Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
372
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 return addr;
385 }
386
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 /*
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
392 */
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
395 }
396
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
401 }
402
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
407 }
408
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
413 }
414
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426 }
427
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
434
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
439 }
440
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 char *bb;
444
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
447
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
451 }
452
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
457 }
458
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462 return bb;
463 }
464
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
468 {
469 int i;
470 struct super_block *sb = e4b->bd_sb;
471
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
478
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
487 }
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 }
490 }
491
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 int i;
495
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503 }
504
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
520 }
521 }
522 }
523 }
524
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
528 {
529 return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
533 {
534 return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 return;
539 }
540 #endif
541
542 #ifdef AGGRESSIVE_CHECK
543
544 #define MB_CHECK_ASSERT(assert) \
545 do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
551 } \
552 } while (0)
553
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
556 {
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
571
572 {
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
576 }
577
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
585
586 count = 0;
587 for (i = 0; i < max; i++) {
588
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
597 }
598 continue;
599 }
600
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
609 }
610 count++;
611 }
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
614 }
615
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
624 }
625 continue;
626 }
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 }
635 }
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 }
649 return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657
658 /*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
667 {
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned short border;
673
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676 border = 2 << sb->s_blocksize_bits;
677
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
681
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
684
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
688
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
694
695 len -= chunk;
696 first += chunk;
697 }
698 }
699
700 /*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 int i;
708 int bits;
709
710 grp->bb_largest_free_order = -1; /* uninit */
711
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
717 }
718 }
719 }
720
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
724 {
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
734
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
751 }
752 grp->bb_fragments = fragments;
753
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
759 /*
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
762 */
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 }
769 mb_set_largest_free_order(sb, grp);
770
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 int count;
783 int order = 1;
784 void *buddy;
785
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
788 }
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
793
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
796 }
797
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
835
836 mb_debug(1, "init page %lu\n", page->index);
837
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = 1 << inode->i_blkbits;
842 blocks_per_page = PAGE_SIZE / blocksize;
843
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
847
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, gfp);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
855 }
856 } else
857 bh = &bhs;
858
859 first_group = page->index * blocks_per_page / 2;
860
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
865
866 grinfo = ext4_get_group_info(sb, group);
867 /*
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
872 */
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
876 }
877 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 if (IS_ERR(bh[i])) {
879 err = PTR_ERR(bh[i]);
880 bh[i] = NULL;
881 goto out;
882 }
883 mb_debug(1, "read bitmap for group %u\n", group);
884 }
885
886 /* wait for I/O completion */
887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 int err2;
889
890 if (!bh[i])
891 continue;
892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 if (!err)
894 err = err2;
895 }
896
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 group = (first_block + i) >> 1;
900 if (group >= ngroups)
901 break;
902
903 if (!bh[group - first_group])
904 /* skip initialized uptodate buddy */
905 continue;
906
907 if (!buffer_verified(bh[group - first_group]))
908 /* Skip faulty bitmaps */
909 continue;
910 err = 0;
911
912 /*
913 * data carry information regarding this
914 * particular group in the format specified
915 * above
916 *
917 */
918 data = page_address(page) + (i * blocksize);
919 bitmap = bh[group - first_group]->b_data;
920
921 /*
922 * We place the buddy block and bitmap block
923 * close together
924 */
925 if ((first_block + i) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore == NULL);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_buddy_bitmap_load(sb, group);
931 grinfo = ext4_get_group_info(sb, group);
932 grinfo->bb_fragments = 0;
933 memset(grinfo->bb_counters, 0,
934 sizeof(*grinfo->bb_counters) *
935 (sb->s_blocksize_bits+2));
936 /*
937 * incore got set to the group block bitmap below
938 */
939 ext4_lock_group(sb, group);
940 /* init the buddy */
941 memset(data, 0xff, blocksize);
942 ext4_mb_generate_buddy(sb, data, incore, group);
943 ext4_unlock_group(sb, group);
944 incore = NULL;
945 } else {
946 /* this is block of bitmap */
947 BUG_ON(incore != NULL);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group, page->index, i * blocksize);
950 trace_ext4_mb_bitmap_load(sb, group);
951
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb, group);
954 memcpy(data, bitmap, blocksize);
955
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb, data, group);
958 ext4_mb_generate_from_freelist(sb, data, group);
959 ext4_unlock_group(sb, group);
960
961 /* set incore so that the buddy information can be
962 * generated using this
963 */
964 incore = data;
965 }
966 }
967 SetPageUptodate(page);
968
969 out:
970 if (bh) {
971 for (i = 0; i < groups_per_page; i++)
972 brelse(bh[i]);
973 if (bh != &bhs)
974 kfree(bh);
975 }
976 return err;
977 }
978
979 /*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 int block, pnum, poff;
990 int blocks_per_page;
991 struct page *page;
992
993 e4b->bd_buddy_page = NULL;
994 e4b->bd_bitmap_page = NULL;
995
996 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 /*
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1001 */
1002 block = group * 2;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 if (!page)
1007 return -ENOMEM;
1008 BUG_ON(page->mapping != inode->i_mapping);
1009 e4b->bd_bitmap_page = page;
1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012 if (blocks_per_page >= 2) {
1013 /* buddy and bitmap are on the same page */
1014 return 0;
1015 }
1016
1017 block++;
1018 pnum = block / blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 if (!page)
1021 return -ENOMEM;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025 }
1026
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 put_page(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 put_page(e4b->bd_buddy_page);
1036 }
1037 }
1038
1039 /*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 might_sleep();
1054 mb_debug(1, "init group %u\n", group);
1055 this_grp = ext4_get_group_info(sb, group);
1056 /*
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1062 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 * page accessed.
1064 */
1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 /*
1068 * somebody initialized the group
1069 * return without doing anything
1070 */
1071 goto err;
1072 }
1073
1074 page = e4b.bd_bitmap_page;
1075 ret = ext4_mb_init_cache(page, NULL, gfp);
1076 if (ret)
1077 goto err;
1078 if (!PageUptodate(page)) {
1079 ret = -EIO;
1080 goto err;
1081 }
1082
1083 if (e4b.bd_buddy_page == NULL) {
1084 /*
1085 * If both the bitmap and buddy are in
1086 * the same page we don't need to force
1087 * init the buddy
1088 */
1089 ret = 0;
1090 goto err;
1091 }
1092 /* init buddy cache */
1093 page = e4b.bd_buddy_page;
1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 if (ret)
1096 goto err;
1097 if (!PageUptodate(page)) {
1098 ret = -EIO;
1099 goto err;
1100 }
1101 err:
1102 ext4_mb_put_buddy_page_lock(&e4b);
1103 return ret;
1104 }
1105
1106 /*
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 int blocks_per_page;
1116 int block;
1117 int pnum;
1118 int poff;
1119 struct page *page;
1120 int ret;
1121 struct ext4_group_info *grp;
1122 struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 struct inode *inode = sbi->s_buddy_cache;
1124
1125 might_sleep();
1126 mb_debug(1, "load group %u\n", group);
1127
1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 grp = ext4_get_group_info(sb, group);
1130
1131 e4b->bd_blkbits = sb->s_blocksize_bits;
1132 e4b->bd_info = grp;
1133 e4b->bd_sb = sb;
1134 e4b->bd_group = group;
1135 e4b->bd_buddy_page = NULL;
1136 e4b->bd_bitmap_page = NULL;
1137
1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 /*
1140 * we need full data about the group
1141 * to make a good selection
1142 */
1143 ret = ext4_mb_init_group(sb, group, gfp);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 /*
1149 * the buddy cache inode stores the block bitmap
1150 * and buddy information in consecutive blocks.
1151 * So for each group we need two blocks.
1152 */
1153 block = group * 2;
1154 pnum = block / blocks_per_page;
1155 poff = block % blocks_per_page;
1156
1157 /* we could use find_or_create_page(), but it locks page
1158 * what we'd like to avoid in fast path ... */
1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 if (page == NULL || !PageUptodate(page)) {
1161 if (page)
1162 /*
1163 * drop the page reference and try
1164 * to get the page with lock. If we
1165 * are not uptodate that implies
1166 * somebody just created the page but
1167 * is yet to initialize the same. So
1168 * wait for it to initialize.
1169 */
1170 put_page(page);
1171 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 if (page) {
1173 BUG_ON(page->mapping != inode->i_mapping);
1174 if (!PageUptodate(page)) {
1175 ret = ext4_mb_init_cache(page, NULL, gfp);
1176 if (ret) {
1177 unlock_page(page);
1178 goto err;
1179 }
1180 mb_cmp_bitmaps(e4b, page_address(page) +
1181 (poff * sb->s_blocksize));
1182 }
1183 unlock_page(page);
1184 }
1185 }
1186 if (page == NULL) {
1187 ret = -ENOMEM;
1188 goto err;
1189 }
1190 if (!PageUptodate(page)) {
1191 ret = -EIO;
1192 goto err;
1193 }
1194
1195 /* Pages marked accessed already */
1196 e4b->bd_bitmap_page = page;
1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199 block++;
1200 pnum = block / blocks_per_page;
1201 poff = block % blocks_per_page;
1202
1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 if (page == NULL || !PageUptodate(page)) {
1205 if (page)
1206 put_page(page);
1207 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 if (page) {
1209 BUG_ON(page->mapping != inode->i_mapping);
1210 if (!PageUptodate(page)) {
1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 gfp);
1213 if (ret) {
1214 unlock_page(page);
1215 goto err;
1216 }
1217 }
1218 unlock_page(page);
1219 }
1220 }
1221 if (page == NULL) {
1222 ret = -ENOMEM;
1223 goto err;
1224 }
1225 if (!PageUptodate(page)) {
1226 ret = -EIO;
1227 goto err;
1228 }
1229
1230 /* Pages marked accessed already */
1231 e4b->bd_buddy_page = page;
1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234 BUG_ON(e4b->bd_bitmap_page == NULL);
1235 BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237 return 0;
1238
1239 err:
1240 if (page)
1241 put_page(page);
1242 if (e4b->bd_bitmap_page)
1243 put_page(e4b->bd_bitmap_page);
1244 if (e4b->bd_buddy_page)
1245 put_page(e4b->bd_buddy_page);
1246 e4b->bd_buddy = NULL;
1247 e4b->bd_bitmap = NULL;
1248 return ret;
1249 }
1250
1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 struct ext4_buddy *e4b)
1253 {
1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256
1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 if (e4b->bd_bitmap_page)
1260 put_page(e4b->bd_bitmap_page);
1261 if (e4b->bd_buddy_page)
1262 put_page(e4b->bd_buddy_page);
1263 }
1264
1265
1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 int order = 1;
1269 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 void *bb;
1271
1272 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274
1275 bb = e4b->bd_buddy;
1276 while (order <= e4b->bd_blkbits + 1) {
1277 block = block >> 1;
1278 if (!mb_test_bit(block, bb)) {
1279 /* this block is part of buddy of order 'order' */
1280 return order;
1281 }
1282 bb += bb_incr;
1283 bb_incr >>= 1;
1284 order++;
1285 }
1286 return 0;
1287 }
1288
1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 __u32 *addr;
1292
1293 len = cur + len;
1294 while (cur < len) {
1295 if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 /* fast path: clear whole word at once */
1297 addr = bm + (cur >> 3);
1298 *addr = 0;
1299 cur += 32;
1300 continue;
1301 }
1302 mb_clear_bit(cur, bm);
1303 cur++;
1304 }
1305 }
1306
1307 /* clear bits in given range
1308 * will return first found zero bit if any, -1 otherwise
1309 */
1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 __u32 *addr;
1313 int zero_bit = -1;
1314
1315 len = cur + len;
1316 while (cur < len) {
1317 if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 /* fast path: clear whole word at once */
1319 addr = bm + (cur >> 3);
1320 if (*addr != (__u32)(-1) && zero_bit == -1)
1321 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 *addr = 0;
1323 cur += 32;
1324 continue;
1325 }
1326 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 zero_bit = cur;
1328 cur++;
1329 }
1330
1331 return zero_bit;
1332 }
1333
1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 __u32 *addr;
1337
1338 len = cur + len;
1339 while (cur < len) {
1340 if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 /* fast path: set whole word at once */
1342 addr = bm + (cur >> 3);
1343 *addr = 0xffffffff;
1344 cur += 32;
1345 continue;
1346 }
1347 mb_set_bit(cur, bm);
1348 cur++;
1349 }
1350 }
1351
1352 /*
1353 * _________________________________________________________________ */
1354
1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 if (mb_test_bit(*bit + side, bitmap)) {
1358 mb_clear_bit(*bit, bitmap);
1359 (*bit) -= side;
1360 return 1;
1361 }
1362 else {
1363 (*bit) += side;
1364 mb_set_bit(*bit, bitmap);
1365 return -1;
1366 }
1367 }
1368
1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 int max;
1372 int order = 1;
1373 void *buddy = mb_find_buddy(e4b, order, &max);
1374
1375 while (buddy) {
1376 void *buddy2;
1377
1378 /* Bits in range [first; last] are known to be set since
1379 * corresponding blocks were allocated. Bits in range
1380 * (first; last) will stay set because they form buddies on
1381 * upper layer. We just deal with borders if they don't
1382 * align with upper layer and then go up.
1383 * Releasing entire group is all about clearing
1384 * single bit of highest order buddy.
1385 */
1386
1387 /* Example:
1388 * ---------------------------------
1389 * | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 * ---------------------------------
1393 * 0 1 2 3 4 5 6 7
1394 * \_____________________/
1395 *
1396 * Neither [1] nor [6] is aligned to above layer.
1397 * Left neighbour [0] is free, so mark it busy,
1398 * decrease bb_counters and extend range to
1399 * [0; 6]
1400 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 * mark [6] free, increase bb_counters and shrink range to
1402 * [0; 5].
1403 * Then shift range to [0; 2], go up and do the same.
1404 */
1405
1406
1407 if (first & 1)
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 if (!(last & 1))
1410 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 if (first > last)
1412 break;
1413 order++;
1414
1415 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 mb_clear_bits(buddy, first, last - first + 1);
1417 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 break;
1419 }
1420 first >>= 1;
1421 last >>= 1;
1422 buddy = buddy2;
1423 }
1424 }
1425
1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 int first, int count)
1428 {
1429 int left_is_free = 0;
1430 int right_is_free = 0;
1431 int block;
1432 int last = first + count - 1;
1433 struct super_block *sb = e4b->bd_sb;
1434
1435 if (WARN_ON(count == 0))
1436 return;
1437 BUG_ON(last >= (sb->s_blocksize << 3));
1438 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 /* Don't bother if the block group is corrupt. */
1440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 return;
1442
1443 mb_check_buddy(e4b);
1444 mb_free_blocks_double(inode, e4b, first, count);
1445
1446 e4b->bd_info->bb_free += count;
1447 if (first < e4b->bd_info->bb_first_free)
1448 e4b->bd_info->bb_first_free = first;
1449
1450 /* access memory sequentially: check left neighbour,
1451 * clear range and then check right neighbour
1452 */
1453 if (first != 0)
1454 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458
1459 if (unlikely(block != -1)) {
1460 struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 ext4_fsblk_t blocknr;
1462
1463 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 ext4_grp_locked_error(sb, e4b->bd_group,
1466 inode ? inode->i_ino : 0,
1467 blocknr,
1468 "freeing already freed block "
1469 "(bit %u); block bitmap corrupt.",
1470 block);
1471 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 e4b->bd_info->bb_free);
1474 /* Mark the block group as corrupt. */
1475 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 &e4b->bd_info->bb_state);
1477 mb_regenerate_buddy(e4b);
1478 goto done;
1479 }
1480
1481 /* let's maintain fragments counter */
1482 if (left_is_free && right_is_free)
1483 e4b->bd_info->bb_fragments--;
1484 else if (!left_is_free && !right_is_free)
1485 e4b->bd_info->bb_fragments++;
1486
1487 /* buddy[0] == bd_bitmap is a special case, so handle
1488 * it right away and let mb_buddy_mark_free stay free of
1489 * zero order checks.
