);
2172
2173 remove_proc_entry("mb_groups", sbi->s_mb_proc);
2174 remove_proc_entry("mb_history", sbi->s_mb_proc);
2175
2176 kfree(sbi->s_mb_history);
2177 }
2178
2179 static void ext4_mb_history_init(struct super_block *sb)
2180 {
2181 struct ext4_sb_info *sbi = EXT4_SB(sb);
2182 int i;
2183
2184 if (sbi->s_mb_proc != NULL) {
2185 proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
2186 &ext4_mb_seq_history_fops, sb);
2187 proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
2188 &ext4_mb_seq_groups_fops, sb);
2189 }
2190
2191 sbi->s_mb_history_max = 1000;
2192 sbi->s_mb_history_cur = 0;
2193 spin_lock_init(&sbi->s_mb_history_lock);
2194 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2195 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2196 /* if we can't allocate history, then we simple won't use it */
2197 }
2198
2199 static noinline_for_stack void
2200 ext4_mb_store_history(struct ext4_allocation_context *ac)
2201 {
2202 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2203 struct ext4_mb_history h;
2204
2205 if (unlikely(sbi->s_mb_history == NULL))
2206 return;
2207
2208 if (!(ac->ac_op & sbi->s_mb_history_filter))
2209 return;
2210
2211 h.op = ac->ac_op;
2212 h.pid = current->pid;
2213 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2214 h.orig = ac->ac_o_ex;
2215 h.result = ac->ac_b_ex;
2216 h.flags = ac->ac_flags;
2217 h.found = ac->ac_found;
2218 h.groups = ac->ac_groups_scanned;
2219 h.cr = ac->ac_criteria;
2220 h.tail = ac->ac_tail;
2221 h.buddy = ac->ac_buddy;
2222 h.merged = 0;
2223 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2224 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2225 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2226 h.merged = 1;
2227 h.goal = ac->ac_g_ex;
2228 h.result = ac->ac_f_ex;
2229 }
2230
2231 spin_lock(&sbi->s_mb_history_lock);
2232 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2233 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2234 sbi->s_mb_history_cur = 0;
2235 spin_unlock(&sbi->s_mb_history_lock);
2236 }
2237
2238 #else
2239 #define ext4_mb_history_release(sb)
2240 #define ext4_mb_history_init(sb)
2241 #endif
2242
2243
2244 /* Create and initialize ext4_group_info data for the given group. */
2245 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2246 struct ext4_group_desc *desc)
2247 {
2248 int i, len;
2249 int metalen = 0;
2250 struct ext4_sb_info *sbi = EXT4_SB(sb);
2251 struct ext4_group_info **meta_group_info;
2252
2253 /*
2254 * First check if this group is the first of a reserved block.
2255 * If it's true, we have to allocate a new table of pointers
2256 * to ext4_group_info structures
2257 */
2258 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2259 metalen = sizeof(*meta_group_info) <<
2260 EXT4_DESC_PER_BLOCK_BITS(sb);
2261 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2262 if (meta_group_info == NULL) {
2263 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2264 "buddy group\n");
2265 goto exit_meta_group_info;
2266 }
2267 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2268 meta_group_info;
2269 }
2270
2271 /*
2272 * calculate needed size. if change bb_counters size,
2273 * don't forget about ext4_mb_generate_buddy()
2274 */
2275 len = offsetof(typeof(**meta_group_info),
2276 bb_counters[sb->s_blocksize_bits + 2]);
2277
2278 meta_group_info =
2279 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2280 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2281
2282 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2283 if (meta_group_info[i] == NULL) {
2284 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2285 goto exit_group_info;
2286 }
2287 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2288 &(meta_group_info[i]->bb_state));
2289
2290 /*
2291 * initialize bb_free to be able to skip
2292 * empty groups without initialization
2293 */
2294 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2295 meta_group_info[i]->bb_free =
2296 ext4_free_blocks_after_init(sb, group, desc);
2297 } else {
2298 meta_group_info[i]->bb_free =
2299 le16_to_cpu(desc->bg_free_blocks_count);
2300 }
2301
2302 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2303
2304 #ifdef DOUBLE_CHECK
2305 {
2306 struct buffer_head *bh;
2307 meta_group_info[i]->bb_bitmap =
2308 kmalloc(sb->s_blocksize, GFP_KERNEL);
2309 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2310 bh = ext4_read_block_bitmap(sb, group);
2311 BUG_ON(bh == NULL);
2312 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2313 sb->s_blocksize);
2314 put_bh(bh);
2315 }
2316 #endif
2317
2318 return 0;
2319
2320 exit_group_info:
2321 /* If a meta_group_info table has been allocated, release it now */
2322 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2323 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2324 exit_meta_group_info:
2325 return -ENOMEM;
2326 } /* ext4_mb_add_groupinfo */
2327
2328 /*
2329 * Add a group to the existing groups.
2330 * This function is used for online resize
2331 */
2332 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
2333 struct ext4_group_desc *desc)
2334 {
2335 struct ext4_sb_info *sbi = EXT4_SB(sb);
2336 struct inode *inode = sbi->s_buddy_cache;
2337 int blocks_per_page;
2338 int block;
2339 int pnum;
2340 struct page *page;
2341 int err;
2342
2343 /* Add group based on group descriptor*/
2344 err = ext4_mb_add_groupinfo(sb, group, desc);
2345 if (err)
2346 return err;
2347
2348 /*
2349 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
2350 * datas) are set not up to date so that they will be re-initilaized
2351 * during the next call to ext4_mb_load_buddy
2352 */
2353
2354 /* Set buddy page as not up to date */
2355 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
2356 block = group * 2;
2357 pnum = block / blocks_per_page;
2358 page = find_get_page(inode->i_mapping, pnum);
2359 if (page != NULL) {
2360 ClearPageUptodate(page);
2361 page_cache_release(page);
2362 }
2363
2364 /* Set bitmap page as not up to date */
2365 block++;
2366 pnum = block / blocks_per_page;
2367 page = find_get_page(inode->i_mapping, pnum);
2368 if (page != NULL) {
2369 ClearPageUptodate(page);
2370 page_cache_release(page);
2371 }
2372
2373 return 0;
2374 }
2375
2376 /*
2377 * Update an existing group.
2378 * This function is used for online resize
2379 */
2380 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2381 {
2382 grp->bb_free += add;
2383 }
2384
2385 static int ext4_mb_init_backend(struct super_block *sb)
2386 {
2387 ext4_group_t i;
2388 int metalen;
2389 struct ext4_sb_info *sbi = EXT4_SB(sb);
2390 struct ext4_super_block *es = sbi->s_es;
2391 int num_meta_group_infos;
2392 int num_meta_group_infos_max;
2393 int array_size;
2394 struct ext4_group_info **meta_group_info;
2395 struct ext4_group_desc *desc;
2396
2397 /* This is the number of blocks used by GDT */
2398 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2399 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2400
2401 /*
2402 * This is the total number of blocks used by GDT including
2403 * the number of reserved blocks for GDT.
2404 * The s_group_info array is allocated with this value
2405 * to allow a clean online resize without a complex
2406 * manipulation of pointer.
2407 * The drawback is the unused memory when no resize
2408 * occurs but it's very low in terms of pages
2409 * (see comments below)
2410 * Need to handle this properly when META_BG resizing is allowed
2411 */
2412 num_meta_group_infos_max = num_meta_group_infos +
2413 le16_to_cpu(es->s_reserved_gdt_blocks);
2414
2415 /*
2416 * array_size is the size of s_group_info array. We round it
2417 * to the next power of two because this approximation is done
2418 * internally by kmalloc so we can have some more memory
2419 * for free here (e.g. may be used for META_BG resize).
