ext4: fold ext4_nojournal_sops into ext4_sops
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
145 return 1;
146
147 return es->s_checksum == ext4_superblock_csum(sb, es);
148 }
149
150 void ext4_superblock_csum_set(struct super_block *sb)
151 {
152 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
153
154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
156 return;
157
158 es->s_checksum = ext4_superblock_csum(sb, es);
159 }
160
161 void *ext4_kvmalloc(size_t size, gfp_t flags)
162 {
163 void *ret;
164
165 ret = kmalloc(size, flags | __GFP_NOWARN);
166 if (!ret)
167 ret = __vmalloc(size, flags, PAGE_KERNEL);
168 return ret;
169 }
170
171 void *ext4_kvzalloc(size_t size, gfp_t flags)
172 {
173 void *ret;
174
175 ret = kzalloc(size, flags | __GFP_NOWARN);
176 if (!ret)
177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
178 return ret;
179 }
180
181 void ext4_kvfree(void *ptr)
182 {
183 if (is_vmalloc_addr(ptr))
184 vfree(ptr);
185 else
186 kfree(ptr);
187
188 }
189
190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le32_to_cpu(bg->bg_block_bitmap_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
196 }
197
198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
199 struct ext4_group_desc *bg)
200 {
201 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
204 }
205
206 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
207 struct ext4_group_desc *bg)
208 {
209 return le32_to_cpu(bg->bg_inode_table_lo) |
210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
212 }
213
214 __u32 ext4_free_group_clusters(struct super_block *sb,
215 struct ext4_group_desc *bg)
216 {
217 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
220 }
221
222 __u32 ext4_free_inodes_count(struct super_block *sb,
223 struct ext4_group_desc *bg)
224 {
225 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
228 }
229
230 __u32 ext4_used_dirs_count(struct super_block *sb,
231 struct ext4_group_desc *bg)
232 {
233 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
236 }
237
238 __u32 ext4_itable_unused_count(struct super_block *sb,
239 struct ext4_group_desc *bg)
240 {
241 return le16_to_cpu(bg->bg_itable_unused_lo) |
242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
244 }
245
246 void ext4_block_bitmap_set(struct super_block *sb,
247 struct ext4_group_desc *bg, ext4_fsblk_t blk)
248 {
249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
252 }
253
254 void ext4_inode_bitmap_set(struct super_block *sb,
255 struct ext4_group_desc *bg, ext4_fsblk_t blk)
256 {
257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
260 }
261
262 void ext4_inode_table_set(struct super_block *sb,
263 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 {
265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
268 }
269
270 void ext4_free_group_clusters_set(struct super_block *sb,
271 struct ext4_group_desc *bg, __u32 count)
272 {
273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
276 }
277
278 void ext4_free_inodes_set(struct super_block *sb,
279 struct ext4_group_desc *bg, __u32 count)
280 {
281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
284 }
285
286 void ext4_used_dirs_set(struct super_block *sb,
287 struct ext4_group_desc *bg, __u32 count)
288 {
289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
292 }
293
294 void ext4_itable_unused_set(struct super_block *sb,
295 struct ext4_group_desc *bg, __u32 count)
296 {
297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
300 }
301
302
303 static void __save_error_info(struct super_block *sb, const char *func,
304 unsigned int line)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 /*
403 * Make sure updated value of ->s_mount_flags will be visible
404 * before ->s_flags update
405 */
406 smp_wmb();
407 sb->s_flags |= MS_RDONLY;
408 }
409 if (test_opt(sb, ERRORS_PANIC))
410 panic("EXT4-fs (device %s): panic forced after error\n",
411 sb->s_id);
412 }
413
414 #define ext4_error_ratelimit(sb) \
415 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
416 "EXT4-fs error")
417
418 void __ext4_error(struct super_block *sb, const char *function,
419 unsigned int line, const char *fmt, ...)
420 {
421 struct va_format vaf;
422 va_list args;
423
424 if (ext4_error_ratelimit(sb)) {
425 va_start(args, fmt);
426 vaf.fmt = fmt;
427 vaf.va = &args;
428 printk(KERN_CRIT
429 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
430 sb->s_id, function, line, current->comm, &vaf);
431 va_end(args);
432 }
433 save_error_info(sb, function, line);
434 ext4_handle_error(sb);
435 }
436
437 void __ext4_error_inode(struct inode *inode, const char *function,
438 unsigned int line, ext4_fsblk_t block,
439 const char *fmt, ...)
440 {
441 va_list args;
442 struct va_format vaf;
443 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
444
445 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
446 es->s_last_error_block = cpu_to_le64(block);
447 if (ext4_error_ratelimit(inode->i_sb)) {
448 va_start(args, fmt);
449 vaf.fmt = fmt;
450 vaf.va = &args;
451 if (block)
452 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
453 "inode #%lu: block %llu: comm %s: %pV\n",
454 inode->i_sb->s_id, function, line, inode->i_ino,
455 block, current->comm, &vaf);
456 else
457 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
458 "inode #%lu: comm %s: %pV\n",
459 inode->i_sb->s_id, function, line, inode->i_ino,
460 current->comm, &vaf);
461 va_end(args);
462 }
463 save_error_info(inode->i_sb, function, line);
464 ext4_handle_error(inode->i_sb);
465 }
466
467 void __ext4_error_file(struct file *file, const char *function,
468 unsigned int line, ext4_fsblk_t block,
469 const char *fmt, ...)
470 {
471 va_list args;
472 struct va_format vaf;
473 struct ext4_super_block *es;
474 struct inode *inode = file_inode(file);
475 char pathname[80], *path;
476
477 es = EXT4_SB(inode->i_sb)->s_es;
478 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 if (ext4_error_ratelimit(inode->i_sb)) {
480 path = d_path(&(file->f_path), pathname, sizeof(pathname));
481 if (IS_ERR(path))
482 path = "(unknown)";
483 va_start(args, fmt);
484 vaf.fmt = fmt;
485 vaf.va = &args;
486 if (block)
487 printk(KERN_CRIT
488 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
489 "block %llu: comm %s: path %s: %pV\n",
490 inode->i_sb->s_id, function, line, inode->i_ino,
491 block, current->comm, path, &vaf);
492 else
493 printk(KERN_CRIT
494 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
495 "comm %s: path %s: %pV\n",
496 inode->i_sb->s_id, function, line, inode->i_ino,
497 current->comm, path, &vaf);
498 va_end(args);
499 }
500 save_error_info(inode->i_sb, function, line);
501 ext4_handle_error(inode->i_sb);
502 }
503
504 const char *ext4_decode_error(struct super_block *sb, int errno,
505 char nbuf[16])
506 {
507 char *errstr = NULL;
508
509 switch (errno) {
510 case -EIO:
511 errstr = "IO failure";
512 break;
513 case -ENOMEM:
514 errstr = "Out of memory";
515 break;
516 case -EROFS:
517 if (!sb || (EXT4_SB(sb)->s_journal &&
518 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
519 errstr = "Journal has aborted";
520 else
521 errstr = "Readonly filesystem";
522 break;
523 default:
524 /* If the caller passed in an extra buffer for unknown
525 * errors, textualise them now. Else we just return
526 * NULL. */
527 if (nbuf) {
528 /* Check for truncated error codes... */
529 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
530 errstr = nbuf;
531 }
532 break;
533 }
534
535 return errstr;
536 }
537
538 /* __ext4_std_error decodes expected errors from journaling functions
539 * automatically and invokes the appropriate error response. */
540
541 void __ext4_std_error(struct super_block *sb, const char *function,
542 unsigned int line, int errno)
543 {
544 char nbuf[16];
545 const char *errstr;
546
547 /* Special case: if the error is EROFS, and we're not already
548 * inside a transaction, then there's really no point in logging
549 * an error. */
550 if (errno == -EROFS && journal_current_handle() == NULL &&
551 (sb->s_flags & MS_RDONLY))
552 return;
553
554 if (ext4_error_ratelimit(sb)) {
555 errstr = ext4_decode_error(sb, errno, nbuf);
556 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
557 sb->s_id, function, line, errstr);
558 }
559
560 save_error_info(sb, function, line);
561 ext4_handle_error(sb);
562 }
563
564 /*
565 * ext4_abort is a much stronger failure handler than ext4_error. The
566 * abort function may be used to deal with unrecoverable failures such
567 * as journal IO errors or ENOMEM at a critical moment in log management.
568 *
569 * We unconditionally force the filesystem into an ABORT|READONLY state,
570 * unless the error response on the fs has been set to panic in which
571 * case we take the easy way out and panic immediately.
572 */
573
574 void __ext4_abort(struct super_block *sb, const char *function,
575 unsigned int line, const char *fmt, ...)
576 {
577 va_list args;
578
579 save_error_info(sb, function, line);
580 va_start(args, fmt);
581 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
582 function, line);
583 vprintk(fmt, args);
584 printk("\n");
585 va_end(args);
586
587 if ((sb->s_flags & MS_RDONLY) == 0) {
588 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
589 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
590 /*
591 * Make sure updated value of ->s_mount_flags will be visible
592 * before ->s_flags update
593 */
594 smp_wmb();
595 sb->s_flags |= MS_RDONLY;
596 if (EXT4_SB(sb)->s_journal)
597 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
598 save_error_info(sb, function, line);
599 }
600 if (test_opt(sb, ERRORS_PANIC))
601 panic("EXT4-fs panic from previous error\n");
602 }
603
604 void __ext4_msg(struct super_block *sb,
605 const char *prefix, const char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
611 return;
612
613 va_start(args, fmt);
614 vaf.fmt = fmt;
615 vaf.va = &args;
616 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
617 va_end(args);
618 }
619
620 void __ext4_warning(struct super_block *sb, const char *function,
621 unsigned int line, const char *fmt, ...)
622 {
623 struct va_format vaf;
624 va_list args;
625
626 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
627 "EXT4-fs warning"))
628 return;
629
630 va_start(args, fmt);
631 vaf.fmt = fmt;
632 vaf.va = &args;
633 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
634 sb->s_id, function, line, &vaf);
635 va_end(args);
636 }
637
638 void __ext4_grp_locked_error(const char *function, unsigned int line,
639 struct super_block *sb, ext4_group_t grp,
640 unsigned long ino, ext4_fsblk_t block,
641 const char *fmt, ...)
642 __releases(bitlock)
643 __acquires(bitlock)
644 {
645 struct va_format vaf;
646 va_list args;
647 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
648
649 es->s_last_error_ino = cpu_to_le32(ino);
650 es->s_last_error_block = cpu_to_le64(block);
651 __save_error_info(sb, function, line);
652
653 if (ext4_error_ratelimit(sb)) {
654 va_start(args, fmt);
655 vaf.fmt = fmt;
656 vaf.va = &args;
657 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
658 sb->s_id, function, line, grp);
659 if (ino)
660 printk(KERN_CONT "inode %lu: ", ino);
661 if (block)
662 printk(KERN_CONT "block %llu:",
663 (unsigned long long) block);
664 printk(KERN_CONT "%pV\n", &vaf);
665 va_end(args);
666 }
667
668 if (test_opt(sb, ERRORS_CONT)) {
669 ext4_commit_super(sb, 0);
670 return;
671 }
672
673 ext4_unlock_group(sb, grp);
674 ext4_handle_error(sb);
675 /*
676 * We only get here in the ERRORS_RO case; relocking the group
677 * may be dangerous, but nothing bad will happen since the
678 * filesystem will have already been marked read/only and the
679 * journal has been aborted. We return 1 as a hint to callers
680 * who might what to use the return value from
681 * ext4_grp_locked_error() to distinguish between the
682 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
683 * aggressively from the ext4 function in question, with a
684 * more appropriate error code.
685 */
686 ext4_lock_group(sb, grp);
687 return;
688 }
689
690 void ext4_update_dynamic_rev(struct super_block *sb)
691 {
692 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
693
694 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
695 return;
696
697 ext4_warning(sb,
698 "updating to rev %d because of new feature flag, "
699 "running e2fsck is recommended",
700 EXT4_DYNAMIC_REV);
701
702 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
703 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
704 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
705 /* leave es->s_feature_*compat flags alone */
706 /* es->s_uuid will be set by e2fsck if empty */
707
708 /*
709 * The rest of the superblock fields should be zero, and if not it
710 * means they are likely already in use, so leave them alone. We
711 * can leave it up to e2fsck to clean up any inconsistencies there.