1490 * Check if neighbours are to be coaleasced,
1491 * adjust bitmap bb_counters and borders appropriately.
1492 */
1493 if (first & 1) {
1494 first += !left_is_free;
1495 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 }
1497 if (!(last & 1)) {
1498 last -= !right_is_free;
1499 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 }
1501
1502 if (first <= last)
1503 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504
1505 done:
1506 mb_set_largest_free_order(sb, e4b->bd_info);
1507 mb_check_buddy(e4b);
1508 }
1509
1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 int needed, struct ext4_free_extent *ex)
1512 {
1513 int next = block;
1514 int max, order;
1515 void *buddy;
1516
1517 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 BUG_ON(ex == NULL);
1519
1520 buddy = mb_find_buddy(e4b, 0, &max);
1521 BUG_ON(buddy == NULL);
1522 BUG_ON(block >= max);
1523 if (mb_test_bit(block, buddy)) {
1524 ex->fe_len = 0;
1525 ex->fe_start = 0;
1526 ex->fe_group = 0;
1527 return 0;
1528 }
1529
1530 /* find actual order */
1531 order = mb_find_order_for_block(e4b, block);
1532 block = block >> order;
1533
1534 ex->fe_len = 1 << order;
1535 ex->fe_start = block << order;
1536 ex->fe_group = e4b->bd_group;
1537
1538 /* calc difference from given start */
1539 next = next - ex->fe_start;
1540 ex->fe_len -= next;
1541 ex->fe_start += next;
1542
1543 while (needed > ex->fe_len &&
1544 mb_find_buddy(e4b, order, &max)) {
1545
1546 if (block + 1 >= max)
1547 break;
1548
1549 next = (block + 1) * (1 << order);
1550 if (mb_test_bit(next, e4b->bd_bitmap))
1551 break;
1552
1553 order = mb_find_order_for_block(e4b, next);
1554
1555 block = next >> order;
1556 ex->fe_len += 1 << order;
1557 }
1558
1559 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 return ex->fe_len;
1561 }
1562
1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 int ord;
1566 int mlen = 0;
1567 int max = 0;
1568 int cur;
1569 int start = ex->fe_start;
1570 int len = ex->fe_len;
1571 unsigned ret = 0;
1572 int len0 = len;
1573 void *buddy;
1574
1575 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 BUG_ON(e4b->bd_group != ex->fe_group);
1577 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 mb_check_buddy(e4b);
1579 mb_mark_used_double(e4b, start, len);
1580
1581 e4b->bd_info->bb_free -= len;
1582 if (e4b->bd_info->bb_first_free == start)
1583 e4b->bd_info->bb_first_free += len;
1584
1585 /* let's maintain fragments counter */
1586 if (start != 0)
1587 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 if (mlen && max)
1591 e4b->bd_info->bb_fragments++;
1592 else if (!mlen && !max)
1593 e4b->bd_info->bb_fragments--;
1594
1595 /* let's maintain buddy itself */
1596 while (len) {
1597 ord = mb_find_order_for_block(e4b, start);
1598
1599 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 /* the whole chunk may be allocated at once! */
1601 mlen = 1 << ord;
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 BUG_ON((start >> ord) >= max);
1604 mb_set_bit(start >> ord, buddy);
1605 e4b->bd_info->bb_counters[ord]--;
1606 start += mlen;
1607 len -= mlen;
1608 BUG_ON(len < 0);
1609 continue;
1610 }
1611
1612 /* store for history */
1613 if (ret == 0)
1614 ret = len | (ord << 16);
1615
1616 /* we have to split large buddy */
1617 BUG_ON(ord <= 0);
1618 buddy = mb_find_buddy(e4b, ord, &max);
1619 mb_set_bit(start >> ord, buddy);
1620 e4b->bd_info->bb_counters[ord]--;
1621
1622 ord--;
1623 cur = (start >> ord) & ~1U;
1624 buddy = mb_find_buddy(e4b, ord, &max);
1625 mb_clear_bit(cur, buddy);
1626 mb_clear_bit(cur + 1, buddy);
1627 e4b->bd_info->bb_counters[ord]++;
1628 e4b->bd_info->bb_counters[ord]++;
1629 }
1630 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631
1632 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 mb_check_buddy(e4b);
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Must be called under group lock!
1640 */
1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 struct ext4_buddy *e4b)
1643 {
1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 int ret;
1646
1647 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649
1650 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653
1654 /* preallocation can change ac_b_ex, thus we store actually
1655 * allocated blocks for history */
1656 ac->ac_f_ex = ac->ac_b_ex;
1657
1658 ac->ac_status = AC_STATUS_FOUND;
1659 ac->ac_tail = ret & 0xffff;
1660 ac->ac_buddy = ret >> 16;
1661
1662 /*
1663 * take the page reference. We want the page to be pinned
1664 * so that we don't get a ext4_mb_init_cache_call for this
1665 * group until we update the bitmap. That would mean we
1666 * double allocate blocks. The reference is dropped
1667 * in ext4_mb_release_context
1668 */
1669 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 get_page(ac->ac_bitmap_page);
1671 ac->ac_buddy_page = e4b->bd_buddy_page;
1672 get_page(ac->ac_buddy_page);
1673 /* store last allocated for subsequent stream allocation */
1674 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 spin_lock(&sbi->s_md_lock);
1676 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 spin_unlock(&sbi->s_md_lock);
1679 }
1680 }
1681
1682 /*
1683 * regular allocator, for general purposes allocation
1684 */
1685
1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 struct ext4_buddy *e4b,
1688 int finish_group)
1689 {
1690 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 struct ext4_free_extent ex;
1694 int max;
1695
1696 if (ac->ac_status == AC_STATUS_FOUND)
1697 return;
1698 /*
1699 * We don't want to scan for a whole year
1700 */
1701 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 ac->ac_status = AC_STATUS_BREAK;
1704 return;
1705 }
1706
1707 /*
1708 * Haven't found good chunk so far, let's continue
1709 */
1710 if (bex->fe_len < gex->fe_len)
1711 return;
1712
1713 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 && bex->fe_group == e4b->bd_group) {
1715 /* recheck chunk's availability - we don't know
1716 * when it was found (within this lock-unlock
1717 * period or not) */
1718 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 if (max >= gex->fe_len) {
1720 ext4_mb_use_best_found(ac, e4b);
1721 return;
1722 }
1723 }
1724 }
1725
1726 /*
1727 * The routine checks whether found extent is good enough. If it is,
1728 * then the extent gets marked used and flag is set to the context
1729 * to stop scanning. Otherwise, the extent is compared with the
1730 * previous found extent and if new one is better, then it's stored
1731 * in the context. Later, the best found extent will be used, if
1732 * mballoc can't find good enough extent.
1733 *
1734 * FIXME: real allocation policy is to be designed yet!
1735 */
1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 struct ext4_free_extent *ex,
1738 struct ext4_buddy *e4b)
1739 {
1740 struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 struct ext4_free_extent *gex = &ac->ac_g_ex;
1742
1743 BUG_ON(ex->fe_len <= 0);
1744 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747
1748 ac->ac_found++;
1749
1750 /*
1751 * The special case - take what you catch first
1752 */
1753 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 *bex = *ex;
1755 ext4_mb_use_best_found(ac, e4b);
1756 return;
1757 }
1758
1759 /*
1760 * Let's check whether the chuck is good enough
1761 */
1762 if (ex->fe_len == gex->fe_len) {
1763 *bex = *ex;
1764 ext4_mb_use_best_found(ac, e4b);
1765 return;
1766 }
1767
1768 /*
1769 * If this is first found extent, just store it in the context
1770 */
1771 if (bex->fe_len == 0) {
1772 *bex = *ex;
1773 return;
1774 }
1775
1776 /*
1777 * If new found extent is better, store it in the context
1778 */
1779 if (bex->fe_len < gex->fe_len) {
1780 /* if the request isn't satisfied, any found extent
1781 * larger than previous best one is better */
1782 if (ex->fe_len > bex->fe_len)
1783 *bex = *ex;
1784 } else if (ex->fe_len > gex->fe_len) {
1785 /* if the request is satisfied, then we try to find
1786 * an extent that still satisfy the request, but is
1787 * smaller than previous one */
1788 if (ex->fe_len < bex->fe_len)
1789 *bex = *ex;
1790 }
1791
1792 ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794
1795 static noinline_for_stack
1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 struct ext4_buddy *e4b)
1798 {
1799 struct ext4_free_extent ex = ac->ac_b_ex;
1800 ext4_group_t group = ex.fe_group;
1801 int max;
1802 int err;
1803
1804 BUG_ON(ex.fe_len <= 0);
1805 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 if (err)
1807 return err;
1808
1809 ext4_lock_group(ac->ac_sb, group);
1810 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811
1812 if (max > 0) {
1813 ac->ac_b_ex = ex;
1814 ext4_mb_use_best_found(ac, e4b);
1815 }
1816
1817 ext4_unlock_group(ac->ac_sb, group);
1818 ext4_mb_unload_buddy(e4b);
1819
1820 return 0;
1821 }
1822
1823 static noinline_for_stack
1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 struct ext4_buddy *e4b)
1826 {
1827 ext4_group_t group = ac->ac_g_ex.fe_group;
1828 int max;
1829 int err;
1830 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 struct ext4_free_extent ex;
1833
1834 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 return 0;
1836 if (grp->bb_free == 0)
1837 return 0;
1838
1839 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 if (err)
1841 return err;
1842
1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 ext4_mb_unload_buddy(e4b);
1845 return 0;
1846 }
1847
1848 ext4_lock_group(ac->ac_sb, group);
1849 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 ac->ac_g_ex.fe_len, &ex);
1851 ex.fe_logical = 0xDEADFA11; /* debug value */
1852
1853 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 ext4_fsblk_t start;
1855
1856 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 ex.fe_start;
1858 /* use do_div to get remainder (would be 64-bit modulo) */
1859 if (do_div(start, sbi->s_stripe) == 0) {
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 } else if (max >= ac->ac_g_ex.fe_len) {
1865 BUG_ON(ex.fe_len <= 0);
1866 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 /* Sometimes, caller may want to merge even small
1873 * number of blocks to an existing extent */
1874 BUG_ON(ex.fe_len <= 0);
1875 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 ac->ac_found++;
1878 ac->ac_b_ex = ex;
1879 ext4_mb_use_best_found(ac, e4b);
1880 }
1881 ext4_unlock_group(ac->ac_sb, group);
1882 ext4_mb_unload_buddy(e4b);
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * The routine scans buddy structures (not bitmap!) from given order
1889 * to max order and tries to find big enough chunk to satisfy the req
1890 */
1891 static noinline_for_stack
1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 struct ext4_buddy *e4b)
1894 {
1895 struct super_block *sb = ac->ac_sb;
1896 struct ext4_group_info *grp = e4b->bd_info;
1897 void *buddy;
1898 int i;
1899 int k;
1900 int max;
1901
1902 BUG_ON(ac->ac_2order <= 0);
1903 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 if (grp->bb_counters[i] == 0)
1905 continue;
1906
1907 buddy = mb_find_buddy(e4b, i, &max);
1908 BUG_ON(buddy == NULL);
1909
1910 k = mb_find_next_zero_bit(buddy, max, 0);
1911 BUG_ON(k >= max);
1912
1913 ac->ac_found++;
1914
1915 ac->ac_b_ex.fe_len = 1 << i;
1916 ac->ac_b_ex.fe_start = k << i;
1917 ac->ac_b_ex.fe_group = e4b->bd_group;
1918
1919 ext4_mb_use_best_found(ac, e4b);
1920
1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922
1923 if (EXT4_SB(sb)->s_mb_stats)
1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925
1926 break;
1927 }
1928 }
1929
1930 /*
1931 * The routine scans the group and measures all found extents.
1932 * In order to optimize scanning, caller must pass number of
1933 * free blocks in the group, so the routine can know upper limit.
1934 */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 struct ext4_buddy *e4b)
1938 {
1939 struct super_block *sb = ac->ac_sb;
1940 void *bitmap = e4b->bd_bitmap;
1941 struct ext4_free_extent ex;
1942 int i;
1943 int free;
1944
1945 free = e4b->bd_info->bb_free;
1946 BUG_ON(free <= 0);
1947
1948 i = e4b->bd_info->bb_first_free;
1949
1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 i = mb_find_next_zero_bit(bitmap,
1952 EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 /*
1955 * IF we have corrupt bitmap, we won't find any
1956 * free blocks even though group info says we
1957 * we have free blocks
1958 */
1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 "%d free clusters as per "
1961 "group info. But bitmap says 0",
1962 free);
1963 break;
1964 }
1965
1966 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 BUG_ON(ex.fe_len <= 0);
1968 if (free < ex.fe_len) {
1969 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 "%d free clusters as per "
1971 "group info. But got %d blocks",
1972 free, ex.fe_len);
1973 /*
1974 * The number of free blocks differs. This mostly
1975 * indicate that the bitmap is corrupt. So exit
1976 * without claiming the space.
1977 */
1978 break;
1979 }
1980 ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 ext4_mb_measure_extent(ac, &ex, e4b);
1982
1983 i += ex.fe_len;
1984 free -= ex.fe_len;
1985 }
1986
1987 ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989
1990 /*
1991 * This is a special case for storages like raid5
1992 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993 */
1994 static noinline_for_stack
1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 struct ext4_buddy *e4b)
1997 {
1998 struct super_block *sb = ac->ac_sb;
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 void *bitmap = e4b->bd_bitmap;
2001 struct ext4_free_extent ex;
2002 ext4_fsblk_t first_group_block;
2003 ext4_fsblk_t a;
2004 ext4_grpblk_t i;
2005 int max;
2006
2007 BUG_ON(sbi->s_stripe == 0);
2008
2009 /* find first stripe-aligned block in group */
2010 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011
2012 a = first_group_block + sbi->s_stripe - 1;
2013 do_div(a, sbi->s_stripe);
2014 i = (a * sbi->s_stripe) - first_group_block;
2015
2016 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 if (!mb_test_bit(i, bitmap)) {
2018 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 if (max >= sbi->s_stripe) {
2020 ac->ac_found++;
2021 ex.fe_logical = 0xDEADF00D; /* debug value */
2022 ac->ac_b_ex = ex;
2023 ext4_mb_use_best_found(ac, e4b);
2024 break;
2025 }
2026 }
2027 i += sbi->s_stripe;
2028 }
2029 }
2030
2031 /*
2032 * This is now called BEFORE we load the buddy bitmap.
2033 * Returns either 1 or 0 indicating that the group is either suitable
2034 * for the allocation or not. In addition it can also return negative
2035 * error code when something goes wrong.
