ext4: teach ext4_free_blocks() about bigalloc and clusters
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28
29 /*
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
33 *
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
40 *
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
47 */
48
49 /*
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
52 *
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
62 *
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
65 *
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
70 *
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space (in clusters)
74 * pa_free -> free space available in this prealloc space (in clusters)
75 *
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
80 *
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
84 *
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
88 *
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 *
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
93 *
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
96 *
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
106 *
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 *
110 *
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
115 *
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
118 *
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
122 *
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
136 *
137 * The regular allocator (using the buddy cache) supports a few tunables.
138 *
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
142 *
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
158 *
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
163 */
164
165 /*
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
170 *
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
186 *
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
189 *
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
193 *
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
197 *
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200 *
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
211 *
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
223 *
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
256 *
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
264 *
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
267 *
268 */
269
270 /*
271 * Logic in few words:
272 *
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
278 *
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
285 *
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
290 *
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
298 *
299 * - discard inode's preallocations:
300 */
301
302 /*
303 * Locking rules
304 *
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
309 *
310 * Paths:
311 * - new pa
312 * object
313 * group
314 *
315 * - find and use pa:
316 * pa
317 *
318 * - release consumed pa:
319 * pa
320 * group
321 * object
322 *
323 * - generate in-core bitmap:
324 * group
325 * pa
326 *
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
331 *
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
337 *
338 */
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_ext_cachep;
342
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348
349 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
353 };
354
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
360
361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 {
363 #if BITS_PER_LONG == 64
364 *bit += ((unsigned long) addr & 7UL) << 3;
365 addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit += ((unsigned long) addr & 3UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 return addr;
373 }
374
375 static inline int mb_test_bit(int bit, void *addr)
376 {
377 /*
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
380 */
381 addr = mb_correct_addr_and_bit(&bit, addr);
382 return ext4_test_bit(bit, addr);
383 }
384
385 static inline void mb_set_bit(int bit, void *addr)
386 {
387 addr = mb_correct_addr_and_bit(&bit, addr);
388 ext4_set_bit(bit, addr);
389 }
390
391 static inline void mb_clear_bit(int bit, void *addr)
392 {
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 ext4_clear_bit(bit, addr);
395 }
396
397 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
398 {
399 int fix = 0, ret, tmpmax;
400 addr = mb_correct_addr_and_bit(&fix, addr);
401 tmpmax = max + fix;
402 start += fix;
403
404 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
405 if (ret > max)
406 return max;
407 return ret;
408 }
409
410 static inline int mb_find_next_bit(void *addr, int max, int start)
411 {
412 int fix = 0, ret, tmpmax;
413 addr = mb_correct_addr_and_bit(&fix, addr);
414 tmpmax = max + fix;
415 start += fix;
416
417 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
418 if (ret > max)
419 return max;
420 return ret;
421 }
422
423 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
424 {
425 char *bb;
426
427 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
428 BUG_ON(max == NULL);
429
430 if (order > e4b->bd_blkbits + 1) {
431 *max = 0;
432 return NULL;
433 }
434
435 /* at order 0 we see each particular block */
436 if (order == 0) {
437 *max = 1 << (e4b->bd_blkbits + 3);
438 return EXT4_MB_BITMAP(e4b);
439 }
440
441 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
442 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
443
444 return bb;
445 }
446
447 #ifdef DOUBLE_CHECK
448 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
449 int first, int count)
450 {
451 int i;
452 struct super_block *sb = e4b->bd_sb;
453
454 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
455 return;
456 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
457 for (i = 0; i < count; i++) {
458 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
459 ext4_fsblk_t blocknr;
460
461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
462 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
463 ext4_grp_locked_error(sb, e4b->bd_group,
464 inode ? inode->i_ino : 0,
465 blocknr,
466 "freeing block already freed "
467 "(bit %u)",
468 first + i);
469 }
470 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
471 }
472 }
473
474 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
475 {
476 int i;
477
478 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
479 return;
480 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
481 for (i = 0; i < count; i++) {
482 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
483 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
484 }
485 }
486
487 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
488 {
489 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
490 unsigned char *b1, *b2;
491 int i;
492 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
493 b2 = (unsigned char *) bitmap;
494 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
495 if (b1[i] != b2[i]) {
496 ext4_msg(e4b->bd_sb, KERN_ERR,
497 "corruption in group %u "
498 "at byte %u(%u): %x in copy != %x "
499 "on disk/prealloc",
500 e4b->bd_group, i, i * 8, b1[i], b2[i]);
501 BUG();
502 }
503 }
504 }
505 }
506
507 #else
508 static inline void mb_free_blocks_double(struct inode *inode,
509 struct ext4_buddy *e4b, int first, int count)
510 {
511 return;
512 }
513 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
514 int first, int count)
515 {
516 return;
517 }
518 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 {
520 return;
521 }
522 #endif
523
524 #ifdef AGGRESSIVE_CHECK
525
526 #define MB_CHECK_ASSERT(assert) \
527 do { \
528 if (!(assert)) { \
529 printk(KERN_EMERG \
530 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
531 function, file, line, # assert); \
532 BUG(); \
533 } \
534 } while (0)
535
536 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
537 const char *function, int line)
538 {
539 struct super_block *sb = e4b->bd_sb;
540 int order = e4b->bd_blkbits + 1;
541 int max;
542 int max2;
543 int i;
544 int j;
545 int k;
546 int count;
547 struct ext4_group_info *grp;
548 int fragments = 0;
549 int fstart;
550 struct list_head *cur;
551 void *buddy;
552 void *buddy2;
553
554 {
555 static int mb_check_counter;
556 if (mb_check_counter++ % 100 != 0)
557 return 0;
558 }
559
560 while (order > 1) {
561 buddy = mb_find_buddy(e4b, order, &max);
562 MB_CHECK_ASSERT(buddy);
563 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
564 MB_CHECK_ASSERT(buddy2);
565 MB_CHECK_ASSERT(buddy != buddy2);
566 MB_CHECK_ASSERT(max * 2 == max2);
567
568 count = 0;
569 for (i = 0; i < max; i++) {
570
571 if (mb_test_bit(i, buddy)) {
572 /* only single bit in buddy2 may be 1 */
573 if (!mb_test_bit(i << 1, buddy2)) {
574 MB_CHECK_ASSERT(
575 mb_test_bit((i<<1)+1, buddy2));
576 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit(i << 1, buddy2));
579 }
580 continue;
581 }
582
583 /* both bits in buddy2 must be 0 */
584 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
585 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
586
587 for (j = 0; j < (1 << order); j++) {
588 k = (i * (1 << order)) + j;
589 MB_CHECK_ASSERT(
590 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
591 }
592 count++;
593 }
594 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
595 order--;
596 }
597
598 fstart = -1;
599 buddy = mb_find_buddy(e4b, 0, &max);
600 for (i = 0; i < max; i++) {
601 if (!mb_test_bit(i, buddy)) {
602 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
603 if (fstart == -1) {
604 fragments++;
605 fstart = i;
606 }
607 continue;
608 }
609 fstart = -1;
610 /* check used bits only */
611 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
612 buddy2 = mb_find_buddy(e4b, j, &max2);
613 k = i >> j;
614 MB_CHECK_ASSERT(k < max2);
615 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
616 }
617 }
618 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
619 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
620
621 grp = ext4_get_group_info(sb, e4b->bd_group);
622 list_for_each(cur, &grp->bb_prealloc_list) {
623 ext4_group_t groupnr;
624 struct ext4_prealloc_space *pa;
625 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
626 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
627 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
628 for (i = 0; i < pa->pa_len; i++)
629 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
630 }
631 return 0;
632 }
633 #undef MB_CHECK_ASSERT
634 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
635 __FILE__, __func__, __LINE__)
636 #else
637 #define mb_check_buddy(e4b)
638 #endif
639
640 /*
641 * Divide blocks started from @first with length @len into
642 * smaller chunks with power of 2 blocks.
643 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
644 * then increase bb_counters[] for corresponded chunk size.
645 */
646 static void ext4_mb_mark_free_simple(struct super_block *sb,
647 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
648 struct ext4_group_info *grp)
649 {
650 struct ext4_sb_info *sbi = EXT4_SB(sb);
651 ext4_grpblk_t min;
652 ext4_grpblk_t max;
653 ext4_grpblk_t chunk;
654 unsigned short border;
655
656 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
657
658 border = 2 << sb->s_blocksize_bits;
659
660 while (len > 0) {
661 /* find how many blocks can be covered since this position */
662 max = ffs(first | border) - 1;
663
664 /* find how many blocks of power 2 we need to mark */
665 min = fls(len) - 1;
666
667 if (max < min)
668 min = max;
669 chunk = 1 << min;
670
671 /* mark multiblock chunks only */
672 grp->bb_counters[min]++;
673 if (min > 0)
674 mb_clear_bit(first >> min,
675 buddy + sbi->s_mb_offsets[min]);
676
677 len -= chunk;
678 first += chunk;
679 }
680 }
681
682 /*
683 * Cache the order of the largest free extent we have available in this block
684 * group.
685 */
686 static void
687 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
688 {
689 int i;
690 int bits;
691
692 grp->bb_largest_free_order = -1; /* uninit */
693
694 bits = sb->s_blocksize_bits + 1;
695 for (i = bits; i >= 0; i--) {
696 if (grp->bb_counters[i] > 0) {
697 grp->bb_largest_free_order = i;
698 break;
699 }
700 }
701 }
702
703 static noinline_for_stack
704 void ext4_mb_generate_buddy(struct super_block *sb,
705 void *buddy, void *bitmap, ext4_group_t group)
706 {
707 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
708 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
709 ext4_grpblk_t i = 0;
710 ext4_grpblk_t first;
711 ext4_grpblk_t len;
712 unsigned free = 0;
713 unsigned fragments = 0;
714 unsigned long long period = get_cycles();
715
716 /* initialize buddy from bitmap which is aggregation
717 * of on-disk bitmap and preallocations */
718 i = mb_find_next_zero_bit(bitmap, max, 0);
719 grp->bb_first_free = i;
720 while (i < max) {
721 fragments++;
722 first = i;
723 i = mb_find_next_bit(bitmap, max, i);
724 len = i - first;
725 free += len;
726 if (len > 1)
727 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
728 else
729 grp->bb_counters[0]++;
730 if (i < max)
731 i = mb_find_next_zero_bit(bitmap, max, i);
732 }
733 grp->bb_fragments = fragments;
734
735 if (free != grp->bb_free) {
736 ext4_grp_locked_error(sb, group, 0, 0,
737 "%u clusters in bitmap, %u in gd",
738 free, grp->bb_free);
739 /*
740 * If we intent to continue, we consider group descritor
741 * corrupt and update bb_free using bitmap value
742 */
743 grp->bb_free = free;
744 }
745 mb_set_largest_free_order(sb, grp);
746
747 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
748
749 period = get_cycles() - period;
750 spin_lock(&EXT4_SB(sb)->s_bal_lock);
751 EXT4_SB(sb)->s_mb_buddies_generated++;
752 EXT4_SB(sb)->s_mb_generation_time += period;
753 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
754 }
755
756 /* The buddy information is attached the buddy cache inode
757 * for convenience. The information regarding each group
758 * is loaded via ext4_mb_load_buddy. The information involve
759 * block bitmap and buddy information. The information are
760 * stored in the inode as
761 *
762 * { page }
763 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
764 *
765 *
766 * one block each for bitmap and buddy information.
767 * So for each group we take up 2 blocks. A page can
768 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
769 * So it can have information regarding groups_per_page which
770 * is blocks_per_page/2
771 *
772 * Locking note: This routine takes the block group lock of all groups
773 * for this page; do not hold this lock when calling this routine!
774 */
775
776 static int ext4_mb_init_cache(struct page *page, char *incore)
777 {
778 ext4_group_t ngroups;
779 int blocksize;
780 int blocks_per_page;
781 int groups_per_page;
782 int err = 0;
783 int i;
784 ext4_group_t first_group;
785 int first_block;
786 struct super_block *sb;
787 struct buffer_head *bhs;
788 struct buffer_head **bh;
789 struct inode *inode;
790 char *data;
791 char *bitmap;
792 struct ext4_group_info *grinfo;
793
794 mb_debug(1, "init page %lu\n", page->index);
795
796 inode = page->mapping->host;
797 sb = inode->i_sb;
798 ngroups = ext4_get_groups_count(sb);
799 blocksize = 1 << inode->i_blkbits;
800 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
801
802 groups_per_page = blocks_per_page >> 1;
803 if (groups_per_page == 0)
804 groups_per_page = 1;
805
806 /* allocate buffer_heads to read bitmaps */
807 if (groups_per_page > 1) {
808 err = -ENOMEM;
809 i = sizeof(struct buffer_head *) * groups_per_page;
810 bh = kzalloc(i, GFP_NOFS);
811 if (bh == NULL)
812 goto out;
813 } else
814 bh = &bhs;
815
816 first_group = page->index * blocks_per_page / 2;
817
818 /* read all groups the page covers into the cache */
819 for (i = 0; i < groups_per_page; i++) {
820 struct ext4_group_desc *desc;
821
822 if (first_group + i >= ngroups)
823 break;
824
825 grinfo = ext4_get_group_info(sb, first_group + i);
826 /*
827 * If page is uptodate then we came here after online resize
828 * which added some new uninitialized group info structs, so
829 * we must skip all initialized uptodate buddies on the page,
830 * which may be currently in use by an allocating task.
831 */
832 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
833 bh[i] = NULL;
834 continue;
835 }
836
837 err = -EIO;
838 desc = ext4_get_group_desc(sb, first_group + i, NULL);
839 if (desc == NULL)
840 goto out;
841
842 err = -ENOMEM;
843 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
844 if (bh[i] == NULL)
845 goto out;
846
847 if (bitmap_uptodate(bh[i]))
848 continue;
849
850 lock_buffer(bh[i]);
851 if (bitmap_uptodate(bh[i])) {
852 unlock_buffer(bh[i]);
853 continue;
854 }
855 ext4_lock_group(sb, first_group + i);
856 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
857 ext4_init_block_bitmap(sb, bh[i],
858 first_group + i, desc);
859 set_bitmap_uptodate(bh[i]);
860 set_buffer_uptodate(bh[i]);
861 ext4_unlock_group(sb, first_group + i);
862 unlock_buffer(bh[i]);
863 continue;
864 }
865 ext4_unlock_group(sb, first_group + i);
866 if (buffer_uptodate(bh[i])) {
867 /*
868 * if not uninit if bh is uptodate,
869 * bitmap is also uptodate
870 */
871 set_bitmap_uptodate(bh[i]);
872 unlock_buffer(bh[i]);
873 continue;
874 }
875 get_bh(bh[i]);
876 /*
877 * submit the buffer_head for read. We can
878 * safely mark the bitmap as uptodate now.
879 * We do it here so the bitmap uptodate bit
880 * get set with buffer lock held.
881 */
882 set_bitmap_uptodate(bh[i]);
883 bh[i]->b_end_io = end_buffer_read_sync;
884 submit_bh(READ, bh[i]);
885 mb_debug(1, "read bitmap for group %u\n", first_group + i);
886 }
887
888 /* wait for I/O completion */
889 for (i = 0; i < groups_per_page; i++)
890 if (bh[i])
891 wait_on_buffer(bh[i]);
892
893 err = -EIO;
894 for (i = 0; i < groups_per_page; i++)
895 if (bh[i] && !buffer_uptodate(bh[i]))
896 goto out;
897
898 err = 0;
899 first_block = page->index * blocks_per_page;
900 for (i = 0; i < blocks_per_page; i++) {
901 int group;
902
903 group = (first_block + i) >> 1;
904 if (group >= ngroups)
905 break;
906
907 if (!bh[group - first_group])
908 /* skip initialized uptodate buddy */
909 continue;
910
911 /*
912 * data carry information regarding this
913 * particular group in the format specified
914 * above
915 *
916 */
917 data = page_address(page) + (i * blocksize);
918 bitmap = bh[group - first_group]->b_data;
919
920 /*
921 * We place the buddy block and bitmap block
922 * close together
923 */
924 if ((first_block + i) & 1) {
925 /* this is block of buddy */
926 BUG_ON(incore == NULL);
927 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
928 group, page->index, i * blocksize);
929 trace_ext4_mb_buddy_bitmap_load(sb, group);
930 grinfo = ext4_get_group_info(sb, group);
931 grinfo->bb_fragments = 0;
932 memset(grinfo->bb_counters, 0,
933 sizeof(*grinfo->bb_counters) *
934 (sb->s_blocksize_bits+2));
935 /*
936 * incore got set to the group block bitmap below
937 */
938 ext4_lock_group(sb, group);
939 /* init the buddy */
940 memset(data, 0xff, blocksize);
941 ext4_mb_generate_buddy(sb, data, incore, group);
942 ext4_unlock_group(sb, group);
943 incore = NULL;
944 } else {
945 /* this is block of bitmap */
946 BUG_ON(incore != NULL);
947 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
948 group, page->index, i * blocksize);
949 trace_ext4_mb_bitmap_load(sb, group);
950
951 /* see comments in ext4_mb_put_pa() */
952 ext4_lock_group(sb, group);
953 memcpy(data, bitmap, blocksize);
954
955 /* mark all preallocated blks used in in-core bitmap */
956 ext4_mb_generate_from_pa(sb, data, group);
957 ext4_mb_generate_from_freelist(sb, data, group);
958 ext4_unlock_group(sb, group);
959
960 /* set incore so that the buddy information can be
961 * generated using this
962 */
963 incore = data;
964 }
965 }
966 SetPageUptodate(page);
967
968 out:
969 if (bh) {
970 for (i = 0; i < groups_per_page; i++)
971 brelse(bh[i]);
972 if (bh != &bhs)
973 kfree(bh);
974 }
975 return err;
976 }
977
978 /*
979 * Lock the buddy and bitmap pages. This make sure other parallel init_group
980 * on the same buddy page doesn't happen whild holding the buddy page lock.