712 */
713 }
714
715 /*
716 * Open the external journal device
717 */
718 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
719 {
720 struct block_device *bdev;
721 char b[BDEVNAME_SIZE];
722
723 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
724 if (IS_ERR(bdev))
725 goto fail;
726 return bdev;
727
728 fail:
729 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
730 __bdevname(dev, b), PTR_ERR(bdev));
731 return NULL;
732 }
733
734 /*
735 * Release the journal device
736 */
737 static void ext4_blkdev_put(struct block_device *bdev)
738 {
739 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
740 }
741
742 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
743 {
744 struct block_device *bdev;
745 bdev = sbi->journal_bdev;
746 if (bdev) {
747 ext4_blkdev_put(bdev);
748 sbi->journal_bdev = NULL;
749 }
750 }
751
752 static inline struct inode *orphan_list_entry(struct list_head *l)
753 {
754 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
755 }
756
757 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
758 {
759 struct list_head *l;
760
761 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
762 le32_to_cpu(sbi->s_es->s_last_orphan));
763
764 printk(KERN_ERR "sb_info orphan list:\n");
765 list_for_each(l, &sbi->s_orphan) {
766 struct inode *inode = orphan_list_entry(l);
767 printk(KERN_ERR " "
768 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
769 inode->i_sb->s_id, inode->i_ino, inode,
770 inode->i_mode, inode->i_nlink,
771 NEXT_ORPHAN(inode));
772 }
773 }
774
775 static void ext4_put_super(struct super_block *sb)
776 {
777 struct ext4_sb_info *sbi = EXT4_SB(sb);
778 struct ext4_super_block *es = sbi->s_es;
779 int i, err;
780
781 ext4_unregister_li_request(sb);
782 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
783
784 flush_workqueue(sbi->rsv_conversion_wq);
785 destroy_workqueue(sbi->rsv_conversion_wq);
786
787 if (sbi->s_journal) {
788 err = jbd2_journal_destroy(sbi->s_journal);
789 sbi->s_journal = NULL;
790 if (err < 0)
791 ext4_abort(sb, "Couldn't clean up the journal");
792 }
793
794 ext4_es_unregister_shrinker(sbi);
795 del_timer_sync(&sbi->s_err_report);
796 ext4_release_system_zone(sb);
797 ext4_mb_release(sb);
798 ext4_ext_release(sb);
799 ext4_xattr_put_super(sb);
800
801 if (!(sb->s_flags & MS_RDONLY)) {
802 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
803 es->s_state = cpu_to_le16(sbi->s_mount_state);
804 }
805 if (!(sb->s_flags & MS_RDONLY))
806 ext4_commit_super(sb, 1);
807
808 if (sbi->s_proc) {
809 remove_proc_entry("options", sbi->s_proc);
810 remove_proc_entry(sb->s_id, ext4_proc_root);
811 }
812 kobject_del(&sbi->s_kobj);
813
814 for (i = 0; i < sbi->s_gdb_count; i++)
815 brelse(sbi->s_group_desc[i]);
816 ext4_kvfree(sbi->s_group_desc);
817 ext4_kvfree(sbi->s_flex_groups);
818 percpu_counter_destroy(&sbi->s_freeclusters_counter);
819 percpu_counter_destroy(&sbi->s_freeinodes_counter);
820 percpu_counter_destroy(&sbi->s_dirs_counter);
821 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
822 brelse(sbi->s_sbh);
823 #ifdef CONFIG_QUOTA
824 for (i = 0; i < EXT4_MAXQUOTAS; i++)
825 kfree(sbi->s_qf_names[i]);
826 #endif
827
828 /* Debugging code just in case the in-memory inode orphan list
829 * isn't empty. The on-disk one can be non-empty if we've
830 * detected an error and taken the fs readonly, but the
831 * in-memory list had better be clean by this point. */
832 if (!list_empty(&sbi->s_orphan))
833 dump_orphan_list(sb, sbi);
834 J_ASSERT(list_empty(&sbi->s_orphan));
835
836 invalidate_bdev(sb->s_bdev);
837 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
838 /*
839 * Invalidate the journal device's buffers. We don't want them
840 * floating about in memory - the physical journal device may
841 * hotswapped, and it breaks the `ro-after' testing code.
842 */
843 sync_blockdev(sbi->journal_bdev);
844 invalidate_bdev(sbi->journal_bdev);
845 ext4_blkdev_remove(sbi);
846 }
847 if (sbi->s_mb_cache) {
848 ext4_xattr_destroy_cache(sbi->s_mb_cache);
849 sbi->s_mb_cache = NULL;
850 }
851 if (sbi->s_mmp_tsk)
852 kthread_stop(sbi->s_mmp_tsk);
853 sb->s_fs_info = NULL;
854 /*
855 * Now that we are completely done shutting down the
856 * superblock, we need to actually destroy the kobject.
857 */
858 kobject_put(&sbi->s_kobj);
859 wait_for_completion(&sbi->s_kobj_unregister);
860 if (sbi->s_chksum_driver)
861 crypto_free_shash(sbi->s_chksum_driver);
862 kfree(sbi->s_blockgroup_lock);
863 kfree(sbi);
864 }
865
866 static struct kmem_cache *ext4_inode_cachep;
867
868 /*
869 * Called inside transaction, so use GFP_NOFS
870 */
871 static struct inode *ext4_alloc_inode(struct super_block *sb)
872 {
873 struct ext4_inode_info *ei;
874
875 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
876 if (!ei)
877 return NULL;
878
879 ei->vfs_inode.i_version = 1;
880 spin_lock_init(&ei->i_raw_lock);
881 INIT_LIST_HEAD(&ei->i_prealloc_list);
882 spin_lock_init(&ei->i_prealloc_lock);
883 ext4_es_init_tree(&ei->i_es_tree);
884 rwlock_init(&ei->i_es_lock);
885 INIT_LIST_HEAD(&ei->i_es_lru);
886 ei->i_es_all_nr = 0;
887 ei->i_es_lru_nr = 0;
888 ei->i_touch_when = 0;
889 ei->i_reserved_data_blocks = 0;
890 ei->i_reserved_meta_blocks = 0;
891 ei->i_allocated_meta_blocks = 0;
892 ei->i_da_metadata_calc_len = 0;
893 ei->i_da_metadata_calc_last_lblock = 0;
894 spin_lock_init(&(ei->i_block_reservation_lock));
895 #ifdef CONFIG_QUOTA
896 ei->i_reserved_quota = 0;
897 #endif
898 ei->jinode = NULL;
899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 spin_lock_init(&ei->i_completed_io_lock);
901 ei->i_sync_tid = 0;
902 ei->i_datasync_tid = 0;
903 atomic_set(&ei->i_ioend_count, 0);
904 atomic_set(&ei->i_unwritten, 0);
905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906
907 return &ei->vfs_inode;
908 }
909
910 static int ext4_drop_inode(struct inode *inode)
911 {
912 int drop = generic_drop_inode(inode);
913
914 trace_ext4_drop_inode(inode, drop);
915 return drop;
916 }
917
918 static void ext4_i_callback(struct rcu_head *head)
919 {
920 struct inode *inode = container_of(head, struct inode, i_rcu);
921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922 }
923
924 static void ext4_destroy_inode(struct inode *inode)
925 {
926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 ext4_msg(inode->i_sb, KERN_ERR,
928 "Inode %lu (%p): orphan list check failed!",
929 inode->i_ino, EXT4_I(inode));
930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 EXT4_I(inode), sizeof(struct ext4_inode_info),
932 true);
933 dump_stack();
934 }
935 call_rcu(&inode->i_rcu, ext4_i_callback);
936 }
937
938 static void init_once(void *foo)
939 {
940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941
942 INIT_LIST_HEAD(&ei->i_orphan);
943 init_rwsem(&ei->xattr_sem);
944 init_rwsem(&ei->i_data_sem);
945 inode_init_once(&ei->vfs_inode);
946 }
947
948 static int __init init_inodecache(void)
949 {
950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 sizeof(struct ext4_inode_info),
952 0, (SLAB_RECLAIM_ACCOUNT|
953 SLAB_MEM_SPREAD),
954 init_once);
955 if (ext4_inode_cachep == NULL)
956 return -ENOMEM;
957 return 0;
958 }
959
960 static void destroy_inodecache(void)
961 {
962 /*
963 * Make sure all delayed rcu free inodes are flushed before we
964 * destroy cache.
965 */
966 rcu_barrier();
967 kmem_cache_destroy(ext4_inode_cachep);
968 }
969
970 void ext4_clear_inode(struct inode *inode)
971 {
972 invalidate_inode_buffers(inode);
973 clear_inode(inode);
974 dquot_drop(inode);
975 ext4_discard_preallocations(inode);
976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 ext4_es_lru_del(inode);
978 if (EXT4_I(inode)->jinode) {
979 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
980 EXT4_I(inode)->jinode);
981 jbd2_free_inode(EXT4_I(inode)->jinode);
982 EXT4_I(inode)->jinode = NULL;
983 }
984 }
985
986 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
987 u64 ino, u32 generation)
988 {
989 struct inode *inode;
990
991 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
992 return ERR_PTR(-ESTALE);
993 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
994 return ERR_PTR(-ESTALE);
995
996 /* iget isn't really right if the inode is currently unallocated!!
997 *
998 * ext4_read_inode will return a bad_inode if the inode had been
999 * deleted, so we should be safe.
1000 *
1001 * Currently we don't know the generation for parent directory, so
1002 * a generation of 0 means "accept any"
1003 */
1004 inode = ext4_iget(sb, ino);
1005 if (IS_ERR(inode))
1006 return ERR_CAST(inode);
1007 if (generation && inode->i_generation != generation) {
1008 iput(inode);
1009 return ERR_PTR(-ESTALE);
1010 }
1011
1012 return inode;
1013 }
1014
1015 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1016 int fh_len, int fh_type)
1017 {
1018 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1019 ext4_nfs_get_inode);
1020 }
1021
1022 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1023 int fh_len, int fh_type)
1024 {
1025 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1026 ext4_nfs_get_inode);
1027 }
1028
1029 /*
1030 * Try to release metadata pages (indirect blocks, directories) which are
1031 * mapped via the block device. Since these pages could have journal heads
1032 * which would prevent try_to_free_buffers() from freeing them, we must use
1033 * jbd2 layer's try_to_free_buffers() function to release them.