2036 */
2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 ext4_group_t group, int cr)
2039 {
2040 unsigned free, fragments;
2041 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043
2044 BUG_ON(cr < 0 || cr >= 4);
2045
2046 free = grp->bb_free;
2047 if (free == 0)
2048 return 0;
2049 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 return 0;
2051
2052 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 return 0;
2054
2055 /* We only do this if the grp has never been initialized */
2056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 if (ret)
2059 return ret;
2060 }
2061
2062 fragments = grp->bb_fragments;
2063 if (fragments == 0)
2064 return 0;
2065
2066 switch (cr) {
2067 case 0:
2068 BUG_ON(ac->ac_2order == 0);
2069
2070 /* Avoid using the first bg of a flexgroup for data files */
2071 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 ((group % flex_size) == 0))
2074 return 0;
2075
2076 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 (free / fragments) >= ac->ac_g_ex.fe_len)
2078 return 1;
2079
2080 if (grp->bb_largest_free_order < ac->ac_2order)
2081 return 0;
2082
2083 return 1;
2084 case 1:
2085 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087 break;
2088 case 2:
2089 if (free >= ac->ac_g_ex.fe_len)
2090 return 1;
2091 break;
2092 case 3:
2093 return 1;
2094 default:
2095 BUG();
2096 }
2097
2098 return 0;
2099 }
2100
2101 static noinline_for_stack int
2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 ext4_group_t ngroups, group, i;
2105 int cr;
2106 int err = 0, first_err = 0;
2107 struct ext4_sb_info *sbi;
2108 struct super_block *sb;
2109 struct ext4_buddy e4b;
2110
2111 sb = ac->ac_sb;
2112 sbi = EXT4_SB(sb);
2113 ngroups = ext4_get_groups_count(sb);
2114 /* non-extent files are limited to low blocks/groups */
2115 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 ngroups = sbi->s_blockfile_groups;
2117
2118 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119
2120 /* first, try the goal */
2121 err = ext4_mb_find_by_goal(ac, &e4b);
2122 if (err || ac->ac_status == AC_STATUS_FOUND)
2123 goto out;
2124
2125 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 goto out;
2127
2128 /*
2129 * ac->ac2_order is set only if the fe_len is a power of 2
2130 * if ac2_order is set we also set criteria to 0 so that we
2131 * try exact allocation using buddy.
2132 */
2133 i = fls(ac->ac_g_ex.fe_len);
2134 ac->ac_2order = 0;
2135 /*
2136 * We search using buddy data only if the order of the request
2137 * is greater than equal to the sbi_s_mb_order2_reqs
2138 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 */
2140 if (i >= sbi->s_mb_order2_reqs) {
2141 /*
2142 * This should tell if fe_len is exactly power of 2
2143 */
2144 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2145 ac->ac_2order = i - 1;
2146 }
2147
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2155 }
2156
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2159 /*
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2162 */
2163 repeat:
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2166 /*
2167 * searching for the right group start
2168 * from the goal value specified
2169 */
2170 group = ac->ac_g_ex.fe_group;
2171
2172 for (i = 0; i < ngroups; group++, i++) {
2173 int ret = 0;
2174 cond_resched();
2175 /*
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2178 */
2179 if (group >= ngroups)
2180 group = 0;
2181
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 if (!first_err)
2186 first_err = ret;
2187 continue;
2188 }
2189
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2191 if (err)
2192 goto out;
2193
2194 ext4_lock_group(sb, group);
2195
2196 /*
2197 * We need to check again after locking the
2198 * block group
2199 */
2200 ret = ext4_mb_good_group(ac, group, cr);
2201 if (ret <= 0) {
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2204 if (!first_err)
2205 first_err = ret;
2206 continue;
2207 }
2208
2209 ac->ac_groups_scanned++;
2210 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2215 else
2216 ext4_mb_complex_scan_group(ac, &e4b);
2217
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2220
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2222 break;
2223 }
2224 }
2225
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 /*
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2231 */
2232
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2235 /*
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2238 * found block(s)
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 */
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 cr = 3;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2248 goto repeat;
2249 }
2250 }
2251 out:
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 err = first_err;
2254 return err;
2255 }
2256
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 struct super_block *sb = seq->private;
2260 ext4_group_t group;
2261
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 return NULL;
2264 group = *pos + 1;
2265 return (void *) ((unsigned long) group);
2266 }
2267
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 struct super_block *sb = seq->private;
2271 ext4_group_t group;
2272
2273 ++*pos;
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return NULL;
2276 group = *pos + 1;
2277 return (void *) ((unsigned long) group);
2278 }
2279
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 struct super_block *sb = seq->private;
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 int i;
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 struct sg {
2289 struct ext4_group_info info;
2290 ext4_grpblk_t counters[16];
2291 } sg;
2292
2293 group--;
2294 if (group == 0)
2295 seq_puts(seq, "#group: free frags first ["
2296 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2297 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2298
2299 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2300 sizeof(struct ext4_group_info);
2301 grinfo = ext4_get_group_info(sb, group);
2302 /* Load the group info in memory only if not already loaded. */
2303 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2304 err = ext4_mb_load_buddy(sb, group, &e4b);
2305 if (err) {
2306 seq_printf(seq, "#%-5u: I/O error\n", group);
2307 return 0;
2308 }
2309 buddy_loaded = 1;
2310 }
2311
2312 memcpy(&sg, ext4_get_group_info(sb, group), i);
2313
2314 if (buddy_loaded)
2315 ext4_mb_unload_buddy(&e4b);
2316
2317 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 sg.info.bb_fragments, sg.info.bb_first_free);
2319 for (i = 0; i <= 13; i++)
2320 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2321 sg.info.bb_counters[i] : 0);
2322 seq_printf(seq, " ]\n");
2323
2324 return 0;
2325 }
2326
2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2328 {
2329 }
2330
2331 static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 .start = ext4_mb_seq_groups_start,
2333 .next = ext4_mb_seq_groups_next,
2334 .stop = ext4_mb_seq_groups_stop,
2335 .show = ext4_mb_seq_groups_show,
2336 };
2337
2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2339 {
2340 struct super_block *sb = PDE_DATA(inode);
2341 int rc;
2342
2343 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2344 if (rc == 0) {
2345 struct seq_file *m = file->private_data;
2346 m->private = sb;
2347 }
2348 return rc;
2349
2350 }
2351
2352 const struct file_operations ext4_seq_mb_groups_fops = {
2353 .owner = THIS_MODULE,
2354 .open = ext4_mb_seq_groups_open,
2355 .read = seq_read,
2356 .llseek = seq_lseek,
2357 .release = seq_release,
2358 };
2359
2360 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2361 {
2362 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2363 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2364
2365 BUG_ON(!cachep);
2366 return cachep;
2367 }
2368
2369 /*
2370 * Allocate the top-level s_group_info array for the specified number
2371 * of groups
2372 */
2373 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2374 {
2375 struct ext4_sb_info *sbi = EXT4_SB(sb);
2376 unsigned size;
2377 struct ext4_group_info ***new_groupinfo;
2378
2379 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2380 EXT4_DESC_PER_BLOCK_BITS(sb);
2381 if (size <= sbi->s_group_info_size)
2382 return 0;
2383
2384 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2385 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2386 if (!new_groupinfo) {
2387 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2388 return -ENOMEM;
2389 }
2390 if (sbi->s_group_info) {
2391 memcpy(new_groupinfo, sbi->s_group_info,
2392 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2393 kvfree(sbi->s_group_info);
2394 }
2395 sbi->s_group_info = new_groupinfo;
2396 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2397 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2398 sbi->s_group_info_size);
2399 return 0;
2400 }
2401
2402 /* Create and initialize ext4_group_info data for the given group. */
2403 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2404 struct ext4_group_desc *desc)
2405 {
2406 int i;
2407 int metalen = 0;
2408 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 struct ext4_group_info **meta_group_info;
2410 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411
2412 /*
2413 * First check if this group is the first of a reserved block.
2414 * If it's true, we have to allocate a new table of pointers
2415 * to ext4_group_info structures
2416 */
2417 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2418 metalen = sizeof(*meta_group_info) <<
2419 EXT4_DESC_PER_BLOCK_BITS(sb);
2420 meta_group_info = kmalloc(metalen, GFP_NOFS);
2421 if (meta_group_info == NULL) {
2422 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423 "for a buddy group");
2424 goto exit_meta_group_info;
2425 }
2426 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2427 meta_group_info;
2428 }
2429
2430 meta_group_info =
2431 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2432 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2433
2434 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435 if (meta_group_info[i] == NULL) {
2436 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 goto exit_group_info;
2438 }
2439 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2440 &(meta_group_info[i]->bb_state));
2441
2442 /*
2443 * initialize bb_free to be able to skip
2444 * empty groups without initialization
2445 */
2446 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2447 meta_group_info[i]->bb_free =
2448 ext4_free_clusters_after_init(sb, group, desc);
2449 } else {
2450 meta_group_info[i]->bb_free =
2451 ext4_free_group_clusters(sb, desc);
2452 }
2453
2454 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2455 init_rwsem(&meta_group_info[i]->alloc_sem);
2456 meta_group_info[i]->bb_free_root = RB_ROOT;
2457 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2458
2459 #ifdef DOUBLE_CHECK
2460 {
2461 struct buffer_head *bh;
2462 meta_group_info[i]->bb_bitmap =
2463 kmalloc(sb->s_blocksize, GFP_NOFS);
2464 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2465 bh = ext4_read_block_bitmap(sb, group);
2466 BUG_ON(IS_ERR_OR_NULL(bh));
2467 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2468 sb->s_blocksize);
2469 put_bh(bh);
2470 }
2471 #endif
2472
2473 return 0;
2474
2475 exit_group_info:
2476 /* If a meta_group_info table has been allocated, release it now */
2477 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2478 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2479 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2480 }
2481 exit_meta_group_info:
2482 return -ENOMEM;
2483 } /* ext4_mb_add_groupinfo */
2484
2485 static int ext4_mb_init_backend(struct super_block *sb)
2486 {
2487 ext4_group_t ngroups = ext4_get_groups_count(sb);
2488 ext4_group_t i;
2489 struct ext4_sb_info *sbi = EXT4_SB(sb);
2490 int err;
2491 struct ext4_group_desc *desc;
2492 struct kmem_cache *cachep;
2493
2494 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2495 if (err)
2496 return err;
2497
2498 sbi->s_buddy_cache = new_inode(sb);
2499 if (sbi->s_buddy_cache == NULL) {
2500 ext4_msg(sb, KERN_ERR, "can't get new inode");
2501 goto err_freesgi;
2502 }
2503 /* To avoid potentially colliding with an valid on-disk inode number,
2504 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2505 * not in the inode hash, so it should never be found by iget(), but
2506 * this will avoid confusion if it ever shows up during debugging. */
2507 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2508 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2509 for (i = 0; i < ngroups; i++) {
2510 desc = ext4_get_group_desc(sb, i, NULL);
2511 if (desc == NULL) {
2512 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2513 goto err_freebuddy;
2514 }
2515 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2516 goto err_freebuddy;
2517 }
2518
2519 return 0;
2520
2521 err_freebuddy:
2522 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2523 while (i-- > 0)
2524 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2525 i = sbi->s_group_info_size;
2526 while (i-- > 0)
2527 kfree(sbi->s_group_info[i]);
2528 iput(sbi->s_buddy_cache);
2529 err_freesgi:
2530 kvfree(sbi->s_group_info);
2531 return -ENOMEM;
2532 }
2533
2534 static void ext4_groupinfo_destroy_slabs(void)
2535 {
2536 int i;
2537
2538 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2539 if (ext4_groupinfo_caches[i])
2540 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2541 ext4_groupinfo_caches[i] = NULL;
2542 }
2543 }
2544
2545 static int ext4_groupinfo_create_slab(size_t size)
2546 {
2547 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2548 int slab_size;
2549 int blocksize_bits = order_base_2(size);
2550 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2551 struct kmem_cache *cachep;
2552
2553 if (cache_index >= NR_GRPINFO_CACHES)
2554 return -EINVAL;
2555
2556 if (unlikely(cache_index < 0))
2557 cache_index = 0;
2558
2559 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2560 if (ext4_groupinfo_caches[cache_index]) {
2561 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2562 return 0; /* Already created */
2563 }
2564
2565 slab_size = offsetof(struct ext4_group_info,
2566 bb_counters[blocksize_bits + 2]);
2567
2568 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2569 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2570 NULL);
2571
2572 ext4_groupinfo_caches[cache_index] = cachep;
2573
2574 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2575 if (!cachep) {
2576 printk(KERN_EMERG
2577 "EXT4-fs: no memory for groupinfo slab cache\n");
2578 return -ENOMEM;
2579 }
2580
2581 return 0;
2582 }
2583
2584 int ext4_mb_init(struct super_block *sb)
2585 {
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 unsigned i, j;
2588 unsigned offset, offset_incr;
2589 unsigned max;
2590 int ret;
2591
2592 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2593
2594 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2595 if (sbi->s_mb_offsets == NULL) {
2596 ret = -ENOMEM;
2597 goto out;
2598 }
2599
2600 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2601 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2602 if (sbi->s_mb_maxs == NULL) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606
2607 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2608 if (ret < 0)
2609 goto out;
2610
2611 /* order 0 is regular bitmap */
2612 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2613 sbi->s_mb_offsets[0] = 0;
2614
2615 i = 1;
2616 offset = 0;
2617 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2618 max = sb->s_blocksize << 2;
2619 do {
2620 sbi->s_mb_offsets[i] = offset;
2621 sbi->s_mb_maxs[i] = max;
2622 offset += offset_incr;
2623 offset_incr = offset_incr >> 1;
2624 max = max >> 1;
2625 i++;
2626 } while (i <= sb->s_blocksize_bits + 1);
2627
2628 spin_lock_init(&sbi->s_md_lock);
2629 spin_lock_init(&sbi->s_bal_lock);
2630
2631 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2632 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2633 sbi->s_mb_stats = MB_DEFAULT_STATS;
2634 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2635 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2636 /*
2637 * The default group preallocation is 512, which for 4k block
2638 * sizes translates to 2 megabytes. However for bigalloc file
2639 * systems, this is probably too big (i.e, if the cluster size
2640 * is 1 megabyte, then group preallocation size becomes half a
2641 * gigabyte!). As a default, we will keep a two megabyte
2642 * group pralloc size for cluster sizes up to 64k, and after
2643 * that, we will force a minimum group preallocation size of
2644 * 32 clusters. This translates to 8 megs when the cluster
2645 * size is 256k, and 32 megs when the cluster size is 1 meg,
2646 * which seems reasonable as a default.
2647 */
2648 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2649 sbi->s_cluster_bits, 32);
2650 /*
2651 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2652 * to the lowest multiple of s_stripe which is bigger than
2653 * the s_mb_group_prealloc as determined above. We want
2654 * the preallocation size to be an exact multiple of the
2655 * RAID stripe size so that preallocations don't fragment
2656 * the stripes.