981 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
982 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
983 */
984 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
985 ext4_group_t group, struct ext4_buddy *e4b)
986 {
987 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
988 int block, pnum, poff;
989 int blocks_per_page;
990 struct page *page;
991
992 e4b->bd_buddy_page = NULL;
993 e4b->bd_bitmap_page = NULL;
994
995 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
996 /*
997 * the buddy cache inode stores the block bitmap
998 * and buddy information in consecutive blocks.
999 * So for each group we need two blocks.
1000 */
1001 block = group * 2;
1002 pnum = block / blocks_per_page;
1003 poff = block % blocks_per_page;
1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 if (!page)
1006 return -EIO;
1007 BUG_ON(page->mapping != inode->i_mapping);
1008 e4b->bd_bitmap_page = page;
1009 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1010
1011 if (blocks_per_page >= 2) {
1012 /* buddy and bitmap are on the same page */
1013 return 0;
1014 }
1015
1016 block++;
1017 pnum = block / blocks_per_page;
1018 poff = block % blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1020 if (!page)
1021 return -EIO;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025 }
1026
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 page_cache_release(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 page_cache_release(e4b->bd_buddy_page);
1036 }
1037 }
1038
1039 /*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1046 {
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 mb_debug(1, "init group %u\n", group);
1054 this_grp = ext4_get_group_info(sb, group);
1055 /*
1056 * This ensures that we don't reinit the buddy cache
1057 * page which map to the group from which we are already
1058 * allocating. If we are looking at the buddy cache we would
1059 * have taken a reference using ext4_mb_load_buddy and that
1060 * would have pinned buddy page to page cache.
1061 */
1062 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1063 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1064 /*
1065 * somebody initialized the group
1066 * return without doing anything
1067 */
1068 goto err;
1069 }
1070
1071 page = e4b.bd_bitmap_page;
1072 ret = ext4_mb_init_cache(page, NULL);
1073 if (ret)
1074 goto err;
1075 if (!PageUptodate(page)) {
1076 ret = -EIO;
1077 goto err;
1078 }
1079 mark_page_accessed(page);
1080
1081 if (e4b.bd_buddy_page == NULL) {
1082 /*
1083 * If both the bitmap and buddy are in
1084 * the same page we don't need to force
1085 * init the buddy
1086 */
1087 ret = 0;
1088 goto err;
1089 }
1090 /* init buddy cache */
1091 page = e4b.bd_buddy_page;
1092 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1093 if (ret)
1094 goto err;
1095 if (!PageUptodate(page)) {
1096 ret = -EIO;
1097 goto err;
1098 }
1099 mark_page_accessed(page);
1100 err:
1101 ext4_mb_put_buddy_page_lock(&e4b);
1102 return ret;
1103 }
1104
1105 /*
1106 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1107 * block group lock of all groups for this page; do not hold the BG lock when
1108 * calling this routine!
1109 */
1110 static noinline_for_stack int
1111 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1112 struct ext4_buddy *e4b)
1113 {
1114 int blocks_per_page;
1115 int block;
1116 int pnum;
1117 int poff;
1118 struct page *page;
1119 int ret;
1120 struct ext4_group_info *grp;
1121 struct ext4_sb_info *sbi = EXT4_SB(sb);
1122 struct inode *inode = sbi->s_buddy_cache;
1123
1124 mb_debug(1, "load group %u\n", group);
1125
1126 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1127 grp = ext4_get_group_info(sb, group);
1128
1129 e4b->bd_blkbits = sb->s_blocksize_bits;
1130 e4b->bd_info = grp;
1131 e4b->bd_sb = sb;
1132 e4b->bd_group = group;
1133 e4b->bd_buddy_page = NULL;
1134 e4b->bd_bitmap_page = NULL;
1135
1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 /*
1138 * we need full data about the group
1139 * to make a good selection
1140 */
1141 ret = ext4_mb_init_group(sb, group);
1142 if (ret)
1143 return ret;
1144 }
1145
1146 /*
1147 * the buddy cache inode stores the block bitmap
1148 * and buddy information in consecutive blocks.
1149 * So for each group we need two blocks.
1150 */
1151 block = group * 2;
1152 pnum = block / blocks_per_page;
1153 poff = block % blocks_per_page;
1154
1155 /* we could use find_or_create_page(), but it locks page
1156 * what we'd like to avoid in fast path ... */
1157 page = find_get_page(inode->i_mapping, pnum);
1158 if (page == NULL || !PageUptodate(page)) {
1159 if (page)
1160 /*
1161 * drop the page reference and try
1162 * to get the page with lock. If we
1163 * are not uptodate that implies
1164 * somebody just created the page but
1165 * is yet to initialize the same. So
1166 * wait for it to initialize.
1167 */
1168 page_cache_release(page);
1169 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1170 if (page) {
1171 BUG_ON(page->mapping != inode->i_mapping);
1172 if (!PageUptodate(page)) {
1173 ret = ext4_mb_init_cache(page, NULL);
1174 if (ret) {
1175 unlock_page(page);
1176 goto err;
1177 }
1178 mb_cmp_bitmaps(e4b, page_address(page) +
1179 (poff * sb->s_blocksize));
1180 }
1181 unlock_page(page);
1182 }
1183 }
1184 if (page == NULL || !PageUptodate(page)) {
1185 ret = -EIO;
1186 goto err;
1187 }
1188 e4b->bd_bitmap_page = page;
1189 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1190 mark_page_accessed(page);
1191
1192 block++;
1193 pnum = block / blocks_per_page;
1194 poff = block % blocks_per_page;
1195
1196 page = find_get_page(inode->i_mapping, pnum);
1197 if (page == NULL || !PageUptodate(page)) {
1198 if (page)
1199 page_cache_release(page);
1200 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1201 if (page) {
1202 BUG_ON(page->mapping != inode->i_mapping);
1203 if (!PageUptodate(page)) {
1204 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1205 if (ret) {
1206 unlock_page(page);
1207 goto err;
1208 }
1209 }
1210 unlock_page(page);
1211 }
1212 }
1213 if (page == NULL || !PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1216 }
1217 e4b->bd_buddy_page = page;
1218 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1219 mark_page_accessed(page);
1220
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1223
1224 return 0;
1225
1226 err:
1227 if (page)
1228 page_cache_release(page);
1229 if (e4b->bd_bitmap_page)
1230 page_cache_release(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 page_cache_release(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1235 return ret;
1236 }
1237
1238 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1239 {
1240 if (e4b->bd_bitmap_page)
1241 page_cache_release(e4b->bd_bitmap_page);
1242 if (e4b->bd_buddy_page)
1243 page_cache_release(e4b->bd_buddy_page);
1244 }
1245
1246
1247 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1248 {
1249 int order = 1;
1250 void *bb;
1251
1252 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1253 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1254
1255 bb = EXT4_MB_BUDDY(e4b);
1256 while (order <= e4b->bd_blkbits + 1) {
1257 block = block >> 1;
1258 if (!mb_test_bit(block, bb)) {
1259 /* this block is part of buddy of order 'order' */
1260 return order;
1261 }
1262 bb += 1 << (e4b->bd_blkbits - order);
1263 order++;
1264 }
1265 return 0;
1266 }
1267
1268 static void mb_clear_bits(void *bm, int cur, int len)
1269 {
1270 __u32 *addr;
1271
1272 len = cur + len;
1273 while (cur < len) {
1274 if ((cur & 31) == 0 && (len - cur) >= 32) {
1275 /* fast path: clear whole word at once */
1276 addr = bm + (cur >> 3);
1277 *addr = 0;
1278 cur += 32;
1279 continue;
1280 }
1281 mb_clear_bit(cur, bm);
1282 cur++;
1283 }
1284 }
1285
1286 void ext4_set_bits(void *bm, int cur, int len)
1287 {
1288 __u32 *addr;
1289
1290 len = cur + len;
1291 while (cur < len) {
1292 if ((cur & 31) == 0 && (len - cur) >= 32) {
1293 /* fast path: set whole word at once */
1294 addr = bm + (cur >> 3);
1295 *addr = 0xffffffff;
1296 cur += 32;
1297 continue;
1298 }
1299 mb_set_bit(cur, bm);
1300 cur++;
1301 }
1302 }
1303
1304 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1305 int first, int count)
1306 {
1307 int block = 0;
1308 int max = 0;
1309 int order;
1310 void *buddy;
1311 void *buddy2;
1312 struct super_block *sb = e4b->bd_sb;
1313
1314 BUG_ON(first + count > (sb->s_blocksize << 3));
1315 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1316 mb_check_buddy(e4b);
1317 mb_free_blocks_double(inode, e4b, first, count);
1318
1319 e4b->bd_info->bb_free += count;
1320 if (first < e4b->bd_info->bb_first_free)
1321 e4b->bd_info->bb_first_free = first;
1322
1323 /* let's maintain fragments counter */
1324 if (first != 0)
1325 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1326 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1327 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1328 if (block && max)
1329 e4b->bd_info->bb_fragments--;
1330 else if (!block && !max)
1331 e4b->bd_info->bb_fragments++;
1332
1333 /* let's maintain buddy itself */
1334 while (count-- > 0) {
1335 block = first++;
1336 order = 0;
1337
1338 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1339 ext4_fsblk_t blocknr;
1340
1341 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1342 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1343 ext4_grp_locked_error(sb, e4b->bd_group,
1344 inode ? inode->i_ino : 0,
1345 blocknr,
1346 "freeing already freed block "
1347 "(bit %u)", block);
1348 }
1349 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1350 e4b->bd_info->bb_counters[order]++;
1351
1352 /* start of the buddy */
1353 buddy = mb_find_buddy(e4b, order, &max);
1354
1355 do {
1356 block &= ~1UL;
1357 if (mb_test_bit(block, buddy) ||
1358 mb_test_bit(block + 1, buddy))
1359 break;
1360
1361 /* both the buddies are free, try to coalesce them */
1362 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1363
1364 if (!buddy2)
1365 break;
1366
1367 if (order > 0) {
1368 /* for special purposes, we don't set
1369 * free bits in bitmap */
1370 mb_set_bit(block, buddy);
1371 mb_set_bit(block + 1, buddy);
1372 }
1373 e4b->bd_info->bb_counters[order]--;
1374 e4b->bd_info->bb_counters[order]--;
1375
1376 block = block >> 1;
1377 order++;
1378 e4b->bd_info->bb_counters[order]++;
1379
1380 mb_clear_bit(block, buddy2);
1381 buddy = buddy2;
1382 } while (1);
1383 }
1384 mb_set_largest_free_order(sb, e4b->bd_info);
1385 mb_check_buddy(e4b);
1386 }
1387
1388 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1389 int needed, struct ext4_free_extent *ex)
1390 {
1391 int next = block;
1392 int max;
1393 int ord;
1394 void *buddy;
1395
1396 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1397 BUG_ON(ex == NULL);
1398
1399 buddy = mb_find_buddy(e4b, order, &max);
1400 BUG_ON(buddy == NULL);
1401 BUG_ON(block >= max);
1402 if (mb_test_bit(block, buddy)) {
1403 ex->fe_len = 0;
1404 ex->fe_start = 0;
1405 ex->fe_group = 0;
1406 return 0;
1407 }
1408
1409 /* FIXME dorp order completely ? */
1410 if (likely(order == 0)) {
1411 /* find actual order */
1412 order = mb_find_order_for_block(e4b, block);
1413 block = block >> order;
1414 }
1415
1416 ex->fe_len = 1 << order;
1417 ex->fe_start = block << order;
1418 ex->fe_group = e4b->bd_group;
1419
1420 /* calc difference from given start */
1421 next = next - ex->fe_start;
1422 ex->fe_len -= next;
1423 ex->fe_start += next;
1424
1425 while (needed > ex->fe_len &&
1426 (buddy = mb_find_buddy(e4b, order, &max))) {
1427
1428 if (block + 1 >= max)
1429 break;
1430
1431 next = (block + 1) * (1 << order);
1432 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1433 break;
1434
1435 ord = mb_find_order_for_block(e4b, next);
1436
1437 order = ord;
1438 block = next >> order;
1439 ex->fe_len += 1 << order;
1440 }
1441
1442 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1443 return ex->fe_len;
1444 }
1445
1446 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1447 {
1448 int ord;
1449 int mlen = 0;
1450 int max = 0;
1451 int cur;
1452 int start = ex->fe_start;
1453 int len = ex->fe_len;
1454 unsigned ret = 0;
1455 int len0 = len;
1456 void *buddy;
1457
1458 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1459 BUG_ON(e4b->bd_group != ex->fe_group);
1460 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1461 mb_check_buddy(e4b);
1462 mb_mark_used_double(e4b, start, len);
1463
1464 e4b->bd_info->bb_free -= len;
1465 if (e4b->bd_info->bb_first_free == start)
1466 e4b->bd_info->bb_first_free += len;
1467
1468 /* let's maintain fragments counter */
1469 if (start != 0)
1470 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1471 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1472 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1473 if (mlen && max)
1474 e4b->bd_info->bb_fragments++;
1475 else if (!mlen && !max)
1476 e4b->bd_info->bb_fragments--;
1477
1478 /* let's maintain buddy itself */
1479 while (len) {
1480 ord = mb_find_order_for_block(e4b, start);
1481
1482 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1483 /* the whole chunk may be allocated at once! */
1484 mlen = 1 << ord;
1485 buddy = mb_find_buddy(e4b, ord, &max);
1486 BUG_ON((start >> ord) >= max);
1487 mb_set_bit(start >> ord, buddy);
1488 e4b->bd_info->bb_counters[ord]--;
1489 start += mlen;
1490 len -= mlen;
1491 BUG_ON(len < 0);
1492 continue;
1493 }
1494
1495 /* store for history */
1496 if (ret == 0)
1497 ret = len | (ord << 16);
1498
1499 /* we have to split large buddy */
1500 BUG_ON(ord <= 0);
1501 buddy = mb_find_buddy(e4b, ord, &max);
1502 mb_set_bit(start >> ord, buddy);
1503 e4b->bd_info->bb_counters[ord]--;
1504
1505 ord--;
1506 cur = (start >> ord) & ~1U;
1507 buddy = mb_find_buddy(e4b, ord, &max);
1508 mb_clear_bit(cur, buddy);
1509 mb_clear_bit(cur + 1, buddy);
1510 e4b->bd_info->bb_counters[ord]++;
1511 e4b->bd_info->bb_counters[ord]++;
1512 }
1513 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1514
1515 ext4_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1516 mb_check_buddy(e4b);
1517
1518 return ret;
1519 }
1520
1521 /*
1522 * Must be called under group lock!
1523 */
1524 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1525 struct ext4_buddy *e4b)
1526 {
1527 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1528 int ret;
1529
1530 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1531 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1532
1533 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1534 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1535 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1536
1537 /* preallocation can change ac_b_ex, thus we store actually
1538 * allocated blocks for history */
1539 ac->ac_f_ex = ac->ac_b_ex;
1540
1541 ac->ac_status = AC_STATUS_FOUND;
1542 ac->ac_tail = ret & 0xffff;
1543 ac->ac_buddy = ret >> 16;
1544
1545 /*
1546 * take the page reference. We want the page to be pinned
1547 * so that we don't get a ext4_mb_init_cache_call for this
1548 * group until we update the bitmap. That would mean we
1549 * double allocate blocks. The reference is dropped
1550 * in ext4_mb_release_context
1551 */
1552 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1553 get_page(ac->ac_bitmap_page);
1554 ac->ac_buddy_page = e4b->bd_buddy_page;
1555 get_page(ac->ac_buddy_page);
1556 /* store last allocated for subsequent stream allocation */
1557 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1558 spin_lock(&sbi->s_md_lock);
1559 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1560 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1561 spin_unlock(&sbi->s_md_lock);
1562 }
1563 }
1564
1565 /*
1566 * regular allocator, for general purposes allocation
1567 */
1568
1569 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1570 struct ext4_buddy *e4b,
1571 int finish_group)
1572 {
1573 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1574 struct ext4_free_extent *bex = &ac->ac_b_ex;
1575 struct ext4_free_extent *gex = &ac->ac_g_ex;
1576 struct ext4_free_extent ex;
1577 int max;
1578
1579 if (ac->ac_status == AC_STATUS_FOUND)
1580 return;
1581 /*
1582 * We don't want to scan for a whole year
1583 */
1584 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1585 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1586 ac->ac_status = AC_STATUS_BREAK;
1587 return;
1588 }
1589
1590 /*
1591 * Haven't found good chunk so far, let's continue
1592 */
1593 if (bex->fe_len < gex->fe_len)
1594 return;
1595
1596 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1597 && bex->fe_group == e4b->bd_group) {
1598 /* recheck chunk's availability - we don't know
1599 * when it was found (within this lock-unlock
1600 * period or not) */
1601 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1602 if (max >= gex->fe_len) {
1603 ext4_mb_use_best_found(ac, e4b);
1604 return;
1605 }
1606 }
1607 }
1608
1609 /*
1610 * The routine checks whether found extent is good enough. If it is,
1611 * then the extent gets marked used and flag is set to the context
1612 * to stop scanning. Otherwise, the extent is compared with the
1613 * previous found extent and if new one is better, then it's stored
1614 * in the context. Later, the best found extent will be used, if
1615 * mballoc can't find good enough extent.