2420 */
2421 array_size = 1;
2422 while (array_size < sizeof(*sbi->s_group_info) *
2423 num_meta_group_infos_max)
2424 array_size = array_size << 1;
2425 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2426 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2427 * So a two level scheme suffices for now. */
2428 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2429 if (sbi->s_group_info == NULL) {
2430 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2431 return -ENOMEM;
2432 }
2433 sbi->s_buddy_cache = new_inode(sb);
2434 if (sbi->s_buddy_cache == NULL) {
2435 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2436 goto err_freesgi;
2437 }
2438 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2439
2440 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2441 for (i = 0; i < num_meta_group_infos; i++) {
2442 if ((i + 1) == num_meta_group_infos)
2443 metalen = sizeof(*meta_group_info) *
2444 (sbi->s_groups_count -
2445 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2446 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2447 if (meta_group_info == NULL) {
2448 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2449 "buddy group\n");
2450 goto err_freemeta;
2451 }
2452 sbi->s_group_info[i] = meta_group_info;
2453 }
2454
2455 for (i = 0; i < sbi->s_groups_count; i++) {
2456 desc = ext4_get_group_desc(sb, i, NULL);
2457 if (desc == NULL) {
2458 printk(KERN_ERR
2459 "EXT4-fs: can't read descriptor %lu\n", i);
2460 goto err_freebuddy;
2461 }
2462 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2463 goto err_freebuddy;
2464 }
2465
2466 return 0;
2467
2468 err_freebuddy:
2469 while (i-- > 0)
2470 kfree(ext4_get_group_info(sb, i));
2471 i = num_meta_group_infos;
2472 err_freemeta:
2473 while (i-- > 0)
2474 kfree(sbi->s_group_info[i]);
2475 iput(sbi->s_buddy_cache);
2476 err_freesgi:
2477 kfree(sbi->s_group_info);
2478 return -ENOMEM;
2479 }
2480
2481 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2482 {
2483 struct ext4_sb_info *sbi = EXT4_SB(sb);
2484 unsigned i, j;
2485 unsigned offset;
2486 unsigned max;
2487 int ret;
2488
2489 if (!test_opt(sb, MBALLOC))
2490 return 0;
2491
2492 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2493
2494 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2495 if (sbi->s_mb_offsets == NULL) {
2496 clear_opt(sbi->s_mount_opt, MBALLOC);
2497 return -ENOMEM;
2498 }
2499 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2500 if (sbi->s_mb_maxs == NULL) {
2501 clear_opt(sbi->s_mount_opt, MBALLOC);
2502 kfree(sbi->s_mb_maxs);
2503 return -ENOMEM;
2504 }
2505
2506 /* order 0 is regular bitmap */
2507 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2508 sbi->s_mb_offsets[0] = 0;
2509
2510 i = 1;
2511 offset = 0;
2512 max = sb->s_blocksize << 2;
2513 do {
2514 sbi->s_mb_offsets[i] = offset;
2515 sbi->s_mb_maxs[i] = max;
2516 offset += 1 << (sb->s_blocksize_bits - i);
2517 max = max >> 1;
2518 i++;
2519 } while (i <= sb->s_blocksize_bits + 1);
2520
2521 /* init file for buddy data */
2522 ret = ext4_mb_init_backend(sb);
2523 if (ret != 0) {
2524 clear_opt(sbi->s_mount_opt, MBALLOC);
2525 kfree(sbi->s_mb_offsets);
2526 kfree(sbi->s_mb_maxs);
2527 return ret;
2528 }
2529
2530 spin_lock_init(&sbi->s_md_lock);
2531 INIT_LIST_HEAD(&sbi->s_active_transaction);
2532 INIT_LIST_HEAD(&sbi->s_closed_transaction);
2533 INIT_LIST_HEAD(&sbi->s_committed_transaction);
2534 spin_lock_init(&sbi->s_bal_lock);
2535
2536 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2537 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2538 sbi->s_mb_stats = MB_DEFAULT_STATS;
2539 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2540 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2541 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2542 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2543
2544 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2545 if (sbi->s_locality_groups == NULL) {
2546 clear_opt(sbi->s_mount_opt, MBALLOC);
2547 kfree(sbi->s_mb_offsets);
2548 kfree(sbi->s_mb_maxs);
2549 return -ENOMEM;
2550 }
2551 for_each_possible_cpu(i) {
2552 struct ext4_locality_group *lg;
2553 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2554 mutex_init(&lg->lg_mutex);
2555 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2556 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2557 spin_lock_init(&lg->lg_prealloc_lock);
2558 }
2559
2560 ext4_mb_init_per_dev_proc(sb);
2561 ext4_mb_history_init(sb);
2562
2563 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2564 return 0;
2565 }
2566
2567 /* need to called with ext4 group lock (ext4_lock_group) */
2568 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2569 {
2570 struct ext4_prealloc_space *pa;
2571 struct list_head *cur, *tmp;
2572 int count = 0;
2573
2574 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2575 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2576 list_del(&pa->pa_group_list);
2577 count++;
2578 kfree(pa);
2579 }
2580 if (count)
2581 mb_debug("mballoc: %u PAs left\n", count);
2582
2583 }
2584
2585 int ext4_mb_release(struct super_block *sb)
2586 {
2587 ext4_group_t i;
2588 int num_meta_group_infos;
2589 struct ext4_group_info *grinfo;
2590 struct ext4_sb_info *sbi = EXT4_SB(sb);
2591
2592 if (!test_opt(sb, MBALLOC))
2593 return 0;
2594
2595 /* release freed, non-committed blocks */
2596 spin_lock(&sbi->s_md_lock);
2597 list_splice_init(&sbi->s_closed_transaction,
2598 &sbi->s_committed_transaction);
2599 list_splice_init(&sbi->s_active_transaction,
2600 &sbi->s_committed_transaction);
2601 spin_unlock(&sbi->s_md_lock);
2602 ext4_mb_free_committed_blocks(sb);
2603
2604 if (sbi->s_group_info) {
2605 for (i = 0; i < sbi->s_groups_count; i++) {
2606 grinfo = ext4_get_group_info(sb, i);
2607 #ifdef DOUBLE_CHECK
2608 kfree(grinfo->bb_bitmap);
2609 #endif
2610 ext4_lock_group(sb, i);
2611 ext4_mb_cleanup_pa(grinfo);
2612 ext4_unlock_group(sb, i);
2613 kfree(grinfo);
2614 }
2615 num_meta_group_infos = (sbi->s_groups_count +
2616 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2617 EXT4_DESC_PER_BLOCK_BITS(sb);
2618 for (i = 0; i < num_meta_group_infos; i++)
2619 kfree(sbi->s_group_info[i]);
2620 kfree(sbi->s_group_info);
2621 }
2622 kfree(sbi->s_mb_offsets);
2623 kfree(sbi->s_mb_maxs);
2624 if (sbi->s_buddy_cache)
2625 iput(sbi->s_buddy_cache);
2626 if (sbi->s_mb_stats) {
2627 printk(KERN_INFO
2628 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2629 atomic_read(&sbi->s_bal_allocated),
2630 atomic_read(&sbi->s_bal_reqs),
2631 atomic_read(&sbi->s_bal_success));
2632 printk(KERN_INFO
2633 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2634 "%u 2^N hits, %u breaks, %u lost\n",
2635 atomic_read(&sbi->s_bal_ex_scanned),
2636 atomic_read(&sbi->s_bal_goals),
2637 atomic_read(&sbi->s_bal_2orders),
2638 atomic_read(&sbi->s_bal_breaks),
2639 atomic_read(&sbi->s_mb_lost_chunks));
2640 printk(KERN_INFO
2641 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2642 sbi->s_mb_buddies_generated++,
2643 sbi->s_mb_generation_time);
2644 printk(KERN_INFO
2645 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2646 atomic_read(&sbi->s_mb_preallocated),
2647 atomic_read(&sbi->s_mb_discarded));
2648 }
2649
2650 free_percpu(sbi->s_locality_groups);
2651 ext4_mb_history_release(sb);
2652 ext4_mb_destroy_per_dev_proc(sb);
2653
2654 return 0;
2655 }
2656
2657 static noinline_for_stack void
2658 ext4_mb_free_committed_blocks(struct super_block *sb)
2659 {
2660 struct ext4_sb_info *sbi = EXT4_SB(sb);
2661 int err;
2662 int i;
2663 int count = 0;
2664 int count2 = 0;
2665 struct ext4_free_metadata *md;
2666 struct ext4_buddy e4b;
2667
2668 if (list_empty(&sbi->s_committed_transaction))
2669 return;
2670
2671 /* there is committed blocks to be freed yet */
2672 do {
2673 /* get next array of blocks */
2674 md = NULL;
2675 spin_lock(&sbi->s_md_lock);
2676 if (!list_empty(&sbi->s_committed_transaction)) {
2677 md = list_entry(sbi->s_committed_transaction.next,
2678 struct ext4_free_metadata, list);
2679 list_del(&md->list);
2680 }
2681 spin_unlock(&sbi->s_md_lock);
2682
2683 if (md == NULL)
2684 break;
2685
2686 mb_debug("gonna free %u blocks in group %lu (0x%p):",
2687 md->num, md->group, md);
2688
2689 err = ext4_mb_load_buddy(sb, md->group, &e4b);
2690 /* we expect to find existing buddy because it's pinned */
2691 BUG_ON(err != 0);
2692
2693 /* there are blocks to put in buddy to make them really free */
2694 count += md->num;
2695 count2++;
2696 ext4_lock_group(sb, md->group);
2697 for (i = 0; i < md->num; i++) {
2698 mb_debug(" %u", md->blocks[i]);
2699 mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2700 }
2701 mb_debug("\n");
2702 ext4_unlock_group(sb, md->group);
2703
2704 /* balance refcounts from ext4_mb_free_metadata() */
2705 page_cache_release(e4b.bd_buddy_page);
2706 page_cache_release(e4b.bd_bitmap_page);
2707
2708 kfree(md);
2709 ext4_mb_release_desc(&e4b);
2710
2711 } while (md);
2712
2713 mb_debug("freed %u blocks in %u structures\n", count, count2);
2714 }
2715
2716 #define EXT4_MB_STATS_NAME "stats"
2717 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2718 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2719 #define EXT4_MB_ORDER2_REQ "order2_req"
2720 #define EXT4_MB_STREAM_REQ "stream_req"
2721 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2722
2723
2724
2725 #define MB_PROC_FOPS(name) \
2726 static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v) \
2727 { \
2728 struct ext4_sb_info *sbi = m->private; \
2729 \
2730 seq_printf(m, "%ld\n", sbi->s_mb_##name); \
2731 return 0; \
2732 } \
2733 \
2734 static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\
2735 { \
2736 return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\
2737 } \
2738 \
2739 static ssize_t ext4_mb_##name##_proc_write(struct file *file, \
2740 const char __user *buf, size_t cnt, loff_t *ppos) \
2741 { \
2742 struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\
2743 char str[32]; \
2744 long value; \
2745 if (cnt >= sizeof(str)) \
2746 return -EINVAL; \
2747 if (copy_from_user(str, buf, cnt)) \
2748 return -EFAULT; \
2749 value = simple_strtol(str, NULL, 0); \
2750 if (value <= 0) \
2751 return -ERANGE; \
2752 sbi->s_mb_##name = value; \
2753 return cnt; \
2754 } \
2755 \
2756 static const struct file_operations ext4_mb_##name##_proc_fops = { \
2757 .owner = THIS_MODULE, \
2758 .open = ext4_mb_##name##_proc_open, \
2759 .read = seq_read, \
2760 .llseek = seq_lseek, \
2761 .release = single_release, \