2657 */
2658 if (sbi->s_stripe > 1) {
2659 sbi->s_mb_group_prealloc = roundup(
2660 sbi->s_mb_group_prealloc, sbi->s_stripe);
2661 }
2662
2663 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2664 if (sbi->s_locality_groups == NULL) {
2665 ret = -ENOMEM;
2666 goto out;
2667 }
2668 for_each_possible_cpu(i) {
2669 struct ext4_locality_group *lg;
2670 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2671 mutex_init(&lg->lg_mutex);
2672 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2673 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2674 spin_lock_init(&lg->lg_prealloc_lock);
2675 }
2676
2677 /* init file for buddy data */
2678 ret = ext4_mb_init_backend(sb);
2679 if (ret != 0)
2680 goto out_free_locality_groups;
2681
2682 return 0;
2683
2684 out_free_locality_groups:
2685 free_percpu(sbi->s_locality_groups);
2686 sbi->s_locality_groups = NULL;
2687 out:
2688 kfree(sbi->s_mb_offsets);
2689 sbi->s_mb_offsets = NULL;
2690 kfree(sbi->s_mb_maxs);
2691 sbi->s_mb_maxs = NULL;
2692 return ret;
2693 }
2694
2695 /* need to called with the ext4 group lock held */
2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2697 {
2698 struct ext4_prealloc_space *pa;
2699 struct list_head *cur, *tmp;
2700 int count = 0;
2701
2702 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2703 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2704 list_del(&pa->pa_group_list);
2705 count++;
2706 kmem_cache_free(ext4_pspace_cachep, pa);
2707 }
2708 if (count)
2709 mb_debug(1, "mballoc: %u PAs left\n", count);
2710
2711 }
2712
2713 int ext4_mb_release(struct super_block *sb)
2714 {
2715 ext4_group_t ngroups = ext4_get_groups_count(sb);
2716 ext4_group_t i;
2717 int num_meta_group_infos;
2718 struct ext4_group_info *grinfo;
2719 struct ext4_sb_info *sbi = EXT4_SB(sb);
2720 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2721
2722 if (sbi->s_group_info) {
2723 for (i = 0; i < ngroups; i++) {
2724 grinfo = ext4_get_group_info(sb, i);
2725 #ifdef DOUBLE_CHECK
2726 kfree(grinfo->bb_bitmap);
2727 #endif
2728 ext4_lock_group(sb, i);
2729 ext4_mb_cleanup_pa(grinfo);
2730 ext4_unlock_group(sb, i);
2731 kmem_cache_free(cachep, grinfo);
2732 }
2733 num_meta_group_infos = (ngroups +
2734 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2735 EXT4_DESC_PER_BLOCK_BITS(sb);
2736 for (i = 0; i < num_meta_group_infos; i++)
2737 kfree(sbi->s_group_info[i]);
2738 kvfree(sbi->s_group_info);
2739 }
2740 kfree(sbi->s_mb_offsets);
2741 kfree(sbi->s_mb_maxs);
2742 iput(sbi->s_buddy_cache);
2743 if (sbi->s_mb_stats) {
2744 ext4_msg(sb, KERN_INFO,
2745 "mballoc: %u blocks %u reqs (%u success)",
2746 atomic_read(&sbi->s_bal_allocated),
2747 atomic_read(&sbi->s_bal_reqs),
2748 atomic_read(&sbi->s_bal_success));
2749 ext4_msg(sb, KERN_INFO,
2750 "mballoc: %u extents scanned, %u goal hits, "
2751 "%u 2^N hits, %u breaks, %u lost",
2752 atomic_read(&sbi->s_bal_ex_scanned),
2753 atomic_read(&sbi->s_bal_goals),
2754 atomic_read(&sbi->s_bal_2orders),
2755 atomic_read(&sbi->s_bal_breaks),
2756 atomic_read(&sbi->s_mb_lost_chunks));
2757 ext4_msg(sb, KERN_INFO,
2758 "mballoc: %lu generated and it took %Lu",
2759 sbi->s_mb_buddies_generated,
2760 sbi->s_mb_generation_time);
2761 ext4_msg(sb, KERN_INFO,
2762 "mballoc: %u preallocated, %u discarded",
2763 atomic_read(&sbi->s_mb_preallocated),
2764 atomic_read(&sbi->s_mb_discarded));
2765 }
2766
2767 free_percpu(sbi->s_locality_groups);
2768
2769 return 0;
2770 }
2771
2772 static inline int ext4_issue_discard(struct super_block *sb,
2773 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2774 {
2775 ext4_fsblk_t discard_block;
2776
2777 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2778 ext4_group_first_block_no(sb, block_group));
2779 count = EXT4_C2B(EXT4_SB(sb), count);
2780 trace_ext4_discard_blocks(sb,
2781 (unsigned long long) discard_block, count);
2782 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2783 }
2784
2785 /*
2786 * This function is called by the jbd2 layer once the commit has finished,
2787 * so we know we can free the blocks that were released with that commit.
2788 */
2789 static void ext4_free_data_callback(struct super_block *sb,
2790 struct ext4_journal_cb_entry *jce,
2791 int rc)
2792 {
2793 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2794 struct ext4_buddy e4b;
2795 struct ext4_group_info *db;
2796 int err, count = 0, count2 = 0;
2797
2798 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2799 entry->efd_count, entry->efd_group, entry);
2800
2801 if (test_opt(sb, DISCARD)) {
2802 err = ext4_issue_discard(sb, entry->efd_group,
2803 entry->efd_start_cluster,
2804 entry->efd_count);
2805 if (err && err != -EOPNOTSUPP)
2806 ext4_msg(sb, KERN_WARNING, "discard request in"
2807 " group:%d block:%d count:%d failed"
2808 " with %d", entry->efd_group,
2809 entry->efd_start_cluster,
2810 entry->efd_count, err);
2811 }
2812
2813 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 /* we expect to find existing buddy because it's pinned */
2815 BUG_ON(err != 0);
2816
2817
2818 db = e4b.bd_info;
2819 /* there are blocks to put in buddy to make them really free */
2820 count += entry->efd_count;
2821 count2++;
2822 ext4_lock_group(sb, entry->efd_group);
2823 /* Take it out of per group rb tree */
2824 rb_erase(&entry->efd_node, &(db->bb_free_root));
2825 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2826
2827 /*
2828 * Clear the trimmed flag for the group so that the next
2829 * ext4_trim_fs can trim it.
2830 * If the volume is mounted with -o discard, online discard
2831 * is supported and the free blocks will be trimmed online.
2832 */
2833 if (!test_opt(sb, DISCARD))
2834 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2835
2836 if (!db->bb_free_root.rb_node) {
2837 /* No more items in the per group rb tree
2838 * balance refcounts from ext4_mb_free_metadata()
2839 */
2840 put_page(e4b.bd_buddy_page);
2841 put_page(e4b.bd_bitmap_page);
2842 }
2843 ext4_unlock_group(sb, entry->efd_group);
2844 kmem_cache_free(ext4_free_data_cachep, entry);
2845 ext4_mb_unload_buddy(&e4b);
2846
2847 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2848 }
2849
2850 int __init ext4_init_mballoc(void)
2851 {
2852 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2853 SLAB_RECLAIM_ACCOUNT);
2854 if (ext4_pspace_cachep == NULL)
2855 return -ENOMEM;
2856
2857 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2858 SLAB_RECLAIM_ACCOUNT);
2859 if (ext4_ac_cachep == NULL) {
2860 kmem_cache_destroy(ext4_pspace_cachep);
2861 return -ENOMEM;
2862 }
2863
2864 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2865 SLAB_RECLAIM_ACCOUNT);
2866 if (ext4_free_data_cachep == NULL) {
2867 kmem_cache_destroy(ext4_pspace_cachep);
2868 kmem_cache_destroy(ext4_ac_cachep);
2869 return -ENOMEM;
2870 }
2871 return 0;
2872 }
2873
2874 void ext4_exit_mballoc(void)
2875 {
2876 /*
2877 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2878 * before destroying the slab cache.
2879 */
2880 rcu_barrier();
2881 kmem_cache_destroy(ext4_pspace_cachep);
2882 kmem_cache_destroy(ext4_ac_cachep);
2883 kmem_cache_destroy(ext4_free_data_cachep);
2884 ext4_groupinfo_destroy_slabs();
2885 }
2886
2887
2888 /*
2889 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2890 * Returns 0 if success or error code
2891 */
2892 static noinline_for_stack int
2893 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2894 handle_t *handle, unsigned int reserv_clstrs)
2895 {
2896 struct buffer_head *bitmap_bh = NULL;
2897 struct ext4_group_desc *gdp;
2898 struct buffer_head *gdp_bh;
2899 struct ext4_sb_info *sbi;
2900 struct super_block *sb;
2901 ext4_fsblk_t block;
2902 int err, len;
2903
2904 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2905 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2906
2907 sb = ac->ac_sb;
2908 sbi = EXT4_SB(sb);
2909
2910 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2911 if (IS_ERR(bitmap_bh)) {
2912 err = PTR_ERR(bitmap_bh);
2913 bitmap_bh = NULL;
2914 goto out_err;
2915 }
2916
2917 BUFFER_TRACE(bitmap_bh, "getting write access");
2918 err = ext4_journal_get_write_access(handle, bitmap_bh);
2919 if (err)
2920 goto out_err;
2921
2922 err = -EIO;
2923 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2924 if (!gdp)
2925 goto out_err;
2926
2927 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2928 ext4_free_group_clusters(sb, gdp));
2929
2930 BUFFER_TRACE(gdp_bh, "get_write_access");
2931 err = ext4_journal_get_write_access(handle, gdp_bh);
2932 if (err)
2933 goto out_err;
2934
2935 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2936
2937 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2938 if (!ext4_data_block_valid(sbi, block, len)) {
2939 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2940 "fs metadata", block, block+len);
2941 /* File system mounted not to panic on error
2942 * Fix the bitmap and repeat the block allocation
2943 * We leak some of the blocks here.
2944 */
2945 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2946 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2947 ac->ac_b_ex.fe_len);
2948 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2949 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2950 if (!err)
2951 err = -EAGAIN;
2952 goto out_err;
2953 }
2954
2955 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2956 #ifdef AGGRESSIVE_CHECK
2957 {
2958 int i;
2959 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2960 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2961 bitmap_bh->b_data));
2962 }
2963 }
2964 #endif
2965 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2966 ac->ac_b_ex.fe_len);
2967 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2968 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2969 ext4_free_group_clusters_set(sb, gdp,
2970 ext4_free_clusters_after_init(sb,
2971 ac->ac_b_ex.fe_group, gdp));
2972 }
2973 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2974 ext4_free_group_clusters_set(sb, gdp, len);
2975 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2976 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2977
2978 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2979 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2980 /*
2981 * Now reduce the dirty block count also. Should not go negative
2982 */
2983 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2984 /* release all the reserved blocks if non delalloc */
2985 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2986 reserv_clstrs);
2987
2988 if (sbi->s_log_groups_per_flex) {
2989 ext4_group_t flex_group = ext4_flex_group(sbi,
2990 ac->ac_b_ex.fe_group);
2991 atomic64_sub(ac->ac_b_ex.fe_len,
2992 &sbi->s_flex_groups[flex_group].free_clusters);
2993 }
2994
2995 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2996 if (err)
2997 goto out_err;
2998 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2999
3000 out_err:
3001 brelse(bitmap_bh);
3002 return err;
3003 }
3004
3005 /*
3006 * here we normalize request for locality group
3007 * Group request are normalized to s_mb_group_prealloc, which goes to
3008 * s_strip if we set the same via mount option.
3009 * s_mb_group_prealloc can be configured via
3010 * /sys/fs/ext4/<partition>/mb_group_prealloc
3011 *
3012 * XXX: should we try to preallocate more than the group has now?
3013 */
3014 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3015 {
3016 struct super_block *sb = ac->ac_sb;
3017 struct ext4_locality_group *lg = ac->ac_lg;
3018
3019 BUG_ON(lg == NULL);
3020 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3021 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3022 current->pid, ac->ac_g_ex.fe_len);
3023 }
3024
3025 /*
3026 * Normalization means making request better in terms of
3027 * size and alignment
3028 */
3029 static noinline_for_stack void
3030 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3031 struct ext4_allocation_request *ar)
3032 {
3033 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3034 int bsbits, max;
3035 ext4_lblk_t end;
3036 loff_t size, start_off;
3037 loff_t orig_size __maybe_unused;
3038 ext4_lblk_t start;
3039 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3040 struct ext4_prealloc_space *pa;
3041
3042 /* do normalize only data requests, metadata requests
3043 do not need preallocation */
3044 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3045 return;
3046
3047 /* sometime caller may want exact blocks */
3048 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3049 return;
3050
3051 /* caller may indicate that preallocation isn't
3052 * required (it's a tail, for example) */
3053 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3054 return;
3055
3056 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3057 ext4_mb_normalize_group_request(ac);
3058 return ;
3059 }
3060
3061 bsbits = ac->ac_sb->s_blocksize_bits;
3062
3063 /* first, let's learn actual file size
3064 * given current request is allocated */
3065 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3066 size = size << bsbits;
3067 if (size < i_size_read(ac->ac_inode))
3068 size = i_size_read(ac->ac_inode);
3069 orig_size = size;
3070
3071 /* max size of free chunks */
3072 max = 2 << bsbits;
3073
3074 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3075 (req <= (size) || max <= (chunk_size))
3076
3077 /* first, try to predict filesize */
3078 /* XXX: should this table be tunable? */
3079 start_off = 0;
3080 if (size <= 16 * 1024) {
3081 size = 16 * 1024;
3082 } else if (size <= 32 * 1024) {
3083 size = 32 * 1024;
3084 } else if (size <= 64 * 1024) {
3085 size = 64 * 1024;
3086 } else if (size <= 128 * 1024) {
3087 size = 128 * 1024;
3088 } else if (size <= 256 * 1024) {
3089 size = 256 * 1024;
3090 } else if (size <= 512 * 1024) {
3091 size = 512 * 1024;
3092 } else if (size <= 1024 * 1024) {
3093 size = 1024 * 1024;
3094 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3095 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096 (21 - bsbits)) << 21;
3097 size = 2 * 1024 * 1024;
3098 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3099 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3100 (22 - bsbits)) << 22;
3101 size = 4 * 1024 * 1024;
3102 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3103 (8<<20)>>bsbits, max, 8 * 1024)) {
3104 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3105 (23 - bsbits)) << 23;
3106 size = 8 * 1024 * 1024;
3107 } else {
3108 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3109 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3110 ac->ac_o_ex.fe_len) << bsbits;
3111 }
3112 size = size >> bsbits;
3113 start = start_off >> bsbits;
3114
3115 /* don't cover already allocated blocks in selected range */
3116 if (ar->pleft && start <= ar->lleft) {
3117 size -= ar->lleft + 1 - start;
3118 start = ar->lleft + 1;
3119 }
3120 if (ar->pright && start + size - 1 >= ar->lright)
3121 size -= start + size - ar->lright;
3122
3123 end = start + size;
3124
3125 /* check we don't cross already preallocated blocks */
3126 rcu_read_lock();
3127 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3128 ext4_lblk_t pa_end;
3129
3130 if (pa->pa_deleted)
3131 continue;
3132 spin_lock(&pa->pa_lock);
3133 if (pa->pa_deleted) {
3134 spin_unlock(&pa->pa_lock);
3135 continue;
3136 }
3137
3138 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3139 pa->pa_len);
3140
3141 /* PA must not overlap original request */
3142 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3143 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3144
3145 /* skip PAs this normalized request doesn't overlap with */
3146 if (pa->pa_lstart >= end || pa_end <= start) {
3147 spin_unlock(&pa->pa_lock);
3148 continue;
3149 }
3150 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3151
3152 /* adjust start or end to be adjacent to this pa */
3153 if (pa_end <= ac->ac_o_ex.fe_logical) {
3154 BUG_ON(pa_end < start);
3155 start = pa_end;
3156 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3157 BUG_ON(pa->pa_lstart > end);
3158 end = pa->pa_lstart;
3159 }
3160 spin_unlock(&pa->pa_lock);
3161 }
3162 rcu_read_unlock();
3163 size = end - start;
3164
3165 /* XXX: extra loop to check we really don't overlap preallocations */
3166 rcu_read_lock();
3167 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3168 ext4_lblk_t pa_end;
3169
3170 spin_lock(&pa->pa_lock);
3171 if (pa->pa_deleted == 0) {
3172 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3173 pa->pa_len);
3174 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3175 }
3176 spin_unlock(&pa->pa_lock);
3177 }
3178 rcu_read_unlock();
3179
3180 if (start + size <= ac->ac_o_ex.fe_logical &&
3181 start > ac->ac_o_ex.fe_logical) {
3182 ext4_msg(ac->ac_sb, KERN_ERR,
3183 "start %lu, size %lu, fe_logical %lu",
3184 (unsigned long) start, (unsigned long) size,
3185 (unsigned long) ac->ac_o_ex.fe_logical);
3186 BUG();
3187 }
3188 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3189
3190 /* now prepare goal request */
3191
3192 /* XXX: is it better to align blocks WRT to logical
3193 * placement or satisfy big request as is */
3194 ac->ac_g_ex.fe_logical = start;
3195 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3196
3197 /* define goal start in order to merge */
3198 if (ar->pright && (ar->lright == (start + size))) {
3199 /* merge to the right */
3200 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3201 &ac->ac_f_ex.fe_group,
3202 &ac->ac_f_ex.fe_start);
3203 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3204 }
3205 if (ar->pleft && (ar->lleft + 1 == start)) {
3206 /* merge to the left */
3207 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3208 &ac->ac_f_ex.fe_group,
3209 &ac->ac_f_ex.fe_start);
3210 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3211 }
3212
3213 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3214 (unsigned) orig_size, (unsigned) start);
3215 }
3216
3217 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3218 {
3219 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3220
3221 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3222 atomic_inc(&sbi->s_bal_reqs);
3223 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3224 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3225 atomic_inc(&sbi->s_bal_success);
3226 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3227 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3228 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3229 atomic_inc(&sbi->s_bal_goals);
3230 if (ac->ac_found > sbi->s_mb_max_to_scan)
3231 atomic_inc(&sbi->s_bal_breaks);
3232 }
3233
3234 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3235 trace_ext4_mballoc_alloc(ac);
3236 else
3237 trace_ext4_mballoc_prealloc(ac);
3238 }
3239
3240 /*
3241 * Called on failure; free up any blocks from the inode PA for this
3242 * context. We don't need this for MB_GROUP_PA because we only change
3243 * pa_free in ext4_mb_release_context(), but on failure, we've already
3244 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3245 */
3246 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3247 {
3248 struct ext4_prealloc_space *pa = ac->ac_pa;
3249 struct ext4_buddy e4b;
3250 int err;
3251
3252 if (pa == NULL) {
3253 if (ac->ac_f_ex.fe_len == 0)
3254 return;
3255 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3256 if (err) {
3257 /*
3258 * This should never happen since we pin the
3259 * pages in the ext4_allocation_context so
3260 * ext4_mb_load_buddy() should never fail.