1034 */
1035 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1036 gfp_t wait)
1037 {
1038 journal_t *journal = EXT4_SB(sb)->s_journal;
1039
1040 WARN_ON(PageChecked(page));
1041 if (!page_has_buffers(page))
1042 return 0;
1043 if (journal)
1044 return jbd2_journal_try_to_free_buffers(journal, page,
1045 wait & ~__GFP_WAIT);
1046 return try_to_free_buffers(page);
1047 }
1048
1049 #ifdef CONFIG_QUOTA
1050 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1051 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1052
1053 static int ext4_write_dquot(struct dquot *dquot);
1054 static int ext4_acquire_dquot(struct dquot *dquot);
1055 static int ext4_release_dquot(struct dquot *dquot);
1056 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1057 static int ext4_write_info(struct super_block *sb, int type);
1058 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1059 struct path *path);
1060 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1061 int format_id);
1062 static int ext4_quota_off(struct super_block *sb, int type);
1063 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072
1073 static const struct dquot_operations ext4_quota_operations = {
1074 .get_reserved_space = ext4_get_reserved_space,
1075 .write_dquot = ext4_write_dquot,
1076 .acquire_dquot = ext4_acquire_dquot,
1077 .release_dquot = ext4_release_dquot,
1078 .mark_dirty = ext4_mark_dquot_dirty,
1079 .write_info = ext4_write_info,
1080 .alloc_dquot = dquot_alloc,
1081 .destroy_dquot = dquot_destroy,
1082 };
1083
1084 static const struct quotactl_ops ext4_qctl_operations = {
1085 .quota_on = ext4_quota_on,
1086 .quota_off = ext4_quota_off,
1087 .quota_sync = dquot_quota_sync,
1088 .get_info = dquot_get_dqinfo,
1089 .set_info = dquot_set_dqinfo,
1090 .get_dqblk = dquot_get_dqblk,
1091 .set_dqblk = dquot_set_dqblk
1092 };
1093
1094 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1095 .quota_on_meta = ext4_quota_on_sysfile,
1096 .quota_off = ext4_quota_off_sysfile,
1097 .quota_sync = dquot_quota_sync,
1098 .get_info = dquot_get_dqinfo,
1099 .set_info = dquot_set_dqinfo,
1100 .get_dqblk = dquot_get_dqblk,
1101 .set_dqblk = dquot_set_dqblk
1102 };
1103 #endif
1104
1105 static const struct super_operations ext4_sops = {
1106 .alloc_inode = ext4_alloc_inode,
1107 .destroy_inode = ext4_destroy_inode,
1108 .write_inode = ext4_write_inode,
1109 .dirty_inode = ext4_dirty_inode,
1110 .drop_inode = ext4_drop_inode,
1111 .evict_inode = ext4_evict_inode,
1112 .put_super = ext4_put_super,
1113 .sync_fs = ext4_sync_fs,
1114 .freeze_fs = ext4_freeze,
1115 .unfreeze_fs = ext4_unfreeze,
1116 .statfs = ext4_statfs,
1117 .remount_fs = ext4_remount,
1118 .show_options = ext4_show_options,
1119 #ifdef CONFIG_QUOTA
1120 .quota_read = ext4_quota_read,
1121 .quota_write = ext4_quota_write,
1122 #endif
1123 .bdev_try_to_free_page = bdev_try_to_free_page,
1124 };
1125
1126 static const struct export_operations ext4_export_ops = {
1127 .fh_to_dentry = ext4_fh_to_dentry,
1128 .fh_to_parent = ext4_fh_to_parent,
1129 .get_parent = ext4_get_parent,
1130 };
1131
1132 enum {
1133 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1134 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1135 Opt_nouid32, Opt_debug, Opt_removed,
1136 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1137 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1138 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1139 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1140 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1141 Opt_data_err_abort, Opt_data_err_ignore,
1142 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1143 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1144 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1145 Opt_usrquota, Opt_grpquota, Opt_i_version,
1146 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1147 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1148 Opt_inode_readahead_blks, Opt_journal_ioprio,
1149 Opt_dioread_nolock, Opt_dioread_lock,
1150 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1151 Opt_max_dir_size_kb,
1152 };
1153
1154 static const match_table_t tokens = {
1155 {Opt_bsd_df, "bsddf"},
1156 {Opt_minix_df, "minixdf"},
1157 {Opt_grpid, "grpid"},
1158 {Opt_grpid, "bsdgroups"},
1159 {Opt_nogrpid, "nogrpid"},
1160 {Opt_nogrpid, "sysvgroups"},
1161 {Opt_resgid, "resgid=%u"},
1162 {Opt_resuid, "resuid=%u"},
1163 {Opt_sb, "sb=%u"},
1164 {Opt_err_cont, "errors=continue"},
1165 {Opt_err_panic, "errors=panic"},
1166 {Opt_err_ro, "errors=remount-ro"},
1167 {Opt_nouid32, "nouid32"},
1168 {Opt_debug, "debug"},
1169 {Opt_removed, "oldalloc"},
1170 {Opt_removed, "orlov"},
1171 {Opt_user_xattr, "user_xattr"},
1172 {Opt_nouser_xattr, "nouser_xattr"},
1173 {Opt_acl, "acl"},
1174 {Opt_noacl, "noacl"},
1175 {Opt_noload, "norecovery"},
1176 {Opt_noload, "noload"},
1177 {Opt_removed, "nobh"},
1178 {Opt_removed, "bh"},
1179 {Opt_commit, "commit=%u"},
1180 {Opt_min_batch_time, "min_batch_time=%u"},
1181 {Opt_max_batch_time, "max_batch_time=%u"},
1182 {Opt_journal_dev, "journal_dev=%u"},
1183 {Opt_journal_path, "journal_path=%s"},
1184 {Opt_journal_checksum, "journal_checksum"},
1185 {Opt_journal_async_commit, "journal_async_commit"},
1186 {Opt_abort, "abort"},
1187 {Opt_data_journal, "data=journal"},
1188 {Opt_data_ordered, "data=ordered"},
1189 {Opt_data_writeback, "data=writeback"},
1190 {Opt_data_err_abort, "data_err=abort"},
1191 {Opt_data_err_ignore, "data_err=ignore"},
1192 {Opt_offusrjquota, "usrjquota="},
1193 {Opt_usrjquota, "usrjquota=%s"},
1194 {Opt_offgrpjquota, "grpjquota="},
1195 {Opt_grpjquota, "grpjquota=%s"},
1196 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1197 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1198 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1199 {Opt_grpquota, "grpquota"},
1200 {Opt_noquota, "noquota"},
1201 {Opt_quota, "quota"},
1202 {Opt_usrquota, "usrquota"},
1203 {Opt_barrier, "barrier=%u"},
1204 {Opt_barrier, "barrier"},
1205 {Opt_nobarrier, "nobarrier"},
1206 {Opt_i_version, "i_version"},
1207 {Opt_stripe, "stripe=%u"},
1208 {Opt_delalloc, "delalloc"},
1209 {Opt_nodelalloc, "nodelalloc"},
1210 {Opt_removed, "mblk_io_submit"},
1211 {Opt_removed, "nomblk_io_submit"},
1212 {Opt_block_validity, "block_validity"},
1213 {Opt_noblock_validity, "noblock_validity"},
1214 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1215 {Opt_journal_ioprio, "journal_ioprio=%u"},
1216 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1217 {Opt_auto_da_alloc, "auto_da_alloc"},
1218 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1219 {Opt_dioread_nolock, "dioread_nolock"},
1220 {Opt_dioread_lock, "dioread_lock"},
1221 {Opt_discard, "discard"},
1222 {Opt_nodiscard, "nodiscard"},
1223 {Opt_init_itable, "init_itable=%u"},
1224 {Opt_init_itable, "init_itable"},
1225 {Opt_noinit_itable, "noinit_itable"},
1226 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1227 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1228 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1229 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1230 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1231 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1232 {Opt_err, NULL},
1233 };
1234
1235 static ext4_fsblk_t get_sb_block(void **data)
1236 {
1237 ext4_fsblk_t sb_block;
1238 char *options = (char *) *data;
1239
1240 if (!options || strncmp(options, "sb=", 3) != 0)
1241 return 1; /* Default location */
1242
1243 options += 3;
1244 /* TODO: use simple_strtoll with >32bit ext4 */
1245 sb_block = simple_strtoul(options, &options, 0);
1246 if (*options && *options != ',') {
1247 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1248 (char *) *data);
1249 return 1;
1250 }
1251 if (*options == ',')
1252 options++;
1253 *data = (void *) options;
1254
1255 return sb_block;
1256 }
1257
1258 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1259 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1260 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1261
1262 #ifdef CONFIG_QUOTA
1263 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1264 {
1265 struct ext4_sb_info *sbi = EXT4_SB(sb);
1266 char *qname;
1267 int ret = -1;
1268
1269 if (sb_any_quota_loaded(sb) &&
1270 !sbi->s_qf_names[qtype]) {
1271 ext4_msg(sb, KERN_ERR,
1272 "Cannot change journaled "
1273 "quota options when quota turned on");
1274 return -1;
1275 }
1276 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1277 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1278 "when QUOTA feature is enabled");
1279 return -1;
1280 }
1281 qname = match_strdup(args);
1282 if (!qname) {
1283 ext4_msg(sb, KERN_ERR,
1284 "Not enough memory for storing quotafile name");
1285 return -1;
1286 }
1287 if (sbi->s_qf_names[qtype]) {
1288 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1289 ret = 1;
1290 else
1291 ext4_msg(sb, KERN_ERR,
1292 "%s quota file already specified",
1293 QTYPE2NAME(qtype));
1294 goto errout;
1295 }
1296 if (strchr(qname, '/')) {
1297 ext4_msg(sb, KERN_ERR,
1298 "quotafile must be on filesystem root");
1299 goto errout;
1300 }
1301 sbi->s_qf_names[qtype] = qname;
1302 set_opt(sb, QUOTA);
1303 return 1;
1304 errout:
1305 kfree(qname);
1306 return ret;
1307 }
1308
1309 static int clear_qf_name(struct super_block *sb, int qtype)
1310 {
1311
1312 struct ext4_sb_info *sbi = EXT4_SB(sb);
1313
1314 if (sb_any_quota_loaded(sb) &&
1315 sbi->s_qf_names[qtype]) {
1316 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1317 " when quota turned on");
1318 return -1;
1319 }
1320 kfree(sbi->s_qf_names[qtype]);
1321 sbi->s_qf_names[qtype] = NULL;
1322 return 1;
1323 }
1324 #endif
1325
1326 #define MOPT_SET 0x0001
1327 #define MOPT_CLEAR 0x0002
1328 #define MOPT_NOSUPPORT 0x0004
1329 #define MOPT_EXPLICIT 0x0008
1330 #define MOPT_CLEAR_ERR 0x0010
1331 #define MOPT_GTE0 0x0020
1332 #ifdef CONFIG_QUOTA
1333 #define MOPT_Q 0
1334 #define MOPT_QFMT 0x0040
1335 #else
1336 #define MOPT_Q MOPT_NOSUPPORT
1337 #define MOPT_QFMT MOPT_NOSUPPORT
1338 #endif
1339 #define MOPT_DATAJ 0x0080
1340 #define MOPT_NO_EXT2 0x0100
1341 #define MOPT_NO_EXT3 0x0200
1342 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1343 #define MOPT_STRING 0x0400
1344
1345 static const struct mount_opts {
1346 int token;
1347 int mount_opt;
1348 int flags;
1349 } ext4_mount_opts[] = {
1350 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1351 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1352 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1353 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1354 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1355 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1356 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1357 MOPT_EXT4_ONLY | MOPT_SET},
1358 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1359 MOPT_EXT4_ONLY | MOPT_CLEAR},
1360 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1361 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1362 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1363 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1364 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1365 MOPT_EXT4_ONLY | MOPT_CLEAR},
1366 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1367 MOPT_EXT4_ONLY | MOPT_SET},
1368 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1369 EXT4_MOUNT_JOURNAL_CHECKSUM),
1370 MOPT_EXT4_ONLY | MOPT_SET},
1371 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1372 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1373 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1374 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1375 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1376 MOPT_NO_EXT2 | MOPT_SET},
1377 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1378 MOPT_NO_EXT2 | MOPT_CLEAR},
1379 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1380 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1381 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1382 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1383 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1384 {Opt_commit, 0, MOPT_GTE0},
1385 {Opt_max_batch_time, 0, MOPT_GTE0},
1386 {Opt_min_batch_time, 0, MOPT_GTE0},
1387 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1388 {Opt_init_itable, 0, MOPT_GTE0},
1389 {Opt_stripe, 0, MOPT_GTE0},
1390 {Opt_resuid, 0, MOPT_GTE0},
1391 {Opt_resgid, 0, MOPT_GTE0},
1392 {Opt_journal_dev, 0, MOPT_GTE0},
1393 {Opt_journal_path, 0, MOPT_STRING},
1394 {Opt_journal_ioprio, 0, MOPT_GTE0},
1395 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1396 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1397 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1398 MOPT_NO_EXT2 | MOPT_DATAJ},
1399 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1400 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1401 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1402 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1403 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1404 #else
1405 {Opt_acl, 0, MOPT_NOSUPPORT},
1406 {Opt_noacl, 0, MOPT_NOSUPPORT},
1407 #endif
1408 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1409 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1410 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1411 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1412 MOPT_SET | MOPT_Q},