2762 .write = ext4_mb_##name##_proc_write, \
2763 };
2764
2765 MB_PROC_FOPS(stats);
2766 MB_PROC_FOPS(max_to_scan);
2767 MB_PROC_FOPS(min_to_scan);
2768 MB_PROC_FOPS(order2_reqs);
2769 MB_PROC_FOPS(stream_request);
2770 MB_PROC_FOPS(group_prealloc);
2771
2772 #define MB_PROC_HANDLER(name, var) \
2773 do { \
2774 proc = proc_create_data(name, mode, sbi->s_mb_proc, \
2775 &ext4_mb_##var##_proc_fops, sbi); \
2776 if (proc == NULL) { \
2777 printk(KERN_ERR "EXT4-fs: can't to create %s\n", name); \
2778 goto err_out; \
2779 } \
2780 } while (0)
2781
2782 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2783 {
2784 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2785 struct ext4_sb_info *sbi = EXT4_SB(sb);
2786 struct proc_dir_entry *proc;
2787 char devname[BDEVNAME_SIZE], *p;
2788
2789 if (proc_root_ext4 == NULL) {
2790 sbi->s_mb_proc = NULL;
2791 return -EINVAL;
2792 }
2793 bdevname(sb->s_bdev, devname);
2794 p = devname;
2795 while ((p = strchr(p, '/')))
2796 *p = '!';
2797
2798 sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);
2799 if (!sbi->s_mb_proc)
2800 goto err_create_dir;
2801
2802 MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
2803 MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
2804 MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
2805 MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
2806 MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
2807 MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);
2808
2809 return 0;
2810
2811 err_out:
2812 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2813 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2814 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2815 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2816 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2817 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2818 remove_proc_entry(devname, proc_root_ext4);
2819 sbi->s_mb_proc = NULL;
2820 err_create_dir:
2821 printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
2822
2823 return -ENOMEM;
2824 }
2825
2826 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2827 {
2828 struct ext4_sb_info *sbi = EXT4_SB(sb);
2829 char devname[BDEVNAME_SIZE], *p;
2830
2831 if (sbi->s_mb_proc == NULL)
2832 return -EINVAL;
2833
2834 bdevname(sb->s_bdev, devname);
2835 p = devname;
2836 while ((p = strchr(p, '/')))
2837 *p = '!';
2838 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2839 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2840 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2841 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2842 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2843 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2844 remove_proc_entry(devname, proc_root_ext4);
2845
2846 return 0;
2847 }
2848
2849 int __init init_ext4_mballoc(void)
2850 {
2851 ext4_pspace_cachep =
2852 kmem_cache_create("ext4_prealloc_space",
2853 sizeof(struct ext4_prealloc_space),
2854 0, SLAB_RECLAIM_ACCOUNT, NULL);
2855 if (ext4_pspace_cachep == NULL)
2856 return -ENOMEM;
2857
2858 ext4_ac_cachep =
2859 kmem_cache_create("ext4_alloc_context",
2860 sizeof(struct ext4_allocation_context),
2861 0, SLAB_RECLAIM_ACCOUNT, NULL);
2862 if (ext4_ac_cachep == NULL) {
2863 kmem_cache_destroy(ext4_pspace_cachep);
2864 return -ENOMEM;
2865 }
2866 #ifdef CONFIG_PROC_FS
2867 proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
2868 if (proc_root_ext4 == NULL)
2869 printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
2870 #endif
2871 return 0;
2872 }
2873
2874 void exit_ext4_mballoc(void)
2875 {
2876 /* XXX: synchronize_rcu(); */
2877 kmem_cache_destroy(ext4_pspace_cachep);
2878 kmem_cache_destroy(ext4_ac_cachep);
2879 #ifdef CONFIG_PROC_FS
2880 remove_proc_entry("fs/ext4", NULL);
2881 #endif
2882 }
2883
2884
2885 /*
2886 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2887 * Returns 0 if success or error code
2888 */
2889 static noinline_for_stack int
2890 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2891 handle_t *handle, unsigned long reserv_blks)
2892 {
2893 struct buffer_head *bitmap_bh = NULL;
2894 struct ext4_super_block *es;
2895 struct ext4_group_desc *gdp;
2896 struct buffer_head *gdp_bh;
2897 struct ext4_sb_info *sbi;
2898 struct super_block *sb;
2899 ext4_fsblk_t block;
2900 int err, len;
2901
2902 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2903 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2904
2905 sb = ac->ac_sb;
2906 sbi = EXT4_SB(sb);
2907 es = sbi->s_es;
2908
2909
2910 err = -EIO;
2911 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2912 if (!bitmap_bh)
2913 goto out_err;
2914
2915 err = ext4_journal_get_write_access(handle, bitmap_bh);
2916 if (err)
2917 goto out_err;
2918
2919 err = -EIO;
2920 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2921 if (!gdp)
2922 goto out_err;
2923
2924 ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2925 gdp->bg_free_blocks_count);
2926
2927 err = ext4_journal_get_write_access(handle, gdp_bh);
2928 if (err)
2929 goto out_err;
2930
2931 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2932 + ac->ac_b_ex.fe_start
2933 + le32_to_cpu(es->s_first_data_block);
2934
2935 len = ac->ac_b_ex.fe_len;
2936 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2937 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2938 in_range(block, ext4_inode_table(sb, gdp),
2939 EXT4_SB(sb)->s_itb_per_group) ||
2940 in_range(block + len - 1, ext4_inode_table(sb, gdp),
2941 EXT4_SB(sb)->s_itb_per_group)) {
2942 ext4_error(sb, __func__,
2943 "Allocating block in system zone - block = %llu",
2944 block);
2945 /* File system mounted not to panic on error
2946 * Fix the bitmap and repeat the block allocation
2947 * We leak some of the blocks here.
2948 */
2949 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2950 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2951 ac->ac_b_ex.fe_len);
2952 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2953 if (!err)
2954 err = -EAGAIN;
2955 goto out_err;
2956 }
2957 #ifdef AGGRESSIVE_CHECK
2958 {
2959 int i;
2960 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2961 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2962 bitmap_bh->b_data));
2963 }
2964 }
2965 #endif
2966 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2967 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2968
2969 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2970 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2971 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2972 gdp->bg_free_blocks_count =
2973 cpu_to_le16(ext4_free_blocks_after_init(sb,
2974 ac->ac_b_ex.fe_group,
2975 gdp));
2976 }
2977 le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2978 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2979 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2980 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2981 /*
2982 * Now reduce the dirty block count also. Should not go negative
2983 */
2984 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2985 /* release all the reserved blocks if non delalloc */
2986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2987 else
2988 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
2989 ac->ac_b_ex.fe_len);
2990
2991 if (sbi->s_log_groups_per_flex) {
2992 ext4_group_t flex_group = ext4_flex_group(sbi,
2993 ac->ac_b_ex.fe_group);
2994 spin_lock(sb_bgl_lock(sbi, flex_group));
2995 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2996 spin_unlock(sb_bgl_lock(sbi, flex_group));
2997 }
2998
2999 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
3000 if (err)
3001 goto out_err;
3002 err = ext4_journal_dirty_metadata(handle, gdp_bh);
3003
3004 out_err:
3005 sb->s_dirt = 1;
3006 brelse(bitmap_bh);
3007 return err;
3008 }
3009
3010 /*
3011 * here we normalize request for locality group
3012 * Group request are normalized to s_strip size if we set the same via mount
3013 * option. If not we set it to s_mb_group_prealloc which can be configured via
3014 * /proc/fs/ext4/<partition>/group_prealloc
3015 *
3016 * XXX: should we try to preallocate more than the group has now?
3017 */
3018 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3019 {
3020 struct super_block *sb = ac->ac_sb;
3021 struct ext4_locality_group *lg = ac->ac_lg;
3022
3023 BUG_ON(lg == NULL);
3024 if (EXT4_SB(sb)->s_stripe)
3025 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3026 else
3027 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3028 mb_debug("#%u: goal %u blocks for locality group\n",
3029 current->pid, ac->ac_g_ex.fe_len);
3030 }
3031
3032 /*
3033 * Normalization means making request better in terms of
3034 * size and alignment
3035 */
3036 static noinline_for_stack void
3037 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3038 struct ext4_allocation_request *ar)
3039 {
3040 int bsbits, max;
3041 ext4_lblk_t end;
3042 loff_t size, orig_size, start_off;
3043 ext4_lblk_t start, orig_start;
3044 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3045 struct ext4_prealloc_space *pa;
3046
3047 /* do normalize only data requests, metadata requests
3048 do not need preallocation */
3049 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3050 return;
3051
3052 /* sometime caller may want exact blocks */
3053 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3054 return;
3055
3056 /* caller may indicate that preallocation isn't
3057 * required (it's a tail, for example) */
3058 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3059 return;
3060
3061 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3062 ext4_mb_normalize_group_request(ac);
3063 return ;
3064 }
3065
3066 bsbits = ac->ac_sb->s_blocksize_bits;
3067
3068 /* first, let's learn actual file size
3069 * given current request is allocated */
3070 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3071 size = size << bsbits;
3072 if (size < i_size_read(ac->ac_inode))
3073 size = i_size_read(ac->ac_inode);
3074
3075 /* max size of free chunks */
3076 max = 2 << bsbits;
3077
3078 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3079 (req <= (size) || max <= (chunk_size))
3080
3081 /* first, try to predict filesize */
3082 /* XXX: should this table be tunable? */
3083 start_off = 0;
3084 if (size <= 16 * 1024) {
3085 size = 16 * 1024;
3086 } else if (size <= 32 * 1024) {
3087 size = 32 * 1024;
3088 } else if (size <= 64 * 1024) {
3089 size = 64 * 1024;
3090 } else if (size <= 128 * 1024) {
3091 size = 128 * 1024;
