15dffdac59072c3981d0bfa97b8916de748fcb71
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
733
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
750 }
751 grp->bb_fragments = fragments;
752
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
757 free, grp->bb_free);
758 /*
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
761 */
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 }
768 mb_set_largest_free_order(sb, grp);
769
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 int count;
782 int order = 1;
783 void *buddy;
784
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
787 }
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
792
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
795 }
796
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
802 *
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805 *
806 *
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
812 *
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
815 */
816
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
834
835 mb_debug(1, "init page %lu\n", page->index);
836
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
846
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
854 }
855 } else
856 bh = &bhs;
857
858 first_group = page->index * blocks_per_page / 2;
859
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
864
865 grinfo = ext4_get_group_info(sb, group);
866 /*
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
871 */
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
875 }
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
879 }
880 mb_debug(1, "read bitmap for group %u\n", group);
881 }
882
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 err = -EIO;
887 goto out;
888 }
889 }
890
891 first_block = page->index * blocks_per_page;
892 for (i = 0; i < blocks_per_page; i++) {
893 group = (first_block + i) >> 1;
894 if (group >= ngroups)
895 break;
896
897 if (!bh[group - first_group])
898 /* skip initialized uptodate buddy */
899 continue;
900
901 /*
902 * data carry information regarding this
903 * particular group in the format specified
904 * above
905 *
906 */
907 data = page_address(page) + (i * blocksize);
908 bitmap = bh[group - first_group]->b_data;
909
910 /*
911 * We place the buddy block and bitmap block
912 * close together
913 */
914 if ((first_block + i) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore == NULL);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group, page->index, i * blocksize);
919 trace_ext4_mb_buddy_bitmap_load(sb, group);
920 grinfo = ext4_get_group_info(sb, group);
921 grinfo->bb_fragments = 0;
922 memset(grinfo->bb_counters, 0,
923 sizeof(*grinfo->bb_counters) *
924 (sb->s_blocksize_bits+2));
925 /*
926 * incore got set to the group block bitmap below
927 */
928 ext4_lock_group(sb, group);
929 /* init the buddy */
930 memset(data, 0xff, blocksize);
931 ext4_mb_generate_buddy(sb, data, incore, group);
932 ext4_unlock_group(sb, group);
933 incore = NULL;
934 } else {
935 /* this is block of bitmap */
936 BUG_ON(incore != NULL);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group, page->index, i * blocksize);
939 trace_ext4_mb_bitmap_load(sb, group);
940
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb, group);
943 memcpy(data, bitmap, blocksize);
944
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb, data, group);
947 ext4_mb_generate_from_freelist(sb, data, group);
948 ext4_unlock_group(sb, group);
949
950 /* set incore so that the buddy information can be
951 * generated using this
952 */
953 incore = data;
954 }
955 }
956 SetPageUptodate(page);
957
958 out:
959 if (bh) {
960 for (i = 0; i < groups_per_page; i++)
961 brelse(bh[i]);
962 if (bh != &bhs)
963 kfree(bh);
964 }
965 return err;
966 }
967
968 /*
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973 */
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 int block, pnum, poff;
979 int blocks_per_page;
980 struct page *page;
981
982 e4b->bd_buddy_page = NULL;
983 e4b->bd_bitmap_page = NULL;
984
985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 /*
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
990 */
991 block = group * 2;
992 pnum = block / blocks_per_page;
993 poff = block % blocks_per_page;
994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 if (!page)
996 return -ENOMEM;
997 BUG_ON(page->mapping != inode->i_mapping);
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000
1001 if (blocks_per_page >= 2) {
1002 /* buddy and bitmap are on the same page */
1003 return 0;
1004 }
1005
1006 block++;
1007 pnum = block / blocks_per_page;
1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 if (!page)
1010 return -ENOMEM;
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 e4b->bd_buddy_page = page;
1013 return 0;
1014 }
1015
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 if (e4b->bd_bitmap_page) {
1019 unlock_page(e4b->bd_bitmap_page);
1020 page_cache_release(e4b->bd_bitmap_page);
1021 }
1022 if (e4b->bd_buddy_page) {
1023 unlock_page(e4b->bd_buddy_page);
1024 page_cache_release(e4b->bd_buddy_page);
1025 }
1026 }
1027
1028 /*
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1032 */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036
1037 struct ext4_group_info *this_grp;
1038 struct ext4_buddy e4b;
1039 struct page *page;
1040 int ret = 0;
1041
1042 might_sleep();
1043 mb_debug(1, "init group %u\n", group);
1044 this_grp = ext4_get_group_info(sb, group);
1045 /*
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 * page accessed.
1053 */
1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 /*
1057 * somebody initialized the group
1058 * return without doing anything
1059 */
1060 goto err;
1061 }
1062
1063 page = e4b.bd_bitmap_page;
1064 ret = ext4_mb_init_cache(page, NULL);
1065 if (ret)
1066 goto err;
1067 if (!PageUptodate(page)) {
1068 ret = -EIO;
1069 goto err;
1070 }
1071
1072 if (e4b.bd_buddy_page == NULL) {
1073 /*
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1076 * init the buddy
1077 */
1078 ret = 0;
1079 goto err;
1080 }
1081 /* init buddy cache */
1082 page = e4b.bd_buddy_page;
1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 if (ret)
1085 goto err;
1086 if (!PageUptodate(page)) {
1087 ret = -EIO;
1088 goto err;
1089 }
1090 err:
1091 ext4_mb_put_buddy_page_lock(&e4b);
1092 return ret;
1093 }
1094
1095 /*
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1099 */
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 struct ext4_buddy *e4b)
1103 {
1104 int blocks_per_page;
1105 int block;
1106 int pnum;
1107 int poff;
1108 struct page *page;
1109 int ret;
1110 struct ext4_group_info *grp;
1111 struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 struct inode *inode = sbi->s_buddy_cache;
1113
1114 might_sleep();
1115 mb_debug(1, "load group %u\n", group);
1116
1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 grp = ext4_get_group_info(sb, group);
1119
1120 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_info = grp;
1122 e4b->bd_sb = sb;
1123 e4b->bd_group = group;
1124 e4b->bd_buddy_page = NULL;
1125 e4b->bd_bitmap_page = NULL;
1126
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 /*
1129 * we need full data about the group
1130 * to make a good selection
1131 */
1132 ret = ext4_mb_init_group(sb, group);
1133 if (ret)
1134 return ret;
1135 }
1136
1137 /*
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1141 */
1142 block = group * 2;
1143 pnum = block / blocks_per_page;
1144 poff = block % blocks_per_page;
1145
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 if (page == NULL || !PageUptodate(page)) {
1150 if (page)
1151 /*
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1158 */
1159 page_cache_release(page);
1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 if (page) {
1162 BUG_ON(page->mapping != inode->i_mapping);
1163 if (!PageUptodate(page)) {
1164 ret = ext4_mb_init_cache(page, NULL);
1165 if (ret) {
1166 unlock_page(page);
1167 goto err;
1168 }
1169 mb_cmp_bitmaps(e4b, page_address(page) +
1170 (poff * sb->s_blocksize));
1171 }
1172 unlock_page(page);
1173 }
1174 }
1175 if (page == NULL) {
1176 ret = -ENOMEM;
1177 goto err;
1178 }
1179 if (!PageUptodate(page)) {
1180 ret = -EIO;
1181 goto err;
1182 }
1183
1184 /* Pages marked accessed already */
1185 e4b->bd_bitmap_page = page;
1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187
1188 block++;
1189 pnum = block / blocks_per_page;
1190 poff = block % blocks_per_page;
1191
1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 if (page == NULL || !PageUptodate(page)) {
1194 if (page)
1195 page_cache_release(page);
1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 if (page) {
1198 BUG_ON(page->mapping != inode->i_mapping);
1199 if (!PageUptodate(page)) {
1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1204 }
1205 }
1206 unlock_page(page);
1207 }
1208 }
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1212 }
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1216 }
1217
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1224
1225 return 0;
1226
1227 err:
1228 if (page)
1229 page_cache_release(page);
1230 if (e4b->bd_bitmap_page)
1231 page_cache_release(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 page_cache_release(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1237 }
1238
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 if (e4b->bd_bitmap_page)
1242 page_cache_release(e4b->bd_bitmap_page);
1243 if (e4b->bd_buddy_page)
1244 page_cache_release(e4b->bd_buddy_page);
1245 }
1246
1247
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 int order = 1;
1251 void *bb;
1252
1253 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255
1256 bb = e4b->bd_buddy;
1257 while (order <= e4b->bd_blkbits + 1) {
1258 block = block >> 1;
1259 if (!mb_test_bit(block, bb)) {
1260 /* this block is part of buddy of order 'order' */
1261 return order;
1262 }
1263 bb += 1 << (e4b->bd_blkbits - order);
1264 order++;
1265 }
1266 return 0;
1267 }
1268
1269 static void mb_clear_bits(void *bm, int cur, int len)
1270 {
1271 __u32 *addr;
1272
1273 len = cur + len;
1274 while (cur < len) {
1275 if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 /* fast path: clear whole word at once */
1277 addr = bm + (cur >> 3);
1278 *addr = 0;
1279 cur += 32;
1280 continue;
1281 }
1282 mb_clear_bit(cur, bm);
1283 cur++;
1284 }
1285 }
1286
1287 /* clear bits in given range
1288 * will return first found zero bit if any, -1 otherwise
1289 */
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1291 {
1292 __u32 *addr;
1293 int zero_bit = -1;
1294
1295 len = cur + len;
1296 while (cur < len) {
1297 if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 /* fast path: clear whole word at once */
1299 addr = bm + (cur >> 3);
1300 if (*addr != (__u32)(-1) && zero_bit == -1)
1301 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 *addr = 0;
1303 cur += 32;
1304 continue;
1305 }
1306 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 zero_bit = cur;
1308 cur++;
1309 }
1310
1311 return zero_bit;
1312 }
1313
1314 void ext4_set_bits(void *bm, int cur, int len)
1315 {
1316 __u32 *addr;
1317
1318 len = cur + len;
1319 while (cur < len) {
1320 if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 /* fast path: set whole word at once */
1322 addr = bm + (cur >> 3);
1323 *addr = 0xffffffff;
1324 cur += 32;
1325 continue;
1326 }
1327 mb_set_bit(cur, bm);
1328 cur++;
1329 }
1330 }
1331
1332 /*
1333 * _________________________________________________________________ */
1334
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1336 {
1337 if (mb_test_bit(*bit + side, bitmap)) {
1338 mb_clear_bit(*bit, bitmap);
1339 (*bit) -= side;
1340 return 1;
1341 }
1342 else {
1343 (*bit) += side;
1344 mb_set_bit(*bit, bitmap);
1345 return -1;
1346 }
1347 }
1348
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1350 {
1351 int max;
1352 int order = 1;
1353 void *buddy = mb_find_buddy(e4b, order, &max);
1354
1355 while (buddy) {
1356 void *buddy2;
1357
1358 /* Bits in range [first; last] are known to be set since
1359 * corresponding blocks were allocated. Bits in range
1360 * (first; last) will stay set because they form buddies on
1361 * upper layer. We just deal with borders if they don't
1362 * align with upper layer and then go up.
1363 * Releasing entire group is all about clearing
1364 * single bit of highest order buddy.
1365 */
1366
1367 /* Example:
1368 * ---------------------------------
1369 * | 1 | 1 | 1 | 1 |
1370 * ---------------------------------
1371 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 * ---------------------------------
1373 * 0 1 2 3 4 5 6 7
1374 * \_____________________/
1375 *
1376 * Neither [1] nor [6] is aligned to above layer.
1377 * Left neighbour [0] is free, so mark it busy,
1378 * decrease bb_counters and extend range to
1379 * [0; 6]
1380 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 * mark [6] free, increase bb_counters and shrink range to
1382 * [0; 5].
1383 * Then shift range to [0; 2], go up and do the same.
1384 */
1385
1386
1387 if (first & 1)
1388 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 if (!(last & 1))
1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 if (first > last)
1392 break;
1393 order++;
1394
1395 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 mb_clear_bits(buddy, first, last - first + 1);
1397 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 break;
1399 }
1400 first >>= 1;
1401 last >>= 1;
1402 buddy = buddy2;
1403 }
1404 }
1405
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 int first, int count)
1408 {
1409 int left_is_free = 0;
1410 int right_is_free = 0;
1411 int block;
1412 int last = first + count - 1;
1413 struct super_block *sb = e4b->bd_sb;
1414
1415 if (WARN_ON(count == 0))
1416 return;
1417 BUG_ON(last >= (sb->s_blocksize << 3));
1418 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1419 /* Don't bother if the block group is corrupt. */
1420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1421 return;
1422
1423 mb_check_buddy(e4b);
1424 mb_free_blocks_double(inode, e4b, first, count);
1425
1426 e4b->bd_info->bb_free += count;
1427 if (first < e4b->bd_info->bb_first_free)
1428 e4b->bd_info->bb_first_free = first;
1429
1430 /* access memory sequentially: check left neighbour,
1431 * clear range and then check right neighbour
1432 */
1433 if (first != 0)
1434 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1435 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1436 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1437 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1438
1439 if (unlikely(block != -1)) {
1440 struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 ext4_fsblk_t blocknr;
1442
1443 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1444 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1445 ext4_grp_locked_error(sb, e4b->bd_group,
1446 inode ? inode->i_ino : 0,
1447 blocknr,
1448 "freeing already freed block "
1449 "(bit %u); block bitmap corrupt.",
1450 block);
1451 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1452 percpu_counter_sub(&sbi->s_freeclusters_counter,
1453 e4b->bd_info->bb_free);
1454 /* Mark the block group as corrupt. */
1455 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1456 &e4b->bd_info->bb_state);
1457 mb_regenerate_buddy(e4b);
1458 goto done;
1459 }
1460
1461 /* let's maintain fragments counter */
1462 if (left_is_free && right_is_free)
1463 e4b->bd_info->bb_fragments--;
1464 else if (!left_is_free && !right_is_free)
1465 e4b->bd_info->bb_fragments++;
1466
1467 /* buddy[0] == bd_bitmap is a special case, so handle
1468 * it right away and let mb_buddy_mark_free stay free of
1469 * zero order checks.
1470 * Check if neighbours are to be coaleasced,
1471 * adjust bitmap bb_counters and borders appropriately.