1413 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1414 MOPT_SET | MOPT_Q},
1415 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1416 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1417 {Opt_usrjquota, 0, MOPT_Q},
1418 {Opt_grpjquota, 0, MOPT_Q},
1419 {Opt_offusrjquota, 0, MOPT_Q},
1420 {Opt_offgrpjquota, 0, MOPT_Q},
1421 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1422 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1423 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1424 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1425 {Opt_err, 0, 0}
1426 };
1427
1428 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1429 substring_t *args, unsigned long *journal_devnum,
1430 unsigned int *journal_ioprio, int is_remount)
1431 {
1432 struct ext4_sb_info *sbi = EXT4_SB(sb);
1433 const struct mount_opts *m;
1434 kuid_t uid;
1435 kgid_t gid;
1436 int arg = 0;
1437
1438 #ifdef CONFIG_QUOTA
1439 if (token == Opt_usrjquota)
1440 return set_qf_name(sb, USRQUOTA, &args[0]);
1441 else if (token == Opt_grpjquota)
1442 return set_qf_name(sb, GRPQUOTA, &args[0]);
1443 else if (token == Opt_offusrjquota)
1444 return clear_qf_name(sb, USRQUOTA);
1445 else if (token == Opt_offgrpjquota)
1446 return clear_qf_name(sb, GRPQUOTA);
1447 #endif
1448 switch (token) {
1449 case Opt_noacl:
1450 case Opt_nouser_xattr:
1451 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1452 break;
1453 case Opt_sb:
1454 return 1; /* handled by get_sb_block() */
1455 case Opt_removed:
1456 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1457 return 1;
1458 case Opt_abort:
1459 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1460 return 1;
1461 case Opt_i_version:
1462 sb->s_flags |= MS_I_VERSION;
1463 return 1;
1464 }
1465
1466 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1467 if (token == m->token)
1468 break;
1469
1470 if (m->token == Opt_err) {
1471 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1472 "or missing value", opt);
1473 return -1;
1474 }
1475
1476 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1477 ext4_msg(sb, KERN_ERR,
1478 "Mount option \"%s\" incompatible with ext2", opt);
1479 return -1;
1480 }
1481 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1482 ext4_msg(sb, KERN_ERR,
1483 "Mount option \"%s\" incompatible with ext3", opt);
1484 return -1;
1485 }
1486
1487 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1488 return -1;
1489 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1490 return -1;
1491 if (m->flags & MOPT_EXPLICIT)
1492 set_opt2(sb, EXPLICIT_DELALLOC);
1493 if (m->flags & MOPT_CLEAR_ERR)
1494 clear_opt(sb, ERRORS_MASK);
1495 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1496 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1497 "options when quota turned on");
1498 return -1;
1499 }
1500
1501 if (m->flags & MOPT_NOSUPPORT) {
1502 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1503 } else if (token == Opt_commit) {
1504 if (arg == 0)
1505 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1506 sbi->s_commit_interval = HZ * arg;
1507 } else if (token == Opt_max_batch_time) {
1508 sbi->s_max_batch_time = arg;
1509 } else if (token == Opt_min_batch_time) {
1510 sbi->s_min_batch_time = arg;
1511 } else if (token == Opt_inode_readahead_blks) {
1512 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1513 ext4_msg(sb, KERN_ERR,
1514 "EXT4-fs: inode_readahead_blks must be "
1515 "0 or a power of 2 smaller than 2^31");
1516 return -1;
1517 }
1518 sbi->s_inode_readahead_blks = arg;
1519 } else if (token == Opt_init_itable) {
1520 set_opt(sb, INIT_INODE_TABLE);
1521 if (!args->from)
1522 arg = EXT4_DEF_LI_WAIT_MULT;
1523 sbi->s_li_wait_mult = arg;
1524 } else if (token == Opt_max_dir_size_kb) {
1525 sbi->s_max_dir_size_kb = arg;
1526 } else if (token == Opt_stripe) {
1527 sbi->s_stripe = arg;
1528 } else if (token == Opt_resuid) {
1529 uid = make_kuid(current_user_ns(), arg);
1530 if (!uid_valid(uid)) {
1531 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1532 return -1;
1533 }
1534 sbi->s_resuid = uid;
1535 } else if (token == Opt_resgid) {
1536 gid = make_kgid(current_user_ns(), arg);
1537 if (!gid_valid(gid)) {
1538 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1539 return -1;
1540 }
1541 sbi->s_resgid = gid;
1542 } else if (token == Opt_journal_dev) {
1543 if (is_remount) {
1544 ext4_msg(sb, KERN_ERR,
1545 "Cannot specify journal on remount");
1546 return -1;
1547 }
1548 *journal_devnum = arg;
1549 } else if (token == Opt_journal_path) {
1550 char *journal_path;
1551 struct inode *journal_inode;
1552 struct path path;
1553 int error;
1554
1555 if (is_remount) {
1556 ext4_msg(sb, KERN_ERR,
1557 "Cannot specify journal on remount");
1558 return -1;
1559 }
1560 journal_path = match_strdup(&args[0]);
1561 if (!journal_path) {
1562 ext4_msg(sb, KERN_ERR, "error: could not dup "
1563 "journal device string");
1564 return -1;
1565 }
1566
1567 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1568 if (error) {
1569 ext4_msg(sb, KERN_ERR, "error: could not find "
1570 "journal device path: error %d", error);
1571 kfree(journal_path);
1572 return -1;
1573 }
1574
1575 journal_inode = path.dentry->d_inode;
1576 if (!S_ISBLK(journal_inode->i_mode)) {
1577 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1578 "is not a block device", journal_path);
1579 path_put(&path);
1580 kfree(journal_path);
1581 return -1;
1582 }
1583
1584 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1585 path_put(&path);
1586 kfree(journal_path);
1587 } else if (token == Opt_journal_ioprio) {
1588 if (arg > 7) {
1589 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1590 " (must be 0-7)");
1591 return -1;
1592 }
1593 *journal_ioprio =
1594 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1595 } else if (m->flags & MOPT_DATAJ) {
1596 if (is_remount) {
1597 if (!sbi->s_journal)
1598 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1599 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1600 ext4_msg(sb, KERN_ERR,
1601 "Cannot change data mode on remount");
1602 return -1;
1603 }
1604 } else {
1605 clear_opt(sb, DATA_FLAGS);
1606 sbi->s_mount_opt |= m->mount_opt;
1607 }
1608 #ifdef CONFIG_QUOTA
1609 } else if (m->flags & MOPT_QFMT) {
1610 if (sb_any_quota_loaded(sb) &&
1611 sbi->s_jquota_fmt != m->mount_opt) {
1612 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1613 "quota options when quota turned on");
1614 return -1;
1615 }
1616 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1617 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1618 ext4_msg(sb, KERN_ERR,
1619 "Cannot set journaled quota options "
1620 "when QUOTA feature is enabled");
1621 return -1;
1622 }
1623 sbi->s_jquota_fmt = m->mount_opt;
1624 #endif
1625 } else {
1626 if (!args->from)
1627 arg = 1;
1628 if (m->flags & MOPT_CLEAR)
1629 arg = !arg;
1630 else if (unlikely(!(m->flags & MOPT_SET))) {
1631 ext4_msg(sb, KERN_WARNING,
1632 "buggy handling of option %s", opt);
1633 WARN_ON(1);
1634 return -1;
1635 }
1636 if (arg != 0)
1637 sbi->s_mount_opt |= m->mount_opt;
1638 else
1639 sbi->s_mount_opt &= ~m->mount_opt;
1640 }
1641 return 1;
1642 }
1643
1644 static int parse_options(char *options, struct super_block *sb,
1645 unsigned long *journal_devnum,
1646 unsigned int *journal_ioprio,
1647 int is_remount)
1648 {
1649 struct ext4_sb_info *sbi = EXT4_SB(sb);
1650 char *p;
1651 substring_t args[MAX_OPT_ARGS];
1652 int token;
1653
1654 if (!options)
1655 return 1;
1656
1657 while ((p = strsep(&options, ",")) != NULL) {
1658 if (!*p)
1659 continue;
1660 /*
1661 * Initialize args struct so we know whether arg was
1662 * found; some options take optional arguments.
1663 */
1664 args[0].to = args[0].from = NULL;
1665 token = match_token(p, tokens, args);
1666 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1667 journal_ioprio, is_remount) < 0)
1668 return 0;
1669 }
1670 #ifdef CONFIG_QUOTA
1671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1672 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1673 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1674 "feature is enabled");
1675 return 0;
1676 }
1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1679 clear_opt(sb, USRQUOTA);
1680
1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1682 clear_opt(sb, GRPQUOTA);
1683
1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1685 ext4_msg(sb, KERN_ERR, "old and new quota "
1686 "format mixing");
1687 return 0;
1688 }
1689
1690 if (!sbi->s_jquota_fmt) {
1691 ext4_msg(sb, KERN_ERR, "journaled quota format "
1692 "not specified");
1693 return 0;
1694 }
1695 }
1696 #endif
1697 if (test_opt(sb, DIOREAD_NOLOCK)) {
1698 int blocksize =
1699 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1700
1701 if (blocksize < PAGE_CACHE_SIZE) {
1702 ext4_msg(sb, KERN_ERR, "can't mount with "
1703 "dioread_nolock if block size != PAGE_SIZE");
1704 return 0;
1705 }
1706 }
1707 return 1;
1708 }
1709
1710 static inline void ext4_show_quota_options(struct seq_file *seq,
1711 struct super_block *sb)
1712 {
1713 #if defined(CONFIG_QUOTA)
1714 struct ext4_sb_info *sbi = EXT4_SB(sb);
1715
1716 if (sbi->s_jquota_fmt) {
1717 char *fmtname = "";
1718
1719 switch (sbi->s_jquota_fmt) {
1720 case QFMT_VFS_OLD:
1721 fmtname = "vfsold";
1722 break;
1723 case QFMT_VFS_V0:
1724 fmtname = "vfsv0";
1725 break;
1726 case QFMT_VFS_V1:
1727 fmtname = "vfsv1";
1728 break;
1729 }
1730 seq_printf(seq, ",jqfmt=%s", fmtname);
1731 }
1732
1733 if (sbi->s_qf_names[USRQUOTA])
1734 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1735
1736 if (sbi->s_qf_names[GRPQUOTA])
1737 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1738 #endif
1739 }
1740
1741 static const char *token2str(int token)
1742 {
1743 const struct match_token *t;
1744
1745 for (t = tokens; t->token != Opt_err; t++)
1746 if (t->token == token && !strchr(t->pattern, '='))
1747 break;
1748 return t->pattern;
1749 }
1750
1751 /*
1752 * Show an option if
1753 * - it's set to a non-default value OR
1754 * - if the per-sb default is different from the global default
1755 */
1756 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1757 int nodefs)
1758 {
1759 struct ext4_sb_info *sbi = EXT4_SB(sb);
1760 struct ext4_super_block *es = sbi->s_es;
1761 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1762 const struct mount_opts *m;
1763 char sep = nodefs ? '\n' : ',';
1764
1765 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1766 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1767
1768 if (sbi->s_sb_block != 1)
1769 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1770
1771 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1772 int want_set = m->flags & MOPT_SET;
1773 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1774 (m->flags & MOPT_CLEAR_ERR))
1775 continue;
1776 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1777 continue; /* skip if same as the default */
1778 if ((want_set &&
1779 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1780 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1781 continue; /* select Opt_noFoo vs Opt_Foo */
1782 SEQ_OPTS_PRINT("%s", token2str(m->token));
1783 }
1784
1785 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1786 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1787 SEQ_OPTS_PRINT("resuid=%u",
1788 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1789 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1790 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1791 SEQ_OPTS_PRINT("resgid=%u",
1792 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1793 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1794 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1795 SEQ_OPTS_PUTS("errors=remount-ro");
1796 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1797 SEQ_OPTS_PUTS("errors=continue");
1798 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1799 SEQ_OPTS_PUTS("errors=panic");
1800 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1801 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1802 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1803 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1804 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1805 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1806 if (sb->s_flags & MS_I_VERSION)
1807 SEQ_OPTS_PUTS("i_version");
1808 if (nodefs || sbi->s_stripe)
1809 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1810 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1811 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1812 SEQ_OPTS_PUTS("data=journal");
1813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1814 SEQ_OPTS_PUTS("data=ordered");
1815 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1816 SEQ_OPTS_PUTS("data=writeback");
1817 }
1818 if (nodefs ||
1819 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1820 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1821 sbi->s_inode_readahead_blks);
1822
1823 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1824 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1825 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1826 if (nodefs || sbi->s_max_dir_size_kb)
1827 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1828
1829 ext4_show_quota_options(seq, sb);
1830 return 0;
1831 }
1832
1833 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1834 {