3092 } else if (size <= 256 * 1024) {
3093 size = 256 * 1024;
3094 } else if (size <= 512 * 1024) {
3095 size = 512 * 1024;
3096 } else if (size <= 1024 * 1024) {
3097 size = 1024 * 1024;
3098 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3099 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3100 (21 - bsbits)) << 21;
3101 size = 2 * 1024 * 1024;
3102 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3103 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3104 (22 - bsbits)) << 22;
3105 size = 4 * 1024 * 1024;
3106 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3107 (8<<20)>>bsbits, max, 8 * 1024)) {
3108 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3109 (23 - bsbits)) << 23;
3110 size = 8 * 1024 * 1024;
3111 } else {
3112 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3113 size = ac->ac_o_ex.fe_len << bsbits;
3114 }
3115 orig_size = size = size >> bsbits;
3116 orig_start = start = start_off >> bsbits;
3117
3118 /* don't cover already allocated blocks in selected range */
3119 if (ar->pleft && start <= ar->lleft) {
3120 size -= ar->lleft + 1 - start;
3121 start = ar->lleft + 1;
3122 }
3123 if (ar->pright && start + size - 1 >= ar->lright)
3124 size -= start + size - ar->lright;
3125
3126 end = start + size;
3127
3128 /* check we don't cross already preallocated blocks */
3129 rcu_read_lock();
3130 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3131 unsigned long pa_end;
3132
3133 if (pa->pa_deleted)
3134 continue;
3135 spin_lock(&pa->pa_lock);
3136 if (pa->pa_deleted) {
3137 spin_unlock(&pa->pa_lock);
3138 continue;
3139 }
3140
3141 pa_end = pa->pa_lstart + pa->pa_len;
3142
3143 /* PA must not overlap original request */
3144 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3145 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3146
3147 /* skip PA normalized request doesn't overlap with */
3148 if (pa->pa_lstart >= end) {
3149 spin_unlock(&pa->pa_lock);
3150 continue;
3151 }
3152 if (pa_end <= start) {
3153 spin_unlock(&pa->pa_lock);
3154 continue;
3155 }
3156 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3157
3158 if (pa_end <= ac->ac_o_ex.fe_logical) {
3159 BUG_ON(pa_end < start);
3160 start = pa_end;
3161 }
3162
3163 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3164 BUG_ON(pa->pa_lstart > end);
3165 end = pa->pa_lstart;
3166 }
3167 spin_unlock(&pa->pa_lock);
3168 }
3169 rcu_read_unlock();
3170 size = end - start;
3171
3172 /* XXX: extra loop to check we really don't overlap preallocations */
3173 rcu_read_lock();
3174 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3175 unsigned long pa_end;
3176 spin_lock(&pa->pa_lock);
3177 if (pa->pa_deleted == 0) {
3178 pa_end = pa->pa_lstart + pa->pa_len;
3179 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3180 }
3181 spin_unlock(&pa->pa_lock);
3182 }
3183 rcu_read_unlock();
3184
3185 if (start + size <= ac->ac_o_ex.fe_logical &&
3186 start > ac->ac_o_ex.fe_logical) {
3187 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3188 (unsigned long) start, (unsigned long) size,
3189 (unsigned long) ac->ac_o_ex.fe_logical);
3190 }
3191 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3192 start > ac->ac_o_ex.fe_logical);
3193 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3194
3195 /* now prepare goal request */
3196
3197 /* XXX: is it better to align blocks WRT to logical
3198 * placement or satisfy big request as is */
3199 ac->ac_g_ex.fe_logical = start;
3200 ac->ac_g_ex.fe_len = size;
3201
3202 /* define goal start in order to merge */
3203 if (ar->pright && (ar->lright == (start + size))) {
3204 /* merge to the right */
3205 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3206 &ac->ac_f_ex.fe_group,
3207 &ac->ac_f_ex.fe_start);
3208 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3209 }
3210 if (ar->pleft && (ar->lleft + 1 == start)) {
3211 /* merge to the left */
3212 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3213 &ac->ac_f_ex.fe_group,
3214 &ac->ac_f_ex.fe_start);
3215 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3216 }
3217
3218 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3219 (unsigned) orig_size, (unsigned) start);
3220 }
3221
3222 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3223 {
3224 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3225
3226 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3227 atomic_inc(&sbi->s_bal_reqs);
3228 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3229 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3230 atomic_inc(&sbi->s_bal_success);
3231 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3232 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3233 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3234 atomic_inc(&sbi->s_bal_goals);
3235 if (ac->ac_found > sbi->s_mb_max_to_scan)
3236 atomic_inc(&sbi->s_bal_breaks);
3237 }
3238
3239 ext4_mb_store_history(ac);
3240 }
3241
3242 /*
3243 * use blocks preallocated to inode
3244 */
3245 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3246 struct ext4_prealloc_space *pa)
3247 {
3248 ext4_fsblk_t start;
3249 ext4_fsblk_t end;
3250 int len;
3251
3252 /* found preallocated blocks, use them */
3253 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3254 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3255 len = end - start;
3256 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3257 &ac->ac_b_ex.fe_start);
3258 ac->ac_b_ex.fe_len = len;
3259 ac->ac_status = AC_STATUS_FOUND;
3260 ac->ac_pa = pa;
3261
3262 BUG_ON(start < pa->pa_pstart);
3263 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3264 BUG_ON(pa->pa_free < len);
3265 pa->pa_free -= len;
3266
3267 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3268 }
3269
3270 /*
3271 * use blocks preallocated to locality group
3272 */
3273 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3274 struct ext4_prealloc_space *pa)
3275 {
3276 unsigned int len = ac->ac_o_ex.fe_len;
3277
3278 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3279 &ac->ac_b_ex.fe_group,
3280 &ac->ac_b_ex.fe_start);
3281 ac->ac_b_ex.fe_len = len;
3282 ac->ac_status = AC_STATUS_FOUND;
3283 ac->ac_pa = pa;
3284
3285 /* we don't correct pa_pstart or pa_plen here to avoid
3286 * possible race when the group is being loaded concurrently
3287 * instead we correct pa later, after blocks are marked
3288 * in on-disk bitmap -- see ext4_mb_release_context()
3289 * Other CPUs are prevented from allocating from this pa by lg_mutex
3290 */
3291 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3292 }
3293
3294 /*
3295 * Return the prealloc space that have minimal distance
3296 * from the goal block. @cpa is the prealloc
3297 * space that is having currently known minimal distance
3298 * from the goal block.
3299 */
3300 static struct ext4_prealloc_space *
3301 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3302 struct ext4_prealloc_space *pa,
3303 struct ext4_prealloc_space *cpa)
3304 {
3305 ext4_fsblk_t cur_distance, new_distance;
3306
3307 if (cpa == NULL) {
3308 atomic_inc(&pa->pa_count);
3309 return pa;
3310 }
3311 cur_distance = abs(goal_block - cpa->pa_pstart);
3312 new_distance = abs(goal_block - pa->pa_pstart);
3313
3314 if (cur_distance < new_distance)
3315 return cpa;
3316
3317 /* drop the previous reference */
3318 atomic_dec(&cpa->pa_count);
3319 atomic_inc(&pa->pa_count);
3320 return pa;
3321 }
3322
3323 /*
3324 * search goal blocks in preallocated space
3325 */
3326 static noinline_for_stack int
3327 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3328 {
3329 int order, i;
3330 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3331 struct ext4_locality_group *lg;
3332 struct ext4_prealloc_space *pa, *cpa = NULL;
3333 ext4_fsblk_t goal_block;
3334
3335 /* only data can be preallocated */
3336 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3337 return 0;
3338
3339 /* first, try per-file preallocation */
3340 rcu_read_lock();
3341 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3342
3343 /* all fields in this condition don't change,
3344 * so we can skip locking for them */
3345 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3346 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3347 continue;
3348
3349 /* found preallocated blocks, use them */
3350 spin_lock(&pa->pa_lock);
3351 if (pa->pa_deleted == 0 && pa->pa_free) {
3352 atomic_inc(&pa->pa_count);
3353 ext4_mb_use_inode_pa(ac, pa);
3354 spin_unlock(&pa->pa_lock);
3355 ac->ac_criteria = 10;
3356 rcu_read_unlock();
3357 return 1;
3358 }
3359 spin_unlock(&pa->pa_lock);
3360 }
3361 rcu_read_unlock();
3362
3363 /* can we use group allocation? */
3364 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3365 return 0;
3366
3367 /* inode may have no locality group for some reason */
3368 lg = ac->ac_lg;
3369 if (lg == NULL)
3370 return 0;
3371 order = fls(ac->ac_o_ex.fe_len) - 1;
3372 if (order > PREALLOC_TB_SIZE - 1)
3373 /* The max size of hash table is PREALLOC_TB_SIZE */
3374 order = PREALLOC_TB_SIZE - 1;
3375
3376 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3377 ac->ac_g_ex.fe_start +
3378 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3379 /*
3380 * search for the prealloc space that is having
3381 * minimal distance from the goal block.
3382 */
3383 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3384 rcu_read_lock();
3385 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3386 pa_inode_list) {
3387 spin_lock(&pa->pa_lock);
3388 if (pa->pa_deleted == 0 &&
3389 pa->pa_free >= ac->ac_o_ex.fe_len) {
3390
3391 cpa = ext4_mb_check_group_pa(goal_block,
3392 pa, cpa);
3393 }
3394 spin_unlock(&pa->pa_lock);
3395 }
3396 rcu_read_unlock();
3397 }
3398 if (cpa) {
3399 ext4_mb_use_group_pa(ac, cpa);
3400 ac->ac_criteria = 20;
3401 return 1;
3402 }
3403 return 0;
3404 }
3405
3406 /*
3407 * the function goes through all preallocation in this group and marks them
3408 * used in in-core bitmap. buddy must be generated from this bitmap
3409 * Need to be called with ext4 group lock (ext4_lock_group)
3410 */
3411 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3412 ext4_group_t group)
3413 {
3414 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3415 struct ext4_prealloc_space *pa;
3416 struct list_head *cur;
3417 ext4_group_t groupnr;
3418 ext4_grpblk_t start;
3419 int preallocated = 0;
3420 int count = 0;
3421 int len;
3422
3423 /* all form of preallocation discards first load group,
3424 * so the only competing code is preallocation use.