3261 */
3262 WARN(1, "mb_load_buddy failed (%d)", err);
3263 return;
3264 }
3265 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3266 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3267 ac->ac_f_ex.fe_len);
3268 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3269 ext4_mb_unload_buddy(&e4b);
3270 return;
3271 }
3272 if (pa->pa_type == MB_INODE_PA)
3273 pa->pa_free += ac->ac_b_ex.fe_len;
3274 }
3275
3276 /*
3277 * use blocks preallocated to inode
3278 */
3279 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3280 struct ext4_prealloc_space *pa)
3281 {
3282 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3283 ext4_fsblk_t start;
3284 ext4_fsblk_t end;
3285 int len;
3286
3287 /* found preallocated blocks, use them */
3288 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3289 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3290 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3291 len = EXT4_NUM_B2C(sbi, end - start);
3292 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293 &ac->ac_b_ex.fe_start);
3294 ac->ac_b_ex.fe_len = len;
3295 ac->ac_status = AC_STATUS_FOUND;
3296 ac->ac_pa = pa;
3297
3298 BUG_ON(start < pa->pa_pstart);
3299 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3300 BUG_ON(pa->pa_free < len);
3301 pa->pa_free -= len;
3302
3303 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3304 }
3305
3306 /*
3307 * use blocks preallocated to locality group
3308 */
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310 struct ext4_prealloc_space *pa)
3311 {
3312 unsigned int len = ac->ac_o_ex.fe_len;
3313
3314 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315 &ac->ac_b_ex.fe_group,
3316 &ac->ac_b_ex.fe_start);
3317 ac->ac_b_ex.fe_len = len;
3318 ac->ac_status = AC_STATUS_FOUND;
3319 ac->ac_pa = pa;
3320
3321 /* we don't correct pa_pstart or pa_plen here to avoid
3322 * possible race when the group is being loaded concurrently
3323 * instead we correct pa later, after blocks are marked
3324 * in on-disk bitmap -- see ext4_mb_release_context()
3325 * Other CPUs are prevented from allocating from this pa by lg_mutex
3326 */
3327 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3328 }
3329
3330 /*
3331 * Return the prealloc space that have minimal distance
3332 * from the goal block. @cpa is the prealloc
3333 * space that is having currently known minimal distance
3334 * from the goal block.
3335 */
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338 struct ext4_prealloc_space *pa,
3339 struct ext4_prealloc_space *cpa)
3340 {
3341 ext4_fsblk_t cur_distance, new_distance;
3342
3343 if (cpa == NULL) {
3344 atomic_inc(&pa->pa_count);
3345 return pa;
3346 }
3347 cur_distance = abs(goal_block - cpa->pa_pstart);
3348 new_distance = abs(goal_block - pa->pa_pstart);
3349
3350 if (cur_distance <= new_distance)
3351 return cpa;
3352
3353 /* drop the previous reference */
3354 atomic_dec(&cpa->pa_count);
3355 atomic_inc(&pa->pa_count);
3356 return pa;
3357 }
3358
3359 /*
3360 * search goal blocks in preallocated space
3361 */
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3364 {
3365 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3366 int order, i;
3367 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3368 struct ext4_locality_group *lg;
3369 struct ext4_prealloc_space *pa, *cpa = NULL;
3370 ext4_fsblk_t goal_block;
3371
3372 /* only data can be preallocated */
3373 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3374 return 0;
3375
3376 /* first, try per-file preallocation */
3377 rcu_read_lock();
3378 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3379
3380 /* all fields in this condition don't change,
3381 * so we can skip locking for them */
3382 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3383 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3384 EXT4_C2B(sbi, pa->pa_len)))
3385 continue;
3386
3387 /* non-extent files can't have physical blocks past 2^32 */
3388 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3389 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3390 EXT4_MAX_BLOCK_FILE_PHYS))
3391 continue;
3392
3393 /* found preallocated blocks, use them */
3394 spin_lock(&pa->pa_lock);
3395 if (pa->pa_deleted == 0 && pa->pa_free) {
3396 atomic_inc(&pa->pa_count);
3397 ext4_mb_use_inode_pa(ac, pa);
3398 spin_unlock(&pa->pa_lock);
3399 ac->ac_criteria = 10;
3400 rcu_read_unlock();
3401 return 1;
3402 }
3403 spin_unlock(&pa->pa_lock);
3404 }
3405 rcu_read_unlock();
3406
3407 /* can we use group allocation? */
3408 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3409 return 0;
3410
3411 /* inode may have no locality group for some reason */
3412 lg = ac->ac_lg;
3413 if (lg == NULL)
3414 return 0;
3415 order = fls(ac->ac_o_ex.fe_len) - 1;
3416 if (order > PREALLOC_TB_SIZE - 1)
3417 /* The max size of hash table is PREALLOC_TB_SIZE */
3418 order = PREALLOC_TB_SIZE - 1;
3419
3420 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3421 /*
3422 * search for the prealloc space that is having
3423 * minimal distance from the goal block.
3424 */
3425 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3426 rcu_read_lock();
3427 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3428 pa_inode_list) {
3429 spin_lock(&pa->pa_lock);
3430 if (pa->pa_deleted == 0 &&
3431 pa->pa_free >= ac->ac_o_ex.fe_len) {
3432
3433 cpa = ext4_mb_check_group_pa(goal_block,
3434 pa, cpa);
3435 }
3436 spin_unlock(&pa->pa_lock);
3437 }
3438 rcu_read_unlock();
3439 }
3440 if (cpa) {
3441 ext4_mb_use_group_pa(ac, cpa);
3442 ac->ac_criteria = 20;
3443 return 1;
3444 }
3445 return 0;
3446 }
3447
3448 /*
3449 * the function goes through all block freed in the group
3450 * but not yet committed and marks them used in in-core bitmap.
3451 * buddy must be generated from this bitmap
3452 * Need to be called with the ext4 group lock held
3453 */
3454 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3455 ext4_group_t group)
3456 {
3457 struct rb_node *n;
3458 struct ext4_group_info *grp;
3459 struct ext4_free_data *entry;
3460
3461 grp = ext4_get_group_info(sb, group);
3462 n = rb_first(&(grp->bb_free_root));
3463
3464 while (n) {
3465 entry = rb_entry(n, struct ext4_free_data, efd_node);
3466 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3467 n = rb_next(n);
3468 }
3469 return;
3470 }
3471
3472 /*
3473 * the function goes through all preallocation in this group and marks them
3474 * used in in-core bitmap. buddy must be generated from this bitmap
3475 * Need to be called with ext4 group lock held
3476 */
3477 static noinline_for_stack
3478 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3479 ext4_group_t group)
3480 {
3481 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3482 struct ext4_prealloc_space *pa;
3483 struct list_head *cur;
3484 ext4_group_t groupnr;
3485 ext4_grpblk_t start;
3486 int preallocated = 0;
3487 int len;
3488
3489 /* all form of preallocation discards first load group,
3490 * so the only competing code is preallocation use.
3491 * we don't need any locking here
3492 * notice we do NOT ignore preallocations with pa_deleted
3493 * otherwise we could leave used blocks available for
3494 * allocation in buddy when concurrent ext4_mb_put_pa()
3495 * is dropping preallocation
3496 */
3497 list_for_each(cur, &grp->bb_prealloc_list) {
3498 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3499 spin_lock(&pa->pa_lock);
3500 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3501 &groupnr, &start);
3502 len = pa->pa_len;
3503 spin_unlock(&pa->pa_lock);
3504 if (unlikely(len == 0))
3505 continue;
3506 BUG_ON(groupnr != group);
3507 ext4_set_bits(bitmap, start, len);
3508 preallocated += len;
3509 }
3510 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3511 }
3512
3513 static void ext4_mb_pa_callback(struct rcu_head *head)
3514 {
3515 struct ext4_prealloc_space *pa;
3516 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3517
3518 BUG_ON(atomic_read(&pa->pa_count));
3519 BUG_ON(pa->pa_deleted == 0);
3520 kmem_cache_free(ext4_pspace_cachep, pa);
3521 }
3522
3523 /*
3524 * drops a reference to preallocated space descriptor
3525 * if this was the last reference and the space is consumed
3526 */
3527 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3528 struct super_block *sb, struct ext4_prealloc_space *pa)
3529 {
3530 ext4_group_t grp;
3531 ext4_fsblk_t grp_blk;
3532
3533 /* in this short window concurrent discard can set pa_deleted */
3534 spin_lock(&pa->pa_lock);
3535 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3536 spin_unlock(&pa->pa_lock);
3537 return;
3538 }
3539
3540 if (pa->pa_deleted == 1) {
3541 spin_unlock(&pa->pa_lock);
3542 return;
3543 }
3544
3545 pa->pa_deleted = 1;
3546 spin_unlock(&pa->pa_lock);
3547
3548 grp_blk = pa->pa_pstart;
3549 /*
3550 * If doing group-based preallocation, pa_pstart may be in the
3551 * next group when pa is used up
3552 */
3553 if (pa->pa_type == MB_GROUP_PA)
3554 grp_blk--;
3555
3556 grp = ext4_get_group_number(sb, grp_blk);
3557
3558 /*
3559 * possible race:
3560 *
3561 * P1 (buddy init) P2 (regular allocation)
3562 * find block B in PA
3563 * copy on-disk bitmap to buddy
3564 * mark B in on-disk bitmap
3565 * drop PA from group
3566 * mark all PAs in buddy
3567 *
3568 * thus, P1 initializes buddy with B available. to prevent this
3569 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3570 * against that pair
3571 */
3572 ext4_lock_group(sb, grp);
3573 list_del(&pa->pa_group_list);
3574 ext4_unlock_group(sb, grp);
3575
3576 spin_lock(pa->pa_obj_lock);
3577 list_del_rcu(&pa->pa_inode_list);
3578 spin_unlock(pa->pa_obj_lock);
3579
3580 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3581 }
3582
3583 /*
3584 * creates new preallocated space for given inode
3585 */
3586 static noinline_for_stack int
3587 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3588 {
3589 struct super_block *sb = ac->ac_sb;
3590 struct ext4_sb_info *sbi = EXT4_SB(sb);
3591 struct ext4_prealloc_space *pa;
3592 struct ext4_group_info *grp;
3593 struct ext4_inode_info *ei;
3594
3595 /* preallocate only when found space is larger then requested */
3596 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3597 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3598 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3599
3600 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3601 if (pa == NULL)
3602 return -ENOMEM;
3603
3604 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3605 int winl;
3606 int wins;
3607 int win;
3608 int offs;
3609
3610 /* we can't allocate as much as normalizer wants.
3611 * so, found space must get proper lstart
3612 * to cover original request */
3613 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3614 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3615
3616 /* we're limited by original request in that
3617 * logical block must be covered any way
3618 * winl is window we can move our chunk within */
3619 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3620
3621 /* also, we should cover whole original request */
3622 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3623
3624 /* the smallest one defines real window */
3625 win = min(winl, wins);
3626
3627 offs = ac->ac_o_ex.fe_logical %
3628 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3629 if (offs && offs < win)
3630 win = offs;
3631
3632 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3633 EXT4_NUM_B2C(sbi, win);
3634 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3635 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3636 }
3637
3638 /* preallocation can change ac_b_ex, thus we store actually
3639 * allocated blocks for history */
3640 ac->ac_f_ex = ac->ac_b_ex;
3641
3642 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3643 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3644 pa->pa_len = ac->ac_b_ex.fe_len;
3645 pa->pa_free = pa->pa_len;
3646 atomic_set(&pa->pa_count, 1);
3647 spin_lock_init(&pa->pa_lock);
3648 INIT_LIST_HEAD(&pa->pa_inode_list);
3649 INIT_LIST_HEAD(&pa->pa_group_list);
3650 pa->pa_deleted = 0;
3651 pa->pa_type = MB_INODE_PA;
3652
3653 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3654 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3655 trace_ext4_mb_new_inode_pa(ac, pa);
3656
3657 ext4_mb_use_inode_pa(ac, pa);
3658 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3659
3660 ei = EXT4_I(ac->ac_inode);
3661 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3662
3663 pa->pa_obj_lock = &ei->i_prealloc_lock;
3664 pa->pa_inode = ac->ac_inode;
3665
3666 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3667 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3668 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3669
3670 spin_lock(pa->pa_obj_lock);
3671 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3672 spin_unlock(pa->pa_obj_lock);
3673
3674 return 0;
3675 }
3676
3677 /*
3678 * creates new preallocated space for locality group inodes belongs to
3679 */
3680 static noinline_for_stack int
3681 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3682 {
3683 struct super_block *sb = ac->ac_sb;
3684 struct ext4_locality_group *lg;
3685 struct ext4_prealloc_space *pa;
3686 struct ext4_group_info *grp;
3687
3688 /* preallocate only when found space is larger then requested */
3689 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3690 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3691 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3692
3693 BUG_ON(ext4_pspace_cachep == NULL);
3694 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3695 if (pa == NULL)
3696 return -ENOMEM;
3697
3698 /* preallocation can change ac_b_ex, thus we store actually
3699 * allocated blocks for history */
3700 ac->ac_f_ex = ac->ac_b_ex;
3701
3702 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3703 pa->pa_lstart = pa->pa_pstart;
3704 pa->pa_len = ac->ac_b_ex.fe_len;
3705 pa->pa_free = pa->pa_len;
3706 atomic_set(&pa->pa_count, 1);
3707 spin_lock_init(&pa->pa_lock);
3708 INIT_LIST_HEAD(&pa->pa_inode_list);
3709 INIT_LIST_HEAD(&pa->pa_group_list);
3710 pa->pa_deleted = 0;
3711 pa->pa_type = MB_GROUP_PA;
3712
3713 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3714 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3715 trace_ext4_mb_new_group_pa(ac, pa);
3716
3717 ext4_mb_use_group_pa(ac, pa);
3718 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3719
3720 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3721 lg = ac->ac_lg;
3722 BUG_ON(lg == NULL);
3723
3724 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3725 pa->pa_inode = NULL;
3726
3727 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3728 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3729 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3730
3731 /*
3732 * We will later add the new pa to the right bucket
3733 * after updating the pa_free in ext4_mb_release_context
3734 */
3735 return 0;
3736 }
3737
3738 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3739 {
3740 int err;
3741
3742 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3743 err = ext4_mb_new_group_pa(ac);
3744 else
3745 err = ext4_mb_new_inode_pa(ac);
3746 return err;
3747 }
3748
3749 /*
3750 * finds all unused blocks in on-disk bitmap, frees them in
3751 * in-core bitmap and buddy.