1835 return _ext4_show_options(seq, root->d_sb, 0);
1836 }
1837
1838 static int options_seq_show(struct seq_file *seq, void *offset)
1839 {
1840 struct super_block *sb = seq->private;
1841 int rc;
1842
1843 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1844 rc = _ext4_show_options(seq, sb, 1);
1845 seq_puts(seq, "\n");
1846 return rc;
1847 }
1848
1849 static int options_open_fs(struct inode *inode, struct file *file)
1850 {
1851 return single_open(file, options_seq_show, PDE_DATA(inode));
1852 }
1853
1854 static const struct file_operations ext4_seq_options_fops = {
1855 .owner = THIS_MODULE,
1856 .open = options_open_fs,
1857 .read = seq_read,
1858 .llseek = seq_lseek,
1859 .release = single_release,
1860 };
1861
1862 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1863 int read_only)
1864 {
1865 struct ext4_sb_info *sbi = EXT4_SB(sb);
1866 int res = 0;
1867
1868 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1869 ext4_msg(sb, KERN_ERR, "revision level too high, "
1870 "forcing read-only mode");
1871 res = MS_RDONLY;
1872 }
1873 if (read_only)
1874 goto done;
1875 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1876 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1877 "running e2fsck is recommended");
1878 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1879 ext4_msg(sb, KERN_WARNING,
1880 "warning: mounting fs with errors, "
1881 "running e2fsck is recommended");
1882 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1883 le16_to_cpu(es->s_mnt_count) >=
1884 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1885 ext4_msg(sb, KERN_WARNING,
1886 "warning: maximal mount count reached, "
1887 "running e2fsck is recommended");
1888 else if (le32_to_cpu(es->s_checkinterval) &&
1889 (le32_to_cpu(es->s_lastcheck) +
1890 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1891 ext4_msg(sb, KERN_WARNING,
1892 "warning: checktime reached, "
1893 "running e2fsck is recommended");
1894 if (!sbi->s_journal)
1895 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1896 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1897 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1898 le16_add_cpu(&es->s_mnt_count, 1);
1899 es->s_mtime = cpu_to_le32(get_seconds());
1900 ext4_update_dynamic_rev(sb);
1901 if (sbi->s_journal)
1902 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1903
1904 ext4_commit_super(sb, 1);
1905 done:
1906 if (test_opt(sb, DEBUG))
1907 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1908 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1909 sb->s_blocksize,
1910 sbi->s_groups_count,
1911 EXT4_BLOCKS_PER_GROUP(sb),
1912 EXT4_INODES_PER_GROUP(sb),
1913 sbi->s_mount_opt, sbi->s_mount_opt2);
1914
1915 cleancache_init_fs(sb);
1916 return res;
1917 }
1918
1919 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1920 {
1921 struct ext4_sb_info *sbi = EXT4_SB(sb);
1922 struct flex_groups *new_groups;
1923 int size;
1924
1925 if (!sbi->s_log_groups_per_flex)
1926 return 0;
1927
1928 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1929 if (size <= sbi->s_flex_groups_allocated)
1930 return 0;
1931
1932 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1933 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1934 if (!new_groups) {
1935 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1936 size / (int) sizeof(struct flex_groups));
1937 return -ENOMEM;
1938 }
1939
1940 if (sbi->s_flex_groups) {
1941 memcpy(new_groups, sbi->s_flex_groups,
1942 (sbi->s_flex_groups_allocated *
1943 sizeof(struct flex_groups)));
1944 ext4_kvfree(sbi->s_flex_groups);
1945 }
1946 sbi->s_flex_groups = new_groups;
1947 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1948 return 0;
1949 }
1950
1951 static int ext4_fill_flex_info(struct super_block *sb)
1952 {
1953 struct ext4_sb_info *sbi = EXT4_SB(sb);
1954 struct ext4_group_desc *gdp = NULL;
1955 ext4_group_t flex_group;
1956 int i, err;
1957
1958 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1959 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1960 sbi->s_log_groups_per_flex = 0;
1961 return 1;
1962 }
1963
1964 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1965 if (err)
1966 goto failed;
1967
1968 for (i = 0; i < sbi->s_groups_count; i++) {
1969 gdp = ext4_get_group_desc(sb, i, NULL);
1970
1971 flex_group = ext4_flex_group(sbi, i);
1972 atomic_add(ext4_free_inodes_count(sb, gdp),
1973 &sbi->s_flex_groups[flex_group].free_inodes);
1974 atomic64_add(ext4_free_group_clusters(sb, gdp),
1975 &sbi->s_flex_groups[flex_group].free_clusters);
1976 atomic_add(ext4_used_dirs_count(sb, gdp),
1977 &sbi->s_flex_groups[flex_group].used_dirs);
1978 }
1979
1980 return 1;
1981 failed:
1982 return 0;
1983 }
1984
1985 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1986 struct ext4_group_desc *gdp)
1987 {
1988 int offset;
1989 __u16 crc = 0;
1990 __le32 le_group = cpu_to_le32(block_group);
1991
1992 if ((sbi->s_es->s_feature_ro_compat &
1993 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1994 /* Use new metadata_csum algorithm */
1995 __le16 save_csum;
1996 __u32 csum32;
1997
1998 save_csum = gdp->bg_checksum;
1999 gdp->bg_checksum = 0;
2000 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2001 sizeof(le_group));
2002 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2003 sbi->s_desc_size);
2004 gdp->bg_checksum = save_csum;
2005
2006 crc = csum32 & 0xFFFF;
2007 goto out;
2008 }
2009
2010 /* old crc16 code */
2011 offset = offsetof(struct ext4_group_desc, bg_checksum);
2012
2013 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2014 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2015 crc = crc16(crc, (__u8 *)gdp, offset);
2016 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2017 /* for checksum of struct ext4_group_desc do the rest...*/
2018 if ((sbi->s_es->s_feature_incompat &
2019 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2020 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2021 crc = crc16(crc, (__u8 *)gdp + offset,
2022 le16_to_cpu(sbi->s_es->s_desc_size) -
2023 offset);
2024
2025 out:
2026 return cpu_to_le16(crc);
2027 }
2028
2029 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2030 struct ext4_group_desc *gdp)
2031 {
2032 if (ext4_has_group_desc_csum(sb) &&
2033 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2034 block_group, gdp)))
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2041 struct ext4_group_desc *gdp)
2042 {
2043 if (!ext4_has_group_desc_csum(sb))
2044 return;
2045 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2046 }
2047
2048 /* Called at mount-time, super-block is locked */
2049 static int ext4_check_descriptors(struct super_block *sb,
2050 ext4_group_t *first_not_zeroed)
2051 {
2052 struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2054 ext4_fsblk_t last_block;
2055 ext4_fsblk_t block_bitmap;
2056 ext4_fsblk_t inode_bitmap;
2057 ext4_fsblk_t inode_table;
2058 int flexbg_flag = 0;
2059 ext4_group_t i, grp = sbi->s_groups_count;
2060
2061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2062 flexbg_flag = 1;
2063
2064 ext4_debug("Checking group descriptors");
2065
2066 for (i = 0; i < sbi->s_groups_count; i++) {
2067 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2068
2069 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2070 last_block = ext4_blocks_count(sbi->s_es) - 1;
2071 else
2072 last_block = first_block +
2073 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2074
2075 if ((grp == sbi->s_groups_count) &&
2076 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2077 grp = i;
2078
2079 block_bitmap = ext4_block_bitmap(sb, gdp);
2080 if (block_bitmap < first_block || block_bitmap > last_block) {
2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082 "Block bitmap for group %u not in group "
2083 "(block %llu)!", i, block_bitmap);
2084 return 0;
2085 }
2086 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2087 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089 "Inode bitmap for group %u not in group "
2090 "(block %llu)!", i, inode_bitmap);
2091 return 0;
2092 }
2093 inode_table = ext4_inode_table(sb, gdp);
2094 if (inode_table < first_block ||
2095 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2096 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2097 "Inode table for group %u not in group "
2098 "(block %llu)!", i, inode_table);
2099 return 0;
2100 }
2101 ext4_lock_group(sb, i);
2102 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2103 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2104 "Checksum for group %u failed (%u!=%u)",
2105 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2106 gdp)), le16_to_cpu(gdp->bg_checksum));
2107 if (!(sb->s_flags & MS_RDONLY)) {
2108 ext4_unlock_group(sb, i);
2109 return 0;
2110 }
2111 }
2112 ext4_unlock_group(sb, i);
2113 if (!flexbg_flag)
2114 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2115 }
2116 if (NULL != first_not_zeroed)
2117 *first_not_zeroed = grp;
2118 return 1;
2119 }
2120
2121 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2122 * the superblock) which were deleted from all directories, but held open by
2123 * a process at the time of a crash. We walk the list and try to delete these
2124 * inodes at recovery time (only with a read-write filesystem).
2125 *
2126 * In order to keep the orphan inode chain consistent during traversal (in
2127 * case of crash during recovery), we link each inode into the superblock
2128 * orphan list_head and handle it the same way as an inode deletion during
2129 * normal operation (which journals the operations for us).
2130 *
2131 * We only do an iget() and an iput() on each inode, which is very safe if we
2132 * accidentally point at an in-use or already deleted inode. The worst that
2133 * can happen in this case is that we get a "bit already cleared" message from
2134 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2135 * e2fsck was run on this filesystem, and it must have already done the orphan
2136 * inode cleanup for us, so we can safely abort without any further action.
2137 */
2138 static void ext4_orphan_cleanup(struct super_block *sb,
2139 struct ext4_super_block *es)
2140 {
2141 unsigned int s_flags = sb->s_flags;
2142 int nr_orphans = 0, nr_truncates = 0;
2143 #ifdef CONFIG_QUOTA
2144 int i;
2145 #endif
2146 if (!es->s_last_orphan) {
2147 jbd_debug(4, "no orphan inodes to clean up\n");
2148 return;
2149 }
2150
2151 if (bdev_read_only(sb->s_bdev)) {
2152 ext4_msg(sb, KERN_ERR, "write access "
2153 "unavailable, skipping orphan cleanup");
2154 return;
2155 }
2156
2157 /* Check if feature set would not allow a r/w mount */
2158 if (!ext4_feature_set_ok(sb, 0)) {
2159 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2160 "unknown ROCOMPAT features");
2161 return;
2162 }
2163
2164 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2165 /* don't clear list on RO mount w/ errors */
2166 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2167 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2168 "clearing orphan list.\n");
2169 es->s_last_orphan = 0;
2170 }
2171 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2172 return;
2173 }
2174
2175 if (s_flags & MS_RDONLY) {
2176 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2177 sb->s_flags &= ~MS_RDONLY;
2178 }
2179 #ifdef CONFIG_QUOTA
2180 /* Needed for iput() to work correctly and not trash data */
2181 sb->s_flags |= MS_ACTIVE;
2182 /* Turn on quotas so that they are updated correctly */
2183 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2184 if (EXT4_SB(sb)->s_qf_names[i]) {
2185 int ret = ext4_quota_on_mount(sb, i);
2186 if (ret < 0)
2187 ext4_msg(sb, KERN_ERR,
2188 "Cannot turn on journaled "
2189 "quota: error %d", ret);
2190 }
2191 }
2192 #endif
2193
2194 while (es->s_last_orphan) {
2195 struct inode *inode;
2196
2197 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2198 if (IS_ERR(inode)) {
2199 es->s_last_orphan = 0;
2200 break;
2201 }
2202
2203 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2204 dquot_initialize(inode);
2205 if (inode->i_nlink) {
2206 if (test_opt(sb, DEBUG))
2207 ext4_msg(sb, KERN_DEBUG,
2208 "%s: truncating inode %lu to %lld bytes",
2209 __func__, inode->i_ino, inode->i_size);
2210 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2211 inode->i_ino, inode->i_size);
2212 mutex_lock(&inode->i_mutex);
2213 truncate_inode_pages(inode->i_mapping, inode->i_size);
2214 ext4_truncate(inode);
2215 mutex_unlock(&inode->i_mutex);
2216 nr_truncates++;
2217 } else {
2218 if (test_opt(sb, DEBUG))
2219 ext4_msg(sb, KERN_DEBUG,
2220 "%s: deleting unreferenced inode %lu",
2221 __func__, inode->i_ino);
2222 jbd_debug(2, "deleting unreferenced inode %lu\n",
2223 inode->i_ino);
2224 nr_orphans++;
2225 }
2226 iput(inode); /* The delete magic happens here! */
2227 }
2228
2229 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2230
2231 if (nr_orphans)
2232 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2233 PLURAL(nr_orphans));
2234 if (nr_truncates)
2235 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2236 PLURAL(nr_truncates));
2237 #ifdef CONFIG_QUOTA
2238 /* Turn quotas off */
2239 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2240 if (sb_dqopt(sb)->files[i])
2241 dquot_quota_off(sb, i);
2242 }
2243 #endif
2244 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2245 }
2246
2247 /*
2248 * Maximal extent format file size.