1472 */
1473 if (first & 1) {
1474 first += !left_is_free;
1475 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1476 }
1477 if (!(last & 1)) {
1478 last -= !right_is_free;
1479 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1480 }
1481
1482 if (first <= last)
1483 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1484
1485 done:
1486 mb_set_largest_free_order(sb, e4b->bd_info);
1487 mb_check_buddy(e4b);
1488 }
1489
1490 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1491 int needed, struct ext4_free_extent *ex)
1492 {
1493 int next = block;
1494 int max, order;
1495 void *buddy;
1496
1497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1498 BUG_ON(ex == NULL);
1499
1500 buddy = mb_find_buddy(e4b, 0, &max);
1501 BUG_ON(buddy == NULL);
1502 BUG_ON(block >= max);
1503 if (mb_test_bit(block, buddy)) {
1504 ex->fe_len = 0;
1505 ex->fe_start = 0;
1506 ex->fe_group = 0;
1507 return 0;
1508 }
1509
1510 /* find actual order */
1511 order = mb_find_order_for_block(e4b, block);
1512 block = block >> order;
1513
1514 ex->fe_len = 1 << order;
1515 ex->fe_start = block << order;
1516 ex->fe_group = e4b->bd_group;
1517
1518 /* calc difference from given start */
1519 next = next - ex->fe_start;
1520 ex->fe_len -= next;
1521 ex->fe_start += next;
1522
1523 while (needed > ex->fe_len &&
1524 mb_find_buddy(e4b, order, &max)) {
1525
1526 if (block + 1 >= max)
1527 break;
1528
1529 next = (block + 1) * (1 << order);
1530 if (mb_test_bit(next, e4b->bd_bitmap))
1531 break;
1532
1533 order = mb_find_order_for_block(e4b, next);
1534
1535 block = next >> order;
1536 ex->fe_len += 1 << order;
1537 }
1538
1539 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1540 return ex->fe_len;
1541 }
1542
1543 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1544 {
1545 int ord;
1546 int mlen = 0;
1547 int max = 0;
1548 int cur;
1549 int start = ex->fe_start;
1550 int len = ex->fe_len;
1551 unsigned ret = 0;
1552 int len0 = len;
1553 void *buddy;
1554
1555 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1556 BUG_ON(e4b->bd_group != ex->fe_group);
1557 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1558 mb_check_buddy(e4b);
1559 mb_mark_used_double(e4b, start, len);
1560
1561 e4b->bd_info->bb_free -= len;
1562 if (e4b->bd_info->bb_first_free == start)
1563 e4b->bd_info->bb_first_free += len;
1564
1565 /* let's maintain fragments counter */
1566 if (start != 0)
1567 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1568 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1569 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1570 if (mlen && max)
1571 e4b->bd_info->bb_fragments++;
1572 else if (!mlen && !max)
1573 e4b->bd_info->bb_fragments--;
1574
1575 /* let's maintain buddy itself */
1576 while (len) {
1577 ord = mb_find_order_for_block(e4b, start);
1578
1579 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1580 /* the whole chunk may be allocated at once! */
1581 mlen = 1 << ord;
1582 buddy = mb_find_buddy(e4b, ord, &max);
1583 BUG_ON((start >> ord) >= max);
1584 mb_set_bit(start >> ord, buddy);
1585 e4b->bd_info->bb_counters[ord]--;
1586 start += mlen;
1587 len -= mlen;
1588 BUG_ON(len < 0);
1589 continue;
1590 }
1591
1592 /* store for history */
1593 if (ret == 0)
1594 ret = len | (ord << 16);
1595
1596 /* we have to split large buddy */
1597 BUG_ON(ord <= 0);
1598 buddy = mb_find_buddy(e4b, ord, &max);
1599 mb_set_bit(start >> ord, buddy);
1600 e4b->bd_info->bb_counters[ord]--;
1601
1602 ord--;
1603 cur = (start >> ord) & ~1U;
1604 buddy = mb_find_buddy(e4b, ord, &max);
1605 mb_clear_bit(cur, buddy);
1606 mb_clear_bit(cur + 1, buddy);
1607 e4b->bd_info->bb_counters[ord]++;
1608 e4b->bd_info->bb_counters[ord]++;
1609 }
1610 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1611
1612 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1613 mb_check_buddy(e4b);
1614
1615 return ret;
1616 }
1617
1618 /*
1619 * Must be called under group lock!
1620 */
1621 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1622 struct ext4_buddy *e4b)
1623 {
1624 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1625 int ret;
1626
1627 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1628 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1629
1630 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1631 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1632 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1633
1634 /* preallocation can change ac_b_ex, thus we store actually
1635 * allocated blocks for history */
1636 ac->ac_f_ex = ac->ac_b_ex;
1637
1638 ac->ac_status = AC_STATUS_FOUND;
1639 ac->ac_tail = ret & 0xffff;
1640 ac->ac_buddy = ret >> 16;
1641
1642 /*
1643 * take the page reference. We want the page to be pinned
1644 * so that we don't get a ext4_mb_init_cache_call for this
1645 * group until we update the bitmap. That would mean we
1646 * double allocate blocks. The reference is dropped
1647 * in ext4_mb_release_context
1648 */
1649 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1650 get_page(ac->ac_bitmap_page);
1651 ac->ac_buddy_page = e4b->bd_buddy_page;
1652 get_page(ac->ac_buddy_page);
1653 /* store last allocated for subsequent stream allocation */
1654 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1655 spin_lock(&sbi->s_md_lock);
1656 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1657 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1658 spin_unlock(&sbi->s_md_lock);
1659 }
1660 }
1661
1662 /*
1663 * regular allocator, for general purposes allocation
1664 */
1665
1666 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1667 struct ext4_buddy *e4b,
1668 int finish_group)
1669 {
1670 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 struct ext4_free_extent *bex = &ac->ac_b_ex;
1672 struct ext4_free_extent *gex = &ac->ac_g_ex;
1673 struct ext4_free_extent ex;
1674 int max;
1675
1676 if (ac->ac_status == AC_STATUS_FOUND)
1677 return;
1678 /*
1679 * We don't want to scan for a whole year
1680 */
1681 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1682 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1683 ac->ac_status = AC_STATUS_BREAK;
1684 return;
1685 }
1686
1687 /*
1688 * Haven't found good chunk so far, let's continue
1689 */
1690 if (bex->fe_len < gex->fe_len)
1691 return;
1692
1693 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1694 && bex->fe_group == e4b->bd_group) {
1695 /* recheck chunk's availability - we don't know
1696 * when it was found (within this lock-unlock
1697 * period or not) */
1698 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1699 if (max >= gex->fe_len) {
1700 ext4_mb_use_best_found(ac, e4b);
1701 return;
1702 }
1703 }
1704 }
1705
1706 /*
1707 * The routine checks whether found extent is good enough. If it is,
1708 * then the extent gets marked used and flag is set to the context
1709 * to stop scanning. Otherwise, the extent is compared with the
1710 * previous found extent and if new one is better, then it's stored
1711 * in the context. Later, the best found extent will be used, if
1712 * mballoc can't find good enough extent.
1713 *
1714 * FIXME: real allocation policy is to be designed yet!
1715 */
1716 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1717 struct ext4_free_extent *ex,
1718 struct ext4_buddy *e4b)
1719 {
1720 struct ext4_free_extent *bex = &ac->ac_b_ex;
1721 struct ext4_free_extent *gex = &ac->ac_g_ex;
1722
1723 BUG_ON(ex->fe_len <= 0);
1724 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1725 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1726 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1727
1728 ac->ac_found++;
1729
1730 /*
1731 * The special case - take what you catch first
1732 */
1733 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1734 *bex = *ex;
1735 ext4_mb_use_best_found(ac, e4b);
1736 return;
1737 }
1738
1739 /*
1740 * Let's check whether the chuck is good enough
1741 */
1742 if (ex->fe_len == gex->fe_len) {
1743 *bex = *ex;
1744 ext4_mb_use_best_found(ac, e4b);
1745 return;
1746 }
1747
1748 /*
1749 * If this is first found extent, just store it in the context
1750 */
1751 if (bex->fe_len == 0) {
1752 *bex = *ex;
1753 return;
1754 }
1755
1756 /*
1757 * If new found extent is better, store it in the context
1758 */
1759 if (bex->fe_len < gex->fe_len) {
1760 /* if the request isn't satisfied, any found extent
1761 * larger than previous best one is better */
1762 if (ex->fe_len > bex->fe_len)
1763 *bex = *ex;
1764 } else if (ex->fe_len > gex->fe_len) {
1765 /* if the request is satisfied, then we try to find
1766 * an extent that still satisfy the request, but is
1767 * smaller than previous one */
1768 if (ex->fe_len < bex->fe_len)
1769 *bex = *ex;
1770 }
1771
1772 ext4_mb_check_limits(ac, e4b, 0);
1773 }
1774
1775 static noinline_for_stack
1776 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1777 struct ext4_buddy *e4b)
1778 {
1779 struct ext4_free_extent ex = ac->ac_b_ex;
1780 ext4_group_t group = ex.fe_group;
1781 int max;
1782 int err;
1783
1784 BUG_ON(ex.fe_len <= 0);
1785 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1786 if (err)
1787 return err;
1788
1789 ext4_lock_group(ac->ac_sb, group);
1790 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1791
1792 if (max > 0) {
1793 ac->ac_b_ex = ex;
1794 ext4_mb_use_best_found(ac, e4b);
1795 }
1796
1797 ext4_unlock_group(ac->ac_sb, group);
1798 ext4_mb_unload_buddy(e4b);
1799
1800 return 0;
1801 }
1802
1803 static noinline_for_stack
1804 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1805 struct ext4_buddy *e4b)
1806 {
1807 ext4_group_t group = ac->ac_g_ex.fe_group;
1808 int max;
1809 int err;
1810 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1811 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1812 struct ext4_free_extent ex;
1813
1814 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1815 return 0;
1816 if (grp->bb_free == 0)
1817 return 0;
1818
1819 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1820 if (err)
1821 return err;
1822
1823 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1824 ext4_mb_unload_buddy(e4b);
1825 return 0;
1826 }
1827
1828 ext4_lock_group(ac->ac_sb, group);
1829 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1830 ac->ac_g_ex.fe_len, &ex);
1831 ex.fe_logical = 0xDEADFA11; /* debug value */
1832
1833 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1834 ext4_fsblk_t start;
1835
1836 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1837 ex.fe_start;
1838 /* use do_div to get remainder (would be 64-bit modulo) */
1839 if (do_div(start, sbi->s_stripe) == 0) {
1840 ac->ac_found++;
1841 ac->ac_b_ex = ex;
1842 ext4_mb_use_best_found(ac, e4b);
1843 }
1844 } else if (max >= ac->ac_g_ex.fe_len) {
1845 BUG_ON(ex.fe_len <= 0);
1846 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1847 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1848 ac->ac_found++;
1849 ac->ac_b_ex = ex;
1850 ext4_mb_use_best_found(ac, e4b);
1851 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1852 /* Sometimes, caller may want to merge even small
1853 * number of blocks to an existing extent */
1854 BUG_ON(ex.fe_len <= 0);
1855 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1856 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1857 ac->ac_found++;
1858 ac->ac_b_ex = ex;
1859 ext4_mb_use_best_found(ac, e4b);
1860 }
1861 ext4_unlock_group(ac->ac_sb, group);
1862 ext4_mb_unload_buddy(e4b);
1863
1864 return 0;
1865 }
1866
1867 /*
1868 * The routine scans buddy structures (not bitmap!) from given order
1869 * to max order and tries to find big enough chunk to satisfy the req
1870 */
1871 static noinline_for_stack
1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1873 struct ext4_buddy *e4b)
1874 {
1875 struct super_block *sb = ac->ac_sb;
1876 struct ext4_group_info *grp = e4b->bd_info;
1877 void *buddy;
1878 int i;
1879 int k;
1880 int max;
1881
1882 BUG_ON(ac->ac_2order <= 0);
1883 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1884 if (grp->bb_counters[i] == 0)
1885 continue;
1886
1887 buddy = mb_find_buddy(e4b, i, &max);
1888 BUG_ON(buddy == NULL);
1889
1890 k = mb_find_next_zero_bit(buddy, max, 0);
1891 BUG_ON(k >= max);
1892
1893 ac->ac_found++;
1894
1895 ac->ac_b_ex.fe_len = 1 << i;
1896 ac->ac_b_ex.fe_start = k << i;
1897 ac->ac_b_ex.fe_group = e4b->bd_group;
1898
1899 ext4_mb_use_best_found(ac, e4b);
1900
1901 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1902
1903 if (EXT4_SB(sb)->s_mb_stats)
1904 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1905
1906 break;
1907 }
1908 }
1909
1910 /*
1911 * The routine scans the group and measures all found extents.
1912 * In order to optimize scanning, caller must pass number of
1913 * free blocks in the group, so the routine can know upper limit.
1914 */
1915 static noinline_for_stack
1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1917 struct ext4_buddy *e4b)
1918 {
1919 struct super_block *sb = ac->ac_sb;
1920 void *bitmap = e4b->bd_bitmap;
1921 struct ext4_free_extent ex;
1922 int i;
1923 int free;
1924
1925 free = e4b->bd_info->bb_free;
1926 BUG_ON(free <= 0);
1927
1928 i = e4b->bd_info->bb_first_free;
1929
1930 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1931 i = mb_find_next_zero_bit(bitmap,
1932 EXT4_CLUSTERS_PER_GROUP(sb), i);
1933 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1934 /*
1935 * IF we have corrupt bitmap, we won't find any
1936 * free blocks even though group info says we
1937 * we have free blocks
1938 */
1939 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 "%d free clusters as per "
1941 "group info. But bitmap says 0",
1942 free);
1943 break;
1944 }
1945
1946 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1947 BUG_ON(ex.fe_len <= 0);
1948 if (free < ex.fe_len) {
1949 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1950 "%d free clusters as per "
1951 "group info. But got %d blocks",
1952 free, ex.fe_len);
1953 /*
1954 * The number of free blocks differs. This mostly
1955 * indicate that the bitmap is corrupt. So exit
1956 * without claiming the space.
1957 */
1958 break;
1959 }
1960 ex.fe_logical = 0xDEADC0DE; /* debug value */
1961 ext4_mb_measure_extent(ac, &ex, e4b);
1962
1963 i += ex.fe_len;
1964 free -= ex.fe_len;
1965 }
1966
1967 ext4_mb_check_limits(ac, e4b, 1);
1968 }
1969
1970 /*
1971 * This is a special case for storages like raid5
1972 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1973 */
1974 static noinline_for_stack
1975 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1976 struct ext4_buddy *e4b)
1977 {
1978 struct super_block *sb = ac->ac_sb;
1979 struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 void *bitmap = e4b->bd_bitmap;
1981 struct ext4_free_extent ex;
1982 ext4_fsblk_t first_group_block;
1983 ext4_fsblk_t a;
1984 ext4_grpblk_t i;
1985 int max;
1986
1987 BUG_ON(sbi->s_stripe == 0);
1988
1989 /* find first stripe-aligned block in group */
1990 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1991
1992 a = first_group_block + sbi->s_stripe - 1;
1993 do_div(a, sbi->s_stripe);
1994 i = (a * sbi->s_stripe) - first_group_block;
1995
1996 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1997 if (!mb_test_bit(i, bitmap)) {
1998 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1999 if (max >= sbi->s_stripe) {
2000 ac->ac_found++;
2001 ex.fe_logical = 0xDEADF00D; /* debug value */
2002 ac->ac_b_ex = ex;
2003 ext4_mb_use_best_found(ac, e4b);
2004 break;
2005 }
2006 }
2007 i += sbi->s_stripe;
2008 }
2009 }
2010
2011 /* This is now called BEFORE we load the buddy bitmap. */
2012 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2013 ext4_group_t group, int cr)
2014 {
2015 unsigned free, fragments;
2016 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2017 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2018
2019 BUG_ON(cr < 0 || cr >= 4);
2020
2021 free = grp->bb_free;
2022 if (free == 0)
2023 return 0;
2024 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2025 return 0;
2026
2027 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2028 return 0;
2029
2030 /* We only do this if the grp has never been initialized */
2031 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2032 int ret = ext4_mb_init_group(ac->ac_sb, group);
2033 if (ret)
2034 return 0;
2035 }
2036
2037 fragments = grp->bb_fragments;
2038 if (fragments == 0)
2039 return 0;
2040
2041 switch (cr) {
2042 case 0:
2043 BUG_ON(ac->ac_2order == 0);
2044
2045 /* Avoid using the first bg of a flexgroup for data files */
2046 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2047 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2048 ((group % flex_size) == 0))
2049 return 0;
2050
2051 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2052 (free / fragments) >= ac->ac_g_ex.fe_len)
2053 return 1;
2054
2055 if (grp->bb_largest_free_order < ac->ac_2order)
2056 return 0;
2057
2058 return 1;
2059 case 1:
2060 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2061 return 1;
2062 break;
2063 case 2:
2064 if (free >= ac->ac_g_ex.fe_len)
2065 return 1;
2066 break;
2067 case 3:
2068 return 1;
2069 default:
2070 BUG();
2071 }
2072
2073 return 0;
2074 }
2075
2076 static noinline_for_stack int
2077 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2078 {
2079 ext4_group_t ngroups, group, i;
2080 int cr;
2081 int err = 0;
2082 struct ext4_sb_info *sbi;
2083 struct super_block *sb;
2084 struct ext4_buddy e4b;
2085
2086 sb = ac->ac_sb;
2087 sbi = EXT4_SB(sb);
2088 ngroups = ext4_get_groups_count(sb);
2089 /* non-extent files are limited to low blocks/groups */
2090 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2091 ngroups = sbi->s_blockfile_groups;
2092
2093 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2094
2095 /* first, try the goal */
2096 err = ext4_mb_find_by_goal(ac, &e4b);
2097 if (err || ac->ac_status == AC_STATUS_FOUND)
2098 goto out;
2099
2100 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2101 goto out;
2102
2103 /*
2104 * ac->ac2_order is set only if the fe_len is a power of 2
2105 * if ac2_order is set we also set criteria to 0 so that we
2106 * try exact allocation using buddy.