3425 * we don't need any locking here
3426 * notice we do NOT ignore preallocations with pa_deleted
3427 * otherwise we could leave used blocks available for
3428 * allocation in buddy when concurrent ext4_mb_put_pa()
3429 * is dropping preallocation
3430 */
3431 list_for_each(cur, &grp->bb_prealloc_list) {
3432 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3433 spin_lock(&pa->pa_lock);
3434 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3435 &groupnr, &start);
3436 len = pa->pa_len;
3437 spin_unlock(&pa->pa_lock);
3438 if (unlikely(len == 0))
3439 continue;
3440 BUG_ON(groupnr != group);
3441 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3442 bitmap, start, len);
3443 preallocated += len;
3444 count++;
3445 }
3446 mb_debug("prellocated %u for group %lu\n", preallocated, group);
3447 }
3448
3449 static void ext4_mb_pa_callback(struct rcu_head *head)
3450 {
3451 struct ext4_prealloc_space *pa;
3452 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3453 kmem_cache_free(ext4_pspace_cachep, pa);
3454 }
3455
3456 /*
3457 * drops a reference to preallocated space descriptor
3458 * if this was the last reference and the space is consumed
3459 */
3460 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3461 struct super_block *sb, struct ext4_prealloc_space *pa)
3462 {
3463 unsigned long grp;
3464
3465 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3466 return;
3467
3468 /* in this short window concurrent discard can set pa_deleted */
3469 spin_lock(&pa->pa_lock);
3470 if (pa->pa_deleted == 1) {
3471 spin_unlock(&pa->pa_lock);
3472 return;
3473 }
3474
3475 pa->pa_deleted = 1;
3476 spin_unlock(&pa->pa_lock);
3477
3478 /* -1 is to protect from crossing allocation group */
3479 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3480
3481 /*
3482 * possible race:
3483 *
3484 * P1 (buddy init) P2 (regular allocation)
3485 * find block B in PA
3486 * copy on-disk bitmap to buddy
3487 * mark B in on-disk bitmap
3488 * drop PA from group
3489 * mark all PAs in buddy
3490 *
3491 * thus, P1 initializes buddy with B available. to prevent this
3492 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3493 * against that pair
3494 */
3495 ext4_lock_group(sb, grp);
3496 list_del(&pa->pa_group_list);
3497 ext4_unlock_group(sb, grp);
3498
3499 spin_lock(pa->pa_obj_lock);
3500 list_del_rcu(&pa->pa_inode_list);
3501 spin_unlock(pa->pa_obj_lock);
3502
3503 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3504 }
3505
3506 /*
3507 * creates new preallocated space for given inode
3508 */
3509 static noinline_for_stack int
3510 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3511 {
3512 struct super_block *sb = ac->ac_sb;
3513 struct ext4_prealloc_space *pa;
3514 struct ext4_group_info *grp;
3515 struct ext4_inode_info *ei;
3516
3517 /* preallocate only when found space is larger then requested */
3518 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3519 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3520 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3521
3522 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3523 if (pa == NULL)
3524 return -ENOMEM;
3525
3526 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3527 int winl;
3528 int wins;
3529 int win;
3530 int offs;
3531
3532 /* we can't allocate as much as normalizer wants.
3533 * so, found space must get proper lstart
3534 * to cover original request */
3535 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3536 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3537
3538 /* we're limited by original request in that
3539 * logical block must be covered any way
3540 * winl is window we can move our chunk within */
3541 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3542
3543 /* also, we should cover whole original request */
3544 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3545
3546 /* the smallest one defines real window */
3547 win = min(winl, wins);
3548
3549 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3550 if (offs && offs < win)
3551 win = offs;
3552
3553 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3554 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3555 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3556 }
3557
3558 /* preallocation can change ac_b_ex, thus we store actually
3559 * allocated blocks for history */
3560 ac->ac_f_ex = ac->ac_b_ex;
3561
3562 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3563 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3564 pa->pa_len = ac->ac_b_ex.fe_len;
3565 pa->pa_free = pa->pa_len;
3566 atomic_set(&pa->pa_count, 1);
3567 spin_lock_init(&pa->pa_lock);
3568 pa->pa_deleted = 0;
3569 pa->pa_linear = 0;
3570
3571 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3572 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3573
3574 ext4_mb_use_inode_pa(ac, pa);
3575 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3576
3577 ei = EXT4_I(ac->ac_inode);
3578 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3579
3580 pa->pa_obj_lock = &ei->i_prealloc_lock;
3581 pa->pa_inode = ac->ac_inode;
3582
3583 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3584 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3585 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3586
3587 spin_lock(pa->pa_obj_lock);
3588 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3589 spin_unlock(pa->pa_obj_lock);
3590
3591 return 0;
3592 }
3593
3594 /*
3595 * creates new preallocated space for locality group inodes belongs to
3596 */
3597 static noinline_for_stack int
3598 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3599 {
3600 struct super_block *sb = ac->ac_sb;
3601 struct ext4_locality_group *lg;
3602 struct ext4_prealloc_space *pa;
3603 struct ext4_group_info *grp;
3604
3605 /* preallocate only when found space is larger then requested */
3606 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3607 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3608 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3609
3610 BUG_ON(ext4_pspace_cachep == NULL);
3611 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3612 if (pa == NULL)
3613 return -ENOMEM;
3614
3615 /* preallocation can change ac_b_ex, thus we store actually
3616 * allocated blocks for history */
3617 ac->ac_f_ex = ac->ac_b_ex;
3618
3619 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3620 pa->pa_lstart = pa->pa_pstart;
3621 pa->pa_len = ac->ac_b_ex.fe_len;
3622 pa->pa_free = pa->pa_len;
3623 atomic_set(&pa->pa_count, 1);
3624 spin_lock_init(&pa->pa_lock);
3625 INIT_LIST_HEAD(&pa->pa_inode_list);
3626 pa->pa_deleted = 0;
3627 pa->pa_linear = 1;
3628
3629 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3630 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3631
3632 ext4_mb_use_group_pa(ac, pa);
3633 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3634
3635 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3636 lg = ac->ac_lg;
3637 BUG_ON(lg == NULL);
3638
3639 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3640 pa->pa_inode = NULL;
3641
3642 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3643 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3644 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3645
3646 /*
3647 * We will later add the new pa to the right bucket
3648 * after updating the pa_free in ext4_mb_release_context
3649 */
3650 return 0;
3651 }
3652
3653 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3654 {
3655 int err;
3656
3657 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3658 err = ext4_mb_new_group_pa(ac);
3659 else
3660 err = ext4_mb_new_inode_pa(ac);
3661 return err;
3662 }
3663
3664 /*
3665 * finds all unused blocks in on-disk bitmap, frees them in
3666 * in-core bitmap and buddy.
3667 * @pa must be unlinked from inode and group lists, so that
3668 * nobody else can find/use it.
3669 * the caller MUST hold group/inode locks.
3670 * TODO: optimize the case when there are no in-core structures yet
3671 */
3672 static noinline_for_stack int
3673 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3674 struct ext4_prealloc_space *pa,
3675 struct ext4_allocation_context *ac)
3676 {
3677 struct super_block *sb = e4b->bd_sb;
3678 struct ext4_sb_info *sbi = EXT4_SB(sb);
3679 unsigned long end;
3680 unsigned long next;
3681 ext4_group_t group;
3682 ext4_grpblk_t bit;
3683 sector_t start;
3684 int err = 0;
3685 int free = 0;
3686
3687 BUG_ON(pa->pa_deleted == 0);
3688 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3689 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3690 end = bit + pa->pa_len;
3691
3692 if (ac) {
3693 ac->ac_sb = sb;
3694 ac->ac_inode = pa->pa_inode;
3695 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3696 }
3697
3698 while (bit < end) {
3699 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3700 if (bit >= end)
3701 break;
3702 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3703 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3704 le32_to_cpu(sbi->s_es->s_first_data_block);
3705 mb_debug(" free preallocated %u/%u in group %u\n",
3706 (unsigned) start, (unsigned) next - bit,
3707 (unsigned) group);
3708 free += next - bit;
3709
3710 if (ac) {
3711 ac->ac_b_ex.fe_group = group;
3712 ac->ac_b_ex.fe_start = bit;
3713 ac->ac_b_ex.fe_len = next - bit;
3714 ac->ac_b_ex.fe_logical = 0;
3715 ext4_mb_store_history(ac);
3716 }
3717
3718 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3719 bit = next + 1;
3720 }
3721 if (free != pa->pa_free) {
3722 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3723 pa, (unsigned long) pa->pa_lstart,
3724 (unsigned long) pa->pa_pstart,
3725 (unsigned long) pa->pa_len);
3726 ext4_error(sb, __func__, "free %u, pa_free %u\n",
3727 free, pa->pa_free);
3728 /*
3729 * pa is already deleted so we use the value obtained
3730 * from the bitmap and continue.
3731 */
3732 }
3733 atomic_add(free, &sbi->s_mb_discarded);
3734
3735 return err;
3736 }
3737
3738 static noinline_for_stack int
3739 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3740 struct ext4_prealloc_space *pa,
3741 struct ext4_allocation_context *ac)
3742 {
3743 struct super_block *sb = e4b->bd_sb;
3744 ext4_group_t group;
3745 ext4_grpblk_t bit;
3746
3747 if (ac)
3748 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3749
3750 BUG_ON(pa->pa_deleted == 0);
3751 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3752 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3753 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3754 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3755
3756 if (ac) {
3757 ac->ac_sb = sb;
3758 ac->ac_inode = NULL;
3759 ac->ac_b_ex.fe_group = group;
3760 ac->ac_b_ex.fe_start = bit;
3761 ac->ac_b_ex.fe_len = pa->pa_len;
3762 ac->ac_b_ex.fe_logical = 0;
3763 ext4_mb_store_history(ac);
3764 }
3765
3766 return 0;
3767 }
3768
3769 /*
3770 * releases all preallocations in given group
3771 *
3772 * first, we need to decide discard policy:
3773 * - when do we discard
3774 * 1) ENOSPC
3775 * - how many do we discard
3776 * 1) how many requested
3777 */
3778 static noinline_for_stack int
3779 ext4_mb_discard_group_preallocations(struct super_block *sb,
3780 ext4_group_t group, int needed)
3781 {
3782 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3783 struct buffer_head *bitmap_bh = NULL;
3784 struct ext4_prealloc_space *pa, *tmp;
3785 struct ext4_allocation_context *ac;
3786 struct list_head list;
3787 struct ext4_buddy e4b;
3788 int err;
3789 int busy = 0;
3790 int free = 0;
3791
3792 mb_debug("discard preallocation for group %lu\n", group);
3793
3794 if (list_empty(&grp->bb_prealloc_list))
3795 return 0;
3796
3797 bitmap_bh = ext4_read_block_bitmap(sb, group);
3798 if (bitmap_bh == NULL) {
3799 ext4_error(sb, __func__, "Error in reading block "
3800 "bitmap for %lu\n", group);
3801 return 0;
3802 }
3803
3804 err = ext4_mb_load_buddy(sb, group, &e4b);
3805 if (err) {
3806 ext4_error(sb, __func__, "Error in loading buddy "
3807 "information for %lu\n", group);
3808 put_bh(bitmap_bh);
3809 return 0;
3810 }
3811
3812 if (needed == 0)
3813 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3814
3815 INIT_LIST_HEAD(&list);
3816 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3817 repeat:
3818 ext4_lock_group(sb, group);
3819 list_for_each_entry_safe(pa, tmp,
3820 &grp->bb_prealloc_list, pa_group_list) {
3821 spin_lock(&pa->pa_lock);
3822 if (atomic_read(&pa->pa_count)) {
3823 spin_unlock(&pa->pa_lock);
3824 busy = 1;
3825 continue;
3826 }
3827 if (pa->pa_deleted) {
3828 spin_unlock(&pa->pa_lock);
3829 continue;
3830 }
3831
3832 /* seems this one can be freed ... */
3833 pa->pa_deleted = 1;
3834
3835 /* we can trust pa_free ... */
3836 free += pa->pa_free;
3837
3838 spin_unlock(&pa->pa_lock);
3839
3840 list_del(&pa->pa_group_list);
3841 list_add(&pa->u.pa_tmp_list, &list);
3842 }
3843
3844 /* if we still need more blocks and some PAs were used, try again */
3845 if (free < needed && busy) {
3846 busy = 0;
3847 ext4_unlock_group(sb, group);
3848 /*
3849 * Yield the CPU here so that we don't get soft lockup
3850 * in non preempt case.