2249 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2250 * extent format containers, within a sector_t, and within i_blocks
2251 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2252 * so that won't be a limiting factor.
2253 *
2254 * However there is other limiting factor. We do store extents in the form
2255 * of starting block and length, hence the resulting length of the extent
2256 * covering maximum file size must fit into on-disk format containers as
2257 * well. Given that length is always by 1 unit bigger than max unit (because
2258 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2259 *
2260 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2261 */
2262 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2263 {
2264 loff_t res;
2265 loff_t upper_limit = MAX_LFS_FILESIZE;
2266
2267 /* small i_blocks in vfs inode? */
2268 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2269 /*
2270 * CONFIG_LBDAF is not enabled implies the inode
2271 * i_block represent total blocks in 512 bytes
2272 * 32 == size of vfs inode i_blocks * 8
2273 */
2274 upper_limit = (1LL << 32) - 1;
2275
2276 /* total blocks in file system block size */
2277 upper_limit >>= (blkbits - 9);
2278 upper_limit <<= blkbits;
2279 }
2280
2281 /*
2282 * 32-bit extent-start container, ee_block. We lower the maxbytes
2283 * by one fs block, so ee_len can cover the extent of maximum file
2284 * size
2285 */
2286 res = (1LL << 32) - 1;
2287 res <<= blkbits;
2288
2289 /* Sanity check against vm- & vfs- imposed limits */
2290 if (res > upper_limit)
2291 res = upper_limit;
2292
2293 return res;
2294 }
2295
2296 /*
2297 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2298 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2299 * We need to be 1 filesystem block less than the 2^48 sector limit.
2300 */
2301 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2302 {
2303 loff_t res = EXT4_NDIR_BLOCKS;
2304 int meta_blocks;
2305 loff_t upper_limit;
2306 /* This is calculated to be the largest file size for a dense, block
2307 * mapped file such that the file's total number of 512-byte sectors,
2308 * including data and all indirect blocks, does not exceed (2^48 - 1).
2309 *
2310 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2311 * number of 512-byte sectors of the file.
2312 */
2313
2314 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2315 /*
2316 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2317 * the inode i_block field represents total file blocks in
2318 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2319 */
2320 upper_limit = (1LL << 32) - 1;
2321
2322 /* total blocks in file system block size */
2323 upper_limit >>= (bits - 9);
2324
2325 } else {
2326 /*
2327 * We use 48 bit ext4_inode i_blocks
2328 * With EXT4_HUGE_FILE_FL set the i_blocks
2329 * represent total number of blocks in
2330 * file system block size
2331 */
2332 upper_limit = (1LL << 48) - 1;
2333
2334 }
2335
2336 /* indirect blocks */
2337 meta_blocks = 1;
2338 /* double indirect blocks */
2339 meta_blocks += 1 + (1LL << (bits-2));
2340 /* tripple indirect blocks */
2341 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2342
2343 upper_limit -= meta_blocks;
2344 upper_limit <<= bits;
2345
2346 res += 1LL << (bits-2);
2347 res += 1LL << (2*(bits-2));
2348 res += 1LL << (3*(bits-2));
2349 res <<= bits;
2350 if (res > upper_limit)
2351 res = upper_limit;
2352
2353 if (res > MAX_LFS_FILESIZE)
2354 res = MAX_LFS_FILESIZE;
2355
2356 return res;
2357 }
2358
2359 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2360 ext4_fsblk_t logical_sb_block, int nr)
2361 {
2362 struct ext4_sb_info *sbi = EXT4_SB(sb);
2363 ext4_group_t bg, first_meta_bg;
2364 int has_super = 0;
2365
2366 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2367
2368 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2369 nr < first_meta_bg)
2370 return logical_sb_block + nr + 1;
2371 bg = sbi->s_desc_per_block * nr;
2372 if (ext4_bg_has_super(sb, bg))
2373 has_super = 1;
2374
2375 /*
2376 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2377 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2378 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2379 * compensate.
2380 */
2381 if (sb->s_blocksize == 1024 && nr == 0 &&
2382 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2383 has_super++;
2384
2385 return (has_super + ext4_group_first_block_no(sb, bg));
2386 }
2387
2388 /**
2389 * ext4_get_stripe_size: Get the stripe size.
2390 * @sbi: In memory super block info
2391 *
2392 * If we have specified it via mount option, then
2393 * use the mount option value. If the value specified at mount time is
2394 * greater than the blocks per group use the super block value.
2395 * If the super block value is greater than blocks per group return 0.
2396 * Allocator needs it be less than blocks per group.
2397 *
2398 */
2399 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2400 {
2401 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2402 unsigned long stripe_width =
2403 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2404 int ret;
2405
2406 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2407 ret = sbi->s_stripe;
2408 else if (stripe_width <= sbi->s_blocks_per_group)
2409 ret = stripe_width;
2410 else if (stride <= sbi->s_blocks_per_group)
2411 ret = stride;
2412 else
2413 ret = 0;
2414
2415 /*
2416 * If the stripe width is 1, this makes no sense and
2417 * we set it to 0 to turn off stripe handling code.
2418 */
2419 if (ret <= 1)
2420 ret = 0;
2421
2422 return ret;
2423 }
2424
2425 /* sysfs supprt */
2426
2427 struct ext4_attr {
2428 struct attribute attr;
2429 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2430 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2431 const char *, size_t);
2432 union {
2433 int offset;
2434 int deprecated_val;
2435 } u;
2436 };
2437
2438 static int parse_strtoull(const char *buf,
2439 unsigned long long max, unsigned long long *value)
2440 {
2441 int ret;
2442
2443 ret = kstrtoull(skip_spaces(buf), 0, value);
2444 if (!ret && *value > max)
2445 ret = -EINVAL;
2446 return ret;
2447 }
2448
2449 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2450 struct ext4_sb_info *sbi,
2451 char *buf)
2452 {
2453 return snprintf(buf, PAGE_SIZE, "%llu\n",
2454 (s64) EXT4_C2B(sbi,
2455 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2456 }
2457
2458 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi, char *buf)
2460 {
2461 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2462
2463 if (!sb->s_bdev->bd_part)
2464 return snprintf(buf, PAGE_SIZE, "0\n");
2465 return snprintf(buf, PAGE_SIZE, "%lu\n",
2466 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2467 sbi->s_sectors_written_start) >> 1);
2468 }
2469
2470 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2471 struct ext4_sb_info *sbi, char *buf)
2472 {
2473 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2474
2475 if (!sb->s_bdev->bd_part)
2476 return snprintf(buf, PAGE_SIZE, "0\n");
2477 return snprintf(buf, PAGE_SIZE, "%llu\n",
2478 (unsigned long long)(sbi->s_kbytes_written +
2479 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2480 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2481 }
2482
2483 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2484 struct ext4_sb_info *sbi,
2485 const char *buf, size_t count)
2486 {
2487 unsigned long t;
2488 int ret;
2489
2490 ret = kstrtoul(skip_spaces(buf), 0, &t);
2491 if (ret)
2492 return ret;
2493
2494 if (t && (!is_power_of_2(t) || t > 0x40000000))
2495 return -EINVAL;
2496
2497 sbi->s_inode_readahead_blks = t;
2498 return count;
2499 }
2500
2501 static ssize_t sbi_ui_show(struct ext4_attr *a,
2502 struct ext4_sb_info *sbi, char *buf)
2503 {
2504 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2505
2506 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2507 }
2508
2509 static ssize_t sbi_ui_store(struct ext4_attr *a,
2510 struct ext4_sb_info *sbi,
2511 const char *buf, size_t count)
2512 {
2513 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2514 unsigned long t;
2515 int ret;
2516
2517 ret = kstrtoul(skip_spaces(buf), 0, &t);
2518 if (ret)
2519 return ret;
2520 *ui = t;
2521 return count;
2522 }
2523
2524 static ssize_t es_ui_show(struct ext4_attr *a,
2525 struct ext4_sb_info *sbi, char *buf)
2526 {
2527
2528 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2529 a->u.offset);
2530
2531 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2532 }
2533
2534 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2535 struct ext4_sb_info *sbi, char *buf)
2536 {
2537 return snprintf(buf, PAGE_SIZE, "%llu\n",
2538 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2539 }
2540
2541 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2542 struct ext4_sb_info *sbi,
2543 const char *buf, size_t count)
2544 {
2545 unsigned long long val;
2546 int ret;
2547
2548 if (parse_strtoull(buf, -1ULL, &val))
2549 return -EINVAL;
2550 ret = ext4_reserve_clusters(sbi, val);
2551
2552 return ret ? ret : count;
2553 }
2554
2555 static ssize_t trigger_test_error(struct ext4_attr *a,
2556 struct ext4_sb_info *sbi,
2557 const char *buf, size_t count)
2558 {
2559 int len = count;
2560
2561 if (!capable(CAP_SYS_ADMIN))
2562 return -EPERM;
2563
2564 if (len && buf[len-1] == '\n')
2565 len--;
2566
2567 if (len)
2568 ext4_error(sbi->s_sb, "%.*s", len, buf);
2569 return count;
2570 }
2571
2572 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2573 struct ext4_sb_info *sbi, char *buf)
2574 {
2575 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2576 }
2577
2578 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2579 static struct ext4_attr ext4_attr_##_name = { \
2580 .attr = {.name = __stringify(_name), .mode = _mode }, \
2581 .show = _show, \
2582 .store = _store, \
2583 .u = { \
2584 .offset = offsetof(struct ext4_sb_info, _elname),\
2585 }, \
2586 }
2587
2588 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2589 static struct ext4_attr ext4_attr_##_name = { \
2590 .attr = {.name = __stringify(_name), .mode = _mode }, \
2591 .show = _show, \
2592 .store = _store, \
2593 .u = { \
2594 .offset = offsetof(struct ext4_super_block, _elname), \
2595 }, \
2596 }
2597
2598 #define EXT4_ATTR(name, mode, show, store) \
2599 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2600
2601 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2602 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2603 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2604
2605 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2606 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2607 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2608 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2609
2610 #define ATTR_LIST(name) &ext4_attr_##name.attr
2611 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2612 static struct ext4_attr ext4_attr_##_name = { \
2613 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2614 .show = sbi_deprecated_show, \
2615 .u = { \
2616 .deprecated_val = _val, \
2617 }, \
2618 }
2619
2620 EXT4_RO_ATTR(delayed_allocation_blocks);
2621 EXT4_RO_ATTR(session_write_kbytes);
2622 EXT4_RO_ATTR(lifetime_write_kbytes);
2623 EXT4_RW_ATTR(reserved_clusters);
2624 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2625 inode_readahead_blks_store, s_inode_readahead_blks);
2626 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2627 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2628 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2629 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2630 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2631 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2632 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2633 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2634 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2635 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2636 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2637 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2638 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2639 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2640 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2641 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2642 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2643 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2644 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2645
2646 static struct attribute *ext4_attrs[] = {
2647 ATTR_LIST(delayed_allocation_blocks),
2648 ATTR_LIST(session_write_kbytes),
2649 ATTR_LIST(lifetime_write_kbytes),
2650 ATTR_LIST(reserved_clusters),
2651 ATTR_LIST(inode_readahead_blks),
2652 ATTR_LIST(inode_goal),
2653 ATTR_LIST(mb_stats),
2654 ATTR_LIST(mb_max_to_scan),
2655 ATTR_LIST(mb_min_to_scan),
2656 ATTR_LIST(mb_order2_req),
2657 ATTR_LIST(mb_stream_req),
2658 ATTR_LIST(mb_group_prealloc),
2659 ATTR_LIST(max_writeback_mb_bump),
2660 ATTR_LIST(extent_max_zeroout_kb),
2661 ATTR_LIST(trigger_fs_error),
2662 ATTR_LIST(err_ratelimit_interval_ms),
2663 ATTR_LIST(err_ratelimit_burst),
2664 ATTR_LIST(warning_ratelimit_interval_ms),
2665 ATTR_LIST(warning_ratelimit_burst),
2666 ATTR_LIST(msg_ratelimit_interval_ms),
2667 ATTR_LIST(msg_ratelimit_burst),
2668 ATTR_LIST(errors_count),
2669 ATTR_LIST(first_error_time),
2670 ATTR_LIST(last_error_time),
2671 NULL,
2672 };
2673
2674 /* Features this copy of ext4 supports */
2675 EXT4_INFO_ATTR(lazy_itable_init);
2676 EXT4_INFO_ATTR(batched_discard);
2677 EXT4_INFO_ATTR(meta_bg_resize);
2678
2679 static struct attribute *ext4_feat_attrs[] = {
2680 ATTR_LIST(lazy_itable_init),
2681 ATTR_LIST(batched_discard),
2682 ATTR_LIST(meta_bg_resize),
2683 NULL,
2684 };
2685
2686 static ssize_t ext4_attr_show(struct kobject *kobj,
2687 struct attribute *attr, char *buf)
2688 {
2689 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2690 s_kobj);
2691 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2692
2693 return a->show ? a->show(a, sbi, buf) : 0;
2694 }
2695
2696 static ssize_t ext4_attr_store(struct kobject *kobj,
2697 struct attribute *attr,
2698 const char *buf, size_t len)
2699 {
2700 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2701 s_kobj);
2702 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2703
2704 return a->store ? a->store(a, sbi, buf, len) : 0;
2705 }
2706
2707 static void ext4_sb_release(struct kobject *kobj)
2708 {
2709 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2710 s_kobj);
2711 complete(&sbi->s_kobj_unregister);
2712 }
2713
2714 static const struct sysfs_ops ext4_attr_ops = {
2715 .show = ext4_attr_show,
2716 .store = ext4_attr_store,
2717 };
2718
2719 static struct kobj_type ext4_ktype = {
2720 .default_attrs = ext4_attrs,
2721 .sysfs_ops = &ext4_attr_ops,
2722 .release = ext4_sb_release,
2723 };
2724
2725 static void ext4_feat_release(struct kobject *kobj)
2726 {
2727 complete(&ext4_feat->f_kobj_unregister);
2728 }
2729
2730 static ssize_t ext4_feat_show(struct kobject *kobj,
2731 struct attribute *attr, char *buf)
2732 {
2733 return snprintf(buf, PAGE_SIZE, "supported\n");
2734 }
2735
2736 /*
2737 * We can not use ext4_attr_show/store because it relies on the kobject
2738 * being embedded in the ext4_sb_info structure which is definitely not
2739 * true in this case.