1616 *
1617 * FIXME: real allocation policy is to be designed yet!
1618 */
1619 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1620 struct ext4_free_extent *ex,
1621 struct ext4_buddy *e4b)
1622 {
1623 struct ext4_free_extent *bex = &ac->ac_b_ex;
1624 struct ext4_free_extent *gex = &ac->ac_g_ex;
1625
1626 BUG_ON(ex->fe_len <= 0);
1627 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1628 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1629 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1630
1631 ac->ac_found++;
1632
1633 /*
1634 * The special case - take what you catch first
1635 */
1636 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1637 *bex = *ex;
1638 ext4_mb_use_best_found(ac, e4b);
1639 return;
1640 }
1641
1642 /*
1643 * Let's check whether the chuck is good enough
1644 */
1645 if (ex->fe_len == gex->fe_len) {
1646 *bex = *ex;
1647 ext4_mb_use_best_found(ac, e4b);
1648 return;
1649 }
1650
1651 /*
1652 * If this is first found extent, just store it in the context
1653 */
1654 if (bex->fe_len == 0) {
1655 *bex = *ex;
1656 return;
1657 }
1658
1659 /*
1660 * If new found extent is better, store it in the context
1661 */
1662 if (bex->fe_len < gex->fe_len) {
1663 /* if the request isn't satisfied, any found extent
1664 * larger than previous best one is better */
1665 if (ex->fe_len > bex->fe_len)
1666 *bex = *ex;
1667 } else if (ex->fe_len > gex->fe_len) {
1668 /* if the request is satisfied, then we try to find
1669 * an extent that still satisfy the request, but is
1670 * smaller than previous one */
1671 if (ex->fe_len < bex->fe_len)
1672 *bex = *ex;
1673 }
1674
1675 ext4_mb_check_limits(ac, e4b, 0);
1676 }
1677
1678 static noinline_for_stack
1679 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b)
1681 {
1682 struct ext4_free_extent ex = ac->ac_b_ex;
1683 ext4_group_t group = ex.fe_group;
1684 int max;
1685 int err;
1686
1687 BUG_ON(ex.fe_len <= 0);
1688 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1689 if (err)
1690 return err;
1691
1692 ext4_lock_group(ac->ac_sb, group);
1693 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1694
1695 if (max > 0) {
1696 ac->ac_b_ex = ex;
1697 ext4_mb_use_best_found(ac, e4b);
1698 }
1699
1700 ext4_unlock_group(ac->ac_sb, group);
1701 ext4_mb_unload_buddy(e4b);
1702
1703 return 0;
1704 }
1705
1706 static noinline_for_stack
1707 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1708 struct ext4_buddy *e4b)
1709 {
1710 ext4_group_t group = ac->ac_g_ex.fe_group;
1711 int max;
1712 int err;
1713 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1714 struct ext4_free_extent ex;
1715
1716 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1717 return 0;
1718
1719 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1720 if (err)
1721 return err;
1722
1723 ext4_lock_group(ac->ac_sb, group);
1724 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1725 ac->ac_g_ex.fe_len, &ex);
1726
1727 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1728 ext4_fsblk_t start;
1729
1730 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1731 ex.fe_start;
1732 /* use do_div to get remainder (would be 64-bit modulo) */
1733 if (do_div(start, sbi->s_stripe) == 0) {
1734 ac->ac_found++;
1735 ac->ac_b_ex = ex;
1736 ext4_mb_use_best_found(ac, e4b);
1737 }
1738 } else if (max >= ac->ac_g_ex.fe_len) {
1739 BUG_ON(ex.fe_len <= 0);
1740 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1741 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1742 ac->ac_found++;
1743 ac->ac_b_ex = ex;
1744 ext4_mb_use_best_found(ac, e4b);
1745 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1746 /* Sometimes, caller may want to merge even small
1747 * number of blocks to an existing extent */
1748 BUG_ON(ex.fe_len <= 0);
1749 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1750 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1751 ac->ac_found++;
1752 ac->ac_b_ex = ex;
1753 ext4_mb_use_best_found(ac, e4b);
1754 }
1755 ext4_unlock_group(ac->ac_sb, group);
1756 ext4_mb_unload_buddy(e4b);
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * The routine scans buddy structures (not bitmap!) from given order
1763 * to max order and tries to find big enough chunk to satisfy the req
1764 */
1765 static noinline_for_stack
1766 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1767 struct ext4_buddy *e4b)
1768 {
1769 struct super_block *sb = ac->ac_sb;
1770 struct ext4_group_info *grp = e4b->bd_info;
1771 void *buddy;
1772 int i;
1773 int k;
1774 int max;
1775
1776 BUG_ON(ac->ac_2order <= 0);
1777 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1778 if (grp->bb_counters[i] == 0)
1779 continue;
1780
1781 buddy = mb_find_buddy(e4b, i, &max);
1782 BUG_ON(buddy == NULL);
1783
1784 k = mb_find_next_zero_bit(buddy, max, 0);
1785 BUG_ON(k >= max);
1786
1787 ac->ac_found++;
1788
1789 ac->ac_b_ex.fe_len = 1 << i;
1790 ac->ac_b_ex.fe_start = k << i;
1791 ac->ac_b_ex.fe_group = e4b->bd_group;
1792
1793 ext4_mb_use_best_found(ac, e4b);
1794
1795 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1796
1797 if (EXT4_SB(sb)->s_mb_stats)
1798 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1799
1800 break;
1801 }
1802 }
1803
1804 /*
1805 * The routine scans the group and measures all found extents.
1806 * In order to optimize scanning, caller must pass number of
1807 * free blocks in the group, so the routine can know upper limit.
1808 */
1809 static noinline_for_stack
1810 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1811 struct ext4_buddy *e4b)
1812 {
1813 struct super_block *sb = ac->ac_sb;
1814 void *bitmap = EXT4_MB_BITMAP(e4b);
1815 struct ext4_free_extent ex;
1816 int i;
1817 int free;
1818
1819 free = e4b->bd_info->bb_free;
1820 BUG_ON(free <= 0);
1821
1822 i = e4b->bd_info->bb_first_free;
1823
1824 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1825 i = mb_find_next_zero_bit(bitmap,
1826 EXT4_CLUSTERS_PER_GROUP(sb), i);
1827 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1828 /*
1829 * IF we have corrupt bitmap, we won't find any
1830 * free blocks even though group info says we
1831 * we have free blocks
1832 */
1833 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1834 "%d free clusters as per "
1835 "group info. But bitmap says 0",
1836 free);
1837 break;
1838 }
1839
1840 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1841 BUG_ON(ex.fe_len <= 0);
1842 if (free < ex.fe_len) {
1843 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1844 "%d free clusters as per "
1845 "group info. But got %d blocks",
1846 free, ex.fe_len);
1847 /*
1848 * The number of free blocks differs. This mostly
1849 * indicate that the bitmap is corrupt. So exit
1850 * without claiming the space.
1851 */
1852 break;
1853 }
1854
1855 ext4_mb_measure_extent(ac, &ex, e4b);
1856
1857 i += ex.fe_len;
1858 free -= ex.fe_len;
1859 }
1860
1861 ext4_mb_check_limits(ac, e4b, 1);
1862 }
1863
1864 /*
1865 * This is a special case for storages like raid5
1866 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1867 */
1868 static noinline_for_stack
1869 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1870 struct ext4_buddy *e4b)
1871 {
1872 struct super_block *sb = ac->ac_sb;
1873 struct ext4_sb_info *sbi = EXT4_SB(sb);
1874 void *bitmap = EXT4_MB_BITMAP(e4b);
1875 struct ext4_free_extent ex;
1876 ext4_fsblk_t first_group_block;
1877 ext4_fsblk_t a;
1878 ext4_grpblk_t i;
1879 int max;
1880
1881 BUG_ON(sbi->s_stripe == 0);
1882
1883 /* find first stripe-aligned block in group */
1884 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1885
1886 a = first_group_block + sbi->s_stripe - 1;
1887 do_div(a, sbi->s_stripe);
1888 i = (a * sbi->s_stripe) - first_group_block;
1889
1890 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1891 if (!mb_test_bit(i, bitmap)) {
1892 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1893 if (max >= sbi->s_stripe) {
1894 ac->ac_found++;
1895 ac->ac_b_ex = ex;
1896 ext4_mb_use_best_found(ac, e4b);
1897 break;
1898 }
1899 }
1900 i += sbi->s_stripe;
1901 }
1902 }
1903
1904 /* This is now called BEFORE we load the buddy bitmap. */
1905 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1906 ext4_group_t group, int cr)
1907 {
1908 unsigned free, fragments;
1909 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1910 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1911
1912 BUG_ON(cr < 0 || cr >= 4);
1913
1914 /* We only do this if the grp has never been initialized */
1915 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1916 int ret = ext4_mb_init_group(ac->ac_sb, group);
1917 if (ret)
1918 return 0;
1919 }
1920
1921 free = grp->bb_free;
1922 fragments = grp->bb_fragments;
1923 if (free == 0)
1924 return 0;
1925 if (fragments == 0)
1926 return 0;
1927
1928 switch (cr) {
1929 case 0:
1930 BUG_ON(ac->ac_2order == 0);
1931
1932 if (grp->bb_largest_free_order < ac->ac_2order)
1933 return 0;
1934
1935 /* Avoid using the first bg of a flexgroup for data files */
1936 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1937 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1938 ((group % flex_size) == 0))
1939 return 0;
1940
1941 return 1;
1942 case 1:
1943 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1944 return 1;
1945 break;
1946 case 2:
1947 if (free >= ac->ac_g_ex.fe_len)
1948 return 1;
1949 break;
1950 case 3:
1951 return 1;
1952 default:
1953 BUG();
1954 }
1955
1956 return 0;
1957 }
1958
1959 static noinline_for_stack int
1960 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1961 {
1962 ext4_group_t ngroups, group, i;
1963 int cr;
1964 int err = 0;
1965 struct ext4_sb_info *sbi;
1966 struct super_block *sb;
1967 struct ext4_buddy e4b;
1968
1969 sb = ac->ac_sb;
1970 sbi = EXT4_SB(sb);
1971 ngroups = ext4_get_groups_count(sb);
1972 /* non-extent files are limited to low blocks/groups */
1973 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1974 ngroups = sbi->s_blockfile_groups;
1975
1976 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1977
1978 /* first, try the goal */
1979 err = ext4_mb_find_by_goal(ac, &e4b);
1980 if (err || ac->ac_status == AC_STATUS_FOUND)
1981 goto out;
1982
1983 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1984 goto out;
1985
1986 /*
1987 * ac->ac2_order is set only if the fe_len is a power of 2
1988 * if ac2_order is set we also set criteria to 0 so that we
1989 * try exact allocation using buddy.
1990 */
1991 i = fls(ac->ac_g_ex.fe_len);
1992 ac->ac_2order = 0;
1993 /*
1994 * We search using buddy data only if the order of the request
1995 * is greater than equal to the sbi_s_mb_order2_reqs
1996 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1997 */
1998 if (i >= sbi->s_mb_order2_reqs) {
1999 /*
2000 * This should tell if fe_len is exactly power of 2
2001 */
2002 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2003 ac->ac_2order = i - 1;
2004 }
2005
2006 /* if stream allocation is enabled, use global goal */
2007 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2008 /* TBD: may be hot point */
2009 spin_lock(&sbi->s_md_lock);
2010 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2011 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2012 spin_unlock(&sbi->s_md_lock);
2013 }
2014
2015 /* Let's just scan groups to find more-less suitable blocks */
2016 cr = ac->ac_2order ? 0 : 1;
2017 /*
2018 * cr == 0 try to get exact allocation,
2019 * cr == 3 try to get anything
2020 */
2021 repeat:
2022 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2023 ac->ac_criteria = cr;
2024 /*
2025 * searching for the right group start
2026 * from the goal value specified
2027 */
2028 group = ac->ac_g_ex.fe_group;
2029
2030 for (i = 0; i < ngroups; group++, i++) {
2031 if (group == ngroups)
2032 group = 0;
2033
2034 /* This now checks without needing the buddy page */
2035 if (!ext4_mb_good_group(ac, group, cr))
2036 continue;
2037
2038 err = ext4_mb_load_buddy(sb, group, &e4b);
2039 if (err)
2040 goto out;
2041
2042 ext4_lock_group(sb, group);
2043
2044 /*
2045 * We need to check again after locking the
2046 * block group
2047 */
2048 if (!ext4_mb_good_group(ac, group, cr)) {
2049 ext4_unlock_group(sb, group);
2050 ext4_mb_unload_buddy(&e4b);
2051 continue;
2052 }
2053
2054 ac->ac_groups_scanned++;
2055 if (cr == 0)
2056 ext4_mb_simple_scan_group(ac, &e4b);
2057 else if (cr == 1 && sbi->s_stripe &&
2058 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2059 ext4_mb_scan_aligned(ac, &e4b);
2060 else
2061 ext4_mb_complex_scan_group(ac, &e4b);
2062
2063 ext4_unlock_group(sb, group);
2064 ext4_mb_unload_buddy(&e4b);
2065
2066 if (ac->ac_status != AC_STATUS_CONTINUE)
2067 break;
2068 }
2069 }
2070
2071 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2072 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2073 /*
2074 * We've been searching too long. Let's try to allocate
2075 * the best chunk we've found so far
2076 */
2077
2078 ext4_mb_try_best_found(ac, &e4b);
2079 if (ac->ac_status != AC_STATUS_FOUND) {
2080 /*
2081 * Someone more lucky has already allocated it.
2082 * The only thing we can do is just take first
2083 * found block(s)
2084 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2085 */
2086 ac->ac_b_ex.fe_group = 0;
2087 ac->ac_b_ex.fe_start = 0;
2088 ac->ac_b_ex.fe_len = 0;
2089 ac->ac_status = AC_STATUS_CONTINUE;
2090 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2091 cr = 3;
2092 atomic_inc(&sbi->s_mb_lost_chunks);
2093 goto repeat;
2094 }
2095 }
2096 out:
2097 return err;
2098 }
2099
2100 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2101 {
2102 struct super_block *sb = seq->private;
2103 ext4_group_t group;
2104
2105 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2106 return NULL;
2107 group = *pos + 1;
2108 return (void *) ((unsigned long) group);
2109 }
2110
2111 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2112 {
2113 struct super_block *sb = seq->private;
2114 ext4_group_t group;
2115
2116 ++*pos;
2117 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2118 return NULL;
2119 group = *pos + 1;
2120 return (void *) ((unsigned long) group);
2121 }
2122
2123 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2124 {
2125 struct super_block *sb = seq->private;
2126 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2127 int i;
2128 int err;
2129 struct ext4_buddy e4b;
2130 struct sg {
2131 struct ext4_group_info info;
2132 ext4_grpblk_t counters[16];
2133 } sg;
2134
2135 group--;
2136 if (group == 0)
2137 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2138 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2139 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2140 "group", "free", "frags", "first",
2141 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2142 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2143
2144 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2145 sizeof(struct ext4_group_info);
2146 err = ext4_mb_load_buddy(sb, group, &e4b);
2147 if (err) {
2148 seq_printf(seq, "#%-5u: I/O error\n", group);
2149 return 0;
2150 }
2151 ext4_lock_group(sb, group);
2152 memcpy(&sg, ext4_get_group_info(sb, group), i);
2153 ext4_unlock_group(sb, group);
2154 ext4_mb_unload_buddy(&e4b);
2155
2156 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2157 sg.info.bb_fragments, sg.info.bb_first_free);
2158 for (i = 0; i <= 13; i++)
2159 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2160 sg.info.bb_counters[i] : 0);
2161 seq_printf(seq, " ]\n");
2162
2163 return 0;
2164 }
2165
2166 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2167 {
2168 }
2169
2170 static const struct seq_operations ext4_mb_seq_groups_ops = {
2171 .start = ext4_mb_seq_groups_start,
2172 .next = ext4_mb_seq_groups_next,
2173 .stop = ext4_mb_seq_groups_stop,
2174 .show = ext4_mb_seq_groups_show,
2175 };
2176
2177 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2178 {
2179 struct super_block *sb = PDE(inode)->data;
2180 int rc;
2181
2182 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2183 if (rc == 0) {
2184 struct seq_file *m = file->private_data;
2185 m->private = sb;
2186 }
2187 return rc;
2188
2189 }
2190
2191 static const struct file_operations ext4_mb_seq_groups_fops = {
2192 .owner = THIS_MODULE,
2193 .open = ext4_mb_seq_groups_open,
2194 .read = seq_read,
2195 .llseek = seq_lseek,
2196 .release = seq_release,
2197 };
2198
2199 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2200 {
2201 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2202 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2203
2204 BUG_ON(!cachep);
2205 return cachep;
2206 }
2207
2208 /* Create and initialize ext4_group_info data for the given group. */
2209 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2210 struct ext4_group_desc *desc)
2211 {
2212 int i;
2213 int metalen = 0;
2214 struct ext4_sb_info *sbi = EXT4_SB(sb);
2215 struct ext4_group_info **meta_group_info;
2216 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2217
2218 /*
2219 * First check if this group is the first of a reserved block.