3752 * @pa must be unlinked from inode and group lists, so that
3753 * nobody else can find/use it.
3754 * the caller MUST hold group/inode locks.
3755 * TODO: optimize the case when there are no in-core structures yet
3756 */
3757 static noinline_for_stack int
3758 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3759 struct ext4_prealloc_space *pa)
3760 {
3761 struct super_block *sb = e4b->bd_sb;
3762 struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 unsigned int end;
3764 unsigned int next;
3765 ext4_group_t group;
3766 ext4_grpblk_t bit;
3767 unsigned long long grp_blk_start;
3768 int err = 0;
3769 int free = 0;
3770
3771 BUG_ON(pa->pa_deleted == 0);
3772 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3773 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3774 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3775 end = bit + pa->pa_len;
3776
3777 while (bit < end) {
3778 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3779 if (bit >= end)
3780 break;
3781 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3782 mb_debug(1, " free preallocated %u/%u in group %u\n",
3783 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3784 (unsigned) next - bit, (unsigned) group);
3785 free += next - bit;
3786
3787 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3788 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3789 EXT4_C2B(sbi, bit)),
3790 next - bit);
3791 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3792 bit = next + 1;
3793 }
3794 if (free != pa->pa_free) {
3795 ext4_msg(e4b->bd_sb, KERN_CRIT,
3796 "pa %p: logic %lu, phys. %lu, len %lu",
3797 pa, (unsigned long) pa->pa_lstart,
3798 (unsigned long) pa->pa_pstart,
3799 (unsigned long) pa->pa_len);
3800 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3801 free, pa->pa_free);
3802 /*
3803 * pa is already deleted so we use the value obtained
3804 * from the bitmap and continue.
3805 */
3806 }
3807 atomic_add(free, &sbi->s_mb_discarded);
3808
3809 return err;
3810 }
3811
3812 static noinline_for_stack int
3813 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3814 struct ext4_prealloc_space *pa)
3815 {
3816 struct super_block *sb = e4b->bd_sb;
3817 ext4_group_t group;
3818 ext4_grpblk_t bit;
3819
3820 trace_ext4_mb_release_group_pa(sb, pa);
3821 BUG_ON(pa->pa_deleted == 0);
3822 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3823 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3824 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3825 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3826 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3827
3828 return 0;
3829 }
3830
3831 /*
3832 * releases all preallocations in given group
3833 *
3834 * first, we need to decide discard policy:
3835 * - when do we discard
3836 * 1) ENOSPC
3837 * - how many do we discard
3838 * 1) how many requested
3839 */
3840 static noinline_for_stack int
3841 ext4_mb_discard_group_preallocations(struct super_block *sb,
3842 ext4_group_t group, int needed)
3843 {
3844 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3845 struct buffer_head *bitmap_bh = NULL;
3846 struct ext4_prealloc_space *pa, *tmp;
3847 struct list_head list;
3848 struct ext4_buddy e4b;
3849 int err;
3850 int busy = 0;
3851 int free = 0;
3852
3853 mb_debug(1, "discard preallocation for group %u\n", group);
3854
3855 if (list_empty(&grp->bb_prealloc_list))
3856 return 0;
3857
3858 bitmap_bh = ext4_read_block_bitmap(sb, group);
3859 if (IS_ERR(bitmap_bh)) {
3860 err = PTR_ERR(bitmap_bh);
3861 ext4_error(sb, "Error %d reading block bitmap for %u",
3862 err, group);
3863 return 0;
3864 }
3865
3866 err = ext4_mb_load_buddy(sb, group, &e4b);
3867 if (err) {
3868 ext4_error(sb, "Error loading buddy information for %u", group);
3869 put_bh(bitmap_bh);
3870 return 0;
3871 }
3872
3873 if (needed == 0)
3874 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3875
3876 INIT_LIST_HEAD(&list);
3877 repeat:
3878 ext4_lock_group(sb, group);
3879 list_for_each_entry_safe(pa, tmp,
3880 &grp->bb_prealloc_list, pa_group_list) {
3881 spin_lock(&pa->pa_lock);
3882 if (atomic_read(&pa->pa_count)) {
3883 spin_unlock(&pa->pa_lock);
3884 busy = 1;
3885 continue;
3886 }
3887 if (pa->pa_deleted) {
3888 spin_unlock(&pa->pa_lock);
3889 continue;
3890 }
3891
3892 /* seems this one can be freed ... */
3893 pa->pa_deleted = 1;
3894
3895 /* we can trust pa_free ... */
3896 free += pa->pa_free;
3897
3898 spin_unlock(&pa->pa_lock);
3899
3900 list_del(&pa->pa_group_list);
3901 list_add(&pa->u.pa_tmp_list, &list);
3902 }
3903
3904 /* if we still need more blocks and some PAs were used, try again */
3905 if (free < needed && busy) {
3906 busy = 0;
3907 ext4_unlock_group(sb, group);
3908 cond_resched();
3909 goto repeat;
3910 }
3911
3912 /* found anything to free? */
3913 if (list_empty(&list)) {
3914 BUG_ON(free != 0);
3915 goto out;
3916 }
3917
3918 /* now free all selected PAs */
3919 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3920
3921 /* remove from object (inode or locality group) */
3922 spin_lock(pa->pa_obj_lock);
3923 list_del_rcu(&pa->pa_inode_list);
3924 spin_unlock(pa->pa_obj_lock);
3925
3926 if (pa->pa_type == MB_GROUP_PA)
3927 ext4_mb_release_group_pa(&e4b, pa);
3928 else
3929 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3930
3931 list_del(&pa->u.pa_tmp_list);
3932 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3933 }
3934
3935 out:
3936 ext4_unlock_group(sb, group);
3937 ext4_mb_unload_buddy(&e4b);
3938 put_bh(bitmap_bh);
3939 return free;
3940 }
3941
3942 /*
3943 * releases all non-used preallocated blocks for given inode
3944 *
3945 * It's important to discard preallocations under i_data_sem
3946 * We don't want another block to be served from the prealloc
3947 * space when we are discarding the inode prealloc space.
3948 *
3949 * FIXME!! Make sure it is valid at all the call sites
3950 */
3951 void ext4_discard_preallocations(struct inode *inode)
3952 {
3953 struct ext4_inode_info *ei = EXT4_I(inode);
3954 struct super_block *sb = inode->i_sb;
3955 struct buffer_head *bitmap_bh = NULL;
3956 struct ext4_prealloc_space *pa, *tmp;
3957 ext4_group_t group = 0;
3958 struct list_head list;
3959 struct ext4_buddy e4b;
3960 int err;
3961
3962 if (!S_ISREG(inode->i_mode)) {
3963 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3964 return;
3965 }
3966
3967 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3968 trace_ext4_discard_preallocations(inode);
3969
3970 INIT_LIST_HEAD(&list);
3971
3972 repeat:
3973 /* first, collect all pa's in the inode */
3974 spin_lock(&ei->i_prealloc_lock);
3975 while (!list_empty(&ei->i_prealloc_list)) {
3976 pa = list_entry(ei->i_prealloc_list.next,
3977 struct ext4_prealloc_space, pa_inode_list);
3978 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3979 spin_lock(&pa->pa_lock);
3980 if (atomic_read(&pa->pa_count)) {
3981 /* this shouldn't happen often - nobody should
3982 * use preallocation while we're discarding it */
3983 spin_unlock(&pa->pa_lock);
3984 spin_unlock(&ei->i_prealloc_lock);
3985 ext4_msg(sb, KERN_ERR,
3986 "uh-oh! used pa while discarding");
3987 WARN_ON(1);
3988 schedule_timeout_uninterruptible(HZ);
3989 goto repeat;
3990
3991 }
3992 if (pa->pa_deleted == 0) {
3993 pa->pa_deleted = 1;
3994 spin_unlock(&pa->pa_lock);
3995 list_del_rcu(&pa->pa_inode_list);
3996 list_add(&pa->u.pa_tmp_list, &list);
3997 continue;
3998 }
3999
4000 /* someone is deleting pa right now */
4001 spin_unlock(&pa->pa_lock);
4002 spin_unlock(&ei->i_prealloc_lock);
4003
4004 /* we have to wait here because pa_deleted
4005 * doesn't mean pa is already unlinked from
4006 * the list. as we might be called from
4007 * ->clear_inode() the inode will get freed
4008 * and concurrent thread which is unlinking
4009 * pa from inode's list may access already
4010 * freed memory, bad-bad-bad */
4011
4012 /* XXX: if this happens too often, we can
4013 * add a flag to force wait only in case
4014 * of ->clear_inode(), but not in case of
4015 * regular truncate */
4016 schedule_timeout_uninterruptible(HZ);
4017 goto repeat;
4018 }
4019 spin_unlock(&ei->i_prealloc_lock);
4020
4021 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4022 BUG_ON(pa->pa_type != MB_INODE_PA);
4023 group = ext4_get_group_number(sb, pa->pa_pstart);
4024
4025 err = ext4_mb_load_buddy(sb, group, &e4b);
4026 if (err) {
4027 ext4_error(sb, "Error loading buddy information for %u",
4028 group);
4029 continue;
4030 }
4031
4032 bitmap_bh = ext4_read_block_bitmap(sb, group);
4033 if (IS_ERR(bitmap_bh)) {
4034 err = PTR_ERR(bitmap_bh);
4035 ext4_error(sb, "Error %d reading block bitmap for %u",
4036 err, group);
4037 ext4_mb_unload_buddy(&e4b);
4038 continue;
4039 }
4040
4041 ext4_lock_group(sb, group);
4042 list_del(&pa->pa_group_list);
4043 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4044 ext4_unlock_group(sb, group);
4045
4046 ext4_mb_unload_buddy(&e4b);
4047 put_bh(bitmap_bh);
4048
4049 list_del(&pa->u.pa_tmp_list);
4050 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4051 }
4052 }
4053
4054 #ifdef CONFIG_EXT4_DEBUG
4055 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4056 {
4057 struct super_block *sb = ac->ac_sb;
4058 ext4_group_t ngroups, i;
4059
4060 if (!ext4_mballoc_debug ||
4061 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4062 return;
4063
4064 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4065 " Allocation context details:");
4066 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4067 ac->ac_status, ac->ac_flags);
4068 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4069 "goal %lu/%lu/%lu@%lu, "
4070 "best %lu/%lu/%lu@%lu cr %d",
4071 (unsigned long)ac->ac_o_ex.fe_group,
4072 (unsigned long)ac->ac_o_ex.fe_start,
4073 (unsigned long)ac->ac_o_ex.fe_len,
4074 (unsigned long)ac->ac_o_ex.fe_logical,
4075 (unsigned long)ac->ac_g_ex.fe_group,
4076 (unsigned long)ac->ac_g_ex.fe_start,
4077 (unsigned long)ac->ac_g_ex.fe_len,
4078 (unsigned long)ac->ac_g_ex.fe_logical,
4079 (unsigned long)ac->ac_b_ex.fe_group,
4080 (unsigned long)ac->ac_b_ex.fe_start,
4081 (unsigned long)ac->ac_b_ex.fe_len,
4082 (unsigned long)ac->ac_b_ex.fe_logical,
4083 (int)ac->ac_criteria);
4084 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4085 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4086 ngroups = ext4_get_groups_count(sb);
4087 for (i = 0; i < ngroups; i++) {
4088 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4089 struct ext4_prealloc_space *pa;
4090 ext4_grpblk_t start;
4091 struct list_head *cur;
4092 ext4_lock_group(sb, i);
4093 list_for_each(cur, &grp->bb_prealloc_list) {
4094 pa = list_entry(cur, struct ext4_prealloc_space,
4095 pa_group_list);
4096 spin_lock(&pa->pa_lock);
4097 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4098 NULL, &start);
4099 spin_unlock(&pa->pa_lock);
4100 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4101 start, pa->pa_len);
4102 }
4103 ext4_unlock_group(sb, i);
4104
4105 if (grp->bb_free == 0)
4106 continue;
4107 printk(KERN_ERR "%u: %d/%d \n",
4108 i, grp->bb_free, grp->bb_fragments);
4109 }
4110 printk(KERN_ERR "\n");
4111 }
4112 #else
4113 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4114 {
4115 return;
4116 }
4117 #endif
4118
4119 /*
4120 * We use locality group preallocation for small size file. The size of the
4121 * file is determined by the current size or the resulting size after
4122 * allocation which ever is larger
4123 *
4124 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4125 */
4126 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4127 {
4128 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4129 int bsbits = ac->ac_sb->s_blocksize_bits;
4130 loff_t size, isize;
4131
4132 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4133 return;
4134
4135 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4136 return;
4137
4138 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4139 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4140 >> bsbits;
4141
4142 if ((size == isize) &&
4143 !ext4_fs_is_busy(sbi) &&
4144 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4145 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4146 return;
4147 }
4148
4149 if (sbi->s_mb_group_prealloc <= 0) {
4150 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4151 return;
4152 }
4153
4154 /* don't use group allocation for large files */
4155 size = max(size, isize);
4156 if (size > sbi->s_mb_stream_request) {
4157 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4158 return;
4159 }
4160
4161 BUG_ON(ac->ac_lg != NULL);
4162 /*
4163 * locality group prealloc space are per cpu. The reason for having
4164 * per cpu locality group is to reduce the contention between block
4165 * request from multiple CPUs.
4166 */
4167 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4168
4169 /* we're going to use group allocation */
4170 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4171
4172 /* serialize all allocations in the group */
4173 mutex_lock(&ac->ac_lg->lg_mutex);
4174 }
4175
4176 static noinline_for_stack int
4177 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4178 struct ext4_allocation_request *ar)
4179 {
4180 struct super_block *sb = ar->inode->i_sb;
4181 struct ext4_sb_info *sbi = EXT4_SB(sb);
4182 struct ext4_super_block *es = sbi->s_es;
4183 ext4_group_t group;
4184 unsigned int len;
4185 ext4_fsblk_t goal;
4186 ext4_grpblk_t block;
4187
4188 /* we can't allocate > group size */
4189 len = ar->len;
4190
4191 /* just a dirty hack to filter too big requests */
4192 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4193 len = EXT4_CLUSTERS_PER_GROUP(sb);
4194
4195 /* start searching from the goal */
4196 goal = ar->goal;
4197 if (goal < le32_to_cpu(es->s_first_data_block) ||
4198 goal >= ext4_blocks_count(es))
4199 goal = le32_to_cpu(es->s_first_data_block);
4200 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4201
4202 /* set up allocation goals */
4203 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4204 ac->ac_status = AC_STATUS_CONTINUE;
4205 ac->ac_sb = sb;
4206 ac->ac_inode = ar->inode;
4207 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4208 ac->ac_o_ex.fe_group = group;
4209 ac->ac_o_ex.fe_start = block;
4210 ac->ac_o_ex.fe_len = len;
4211 ac->ac_g_ex = ac->ac_o_ex;
4212 ac->ac_flags = ar->flags;
4213
4214 /* we have to define context: we'll we work with a file or
4215 * locality group. this is a policy, actually */
4216 ext4_mb_group_or_file(ac);
4217
4218 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4219 "left: %u/%u, right %u/%u to %swritable\n",
4220 (unsigned) ar->len, (unsigned) ar->logical,
4221 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4222 (unsigned) ar->lleft, (unsigned) ar->pleft,
4223 (unsigned) ar->lright, (unsigned) ar->pright,
4224 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4225 return 0;
4226
4227 }
4228
4229 static noinline_for_stack void
4230 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4231 struct ext4_locality_group *lg,
4232 int order, int total_entries)
4233 {
4234 ext4_group_t group = 0;
4235 struct ext4_buddy e4b;
4236 struct list_head discard_list;
4237 struct ext4_prealloc_space *pa, *tmp;
4238
4239 mb_debug(1, "discard locality group preallocation\n");
4240
4241 INIT_LIST_HEAD(&discard_list);
4242
4243 spin_lock(&lg->lg_prealloc_lock);
4244 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4245 pa_inode_list) {
4246 spin_lock(&pa->pa_lock);
4247 if (atomic_read(&pa->pa_count)) {
4248 /*
4249 * This is the pa that we just used
4250 * for block allocation. So don't
4251 * free that
4252 */
4253 spin_unlock(&pa->pa_lock);
4254 continue;
4255 }
4256 if (pa->pa_deleted) {
4257 spin_unlock(&pa->pa_lock);
4258 continue;
4259 }
4260 /* only lg prealloc space */
4261 BUG_ON(pa->pa_type != MB_GROUP_PA);
4262
4263 /* seems this one can be freed ... */
4264 pa->pa_deleted = 1;
4265 spin_unlock(&pa->pa_lock);
4266
4267 list_del_rcu(&pa->pa_inode_list);
4268 list_add(&pa->u.pa_tmp_list, &discard_list);
4269
4270 total_entries--;
4271 if (total_entries <= 5) {
4272 /*
4273 * we want to keep only 5 entries
4274 * allowing it to grow to 8. This
4275 * mak sure we don't call discard
4276 * soon for this list.