3851 */
3852 yield();
3853 goto repeat;
3854 }
3855
3856 /* found anything to free? */
3857 if (list_empty(&list)) {
3858 BUG_ON(free != 0);
3859 goto out;
3860 }
3861
3862 /* now free all selected PAs */
3863 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3864
3865 /* remove from object (inode or locality group) */
3866 spin_lock(pa->pa_obj_lock);
3867 list_del_rcu(&pa->pa_inode_list);
3868 spin_unlock(pa->pa_obj_lock);
3869
3870 if (pa->pa_linear)
3871 ext4_mb_release_group_pa(&e4b, pa, ac);
3872 else
3873 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3874
3875 list_del(&pa->u.pa_tmp_list);
3876 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3877 }
3878
3879 out:
3880 ext4_unlock_group(sb, group);
3881 if (ac)
3882 kmem_cache_free(ext4_ac_cachep, ac);
3883 ext4_mb_release_desc(&e4b);
3884 put_bh(bitmap_bh);
3885 return free;
3886 }
3887
3888 /*
3889 * releases all non-used preallocated blocks for given inode
3890 *
3891 * It's important to discard preallocations under i_data_sem
3892 * We don't want another block to be served from the prealloc
3893 * space when we are discarding the inode prealloc space.
3894 *
3895 * FIXME!! Make sure it is valid at all the call sites
3896 */
3897 void ext4_mb_discard_inode_preallocations(struct inode *inode)
3898 {
3899 struct ext4_inode_info *ei = EXT4_I(inode);
3900 struct super_block *sb = inode->i_sb;
3901 struct buffer_head *bitmap_bh = NULL;
3902 struct ext4_prealloc_space *pa, *tmp;
3903 struct ext4_allocation_context *ac;
3904 ext4_group_t group = 0;
3905 struct list_head list;
3906 struct ext4_buddy e4b;
3907 int err;
3908
3909 if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
3910 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3911 return;
3912 }
3913
3914 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3915
3916 INIT_LIST_HEAD(&list);
3917
3918 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3919 repeat:
3920 /* first, collect all pa's in the inode */
3921 spin_lock(&ei->i_prealloc_lock);
3922 while (!list_empty(&ei->i_prealloc_list)) {
3923 pa = list_entry(ei->i_prealloc_list.next,
3924 struct ext4_prealloc_space, pa_inode_list);
3925 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3926 spin_lock(&pa->pa_lock);
3927 if (atomic_read(&pa->pa_count)) {
3928 /* this shouldn't happen often - nobody should
3929 * use preallocation while we're discarding it */
3930 spin_unlock(&pa->pa_lock);
3931 spin_unlock(&ei->i_prealloc_lock);
3932 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3933 WARN_ON(1);
3934 schedule_timeout_uninterruptible(HZ);
3935 goto repeat;
3936
3937 }
3938 if (pa->pa_deleted == 0) {
3939 pa->pa_deleted = 1;
3940 spin_unlock(&pa->pa_lock);
3941 list_del_rcu(&pa->pa_inode_list);
3942 list_add(&pa->u.pa_tmp_list, &list);
3943 continue;
3944 }
3945
3946 /* someone is deleting pa right now */
3947 spin_unlock(&pa->pa_lock);
3948 spin_unlock(&ei->i_prealloc_lock);
3949
3950 /* we have to wait here because pa_deleted
3951 * doesn't mean pa is already unlinked from
3952 * the list. as we might be called from
3953 * ->clear_inode() the inode will get freed
3954 * and concurrent thread which is unlinking
3955 * pa from inode's list may access already
3956 * freed memory, bad-bad-bad */
3957
3958 /* XXX: if this happens too often, we can
3959 * add a flag to force wait only in case
3960 * of ->clear_inode(), but not in case of
3961 * regular truncate */
3962 schedule_timeout_uninterruptible(HZ);
3963 goto repeat;
3964 }
3965 spin_unlock(&ei->i_prealloc_lock);
3966
3967 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3968 BUG_ON(pa->pa_linear != 0);
3969 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3970
3971 err = ext4_mb_load_buddy(sb, group, &e4b);
3972 if (err) {
3973 ext4_error(sb, __func__, "Error in loading buddy "
3974 "information for %lu\n", group);
3975 continue;
3976 }
3977
3978 bitmap_bh = ext4_read_block_bitmap(sb, group);
3979 if (bitmap_bh == NULL) {
3980 ext4_error(sb, __func__, "Error in reading block "
3981 "bitmap for %lu\n", group);
3982 ext4_mb_release_desc(&e4b);
3983 continue;
3984 }
3985
3986 ext4_lock_group(sb, group);
3987 list_del(&pa->pa_group_list);
3988 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3989 ext4_unlock_group(sb, group);
3990
3991 ext4_mb_release_desc(&e4b);
3992 put_bh(bitmap_bh);
3993
3994 list_del(&pa->u.pa_tmp_list);
3995 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3996 }
3997 if (ac)
3998 kmem_cache_free(ext4_ac_cachep, ac);
3999 }
4000
4001 /*
4002 * finds all preallocated spaces and return blocks being freed to them
4003 * if preallocated space becomes full (no block is used from the space)
4004 * then the function frees space in buddy
4005 * XXX: at the moment, truncate (which is the only way to free blocks)
4006 * discards all preallocations
4007 */
4008 static void ext4_mb_return_to_preallocation(struct inode *inode,
4009 struct ext4_buddy *e4b,
4010 sector_t block, int count)
4011 {
4012 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4013 }
4014 #ifdef MB_DEBUG
4015 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4016 {
4017 struct super_block *sb = ac->ac_sb;
4018 ext4_group_t i;
4019
4020 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4021 " Allocation context details:\n");
4022 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4023 ac->ac_status, ac->ac_flags);
4024 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4025 "best %lu/%lu/%lu@%lu cr %d\n",
4026 (unsigned long)ac->ac_o_ex.fe_group,
4027 (unsigned long)ac->ac_o_ex.fe_start,
4028 (unsigned long)ac->ac_o_ex.fe_len,
4029 (unsigned long)ac->ac_o_ex.fe_logical,
4030 (unsigned long)ac->ac_g_ex.fe_group,
4031 (unsigned long)ac->ac_g_ex.fe_start,
4032 (unsigned long)ac->ac_g_ex.fe_len,
4033 (unsigned long)ac->ac_g_ex.fe_logical,
4034 (unsigned long)ac->ac_b_ex.fe_group,
4035 (unsigned long)ac->ac_b_ex.fe_start,
4036 (unsigned long)ac->ac_b_ex.fe_len,
4037 (unsigned long)ac->ac_b_ex.fe_logical,
4038 (int)ac->ac_criteria);
4039 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4040 ac->ac_found);
4041 printk(KERN_ERR "EXT4-fs: groups: \n");
4042 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4043 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4044 struct ext4_prealloc_space *pa;
4045 ext4_grpblk_t start;
4046 struct list_head *cur;
4047 ext4_lock_group(sb, i);
4048 list_for_each(cur, &grp->bb_prealloc_list) {
4049 pa = list_entry(cur, struct ext4_prealloc_space,
4050 pa_group_list);
4051 spin_lock(&pa->pa_lock);
4052 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4053 NULL, &start);
4054 spin_unlock(&pa->pa_lock);
4055 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4056 start, pa->pa_len);
4057 }
4058 ext4_unlock_group(sb, i);
4059
4060 if (grp->bb_free == 0)
4061 continue;
4062 printk(KERN_ERR "%lu: %d/%d \n",
4063 i, grp->bb_free, grp->bb_fragments);
4064 }
4065 printk(KERN_ERR "\n");
4066 }
4067 #else
4068 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4069 {
4070 return;
4071 }
4072 #endif
4073
4074 /*
4075 * We use locality group preallocation for small size file. The size of the
4076 * file is determined by the current size or the resulting size after
4077 * allocation which ever is larger
4078 *
4079 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4080 */
4081 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4082 {
4083 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4084 int bsbits = ac->ac_sb->s_blocksize_bits;
4085 loff_t size, isize;
4086
4087 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4088 return;
4089
4090 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4091 isize = i_size_read(ac->ac_inode) >> bsbits;
4092 size = max(size, isize);
4093
4094 /* don't use group allocation for large files */
4095 if (size >= sbi->s_mb_stream_request)
4096 return;
4097
4098 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4099 return;
4100
4101 BUG_ON(ac->ac_lg != NULL);
4102 /*
4103 * locality group prealloc space are per cpu. The reason for having
4104 * per cpu locality group is to reduce the contention between block
4105 * request from multiple CPUs.