2220 * If it's true, we have to allocate a new table of pointers
2221 * to ext4_group_info structures
2222 */
2223 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2224 metalen = sizeof(*meta_group_info) <<
2225 EXT4_DESC_PER_BLOCK_BITS(sb);
2226 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2227 if (meta_group_info == NULL) {
2228 ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate mem "
2229 "for a buddy group");
2230 goto exit_meta_group_info;
2231 }
2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2233 meta_group_info;
2234 }
2235
2236 meta_group_info =
2237 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2238 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2239
2240 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2241 if (meta_group_info[i] == NULL) {
2242 ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate buddy mem");
2243 goto exit_group_info;
2244 }
2245 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2246 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2247 &(meta_group_info[i]->bb_state));
2248
2249 /*
2250 * initialize bb_free to be able to skip
2251 * empty groups without initialization
2252 */
2253 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2254 meta_group_info[i]->bb_free =
2255 ext4_free_blocks_after_init(sb, group, desc);
2256 } else {
2257 meta_group_info[i]->bb_free =
2258 ext4_free_blks_count(sb, desc);
2259 }
2260
2261 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2262 init_rwsem(&meta_group_info[i]->alloc_sem);
2263 meta_group_info[i]->bb_free_root = RB_ROOT;
2264 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2265
2266 #ifdef DOUBLE_CHECK
2267 {
2268 struct buffer_head *bh;
2269 meta_group_info[i]->bb_bitmap =
2270 kmalloc(sb->s_blocksize, GFP_KERNEL);
2271 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2272 bh = ext4_read_block_bitmap(sb, group);
2273 BUG_ON(bh == NULL);
2274 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2275 sb->s_blocksize);
2276 put_bh(bh);
2277 }
2278 #endif
2279
2280 return 0;
2281
2282 exit_group_info:
2283 /* If a meta_group_info table has been allocated, release it now */
2284 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2285 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2286 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2287 }
2288 exit_meta_group_info:
2289 return -ENOMEM;
2290 } /* ext4_mb_add_groupinfo */
2291
2292 static int ext4_mb_init_backend(struct super_block *sb)
2293 {
2294 ext4_group_t ngroups = ext4_get_groups_count(sb);
2295 ext4_group_t i;
2296 struct ext4_sb_info *sbi = EXT4_SB(sb);
2297 struct ext4_super_block *es = sbi->s_es;
2298 int num_meta_group_infos;
2299 int num_meta_group_infos_max;
2300 int array_size;
2301 struct ext4_group_desc *desc;
2302 struct kmem_cache *cachep;
2303
2304 /* This is the number of blocks used by GDT */
2305 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2306 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2307
2308 /*
2309 * This is the total number of blocks used by GDT including
2310 * the number of reserved blocks for GDT.
2311 * The s_group_info array is allocated with this value
2312 * to allow a clean online resize without a complex
2313 * manipulation of pointer.
2314 * The drawback is the unused memory when no resize
2315 * occurs but it's very low in terms of pages
2316 * (see comments below)
2317 * Need to handle this properly when META_BG resizing is allowed
2318 */
2319 num_meta_group_infos_max = num_meta_group_infos +
2320 le16_to_cpu(es->s_reserved_gdt_blocks);
2321
2322 /*
2323 * array_size is the size of s_group_info array. We round it
2324 * to the next power of two because this approximation is done
2325 * internally by kmalloc so we can have some more memory
2326 * for free here (e.g. may be used for META_BG resize).
2327 */
2328 array_size = 1;
2329 while (array_size < sizeof(*sbi->s_group_info) *
2330 num_meta_group_infos_max)
2331 array_size = array_size << 1;
2332 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2333 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2334 * So a two level scheme suffices for now. */
2335 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2336 if (sbi->s_group_info == NULL) {
2337 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2338 return -ENOMEM;
2339 }
2340 sbi->s_buddy_cache = new_inode(sb);
2341 if (sbi->s_buddy_cache == NULL) {
2342 ext4_msg(sb, KERN_ERR, "can't get new inode");
2343 goto err_freesgi;
2344 }
2345 /* To avoid potentially colliding with an valid on-disk inode number,
2346 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2347 * not in the inode hash, so it should never be found by iget(), but
2348 * this will avoid confusion if it ever shows up during debugging. */
2349 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2350 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2351 for (i = 0; i < ngroups; i++) {
2352 desc = ext4_get_group_desc(sb, i, NULL);
2353 if (desc == NULL) {
2354 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2355 goto err_freebuddy;
2356 }
2357 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2358 goto err_freebuddy;
2359 }
2360
2361 return 0;
2362
2363 err_freebuddy:
2364 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2365 while (i-- > 0)
2366 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2367 i = num_meta_group_infos;
2368 while (i-- > 0)
2369 kfree(sbi->s_group_info[i]);
2370 iput(sbi->s_buddy_cache);
2371 err_freesgi:
2372 ext4_kvfree(sbi->s_group_info);
2373 return -ENOMEM;
2374 }
2375
2376 static void ext4_groupinfo_destroy_slabs(void)
2377 {
2378 int i;
2379
2380 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2381 if (ext4_groupinfo_caches[i])
2382 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2383 ext4_groupinfo_caches[i] = NULL;
2384 }
2385 }
2386
2387 static int ext4_groupinfo_create_slab(size_t size)
2388 {
2389 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2390 int slab_size;
2391 int blocksize_bits = order_base_2(size);
2392 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2393 struct kmem_cache *cachep;
2394
2395 if (cache_index >= NR_GRPINFO_CACHES)
2396 return -EINVAL;
2397
2398 if (unlikely(cache_index < 0))
2399 cache_index = 0;
2400
2401 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2402 if (ext4_groupinfo_caches[cache_index]) {
2403 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2404 return 0; /* Already created */
2405 }
2406
2407 slab_size = offsetof(struct ext4_group_info,
2408 bb_counters[blocksize_bits + 2]);
2409
2410 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2411 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2412 NULL);
2413
2414 ext4_groupinfo_caches[cache_index] = cachep;
2415
2416 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2417 if (!cachep) {
2418 printk(KERN_EMERG
2419 "EXT4-fs: no memory for groupinfo slab cache\n");
2420 return -ENOMEM;
2421 }
2422
2423 return 0;
2424 }
2425
2426 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2427 {
2428 struct ext4_sb_info *sbi = EXT4_SB(sb);
2429 unsigned i, j;
2430 unsigned offset;
2431 unsigned max;
2432 int ret;
2433
2434 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2435
2436 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2437 if (sbi->s_mb_offsets == NULL) {
2438 ret = -ENOMEM;
2439 goto out;
2440 }
2441
2442 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2443 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2444 if (sbi->s_mb_maxs == NULL) {
2445 ret = -ENOMEM;
2446 goto out;
2447 }
2448
2449 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2450 if (ret < 0)
2451 goto out;
2452
2453 /* order 0 is regular bitmap */
2454 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2455 sbi->s_mb_offsets[0] = 0;
2456
2457 i = 1;
2458 offset = 0;
2459 max = sb->s_blocksize << 2;
2460 do {
2461 sbi->s_mb_offsets[i] = offset;
2462 sbi->s_mb_maxs[i] = max;
2463 offset += 1 << (sb->s_blocksize_bits - i);
2464 max = max >> 1;
2465 i++;
2466 } while (i <= sb->s_blocksize_bits + 1);
2467
2468 spin_lock_init(&sbi->s_md_lock);
2469 spin_lock_init(&sbi->s_bal_lock);
2470
2471 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2472 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2473 sbi->s_mb_stats = MB_DEFAULT_STATS;
2474 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2475 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2476 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2477 /*
2478 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2479 * to the lowest multiple of s_stripe which is bigger than
2480 * the s_mb_group_prealloc as determined above. We want
2481 * the preallocation size to be an exact multiple of the
2482 * RAID stripe size so that preallocations don't fragment
2483 * the stripes.
2484 */
2485 if (sbi->s_stripe > 1) {
2486 sbi->s_mb_group_prealloc = roundup(
2487 sbi->s_mb_group_prealloc, sbi->s_stripe);
2488 }
2489
2490 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2491 if (sbi->s_locality_groups == NULL) {
2492 ret = -ENOMEM;
2493 goto out;
2494 }
2495 for_each_possible_cpu(i) {
2496 struct ext4_locality_group *lg;
2497 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2498 mutex_init(&lg->lg_mutex);
2499 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2500 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2501 spin_lock_init(&lg->lg_prealloc_lock);
2502 }
2503
2504 /* init file for buddy data */
2505 ret = ext4_mb_init_backend(sb);
2506 if (ret != 0) {
2507 goto out;
2508 }
2509
2510 if (sbi->s_proc)
2511 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2512 &ext4_mb_seq_groups_fops, sb);
2513
2514 if (sbi->s_journal)
2515 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2516 out:
2517 if (ret) {
2518 kfree(sbi->s_mb_offsets);
2519 kfree(sbi->s_mb_maxs);
2520 }
2521 return ret;
2522 }
2523
2524 /* need to called with the ext4 group lock held */
2525 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2526 {
2527 struct ext4_prealloc_space *pa;
2528 struct list_head *cur, *tmp;
2529 int count = 0;
2530
2531 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2532 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2533 list_del(&pa->pa_group_list);
2534 count++;
2535 kmem_cache_free(ext4_pspace_cachep, pa);
2536 }
2537 if (count)
2538 mb_debug(1, "mballoc: %u PAs left\n", count);
2539
2540 }
2541
2542 int ext4_mb_release(struct super_block *sb)
2543 {
2544 ext4_group_t ngroups = ext4_get_groups_count(sb);
2545 ext4_group_t i;
2546 int num_meta_group_infos;
2547 struct ext4_group_info *grinfo;
2548 struct ext4_sb_info *sbi = EXT4_SB(sb);
2549 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2550
2551 if (sbi->s_group_info) {
2552 for (i = 0; i < ngroups; i++) {
2553 grinfo = ext4_get_group_info(sb, i);
2554 #ifdef DOUBLE_CHECK
2555 kfree(grinfo->bb_bitmap);
2556 #endif
2557 ext4_lock_group(sb, i);
2558 ext4_mb_cleanup_pa(grinfo);
2559 ext4_unlock_group(sb, i);
2560 kmem_cache_free(cachep, grinfo);
2561 }
2562 num_meta_group_infos = (ngroups +
2563 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2564 EXT4_DESC_PER_BLOCK_BITS(sb);
2565 for (i = 0; i < num_meta_group_infos; i++)
2566 kfree(sbi->s_group_info[i]);
2567 ext4_kvfree(sbi->s_group_info);
2568 }
2569 kfree(sbi->s_mb_offsets);
2570 kfree(sbi->s_mb_maxs);
2571 if (sbi->s_buddy_cache)
2572 iput(sbi->s_buddy_cache);
2573 if (sbi->s_mb_stats) {
2574 ext4_msg(sb, KERN_INFO,
2575 "mballoc: %u blocks %u reqs (%u success)",
2576 atomic_read(&sbi->s_bal_allocated),
2577 atomic_read(&sbi->s_bal_reqs),
2578 atomic_read(&sbi->s_bal_success));
2579 ext4_msg(sb, KERN_INFO,
2580 "mballoc: %u extents scanned, %u goal hits, "
2581 "%u 2^N hits, %u breaks, %u lost",
2582 atomic_read(&sbi->s_bal_ex_scanned),
2583 atomic_read(&sbi->s_bal_goals),
2584 atomic_read(&sbi->s_bal_2orders),
2585 atomic_read(&sbi->s_bal_breaks),
2586 atomic_read(&sbi->s_mb_lost_chunks));
2587 ext4_msg(sb, KERN_INFO,
2588 "mballoc: %lu generated and it took %Lu",
2589 sbi->s_mb_buddies_generated,
2590 sbi->s_mb_generation_time);
2591 ext4_msg(sb, KERN_INFO,
2592 "mballoc: %u preallocated, %u discarded",
2593 atomic_read(&sbi->s_mb_preallocated),
2594 atomic_read(&sbi->s_mb_discarded));
2595 }
2596
2597 free_percpu(sbi->s_locality_groups);
2598 if (sbi->s_proc)
2599 remove_proc_entry("mb_groups", sbi->s_proc);
2600
2601 return 0;
2602 }
2603
2604 static inline int ext4_issue_discard(struct super_block *sb,
2605 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2606 {
2607 ext4_fsblk_t discard_block;
2608
2609 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2610 ext4_group_first_block_no(sb, block_group));
2611 count = EXT4_C2B(EXT4_SB(sb), count);
2612 trace_ext4_discard_blocks(sb,
2613 (unsigned long long) discard_block, count);
2614 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2615 }
2616
2617 /*
2618 * This function is called by the jbd2 layer once the commit has finished,
2619 * so we know we can free the blocks that were released with that commit.
2620 */
2621 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2622 {
2623 struct super_block *sb = journal->j_private;
2624 struct ext4_buddy e4b;
2625 struct ext4_group_info *db;
2626 int err, count = 0, count2 = 0;
2627 struct ext4_free_data *entry;
2628 struct list_head *l, *ltmp;
2629
2630 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2631 entry = list_entry(l, struct ext4_free_data, list);
2632
2633 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2634 entry->count, entry->group, entry);
2635
2636 if (test_opt(sb, DISCARD))
2637 ext4_issue_discard(sb, entry->group,
2638 entry->start_cluster, entry->count);
2639
2640 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2641 /* we expect to find existing buddy because it's pinned */
2642 BUG_ON(err != 0);
2643
2644 db = e4b.bd_info;
2645 /* there are blocks to put in buddy to make them really free */
2646 count += entry->count;
2647 count2++;
2648 ext4_lock_group(sb, entry->group);
2649 /* Take it out of per group rb tree */
2650 rb_erase(&entry->node, &(db->bb_free_root));
2651 mb_free_blocks(NULL, &e4b, entry->start_cluster, entry->count);
2652
2653 /*
2654 * Clear the trimmed flag for the group so that the next
2655 * ext4_trim_fs can trim it.
2656 * If the volume is mounted with -o discard, online discard
2657 * is supported and the free blocks will be trimmed online.
2658 */
2659 if (!test_opt(sb, DISCARD))
2660 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2661
2662 if (!db->bb_free_root.rb_node) {
2663 /* No more items in the per group rb tree
2664 * balance refcounts from ext4_mb_free_metadata()
2665 */
2666 page_cache_release(e4b.bd_buddy_page);
2667 page_cache_release(e4b.bd_bitmap_page);
2668 }
2669 ext4_unlock_group(sb, entry->group);
2670 kmem_cache_free(ext4_free_ext_cachep, entry);
2671 ext4_mb_unload_buddy(&e4b);
2672 }
2673
2674 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2675 }
2676
2677 #ifdef CONFIG_EXT4_DEBUG
2678 u8 mb_enable_debug __read_mostly;
2679
2680 static struct dentry *debugfs_dir;
2681 static struct dentry *debugfs_debug;
2682
2683 static void __init ext4_create_debugfs_entry(void)
2684 {
2685 debugfs_dir = debugfs_create_dir("ext4", NULL);
2686 if (debugfs_dir)
2687 debugfs_debug = debugfs_create_u8("mballoc-debug",
2688 S_IRUGO | S_IWUSR,
2689 debugfs_dir,
2690 &mb_enable_debug);
2691 }
2692
2693 static void ext4_remove_debugfs_entry(void)
2694 {
2695 debugfs_remove(debugfs_debug);
2696 debugfs_remove(debugfs_dir);
2697 }
2698
2699 #else
2700
2701 static void __init ext4_create_debugfs_entry(void)
2702 {
2703 }
2704
2705 static void ext4_remove_debugfs_entry(void)
2706 {
2707 }
2708
2709 #endif
2710
2711 int __init ext4_init_mballoc(void)
2712 {
2713 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2714 SLAB_RECLAIM_ACCOUNT);
2715 if (ext4_pspace_cachep == NULL)
2716 return -ENOMEM;
2717
2718 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2719 SLAB_RECLAIM_ACCOUNT);
2720 if (ext4_ac_cachep == NULL) {
2721 kmem_cache_destroy(ext4_pspace_cachep);
2722 return -ENOMEM;
2723 }
2724
2725 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2726 SLAB_RECLAIM_ACCOUNT);
2727 if (ext4_free_ext_cachep == NULL) {
2728 kmem_cache_destroy(ext4_pspace_cachep);
2729 kmem_cache_destroy(ext4_ac_cachep);
2730 return -ENOMEM;
2731 }
2732 ext4_create_debugfs_entry();
2733 return 0;
2734 }
2735
2736 void ext4_exit_mballoc(void)
2737 {
2738 /*
2739 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2740 * before destroying the slab cache.
2741 */
2742 rcu_barrier();
2743 kmem_cache_destroy(ext4_pspace_cachep);
2744 kmem_cache_destroy(ext4_ac_cachep);
2745 kmem_cache_destroy(ext4_free_ext_cachep);
2746 ext4_groupinfo_destroy_slabs();
2747 ext4_remove_debugfs_entry();
2748 }
2749
2750
2751 /*
2752 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2753 * Returns 0 if success or error code
2754 */
2755 static noinline_for_stack int
2756 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2757 handle_t *handle, unsigned int reserv_clstrs)
2758 {
2759 struct buffer_head *bitmap_bh = NULL;
2760 struct ext4_group_desc *gdp;
2761 struct buffer_head *gdp_bh;
2762 struct ext4_sb_info *sbi;
2763 struct super_block *sb;
2764 ext4_fsblk_t block;
2765 int err, len;
2766
2767 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2768 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2769
2770 sb = ac->ac_sb;
2771 sbi = EXT4_SB(sb);
2772
2773 err = -EIO;
2774 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2775 if (!bitmap_bh)
2776 goto out_err;
2777
2778 err = ext4_journal_get_write_access(handle, bitmap_bh);
2779 if (err)
2780 goto out_err;
2781
2782 err = -EIO;
2783 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2784 if (!gdp)
2785 goto out_err;
2786
2787 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2788 ext4_free_blks_count(sb, gdp));
2789
2790 err = ext4_journal_get_write_access(handle, gdp_bh);
2791 if (err)
2792 goto out_err;
2793
2794 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2795
2796 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2797 if (!ext4_data_block_valid(sbi, block, len)) {
2798 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2799 "fs metadata\n", block, block+len);
2800 /* File system mounted not to panic on error
2801 * Fix the bitmap and repeat the block allocation
2802 * We leak some of the blocks here.