2740 */
2741 static const struct sysfs_ops ext4_feat_ops = {
2742 .show = ext4_feat_show,
2743 .store = NULL,
2744 };
2745
2746 static struct kobj_type ext4_feat_ktype = {
2747 .default_attrs = ext4_feat_attrs,
2748 .sysfs_ops = &ext4_feat_ops,
2749 .release = ext4_feat_release,
2750 };
2751
2752 /*
2753 * Check whether this filesystem can be mounted based on
2754 * the features present and the RDONLY/RDWR mount requested.
2755 * Returns 1 if this filesystem can be mounted as requested,
2756 * 0 if it cannot be.
2757 */
2758 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2759 {
2760 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2761 ext4_msg(sb, KERN_ERR,
2762 "Couldn't mount because of "
2763 "unsupported optional features (%x)",
2764 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2765 ~EXT4_FEATURE_INCOMPAT_SUPP));
2766 return 0;
2767 }
2768
2769 if (readonly)
2770 return 1;
2771
2772 /* Check that feature set is OK for a read-write mount */
2773 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2774 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2775 "unsupported optional features (%x)",
2776 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2777 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2778 return 0;
2779 }
2780 /*
2781 * Large file size enabled file system can only be mounted
2782 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2783 */
2784 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2785 if (sizeof(blkcnt_t) < sizeof(u64)) {
2786 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2787 "cannot be mounted RDWR without "
2788 "CONFIG_LBDAF");
2789 return 0;
2790 }
2791 }
2792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2793 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2794 ext4_msg(sb, KERN_ERR,
2795 "Can't support bigalloc feature without "
2796 "extents feature\n");
2797 return 0;
2798 }
2799
2800 #ifndef CONFIG_QUOTA
2801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2802 !readonly) {
2803 ext4_msg(sb, KERN_ERR,
2804 "Filesystem with quota feature cannot be mounted RDWR "
2805 "without CONFIG_QUOTA");
2806 return 0;
2807 }
2808 #endif /* CONFIG_QUOTA */
2809 return 1;
2810 }
2811
2812 /*
2813 * This function is called once a day if we have errors logged
2814 * on the file system
2815 */
2816 static void print_daily_error_info(unsigned long arg)
2817 {
2818 struct super_block *sb = (struct super_block *) arg;
2819 struct ext4_sb_info *sbi;
2820 struct ext4_super_block *es;
2821
2822 sbi = EXT4_SB(sb);
2823 es = sbi->s_es;
2824
2825 if (es->s_error_count)
2826 /* fsck newer than v1.41.13 is needed to clean this condition. */
2827 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2828 le32_to_cpu(es->s_error_count));
2829 if (es->s_first_error_time) {
2830 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2831 sb->s_id, le32_to_cpu(es->s_first_error_time),
2832 (int) sizeof(es->s_first_error_func),
2833 es->s_first_error_func,
2834 le32_to_cpu(es->s_first_error_line));
2835 if (es->s_first_error_ino)
2836 printk(": inode %u",
2837 le32_to_cpu(es->s_first_error_ino));
2838 if (es->s_first_error_block)
2839 printk(": block %llu", (unsigned long long)
2840 le64_to_cpu(es->s_first_error_block));
2841 printk("\n");
2842 }
2843 if (es->s_last_error_time) {
2844 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2845 sb->s_id, le32_to_cpu(es->s_last_error_time),
2846 (int) sizeof(es->s_last_error_func),
2847 es->s_last_error_func,
2848 le32_to_cpu(es->s_last_error_line));
2849 if (es->s_last_error_ino)
2850 printk(": inode %u",
2851 le32_to_cpu(es->s_last_error_ino));
2852 if (es->s_last_error_block)
2853 printk(": block %llu", (unsigned long long)
2854 le64_to_cpu(es->s_last_error_block));
2855 printk("\n");
2856 }
2857 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2858 }
2859
2860 /* Find next suitable group and run ext4_init_inode_table */
2861 static int ext4_run_li_request(struct ext4_li_request *elr)
2862 {
2863 struct ext4_group_desc *gdp = NULL;
2864 ext4_group_t group, ngroups;
2865 struct super_block *sb;
2866 unsigned long timeout = 0;
2867 int ret = 0;
2868
2869 sb = elr->lr_super;
2870 ngroups = EXT4_SB(sb)->s_groups_count;
2871
2872 sb_start_write(sb);
2873 for (group = elr->lr_next_group; group < ngroups; group++) {
2874 gdp = ext4_get_group_desc(sb, group, NULL);
2875 if (!gdp) {
2876 ret = 1;
2877 break;
2878 }
2879
2880 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2881 break;
2882 }
2883
2884 if (group >= ngroups)
2885 ret = 1;
2886
2887 if (!ret) {
2888 timeout = jiffies;
2889 ret = ext4_init_inode_table(sb, group,
2890 elr->lr_timeout ? 0 : 1);
2891 if (elr->lr_timeout == 0) {
2892 timeout = (jiffies - timeout) *
2893 elr->lr_sbi->s_li_wait_mult;
2894 elr->lr_timeout = timeout;
2895 }
2896 elr->lr_next_sched = jiffies + elr->lr_timeout;
2897 elr->lr_next_group = group + 1;
2898 }
2899 sb_end_write(sb);
2900
2901 return ret;
2902 }
2903
2904 /*
2905 * Remove lr_request from the list_request and free the
2906 * request structure. Should be called with li_list_mtx held
2907 */
2908 static void ext4_remove_li_request(struct ext4_li_request *elr)
2909 {
2910 struct ext4_sb_info *sbi;
2911
2912 if (!elr)
2913 return;
2914
2915 sbi = elr->lr_sbi;
2916
2917 list_del(&elr->lr_request);
2918 sbi->s_li_request = NULL;
2919 kfree(elr);
2920 }
2921
2922 static void ext4_unregister_li_request(struct super_block *sb)
2923 {
2924 mutex_lock(&ext4_li_mtx);
2925 if (!ext4_li_info) {
2926 mutex_unlock(&ext4_li_mtx);
2927 return;
2928 }
2929
2930 mutex_lock(&ext4_li_info->li_list_mtx);
2931 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2932 mutex_unlock(&ext4_li_info->li_list_mtx);
2933 mutex_unlock(&ext4_li_mtx);
2934 }
2935
2936 static struct task_struct *ext4_lazyinit_task;
2937
2938 /*
2939 * This is the function where ext4lazyinit thread lives. It walks
2940 * through the request list searching for next scheduled filesystem.
2941 * When such a fs is found, run the lazy initialization request
2942 * (ext4_rn_li_request) and keep track of the time spend in this
2943 * function. Based on that time we compute next schedule time of
2944 * the request. When walking through the list is complete, compute
2945 * next waking time and put itself into sleep.
2946 */
2947 static int ext4_lazyinit_thread(void *arg)
2948 {
2949 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2950 struct list_head *pos, *n;
2951 struct ext4_li_request *elr;
2952 unsigned long next_wakeup, cur;
2953
2954 BUG_ON(NULL == eli);
2955
2956 cont_thread:
2957 while (true) {
2958 next_wakeup = MAX_JIFFY_OFFSET;
2959
2960 mutex_lock(&eli->li_list_mtx);
2961 if (list_empty(&eli->li_request_list)) {
2962 mutex_unlock(&eli->li_list_mtx);
2963 goto exit_thread;
2964 }
2965
2966 list_for_each_safe(pos, n, &eli->li_request_list) {
2967 elr = list_entry(pos, struct ext4_li_request,
2968 lr_request);
2969
2970 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2971 if (ext4_run_li_request(elr) != 0) {
2972 /* error, remove the lazy_init job */
2973 ext4_remove_li_request(elr);
2974 continue;
2975 }
2976 }
2977
2978 if (time_before(elr->lr_next_sched, next_wakeup))
2979 next_wakeup = elr->lr_next_sched;
2980 }
2981 mutex_unlock(&eli->li_list_mtx);
2982
2983 try_to_freeze();
2984
2985 cur = jiffies;
2986 if ((time_after_eq(cur, next_wakeup)) ||
2987 (MAX_JIFFY_OFFSET == next_wakeup)) {
2988 cond_resched();
2989 continue;
2990 }
2991
2992 schedule_timeout_interruptible(next_wakeup - cur);
2993
2994 if (kthread_should_stop()) {
2995 ext4_clear_request_list();
2996 goto exit_thread;
2997 }
2998 }
2999
3000 exit_thread:
3001 /*
3002 * It looks like the request list is empty, but we need
3003 * to check it under the li_list_mtx lock, to prevent any
3004 * additions into it, and of course we should lock ext4_li_mtx
3005 * to atomically free the list and ext4_li_info, because at
3006 * this point another ext4 filesystem could be registering
3007 * new one.
3008 */
3009 mutex_lock(&ext4_li_mtx);
3010 mutex_lock(&eli->li_list_mtx);
3011 if (!list_empty(&eli->li_request_list)) {
3012 mutex_unlock(&eli->li_list_mtx);
3013 mutex_unlock(&ext4_li_mtx);
3014 goto cont_thread;
3015 }
3016 mutex_unlock(&eli->li_list_mtx);
3017 kfree(ext4_li_info);
3018 ext4_li_info = NULL;
3019 mutex_unlock(&ext4_li_mtx);
3020
3021 return 0;
3022 }
3023
3024 static void ext4_clear_request_list(void)
3025 {
3026 struct list_head *pos, *n;
3027 struct ext4_li_request *elr;
3028
3029 mutex_lock(&ext4_li_info->li_list_mtx);
3030 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3031 elr = list_entry(pos, struct ext4_li_request,
3032 lr_request);
3033 ext4_remove_li_request(elr);
3034 }
3035 mutex_unlock(&ext4_li_info->li_list_mtx);
3036 }
3037
3038 static int ext4_run_lazyinit_thread(void)
3039 {
3040 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3041 ext4_li_info, "ext4lazyinit");
3042 if (IS_ERR(ext4_lazyinit_task)) {
3043 int err = PTR_ERR(ext4_lazyinit_task);
3044 ext4_clear_request_list();
3045 kfree(ext4_li_info);
3046 ext4_li_info = NULL;
3047 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3048 "initialization thread\n",
3049 err);
3050 return err;
3051 }
3052 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3053 return 0;
3054 }
3055
3056 /*
3057 * Check whether it make sense to run itable init. thread or not.