4106 */
4107 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4108
4109 /* we're going to use group allocation */
4110 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4111
4112 /* serialize all allocations in the group */
4113 mutex_lock(&ac->ac_lg->lg_mutex);
4114 }
4115
4116 static noinline_for_stack int
4117 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4118 struct ext4_allocation_request *ar)
4119 {
4120 struct super_block *sb = ar->inode->i_sb;
4121 struct ext4_sb_info *sbi = EXT4_SB(sb);
4122 struct ext4_super_block *es = sbi->s_es;
4123 ext4_group_t group;
4124 unsigned long len;
4125 unsigned long goal;
4126 ext4_grpblk_t block;
4127
4128 /* we can't allocate > group size */
4129 len = ar->len;
4130
4131 /* just a dirty hack to filter too big requests */
4132 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4133 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4134
4135 /* start searching from the goal */
4136 goal = ar->goal;
4137 if (goal < le32_to_cpu(es->s_first_data_block) ||
4138 goal >= ext4_blocks_count(es))
4139 goal = le32_to_cpu(es->s_first_data_block);
4140 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4141
4142 /* set up allocation goals */
4143 ac->ac_b_ex.fe_logical = ar->logical;
4144 ac->ac_b_ex.fe_group = 0;
4145 ac->ac_b_ex.fe_start = 0;
4146 ac->ac_b_ex.fe_len = 0;
4147 ac->ac_status = AC_STATUS_CONTINUE;
4148 ac->ac_groups_scanned = 0;
4149 ac->ac_ex_scanned = 0;
4150 ac->ac_found = 0;
4151 ac->ac_sb = sb;
4152 ac->ac_inode = ar->inode;
4153 ac->ac_o_ex.fe_logical = ar->logical;
4154 ac->ac_o_ex.fe_group = group;
4155 ac->ac_o_ex.fe_start = block;
4156 ac->ac_o_ex.fe_len = len;
4157 ac->ac_g_ex.fe_logical = ar->logical;
4158 ac->ac_g_ex.fe_group = group;
4159 ac->ac_g_ex.fe_start = block;
4160 ac->ac_g_ex.fe_len = len;
4161 ac->ac_f_ex.fe_len = 0;
4162 ac->ac_flags = ar->flags;
4163 ac->ac_2order = 0;
4164 ac->ac_criteria = 0;
4165 ac->ac_pa = NULL;
4166 ac->ac_bitmap_page = NULL;
4167 ac->ac_buddy_page = NULL;
4168 ac->ac_lg = NULL;
4169
4170 /* we have to define context: we'll we work with a file or
4171 * locality group. this is a policy, actually */
4172 ext4_mb_group_or_file(ac);
4173
4174 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4175 "left: %u/%u, right %u/%u to %swritable\n",
4176 (unsigned) ar->len, (unsigned) ar->logical,
4177 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4178 (unsigned) ar->lleft, (unsigned) ar->pleft,
4179 (unsigned) ar->lright, (unsigned) ar->pright,
4180 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4181 return 0;
4182
4183 }
4184
4185 static noinline_for_stack void
4186 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4187 struct ext4_locality_group *lg,
4188 int order, int total_entries)
4189 {
4190 ext4_group_t group = 0;
4191 struct ext4_buddy e4b;
4192 struct list_head discard_list;
4193 struct ext4_prealloc_space *pa, *tmp;
4194 struct ext4_allocation_context *ac;
4195
4196 mb_debug("discard locality group preallocation\n");
4197
4198 INIT_LIST_HEAD(&discard_list);
4199 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4200
4201 spin_lock(&lg->lg_prealloc_lock);
4202 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4203 pa_inode_list) {
4204 spin_lock(&pa->pa_lock);
4205 if (atomic_read(&pa->pa_count)) {
4206 /*
4207 * This is the pa that we just used
4208 * for block allocation. So don't
4209 * free that
4210 */
4211 spin_unlock(&pa->pa_lock);
4212 continue;
4213 }
4214 if (pa->pa_deleted) {
4215 spin_unlock(&pa->pa_lock);
4216 continue;
4217 }
4218 /* only lg prealloc space */
4219 BUG_ON(!pa->pa_linear);
4220
4221 /* seems this one can be freed ... */
4222 pa->pa_deleted = 1;
4223 spin_unlock(&pa->pa_lock);
4224
4225 list_del_rcu(&pa->pa_inode_list);
4226 list_add(&pa->u.pa_tmp_list, &discard_list);
4227
4228 total_entries--;
4229 if (total_entries <= 5) {
4230 /*
4231 * we want to keep only 5 entries
4232 * allowing it to grow to 8. This
4233 * mak sure we don't call discard
4234 * soon for this list.
4235 */
4236 break;
4237 }
4238 }
4239 spin_unlock(&lg->lg_prealloc_lock);
4240
4241 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4242
4243 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4244 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4245 ext4_error(sb, __func__, "Error in loading buddy "
4246 "information for %lu\n", group);
4247 continue;
4248 }
4249 ext4_lock_group(sb, group);
4250 list_del(&pa->pa_group_list);
4251 ext4_mb_release_group_pa(&e4b, pa, ac);
4252 ext4_unlock_group(sb, group);
4253
4254 ext4_mb_release_desc(&e4b);
4255 list_del(&pa->u.pa_tmp_list);
4256 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4257 }
4258 if (ac)
4259 kmem_cache_free(ext4_ac_cachep, ac);
4260 }
4261
4262 /*
4263 * We have incremented pa_count. So it cannot be freed at this
4264 * point. Also we hold lg_mutex. So no parallel allocation is
4265 * possible from this lg. That means pa_free cannot be updated.
4266 *
4267 * A parallel ext4_mb_discard_group_preallocations is possible.
4268 * which can cause the lg_prealloc_list to be updated.
4269 */
4270
4271 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4272 {
4273 int order, added = 0, lg_prealloc_count = 1;
4274 struct super_block *sb = ac->ac_sb;
4275 struct ext4_locality_group *lg = ac->ac_lg;
4276 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4277
4278 order = fls(pa->pa_free) - 1;
4279 if (order > PREALLOC_TB_SIZE - 1)
4280 /* The max size of hash table is PREALLOC_TB_SIZE */
4281 order = PREALLOC_TB_SIZE - 1;
4282 /* Add the prealloc space to lg */
4283 rcu_read_lock();
4284 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4285 pa_inode_list) {
4286 spin_lock(&tmp_pa->pa_lock);
4287 if (tmp_pa->pa_deleted) {
4288 spin_unlock(&pa->pa_lock);
4289 continue;
4290 }
4291 if (!added && pa->pa_free < tmp_pa->pa_free) {
4292 /* Add to the tail of the previous entry */
4293 list_add_tail_rcu(&pa->pa_inode_list,
4294 &tmp_pa->pa_inode_list);
4295 added = 1;
4296 /*
4297 * we want to count the total
4298 * number of entries in the list
4299 */
4300 }
4301 spin_unlock(&tmp_pa->pa_lock);
4302 lg_prealloc_count++;
4303 }
4304 if (!added)
4305 list_add_tail_rcu(&pa->pa_inode_list,
4306 &lg->lg_prealloc_list[order]);
4307 rcu_read_unlock();
4308
4309 /* Now trim the list to be not more than 8 elements */
4310 if (lg_prealloc_count > 8) {
4311 ext4_mb_discard_lg_preallocations(sb, lg,
4312 order, lg_prealloc_count);
4313 return;
4314 }
4315 return ;
4316 }
4317
4318 /*
4319 * release all resource we used in allocation
4320 */
4321 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4322 {
4323 struct ext4_prealloc_space *pa = ac->ac_pa;
4324 if (pa) {
4325 if (pa->pa_linear) {
4326 /* see comment in ext4_mb_use_group_pa() */
4327 spin_lock(&pa->pa_lock);
4328 pa->pa_pstart += ac->ac_b_ex.fe_len;
4329 pa->pa_lstart += ac->ac_b_ex.fe_len;
4330 pa->pa_free -= ac->ac_b_ex.fe_len;
4331 pa->pa_len -= ac->ac_b_ex.fe_len;
4332 spin_unlock(&pa->pa_lock);
4333 /*
4334 * We want to add the pa to the right bucket.
4335 * Remove it from the list and while adding
4336 * make sure the list to which we are adding
4337 * doesn't grow big.