2803 */
2804 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2805 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2806 ac->ac_b_ex.fe_len);
2807 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2808 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2809 if (!err)
2810 err = -EAGAIN;
2811 goto out_err;
2812 }
2813
2814 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2815 #ifdef AGGRESSIVE_CHECK
2816 {
2817 int i;
2818 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2819 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2820 bitmap_bh->b_data));
2821 }
2822 }
2823 #endif
2824 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2825 ac->ac_b_ex.fe_len);
2826 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2827 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2828 ext4_free_blks_set(sb, gdp,
2829 ext4_free_blocks_after_init(sb,
2830 ac->ac_b_ex.fe_group, gdp));
2831 }
2832 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2833 ext4_free_blks_set(sb, gdp, len);
2834 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2835
2836 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2837 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2838 /*
2839 * Now reduce the dirty block count also. Should not go negative
2840 */
2841 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2842 /* release all the reserved blocks if non delalloc */
2843 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_clstrs);
2844
2845 if (sbi->s_log_groups_per_flex) {
2846 ext4_group_t flex_group = ext4_flex_group(sbi,
2847 ac->ac_b_ex.fe_group);
2848 atomic_sub(ac->ac_b_ex.fe_len,
2849 &sbi->s_flex_groups[flex_group].free_blocks);
2850 }
2851
2852 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2853 if (err)
2854 goto out_err;
2855 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2856
2857 out_err:
2858 ext4_mark_super_dirty(sb);
2859 brelse(bitmap_bh);
2860 return err;
2861 }
2862
2863 /*
2864 * here we normalize request for locality group
2865 * Group request are normalized to s_mb_group_prealloc, which goes to
2866 * s_strip if we set the same via mount option.
2867 * s_mb_group_prealloc can be configured via
2868 * /sys/fs/ext4/<partition>/mb_group_prealloc
2869 *
2870 * XXX: should we try to preallocate more than the group has now?
2871 */
2872 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2873 {
2874 struct super_block *sb = ac->ac_sb;
2875 struct ext4_locality_group *lg = ac->ac_lg;
2876
2877 BUG_ON(lg == NULL);
2878 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2879 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2880 current->pid, ac->ac_g_ex.fe_len);
2881 }
2882
2883 /*
2884 * Normalization means making request better in terms of
2885 * size and alignment
2886 */
2887 static noinline_for_stack void
2888 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2889 struct ext4_allocation_request *ar)
2890 {
2891 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2892 int bsbits, max;
2893 ext4_lblk_t end;
2894 loff_t size, orig_size, start_off;
2895 ext4_lblk_t start;
2896 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2897 struct ext4_prealloc_space *pa;
2898
2899 /* do normalize only data requests, metadata requests
2900 do not need preallocation */
2901 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2902 return;
2903
2904 /* sometime caller may want exact blocks */
2905 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2906 return;
2907
2908 /* caller may indicate that preallocation isn't
2909 * required (it's a tail, for example) */
2910 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2911 return;
2912
2913 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2914 ext4_mb_normalize_group_request(ac);
2915 return ;
2916 }
2917
2918 bsbits = ac->ac_sb->s_blocksize_bits;
2919
2920 /* first, let's learn actual file size
2921 * given current request is allocated */
2922 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2923 size = size << bsbits;
2924 if (size < i_size_read(ac->ac_inode))
2925 size = i_size_read(ac->ac_inode);
2926 orig_size = size;
2927
2928 /* max size of free chunks */
2929 max = 2 << bsbits;
2930
2931 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2932 (req <= (size) || max <= (chunk_size))
2933
2934 /* first, try to predict filesize */
2935 /* XXX: should this table be tunable? */
2936 start_off = 0;
2937 if (size <= 16 * 1024) {
2938 size = 16 * 1024;
2939 } else if (size <= 32 * 1024) {
2940 size = 32 * 1024;
2941 } else if (size <= 64 * 1024) {
2942 size = 64 * 1024;
2943 } else if (size <= 128 * 1024) {
2944 size = 128 * 1024;
2945 } else if (size <= 256 * 1024) {
2946 size = 256 * 1024;
2947 } else if (size <= 512 * 1024) {
2948 size = 512 * 1024;
2949 } else if (size <= 1024 * 1024) {
2950 size = 1024 * 1024;
2951 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2952 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2953 (21 - bsbits)) << 21;
2954 size = 2 * 1024 * 1024;
2955 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2956 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2957 (22 - bsbits)) << 22;
2958 size = 4 * 1024 * 1024;
2959 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2960 (8<<20)>>bsbits, max, 8 * 1024)) {
2961 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2962 (23 - bsbits)) << 23;
2963 size = 8 * 1024 * 1024;
2964 } else {
2965 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2966 size = ac->ac_o_ex.fe_len << bsbits;
2967 }
2968 size = size >> bsbits;
2969 start = start_off >> bsbits;
2970
2971 /* don't cover already allocated blocks in selected range */
2972 if (ar->pleft && start <= ar->lleft) {
2973 size -= ar->lleft + 1 - start;
2974 start = ar->lleft + 1;
2975 }
2976 if (ar->pright && start + size - 1 >= ar->lright)
2977 size -= start + size - ar->lright;
2978
2979 end = start + size;
2980
2981 /* check we don't cross already preallocated blocks */
2982 rcu_read_lock();
2983 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2984 ext4_lblk_t pa_end;
2985
2986 if (pa->pa_deleted)
2987 continue;
2988 spin_lock(&pa->pa_lock);
2989 if (pa->pa_deleted) {
2990 spin_unlock(&pa->pa_lock);
2991 continue;
2992 }
2993
2994 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2995 pa->pa_len);
2996
2997 /* PA must not overlap original request */
2998 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2999 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3000
3001 /* skip PAs this normalized request doesn't overlap with */
3002 if (pa->pa_lstart >= end || pa_end <= start) {
3003 spin_unlock(&pa->pa_lock);
3004 continue;
3005 }
3006 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3007
3008 /* adjust start or end to be adjacent to this pa */
3009 if (pa_end <= ac->ac_o_ex.fe_logical) {
3010 BUG_ON(pa_end < start);
3011 start = pa_end;
3012 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3013 BUG_ON(pa->pa_lstart > end);
3014 end = pa->pa_lstart;
3015 }
3016 spin_unlock(&pa->pa_lock);
3017 }
3018 rcu_read_unlock();
3019 size = end - start;
3020
3021 /* XXX: extra loop to check we really don't overlap preallocations */
3022 rcu_read_lock();
3023 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3024 ext4_lblk_t pa_end;
3025
3026 spin_lock(&pa->pa_lock);
3027 if (pa->pa_deleted == 0) {
3028 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3029 pa->pa_len);
3030 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3031 }
3032 spin_unlock(&pa->pa_lock);
3033 }
3034 rcu_read_unlock();
3035
3036 if (start + size <= ac->ac_o_ex.fe_logical &&
3037 start > ac->ac_o_ex.fe_logical) {
3038 ext4_msg(ac->ac_sb, KERN_ERR,
3039 "start %lu, size %lu, fe_logical %lu",
3040 (unsigned long) start, (unsigned long) size,
3041 (unsigned long) ac->ac_o_ex.fe_logical);
3042 }
3043 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3044 start > ac->ac_o_ex.fe_logical);
3045 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3046
3047 /* now prepare goal request */
3048
3049 /* XXX: is it better to align blocks WRT to logical
3050 * placement or satisfy big request as is */
3051 ac->ac_g_ex.fe_logical = start;
3052 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3053
3054 /* define goal start in order to merge */
3055 if (ar->pright && (ar->lright == (start + size))) {
3056 /* merge to the right */
3057 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3058 &ac->ac_f_ex.fe_group,
3059 &ac->ac_f_ex.fe_start);
3060 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3061 }
3062 if (ar->pleft && (ar->lleft + 1 == start)) {
3063 /* merge to the left */
3064 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3065 &ac->ac_f_ex.fe_group,
3066 &ac->ac_f_ex.fe_start);
3067 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3068 }
3069
3070 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3071 (unsigned) orig_size, (unsigned) start);
3072 }
3073
3074 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3075 {
3076 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3077
3078 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3079 atomic_inc(&sbi->s_bal_reqs);
3080 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3081 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3082 atomic_inc(&sbi->s_bal_success);
3083 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3084 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3085 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3086 atomic_inc(&sbi->s_bal_goals);
3087 if (ac->ac_found > sbi->s_mb_max_to_scan)
3088 atomic_inc(&sbi->s_bal_breaks);
3089 }
3090
3091 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3092 trace_ext4_mballoc_alloc(ac);
3093 else
3094 trace_ext4_mballoc_prealloc(ac);
3095 }
3096
3097 /*
3098 * Called on failure; free up any blocks from the inode PA for this
3099 * context. We don't need this for MB_GROUP_PA because we only change
3100 * pa_free in ext4_mb_release_context(), but on failure, we've already
3101 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3102 */
3103 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3104 {
3105 struct ext4_prealloc_space *pa = ac->ac_pa;
3106 int len;
3107
3108 if (pa && pa->pa_type == MB_INODE_PA) {
3109 len = ac->ac_b_ex.fe_len;
3110 pa->pa_free += len;
3111 }
3112
3113 }
3114
3115 /*
3116 * use blocks preallocated to inode
3117 */
3118 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3119 struct ext4_prealloc_space *pa)
3120 {
3121 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3122 ext4_fsblk_t start;
3123 ext4_fsblk_t end;
3124 int len;
3125
3126 /* found preallocated blocks, use them */
3127 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3128 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3129 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3130 len = EXT4_NUM_B2C(sbi, end - start);
3131 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3132 &ac->ac_b_ex.fe_start);
3133 ac->ac_b_ex.fe_len = len;
3134 ac->ac_status = AC_STATUS_FOUND;
3135 ac->ac_pa = pa;
3136
3137 BUG_ON(start < pa->pa_pstart);
3138 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3139 BUG_ON(pa->pa_free < len);
3140 pa->pa_free -= len;
3141
3142 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3143 }
3144
3145 /*
3146 * use blocks preallocated to locality group
3147 */
3148 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3149 struct ext4_prealloc_space *pa)
3150 {
3151 unsigned int len = ac->ac_o_ex.fe_len;
3152
3153 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3154 &ac->ac_b_ex.fe_group,
3155 &ac->ac_b_ex.fe_start);
3156 ac->ac_b_ex.fe_len = len;
3157 ac->ac_status = AC_STATUS_FOUND;
3158 ac->ac_pa = pa;
3159
3160 /* we don't correct pa_pstart or pa_plen here to avoid
3161 * possible race when the group is being loaded concurrently
3162 * instead we correct pa later, after blocks are marked
3163 * in on-disk bitmap -- see ext4_mb_release_context()
3164 * Other CPUs are prevented from allocating from this pa by lg_mutex
3165 */
3166 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3167 }
3168
3169 /*
3170 * Return the prealloc space that have minimal distance
3171 * from the goal block. @cpa is the prealloc
3172 * space that is having currently known minimal distance
3173 * from the goal block.
3174 */
3175 static struct ext4_prealloc_space *
3176 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3177 struct ext4_prealloc_space *pa,
3178 struct ext4_prealloc_space *cpa)
3179 {
3180 ext4_fsblk_t cur_distance, new_distance;
3181
3182 if (cpa == NULL) {
3183 atomic_inc(&pa->pa_count);
3184 return pa;
3185 }
3186 cur_distance = abs(goal_block - cpa->pa_pstart);
3187 new_distance = abs(goal_block - pa->pa_pstart);
3188
3189 if (cur_distance <= new_distance)
3190 return cpa;
3191
3192 /* drop the previous reference */
3193 atomic_dec(&cpa->pa_count);
3194 atomic_inc(&pa->pa_count);
3195 return pa;
3196 }
3197
3198 /*
3199 * search goal blocks in preallocated space
3200 */
3201 static noinline_for_stack int
3202 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3203 {
3204 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3205 int order, i;
3206 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3207 struct ext4_locality_group *lg;
3208 struct ext4_prealloc_space *pa, *cpa = NULL;
3209 ext4_fsblk_t goal_block;
3210
3211 /* only data can be preallocated */
3212 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3213 return 0;
3214
3215 /* first, try per-file preallocation */
3216 rcu_read_lock();
3217 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3218
3219 /* all fields in this condition don't change,
3220 * so we can skip locking for them */
3221 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3222 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3223 EXT4_C2B(sbi, pa->pa_len)))
3224 continue;
3225
3226 /* non-extent files can't have physical blocks past 2^32 */
3227 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3228 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3229 EXT4_MAX_BLOCK_FILE_PHYS))
3230 continue;
3231
3232 /* found preallocated blocks, use them */
3233 spin_lock(&pa->pa_lock);
3234 if (pa->pa_deleted == 0 && pa->pa_free) {
3235 atomic_inc(&pa->pa_count);
3236 ext4_mb_use_inode_pa(ac, pa);
3237 spin_unlock(&pa->pa_lock);
3238 ac->ac_criteria = 10;
3239 rcu_read_unlock();
3240 return 1;
3241 }
3242 spin_unlock(&pa->pa_lock);
3243 }
3244 rcu_read_unlock();
3245
3246 /* can we use group allocation? */
3247 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3248 return 0;
3249
3250 /* inode may have no locality group for some reason */
3251 lg = ac->ac_lg;
3252 if (lg == NULL)
3253 return 0;
3254 order = fls(ac->ac_o_ex.fe_len) - 1;
3255 if (order > PREALLOC_TB_SIZE - 1)
3256 /* The max size of hash table is PREALLOC_TB_SIZE */
3257 order = PREALLOC_TB_SIZE - 1;
3258
3259 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3260 /*
3261 * search for the prealloc space that is having
3262 * minimal distance from the goal block.
3263 */
3264 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3265 rcu_read_lock();
3266 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3267 pa_inode_list) {
3268 spin_lock(&pa->pa_lock);
3269 if (pa->pa_deleted == 0 &&
3270 pa->pa_free >= ac->ac_o_ex.fe_len) {
3271
3272 cpa = ext4_mb_check_group_pa(goal_block,
3273 pa, cpa);
3274 }
3275 spin_unlock(&pa->pa_lock);
3276 }
3277 rcu_read_unlock();
3278 }
3279 if (cpa) {
3280 ext4_mb_use_group_pa(ac, cpa);
3281 ac->ac_criteria = 20;
3282 return 1;
3283 }
3284 return 0;
3285 }
3286
3287 /*
3288 * the function goes through all block freed in the group
3289 * but not yet committed and marks them used in in-core bitmap.
3290 * buddy must be generated from this bitmap
3291 * Need to be called with the ext4 group lock held
3292 */
3293 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3294 ext4_group_t group)
3295 {
3296 struct rb_node *n;
3297 struct ext4_group_info *grp;
3298 struct ext4_free_data *entry;
3299
3300 grp = ext4_get_group_info(sb, group);
3301 n = rb_first(&(grp->bb_free_root));
3302
3303 while (n) {
3304 entry = rb_entry(n, struct ext4_free_data, node);
3305 ext4_set_bits(bitmap, entry->start_cluster, entry->count);
3306 n = rb_next(n);
3307 }
3308 return;
3309 }
3310
3311 /*
3312 * the function goes through all preallocation in this group and marks them
3313 * used in in-core bitmap. buddy must be generated from this bitmap
3314 * Need to be called with ext4 group lock held
3315 */
3316 static noinline_for_stack
3317 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3318 ext4_group_t group)
3319 {
3320 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3321 struct ext4_prealloc_space *pa;
3322 struct list_head *cur;
3323 ext4_group_t groupnr;
3324 ext4_grpblk_t start;
3325 int preallocated = 0;
3326 int count = 0;
3327 int len;
3328
3329 /* all form of preallocation discards first load group,
3330 * so the only competing code is preallocation use.