2107 */
2108 i = fls(ac->ac_g_ex.fe_len);
2109 ac->ac_2order = 0;
2110 /*
2111 * We search using buddy data only if the order of the request
2112 * is greater than equal to the sbi_s_mb_order2_reqs
2113 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2114 */
2115 if (i >= sbi->s_mb_order2_reqs) {
2116 /*
2117 * This should tell if fe_len is exactly power of 2
2118 */
2119 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2120 ac->ac_2order = i - 1;
2121 }
2122
2123 /* if stream allocation is enabled, use global goal */
2124 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2125 /* TBD: may be hot point */
2126 spin_lock(&sbi->s_md_lock);
2127 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2128 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2129 spin_unlock(&sbi->s_md_lock);
2130 }
2131
2132 /* Let's just scan groups to find more-less suitable blocks */
2133 cr = ac->ac_2order ? 0 : 1;
2134 /*
2135 * cr == 0 try to get exact allocation,
2136 * cr == 3 try to get anything
2137 */
2138 repeat:
2139 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2140 ac->ac_criteria = cr;
2141 /*
2142 * searching for the right group start
2143 * from the goal value specified
2144 */
2145 group = ac->ac_g_ex.fe_group;
2146
2147 for (i = 0; i < ngroups; group++, i++) {
2148 cond_resched();
2149 /*
2150 * Artificially restricted ngroups for non-extent
2151 * files makes group > ngroups possible on first loop.
2152 */
2153 if (group >= ngroups)
2154 group = 0;
2155
2156 /* This now checks without needing the buddy page */
2157 if (!ext4_mb_good_group(ac, group, cr))
2158 continue;
2159
2160 err = ext4_mb_load_buddy(sb, group, &e4b);
2161 if (err)
2162 goto out;
2163
2164 ext4_lock_group(sb, group);
2165
2166 /*
2167 * We need to check again after locking the
2168 * block group
2169 */
2170 if (!ext4_mb_good_group(ac, group, cr)) {
2171 ext4_unlock_group(sb, group);
2172 ext4_mb_unload_buddy(&e4b);
2173 continue;
2174 }
2175
2176 ac->ac_groups_scanned++;
2177 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2178 ext4_mb_simple_scan_group(ac, &e4b);
2179 else if (cr == 1 && sbi->s_stripe &&
2180 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2181 ext4_mb_scan_aligned(ac, &e4b);
2182 else
2183 ext4_mb_complex_scan_group(ac, &e4b);
2184
2185 ext4_unlock_group(sb, group);
2186 ext4_mb_unload_buddy(&e4b);
2187
2188 if (ac->ac_status != AC_STATUS_CONTINUE)
2189 break;
2190 }
2191 }
2192
2193 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2194 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2195 /*
2196 * We've been searching too long. Let's try to allocate
2197 * the best chunk we've found so far
2198 */
2199
2200 ext4_mb_try_best_found(ac, &e4b);
2201 if (ac->ac_status != AC_STATUS_FOUND) {
2202 /*
2203 * Someone more lucky has already allocated it.
2204 * The only thing we can do is just take first
2205 * found block(s)
2206 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2207 */
2208 ac->ac_b_ex.fe_group = 0;
2209 ac->ac_b_ex.fe_start = 0;
2210 ac->ac_b_ex.fe_len = 0;
2211 ac->ac_status = AC_STATUS_CONTINUE;
2212 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2213 cr = 3;
2214 atomic_inc(&sbi->s_mb_lost_chunks);
2215 goto repeat;
2216 }
2217 }
2218 out:
2219 return err;
2220 }
2221
2222 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2223 {
2224 struct super_block *sb = seq->private;
2225 ext4_group_t group;
2226
2227 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 return NULL;
2229 group = *pos + 1;
2230 return (void *) ((unsigned long) group);
2231 }
2232
2233 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2234 {
2235 struct super_block *sb = seq->private;
2236 ext4_group_t group;
2237
2238 ++*pos;
2239 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2240 return NULL;
2241 group = *pos + 1;
2242 return (void *) ((unsigned long) group);
2243 }
2244
2245 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2246 {
2247 struct super_block *sb = seq->private;
2248 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2249 int i;
2250 int err, buddy_loaded = 0;
2251 struct ext4_buddy e4b;
2252 struct ext4_group_info *grinfo;
2253 struct sg {
2254 struct ext4_group_info info;
2255 ext4_grpblk_t counters[16];
2256 } sg;
2257
2258 group--;
2259 if (group == 0)
2260 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2261 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2262 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2263 "group", "free", "frags", "first",
2264 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2265 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2266
2267 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2268 sizeof(struct ext4_group_info);
2269 grinfo = ext4_get_group_info(sb, group);
2270 /* Load the group info in memory only if not already loaded. */
2271 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2272 err = ext4_mb_load_buddy(sb, group, &e4b);
2273 if (err) {
2274 seq_printf(seq, "#%-5u: I/O error\n", group);
2275 return 0;
2276 }
2277 buddy_loaded = 1;
2278 }
2279
2280 memcpy(&sg, ext4_get_group_info(sb, group), i);
2281
2282 if (buddy_loaded)
2283 ext4_mb_unload_buddy(&e4b);
2284
2285 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2286 sg.info.bb_fragments, sg.info.bb_first_free);
2287 for (i = 0; i <= 13; i++)
2288 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2289 sg.info.bb_counters[i] : 0);
2290 seq_printf(seq, " ]\n");
2291
2292 return 0;
2293 }
2294
2295 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2296 {
2297 }
2298
2299 static const struct seq_operations ext4_mb_seq_groups_ops = {
2300 .start = ext4_mb_seq_groups_start,
2301 .next = ext4_mb_seq_groups_next,
2302 .stop = ext4_mb_seq_groups_stop,
2303 .show = ext4_mb_seq_groups_show,
2304 };
2305
2306 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2307 {
2308 struct super_block *sb = PDE_DATA(inode);
2309 int rc;
2310
2311 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2312 if (rc == 0) {
2313 struct seq_file *m = file->private_data;
2314 m->private = sb;
2315 }
2316 return rc;
2317
2318 }
2319
2320 static const struct file_operations ext4_mb_seq_groups_fops = {
2321 .owner = THIS_MODULE,
2322 .open = ext4_mb_seq_groups_open,
2323 .read = seq_read,
2324 .llseek = seq_lseek,
2325 .release = seq_release,
2326 };
2327
2328 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2329 {
2330 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2331 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2332
2333 BUG_ON(!cachep);
2334 return cachep;
2335 }
2336
2337 /*
2338 * Allocate the top-level s_group_info array for the specified number
2339 * of groups
2340 */
2341 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2342 {
2343 struct ext4_sb_info *sbi = EXT4_SB(sb);
2344 unsigned size;
2345 struct ext4_group_info ***new_groupinfo;
2346
2347 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2348 EXT4_DESC_PER_BLOCK_BITS(sb);
2349 if (size <= sbi->s_group_info_size)
2350 return 0;
2351
2352 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2353 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2354 if (!new_groupinfo) {
2355 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2356 return -ENOMEM;
2357 }
2358 if (sbi->s_group_info) {
2359 memcpy(new_groupinfo, sbi->s_group_info,
2360 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2361 ext4_kvfree(sbi->s_group_info);
2362 }
2363 sbi->s_group_info = new_groupinfo;
2364 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2365 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2366 sbi->s_group_info_size);
2367 return 0;
2368 }
2369
2370 /* Create and initialize ext4_group_info data for the given group. */
2371 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2372 struct ext4_group_desc *desc)
2373 {
2374 int i;
2375 int metalen = 0;
2376 struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 struct ext4_group_info **meta_group_info;
2378 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2379
2380 /*
2381 * First check if this group is the first of a reserved block.
2382 * If it's true, we have to allocate a new table of pointers
2383 * to ext4_group_info structures
2384 */
2385 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2386 metalen = sizeof(*meta_group_info) <<
2387 EXT4_DESC_PER_BLOCK_BITS(sb);
2388 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2389 if (meta_group_info == NULL) {
2390 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2391 "for a buddy group");
2392 goto exit_meta_group_info;
2393 }
2394 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2395 meta_group_info;
2396 }
2397
2398 meta_group_info =
2399 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2400 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2401
2402 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2403 if (meta_group_info[i] == NULL) {
2404 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2405 goto exit_group_info;
2406 }
2407 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2408 &(meta_group_info[i]->bb_state));
2409
2410 /*
2411 * initialize bb_free to be able to skip
2412 * empty groups without initialization
2413 */
2414 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2415 meta_group_info[i]->bb_free =
2416 ext4_free_clusters_after_init(sb, group, desc);
2417 } else {
2418 meta_group_info[i]->bb_free =
2419 ext4_free_group_clusters(sb, desc);
2420 }
2421
2422 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2423 init_rwsem(&meta_group_info[i]->alloc_sem);
2424 meta_group_info[i]->bb_free_root = RB_ROOT;
2425 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2426
2427 #ifdef DOUBLE_CHECK
2428 {
2429 struct buffer_head *bh;
2430 meta_group_info[i]->bb_bitmap =
2431 kmalloc(sb->s_blocksize, GFP_KERNEL);
2432 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2433 bh = ext4_read_block_bitmap(sb, group);
2434 BUG_ON(bh == NULL);
2435 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2436 sb->s_blocksize);
2437 put_bh(bh);
2438 }
2439 #endif
2440
2441 return 0;
2442
2443 exit_group_info:
2444 /* If a meta_group_info table has been allocated, release it now */
2445 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2446 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2447 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2448 }
2449 exit_meta_group_info:
2450 return -ENOMEM;
2451 } /* ext4_mb_add_groupinfo */
2452
2453 static int ext4_mb_init_backend(struct super_block *sb)
2454 {
2455 ext4_group_t ngroups = ext4_get_groups_count(sb);
2456 ext4_group_t i;
2457 struct ext4_sb_info *sbi = EXT4_SB(sb);
2458 int err;
2459 struct ext4_group_desc *desc;
2460 struct kmem_cache *cachep;
2461
2462 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2463 if (err)
2464 return err;
2465
2466 sbi->s_buddy_cache = new_inode(sb);
2467 if (sbi->s_buddy_cache == NULL) {
2468 ext4_msg(sb, KERN_ERR, "can't get new inode");
2469 goto err_freesgi;
2470 }
2471 /* To avoid potentially colliding with an valid on-disk inode number,
2472 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2473 * not in the inode hash, so it should never be found by iget(), but
2474 * this will avoid confusion if it ever shows up during debugging. */
2475 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2476 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2477 for (i = 0; i < ngroups; i++) {
2478 desc = ext4_get_group_desc(sb, i, NULL);
2479 if (desc == NULL) {
2480 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2481 goto err_freebuddy;
2482 }
2483 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2484 goto err_freebuddy;
2485 }
2486
2487 return 0;
2488
2489 err_freebuddy:
2490 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2491 while (i-- > 0)
2492 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2493 i = sbi->s_group_info_size;
2494 while (i-- > 0)
2495 kfree(sbi->s_group_info[i]);
2496 iput(sbi->s_buddy_cache);
2497 err_freesgi:
2498 ext4_kvfree(sbi->s_group_info);
2499 return -ENOMEM;
2500 }
2501
2502 static void ext4_groupinfo_destroy_slabs(void)
2503 {
2504 int i;
2505
2506 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2507 if (ext4_groupinfo_caches[i])
2508 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2509 ext4_groupinfo_caches[i] = NULL;
2510 }
2511 }
2512
2513 static int ext4_groupinfo_create_slab(size_t size)
2514 {
2515 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2516 int slab_size;
2517 int blocksize_bits = order_base_2(size);
2518 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2519 struct kmem_cache *cachep;
2520
2521 if (cache_index >= NR_GRPINFO_CACHES)
2522 return -EINVAL;
2523
2524 if (unlikely(cache_index < 0))
2525 cache_index = 0;
2526
2527 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2528 if (ext4_groupinfo_caches[cache_index]) {
2529 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2530 return 0; /* Already created */
2531 }
2532
2533 slab_size = offsetof(struct ext4_group_info,
2534 bb_counters[blocksize_bits + 2]);
2535
2536 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2537 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2538 NULL);
2539
2540 ext4_groupinfo_caches[cache_index] = cachep;
2541
2542 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2543 if (!cachep) {
2544 printk(KERN_EMERG
2545 "EXT4-fs: no memory for groupinfo slab cache\n");
2546 return -ENOMEM;
2547 }
2548
2549 return 0;
2550 }
2551
2552 int ext4_mb_init(struct super_block *sb)
2553 {
2554 struct ext4_sb_info *sbi = EXT4_SB(sb);
2555 unsigned i, j;
2556 unsigned offset;
2557 unsigned max;
2558 int ret;
2559
2560 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2561
2562 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2563 if (sbi->s_mb_offsets == NULL) {
2564 ret = -ENOMEM;
2565 goto out;
2566 }
2567
2568 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2569 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2570 if (sbi->s_mb_maxs == NULL) {
2571 ret = -ENOMEM;
2572 goto out;
2573 }
2574
2575 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2576 if (ret < 0)
2577 goto out;
2578
2579 /* order 0 is regular bitmap */
2580 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2581 sbi->s_mb_offsets[0] = 0;
2582
2583 i = 1;
2584 offset = 0;
2585 max = sb->s_blocksize << 2;
2586 do {
2587 sbi->s_mb_offsets[i] = offset;
2588 sbi->s_mb_maxs[i] = max;
2589 offset += 1 << (sb->s_blocksize_bits - i);
2590 max = max >> 1;
2591 i++;
2592 } while (i <= sb->s_blocksize_bits + 1);
2593
2594 spin_lock_init(&sbi->s_md_lock);
2595 spin_lock_init(&sbi->s_bal_lock);
2596
2597 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2598 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2599 sbi->s_mb_stats = MB_DEFAULT_STATS;
2600 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2601 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2602 /*
2603 * The default group preallocation is 512, which for 4k block
2604 * sizes translates to 2 megabytes. However for bigalloc file
2605 * systems, this is probably too big (i.e, if the cluster size
2606 * is 1 megabyte, then group preallocation size becomes half a
2607 * gigabyte!). As a default, we will keep a two megabyte
2608 * group pralloc size for cluster sizes up to 64k, and after
2609 * that, we will force a minimum group preallocation size of
2610 * 32 clusters. This translates to 8 megs when the cluster
2611 * size is 256k, and 32 megs when the cluster size is 1 meg,
2612 * which seems reasonable as a default.
2613 */
2614 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2615 sbi->s_cluster_bits, 32);
2616 /*
2617 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2618 * to the lowest multiple of s_stripe which is bigger than
2619 * the s_mb_group_prealloc as determined above. We want
2620 * the preallocation size to be an exact multiple of the
2621 * RAID stripe size so that preallocations don't fragment
2622 * the stripes.