4338 */
4339 if (likely(pa->pa_free)) {
4340 spin_lock(pa->pa_obj_lock);
4341 list_del_rcu(&pa->pa_inode_list);
4342 spin_unlock(pa->pa_obj_lock);
4343 ext4_mb_add_n_trim(ac);
4344 }
4345 }
4346 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4347 }
4348 if (ac->ac_bitmap_page)
4349 page_cache_release(ac->ac_bitmap_page);
4350 if (ac->ac_buddy_page)
4351 page_cache_release(ac->ac_buddy_page);
4352 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4353 mutex_unlock(&ac->ac_lg->lg_mutex);
4354 ext4_mb_collect_stats(ac);
4355 return 0;
4356 }
4357
4358 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4359 {
4360 ext4_group_t i;
4361 int ret;
4362 int freed = 0;
4363
4364 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4365 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4366 freed += ret;
4367 needed -= ret;
4368 }
4369
4370 return freed;
4371 }
4372
4373 /*
4374 * Main entry point into mballoc to allocate blocks
4375 * it tries to use preallocation first, then falls back
4376 * to usual allocation
4377 */
4378 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4379 struct ext4_allocation_request *ar, int *errp)
4380 {
4381 int freed;
4382 struct ext4_allocation_context *ac = NULL;
4383 struct ext4_sb_info *sbi;
4384 struct super_block *sb;
4385 ext4_fsblk_t block = 0;
4386 unsigned long inquota;
4387 unsigned long reserv_blks = 0;
4388
4389 sb = ar->inode->i_sb;
4390 sbi = EXT4_SB(sb);
4391
4392 if (!test_opt(sb, MBALLOC)) {
4393 block = ext4_old_new_blocks(handle, ar->inode, ar->goal,
4394 &(ar->len), errp);
4395 return block;
4396 }
4397 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4398 /*
4399 * With delalloc we already reserved the blocks
4400 */
4401 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4402 /* let others to free the space */
4403 yield();
4404 ar->len = ar->len >> 1;
4405 }
4406 if (!ar->len) {
4407 *errp = -ENOSPC;
4408 return 0;
4409 }
4410 reserv_blks = ar->len;
4411 }
4412 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4413 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4414 ar->len--;
4415 }
4416 if (ar->len == 0) {
4417 *errp = -EDQUOT;
4418 return 0;
4419 }
4420 inquota = ar->len;
4421
4422 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4423 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4424
4425 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4426 if (!ac) {
4427 ar->len = 0;
4428 *errp = -ENOMEM;
4429 goto out1;
4430 }
4431
4432 ext4_mb_poll_new_transaction(sb, handle);
4433
4434 *errp = ext4_mb_initialize_context(ac, ar);
4435 if (*errp) {
4436 ar->len = 0;
4437 goto out2;
4438 }
4439
4440 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4441 if (!ext4_mb_use_preallocated(ac)) {
4442 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4443 ext4_mb_normalize_request(ac, ar);
4444 repeat:
4445 /* allocate space in core */
4446 ext4_mb_regular_allocator(ac);
4447
4448 /* as we've just preallocated more space than
4449 * user requested orinally, we store allocated
4450 * space in a special descriptor */
4451 if (ac->ac_status == AC_STATUS_FOUND &&
4452 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4453 ext4_mb_new_preallocation(ac);
4454 }
4455
4456 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4457 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4458 if (*errp == -EAGAIN) {
4459 ac->ac_b_ex.fe_group = 0;
4460 ac->ac_b_ex.fe_start = 0;
4461 ac->ac_b_ex.fe_len = 0;
4462 ac->ac_status = AC_STATUS_CONTINUE;
4463 goto repeat;
4464 } else if (*errp) {
4465 ac->ac_b_ex.fe_len = 0;
4466 ar->len = 0;
4467 ext4_mb_show_ac(ac);
4468 } else {
4469 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4470 ar->len = ac->ac_b_ex.fe_len;
4471 }
4472 } else {
4473 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4474 if (freed)
4475 goto repeat;
4476 *errp = -ENOSPC;
4477 ac->ac_b_ex.fe_len = 0;
4478 ar->len = 0;
4479 ext4_mb_show_ac(ac);
4480 }
4481
4482 ext4_mb_release_context(ac);
4483
4484 out2:
4485 kmem_cache_free(ext4_ac_cachep, ac);
4486 out1:
4487 if (ar->len < inquota)
4488 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4489
4490 return block;
4491 }
4492 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4493 handle_t *handle)
4494 {
4495 struct ext4_sb_info *sbi = EXT4_SB(sb);
4496
4497 if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4498 return;
4499
4500 /* new transaction! time to close last one and free blocks for
4501 * committed transaction. we know that only transaction can be
4502 * active, so previos transaction can be being logged and we
4503 * know that transaction before previous is known to be already
4504 * logged. this means that now we may free blocks freed in all
4505 * transactions before previous one. hope I'm clear enough ... */
4506
4507 spin_lock(&sbi->s_md_lock);
4508 if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4509 mb_debug("new transaction %lu, old %lu\n",
4510 (unsigned long) handle->h_transaction->t_tid,
4511 (unsigned long) sbi->s_last_transaction);
4512 list_splice_init(&sbi->s_closed_transaction,
4513 &sbi->s_committed_transaction);
4514 list_splice_init(&sbi->s_active_transaction,
4515 &sbi->s_closed_transaction);
4516 sbi->s_last_transaction = handle->h_transaction->t_tid;
4517 }
4518 spin_unlock(&sbi->s_md_lock);
4519
4520 ext4_mb_free_committed_blocks(sb);
4521 }
4522
4523 static noinline_for_stack int
4524 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4525 ext4_group_t group, ext4_grpblk_t block, int count)
4526 {
4527 struct ext4_group_info *db = e4b->bd_info;
4528 struct super_block *sb = e4b->bd_sb;
4529 struct ext4_sb_info *sbi = EXT4_SB(sb);
4530 struct ext4_free_metadata *md;
4531 int i;
4532
4533 BUG_ON(e4b->bd_bitmap_page == NULL);
4534 BUG_ON(e4b->bd_buddy_page == NULL);
4535
4536 ext4_lock_group(sb, group);
4537 for (i = 0; i < count; i++) {
4538 md = db->bb_md_cur;
4539 if (md && db->bb_tid != handle->h_transaction->t_tid) {
4540 db->bb_md_cur = NULL;
4541 md = NULL;
4542 }
4543
4544 if (md == NULL) {
4545 ext4_unlock_group(sb, group);
4546 md = kmalloc(sizeof(*md), GFP_NOFS);
4547 if (md == NULL)
4548 return -ENOMEM;
4549 md->num = 0;
4550 md->group = group;
4551
4552 ext4_lock_group(sb, group);
4553 if (db->bb_md_cur == NULL) {
4554 spin_lock(&sbi->s_md_lock);
4555 list_add(&md->list, &sbi->s_active_transaction);
4556 spin_unlock(&sbi->s_md_lock);
4557 /* protect buddy cache from being freed,
4558 * otherwise we'll refresh it from
4559 * on-disk bitmap and lose not-yet-available
4560 * blocks */
4561 page_cache_get(e4b->bd_buddy_page);
4562 page_cache_get(e4b->bd_bitmap_page);
4563 db->bb_md_cur = md;
4564 db->bb_tid = handle->h_transaction->t_tid;
4565 mb_debug("new md 0x%p for group %lu\n",
4566 md, md->group);
4567 } else {
4568 kfree(md);
4569 md = db->bb_md_cur;
4570 }
4571 }
4572
4573 BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4574 md->blocks[md->num] = block + i;
4575 md->num++;
4576 if (md->num == EXT4_BB_MAX_BLOCKS) {
4577 /* no more space, put full container on a sb's list */
4578 db->bb_md_cur = NULL;
4579 }
4580 }
4581 ext4_unlock_group(sb, group);
4582 return 0;
4583 }
4584
4585 /*
4586 * Main entry point into mballoc to free blocks
4587 */
4588 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4589 unsigned long block, unsigned long count,
4590 int metadata, unsigned long *freed)
4591 {
4592 struct buffer_head *bitmap_bh = NULL;
4593 struct super_block *sb = inode->i_sb;
4594 struct ext4_allocation_context *ac = NULL;
4595 struct ext4_group_desc *gdp;
4596 struct ext4_super_block *es;
4597 unsigned long overflow;
4598 ext4_grpblk_t bit;
4599 struct buffer_head *gd_bh;
4600 ext4_group_t block_group;
4601 struct ext4_sb_info *sbi;
4602 struct ext4_buddy e4b;
4603 int err = 0;
4604 int ret;
4605
4606 *freed = 0;
4607
4608 ext4_mb_poll_new_transaction(sb, handle);
4609
4610 sbi = EXT4_SB(sb);
4611 es = EXT4_SB(sb)->s_es;
4612 if (block < le32_to_cpu(es->s_first_data_block) ||
4613 block + count < block ||
4614 block + count > ext4_blocks_count(es)) {
4615 ext4_error(sb, __func__,
4616 "Freeing blocks not in datazone - "
4617 "block = %lu, count = %lu", block, count);
4618 goto error_return;
4619 }
4620
4621 ext4_debug("freeing block %lu\n", block);
4622
4623 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4624 if (ac) {
4625 ac->ac_op = EXT4_MB_HISTORY_FREE;
4626 ac->ac_inode = inode;
4627 ac->ac_sb = sb;
4628 }
4629
4630 do_more:
4631 overflow = 0;
4632 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4633
4634 /*
4635 * Check to see if we are freeing blocks across a group
4636 * boundary.
4637 */
4638 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4639 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4640 count -= overflow;
4641 }
4642 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4643 if (!bitmap_bh) {
4644 err = -EIO;
4645 goto error_return;
4646 }
4647 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4648 if (!gdp) {
4649 err = -EIO;
4650 goto error_return;
4651 }
4652
4653 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4654 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4655 in_range(block, ext4_inode_table(sb, gdp),
4656 EXT4_SB(sb)->s_itb_per_group) ||
4657 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4658 EXT4_SB(sb)->s_itb_per_group)) {
4659
4660 ext4_error(sb, __func__,
4661 "Freeing blocks in system zone - "
4662 "Block = %lu, count = %lu", block, count);
4663 /* err = 0. ext4_std_error should be a no op */
4664 goto error_return;
4665 }
4666
4667 BUFFER_TRACE(bitmap_bh, "getting write access");
4668 err = ext4_journal_get_write_access(handle, bitmap_bh);
4669 if (err)
4670 goto error_return;
4671
4672 /*
4673 * We are about to modify some metadata. Call the journal APIs
4674 * to unshare ->b_data if a currently-committing transaction is
4675 * using it
4676 */
4677 BUFFER_TRACE(gd_bh, "get_write_access");
4678 err = ext4_journal_get_write_access(handle, gd_bh);
4679 if (err)
4680 goto error_return;
4681
4682 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4683 if (err)
4684 goto error_return;
4685
4686 #ifdef AGGRESSIVE_CHECK
4687 {
4688 int i;
4689 for (i = 0; i < count; i++)
4690 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4691 }
4692 #endif
4693 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4694 bit, count);
4695
4696 /* We dirtied the bitmap block */
4697 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4698 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4699
4700 if (ac) {
4701 ac->ac_b_ex.fe_group = block_group;
4702 ac->ac_b_ex.fe_start = bit;
4703 ac->ac_b_ex.fe_len = count;
4704 ext4_mb_store_history(ac);
4705 }
4706
4707 if (metadata) {
4708 /* blocks being freed are metadata. these blocks shouldn't
4709 * be used until this transaction is committed */
4710 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4711 } else {
4712 ext4_lock_group(sb, block_group);
4713 mb_free_blocks(inode, &e4b, bit, count);
4714 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4715 ext4_unlock_group(sb, block_group);
4716 }
4717
4718 spin_lock(sb_bgl_lock(sbi, block_group));
4719 le16_add_cpu(&gdp->bg_free_blocks_count, count);
4720 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4721 spin_unlock(sb_bgl_lock(sbi, block_group));
4722 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4723
4724 if (sbi->s_log_groups_per_flex) {
4725 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4726 spin_lock(sb_bgl_lock(sbi, flex_group));
4727 sbi->s_flex_groups[flex_group].free_blocks += count;
4728 spin_unlock(sb_bgl_lock(sbi, flex_group));
4729 }
4730
4731 ext4_mb_release_desc(&e4b);
4732
4733 *freed += count;
4734
4735 /* And the group descriptor block */
4736 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4737 ret = ext4_journal_dirty_metadata(handle, gd_bh);
4738 if (!err)
4739 err = ret;
4740
4741 if (overflow && !err) {
4742 block += count;
4743 count = overflow;
4744 put_bh(bitmap_bh);
4745 goto do_more;
4746 }
4747 sb->s_dirt = 1;
4748 error_return:
4749 brelse(bitmap_bh);
4750 ext4_std_error(sb, err);
4751 if (ac)
4752 kmem_cache_free(ext4_ac_cachep, ac);
4753 return;
4754 }
This page took 0.200834 seconds and 5 git commands to generate.