3331 * we don't need any locking here
3332 * notice we do NOT ignore preallocations with pa_deleted
3333 * otherwise we could leave used blocks available for
3334 * allocation in buddy when concurrent ext4_mb_put_pa()
3335 * is dropping preallocation
3336 */
3337 list_for_each(cur, &grp->bb_prealloc_list) {
3338 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3339 spin_lock(&pa->pa_lock);
3340 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3341 &groupnr, &start);
3342 len = pa->pa_len;
3343 spin_unlock(&pa->pa_lock);
3344 if (unlikely(len == 0))
3345 continue;
3346 BUG_ON(groupnr != group);
3347 ext4_set_bits(bitmap, start, len);
3348 preallocated += len;
3349 count++;
3350 }
3351 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3352 }
3353
3354 static void ext4_mb_pa_callback(struct rcu_head *head)
3355 {
3356 struct ext4_prealloc_space *pa;
3357 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3358 kmem_cache_free(ext4_pspace_cachep, pa);
3359 }
3360
3361 /*
3362 * drops a reference to preallocated space descriptor
3363 * if this was the last reference and the space is consumed
3364 */
3365 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3366 struct super_block *sb, struct ext4_prealloc_space *pa)
3367 {
3368 ext4_group_t grp;
3369 ext4_fsblk_t grp_blk;
3370
3371 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3372 return;
3373
3374 /* in this short window concurrent discard can set pa_deleted */
3375 spin_lock(&pa->pa_lock);
3376 if (pa->pa_deleted == 1) {
3377 spin_unlock(&pa->pa_lock);
3378 return;
3379 }
3380
3381 pa->pa_deleted = 1;
3382 spin_unlock(&pa->pa_lock);
3383
3384 grp_blk = pa->pa_pstart;
3385 /*
3386 * If doing group-based preallocation, pa_pstart may be in the
3387 * next group when pa is used up
3388 */
3389 if (pa->pa_type == MB_GROUP_PA)
3390 grp_blk--;
3391
3392 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3393
3394 /*
3395 * possible race:
3396 *
3397 * P1 (buddy init) P2 (regular allocation)
3398 * find block B in PA
3399 * copy on-disk bitmap to buddy
3400 * mark B in on-disk bitmap
3401 * drop PA from group
3402 * mark all PAs in buddy
3403 *
3404 * thus, P1 initializes buddy with B available. to prevent this
3405 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3406 * against that pair
3407 */
3408 ext4_lock_group(sb, grp);
3409 list_del(&pa->pa_group_list);
3410 ext4_unlock_group(sb, grp);
3411
3412 spin_lock(pa->pa_obj_lock);
3413 list_del_rcu(&pa->pa_inode_list);
3414 spin_unlock(pa->pa_obj_lock);
3415
3416 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3417 }
3418
3419 /*
3420 * creates new preallocated space for given inode
3421 */
3422 static noinline_for_stack int
3423 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3424 {
3425 struct super_block *sb = ac->ac_sb;
3426 struct ext4_sb_info *sbi = EXT4_SB(sb);
3427 struct ext4_prealloc_space *pa;
3428 struct ext4_group_info *grp;
3429 struct ext4_inode_info *ei;
3430
3431 /* preallocate only when found space is larger then requested */
3432 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3433 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3434 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3435
3436 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3437 if (pa == NULL)
3438 return -ENOMEM;
3439
3440 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3441 int winl;
3442 int wins;
3443 int win;
3444 int offs;
3445
3446 /* we can't allocate as much as normalizer wants.
3447 * so, found space must get proper lstart
3448 * to cover original request */
3449 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3450 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3451
3452 /* we're limited by original request in that
3453 * logical block must be covered any way
3454 * winl is window we can move our chunk within */
3455 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3456
3457 /* also, we should cover whole original request */
3458 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3459
3460 /* the smallest one defines real window */
3461 win = min(winl, wins);
3462
3463 offs = ac->ac_o_ex.fe_logical %
3464 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3465 if (offs && offs < win)
3466 win = offs;
3467
3468 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3469 EXT4_B2C(sbi, win);
3470 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3471 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3472 }
3473
3474 /* preallocation can change ac_b_ex, thus we store actually
3475 * allocated blocks for history */
3476 ac->ac_f_ex = ac->ac_b_ex;
3477
3478 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3479 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3480 pa->pa_len = ac->ac_b_ex.fe_len;
3481 pa->pa_free = pa->pa_len;
3482 atomic_set(&pa->pa_count, 1);
3483 spin_lock_init(&pa->pa_lock);
3484 INIT_LIST_HEAD(&pa->pa_inode_list);
3485 INIT_LIST_HEAD(&pa->pa_group_list);
3486 pa->pa_deleted = 0;
3487 pa->pa_type = MB_INODE_PA;
3488
3489 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3490 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3491 trace_ext4_mb_new_inode_pa(ac, pa);
3492
3493 ext4_mb_use_inode_pa(ac, pa);
3494 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3495
3496 ei = EXT4_I(ac->ac_inode);
3497 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3498
3499 pa->pa_obj_lock = &ei->i_prealloc_lock;
3500 pa->pa_inode = ac->ac_inode;
3501
3502 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3503 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3504 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3505
3506 spin_lock(pa->pa_obj_lock);
3507 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3508 spin_unlock(pa->pa_obj_lock);
3509
3510 return 0;
3511 }
3512
3513 /*
3514 * creates new preallocated space for locality group inodes belongs to
3515 */
3516 static noinline_for_stack int
3517 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3518 {
3519 struct super_block *sb = ac->ac_sb;
3520 struct ext4_locality_group *lg;
3521 struct ext4_prealloc_space *pa;
3522 struct ext4_group_info *grp;
3523
3524 /* preallocate only when found space is larger then requested */
3525 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3526 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3527 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3528
3529 BUG_ON(ext4_pspace_cachep == NULL);
3530 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3531 if (pa == NULL)
3532 return -ENOMEM;
3533
3534 /* preallocation can change ac_b_ex, thus we store actually
3535 * allocated blocks for history */
3536 ac->ac_f_ex = ac->ac_b_ex;
3537
3538 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3539 pa->pa_lstart = pa->pa_pstart;
3540 pa->pa_len = ac->ac_b_ex.fe_len;
3541 pa->pa_free = pa->pa_len;
3542 atomic_set(&pa->pa_count, 1);
3543 spin_lock_init(&pa->pa_lock);
3544 INIT_LIST_HEAD(&pa->pa_inode_list);
3545 INIT_LIST_HEAD(&pa->pa_group_list);
3546 pa->pa_deleted = 0;
3547 pa->pa_type = MB_GROUP_PA;
3548
3549 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3550 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3551 trace_ext4_mb_new_group_pa(ac, pa);
3552
3553 ext4_mb_use_group_pa(ac, pa);
3554 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3555
3556 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3557 lg = ac->ac_lg;
3558 BUG_ON(lg == NULL);
3559
3560 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3561 pa->pa_inode = NULL;
3562
3563 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3564 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3565 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3566
3567 /*
3568 * We will later add the new pa to the right bucket
3569 * after updating the pa_free in ext4_mb_release_context
3570 */
3571 return 0;
3572 }
3573
3574 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3575 {
3576 int err;
3577
3578 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3579 err = ext4_mb_new_group_pa(ac);
3580 else
3581 err = ext4_mb_new_inode_pa(ac);
3582 return err;
3583 }
3584
3585 /*
3586 * finds all unused blocks in on-disk bitmap, frees them in
3587 * in-core bitmap and buddy.
3588 * @pa must be unlinked from inode and group lists, so that
3589 * nobody else can find/use it.
3590 * the caller MUST hold group/inode locks.
3591 * TODO: optimize the case when there are no in-core structures yet
3592 */
3593 static noinline_for_stack int
3594 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3595 struct ext4_prealloc_space *pa)
3596 {
3597 struct super_block *sb = e4b->bd_sb;
3598 struct ext4_sb_info *sbi = EXT4_SB(sb);
3599 unsigned int end;
3600 unsigned int next;
3601 ext4_group_t group;
3602 ext4_grpblk_t bit;
3603 unsigned long long grp_blk_start;
3604 int err = 0;
3605 int free = 0;
3606
3607 BUG_ON(pa->pa_deleted == 0);
3608 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3609 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3610 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3611 end = bit + pa->pa_len;
3612
3613 while (bit < end) {
3614 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3615 if (bit >= end)
3616 break;
3617 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3618 mb_debug(1, " free preallocated %u/%u in group %u\n",
3619 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3620 (unsigned) next - bit, (unsigned) group);
3621 free += next - bit;
3622
3623 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3624 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3625 EXT4_C2B(sbi, bit)),
3626 next - bit);
3627 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3628 bit = next + 1;
3629 }
3630 if (free != pa->pa_free) {
3631 ext4_msg(e4b->bd_sb, KERN_CRIT,
3632 "pa %p: logic %lu, phys. %lu, len %lu",
3633 pa, (unsigned long) pa->pa_lstart,
3634 (unsigned long) pa->pa_pstart,
3635 (unsigned long) pa->pa_len);
3636 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3637 free, pa->pa_free);
3638 /*
3639 * pa is already deleted so we use the value obtained
3640 * from the bitmap and continue.
3641 */
3642 }
3643 atomic_add(free, &sbi->s_mb_discarded);
3644
3645 return err;
3646 }
3647
3648 static noinline_for_stack int
3649 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3650 struct ext4_prealloc_space *pa)
3651 {
3652 struct super_block *sb = e4b->bd_sb;
3653 ext4_group_t group;
3654 ext4_grpblk_t bit;
3655
3656 trace_ext4_mb_release_group_pa(pa);
3657 BUG_ON(pa->pa_deleted == 0);
3658 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3659 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3660 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3661 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3662 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3663
3664 return 0;
3665 }
3666
3667 /*
3668 * releases all preallocations in given group
3669 *
3670 * first, we need to decide discard policy:
3671 * - when do we discard
3672 * 1) ENOSPC
3673 * - how many do we discard
3674 * 1) how many requested
3675 */
3676 static noinline_for_stack int
3677 ext4_mb_discard_group_preallocations(struct super_block *sb,
3678 ext4_group_t group, int needed)
3679 {
3680 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3681 struct buffer_head *bitmap_bh = NULL;
3682 struct ext4_prealloc_space *pa, *tmp;
3683 struct list_head list;
3684 struct ext4_buddy e4b;
3685 int err;
3686 int busy = 0;
3687 int free = 0;
3688
3689 mb_debug(1, "discard preallocation for group %u\n", group);
3690
3691 if (list_empty(&grp->bb_prealloc_list))
3692 return 0;
3693
3694 bitmap_bh = ext4_read_block_bitmap(sb, group);
3695 if (bitmap_bh == NULL) {
3696 ext4_error(sb, "Error reading block bitmap for %u", group);
3697 return 0;
3698 }
3699
3700 err = ext4_mb_load_buddy(sb, group, &e4b);
3701 if (err) {
3702 ext4_error(sb, "Error loading buddy information for %u", group);
3703 put_bh(bitmap_bh);
3704 return 0;
3705 }
3706
3707 if (needed == 0)
3708 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3709
3710 INIT_LIST_HEAD(&list);
3711 repeat:
3712 ext4_lock_group(sb, group);
3713 list_for_each_entry_safe(pa, tmp,
3714 &grp->bb_prealloc_list, pa_group_list) {
3715 spin_lock(&pa->pa_lock);
3716 if (atomic_read(&pa->pa_count)) {
3717 spin_unlock(&pa->pa_lock);
3718 busy = 1;
3719 continue;
3720 }
3721 if (pa->pa_deleted) {
3722 spin_unlock(&pa->pa_lock);
3723 continue;
3724 }
3725
3726 /* seems this one can be freed ... */
3727 pa->pa_deleted = 1;
3728
3729 /* we can trust pa_free ... */
3730 free += pa->pa_free;
3731
3732 spin_unlock(&pa->pa_lock);
3733
3734 list_del(&pa->pa_group_list);
3735 list_add(&pa->u.pa_tmp_list, &list);
3736 }
3737
3738 /* if we still need more blocks and some PAs were used, try again */
3739 if (free < needed && busy) {
3740 busy = 0;
3741 ext4_unlock_group(sb, group);
3742 /*
3743 * Yield the CPU here so that we don't get soft lockup
3744 * in non preempt case.
3745 */
3746 yield();
3747 goto repeat;
3748 }
3749
3750 /* found anything to free? */
3751 if (list_empty(&list)) {
3752 BUG_ON(free != 0);
3753 goto out;
3754 }
3755
3756 /* now free all selected PAs */
3757 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3758
3759 /* remove from object (inode or locality group) */
3760 spin_lock(pa->pa_obj_lock);
3761 list_del_rcu(&pa->pa_inode_list);
3762 spin_unlock(pa->pa_obj_lock);
3763
3764 if (pa->pa_type == MB_GROUP_PA)
3765 ext4_mb_release_group_pa(&e4b, pa);
3766 else
3767 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3768
3769 list_del(&pa->u.pa_tmp_list);
3770 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3771 }
3772
3773 out:
3774 ext4_unlock_group(sb, group);
3775 ext4_mb_unload_buddy(&e4b);
3776 put_bh(bitmap_bh);
3777 return free;
3778 }
3779
3780 /*
3781 * releases all non-used preallocated blocks for given inode
3782 *
3783 * It's important to discard preallocations under i_data_sem
3784 * We don't want another block to be served from the prealloc
3785 * space when we are discarding the inode prealloc space.
3786 *
3787 * FIXME!! Make sure it is valid at all the call sites
3788 */
3789 void ext4_discard_preallocations(struct inode *inode)
3790 {
3791 struct ext4_inode_info *ei = EXT4_I(inode);
3792 struct super_block *sb = inode->i_sb;
3793 struct buffer_head *bitmap_bh = NULL;
3794 struct ext4_prealloc_space *pa, *tmp;
3795 ext4_group_t group = 0;
3796 struct list_head list;
3797 struct ext4_buddy e4b;
3798 int err;
3799
3800 if (!S_ISREG(inode->i_mode)) {
3801 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3802 return;
3803 }
3804
3805 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3806 trace_ext4_discard_preallocations(inode);
3807
3808 INIT_LIST_HEAD(&list);
3809
3810 repeat:
3811 /* first, collect all pa's in the inode */
3812 spin_lock(&ei->i_prealloc_lock);
3813 while (!list_empty(&ei->i_prealloc_list)) {
3814 pa = list_entry(ei->i_prealloc_list.next,
3815 struct ext4_prealloc_space, pa_inode_list);
3816 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3817 spin_lock(&pa->pa_lock);
3818 if (atomic_read(&pa->pa_count)) {
3819 /* this shouldn't happen often - nobody should
3820 * use preallocation while we're discarding it */
3821 spin_unlock(&pa->pa_lock);
3822 spin_unlock(&ei->i_prealloc_lock);
3823 ext4_msg(sb, KERN_ERR,
3824 "uh-oh! used pa while discarding");
3825 WARN_ON(1);
3826 schedule_timeout_uninterruptible(HZ);
3827 goto repeat;
3828
3829 }
3830 if (pa->pa_deleted == 0) {
3831 pa->pa_deleted = 1;
3832 spin_unlock(&pa->pa_lock);
3833 list_del_rcu(&pa->pa_inode_list);
3834 list_add(&pa->u.pa_tmp_list, &list);
3835 continue;
3836 }
3837
3838 /* someone is deleting pa right now */
3839 spin_unlock(&pa->pa_lock);
3840 spin_unlock(&ei->i_prealloc_lock);
3841
3842 /* we have to wait here because pa_deleted
3843 * doesn't mean pa is already unlinked from
3844 * the list. as we might be called from
3845 * ->clear_inode() the inode will get freed
3846 * and concurrent thread which is unlinking
3847 * pa from inode's list may access already
3848 * freed memory, bad-bad-bad */
3849
3850 /* XXX: if this happens too often, we can
3851 * add a flag to force wait only in case
3852 * of ->clear_inode(), but not in case of
3853 * regular truncate */
3854 schedule_timeout_uninterruptible(HZ);
3855 goto repeat;
3856 }
3857 spin_unlock(&ei->i_prealloc_lock);
3858
3859 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3860 BUG_ON(pa->pa_type != MB_INODE_PA);
3861 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3862
3863 err = ext4_mb_load_buddy(sb, group, &e4b);
3864 if (err) {
3865 ext4_error(sb, "Error loading buddy information for %u",
3866 group);
3867 continue;
3868 }
3869
3870 bitmap_bh = ext4_read_block_bitmap(sb, group);
3871 if (bitmap_bh == NULL) {
3872 ext4_error(sb, "Error reading block bitmap for %u",
3873 group);
3874 ext4_mb_unload_buddy(&e4b);
3875 continue;
3876 }
3877
3878 ext4_lock_group(sb, group);
3879 list_del(&pa->pa_group_list);
3880 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3881 ext4_unlock_group(sb, group);
3882
3883 ext4_mb_unload_buddy(&e4b);
3884 put_bh(bitmap_bh);
3885
3886 list_del(&pa->u.pa_tmp_list);
3887 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3888 }
3889 }
3890
3891 #ifdef CONFIG_EXT4_DEBUG
3892 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3893 {
3894 struct super_block *sb = ac->ac_sb;
3895 ext4_group_t ngroups, i;
3896
3897 if (!mb_enable_debug ||
3898 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3899 return;
3900
3901 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: Can't allocate:"
3902 " Allocation context details:");
3903 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: status %d flags %d",
3904 ac->ac_status, ac->ac_flags);
3905 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
3906 "goal %lu/%lu/%lu@%lu, "
3907 "best %lu/%lu/%lu@%lu cr %d",
3908 (unsigned long)ac->ac_o_ex.fe_group,
3909 (unsigned long)ac->ac_o_ex.fe_start,
3910 (unsigned long)ac->ac_o_ex.fe_len,
3911 (unsigned long)ac->ac_o_ex.fe_logical,
3912 (unsigned long)ac->ac_g_ex.fe_group,
3913 (unsigned long)ac->ac_g_ex.fe_start,
3914 (unsigned long)ac->ac_g_ex.fe_len,
3915 (unsigned long)ac->ac_g_ex.fe_logical,
3916 (unsigned long)ac->ac_b_ex.fe_group,
3917 (unsigned long)ac->ac_b_ex.fe_start,
3918 (unsigned long)ac->ac_b_ex.fe_len,
3919 (unsigned long)ac->ac_b_ex.fe_logical,
3920 (int)ac->ac_criteria);
3921 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: %lu scanned, %d found",
3922 ac->ac_ex_scanned, ac->ac_found);
3923 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: groups: ");
3924 ngroups = ext4_get_groups_count(sb);
3925 for (i = 0; i < ngroups; i++) {
3926 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3927 struct ext4_prealloc_space *pa;
3928 ext4_grpblk_t start;
3929 struct list_head *cur;
3930 ext4_lock_group(sb, i);
3931 list_for_each(cur, &grp->bb_prealloc_list) {
3932 pa = list_entry(cur, struct ext4_prealloc_space,
3933 pa_group_list);
3934 spin_lock(&pa->pa_lock);
3935 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3936 NULL, &start);
3937 spin_unlock(&pa->pa_lock);
3938 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3939 start, pa->pa_len);
3940 }
3941 ext4_unlock_group(sb, i);
3942
3943 if (grp->bb_free == 0)
3944 continue;
3945 printk(KERN_ERR "%u: %d/%d \n",
3946 i, grp->bb_free, grp->bb_fragments);
3947 }
3948 printk(KERN_ERR "\n");
3949 }
3950 #else
3951 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3952 {
3953 return;
3954 }
3955 #endif
3956
3957 /*
3958 * We use locality group preallocation for small size file. The size of the
3959 * file is determined by the current size or the resulting size after
3960 * allocation which ever is larger
3961 *
3962 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3963 */
3964 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3965 {
3966 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3967 int bsbits = ac->ac_sb->s_blocksize_bits;
3968 loff_t size, isize;
3969
3970 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3971 return;
3972
3973 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3974 return;
3975
3976 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3977 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3978 >> bsbits;
3979
3980 if ((size == isize) &&
3981 !ext4_fs_is_busy(sbi) &&
3982 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3983 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3984 return;
3985 }
3986
3987 /* don't use group allocation for large files */
3988 size = max(size, isize);
3989 if (size > sbi->s_mb_stream_request) {
3990 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3991 return;
3992 }
3993
3994 BUG_ON(ac->ac_lg != NULL);
3995 /*
3996 * locality group prealloc space are per cpu. The reason for having
3997 * per cpu locality group is to reduce the contention between block
3998 * request from multiple CPUs.