2623 */
2624 if (sbi->s_stripe > 1) {
2625 sbi->s_mb_group_prealloc = roundup(
2626 sbi->s_mb_group_prealloc, sbi->s_stripe);
2627 }
2628
2629 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2630 if (sbi->s_locality_groups == NULL) {
2631 ret = -ENOMEM;
2632 goto out;
2633 }
2634 for_each_possible_cpu(i) {
2635 struct ext4_locality_group *lg;
2636 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2637 mutex_init(&lg->lg_mutex);
2638 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2639 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2640 spin_lock_init(&lg->lg_prealloc_lock);
2641 }
2642
2643 /* init file for buddy data */
2644 ret = ext4_mb_init_backend(sb);
2645 if (ret != 0)
2646 goto out_free_locality_groups;
2647
2648 if (sbi->s_proc)
2649 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2650 &ext4_mb_seq_groups_fops, sb);
2651
2652 return 0;
2653
2654 out_free_locality_groups:
2655 free_percpu(sbi->s_locality_groups);
2656 sbi->s_locality_groups = NULL;
2657 out:
2658 kfree(sbi->s_mb_offsets);
2659 sbi->s_mb_offsets = NULL;
2660 kfree(sbi->s_mb_maxs);
2661 sbi->s_mb_maxs = NULL;
2662 return ret;
2663 }
2664
2665 /* need to called with the ext4 group lock held */
2666 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2667 {
2668 struct ext4_prealloc_space *pa;
2669 struct list_head *cur, *tmp;
2670 int count = 0;
2671
2672 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2673 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2674 list_del(&pa->pa_group_list);
2675 count++;
2676 kmem_cache_free(ext4_pspace_cachep, pa);
2677 }
2678 if (count)
2679 mb_debug(1, "mballoc: %u PAs left\n", count);
2680
2681 }
2682
2683 int ext4_mb_release(struct super_block *sb)
2684 {
2685 ext4_group_t ngroups = ext4_get_groups_count(sb);
2686 ext4_group_t i;
2687 int num_meta_group_infos;
2688 struct ext4_group_info *grinfo;
2689 struct ext4_sb_info *sbi = EXT4_SB(sb);
2690 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2691
2692 if (sbi->s_proc)
2693 remove_proc_entry("mb_groups", sbi->s_proc);
2694
2695 if (sbi->s_group_info) {
2696 for (i = 0; i < ngroups; i++) {
2697 grinfo = ext4_get_group_info(sb, i);
2698 #ifdef DOUBLE_CHECK
2699 kfree(grinfo->bb_bitmap);
2700 #endif
2701 ext4_lock_group(sb, i);
2702 ext4_mb_cleanup_pa(grinfo);
2703 ext4_unlock_group(sb, i);
2704 kmem_cache_free(cachep, grinfo);
2705 }
2706 num_meta_group_infos = (ngroups +
2707 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2708 EXT4_DESC_PER_BLOCK_BITS(sb);
2709 for (i = 0; i < num_meta_group_infos; i++)
2710 kfree(sbi->s_group_info[i]);
2711 ext4_kvfree(sbi->s_group_info);
2712 }
2713 kfree(sbi->s_mb_offsets);
2714 kfree(sbi->s_mb_maxs);
2715 if (sbi->s_buddy_cache)
2716 iput(sbi->s_buddy_cache);
2717 if (sbi->s_mb_stats) {
2718 ext4_msg(sb, KERN_INFO,
2719 "mballoc: %u blocks %u reqs (%u success)",
2720 atomic_read(&sbi->s_bal_allocated),
2721 atomic_read(&sbi->s_bal_reqs),
2722 atomic_read(&sbi->s_bal_success));
2723 ext4_msg(sb, KERN_INFO,
2724 "mballoc: %u extents scanned, %u goal hits, "
2725 "%u 2^N hits, %u breaks, %u lost",
2726 atomic_read(&sbi->s_bal_ex_scanned),
2727 atomic_read(&sbi->s_bal_goals),
2728 atomic_read(&sbi->s_bal_2orders),
2729 atomic_read(&sbi->s_bal_breaks),
2730 atomic_read(&sbi->s_mb_lost_chunks));
2731 ext4_msg(sb, KERN_INFO,
2732 "mballoc: %lu generated and it took %Lu",
2733 sbi->s_mb_buddies_generated,
2734 sbi->s_mb_generation_time);
2735 ext4_msg(sb, KERN_INFO,
2736 "mballoc: %u preallocated, %u discarded",
2737 atomic_read(&sbi->s_mb_preallocated),
2738 atomic_read(&sbi->s_mb_discarded));
2739 }
2740
2741 free_percpu(sbi->s_locality_groups);
2742
2743 return 0;
2744 }
2745
2746 static inline int ext4_issue_discard(struct super_block *sb,
2747 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2748 {
2749 ext4_fsblk_t discard_block;
2750
2751 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2752 ext4_group_first_block_no(sb, block_group));
2753 count = EXT4_C2B(EXT4_SB(sb), count);
2754 trace_ext4_discard_blocks(sb,
2755 (unsigned long long) discard_block, count);
2756 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2757 }
2758
2759 /*
2760 * This function is called by the jbd2 layer once the commit has finished,
2761 * so we know we can free the blocks that were released with that commit.
2762 */
2763 static void ext4_free_data_callback(struct super_block *sb,
2764 struct ext4_journal_cb_entry *jce,
2765 int rc)
2766 {
2767 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2768 struct ext4_buddy e4b;
2769 struct ext4_group_info *db;
2770 int err, count = 0, count2 = 0;
2771
2772 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2773 entry->efd_count, entry->efd_group, entry);
2774
2775 if (test_opt(sb, DISCARD)) {
2776 err = ext4_issue_discard(sb, entry->efd_group,
2777 entry->efd_start_cluster,
2778 entry->efd_count);
2779 if (err && err != -EOPNOTSUPP)
2780 ext4_msg(sb, KERN_WARNING, "discard request in"
2781 " group:%d block:%d count:%d failed"
2782 " with %d", entry->efd_group,
2783 entry->efd_start_cluster,
2784 entry->efd_count, err);
2785 }
2786
2787 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2788 /* we expect to find existing buddy because it's pinned */
2789 BUG_ON(err != 0);
2790
2791
2792 db = e4b.bd_info;
2793 /* there are blocks to put in buddy to make them really free */
2794 count += entry->efd_count;
2795 count2++;
2796 ext4_lock_group(sb, entry->efd_group);
2797 /* Take it out of per group rb tree */
2798 rb_erase(&entry->efd_node, &(db->bb_free_root));
2799 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2800
2801 /*
2802 * Clear the trimmed flag for the group so that the next
2803 * ext4_trim_fs can trim it.
2804 * If the volume is mounted with -o discard, online discard
2805 * is supported and the free blocks will be trimmed online.
2806 */
2807 if (!test_opt(sb, DISCARD))
2808 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2809
2810 if (!db->bb_free_root.rb_node) {
2811 /* No more items in the per group rb tree
2812 * balance refcounts from ext4_mb_free_metadata()
2813 */
2814 page_cache_release(e4b.bd_buddy_page);
2815 page_cache_release(e4b.bd_bitmap_page);
2816 }
2817 ext4_unlock_group(sb, entry->efd_group);
2818 kmem_cache_free(ext4_free_data_cachep, entry);
2819 ext4_mb_unload_buddy(&e4b);
2820
2821 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2822 }
2823
2824 int __init ext4_init_mballoc(void)
2825 {
2826 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2827 SLAB_RECLAIM_ACCOUNT);
2828 if (ext4_pspace_cachep == NULL)
2829 return -ENOMEM;
2830
2831 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2832 SLAB_RECLAIM_ACCOUNT);
2833 if (ext4_ac_cachep == NULL) {
2834 kmem_cache_destroy(ext4_pspace_cachep);
2835 return -ENOMEM;
2836 }
2837
2838 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2839 SLAB_RECLAIM_ACCOUNT);
2840 if (ext4_free_data_cachep == NULL) {
2841 kmem_cache_destroy(ext4_pspace_cachep);
2842 kmem_cache_destroy(ext4_ac_cachep);
2843 return -ENOMEM;
2844 }
2845 return 0;
2846 }
2847
2848 void ext4_exit_mballoc(void)
2849 {
2850 /*
2851 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2852 * before destroying the slab cache.
2853 */
2854 rcu_barrier();
2855 kmem_cache_destroy(ext4_pspace_cachep);
2856 kmem_cache_destroy(ext4_ac_cachep);
2857 kmem_cache_destroy(ext4_free_data_cachep);
2858 ext4_groupinfo_destroy_slabs();
2859 }
2860
2861
2862 /*
2863 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2864 * Returns 0 if success or error code
2865 */
2866 static noinline_for_stack int
2867 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2868 handle_t *handle, unsigned int reserv_clstrs)
2869 {
2870 struct buffer_head *bitmap_bh = NULL;
2871 struct ext4_group_desc *gdp;
2872 struct buffer_head *gdp_bh;
2873 struct ext4_sb_info *sbi;
2874 struct super_block *sb;
2875 ext4_fsblk_t block;
2876 int err, len;
2877
2878 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2879 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2880
2881 sb = ac->ac_sb;
2882 sbi = EXT4_SB(sb);
2883
2884 err = -EIO;
2885 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2886 if (!bitmap_bh)
2887 goto out_err;
2888
2889 BUFFER_TRACE(bitmap_bh, "getting write access");
2890 err = ext4_journal_get_write_access(handle, bitmap_bh);
2891 if (err)
2892 goto out_err;
2893
2894 err = -EIO;
2895 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2896 if (!gdp)
2897 goto out_err;
2898
2899 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2900 ext4_free_group_clusters(sb, gdp));
2901
2902 BUFFER_TRACE(gdp_bh, "get_write_access");
2903 err = ext4_journal_get_write_access(handle, gdp_bh);
2904 if (err)
2905 goto out_err;
2906
2907 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2908
2909 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2910 if (!ext4_data_block_valid(sbi, block, len)) {
2911 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2912 "fs metadata", block, block+len);
2913 /* File system mounted not to panic on error
2914 * Fix the bitmap and repeat the block allocation
2915 * We leak some of the blocks here.
2916 */
2917 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2918 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2919 ac->ac_b_ex.fe_len);
2920 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2921 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2922 if (!err)
2923 err = -EAGAIN;
2924 goto out_err;
2925 }
2926
2927 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2928 #ifdef AGGRESSIVE_CHECK
2929 {
2930 int i;
2931 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2932 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2933 bitmap_bh->b_data));
2934 }
2935 }
2936 #endif
2937 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2938 ac->ac_b_ex.fe_len);
2939 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2940 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2941 ext4_free_group_clusters_set(sb, gdp,
2942 ext4_free_clusters_after_init(sb,
2943 ac->ac_b_ex.fe_group, gdp));
2944 }
2945 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2946 ext4_free_group_clusters_set(sb, gdp, len);
2947 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2948 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2949
2950 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2951 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2952 /*
2953 * Now reduce the dirty block count also. Should not go negative
2954 */
2955 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2956 /* release all the reserved blocks if non delalloc */
2957 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2958 reserv_clstrs);
2959
2960 if (sbi->s_log_groups_per_flex) {
2961 ext4_group_t flex_group = ext4_flex_group(sbi,
2962 ac->ac_b_ex.fe_group);
2963 atomic64_sub(ac->ac_b_ex.fe_len,
2964 &sbi->s_flex_groups[flex_group].free_clusters);
2965 }
2966
2967 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2968 if (err)
2969 goto out_err;
2970 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2971
2972 out_err:
2973 brelse(bitmap_bh);
2974 return err;
2975 }
2976
2977 /*
2978 * here we normalize request for locality group
2979 * Group request are normalized to s_mb_group_prealloc, which goes to
2980 * s_strip if we set the same via mount option.
2981 * s_mb_group_prealloc can be configured via
2982 * /sys/fs/ext4/<partition>/mb_group_prealloc
2983 *
2984 * XXX: should we try to preallocate more than the group has now?
2985 */
2986 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2987 {
2988 struct super_block *sb = ac->ac_sb;
2989 struct ext4_locality_group *lg = ac->ac_lg;
2990
2991 BUG_ON(lg == NULL);
2992 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2993 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2994 current->pid, ac->ac_g_ex.fe_len);
2995 }
2996
2997 /*
2998 * Normalization means making request better in terms of
2999 * size and alignment
3000 */
3001 static noinline_for_stack void
3002 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3003 struct ext4_allocation_request *ar)
3004 {
3005 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3006 int bsbits, max;
3007 ext4_lblk_t end;
3008 loff_t size, start_off;
3009 loff_t orig_size __maybe_unused;
3010 ext4_lblk_t start;
3011 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3012 struct ext4_prealloc_space *pa;
3013
3014 /* do normalize only data requests, metadata requests
3015 do not need preallocation */
3016 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3017 return;
3018
3019 /* sometime caller may want exact blocks */
3020 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3021 return;
3022
3023 /* caller may indicate that preallocation isn't
3024 * required (it's a tail, for example) */
3025 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3026 return;
3027
3028 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3029 ext4_mb_normalize_group_request(ac);
3030 return ;
3031 }
3032
3033 bsbits = ac->ac_sb->s_blocksize_bits;
3034
3035 /* first, let's learn actual file size
3036 * given current request is allocated */
3037 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3038 size = size << bsbits;
3039 if (size < i_size_read(ac->ac_inode))
3040 size = i_size_read(ac->ac_inode);
3041 orig_size = size;
3042
3043 /* max size of free chunks */
3044 max = 2 << bsbits;
3045
3046 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3047 (req <= (size) || max <= (chunk_size))
3048
3049 /* first, try to predict filesize */
3050 /* XXX: should this table be tunable? */
3051 start_off = 0;
3052 if (size <= 16 * 1024) {
3053 size = 16 * 1024;
3054 } else if (size <= 32 * 1024) {
3055 size = 32 * 1024;
3056 } else if (size <= 64 * 1024) {
3057 size = 64 * 1024;
3058 } else if (size <= 128 * 1024) {
3059 size = 128 * 1024;
3060 } else if (size <= 256 * 1024) {
3061 size = 256 * 1024;
3062 } else if (size <= 512 * 1024) {
3063 size = 512 * 1024;
3064 } else if (size <= 1024 * 1024) {
3065 size = 1024 * 1024;
3066 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3067 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3068 (21 - bsbits)) << 21;
3069 size = 2 * 1024 * 1024;
3070 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3071 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3072 (22 - bsbits)) << 22;
3073 size = 4 * 1024 * 1024;
3074 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3075 (8<<20)>>bsbits, max, 8 * 1024)) {
3076 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3077 (23 - bsbits)) << 23;
3078 size = 8 * 1024 * 1024;
3079 } else {
3080 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3081 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3082 ac->ac_o_ex.fe_len) << bsbits;
3083 }
3084 size = size >> bsbits;
3085 start = start_off >> bsbits;
3086
3087 /* don't cover already allocated blocks in selected range */
3088 if (ar->pleft && start <= ar->lleft) {
3089 size -= ar->lleft + 1 - start;
3090 start = ar->lleft + 1;
3091 }
3092 if (ar->pright && start + size - 1 >= ar->lright)
3093 size -= start + size - ar->lright;
3094
3095 end = start + size;
3096
3097 /* check we don't cross already preallocated blocks */
3098 rcu_read_lock();
3099 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3100 ext4_lblk_t pa_end;
3101
3102 if (pa->pa_deleted)
3103 continue;
3104 spin_lock(&pa->pa_lock);
3105 if (pa->pa_deleted) {
3106 spin_unlock(&pa->pa_lock);
3107 continue;
3108 }
3109
3110 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3111 pa->pa_len);
3112
3113 /* PA must not overlap original request */
3114 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3115 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3116
3117 /* skip PAs this normalized request doesn't overlap with */
3118 if (pa->pa_lstart >= end || pa_end <= start) {
3119 spin_unlock(&pa->pa_lock);
3120 continue;
3121 }
3122 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3123
3124 /* adjust start or end to be adjacent to this pa */
3125 if (pa_end <= ac->ac_o_ex.fe_logical) {
3126 BUG_ON(pa_end < start);
3127 start = pa_end;
3128 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3129 BUG_ON(pa->pa_lstart > end);
3130 end = pa->pa_lstart;
3131 }
3132 spin_unlock(&pa->pa_lock);
3133 }
3134 rcu_read_unlock();
3135 size = end - start;
3136
3137 /* XXX: extra loop to check we really don't overlap preallocations */
3138 rcu_read_lock();
3139 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3140 ext4_lblk_t pa_end;
3141
3142 spin_lock(&pa->pa_lock);
3143 if (pa->pa_deleted == 0) {
3144 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3145 pa->pa_len);
3146 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3147 }
3148 spin_unlock(&pa->pa_lock);
3149 }
3150 rcu_read_unlock();
3151
3152 if (start + size <= ac->ac_o_ex.fe_logical &&
3153 start > ac->ac_o_ex.fe_logical) {
3154 ext4_msg(ac->ac_sb, KERN_ERR,
3155 "start %lu, size %lu, fe_logical %lu",
3156 (unsigned long) start, (unsigned long) size,
3157 (unsigned long) ac->ac_o_ex.fe_logical);
3158 }
3159 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3160 start > ac->ac_o_ex.fe_logical);
3161 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3162
3163 /* now prepare goal request */
3164
3165 /* XXX: is it better to align blocks WRT to logical
3166 * placement or satisfy big request as is */
3167 ac->ac_g_ex.fe_logical = start;
3168 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3169
3170 /* define goal start in order to merge */
3171 if (ar->pright && (ar->lright == (start + size))) {
3172 /* merge to the right */
3173 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3174 &ac->ac_f_ex.fe_group,
3175 &ac->ac_f_ex.fe_start);
3176 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3177 }
3178 if (ar->pleft && (ar->lleft + 1 == start)) {
3179 /* merge to the left */
3180 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3181 &ac->ac_f_ex.fe_group,
3182 &ac->ac_f_ex.fe_start);
3183 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3184 }
3185
3186 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3187 (unsigned) orig_size, (unsigned) start);
3188 }
3189
3190 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3191 {
3192 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3193
3194 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3195 atomic_inc(&sbi->s_bal_reqs);
3196 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3197 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3198 atomic_inc(&sbi->s_bal_success);
3199 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3200 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3201 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3202 atomic_inc(&sbi->s_bal_goals);
3203 if (ac->ac_found > sbi->s_mb_max_to_scan)
3204 atomic_inc(&sbi->s_bal_breaks);
3205 }
3206
3207 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3208 trace_ext4_mballoc_alloc(ac);
3209 else
3210 trace_ext4_mballoc_prealloc(ac);
3211 }
3212
3213 /*
3214 * Called on failure; free up any blocks from the inode PA for this
3215 * context. We don't need this for MB_GROUP_PA because we only change
3216 * pa_free in ext4_mb_release_context(), but on failure, we've already
3217 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3218 */
3219 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3220 {
3221 struct ext4_prealloc_space *pa = ac->ac_pa;
3222 struct ext4_buddy e4b;
3223 int err;
3224
3225 if (pa == NULL) {
3226 if (ac->ac_f_ex.fe_len == 0)
3227 return;
3228 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3229 if (err) {
3230 /*
3231 * This should never happen since we pin the
3232 * pages in the ext4_allocation_context so
3233 * ext4_mb_load_buddy() should never fail.