4277 */
4278 break;
4279 }
4280 }
4281 spin_unlock(&lg->lg_prealloc_lock);
4282
4283 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4284
4285 group = ext4_get_group_number(sb, pa->pa_pstart);
4286 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4287 ext4_error(sb, "Error loading buddy information for %u",
4288 group);
4289 continue;
4290 }
4291 ext4_lock_group(sb, group);
4292 list_del(&pa->pa_group_list);
4293 ext4_mb_release_group_pa(&e4b, pa);
4294 ext4_unlock_group(sb, group);
4295
4296 ext4_mb_unload_buddy(&e4b);
4297 list_del(&pa->u.pa_tmp_list);
4298 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4299 }
4300 }
4301
4302 /*
4303 * We have incremented pa_count. So it cannot be freed at this
4304 * point. Also we hold lg_mutex. So no parallel allocation is
4305 * possible from this lg. That means pa_free cannot be updated.
4306 *
4307 * A parallel ext4_mb_discard_group_preallocations is possible.
4308 * which can cause the lg_prealloc_list to be updated.
4309 */
4310
4311 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4312 {
4313 int order, added = 0, lg_prealloc_count = 1;
4314 struct super_block *sb = ac->ac_sb;
4315 struct ext4_locality_group *lg = ac->ac_lg;
4316 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4317
4318 order = fls(pa->pa_free) - 1;
4319 if (order > PREALLOC_TB_SIZE - 1)
4320 /* The max size of hash table is PREALLOC_TB_SIZE */
4321 order = PREALLOC_TB_SIZE - 1;
4322 /* Add the prealloc space to lg */
4323 spin_lock(&lg->lg_prealloc_lock);
4324 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4325 pa_inode_list) {
4326 spin_lock(&tmp_pa->pa_lock);
4327 if (tmp_pa->pa_deleted) {
4328 spin_unlock(&tmp_pa->pa_lock);
4329 continue;
4330 }
4331 if (!added && pa->pa_free < tmp_pa->pa_free) {
4332 /* Add to the tail of the previous entry */
4333 list_add_tail_rcu(&pa->pa_inode_list,
4334 &tmp_pa->pa_inode_list);
4335 added = 1;
4336 /*
4337 * we want to count the total
4338 * number of entries in the list
4339 */
4340 }
4341 spin_unlock(&tmp_pa->pa_lock);
4342 lg_prealloc_count++;
4343 }
4344 if (!added)
4345 list_add_tail_rcu(&pa->pa_inode_list,
4346 &lg->lg_prealloc_list[order]);
4347 spin_unlock(&lg->lg_prealloc_lock);
4348
4349 /* Now trim the list to be not more than 8 elements */
4350 if (lg_prealloc_count > 8) {
4351 ext4_mb_discard_lg_preallocations(sb, lg,
4352 order, lg_prealloc_count);
4353 return;
4354 }
4355 return ;
4356 }
4357
4358 /*
4359 * release all resource we used in allocation
4360 */
4361 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4362 {
4363 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4364 struct ext4_prealloc_space *pa = ac->ac_pa;
4365 if (pa) {
4366 if (pa->pa_type == MB_GROUP_PA) {
4367 /* see comment in ext4_mb_use_group_pa() */
4368 spin_lock(&pa->pa_lock);
4369 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4370 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4371 pa->pa_free -= ac->ac_b_ex.fe_len;
4372 pa->pa_len -= ac->ac_b_ex.fe_len;
4373 spin_unlock(&pa->pa_lock);
4374 }
4375 }
4376 if (pa) {
4377 /*
4378 * We want to add the pa to the right bucket.
4379 * Remove it from the list and while adding
4380 * make sure the list to which we are adding
4381 * doesn't grow big.
4382 */
4383 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4384 spin_lock(pa->pa_obj_lock);
4385 list_del_rcu(&pa->pa_inode_list);
4386 spin_unlock(pa->pa_obj_lock);
4387 ext4_mb_add_n_trim(ac);
4388 }
4389 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4390 }
4391 if (ac->ac_bitmap_page)
4392 put_page(ac->ac_bitmap_page);
4393 if (ac->ac_buddy_page)
4394 put_page(ac->ac_buddy_page);
4395 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4396 mutex_unlock(&ac->ac_lg->lg_mutex);
4397 ext4_mb_collect_stats(ac);
4398 return 0;
4399 }
4400
4401 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4402 {
4403 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4404 int ret;
4405 int freed = 0;
4406
4407 trace_ext4_mb_discard_preallocations(sb, needed);
4408 for (i = 0; i < ngroups && needed > 0; i++) {
4409 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4410 freed += ret;
4411 needed -= ret;
4412 }
4413
4414 return freed;
4415 }
4416
4417 /*
4418 * Main entry point into mballoc to allocate blocks
4419 * it tries to use preallocation first, then falls back
4420 * to usual allocation
4421 */
4422 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4423 struct ext4_allocation_request *ar, int *errp)
4424 {
4425 int freed;
4426 struct ext4_allocation_context *ac = NULL;
4427 struct ext4_sb_info *sbi;
4428 struct super_block *sb;
4429 ext4_fsblk_t block = 0;
4430 unsigned int inquota = 0;
4431 unsigned int reserv_clstrs = 0;
4432
4433 might_sleep();
4434 sb = ar->inode->i_sb;
4435 sbi = EXT4_SB(sb);
4436
4437 trace_ext4_request_blocks(ar);
4438
4439 /* Allow to use superuser reservation for quota file */
4440 if (IS_NOQUOTA(ar->inode))
4441 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4442
4443 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4444 /* Without delayed allocation we need to verify
4445 * there is enough free blocks to do block allocation
4446 * and verify allocation doesn't exceed the quota limits.
4447 */
4448 while (ar->len &&
4449 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4450
4451 /* let others to free the space */
4452 cond_resched();
4453 ar->len = ar->len >> 1;
4454 }
4455 if (!ar->len) {
4456 *errp = -ENOSPC;
4457 return 0;
4458 }
4459 reserv_clstrs = ar->len;
4460 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4461 dquot_alloc_block_nofail(ar->inode,
4462 EXT4_C2B(sbi, ar->len));
4463 } else {
4464 while (ar->len &&
4465 dquot_alloc_block(ar->inode,
4466 EXT4_C2B(sbi, ar->len))) {
4467
4468 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4469 ar->len--;
4470 }
4471 }
4472 inquota = ar->len;
4473 if (ar->len == 0) {
4474 *errp = -EDQUOT;
4475 goto out;
4476 }
4477 }
4478
4479 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4480 if (!ac) {
4481 ar->len = 0;
4482 *errp = -ENOMEM;
4483 goto out;
4484 }
4485
4486 *errp = ext4_mb_initialize_context(ac, ar);
4487 if (*errp) {
4488 ar->len = 0;
4489 goto out;
4490 }
4491
4492 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4493 if (!ext4_mb_use_preallocated(ac)) {
4494 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4495 ext4_mb_normalize_request(ac, ar);
4496 repeat:
4497 /* allocate space in core */
4498 *errp = ext4_mb_regular_allocator(ac);
4499 if (*errp)
4500 goto discard_and_exit;
4501
4502 /* as we've just preallocated more space than
4503 * user requested originally, we store allocated
4504 * space in a special descriptor */
4505 if (ac->ac_status == AC_STATUS_FOUND &&
4506 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4507 *errp = ext4_mb_new_preallocation(ac);
4508 if (*errp) {
4509 discard_and_exit:
4510 ext4_discard_allocated_blocks(ac);
4511 goto errout;
4512 }
4513 }
4514 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4515 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4516 if (*errp == -EAGAIN) {
4517 /*
4518 * drop the reference that we took
4519 * in ext4_mb_use_best_found
4520 */
4521 ext4_mb_release_context(ac);
4522 ac->ac_b_ex.fe_group = 0;
4523 ac->ac_b_ex.fe_start = 0;
4524 ac->ac_b_ex.fe_len = 0;
4525 ac->ac_status = AC_STATUS_CONTINUE;
4526 goto repeat;
4527 } else if (*errp) {
4528 ext4_discard_allocated_blocks(ac);
4529 goto errout;
4530 } else {
4531 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4532 ar->len = ac->ac_b_ex.fe_len;
4533 }
4534 } else {
4535 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4536 if (freed)
4537 goto repeat;
4538 *errp = -ENOSPC;
4539 }
4540
4541 errout:
4542 if (*errp) {
4543 ac->ac_b_ex.fe_len = 0;
4544 ar->len = 0;
4545 ext4_mb_show_ac(ac);
4546 }
4547 ext4_mb_release_context(ac);
4548 out:
4549 if (ac)
4550 kmem_cache_free(ext4_ac_cachep, ac);
4551 if (inquota && ar->len < inquota)
4552 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4553 if (!ar->len) {
4554 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4555 /* release all the reserved blocks if non delalloc */
4556 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4557 reserv_clstrs);
4558 }
4559
4560 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4561
4562 return block;
4563 }
4564
4565 /*
4566 * We can merge two free data extents only if the physical blocks
4567 * are contiguous, AND the extents were freed by the same transaction,
4568 * AND the blocks are associated with the same group.
4569 */
4570 static int can_merge(struct ext4_free_data *entry1,
4571 struct ext4_free_data *entry2)
4572 {
4573 if ((entry1->efd_tid == entry2->efd_tid) &&
4574 (entry1->efd_group == entry2->efd_group) &&
4575 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4576 return 1;
4577 return 0;
4578 }
4579
4580 static noinline_for_stack int
4581 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4582 struct ext4_free_data *new_entry)
4583 {
4584 ext4_group_t group = e4b->bd_group;
4585 ext4_grpblk_t cluster;
4586 struct ext4_free_data *entry;
4587 struct ext4_group_info *db = e4b->bd_info;
4588 struct super_block *sb = e4b->bd_sb;
4589 struct ext4_sb_info *sbi = EXT4_SB(sb);
4590 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4591 struct rb_node *parent = NULL, *new_node;
4592
4593 BUG_ON(!ext4_handle_valid(handle));
4594 BUG_ON(e4b->bd_bitmap_page == NULL);
4595 BUG_ON(e4b->bd_buddy_page == NULL);
4596
4597 new_node = &new_entry->efd_node;
4598 cluster = new_entry->efd_start_cluster;
4599
4600 if (!*n) {
4601 /* first free block exent. We need to
4602 protect buddy cache from being freed,
4603 * otherwise we'll refresh it from
4604 * on-disk bitmap and lose not-yet-available
4605 * blocks */
4606 get_page(e4b->bd_buddy_page);
4607 get_page(e4b->bd_bitmap_page);
4608 }
4609 while (*n) {
4610 parent = *n;
4611 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4612 if (cluster < entry->efd_start_cluster)
4613 n = &(*n)->rb_left;
4614 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4615 n = &(*n)->rb_right;
4616 else {
4617 ext4_grp_locked_error(sb, group, 0,
4618 ext4_group_first_block_no(sb, group) +
4619 EXT4_C2B(sbi, cluster),
4620 "Block already on to-be-freed list");
4621 return 0;
4622 }
4623 }
4624
4625 rb_link_node(new_node, parent, n);
4626 rb_insert_color(new_node, &db->bb_free_root);
4627
4628 /* Now try to see the extent can be merged to left and right */
4629 node = rb_prev(new_node);
4630 if (node) {
4631 entry = rb_entry(node, struct ext4_free_data, efd_node);
4632 if (can_merge(entry, new_entry) &&
4633 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4634 new_entry->efd_start_cluster = entry->efd_start_cluster;
4635 new_entry->efd_count += entry->efd_count;
4636 rb_erase(node, &(db->bb_free_root));
4637 kmem_cache_free(ext4_free_data_cachep, entry);
4638 }
4639 }
4640
4641 node = rb_next(new_node);
4642 if (node) {
4643 entry = rb_entry(node, struct ext4_free_data, efd_node);
4644 if (can_merge(new_entry, entry) &&
4645 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4646 new_entry->efd_count += entry->efd_count;
4647 rb_erase(node, &(db->bb_free_root));
4648 kmem_cache_free(ext4_free_data_cachep, entry);
4649 }
4650 }
4651 /* Add the extent to transaction's private list */
4652 ext4_journal_callback_add(handle, ext4_free_data_callback,
4653 &new_entry->efd_jce);
4654 return 0;
4655 }
4656
4657 /**
4658 * ext4_free_blocks() -- Free given blocks and update quota
4659 * @handle: handle for this transaction
4660 * @inode: inode
4661 * @block: start physical block to free
4662 * @count: number of blocks to count
4663 * @flags: flags used by ext4_free_blocks
4664 */
4665 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4666 struct buffer_head *bh, ext4_fsblk_t block,
4667 unsigned long count, int flags)
4668 {
4669 struct buffer_head *bitmap_bh = NULL;
4670 struct super_block *sb = inode->i_sb;
4671 struct ext4_group_desc *gdp;
4672 unsigned int overflow;
4673 ext4_grpblk_t bit;
4674 struct buffer_head *gd_bh;
4675 ext4_group_t block_group;
4676 struct ext4_sb_info *sbi;
4677 struct ext4_buddy e4b;
4678 unsigned int count_clusters;
4679 int err = 0;
4680 int ret;
4681
4682 might_sleep();
4683 if (bh) {
4684 if (block)
4685 BUG_ON(block != bh->b_blocknr);
4686 else
4687 block = bh->b_blocknr;
4688 }
4689
4690 sbi = EXT4_SB(sb);
4691 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4692 !ext4_data_block_valid(sbi, block, count)) {
4693 ext4_error(sb, "Freeing blocks not in datazone - "
4694 "block = %llu, count = %lu", block, count);
4695 goto error_return;
4696 }
4697
4698 ext4_debug("freeing block %llu\n", block);
4699 trace_ext4_free_blocks(inode, block, count, flags);
4700
4701 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4702 BUG_ON(count > 1);
4703
4704 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4705 inode, bh, block);
4706 }
4707
4708 /*
4709 * If the extent to be freed does not begin on a cluster
4710 * boundary, we need to deal with partial clusters at the
4711 * beginning and end of the extent. Normally we will free
4712 * blocks at the beginning or the end unless we are explicitly
4713 * requested to avoid doing so.