3999 */
4000 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4001
4002 /* we're going to use group allocation */
4003 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4004
4005 /* serialize all allocations in the group */
4006 mutex_lock(&ac->ac_lg->lg_mutex);
4007 }
4008
4009 static noinline_for_stack int
4010 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4011 struct ext4_allocation_request *ar)
4012 {
4013 struct super_block *sb = ar->inode->i_sb;
4014 struct ext4_sb_info *sbi = EXT4_SB(sb);
4015 struct ext4_super_block *es = sbi->s_es;
4016 ext4_group_t group;
4017 unsigned int len;
4018 ext4_fsblk_t goal;
4019 ext4_grpblk_t block;
4020
4021 /* we can't allocate > group size */
4022 len = ar->len;
4023
4024 /* just a dirty hack to filter too big requests */
4025 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4026 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4027
4028 /* start searching from the goal */
4029 goal = ar->goal;
4030 if (goal < le32_to_cpu(es->s_first_data_block) ||
4031 goal >= ext4_blocks_count(es))
4032 goal = le32_to_cpu(es->s_first_data_block);
4033 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4034
4035 /* set up allocation goals */
4036 memset(ac, 0, sizeof(struct ext4_allocation_context));
4037 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4038 ac->ac_status = AC_STATUS_CONTINUE;
4039 ac->ac_sb = sb;
4040 ac->ac_inode = ar->inode;
4041 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4042 ac->ac_o_ex.fe_group = group;
4043 ac->ac_o_ex.fe_start = block;
4044 ac->ac_o_ex.fe_len = len;
4045 ac->ac_g_ex = ac->ac_o_ex;
4046 ac->ac_flags = ar->flags;
4047
4048 /* we have to define context: we'll we work with a file or
4049 * locality group. this is a policy, actually */
4050 ext4_mb_group_or_file(ac);
4051
4052 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4053 "left: %u/%u, right %u/%u to %swritable\n",
4054 (unsigned) ar->len, (unsigned) ar->logical,
4055 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4056 (unsigned) ar->lleft, (unsigned) ar->pleft,
4057 (unsigned) ar->lright, (unsigned) ar->pright,
4058 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4059 return 0;
4060
4061 }
4062
4063 static noinline_for_stack void
4064 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4065 struct ext4_locality_group *lg,
4066 int order, int total_entries)
4067 {
4068 ext4_group_t group = 0;
4069 struct ext4_buddy e4b;
4070 struct list_head discard_list;
4071 struct ext4_prealloc_space *pa, *tmp;
4072
4073 mb_debug(1, "discard locality group preallocation\n");
4074
4075 INIT_LIST_HEAD(&discard_list);
4076
4077 spin_lock(&lg->lg_prealloc_lock);
4078 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4079 pa_inode_list) {
4080 spin_lock(&pa->pa_lock);
4081 if (atomic_read(&pa->pa_count)) {
4082 /*
4083 * This is the pa that we just used
4084 * for block allocation. So don't
4085 * free that
4086 */
4087 spin_unlock(&pa->pa_lock);
4088 continue;
4089 }
4090 if (pa->pa_deleted) {
4091 spin_unlock(&pa->pa_lock);
4092 continue;
4093 }
4094 /* only lg prealloc space */
4095 BUG_ON(pa->pa_type != MB_GROUP_PA);
4096
4097 /* seems this one can be freed ... */
4098 pa->pa_deleted = 1;
4099 spin_unlock(&pa->pa_lock);
4100
4101 list_del_rcu(&pa->pa_inode_list);
4102 list_add(&pa->u.pa_tmp_list, &discard_list);
4103
4104 total_entries--;
4105 if (total_entries <= 5) {
4106 /*
4107 * we want to keep only 5 entries
4108 * allowing it to grow to 8. This
4109 * mak sure we don't call discard
4110 * soon for this list.
4111 */
4112 break;
4113 }
4114 }
4115 spin_unlock(&lg->lg_prealloc_lock);
4116
4117 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4118
4119 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4120 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4121 ext4_error(sb, "Error loading buddy information for %u",
4122 group);
4123 continue;
4124 }
4125 ext4_lock_group(sb, group);
4126 list_del(&pa->pa_group_list);
4127 ext4_mb_release_group_pa(&e4b, pa);
4128 ext4_unlock_group(sb, group);
4129
4130 ext4_mb_unload_buddy(&e4b);
4131 list_del(&pa->u.pa_tmp_list);
4132 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4133 }
4134 }
4135
4136 /*
4137 * We have incremented pa_count. So it cannot be freed at this
4138 * point. Also we hold lg_mutex. So no parallel allocation is
4139 * possible from this lg. That means pa_free cannot be updated.
4140 *
4141 * A parallel ext4_mb_discard_group_preallocations is possible.
4142 * which can cause the lg_prealloc_list to be updated.
4143 */
4144
4145 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4146 {
4147 int order, added = 0, lg_prealloc_count = 1;
4148 struct super_block *sb = ac->ac_sb;
4149 struct ext4_locality_group *lg = ac->ac_lg;
4150 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4151
4152 order = fls(pa->pa_free) - 1;
4153 if (order > PREALLOC_TB_SIZE - 1)
4154 /* The max size of hash table is PREALLOC_TB_SIZE */
4155 order = PREALLOC_TB_SIZE - 1;
4156 /* Add the prealloc space to lg */
4157 rcu_read_lock();
4158 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4159 pa_inode_list) {
4160 spin_lock(&tmp_pa->pa_lock);
4161 if (tmp_pa->pa_deleted) {
4162 spin_unlock(&tmp_pa->pa_lock);
4163 continue;
4164 }
4165 if (!added && pa->pa_free < tmp_pa->pa_free) {
4166 /* Add to the tail of the previous entry */
4167 list_add_tail_rcu(&pa->pa_inode_list,
4168 &tmp_pa->pa_inode_list);
4169 added = 1;
4170 /*
4171 * we want to count the total
4172 * number of entries in the list
4173 */
4174 }
4175 spin_unlock(&tmp_pa->pa_lock);
4176 lg_prealloc_count++;
4177 }
4178 if (!added)
4179 list_add_tail_rcu(&pa->pa_inode_list,
4180 &lg->lg_prealloc_list[order]);
4181 rcu_read_unlock();
4182
4183 /* Now trim the list to be not more than 8 elements */
4184 if (lg_prealloc_count > 8) {
4185 ext4_mb_discard_lg_preallocations(sb, lg,
4186 order, lg_prealloc_count);
4187 return;
4188 }
4189 return ;
4190 }
4191
4192 /*
4193 * release all resource we used in allocation
4194 */
4195 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4196 {
4197 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4198 struct ext4_prealloc_space *pa = ac->ac_pa;
4199 if (pa) {
4200 if (pa->pa_type == MB_GROUP_PA) {
4201 /* see comment in ext4_mb_use_group_pa() */
4202 spin_lock(&pa->pa_lock);
4203 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4204 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4205 pa->pa_free -= ac->ac_b_ex.fe_len;
4206 pa->pa_len -= ac->ac_b_ex.fe_len;
4207 spin_unlock(&pa->pa_lock);
4208 }
4209 }
4210 if (pa) {
4211 /*
4212 * We want to add the pa to the right bucket.
4213 * Remove it from the list and while adding
4214 * make sure the list to which we are adding
4215 * doesn't grow big.
4216 */
4217 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4218 spin_lock(pa->pa_obj_lock);
4219 list_del_rcu(&pa->pa_inode_list);
4220 spin_unlock(pa->pa_obj_lock);
4221 ext4_mb_add_n_trim(ac);
4222 }
4223 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4224 }
4225 if (ac->ac_bitmap_page)
4226 page_cache_release(ac->ac_bitmap_page);
4227 if (ac->ac_buddy_page)
4228 page_cache_release(ac->ac_buddy_page);
4229 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4230 mutex_unlock(&ac->ac_lg->lg_mutex);
4231 ext4_mb_collect_stats(ac);
4232 return 0;
4233 }
4234
4235 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4236 {
4237 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4238 int ret;
4239 int freed = 0;
4240
4241 trace_ext4_mb_discard_preallocations(sb, needed);
4242 for (i = 0; i < ngroups && needed > 0; i++) {
4243 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4244 freed += ret;
4245 needed -= ret;
4246 }
4247
4248 return freed;
4249 }
4250
4251 /*
4252 * Main entry point into mballoc to allocate blocks
4253 * it tries to use preallocation first, then falls back
4254 * to usual allocation
4255 */
4256 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4257 struct ext4_allocation_request *ar, int *errp)
4258 {
4259 int freed;
4260 struct ext4_allocation_context *ac = NULL;
4261 struct ext4_sb_info *sbi;
4262 struct super_block *sb;
4263 ext4_fsblk_t block = 0;
4264 unsigned int inquota = 0;
4265 unsigned int reserv_clstrs = 0;
4266
4267 sb = ar->inode->i_sb;
4268 sbi = EXT4_SB(sb);
4269
4270 trace_ext4_request_blocks(ar);
4271
4272 /*
4273 * For delayed allocation, we could skip the ENOSPC and
4274 * EDQUOT check, as blocks and quotas have been already
4275 * reserved when data being copied into pagecache.
4276 */
4277 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4278 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4279 else {
4280 /* Without delayed allocation we need to verify
4281 * there is enough free blocks to do block allocation
4282 * and verify allocation doesn't exceed the quota limits.
4283 */
4284 while (ar->len &&
4285 ext4_claim_free_blocks(sbi, ar->len, ar->flags)) {
4286
4287 /* let others to free the space */
4288 yield();
4289 ar->len = ar->len >> 1;
4290 }
4291 if (!ar->len) {
4292 *errp = -ENOSPC;
4293 return 0;
4294 }
4295 reserv_clstrs = ar->len;
4296 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4297 dquot_alloc_block_nofail(ar->inode,
4298 EXT4_C2B(sbi, ar->len));
4299 } else {
4300 while (ar->len &&
4301 dquot_alloc_block(ar->inode,
4302 EXT4_C2B(sbi, ar->len))) {
4303
4304 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4305 ar->len--;
4306 }
4307 }
4308 inquota = ar->len;
4309 if (ar->len == 0) {
4310 *errp = -EDQUOT;
4311 goto out;
4312 }
4313 }
4314
4315 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4316 if (!ac) {
4317 ar->len = 0;
4318 *errp = -ENOMEM;
4319 goto out;
4320 }
4321
4322 *errp = ext4_mb_initialize_context(ac, ar);
4323 if (*errp) {
4324 ar->len = 0;
4325 goto out;
4326 }
4327
4328 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4329 if (!ext4_mb_use_preallocated(ac)) {
4330 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4331 ext4_mb_normalize_request(ac, ar);
4332 repeat:
4333 /* allocate space in core */
4334 *errp = ext4_mb_regular_allocator(ac);
4335 if (*errp)
4336 goto errout;
4337
4338 /* as we've just preallocated more space than
4339 * user requested orinally, we store allocated
4340 * space in a special descriptor */
4341 if (ac->ac_status == AC_STATUS_FOUND &&
4342 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4343 ext4_mb_new_preallocation(ac);
4344 }
4345 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4346 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4347 if (*errp == -EAGAIN) {
4348 /*
4349 * drop the reference that we took
4350 * in ext4_mb_use_best_found
4351 */
4352 ext4_mb_release_context(ac);
4353 ac->ac_b_ex.fe_group = 0;
4354 ac->ac_b_ex.fe_start = 0;
4355 ac->ac_b_ex.fe_len = 0;
4356 ac->ac_status = AC_STATUS_CONTINUE;
4357 goto repeat;
4358 } else if (*errp)
4359 errout:
4360 ext4_discard_allocated_blocks(ac);
4361 else {
4362 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4363 ar->len = ac->ac_b_ex.fe_len;
4364 }
4365 } else {
4366 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4367 if (freed)
4368 goto repeat;
4369 *errp = -ENOSPC;
4370 }
4371
4372 if (*errp) {
4373 ac->ac_b_ex.fe_len = 0;
4374 ar->len = 0;
4375 ext4_mb_show_ac(ac);
4376 }
4377 ext4_mb_release_context(ac);
4378 out:
4379 if (ac)
4380 kmem_cache_free(ext4_ac_cachep, ac);
4381 if (inquota && ar->len < inquota)
4382 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4383 if (!ar->len) {
4384 if (!ext4_test_inode_state(ar->inode,
4385 EXT4_STATE_DELALLOC_RESERVED))
4386 /* release all the reserved blocks if non delalloc */
4387 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4388 reserv_clstrs);
4389 }
4390
4391 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4392
4393 return block;
4394 }
4395
4396 /*
4397 * We can merge two free data extents only if the physical blocks
4398 * are contiguous, AND the extents were freed by the same transaction,
4399 * AND the blocks are associated with the same group.
4400 */
4401 static int can_merge(struct ext4_free_data *entry1,
4402 struct ext4_free_data *entry2)
4403 {
4404 if ((entry1->t_tid == entry2->t_tid) &&
4405 (entry1->group == entry2->group) &&
4406 ((entry1->start_cluster + entry1->count) == entry2->start_cluster))
4407 return 1;
4408 return 0;
4409 }
4410
4411 static noinline_for_stack int
4412 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4413 struct ext4_free_data *new_entry)
4414 {
4415 ext4_group_t group = e4b->bd_group;
4416 ext4_grpblk_t cluster;
4417 struct ext4_free_data *entry;
4418 struct ext4_group_info *db = e4b->bd_info;
4419 struct super_block *sb = e4b->bd_sb;
4420 struct ext4_sb_info *sbi = EXT4_SB(sb);
4421 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4422 struct rb_node *parent = NULL, *new_node;
4423
4424 BUG_ON(!ext4_handle_valid(handle));
4425 BUG_ON(e4b->bd_bitmap_page == NULL);
4426 BUG_ON(e4b->bd_buddy_page == NULL);
4427
4428 new_node = &new_entry->node;
4429 cluster = new_entry->start_cluster;
4430
4431 if (!*n) {
4432 /* first free block exent. We need to
4433 protect buddy cache from being freed,
4434 * otherwise we'll refresh it from
4435 * on-disk bitmap and lose not-yet-available
4436 * blocks */
4437 page_cache_get(e4b->bd_buddy_page);
4438 page_cache_get(e4b->bd_bitmap_page);
4439 }
4440 while (*n) {
4441 parent = *n;
4442 entry = rb_entry(parent, struct ext4_free_data, node);
4443 if (cluster < entry->start_cluster)
4444 n = &(*n)->rb_left;
4445 else if (cluster >= (entry->start_cluster + entry->count))
4446 n = &(*n)->rb_right;
4447 else {
4448 ext4_grp_locked_error(sb, group, 0,
4449 ext4_group_first_block_no(sb, group) +
4450 EXT4_C2B(sbi, cluster),
4451 "Block already on to-be-freed list");
4452 return 0;
4453 }
4454 }
4455
4456 rb_link_node(new_node, parent, n);
4457 rb_insert_color(new_node, &db->bb_free_root);
4458
4459 /* Now try to see the extent can be merged to left and right */
4460 node = rb_prev(new_node);
4461 if (node) {
4462 entry = rb_entry(node, struct ext4_free_data, node);
4463 if (can_merge(entry, new_entry)) {
4464 new_entry->start_cluster = entry->start_cluster;
4465 new_entry->count += entry->count;
4466 rb_erase(node, &(db->bb_free_root));
4467 spin_lock(&sbi->s_md_lock);
4468 list_del(&entry->list);
4469 spin_unlock(&sbi->s_md_lock);
4470 kmem_cache_free(ext4_free_ext_cachep, entry);
4471 }
4472 }
4473
4474 node = rb_next(new_node);
4475 if (node) {
4476 entry = rb_entry(node, struct ext4_free_data, node);
4477 if (can_merge(new_entry, entry)) {
4478 new_entry->count += entry->count;
4479 rb_erase(node, &(db->bb_free_root));
4480 spin_lock(&sbi->s_md_lock);
4481 list_del(&entry->list);
4482 spin_unlock(&sbi->s_md_lock);
4483 kmem_cache_free(ext4_free_ext_cachep, entry);
4484 }
4485 }
4486 /* Add the extent to transaction's private list */
4487 spin_lock(&sbi->s_md_lock);
4488 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4489 spin_unlock(&sbi->s_md_lock);
4490 return 0;
4491 }
4492
4493 /**
4494 * ext4_free_blocks() -- Free given blocks and update quota
4495 * @handle: handle for this transaction
4496 * @inode: inode
4497 * @block: start physical block to free
4498 * @count: number of blocks to count
4499 * @flags: flags used by ext4_free_blocks
4500 */
4501 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4502 struct buffer_head *bh, ext4_fsblk_t block,
4503 unsigned long count, int flags)
4504 {
4505 struct buffer_head *bitmap_bh = NULL;
4506 struct super_block *sb = inode->i_sb;
4507 struct ext4_group_desc *gdp;
4508 unsigned long freed = 0;
4509 unsigned int overflow;
4510 ext4_grpblk_t bit;
4511 struct buffer_head *gd_bh;
4512 ext4_group_t block_group;
4513 struct ext4_sb_info *sbi;
4514 struct ext4_buddy e4b;
4515 unsigned int count_clusters;
4516 int err = 0;
4517 int ret;
4518
4519 if (bh) {
4520 if (block)
4521 BUG_ON(block != bh->b_blocknr);
4522 else
4523 block = bh->b_blocknr;
4524 }
4525
4526 sbi = EXT4_SB(sb);
4527 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4528 !ext4_data_block_valid(sbi, block, count)) {
4529 ext4_error(sb, "Freeing blocks not in datazone - "
4530 "block = %llu, count = %lu", block, count);
4531 goto error_return;
4532 }
4533
4534 ext4_debug("freeing block %llu\n", block);
4535 trace_ext4_free_blocks(inode, block, count, flags);
4536
4537 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4538 struct buffer_head *tbh = bh;
4539 int i;
4540
4541 BUG_ON(bh && (count > 1));
4542
4543 for (i = 0; i < count; i++) {
4544 if (!bh)
4545 tbh = sb_find_get_block(inode->i_sb,
4546 block + i);
4547 if (unlikely(!tbh))
4548 continue;
4549 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4550 inode, tbh, block + i);
4551 }
4552 }
4553
4554 /*
4555 * We need to make sure we don't reuse the freed block until
4556 * after the transaction is committed, which we can do by
4557 * treating the block as metadata, below. We make an
4558 * exception if the inode is to be written in writeback mode
4559 * since writeback mode has weak data consistency guarantees.