3234 */
3235 WARN(1, "mb_load_buddy failed (%d)", err);
3236 return;
3237 }
3238 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3239 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3240 ac->ac_f_ex.fe_len);
3241 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3242 ext4_mb_unload_buddy(&e4b);
3243 return;
3244 }
3245 if (pa->pa_type == MB_INODE_PA)
3246 pa->pa_free += ac->ac_b_ex.fe_len;
3247 }
3248
3249 /*
3250 * use blocks preallocated to inode
3251 */
3252 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3253 struct ext4_prealloc_space *pa)
3254 {
3255 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3256 ext4_fsblk_t start;
3257 ext4_fsblk_t end;
3258 int len;
3259
3260 /* found preallocated blocks, use them */
3261 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3262 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3263 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3264 len = EXT4_NUM_B2C(sbi, end - start);
3265 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3266 &ac->ac_b_ex.fe_start);
3267 ac->ac_b_ex.fe_len = len;
3268 ac->ac_status = AC_STATUS_FOUND;
3269 ac->ac_pa = pa;
3270
3271 BUG_ON(start < pa->pa_pstart);
3272 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3273 BUG_ON(pa->pa_free < len);
3274 pa->pa_free -= len;
3275
3276 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3277 }
3278
3279 /*
3280 * use blocks preallocated to locality group
3281 */
3282 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3283 struct ext4_prealloc_space *pa)
3284 {
3285 unsigned int len = ac->ac_o_ex.fe_len;
3286
3287 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3288 &ac->ac_b_ex.fe_group,
3289 &ac->ac_b_ex.fe_start);
3290 ac->ac_b_ex.fe_len = len;
3291 ac->ac_status = AC_STATUS_FOUND;
3292 ac->ac_pa = pa;
3293
3294 /* we don't correct pa_pstart or pa_plen here to avoid
3295 * possible race when the group is being loaded concurrently
3296 * instead we correct pa later, after blocks are marked
3297 * in on-disk bitmap -- see ext4_mb_release_context()
3298 * Other CPUs are prevented from allocating from this pa by lg_mutex
3299 */
3300 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3301 }
3302
3303 /*
3304 * Return the prealloc space that have minimal distance
3305 * from the goal block. @cpa is the prealloc
3306 * space that is having currently known minimal distance
3307 * from the goal block.
3308 */
3309 static struct ext4_prealloc_space *
3310 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3311 struct ext4_prealloc_space *pa,
3312 struct ext4_prealloc_space *cpa)
3313 {
3314 ext4_fsblk_t cur_distance, new_distance;
3315
3316 if (cpa == NULL) {
3317 atomic_inc(&pa->pa_count);
3318 return pa;
3319 }
3320 cur_distance = abs(goal_block - cpa->pa_pstart);
3321 new_distance = abs(goal_block - pa->pa_pstart);
3322
3323 if (cur_distance <= new_distance)
3324 return cpa;
3325
3326 /* drop the previous reference */
3327 atomic_dec(&cpa->pa_count);
3328 atomic_inc(&pa->pa_count);
3329 return pa;
3330 }
3331
3332 /*
3333 * search goal blocks in preallocated space
3334 */
3335 static noinline_for_stack int
3336 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3337 {
3338 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3339 int order, i;
3340 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3341 struct ext4_locality_group *lg;
3342 struct ext4_prealloc_space *pa, *cpa = NULL;
3343 ext4_fsblk_t goal_block;
3344
3345 /* only data can be preallocated */
3346 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3347 return 0;
3348
3349 /* first, try per-file preallocation */
3350 rcu_read_lock();
3351 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3352
3353 /* all fields in this condition don't change,
3354 * so we can skip locking for them */
3355 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3356 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3357 EXT4_C2B(sbi, pa->pa_len)))
3358 continue;
3359
3360 /* non-extent files can't have physical blocks past 2^32 */
3361 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3362 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3363 EXT4_MAX_BLOCK_FILE_PHYS))
3364 continue;
3365
3366 /* found preallocated blocks, use them */
3367 spin_lock(&pa->pa_lock);
3368 if (pa->pa_deleted == 0 && pa->pa_free) {
3369 atomic_inc(&pa->pa_count);
3370 ext4_mb_use_inode_pa(ac, pa);
3371 spin_unlock(&pa->pa_lock);
3372 ac->ac_criteria = 10;
3373 rcu_read_unlock();
3374 return 1;
3375 }
3376 spin_unlock(&pa->pa_lock);
3377 }
3378 rcu_read_unlock();
3379
3380 /* can we use group allocation? */
3381 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3382 return 0;
3383
3384 /* inode may have no locality group for some reason */
3385 lg = ac->ac_lg;
3386 if (lg == NULL)
3387 return 0;
3388 order = fls(ac->ac_o_ex.fe_len) - 1;
3389 if (order > PREALLOC_TB_SIZE - 1)
3390 /* The max size of hash table is PREALLOC_TB_SIZE */
3391 order = PREALLOC_TB_SIZE - 1;
3392
3393 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3394 /*
3395 * search for the prealloc space that is having
3396 * minimal distance from the goal block.
3397 */
3398 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3399 rcu_read_lock();
3400 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3401 pa_inode_list) {
3402 spin_lock(&pa->pa_lock);
3403 if (pa->pa_deleted == 0 &&
3404 pa->pa_free >= ac->ac_o_ex.fe_len) {
3405
3406 cpa = ext4_mb_check_group_pa(goal_block,
3407 pa, cpa);
3408 }
3409 spin_unlock(&pa->pa_lock);
3410 }
3411 rcu_read_unlock();
3412 }
3413 if (cpa) {
3414 ext4_mb_use_group_pa(ac, cpa);
3415 ac->ac_criteria = 20;
3416 return 1;
3417 }
3418 return 0;
3419 }
3420
3421 /*
3422 * the function goes through all block freed in the group
3423 * but not yet committed and marks them used in in-core bitmap.
3424 * buddy must be generated from this bitmap
3425 * Need to be called with the ext4 group lock held
3426 */
3427 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3428 ext4_group_t group)
3429 {
3430 struct rb_node *n;
3431 struct ext4_group_info *grp;
3432 struct ext4_free_data *entry;
3433
3434 grp = ext4_get_group_info(sb, group);
3435 n = rb_first(&(grp->bb_free_root));
3436
3437 while (n) {
3438 entry = rb_entry(n, struct ext4_free_data, efd_node);
3439 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3440 n = rb_next(n);
3441 }
3442 return;
3443 }
3444
3445 /*
3446 * the function goes through all preallocation in this group and marks them
3447 * used in in-core bitmap. buddy must be generated from this bitmap
3448 * Need to be called with ext4 group lock held
3449 */
3450 static noinline_for_stack
3451 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3452 ext4_group_t group)
3453 {
3454 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3455 struct ext4_prealloc_space *pa;
3456 struct list_head *cur;
3457 ext4_group_t groupnr;
3458 ext4_grpblk_t start;
3459 int preallocated = 0;
3460 int len;
3461
3462 /* all form of preallocation discards first load group,
3463 * so the only competing code is preallocation use.
3464 * we don't need any locking here
3465 * notice we do NOT ignore preallocations with pa_deleted
3466 * otherwise we could leave used blocks available for
3467 * allocation in buddy when concurrent ext4_mb_put_pa()
3468 * is dropping preallocation
3469 */
3470 list_for_each(cur, &grp->bb_prealloc_list) {
3471 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3472 spin_lock(&pa->pa_lock);
3473 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3474 &groupnr, &start);
3475 len = pa->pa_len;
3476 spin_unlock(&pa->pa_lock);
3477 if (unlikely(len == 0))
3478 continue;
3479 BUG_ON(groupnr != group);
3480 ext4_set_bits(bitmap, start, len);
3481 preallocated += len;
3482 }
3483 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3484 }
3485
3486 static void ext4_mb_pa_callback(struct rcu_head *head)
3487 {
3488 struct ext4_prealloc_space *pa;
3489 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3490
3491 BUG_ON(atomic_read(&pa->pa_count));
3492 BUG_ON(pa->pa_deleted == 0);
3493 kmem_cache_free(ext4_pspace_cachep, pa);
3494 }
3495
3496 /*
3497 * drops a reference to preallocated space descriptor
3498 * if this was the last reference and the space is consumed
3499 */
3500 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3501 struct super_block *sb, struct ext4_prealloc_space *pa)
3502 {
3503 ext4_group_t grp;
3504 ext4_fsblk_t grp_blk;
3505
3506 /* in this short window concurrent discard can set pa_deleted */
3507 spin_lock(&pa->pa_lock);
3508 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3509 spin_unlock(&pa->pa_lock);
3510 return;
3511 }
3512
3513 if (pa->pa_deleted == 1) {
3514 spin_unlock(&pa->pa_lock);
3515 return;
3516 }
3517
3518 pa->pa_deleted = 1;
3519 spin_unlock(&pa->pa_lock);
3520
3521 grp_blk = pa->pa_pstart;
3522 /*
3523 * If doing group-based preallocation, pa_pstart may be in the
3524 * next group when pa is used up
3525 */
3526 if (pa->pa_type == MB_GROUP_PA)
3527 grp_blk--;
3528
3529 grp = ext4_get_group_number(sb, grp_blk);
3530
3531 /*
3532 * possible race:
3533 *
3534 * P1 (buddy init) P2 (regular allocation)
3535 * find block B in PA
3536 * copy on-disk bitmap to buddy
3537 * mark B in on-disk bitmap
3538 * drop PA from group
3539 * mark all PAs in buddy
3540 *
3541 * thus, P1 initializes buddy with B available. to prevent this
3542 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3543 * against that pair
3544 */
3545 ext4_lock_group(sb, grp);
3546 list_del(&pa->pa_group_list);
3547 ext4_unlock_group(sb, grp);
3548
3549 spin_lock(pa->pa_obj_lock);
3550 list_del_rcu(&pa->pa_inode_list);
3551 spin_unlock(pa->pa_obj_lock);
3552
3553 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3554 }
3555
3556 /*
3557 * creates new preallocated space for given inode
3558 */
3559 static noinline_for_stack int
3560 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3561 {
3562 struct super_block *sb = ac->ac_sb;
3563 struct ext4_sb_info *sbi = EXT4_SB(sb);
3564 struct ext4_prealloc_space *pa;
3565 struct ext4_group_info *grp;
3566 struct ext4_inode_info *ei;
3567
3568 /* preallocate only when found space is larger then requested */
3569 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3570 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3571 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3572
3573 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3574 if (pa == NULL)
3575 return -ENOMEM;
3576
3577 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3578 int winl;
3579 int wins;
3580 int win;
3581 int offs;
3582
3583 /* we can't allocate as much as normalizer wants.
3584 * so, found space must get proper lstart
3585 * to cover original request */
3586 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3587 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3588
3589 /* we're limited by original request in that
3590 * logical block must be covered any way
3591 * winl is window we can move our chunk within */
3592 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3593
3594 /* also, we should cover whole original request */
3595 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3596
3597 /* the smallest one defines real window */
3598 win = min(winl, wins);
3599
3600 offs = ac->ac_o_ex.fe_logical %
3601 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3602 if (offs && offs < win)
3603 win = offs;
3604
3605 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3606 EXT4_NUM_B2C(sbi, win);
3607 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3608 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3609 }
3610
3611 /* preallocation can change ac_b_ex, thus we store actually
3612 * allocated blocks for history */
3613 ac->ac_f_ex = ac->ac_b_ex;
3614
3615 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3616 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3617 pa->pa_len = ac->ac_b_ex.fe_len;
3618 pa->pa_free = pa->pa_len;
3619 atomic_set(&pa->pa_count, 1);
3620 spin_lock_init(&pa->pa_lock);
3621 INIT_LIST_HEAD(&pa->pa_inode_list);
3622 INIT_LIST_HEAD(&pa->pa_group_list);
3623 pa->pa_deleted = 0;
3624 pa->pa_type = MB_INODE_PA;
3625
3626 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3627 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3628 trace_ext4_mb_new_inode_pa(ac, pa);
3629
3630 ext4_mb_use_inode_pa(ac, pa);
3631 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3632
3633 ei = EXT4_I(ac->ac_inode);
3634 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3635
3636 pa->pa_obj_lock = &ei->i_prealloc_lock;
3637 pa->pa_inode = ac->ac_inode;
3638
3639 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3640 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3641 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3642
3643 spin_lock(pa->pa_obj_lock);
3644 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3645 spin_unlock(pa->pa_obj_lock);
3646
3647 return 0;
3648 }
3649
3650 /*
3651 * creates new preallocated space for locality group inodes belongs to
3652 */
3653 static noinline_for_stack int
3654 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3655 {
3656 struct super_block *sb = ac->ac_sb;
3657 struct ext4_locality_group *lg;
3658 struct ext4_prealloc_space *pa;
3659 struct ext4_group_info *grp;
3660
3661 /* preallocate only when found space is larger then requested */
3662 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3663 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3664 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665
3666 BUG_ON(ext4_pspace_cachep == NULL);
3667 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3668 if (pa == NULL)
3669 return -ENOMEM;
3670
3671 /* preallocation can change ac_b_ex, thus we store actually
3672 * allocated blocks for history */
3673 ac->ac_f_ex = ac->ac_b_ex;
3674
3675 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3676 pa->pa_lstart = pa->pa_pstart;
3677 pa->pa_len = ac->ac_b_ex.fe_len;
3678 pa->pa_free = pa->pa_len;
3679 atomic_set(&pa->pa_count, 1);
3680 spin_lock_init(&pa->pa_lock);
3681 INIT_LIST_HEAD(&pa->pa_inode_list);
3682 INIT_LIST_HEAD(&pa->pa_group_list);
3683 pa->pa_deleted = 0;
3684 pa->pa_type = MB_GROUP_PA;
3685
3686 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3687 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3688 trace_ext4_mb_new_group_pa(ac, pa);
3689
3690 ext4_mb_use_group_pa(ac, pa);
3691 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3692
3693 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3694 lg = ac->ac_lg;
3695 BUG_ON(lg == NULL);
3696
3697 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3698 pa->pa_inode = NULL;
3699
3700 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3701 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3702 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3703
3704 /*
3705 * We will later add the new pa to the right bucket
3706 * after updating the pa_free in ext4_mb_release_context
3707 */
3708 return 0;
3709 }
3710
3711 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3712 {
3713 int err;
3714
3715 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3716 err = ext4_mb_new_group_pa(ac);
3717 else
3718 err = ext4_mb_new_inode_pa(ac);
3719 return err;
3720 }
3721
3722 /*
3723 * finds all unused blocks in on-disk bitmap, frees them in
3724 * in-core bitmap and buddy.