4714 */
4715 overflow = EXT4_PBLK_COFF(sbi, block);
4716 if (overflow) {
4717 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4718 overflow = sbi->s_cluster_ratio - overflow;
4719 block += overflow;
4720 if (count > overflow)
4721 count -= overflow;
4722 else
4723 return;
4724 } else {
4725 block -= overflow;
4726 count += overflow;
4727 }
4728 }
4729 overflow = EXT4_LBLK_COFF(sbi, count);
4730 if (overflow) {
4731 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4732 if (count > overflow)
4733 count -= overflow;
4734 else
4735 return;
4736 } else
4737 count += sbi->s_cluster_ratio - overflow;
4738 }
4739
4740 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4741 int i;
4742 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4743
4744 for (i = 0; i < count; i++) {
4745 cond_resched();
4746 if (is_metadata)
4747 bh = sb_find_get_block(inode->i_sb, block + i);
4748 ext4_forget(handle, is_metadata, inode, bh, block + i);
4749 }
4750 }
4751
4752 do_more:
4753 overflow = 0;
4754 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4755
4756 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4757 ext4_get_group_info(sb, block_group))))
4758 return;
4759
4760 /*
4761 * Check to see if we are freeing blocks across a group
4762 * boundary.
4763 */
4764 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4765 overflow = EXT4_C2B(sbi, bit) + count -
4766 EXT4_BLOCKS_PER_GROUP(sb);
4767 count -= overflow;
4768 }
4769 count_clusters = EXT4_NUM_B2C(sbi, count);
4770 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4771 if (IS_ERR(bitmap_bh)) {
4772 err = PTR_ERR(bitmap_bh);
4773 bitmap_bh = NULL;
4774 goto error_return;
4775 }
4776 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4777 if (!gdp) {
4778 err = -EIO;
4779 goto error_return;
4780 }
4781
4782 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4783 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4784 in_range(block, ext4_inode_table(sb, gdp),
4785 EXT4_SB(sb)->s_itb_per_group) ||
4786 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4787 EXT4_SB(sb)->s_itb_per_group)) {
4788
4789 ext4_error(sb, "Freeing blocks in system zone - "
4790 "Block = %llu, count = %lu", block, count);
4791 /* err = 0. ext4_std_error should be a no op */
4792 goto error_return;
4793 }
4794
4795 BUFFER_TRACE(bitmap_bh, "getting write access");
4796 err = ext4_journal_get_write_access(handle, bitmap_bh);
4797 if (err)
4798 goto error_return;
4799
4800 /*
4801 * We are about to modify some metadata. Call the journal APIs
4802 * to unshare ->b_data if a currently-committing transaction is
4803 * using it
4804 */
4805 BUFFER_TRACE(gd_bh, "get_write_access");
4806 err = ext4_journal_get_write_access(handle, gd_bh);
4807 if (err)
4808 goto error_return;
4809 #ifdef AGGRESSIVE_CHECK
4810 {
4811 int i;
4812 for (i = 0; i < count_clusters; i++)
4813 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4814 }
4815 #endif
4816 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4817
4818 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4819 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4820 GFP_NOFS|__GFP_NOFAIL);
4821 if (err)
4822 goto error_return;
4823
4824 /*
4825 * We need to make sure we don't reuse the freed block until after the
4826 * transaction is committed. We make an exception if the inode is to be
4827 * written in writeback mode since writeback mode has weak data
4828 * consistency guarantees.
4829 */
4830 if (ext4_handle_valid(handle) &&
4831 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4832 !ext4_should_writeback_data(inode))) {
4833 struct ext4_free_data *new_entry;
4834 /*
4835 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4836 * to fail.
4837 */
4838 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4839 GFP_NOFS|__GFP_NOFAIL);
4840 new_entry->efd_start_cluster = bit;
4841 new_entry->efd_group = block_group;
4842 new_entry->efd_count = count_clusters;
4843 new_entry->efd_tid = handle->h_transaction->t_tid;
4844
4845 ext4_lock_group(sb, block_group);
4846 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4847 ext4_mb_free_metadata(handle, &e4b, new_entry);
4848 } else {
4849 /* need to update group_info->bb_free and bitmap
4850 * with group lock held. generate_buddy look at
4851 * them with group lock_held
4852 */
4853 if (test_opt(sb, DISCARD)) {
4854 err = ext4_issue_discard(sb, block_group, bit, count);
4855 if (err && err != -EOPNOTSUPP)
4856 ext4_msg(sb, KERN_WARNING, "discard request in"
4857 " group:%d block:%d count:%lu failed"
4858 " with %d", block_group, bit, count,
4859 err);
4860 } else
4861 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4862
4863 ext4_lock_group(sb, block_group);
4864 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4865 mb_free_blocks(inode, &e4b, bit, count_clusters);
4866 }
4867
4868 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4869 ext4_free_group_clusters_set(sb, gdp, ret);
4870 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4871 ext4_group_desc_csum_set(sb, block_group, gdp);
4872 ext4_unlock_group(sb, block_group);
4873
4874 if (sbi->s_log_groups_per_flex) {
4875 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4876 atomic64_add(count_clusters,
4877 &sbi->s_flex_groups[flex_group].free_clusters);
4878 }
4879
4880 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4881 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4882 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4883
4884 ext4_mb_unload_buddy(&e4b);
4885
4886 /* We dirtied the bitmap block */
4887 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4888 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4889
4890 /* And the group descriptor block */
4891 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4892 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4893 if (!err)
4894 err = ret;
4895
4896 if (overflow && !err) {
4897 block += count;
4898 count = overflow;
4899 put_bh(bitmap_bh);
4900 goto do_more;
4901 }
4902 error_return:
4903 brelse(bitmap_bh);
4904 ext4_std_error(sb, err);
4905 return;
4906 }
4907
4908 /**
4909 * ext4_group_add_blocks() -- Add given blocks to an existing group
4910 * @handle: handle to this transaction
4911 * @sb: super block
4912 * @block: start physical block to add to the block group
4913 * @count: number of blocks to free
4914 *
4915 * This marks the blocks as free in the bitmap and buddy.
4916 */
4917 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4918 ext4_fsblk_t block, unsigned long count)
4919 {
4920 struct buffer_head *bitmap_bh = NULL;
4921 struct buffer_head *gd_bh;
4922 ext4_group_t block_group;
4923 ext4_grpblk_t bit;
4924 unsigned int i;
4925 struct ext4_group_desc *desc;
4926 struct ext4_sb_info *sbi = EXT4_SB(sb);
4927 struct ext4_buddy e4b;
4928 int err = 0, ret, blk_free_count;
4929 ext4_grpblk_t blocks_freed;
4930
4931 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4932
4933 if (count == 0)
4934 return 0;
4935
4936 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4937 /*
4938 * Check to see if we are freeing blocks across a group
4939 * boundary.
4940 */
4941 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4942 ext4_warning(sb, "too much blocks added to group %u",
4943 block_group);
4944 err = -EINVAL;
4945 goto error_return;
4946 }
4947
4948 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4949 if (IS_ERR(bitmap_bh)) {
4950 err = PTR_ERR(bitmap_bh);
4951 bitmap_bh = NULL;
4952 goto error_return;
4953 }
4954
4955 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4956 if (!desc) {
4957 err = -EIO;
4958 goto error_return;
4959 }
4960
4961 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4962 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4963 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4964 in_range(block + count - 1, ext4_inode_table(sb, desc),
4965 sbi->s_itb_per_group)) {
4966 ext4_error(sb, "Adding blocks in system zones - "
4967 "Block = %llu, count = %lu",
4968 block, count);
4969 err = -EINVAL;
4970 goto error_return;
4971 }
4972
4973 BUFFER_TRACE(bitmap_bh, "getting write access");
4974 err = ext4_journal_get_write_access(handle, bitmap_bh);
4975 if (err)
4976 goto error_return;
4977
4978 /*
4979 * We are about to modify some metadata. Call the journal APIs
4980 * to unshare ->b_data if a currently-committing transaction is
4981 * using it
4982 */
4983 BUFFER_TRACE(gd_bh, "get_write_access");
4984 err = ext4_journal_get_write_access(handle, gd_bh);
4985 if (err)
4986 goto error_return;
4987
4988 for (i = 0, blocks_freed = 0; i < count; i++) {
4989 BUFFER_TRACE(bitmap_bh, "clear bit");
4990 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4991 ext4_error(sb, "bit already cleared for block %llu",
4992 (ext4_fsblk_t)(block + i));
4993 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4994 } else {
4995 blocks_freed++;
4996 }
4997 }
4998
4999 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5000 if (err)
5001 goto error_return;
5002
5003 /*
5004 * need to update group_info->bb_free and bitmap
5005 * with group lock held. generate_buddy look at
5006 * them with group lock_held
5007 */
5008 ext4_lock_group(sb, block_group);
5009 mb_clear_bits(bitmap_bh->b_data, bit, count);
5010 mb_free_blocks(NULL, &e4b, bit, count);
5011 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5012 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5013 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5014 ext4_group_desc_csum_set(sb, block_group, desc);
5015 ext4_unlock_group(sb, block_group);
5016 percpu_counter_add(&sbi->s_freeclusters_counter,
5017 EXT4_NUM_B2C(sbi, blocks_freed));
5018
5019 if (sbi->s_log_groups_per_flex) {
5020 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5021 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5022 &sbi->s_flex_groups[flex_group].free_clusters);
5023 }
5024
5025 ext4_mb_unload_buddy(&e4b);
5026
5027 /* We dirtied the bitmap block */
5028 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5029 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5030
5031 /* And the group descriptor block */
5032 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5033 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5034 if (!err)
5035 err = ret;
5036
5037 error_return:
5038 brelse(bitmap_bh);
5039 ext4_std_error(sb, err);
5040 return err;
5041 }
5042
5043 /**
5044 * ext4_trim_extent -- function to TRIM one single free extent in the group
5045 * @sb: super block for the file system
5046 * @start: starting block of the free extent in the alloc. group
5047 * @count: number of blocks to TRIM
5048 * @group: alloc. group we are working with
5049 * @e4b: ext4 buddy for the group
5050 *
5051 * Trim "count" blocks starting at "start" in the "group". To assure that no
5052 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5053 * be called with under the group lock.
5054 */
5055 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5056 ext4_group_t group, struct ext4_buddy *e4b)
5057 __releases(bitlock)
5058 __acquires(bitlock)
5059 {
5060 struct ext4_free_extent ex;
5061 int ret = 0;
5062
5063 trace_ext4_trim_extent(sb, group, start, count);
5064
5065 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5066
5067 ex.fe_start = start;
5068 ex.fe_group = group;
5069 ex.fe_len = count;
5070
5071 /*
5072 * Mark blocks used, so no one can reuse them while
5073 * being trimmed.
5074 */
5075 mb_mark_used(e4b, &ex);
5076 ext4_unlock_group(sb, group);
5077 ret = ext4_issue_discard(sb, group, start, count);
5078 ext4_lock_group(sb, group);
5079 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5080 return ret;
5081 }
5082
5083 /**
5084 * ext4_trim_all_free -- function to trim all free space in alloc. group
5085 * @sb: super block for file system
5086 * @group: group to be trimmed
5087 * @start: first group block to examine
5088 * @max: last group block to examine
5089 * @minblocks: minimum extent block count
5090 *
5091 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5092 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5093 * the extent.
5094 *
5095 *
5096 * ext4_trim_all_free walks through group's block bitmap searching for free
5097 * extents. When the free extent is found, mark it as used in group buddy
5098 * bitmap. Then issue a TRIM command on this extent and free the extent in
5099 * the group buddy bitmap. This is done until whole group is scanned.
5100 */
5101 static ext4_grpblk_t
5102 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5103 ext4_grpblk_t start, ext4_grpblk_t max,
5104 ext4_grpblk_t minblocks)
5105 {
5106 void *bitmap;
5107 ext4_grpblk_t next, count = 0, free_count = 0;
5108 struct ext4_buddy e4b;
5109 int ret = 0;
5110
5111 trace_ext4_trim_all_free(sb, group, start, max);
5112
5113 ret = ext4_mb_load_buddy(sb, group, &e4b);
5114 if (ret) {
5115 ext4_error(sb, "Error in loading buddy "
5116 "information for %u", group);
5117 return ret;
5118 }
5119 bitmap = e4b.bd_bitmap;
5120
5121 ext4_lock_group(sb, group);
5122 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5123 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5124 goto out;
5125
5126 start = (e4b.bd_info->bb_first_free > start) ?
5127 e4b.bd_info->bb_first_free : start;
5128
5129 while (start <= max) {
5130 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5131 if (start > max)
5132 break;
5133 next = mb_find_next_bit(bitmap, max + 1, start);
5134
5135 if ((next - start) >= minblocks) {
5136 ret = ext4_trim_extent(sb, start,
5137 next - start, group, &e4b);
5138 if (ret && ret != -EOPNOTSUPP)
5139 break;
5140 ret = 0;
5141 count += next - start;
5142 }
5143 free_count += next - start;
5144 start = next + 1;
5145
5146 if (fatal_signal_pending(current)) {
5147 count = -ERESTARTSYS;
5148 break;
5149 }
5150
5151 if (need_resched()) {
5152 ext4_unlock_group(sb, group);
5153 cond_resched();
5154 ext4_lock_group(sb, group);
5155 }
5156
5157 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5158 break;
5159 }
5160
5161 if (!ret) {
5162 ret = count;
5163 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5164 }
5165 out:
5166 ext4_unlock_group(sb, group);
5167 ext4_mb_unload_buddy(&e4b);
5168
5169 ext4_debug("trimmed %d blocks in the group %d\n",
5170 count, group);
5171
5172 return ret;
5173 }
5174
5175 /**
5176 * ext4_trim_fs() -- trim ioctl handle function
5177 * @sb: superblock for filesystem
5178 * @range: fstrim_range structure
5179 *
5180 * start: First Byte to trim
5181 * len: number of Bytes to trim from start
5182 * minlen: minimum extent length in Bytes
5183 * ext4_trim_fs goes through all allocation groups containing Bytes from
5184 * start to start+len. For each such a group ext4_trim_all_free function
5185 * is invoked to trim all free space.
5186 */
5187 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5188 {
5189 struct ext4_group_info *grp;
5190 ext4_group_t group, first_group, last_group;
5191 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5192 uint64_t start, end, minlen, trimmed = 0;
5193 ext4_fsblk_t first_data_blk =
5194 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5195 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5196 int ret = 0;
5197
5198 start = range->start >> sb->s_blocksize_bits;
5199 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5200 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5201 range->minlen >> sb->s_blocksize_bits);
5202
5203 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5204 start >= max_blks ||
5205 range->len < sb->s_blocksize)
5206 return -EINVAL;
5207 if (end >= max_blks)
5208 end = max_blks - 1;
5209 if (end <= first_data_blk)
5210 goto out;
5211 if (start < first_data_blk)
5212 start = first_data_blk;
5213
5214 /* Determine first and last group to examine based on start and end */
5215 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5216 &first_group, &first_cluster);
5217 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5218 &last_group, &last_cluster);
5219
5220 /* end now represents the last cluster to discard in this group */
5221 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5222
5223 for (group = first_group; group <= last_group; group++) {
5224 grp = ext4_get_group_info(sb, group);
5225 /* We only do this if the grp has never been initialized */
5226 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5227 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5228 if (ret)
5229 break;
5230 }
5231
5232 /*
5233 * For all the groups except the last one, last cluster will
5234 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5235 * change it for the last group, note that last_cluster is
5236 * already computed earlier by ext4_get_group_no_and_offset()
5237 */
5238 if (group == last_group)
5239 end = last_cluster;
5240
5241 if (grp->bb_free >= minlen) {
5242 cnt = ext4_trim_all_free(sb, group, first_cluster,
5243 end, minlen);
5244 if (cnt < 0) {
5245 ret = cnt;
5246 break;
5247 }
5248 trimmed += cnt;
5249 }
5250
5251 /*
5252 * For every group except the first one, we are sure
5253 * that the first cluster to discard will be cluster #0.
5254 */
5255 first_cluster = 0;
5256 }
5257
5258 if (!ret)
5259 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5260
5261 out:
5262 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5263 return ret;
5264 }
This page took 0.139733 seconds and 5 git commands to generate.