4560 */
4561 if (!ext4_should_writeback_data(inode))
4562 flags |= EXT4_FREE_BLOCKS_METADATA;
4563
4564 /*
4565 * If the extent to be freed does not begin on a cluster
4566 * boundary, we need to deal with partial clusters at the
4567 * beginning and end of the extent. Normally we will free
4568 * blocks at the beginning or the end unless we are explicitly
4569 * requested to avoid doing so.
4570 */
4571 overflow = block & (sbi->s_cluster_ratio - 1);
4572 if (overflow) {
4573 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4574 overflow = sbi->s_cluster_ratio - overflow;
4575 block += overflow;
4576 if (count > overflow)
4577 count -= overflow;
4578 else
4579 return;
4580 } else {
4581 block -= overflow;
4582 count += overflow;
4583 }
4584 }
4585 overflow = count & (sbi->s_cluster_ratio - 1);
4586 if (overflow) {
4587 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4588 if (count > overflow)
4589 count -= overflow;
4590 else
4591 return;
4592 } else
4593 count += sbi->s_cluster_ratio - overflow;
4594 }
4595
4596 do_more:
4597 overflow = 0;
4598 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4599
4600 /*
4601 * Check to see if we are freeing blocks across a group
4602 * boundary.
4603 */
4604 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4605 overflow = EXT4_C2B(sbi, bit) + count -
4606 EXT4_BLOCKS_PER_GROUP(sb);
4607 count -= overflow;
4608 }
4609 count_clusters = EXT4_B2C(sbi, count);
4610 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4611 if (!bitmap_bh) {
4612 err = -EIO;
4613 goto error_return;
4614 }
4615 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4616 if (!gdp) {
4617 err = -EIO;
4618 goto error_return;
4619 }
4620
4621 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4622 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4623 in_range(block, ext4_inode_table(sb, gdp),
4624 EXT4_SB(sb)->s_itb_per_group) ||
4625 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4626 EXT4_SB(sb)->s_itb_per_group)) {
4627
4628 ext4_error(sb, "Freeing blocks in system zone - "
4629 "Block = %llu, count = %lu", block, count);
4630 /* err = 0. ext4_std_error should be a no op */
4631 goto error_return;
4632 }
4633
4634 BUFFER_TRACE(bitmap_bh, "getting write access");
4635 err = ext4_journal_get_write_access(handle, bitmap_bh);
4636 if (err)
4637 goto error_return;
4638
4639 /*
4640 * We are about to modify some metadata. Call the journal APIs
4641 * to unshare ->b_data if a currently-committing transaction is
4642 * using it
4643 */
4644 BUFFER_TRACE(gd_bh, "get_write_access");
4645 err = ext4_journal_get_write_access(handle, gd_bh);
4646 if (err)
4647 goto error_return;
4648 #ifdef AGGRESSIVE_CHECK
4649 {
4650 int i;
4651 for (i = 0; i < count_clusters; i++)
4652 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4653 }
4654 #endif
4655 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4656
4657 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4658 if (err)
4659 goto error_return;
4660
4661 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4662 struct ext4_free_data *new_entry;
4663 /*
4664 * blocks being freed are metadata. these blocks shouldn't
4665 * be used until this transaction is committed
4666 */
4667 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4668 if (!new_entry) {
4669 err = -ENOMEM;
4670 goto error_return;
4671 }
4672 new_entry->start_cluster = bit;
4673 new_entry->group = block_group;
4674 new_entry->count = count_clusters;
4675 new_entry->t_tid = handle->h_transaction->t_tid;
4676
4677 ext4_lock_group(sb, block_group);
4678 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4679 ext4_mb_free_metadata(handle, &e4b, new_entry);
4680 } else {
4681 /* need to update group_info->bb_free and bitmap
4682 * with group lock held. generate_buddy look at
4683 * them with group lock_held
4684 */
4685 ext4_lock_group(sb, block_group);
4686 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4687 mb_free_blocks(inode, &e4b, bit, count_clusters);
4688 }
4689
4690 ret = ext4_free_blks_count(sb, gdp) + count_clusters;
4691 ext4_free_blks_set(sb, gdp, ret);
4692 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4693 ext4_unlock_group(sb, block_group);
4694 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4695
4696 if (sbi->s_log_groups_per_flex) {
4697 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4698 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4699 }
4700
4701 ext4_mb_unload_buddy(&e4b);
4702
4703 freed += count;
4704
4705 /* We dirtied the bitmap block */
4706 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4707 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4708
4709 /* And the group descriptor block */
4710 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4711 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4712 if (!err)
4713 err = ret;
4714
4715 if (overflow && !err) {
4716 block += count;
4717 count = overflow;
4718 put_bh(bitmap_bh);
4719 goto do_more;
4720 }
4721 ext4_mark_super_dirty(sb);
4722 error_return:
4723 if (freed && !(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4724 dquot_free_block(inode, freed);
4725 brelse(bitmap_bh);
4726 ext4_std_error(sb, err);
4727 return;
4728 }
4729
4730 /**
4731 * ext4_group_add_blocks() -- Add given blocks to an existing group
4732 * @handle: handle to this transaction
4733 * @sb: super block
4734 * @block: start physcial block to add to the block group
4735 * @count: number of blocks to free
4736 *
4737 * This marks the blocks as free in the bitmap and buddy.
4738 */
4739 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4740 ext4_fsblk_t block, unsigned long count)
4741 {
4742 struct buffer_head *bitmap_bh = NULL;
4743 struct buffer_head *gd_bh;
4744 ext4_group_t block_group;
4745 ext4_grpblk_t bit;
4746 unsigned int i;
4747 struct ext4_group_desc *desc;
4748 struct ext4_sb_info *sbi = EXT4_SB(sb);
4749 struct ext4_buddy e4b;
4750 int err = 0, ret, blk_free_count;
4751 ext4_grpblk_t blocks_freed;
4752
4753 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4754
4755 if (count == 0)
4756 return 0;
4757
4758 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4759 /*
4760 * Check to see if we are freeing blocks across a group
4761 * boundary.
4762 */
4763 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4764 ext4_warning(sb, "too much blocks added to group %u\n",
4765 block_group);
4766 err = -EINVAL;
4767 goto error_return;
4768 }
4769
4770 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4771 if (!bitmap_bh) {
4772 err = -EIO;
4773 goto error_return;
4774 }
4775
4776 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4777 if (!desc) {
4778 err = -EIO;
4779 goto error_return;
4780 }
4781
4782 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4783 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4784 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4785 in_range(block + count - 1, ext4_inode_table(sb, desc),
4786 sbi->s_itb_per_group)) {
4787 ext4_error(sb, "Adding blocks in system zones - "
4788 "Block = %llu, count = %lu",
4789 block, count);
4790 err = -EINVAL;
4791 goto error_return;
4792 }
4793
4794 BUFFER_TRACE(bitmap_bh, "getting write access");
4795 err = ext4_journal_get_write_access(handle, bitmap_bh);
4796 if (err)
4797 goto error_return;
4798
4799 /*
4800 * We are about to modify some metadata. Call the journal APIs
4801 * to unshare ->b_data if a currently-committing transaction is
4802 * using it
4803 */
4804 BUFFER_TRACE(gd_bh, "get_write_access");
4805 err = ext4_journal_get_write_access(handle, gd_bh);
4806 if (err)
4807 goto error_return;
4808
4809 for (i = 0, blocks_freed = 0; i < count; i++) {
4810 BUFFER_TRACE(bitmap_bh, "clear bit");
4811 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4812 ext4_error(sb, "bit already cleared for block %llu",
4813 (ext4_fsblk_t)(block + i));
4814 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4815 } else {
4816 blocks_freed++;
4817 }
4818 }
4819
4820 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4821 if (err)
4822 goto error_return;
4823
4824 /*
4825 * need to update group_info->bb_free and bitmap
4826 * with group lock held. generate_buddy look at
4827 * them with group lock_held
4828 */
4829 ext4_lock_group(sb, block_group);
4830 mb_clear_bits(bitmap_bh->b_data, bit, count);
4831 mb_free_blocks(NULL, &e4b, bit, count);
4832 blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc);
4833 ext4_free_blks_set(sb, desc, blk_free_count);
4834 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4835 ext4_unlock_group(sb, block_group);
4836 percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed);
4837
4838 if (sbi->s_log_groups_per_flex) {
4839 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4840 atomic_add(blocks_freed,
4841 &sbi->s_flex_groups[flex_group].free_blocks);
4842 }
4843
4844 ext4_mb_unload_buddy(&e4b);
4845
4846 /* We dirtied the bitmap block */
4847 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4848 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4849
4850 /* And the group descriptor block */
4851 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4852 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4853 if (!err)
4854 err = ret;
4855
4856 error_return:
4857 brelse(bitmap_bh);
4858 ext4_std_error(sb, err);
4859 return err;
4860 }
4861
4862 /**
4863 * ext4_trim_extent -- function to TRIM one single free extent in the group
4864 * @sb: super block for the file system
4865 * @start: starting block of the free extent in the alloc. group
4866 * @count: number of blocks to TRIM
4867 * @group: alloc. group we are working with
4868 * @e4b: ext4 buddy for the group
4869 *
4870 * Trim "count" blocks starting at "start" in the "group". To assure that no
4871 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4872 * be called with under the group lock.
4873 */
4874 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4875 ext4_group_t group, struct ext4_buddy *e4b)
4876 {
4877 struct ext4_free_extent ex;
4878
4879 trace_ext4_trim_extent(sb, group, start, count);
4880
4881 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4882
4883 ex.fe_start = start;
4884 ex.fe_group = group;
4885 ex.fe_len = count;
4886
4887 /*
4888 * Mark blocks used, so no one can reuse them while
4889 * being trimmed.
4890 */
4891 mb_mark_used(e4b, &ex);
4892 ext4_unlock_group(sb, group);
4893 ext4_issue_discard(sb, group, start, count);
4894 ext4_lock_group(sb, group);
4895 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4896 }
4897
4898 /**
4899 * ext4_trim_all_free -- function to trim all free space in alloc. group
4900 * @sb: super block for file system
4901 * @group: group to be trimmed
4902 * @start: first group block to examine
4903 * @max: last group block to examine
4904 * @minblocks: minimum extent block count
4905 *
4906 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4907 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4908 * the extent.
4909 *
4910 *
4911 * ext4_trim_all_free walks through group's block bitmap searching for free
4912 * extents. When the free extent is found, mark it as used in group buddy
4913 * bitmap. Then issue a TRIM command on this extent and free the extent in
4914 * the group buddy bitmap. This is done until whole group is scanned.
4915 */
4916 static ext4_grpblk_t
4917 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4918 ext4_grpblk_t start, ext4_grpblk_t max,
4919 ext4_grpblk_t minblocks)
4920 {
4921 void *bitmap;
4922 ext4_grpblk_t next, count = 0, free_count = 0;
4923 struct ext4_buddy e4b;
4924 int ret;
4925
4926 trace_ext4_trim_all_free(sb, group, start, max);
4927
4928 ret = ext4_mb_load_buddy(sb, group, &e4b);
4929 if (ret) {
4930 ext4_error(sb, "Error in loading buddy "
4931 "information for %u", group);
4932 return ret;
4933 }
4934 bitmap = e4b.bd_bitmap;
4935
4936 ext4_lock_group(sb, group);
4937 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4938 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4939 goto out;
4940
4941 start = (e4b.bd_info->bb_first_free > start) ?
4942 e4b.bd_info->bb_first_free : start;
4943
4944 while (start < max) {
4945 start = mb_find_next_zero_bit(bitmap, max, start);
4946 if (start >= max)
4947 break;
4948 next = mb_find_next_bit(bitmap, max, start);
4949
4950 if ((next - start) >= minblocks) {
4951 ext4_trim_extent(sb, start,
4952 next - start, group, &e4b);
4953 count += next - start;
4954 }
4955 free_count += next - start;
4956 start = next + 1;
4957
4958 if (fatal_signal_pending(current)) {
4959 count = -ERESTARTSYS;
4960 break;
4961 }
4962
4963 if (need_resched()) {
4964 ext4_unlock_group(sb, group);
4965 cond_resched();
4966 ext4_lock_group(sb, group);
4967 }
4968
4969 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4970 break;
4971 }
4972
4973 if (!ret)
4974 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4975 out:
4976 ext4_unlock_group(sb, group);
4977 ext4_mb_unload_buddy(&e4b);
4978
4979 ext4_debug("trimmed %d blocks in the group %d\n",
4980 count, group);
4981
4982 return count;
4983 }
4984
4985 /**
4986 * ext4_trim_fs() -- trim ioctl handle function
4987 * @sb: superblock for filesystem
4988 * @range: fstrim_range structure
4989 *
4990 * start: First Byte to trim
4991 * len: number of Bytes to trim from start
4992 * minlen: minimum extent length in Bytes
4993 * ext4_trim_fs goes through all allocation groups containing Bytes from
4994 * start to start+len. For each such a group ext4_trim_all_free function
4995 * is invoked to trim all free space.
4996 */
4997 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4998 {
4999 struct ext4_group_info *grp;
5000 ext4_group_t first_group, last_group;
5001 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
5002 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5003 uint64_t start, len, minlen, trimmed = 0;
5004 ext4_fsblk_t first_data_blk =
5005 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5006 int ret = 0;
5007
5008 start = range->start >> sb->s_blocksize_bits;
5009 len = range->len >> sb->s_blocksize_bits;
5010 minlen = range->minlen >> sb->s_blocksize_bits;
5011
5012 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)))
5013 return -EINVAL;
5014 if (start + len <= first_data_blk)
5015 goto out;
5016 if (start < first_data_blk) {
5017 len -= first_data_blk - start;
5018 start = first_data_blk;
5019 }
5020
5021 /* Determine first and last group to examine based on start and len */
5022 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5023 &first_group, &first_cluster);
5024 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
5025 &last_group, &last_cluster);
5026 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
5027 last_cluster = EXT4_CLUSTERS_PER_GROUP(sb);
5028
5029 if (first_group > last_group)
5030 return -EINVAL;
5031
5032 for (group = first_group; group <= last_group; group++) {
5033 grp = ext4_get_group_info(sb, group);
5034 /* We only do this if the grp has never been initialized */
5035 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5036 ret = ext4_mb_init_group(sb, group);
5037 if (ret)
5038 break;
5039 }
5040
5041 /*
5042 * For all the groups except the last one, last block will
5043 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
5044 * change it for the last group in which case start +
5045 * len < EXT4_BLOCKS_PER_GROUP(sb).
5046 */
5047 if (first_cluster + len < EXT4_CLUSTERS_PER_GROUP(sb))
5048 last_cluster = first_cluster + len;
5049 len -= last_cluster - first_cluster;
5050
5051 if (grp->bb_free >= minlen) {
5052 cnt = ext4_trim_all_free(sb, group, first_cluster,
5053 last_cluster, minlen);
5054 if (cnt < 0) {
5055 ret = cnt;
5056 break;
5057 }
5058 }
5059 trimmed += cnt;
5060 first_cluster = 0;
5061 }
5062 range->len = trimmed * sb->s_blocksize;
5063
5064 if (!ret)
5065 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5066
5067 out:
5068 return ret;
5069 }
This page took 0.146765 seconds and 5 git commands to generate.