3725 * @pa must be unlinked from inode and group lists, so that
3726 * nobody else can find/use it.
3727 * the caller MUST hold group/inode locks.
3728 * TODO: optimize the case when there are no in-core structures yet
3729 */
3730 static noinline_for_stack int
3731 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3732 struct ext4_prealloc_space *pa)
3733 {
3734 struct super_block *sb = e4b->bd_sb;
3735 struct ext4_sb_info *sbi = EXT4_SB(sb);
3736 unsigned int end;
3737 unsigned int next;
3738 ext4_group_t group;
3739 ext4_grpblk_t bit;
3740 unsigned long long grp_blk_start;
3741 int err = 0;
3742 int free = 0;
3743
3744 BUG_ON(pa->pa_deleted == 0);
3745 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3746 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3747 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3748 end = bit + pa->pa_len;
3749
3750 while (bit < end) {
3751 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3752 if (bit >= end)
3753 break;
3754 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3755 mb_debug(1, " free preallocated %u/%u in group %u\n",
3756 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3757 (unsigned) next - bit, (unsigned) group);
3758 free += next - bit;
3759
3760 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3761 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3762 EXT4_C2B(sbi, bit)),
3763 next - bit);
3764 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3765 bit = next + 1;
3766 }
3767 if (free != pa->pa_free) {
3768 ext4_msg(e4b->bd_sb, KERN_CRIT,
3769 "pa %p: logic %lu, phys. %lu, len %lu",
3770 pa, (unsigned long) pa->pa_lstart,
3771 (unsigned long) pa->pa_pstart,
3772 (unsigned long) pa->pa_len);
3773 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3774 free, pa->pa_free);
3775 /*
3776 * pa is already deleted so we use the value obtained
3777 * from the bitmap and continue.
3778 */
3779 }
3780 atomic_add(free, &sbi->s_mb_discarded);
3781
3782 return err;
3783 }
3784
3785 static noinline_for_stack int
3786 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3787 struct ext4_prealloc_space *pa)
3788 {
3789 struct super_block *sb = e4b->bd_sb;
3790 ext4_group_t group;
3791 ext4_grpblk_t bit;
3792
3793 trace_ext4_mb_release_group_pa(sb, pa);
3794 BUG_ON(pa->pa_deleted == 0);
3795 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3796 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3797 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3798 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3799 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3800
3801 return 0;
3802 }
3803
3804 /*
3805 * releases all preallocations in given group
3806 *
3807 * first, we need to decide discard policy:
3808 * - when do we discard
3809 * 1) ENOSPC
3810 * - how many do we discard
3811 * 1) how many requested
3812 */
3813 static noinline_for_stack int
3814 ext4_mb_discard_group_preallocations(struct super_block *sb,
3815 ext4_group_t group, int needed)
3816 {
3817 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3818 struct buffer_head *bitmap_bh = NULL;
3819 struct ext4_prealloc_space *pa, *tmp;
3820 struct list_head list;
3821 struct ext4_buddy e4b;
3822 int err;
3823 int busy = 0;
3824 int free = 0;
3825
3826 mb_debug(1, "discard preallocation for group %u\n", group);
3827
3828 if (list_empty(&grp->bb_prealloc_list))
3829 return 0;
3830
3831 bitmap_bh = ext4_read_block_bitmap(sb, group);
3832 if (bitmap_bh == NULL) {
3833 ext4_error(sb, "Error reading block bitmap for %u", group);
3834 return 0;
3835 }
3836
3837 err = ext4_mb_load_buddy(sb, group, &e4b);
3838 if (err) {
3839 ext4_error(sb, "Error loading buddy information for %u", group);
3840 put_bh(bitmap_bh);
3841 return 0;
3842 }
3843
3844 if (needed == 0)
3845 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3846
3847 INIT_LIST_HEAD(&list);
3848 repeat:
3849 ext4_lock_group(sb, group);
3850 list_for_each_entry_safe(pa, tmp,
3851 &grp->bb_prealloc_list, pa_group_list) {
3852 spin_lock(&pa->pa_lock);
3853 if (atomic_read(&pa->pa_count)) {
3854 spin_unlock(&pa->pa_lock);
3855 busy = 1;
3856 continue;
3857 }
3858 if (pa->pa_deleted) {
3859 spin_unlock(&pa->pa_lock);
3860 continue;
3861 }
3862
3863 /* seems this one can be freed ... */
3864 pa->pa_deleted = 1;
3865
3866 /* we can trust pa_free ... */
3867 free += pa->pa_free;
3868
3869 spin_unlock(&pa->pa_lock);
3870
3871 list_del(&pa->pa_group_list);
3872 list_add(&pa->u.pa_tmp_list, &list);
3873 }
3874
3875 /* if we still need more blocks and some PAs were used, try again */
3876 if (free < needed && busy) {
3877 busy = 0;
3878 ext4_unlock_group(sb, group);
3879 cond_resched();
3880 goto repeat;
3881 }
3882
3883 /* found anything to free? */
3884 if (list_empty(&list)) {
3885 BUG_ON(free != 0);
3886 goto out;
3887 }
3888
3889 /* now free all selected PAs */
3890 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3891
3892 /* remove from object (inode or locality group) */
3893 spin_lock(pa->pa_obj_lock);
3894 list_del_rcu(&pa->pa_inode_list);
3895 spin_unlock(pa->pa_obj_lock);
3896
3897 if (pa->pa_type == MB_GROUP_PA)
3898 ext4_mb_release_group_pa(&e4b, pa);
3899 else
3900 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3901
3902 list_del(&pa->u.pa_tmp_list);
3903 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3904 }
3905
3906 out:
3907 ext4_unlock_group(sb, group);
3908 ext4_mb_unload_buddy(&e4b);
3909 put_bh(bitmap_bh);
3910 return free;
3911 }
3912
3913 /*
3914 * releases all non-used preallocated blocks for given inode
3915 *
3916 * It's important to discard preallocations under i_data_sem
3917 * We don't want another block to be served from the prealloc
3918 * space when we are discarding the inode prealloc space.
3919 *
3920 * FIXME!! Make sure it is valid at all the call sites
3921 */
3922 void ext4_discard_preallocations(struct inode *inode)
3923 {
3924 struct ext4_inode_info *ei = EXT4_I(inode);
3925 struct super_block *sb = inode->i_sb;
3926 struct buffer_head *bitmap_bh = NULL;
3927 struct ext4_prealloc_space *pa, *tmp;
3928 ext4_group_t group = 0;
3929 struct list_head list;
3930 struct ext4_buddy e4b;
3931 int err;
3932
3933 if (!S_ISREG(inode->i_mode)) {
3934 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3935 return;
3936 }
3937
3938 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3939 trace_ext4_discard_preallocations(inode);
3940
3941 INIT_LIST_HEAD(&list);
3942
3943 repeat:
3944 /* first, collect all pa's in the inode */
3945 spin_lock(&ei->i_prealloc_lock);
3946 while (!list_empty(&ei->i_prealloc_list)) {
3947 pa = list_entry(ei->i_prealloc_list.next,
3948 struct ext4_prealloc_space, pa_inode_list);
3949 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3950 spin_lock(&pa->pa_lock);
3951 if (atomic_read(&pa->pa_count)) {
3952 /* this shouldn't happen often - nobody should
3953 * use preallocation while we're discarding it */
3954 spin_unlock(&pa->pa_lock);
3955 spin_unlock(&ei->i_prealloc_lock);
3956 ext4_msg(sb, KERN_ERR,
3957 "uh-oh! used pa while discarding");
3958 WARN_ON(1);
3959 schedule_timeout_uninterruptible(HZ);
3960 goto repeat;
3961
3962 }
3963 if (pa->pa_deleted == 0) {
3964 pa->pa_deleted = 1;
3965 spin_unlock(&pa->pa_lock);
3966 list_del_rcu(&pa->pa_inode_list);
3967 list_add(&pa->u.pa_tmp_list, &list);
3968 continue;
3969 }
3970
3971 /* someone is deleting pa right now */
3972 spin_unlock(&pa->pa_lock);
3973 spin_unlock(&ei->i_prealloc_lock);
3974
3975 /* we have to wait here because pa_deleted
3976 * doesn't mean pa is already unlinked from
3977 * the list. as we might be called from
3978 * ->clear_inode() the inode will get freed
3979 * and concurrent thread which is unlinking
3980 * pa from inode's list may access already
3981 * freed memory, bad-bad-bad */
3982
3983 /* XXX: if this happens too often, we can
3984 * add a flag to force wait only in case
3985 * of ->clear_inode(), but not in case of
3986 * regular truncate */
3987 schedule_timeout_uninterruptible(HZ);
3988 goto repeat;
3989 }
3990 spin_unlock(&ei->i_prealloc_lock);
3991
3992 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3993 BUG_ON(pa->pa_type != MB_INODE_PA);
3994 group = ext4_get_group_number(sb, pa->pa_pstart);
3995
3996 err = ext4_mb_load_buddy(sb, group, &e4b);
3997 if (err) {
3998 ext4_error(sb, "Error loading buddy information for %u",
3999 group);
4000 continue;
4001 }
4002
4003 bitmap_bh = ext4_read_block_bitmap(sb, group);
4004 if (bitmap_bh == NULL) {
4005 ext4_error(sb, "Error reading block bitmap for %u",
4006 group);
4007 ext4_mb_unload_buddy(&e4b);
4008 continue;
4009 }
4010
4011 ext4_lock_group(sb, group);
4012 list_del(&pa->pa_group_list);
4013 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4014 ext4_unlock_group(sb, group);
4015
4016 ext4_mb_unload_buddy(&e4b);
4017 put_bh(bitmap_bh);
4018
4019 list_del(&pa->u.pa_tmp_list);
4020 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4021 }
4022 }
4023
4024 #ifdef CONFIG_EXT4_DEBUG
4025 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4026 {
4027 struct super_block *sb = ac->ac_sb;
4028 ext4_group_t ngroups, i;
4029
4030 if (!ext4_mballoc_debug ||
4031 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4032 return;
4033
4034 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4035 " Allocation context details:");
4036 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4037 ac->ac_status, ac->ac_flags);
4038 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4039 "goal %lu/%lu/%lu@%lu, "
4040 "best %lu/%lu/%lu@%lu cr %d",
4041 (unsigned long)ac->ac_o_ex.fe_group,
4042 (unsigned long)ac->ac_o_ex.fe_start,
4043 (unsigned long)ac->ac_o_ex.fe_len,
4044 (unsigned long)ac->ac_o_ex.fe_logical,
4045 (unsigned long)ac->ac_g_ex.fe_group,
4046 (unsigned long)ac->ac_g_ex.fe_start,
4047 (unsigned long)ac->ac_g_ex.fe_len,
4048 (unsigned long)ac->ac_g_ex.fe_logical,
4049 (unsigned long)ac->ac_b_ex.fe_group,
4050 (unsigned long)ac->ac_b_ex.fe_start,
4051 (unsigned long)ac->ac_b_ex.fe_len,
4052 (unsigned long)ac->ac_b_ex.fe_logical,
4053 (int)ac->ac_criteria);
4054 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4055 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4056 ngroups = ext4_get_groups_count(sb);
4057 for (i = 0; i < ngroups; i++) {
4058 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4059 struct ext4_prealloc_space *pa;
4060 ext4_grpblk_t start;
4061 struct list_head *cur;
4062 ext4_lock_group(sb, i);
4063 list_for_each(cur, &grp->bb_prealloc_list) {
4064 pa = list_entry(cur, struct ext4_prealloc_space,
4065 pa_group_list);
4066 spin_lock(&pa->pa_lock);
4067 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4068 NULL, &start);
4069 spin_unlock(&pa->pa_lock);
4070 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4071 start, pa->pa_len);
4072 }
4073 ext4_unlock_group(sb, i);
4074
4075 if (grp->bb_free == 0)
4076 continue;
4077 printk(KERN_ERR "%u: %d/%d \n",
4078 i, grp->bb_free, grp->bb_fragments);
4079 }
4080 printk(KERN_ERR "\n");
4081 }
4082 #else
4083 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4084 {
4085 return;
4086 }
4087 #endif
4088
4089 /*
4090 * We use locality group preallocation for small size file. The size of the
4091 * file is determined by the current size or the resulting size after
4092 * allocation which ever is larger
4093 *
4094 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4095 */
4096 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4097 {
4098 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4099 int bsbits = ac->ac_sb->s_blocksize_bits;
4100 loff_t size, isize;
4101
4102 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4103 return;
4104
4105 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4106 return;
4107
4108 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4109 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4110 >> bsbits;
4111
4112 if ((size == isize) &&
4113 !ext4_fs_is_busy(sbi) &&
4114 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4115 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4116 return;
4117 }
4118
4119 if (sbi->s_mb_group_prealloc <= 0) {
4120 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4121 return;
4122 }
4123
4124 /* don't use group allocation for large files */
4125 size = max(size, isize);
4126 if (size > sbi->s_mb_stream_request) {
4127 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4128 return;
4129 }
4130
4131 BUG_ON(ac->ac_lg != NULL);
4132 /*
4133 * locality group prealloc space are per cpu. The reason for having
4134 * per cpu locality group is to reduce the contention between block
4135 * request from multiple CPUs.
4136 */
4137 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4138
4139 /* we're going to use group allocation */
4140 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4141
4142 /* serialize all allocations in the group */
4143 mutex_lock(&ac->ac_lg->lg_mutex);
4144 }
4145
4146 static noinline_for_stack int
4147 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4148 struct ext4_allocation_request *ar)
4149 {
4150 struct super_block *sb = ar->inode->i_sb;
4151 struct ext4_sb_info *sbi = EXT4_SB(sb);
4152 struct ext4_super_block *es = sbi->s_es;
4153 ext4_group_t group;
4154 unsigned int len;
4155 ext4_fsblk_t goal;
4156 ext4_grpblk_t block;
4157
4158 /* we can't allocate > group size */
4159 len = ar->len;
4160
4161 /* just a dirty hack to filter too big requests */
4162 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4163 len = EXT4_CLUSTERS_PER_GROUP(sb);
4164
4165 /* start searching from the goal */
4166 goal = ar->goal;
4167 if (goal < le32_to_cpu(es->s_first_data_block) ||
4168 goal >= ext4_blocks_count(es))
4169 goal = le32_to_cpu(es->s_first_data_block);
4170 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4171
4172 /* set up allocation goals */
4173 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4174 ac->ac_status = AC_STATUS_CONTINUE;
4175 ac->ac_sb = sb;
4176 ac->ac_inode = ar->inode;
4177 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4178 ac->ac_o_ex.fe_group = group;
4179 ac->ac_o_ex.fe_start = block;
4180 ac->ac_o_ex.fe_len = len;
4181 ac->ac_g_ex = ac->ac_o_ex;
4182 ac->ac_flags = ar->flags;
4183
4184 /* we have to define context: we'll we work with a file or
4185 * locality group. this is a policy, actually */
4186 ext4_mb_group_or_file(ac);
4187
4188 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4189 "left: %u/%u, right %u/%u to %swritable\n",
4190 (unsigned) ar->len, (unsigned) ar->logical,
4191 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4192 (unsigned) ar->lleft, (unsigned) ar->pleft,
4193 (unsigned) ar->lright, (unsigned) ar->pright,
4194 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4195 return 0;
4196
4197 }
4198
4199 static noinline_for_stack void
4200 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4201 struct ext4_locality_group *lg,
4202 int order, int total_entries)
4203 {
4204 ext4_group_t group = 0;
4205 struct ext4_buddy e4b;
4206 struct list_head discard_list;
4207 struct ext4_prealloc_space *pa, *tmp;
4208
4209 mb_debug(1, "discard locality group preallocation\n");
4210
4211 INIT_LIST_HEAD(&discard_list);
4212
4213 spin_lock(&lg->lg_prealloc_lock);
4214 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4215 pa_inode_list) {
4216 spin_lock(&pa->pa_lock);
4217 if (atomic_read(&pa->pa_count)) {
4218 /*
4219 * This is the pa that we just used
4220 * for block allocation. So don't
4221 * free that
4222 */
4223 spin_unlock(&pa->pa_lock);
4224 continue;
4225 }
4226 if (pa->pa_deleted) {
4227 spin_unlock(&pa->pa_lock);
4228 continue;
4229 }
4230 /* only lg prealloc space */
4231 BUG_ON(pa->pa_type != MB_GROUP_PA);
4232
4233 /* seems this one can be freed ... */
4234 pa->pa_deleted = 1;
4235 spin_unlock(&pa->pa_lock);
4236
4237 list_del_rcu(&pa->pa_inode_list);
4238 list_add(&pa->u.pa_tmp_list, &discard_list);
4239
4240 total_entries--;
4241 if (total_entries <= 5) {
4242 /*
4243 * we want to keep only 5 entries
4244 * allowing it to grow to 8. This
4245 * mak sure we don't call discard
4246 * soon for this list.
4247 */
4248 break;
4249 }
4250 }
4251 spin_unlock(&lg->lg_prealloc_lock);
4252
4253 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4254
4255 group = ext4_get_group_number(sb, pa->pa_pstart);
4256 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4257 ext4_error(sb, "Error loading buddy information for %u",
4258 group);
4259 continue;
4260 }
4261 ext4_lock_group(sb, group);
4262 list_del(&pa->pa_group_list);
4263 ext4_mb_release_group_pa(&e4b, pa);
4264 ext4_unlock_group(sb, group);
4265
4266 ext4_mb_unload_buddy(&e4b);
4267 list_del(&pa->u.pa_tmp_list);
4268 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4269 }
4270 }
4271
4272 /*
4273 * We have incremented pa_count. So it cannot be freed at this
4274 * point. Also we hold lg_mutex. So no parallel allocation is
4275 * possible from this lg. That means pa_free cannot be updated.
4276 *
4277 * A parallel ext4_mb_discard_group_preallocations is possible.
4278 * which can cause the lg_prealloc_list to be updated.
4279 */
4280
4281 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4282 {
4283 int order, added = 0, lg_prealloc_count = 1;
4284 struct super_block *sb = ac->ac_sb;
4285 struct ext4_locality_group *lg = ac->ac_lg;
4286 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4287
4288 order = fls(pa->pa_free) - 1;
4289 if (order > PREALLOC_TB_SIZE - 1)
4290 /* The max size of hash table is PREALLOC_TB_SIZE */
4291 order = PREALLOC_TB_SIZE - 1;
4292 /* Add the prealloc space to lg */
4293 spin_lock(&lg->lg_prealloc_lock);
4294 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4295 pa_inode_list) {
4296 spin_lock(&tmp_pa->pa_lock);
4297 if (tmp_pa->pa_deleted) {
4298 spin_unlock(&tmp_pa->pa_lock);
4299 continue;
4300 }
4301 if (!added && pa->pa_free < tmp_pa->pa_free) {
4302 /* Add to the tail of the previous entry */
4303 list_add_tail_rcu(&pa->pa_inode_list,
4304 &tmp_pa->pa_inode_list);
4305 added = 1;
4306 /*
4307 * we want to count the total
4308 * number of entries in the list
4309 */
4310 }
4311 spin_unlock(&tmp_pa->pa_lock);
4312 lg_prealloc_count++;
4313 }
4314 if (!added)
4315 list_add_tail_rcu(&pa->pa_inode_list,
4316 &lg->lg_prealloc_list[order]);
4317 spin_unlock(&lg->lg_prealloc_lock);
4318
4319 /* Now trim the list to be not more than 8 elements */
4320 if (lg_prealloc_count > 8) {
4321 ext4_mb_discard_lg_preallocations(sb, lg,
4322 order, lg_prealloc_count);
4323 return;
4324 }
4325 return ;
4326 }
4327
4328 /*
4329 * release all resource we used in allocation
4330 */
4331 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4332 {
4333 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4334 struct ext4_prealloc_space *pa = ac->ac_pa;
4335 if (pa) {
4336 if (pa->pa_type == MB_GROUP_PA) {
4337 /* see comment in ext4_mb_use_group_pa() */
4338 spin_lock(&pa->pa_lock);
4339 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4340 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4341 pa->pa_free -= ac->ac_b_ex.fe_len;
4342 pa->pa_len -= ac->ac_b_ex.fe_len;
4343 spin_unlock(&pa->pa_lock);
4344 }
4345 }
4346 if (pa) {
4347 /*
4348 * We want to add the pa to the right bucket.
4349 * Remove it from the list and while adding
4350 * make sure the list to which we are adding
4351 * doesn't grow big.
4352 */
4353 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4354 spin_lock(pa->pa_obj_lock);
4355 list_del_rcu(&pa->pa_inode_list);
4356 spin_unlock(pa->pa_obj_lock);
4357 ext4_mb_add_n_trim(ac);
4358 }
4359 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4360 }
4361 if (ac->ac_bitmap_page)
4362 page_cache_release(ac->ac_bitmap_page);
4363 if (ac->ac_buddy_page)
4364 page_cache_release(ac->ac_buddy_page);
4365 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4366 mutex_unlock(&ac->ac_lg->lg_mutex);
4367 ext4_mb_collect_stats(ac);
4368 return 0;
4369 }
4370
4371 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4372 {
4373 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4374 int ret;
4375 int freed = 0;
4376
4377 trace_ext4_mb_discard_preallocations(sb, needed);
4378 for (i = 0; i < ngroups && needed > 0; i++) {
4379 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4380 freed += ret;
4381 needed -= ret;
4382 }
4383
4384 return freed;
4385 }
4386
4387 /*
4388 * Main entry point into mballoc to allocate blocks
4389 * it tries to use preallocation first, then falls back
4390 * to usual allocation
4391 */
4392 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4393 struct ext4_allocation_request *ar, int *errp)
4394 {
4395 int freed;
4396 struct ext4_allocation_context *ac = NULL;
4397 struct ext4_sb_info *sbi;
4398 struct super_block *sb;
4399 ext4_fsblk_t block = 0;
4400 unsigned int inquota = 0;
4401 unsigned int reserv_clstrs = 0;
4402
4403 might_sleep();
4404 sb = ar->inode->i_sb;
4405 sbi = EXT4_SB(sb);
4406
4407 trace_ext4_request_blocks(ar);
4408
4409 /* Allow to use superuser reservation for quota file */
4410 if (IS_NOQUOTA(ar->inode))
4411 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4412
4413 /*
4414 * For delayed allocation, we could skip the ENOSPC and
4415 * EDQUOT check, as blocks and quotas have been already
4416 * reserved when data being copied into pagecache.
4417 */
4418 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) {
4419 WARN_ON((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0);
4420 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4421 }
4422
4423 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4424 /* Without delayed allocation we need to verify
4425 * there is enough free blocks to do block allocation
4426 * and verify allocation doesn't exceed the quota limits.
4427 */
4428 while (ar->len &&
4429 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4430
4431 /* let others to free the space */
4432 cond_resched();
4433 ar->len = ar->len >> 1;
4434 }
4435 if (!ar->len) {
4436 *errp = -ENOSPC;
4437 return 0;
4438 }
4439 reserv_clstrs = ar->len;
4440 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4441 dquot_alloc_block_nofail(ar->inode,
4442 EXT4_C2B(sbi, ar->len));
4443 } else {
4444 while (ar->len &&
4445 dquot_alloc_block(ar->inode,
4446 EXT4_C2B(sbi, ar->len))) {
4447
4448 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4449 ar->len--;
4450 }
4451 }
4452 inquota = ar->len;
4453 if (ar->len == 0) {
4454 *errp = -EDQUOT;
4455 goto out;
4456 }
4457 }
4458
4459 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4460 if (!ac) {
4461 ar->len = 0;
4462 *errp = -ENOMEM;
4463 goto out;
4464 }
4465
4466 *errp = ext4_mb_initialize_context(ac, ar);
4467 if (*errp) {
4468 ar->len = 0;
4469 goto out;
4470 }
4471
4472 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4473 if (!ext4_mb_use_preallocated(ac)) {
4474 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4475 ext4_mb_normalize_request(ac, ar);
4476 repeat:
4477 /* allocate space in core */
4478 *errp = ext4_mb_regular_allocator(ac);
4479 if (*errp)
4480 goto discard_and_exit;
4481
4482 /* as we've just preallocated more space than
4483 * user requested originally, we store allocated
4484 * space in a special descriptor */
4485 if (ac->ac_status == AC_STATUS_FOUND &&
4486 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4487 *errp = ext4_mb_new_preallocation(ac);
4488 if (*errp) {
4489 discard_and_exit:
4490 ext4_discard_allocated_blocks(ac);
4491 goto errout;
4492 }
4493 }
4494 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4495 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4496 if (*errp == -EAGAIN) {
4497 /*
4498 * drop the reference that we took
4499 * in ext4_mb_use_best_found
4500 */
4501 ext4_mb_release_context(ac);
4502 ac->ac_b_ex.fe_group = 0;
4503 ac->ac_b_ex.fe_start = 0;
4504 ac->ac_b_ex.fe_len = 0;
4505 ac->ac_status = AC_STATUS_CONTINUE;
4506 goto repeat;
4507 } else if (*errp) {
4508 ext4_discard_allocated_blocks(ac);
4509 goto errout;
4510 } else {
4511 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4512 ar->len = ac->ac_b_ex.fe_len;
4513 }
4514 } else {
4515 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4516 if (freed)
4517 goto repeat;
4518 *errp = -ENOSPC;
4519 }
4520
4521 errout:
4522 if (*errp) {
4523 ac->ac_b_ex.fe_len = 0;
4524 ar->len = 0;
4525 ext4_mb_show_ac(ac);
4526 }
4527 ext4_mb_release_context(ac);
4528 out:
4529 if (ac)
4530 kmem_cache_free(ext4_ac_cachep, ac);
4531 if (inquota && ar->len < inquota)
4532 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4533 if (!ar->len) {
4534 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4535 /* release all the reserved blocks if non delalloc */
4536 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4537 reserv_clstrs);
4538 }
4539
4540 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4541
4542 return block;
4543 }
4544
4545 /*
4546 * We can merge two free data extents only if the physical blocks
4547 * are contiguous, AND the extents were freed by the same transaction,
4548 * AND the blocks are associated with the same group.
4549 */
4550 static int can_merge(struct ext4_free_data *entry1,
4551 struct ext4_free_data *entry2)
4552 {
4553 if ((entry1->efd_tid == entry2->efd_tid) &&
4554 (entry1->efd_group == entry2->efd_group) &&
4555 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4556 return 1;
4557 return 0;
4558 }
4559
4560 static noinline_for_stack int
4561 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4562 struct ext4_free_data *new_entry)
4563 {
4564 ext4_group_t group = e4b->bd_group;
4565 ext4_grpblk_t cluster;
4566 struct ext4_free_data *entry;
4567 struct ext4_group_info *db = e4b->bd_info;
4568 struct super_block *sb = e4b->bd_sb;
4569 struct ext4_sb_info *sbi = EXT4_SB(sb);
4570 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4571 struct rb_node *parent = NULL, *new_node;
4572
4573 BUG_ON(!ext4_handle_valid(handle));
4574 BUG_ON(e4b->bd_bitmap_page == NULL);
4575 BUG_ON(e4b->bd_buddy_page == NULL);
4576
4577 new_node = &new_entry->efd_node;
4578 cluster = new_entry->efd_start_cluster;
4579
4580 if (!*n) {
4581 /* first free block exent. We need to
4582 protect buddy cache from being freed,
4583 * otherwise we'll refresh it from
4584 * on-disk bitmap and lose not-yet-available
4585 * blocks */
4586 page_cache_get(e4b->bd_buddy_page);
4587 page_cache_get(e4b->bd_bitmap_page);
4588 }
4589 while (*n) {
4590 parent = *n;
4591 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4592 if (cluster < entry->efd_start_cluster)
4593 n = &(*n)->rb_left;
4594 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4595 n = &(*n)->rb_right;
4596 else {
4597 ext4_grp_locked_error(sb, group, 0,
4598 ext4_group_first_block_no(sb, group) +
4599 EXT4_C2B(sbi, cluster),
4600 "Block already on to-be-freed list");
4601 return 0;
4602 }
4603 }
4604
4605 rb_link_node(new_node, parent, n);
4606 rb_insert_color(new_node, &db->bb_free_root);
4607
4608 /* Now try to see the extent can be merged to left and right */
4609 node = rb_prev(new_node);
4610 if (node) {
4611 entry = rb_entry(node, struct ext4_free_data, efd_node);
4612 if (can_merge(entry, new_entry) &&
4613 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4614 new_entry->efd_start_cluster = entry->efd_start_cluster;
4615 new_entry->efd_count += entry->efd_count;
4616 rb_erase(node, &(db->bb_free_root));
4617 kmem_cache_free(ext4_free_data_cachep, entry);
4618 }
4619 }
4620
4621 node = rb_next(new_node);
4622 if (node) {
4623 entry = rb_entry(node, struct ext4_free_data, efd_node);
4624 if (can_merge(new_entry, entry) &&
4625 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4626 new_entry->efd_count += entry->efd_count;
4627 rb_erase(node, &(db->bb_free_root));
4628 kmem_cache_free(ext4_free_data_cachep, entry);
4629 }
4630 }
4631 /* Add the extent to transaction's private list */
4632 ext4_journal_callback_add(handle, ext4_free_data_callback,
4633 &new_entry->efd_jce);
4634 return 0;
4635 }
4636
4637 /**
4638 * ext4_free_blocks() -- Free given blocks and update quota
4639 * @handle: handle for this transaction
4640 * @inode: inode
4641 * @block: start physical block to free
4642 * @count: number of blocks to count
4643 * @flags: flags used by ext4_free_blocks
4644 */
4645 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4646 struct buffer_head *bh, ext4_fsblk_t block,
4647 unsigned long count, int flags)
4648 {
4649 struct buffer_head *bitmap_bh = NULL;
4650 struct super_block *sb = inode->i_sb;
4651 struct ext4_group_desc *gdp;
4652 unsigned int overflow;
4653 ext4_grpblk_t bit;
4654 struct buffer_head *gd_bh;
4655 ext4_group_t block_group;
4656 struct ext4_sb_info *sbi;
4657 struct ext4_buddy e4b;
4658 unsigned int count_clusters;
4659 int err = 0;
4660 int ret;
4661
4662 might_sleep();
4663 if (bh) {
4664 if (block)
4665 BUG_ON(block != bh->b_blocknr);
4666 else
4667 block = bh->b_blocknr;
4668 }
4669
4670 sbi = EXT4_SB(sb);
4671 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4672 !ext4_data_block_valid(sbi, block, count)) {
4673 ext4_error(sb, "Freeing blocks not in datazone - "
4674 "block = %llu, count = %lu", block, count);
4675 goto error_return;
4676 }
4677
4678 ext4_debug("freeing block %llu\n", block);
4679 trace_ext4_free_blocks(inode, block, count, flags);
4680
4681 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4682 struct buffer_head *tbh = bh;
4683 int i;
4684
4685 BUG_ON(bh && (count > 1));
4686
4687 for (i = 0; i < count; i++) {
4688 cond_resched();
4689 if (!bh)
4690 tbh = sb_find_get_block(inode->i_sb,
4691 block + i);
4692 if (!tbh)
4693 continue;
4694 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4695 inode, tbh, block + i);
4696 }
4697 }
4698
4699 /*
4700 * We need to make sure we don't reuse the freed block until
4701 * after the transaction is committed, which we can do by
4702 * treating the block as metadata, below. We make an
4703 * exception if the inode is to be written in writeback mode
4704 * since writeback mode has weak data consistency guarantees.
4705 */
4706 if (!ext4_should_writeback_data(inode))
4707 flags |= EXT4_FREE_BLOCKS_METADATA;
4708
4709 /*
4710 * If the extent to be freed does not begin on a cluster
4711 * boundary, we need to deal with partial clusters at the
4712 * beginning and end of the extent. Normally we will free
4713 * blocks at the beginning or the end unless we are explicitly
4714 * requested to avoid doing so.
4715 */
4716 overflow = EXT4_PBLK_COFF(sbi, block);
4717 if (overflow) {
4718 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4719 overflow = sbi->s_cluster_ratio - overflow;
4720 block += overflow;
4721 if (count > overflow)
4722 count -= overflow;
4723 else
4724 return;
4725 } else {
4726 block -= overflow;
4727 count += overflow;
4728 }
4729 }
4730 overflow = EXT4_LBLK_COFF(sbi, count);
4731 if (overflow) {
4732 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4733 if (count > overflow)
4734 count -= overflow;
4735 else
4736 return;
4737 } else
4738 count += sbi->s_cluster_ratio - overflow;
4739 }
4740
4741 do_more:
4742 overflow = 0;
4743 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4744
4745 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4746 ext4_get_group_info(sb, block_group))))
4747 return;
4748
4749 /*
4750 * Check to see if we are freeing blocks across a group
4751 * boundary.
4752 */
4753 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4754 overflow = EXT4_C2B(sbi, bit) + count -
4755 EXT4_BLOCKS_PER_GROUP(sb);
4756 count -= overflow;
4757 }
4758 count_clusters = EXT4_NUM_B2C(sbi, count);
4759 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4760 if (!bitmap_bh) {
4761 err = -EIO;
4762 goto error_return;
4763 }
4764 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4765 if (!gdp) {
4766 err = -EIO;
4767 goto error_return;
4768 }
4769
4770 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4771 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4772 in_range(block, ext4_inode_table(sb, gdp),
4773 EXT4_SB(sb)->s_itb_per_group) ||
4774 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4775 EXT4_SB(sb)->s_itb_per_group)) {
4776
4777 ext4_error(sb, "Freeing blocks in system zone - "
4778 "Block = %llu, count = %lu", block, count);
4779 /* err = 0. ext4_std_error should be a no op */
4780 goto error_return;
4781 }
4782
4783 BUFFER_TRACE(bitmap_bh, "getting write access");
4784 err = ext4_journal_get_write_access(handle, bitmap_bh);
4785 if (err)
4786 goto error_return;
4787
4788 /*
4789 * We are about to modify some metadata. Call the journal APIs
4790 * to unshare ->b_data if a currently-committing transaction is
4791 * using it
4792 */
4793 BUFFER_TRACE(gd_bh, "get_write_access");
4794 err = ext4_journal_get_write_access(handle, gd_bh);
4795 if (err)
4796 goto error_return;
4797 #ifdef AGGRESSIVE_CHECK
4798 {
4799 int i;
4800 for (i = 0; i < count_clusters; i++)
4801 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4802 }
4803 #endif
4804 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4805
4806 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4807 if (err)
4808 goto error_return;
4809
4810 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4811 struct ext4_free_data *new_entry;
4812 /*
4813 * blocks being freed are metadata. these blocks shouldn't
4814 * be used until this transaction is committed
4815 */
4816 retry:
4817 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4818 if (!new_entry) {
4819 /*
4820 * We use a retry loop because
4821 * ext4_free_blocks() is not allowed to fail.
4822 */
4823 cond_resched();
4824 congestion_wait(BLK_RW_ASYNC, HZ/50);
4825 goto retry;
4826 }
4827 new_entry->efd_start_cluster = bit;
4828 new_entry->efd_group = block_group;
4829 new_entry->efd_count = count_clusters;
4830 new_entry->efd_tid = handle->h_transaction->t_tid;
4831
4832 ext4_lock_group(sb, block_group);
4833 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4834 ext4_mb_free_metadata(handle, &e4b, new_entry);
4835 } else {
4836 /* need to update group_info->bb_free and bitmap
4837 * with group lock held. generate_buddy look at
4838 * them with group lock_held
4839 */
4840 if (test_opt(sb, DISCARD)) {
4841 err = ext4_issue_discard(sb, block_group, bit, count);
4842 if (err && err != -EOPNOTSUPP)
4843 ext4_msg(sb, KERN_WARNING, "discard request in"
4844 " group:%d block:%d count:%lu failed"
4845 " with %d", block_group, bit, count,
4846 err);
4847 } else
4848 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4849
4850 ext4_lock_group(sb, block_group);
4851 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4852 mb_free_blocks(inode, &e4b, bit, count_clusters);
4853 }
4854
4855 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4856 ext4_free_group_clusters_set(sb, gdp, ret);
4857 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4858 ext4_group_desc_csum_set(sb, block_group, gdp);
4859 ext4_unlock_group(sb, block_group);
4860
4861 if (sbi->s_log_groups_per_flex) {
4862 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4863 atomic64_add(count_clusters,
4864 &sbi->s_flex_groups[flex_group].free_clusters);
4865 }
4866
4867 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4868 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4869 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4870
4871 ext4_mb_unload_buddy(&e4b);
4872
4873 /* We dirtied the bitmap block */
4874 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4875 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4876
4877 /* And the group descriptor block */
4878 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4879 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4880 if (!err)
4881 err = ret;
4882
4883 if (overflow && !err) {
4884 block += count;
4885 count = overflow;
4886 put_bh(bitmap_bh);
4887 goto do_more;
4888 }
4889 error_return:
4890 brelse(bitmap_bh);
4891 ext4_std_error(sb, err);
4892 return;
4893 }
4894
4895 /**
4896 * ext4_group_add_blocks() -- Add given blocks to an existing group
4897 * @handle: handle to this transaction
4898 * @sb: super block
4899 * @block: start physical block to add to the block group
4900 * @count: number of blocks to free
4901 *
4902 * This marks the blocks as free in the bitmap and buddy.
4903 */
4904 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4905 ext4_fsblk_t block, unsigned long count)
4906 {
4907 struct buffer_head *bitmap_bh = NULL;
4908 struct buffer_head *gd_bh;
4909 ext4_group_t block_group;
4910 ext4_grpblk_t bit;
4911 unsigned int i;
4912 struct ext4_group_desc *desc;
4913 struct ext4_sb_info *sbi = EXT4_SB(sb);
4914 struct ext4_buddy e4b;
4915 int err = 0, ret, blk_free_count;
4916 ext4_grpblk_t blocks_freed;
4917
4918 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4919
4920 if (count == 0)
4921 return 0;
4922
4923 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4924 /*
4925 * Check to see if we are freeing blocks across a group
4926 * boundary.
4927 */
4928 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4929 ext4_warning(sb, "too much blocks added to group %u\n",
4930 block_group);
4931 err = -EINVAL;
4932 goto error_return;
4933 }
4934
4935 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4936 if (!bitmap_bh) {
4937 err = -EIO;
4938 goto error_return;
4939 }
4940
4941 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4942 if (!desc) {
4943 err = -EIO;
4944 goto error_return;
4945 }
4946
4947 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4948 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4949 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4950 in_range(block + count - 1, ext4_inode_table(sb, desc),
4951 sbi->s_itb_per_group)) {
4952 ext4_error(sb, "Adding blocks in system zones - "
4953 "Block = %llu, count = %lu",
4954 block, count);
4955 err = -EINVAL;
4956 goto error_return;
4957 }
4958
4959 BUFFER_TRACE(bitmap_bh, "getting write access");
4960 err = ext4_journal_get_write_access(handle, bitmap_bh);
4961 if (err)
4962 goto error_return;
4963
4964 /*
4965 * We are about to modify some metadata. Call the journal APIs
4966 * to unshare ->b_data if a currently-committing transaction is
4967 * using it
4968 */
4969 BUFFER_TRACE(gd_bh, "get_write_access");
4970 err = ext4_journal_get_write_access(handle, gd_bh);
4971 if (err)
4972 goto error_return;
4973
4974 for (i = 0, blocks_freed = 0; i < count; i++) {
4975 BUFFER_TRACE(bitmap_bh, "clear bit");
4976 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4977 ext4_error(sb, "bit already cleared for block %llu",
4978 (ext4_fsblk_t)(block + i));
4979 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4980 } else {
4981 blocks_freed++;
4982 }
4983 }
4984
4985 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4986 if (err)
4987 goto error_return;
4988
4989 /*
4990 * need to update group_info->bb_free and bitmap
4991 * with group lock held. generate_buddy look at
4992 * them with group lock_held
4993 */
4994 ext4_lock_group(sb, block_group);
4995 mb_clear_bits(bitmap_bh->b_data, bit, count);
4996 mb_free_blocks(NULL, &e4b, bit, count);
4997 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4998 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4999 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5000 ext4_group_desc_csum_set(sb, block_group, desc);
5001 ext4_unlock_group(sb, block_group);
5002 percpu_counter_add(&sbi->s_freeclusters_counter,
5003 EXT4_NUM_B2C(sbi, blocks_freed));
5004
5005 if (sbi->s_log_groups_per_flex) {
5006 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5007 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5008 &sbi->s_flex_groups[flex_group].free_clusters);
5009 }
5010
5011 ext4_mb_unload_buddy(&e4b);
5012
5013 /* We dirtied the bitmap block */
5014 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5015 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5016
5017 /* And the group descriptor block */
5018 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5019 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5020 if (!err)
5021 err = ret;
5022
5023 error_return:
5024 brelse(bitmap_bh);
5025 ext4_std_error(sb, err);
5026 return err;
5027 }
5028
5029 /**
5030 * ext4_trim_extent -- function to TRIM one single free extent in the group
5031 * @sb: super block for the file system
5032 * @start: starting block of the free extent in the alloc. group
5033 * @count: number of blocks to TRIM
5034 * @group: alloc. group we are working with
5035 * @e4b: ext4 buddy for the group
5036 *
5037 * Trim "count" blocks starting at "start" in the "group". To assure that no
5038 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5039 * be called with under the group lock.
5040 */
5041 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5042 ext4_group_t group, struct ext4_buddy *e4b)
5043 __releases(bitlock)
5044 __acquires(bitlock)
5045 {
5046 struct ext4_free_extent ex;
5047 int ret = 0;
5048
5049 trace_ext4_trim_extent(sb, group, start, count);
5050
5051 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5052
5053 ex.fe_start = start;
5054 ex.fe_group = group;
5055 ex.fe_len = count;
5056
5057 /*
5058 * Mark blocks used, so no one can reuse them while
5059 * being trimmed.
5060 */
5061 mb_mark_used(e4b, &ex);
5062 ext4_unlock_group(sb, group);
5063 ret = ext4_issue_discard(sb, group, start, count);
5064 ext4_lock_group(sb, group);
5065 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5066 return ret;
5067 }
5068
5069 /**
5070 * ext4_trim_all_free -- function to trim all free space in alloc. group
5071 * @sb: super block for file system
5072 * @group: group to be trimmed
5073 * @start: first group block to examine
5074 * @max: last group block to examine
5075 * @minblocks: minimum extent block count
5076 *
5077 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5078 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5079 * the extent.
5080 *
5081 *
5082 * ext4_trim_all_free walks through group's block bitmap searching for free
5083 * extents. When the free extent is found, mark it as used in group buddy
5084 * bitmap. Then issue a TRIM command on this extent and free the extent in
5085 * the group buddy bitmap. This is done until whole group is scanned.
5086 */
5087 static ext4_grpblk_t
5088 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5089 ext4_grpblk_t start, ext4_grpblk_t max,
5090 ext4_grpblk_t minblocks)
5091 {
5092 void *bitmap;
5093 ext4_grpblk_t next, count = 0, free_count = 0;
5094 struct ext4_buddy e4b;
5095 int ret = 0;
5096
5097 trace_ext4_trim_all_free(sb, group, start, max);
5098
5099 ret = ext4_mb_load_buddy(sb, group, &e4b);
5100 if (ret) {
5101 ext4_error(sb, "Error in loading buddy "
5102 "information for %u", group);
5103 return ret;
5104 }
5105 bitmap = e4b.bd_bitmap;
5106
5107 ext4_lock_group(sb, group);
5108 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5109 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5110 goto out;
5111
5112 start = (e4b.bd_info->bb_first_free > start) ?
5113 e4b.bd_info->bb_first_free : start;
5114
5115 while (start <= max) {
5116 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5117 if (start > max)
5118 break;
5119 next = mb_find_next_bit(bitmap, max + 1, start);
5120
5121 if ((next - start) >= minblocks) {
5122 ret = ext4_trim_extent(sb, start,
5123 next - start, group, &e4b);
5124 if (ret && ret != -EOPNOTSUPP)
5125 break;
5126 ret = 0;
5127 count += next - start;
5128 }
5129 free_count += next - start;
5130 start = next + 1;
5131
5132 if (fatal_signal_pending(current)) {
5133 count = -ERESTARTSYS;
5134 break;
5135 }
5136
5137 if (need_resched()) {
5138 ext4_unlock_group(sb, group);
5139 cond_resched();
5140 ext4_lock_group(sb, group);
5141 }
5142
5143 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5144 break;
5145 }
5146
5147 if (!ret) {
5148 ret = count;
5149 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5150 }
5151 out:
5152 ext4_unlock_group(sb, group);
5153 ext4_mb_unload_buddy(&e4b);
5154
5155 ext4_debug("trimmed %d blocks in the group %d\n",
5156 count, group);
5157
5158 return ret;
5159 }
5160
5161 /**
5162 * ext4_trim_fs() -- trim ioctl handle function
5163 * @sb: superblock for filesystem
5164 * @range: fstrim_range structure
5165 *
5166 * start: First Byte to trim
5167 * len: number of Bytes to trim from start
5168 * minlen: minimum extent length in Bytes
5169 * ext4_trim_fs goes through all allocation groups containing Bytes from
5170 * start to start+len. For each such a group ext4_trim_all_free function
5171 * is invoked to trim all free space.
5172 */
5173 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5174 {
5175 struct ext4_group_info *grp;
5176 ext4_group_t group, first_group, last_group;
5177 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5178 uint64_t start, end, minlen, trimmed = 0;
5179 ext4_fsblk_t first_data_blk =
5180 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5181 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5182 int ret = 0;
5183
5184 start = range->start >> sb->s_blocksize_bits;
5185 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5186 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5187 range->minlen >> sb->s_blocksize_bits);
5188
5189 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5190 start >= max_blks ||
5191 range->len < sb->s_blocksize)
5192 return -EINVAL;
5193 if (end >= max_blks)
5194 end = max_blks - 1;
5195 if (end <= first_data_blk)
5196 goto out;
5197 if (start < first_data_blk)
5198 start = first_data_blk;
5199
5200 /* Determine first and last group to examine based on start and end */
5201 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5202 &first_group, &first_cluster);
5203 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5204 &last_group, &last_cluster);
5205
5206 /* end now represents the last cluster to discard in this group */
5207 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5208
5209 for (group = first_group; group <= last_group; group++) {
5210 grp = ext4_get_group_info(sb, group);
5211 /* We only do this if the grp has never been initialized */
5212 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5213 ret = ext4_mb_init_group(sb, group);
5214 if (ret)
5215 break;
5216 }
5217
5218 /*
5219 * For all the groups except the last one, last cluster will
5220 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5221 * change it for the last group, note that last_cluster is
5222 * already computed earlier by ext4_get_group_no_and_offset()
5223 */
5224 if (group == last_group)
5225 end = last_cluster;
5226
5227 if (grp->bb_free >= minlen) {
5228 cnt = ext4_trim_all_free(sb, group, first_cluster,
5229 end, minlen);
5230 if (cnt < 0) {
5231 ret = cnt;
5232 break;
5233 }
5234 trimmed += cnt;
5235 }
5236
5237 /*
5238 * For every group except the first one, we are sure
5239 * that the first cluster to discard will be cluster #0.
5240 */
5241 first_cluster = 0;
5242 }
5243
5244 if (!ret)
5245 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5246
5247 out:
5248 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5249 return ret;
5250 }
This page took 0.128984 seconds and 4 git commands to generate.