3058 * If there is at least one uninitialized inode table, return
3059 * corresponding group number, else the loop goes through all
3060 * groups and return total number of groups.
3061 */
3062 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3063 {
3064 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3065 struct ext4_group_desc *gdp = NULL;
3066
3067 for (group = 0; group < ngroups; group++) {
3068 gdp = ext4_get_group_desc(sb, group, NULL);
3069 if (!gdp)
3070 continue;
3071
3072 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3073 break;
3074 }
3075
3076 return group;
3077 }
3078
3079 static int ext4_li_info_new(void)
3080 {
3081 struct ext4_lazy_init *eli = NULL;
3082
3083 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3084 if (!eli)
3085 return -ENOMEM;
3086
3087 INIT_LIST_HEAD(&eli->li_request_list);
3088 mutex_init(&eli->li_list_mtx);
3089
3090 eli->li_state |= EXT4_LAZYINIT_QUIT;
3091
3092 ext4_li_info = eli;
3093
3094 return 0;
3095 }
3096
3097 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3098 ext4_group_t start)
3099 {
3100 struct ext4_sb_info *sbi = EXT4_SB(sb);
3101 struct ext4_li_request *elr;
3102
3103 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3104 if (!elr)
3105 return NULL;
3106
3107 elr->lr_super = sb;
3108 elr->lr_sbi = sbi;
3109 elr->lr_next_group = start;
3110
3111 /*
3112 * Randomize first schedule time of the request to
3113 * spread the inode table initialization requests
3114 * better.
3115 */
3116 elr->lr_next_sched = jiffies + (prandom_u32() %
3117 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3118 return elr;
3119 }
3120
3121 int ext4_register_li_request(struct super_block *sb,
3122 ext4_group_t first_not_zeroed)
3123 {
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 struct ext4_li_request *elr = NULL;
3126 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3127 int ret = 0;
3128
3129 mutex_lock(&ext4_li_mtx);
3130 if (sbi->s_li_request != NULL) {
3131 /*
3132 * Reset timeout so it can be computed again, because
3133 * s_li_wait_mult might have changed.
3134 */
3135 sbi->s_li_request->lr_timeout = 0;
3136 goto out;
3137 }
3138
3139 if (first_not_zeroed == ngroups ||
3140 (sb->s_flags & MS_RDONLY) ||
3141 !test_opt(sb, INIT_INODE_TABLE))
3142 goto out;
3143
3144 elr = ext4_li_request_new(sb, first_not_zeroed);
3145 if (!elr) {
3146 ret = -ENOMEM;
3147 goto out;
3148 }
3149
3150 if (NULL == ext4_li_info) {
3151 ret = ext4_li_info_new();
3152 if (ret)
3153 goto out;
3154 }
3155
3156 mutex_lock(&ext4_li_info->li_list_mtx);
3157 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3158 mutex_unlock(&ext4_li_info->li_list_mtx);
3159
3160 sbi->s_li_request = elr;
3161 /*
3162 * set elr to NULL here since it has been inserted to
3163 * the request_list and the removal and free of it is
3164 * handled by ext4_clear_request_list from now on.
3165 */
3166 elr = NULL;
3167
3168 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3169 ret = ext4_run_lazyinit_thread();
3170 if (ret)
3171 goto out;
3172 }
3173 out:
3174 mutex_unlock(&ext4_li_mtx);
3175 if (ret)
3176 kfree(elr);
3177 return ret;
3178 }
3179
3180 /*
3181 * We do not need to lock anything since this is called on
3182 * module unload.
3183 */
3184 static void ext4_destroy_lazyinit_thread(void)
3185 {
3186 /*
3187 * If thread exited earlier
3188 * there's nothing to be done.
3189 */
3190 if (!ext4_li_info || !ext4_lazyinit_task)
3191 return;
3192
3193 kthread_stop(ext4_lazyinit_task);
3194 }
3195
3196 static int set_journal_csum_feature_set(struct super_block *sb)
3197 {
3198 int ret = 1;
3199 int compat, incompat;
3200 struct ext4_sb_info *sbi = EXT4_SB(sb);
3201
3202 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3203 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3204 /* journal checksum v3 */
3205 compat = 0;
3206 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3207 } else {
3208 /* journal checksum v1 */
3209 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3210 incompat = 0;
3211 }
3212
3213 jbd2_journal_clear_features(sbi->s_journal,
3214 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3215 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3216 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3217 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3218 ret = jbd2_journal_set_features(sbi->s_journal,
3219 compat, 0,
3220 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3221 incompat);
3222 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3223 ret = jbd2_journal_set_features(sbi->s_journal,
3224 compat, 0,
3225 incompat);
3226 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3228 } else {
3229 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3230 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3231 }
3232
3233 return ret;
3234 }
3235
3236 /*
3237 * Note: calculating the overhead so we can be compatible with
3238 * historical BSD practice is quite difficult in the face of
3239 * clusters/bigalloc. This is because multiple metadata blocks from
3240 * different block group can end up in the same allocation cluster.
3241 * Calculating the exact overhead in the face of clustered allocation
3242 * requires either O(all block bitmaps) in memory or O(number of block
3243 * groups**2) in time. We will still calculate the superblock for
3244 * older file systems --- and if we come across with a bigalloc file
3245 * system with zero in s_overhead_clusters the estimate will be close to
3246 * correct especially for very large cluster sizes --- but for newer
3247 * file systems, it's better to calculate this figure once at mkfs
3248 * time, and store it in the superblock. If the superblock value is
3249 * present (even for non-bigalloc file systems), we will use it.
3250 */
3251 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3252 char *buf)
3253 {
3254 struct ext4_sb_info *sbi = EXT4_SB(sb);
3255 struct ext4_group_desc *gdp;
3256 ext4_fsblk_t first_block, last_block, b;
3257 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3258 int s, j, count = 0;
3259
3260 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3261 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3262 sbi->s_itb_per_group + 2);
3263
3264 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3265 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3266 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3267 for (i = 0; i < ngroups; i++) {
3268 gdp = ext4_get_group_desc(sb, i, NULL);
3269 b = ext4_block_bitmap(sb, gdp);
3270 if (b >= first_block && b <= last_block) {
3271 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3272 count++;
3273 }
3274 b = ext4_inode_bitmap(sb, gdp);
3275 if (b >= first_block && b <= last_block) {
3276 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3277 count++;
3278 }
3279 b = ext4_inode_table(sb, gdp);
3280 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3281 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3282 int c = EXT4_B2C(sbi, b - first_block);
3283 ext4_set_bit(c, buf);
3284 count++;
3285 }
3286 if (i != grp)
3287 continue;
3288 s = 0;
3289 if (ext4_bg_has_super(sb, grp)) {
3290 ext4_set_bit(s++, buf);
3291 count++;
3292 }
3293 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3294 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3295 count++;
3296 }
3297 }
3298 if (!count)
3299 return 0;
3300 return EXT4_CLUSTERS_PER_GROUP(sb) -
3301 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3302 }
3303
3304 /*
3305 * Compute the overhead and stash it in sbi->s_overhead
3306 */
3307 int ext4_calculate_overhead(struct super_block *sb)
3308 {
3309 struct ext4_sb_info *sbi = EXT4_SB(sb);
3310 struct ext4_super_block *es = sbi->s_es;
3311 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3312 ext4_fsblk_t overhead = 0;
3313 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3314
3315 if (!buf)
3316 return -ENOMEM;
3317
3318 /*
3319 * Compute the overhead (FS structures). This is constant
3320 * for a given filesystem unless the number of block groups
3321 * changes so we cache the previous value until it does.
3322 */
3323
3324 /*
3325 * All of the blocks before first_data_block are overhead
3326 */
3327 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3328
3329 /*
3330 * Add the overhead found in each block group
3331 */
3332 for (i = 0; i < ngroups; i++) {
3333 int blks;
3334
3335 blks = count_overhead(sb, i, buf);
3336 overhead += blks;
3337 if (blks)
3338 memset(buf, 0, PAGE_SIZE);
3339 cond_resched();
3340 }
3341 /* Add the journal blocks as well */
3342 if (sbi->s_journal)
3343 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3344
3345 sbi->s_overhead = overhead;
3346 smp_wmb();
3347 free_page((unsigned long) buf);
3348 return 0;
3349 }
3350
3351
3352 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3353 {
3354 ext4_fsblk_t resv_clusters;
3355
3356 /*
3357 * There's no need to reserve anything when we aren't using extents.
3358 * The space estimates are exact, there are no unwritten extents,
3359 * hole punching doesn't need new metadata... This is needed especially
3360 * to keep ext2/3 backward compatibility.
3361 */
3362 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3363 return 0;
3364 /*
3365 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3366 * This should cover the situations where we can not afford to run
3367 * out of space like for example punch hole, or converting
3368 * unwritten extents in delalloc path. In most cases such
3369 * allocation would require 1, or 2 blocks, higher numbers are
3370 * very rare.
3371 */
3372 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3373 EXT4_SB(sb)->s_cluster_bits;
3374
3375 do_div(resv_clusters, 50);
3376 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3377
3378 return resv_clusters;
3379 }
3380
3381
3382 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3383 {
3384 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3385 sbi->s_cluster_bits;
3386
3387 if (count >= clusters)
3388 return -EINVAL;
3389
3390 atomic64_set(&sbi->s_resv_clusters, count);
3391 return 0;
3392 }
3393
3394 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3395 {
3396 char *orig_data = kstrdup(data, GFP_KERNEL);
3397 struct buffer_head *bh;
3398 struct ext4_super_block *es = NULL;
3399 struct ext4_sb_info *sbi;
3400 ext4_fsblk_t block;
3401 ext4_fsblk_t sb_block = get_sb_block(&data);
3402 ext4_fsblk_t logical_sb_block;
3403 unsigned long offset = 0;
3404 unsigned long journal_devnum = 0;
3405 unsigned long def_mount_opts;
3406 struct inode *root;
3407 char *cp;
3408 const char *descr;
3409 int ret = -ENOMEM;
3410 int blocksize, clustersize;
3411 unsigned int db_count;
3412 unsigned int i;
3413 int needs_recovery, has_huge_files, has_bigalloc;
3414 __u64 blocks_count;
3415 int err = 0;
3416 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3417 ext4_group_t first_not_zeroed;
3418
3419 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3420 if (!sbi)
3421 goto out_free_orig;
3422
3423 sbi->s_blockgroup_lock =
3424 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3425 if (!sbi->s_blockgroup_lock) {
3426 kfree(sbi);
3427 goto out_free_orig;
3428 }
3429 sb->s_fs_info = sbi;
3430 sbi->s_sb = sb;
3431 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3432 sbi->s_sb_block = sb_block;
3433 if (sb->s_bdev->bd_part)
3434 sbi->s_sectors_written_start =
3435 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3436
3437 /* Cleanup superblock name */
3438 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3439 *cp = '!';
3440
3441 /* -EINVAL is default */
3442 ret = -EINVAL;
3443 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3444 if (!blocksize) {
3445 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3446 goto out_fail;
3447 }
3448
3449 /*
3450 * The ext4 superblock will not be buffer aligned for other than 1kB
3451 * block sizes. We need to calculate the offset from buffer start.
3452 */
3453 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3454 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3455 offset = do_div(logical_sb_block, blocksize);
3456 } else {
3457 logical_sb_block = sb_block;
3458 }
3459
3460 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3461 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3462 goto out_fail;
3463 }
3464 /*
3465 * Note: s_es must be initialized as soon as possible because
3466 * some ext4 macro-instructions depend on its value
3467 */
3468 es = (struct ext4_super_block *) (bh->b_data + offset);
3469 sbi->s_es = es;
3470 sb->s_magic = le16_to_cpu(es->s_magic);
3471 if (sb->s_magic != EXT4_SUPER_MAGIC)
3472 goto cantfind_ext4;
3473 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3474
3475 /* Warn if metadata_csum and gdt_csum are both set. */
3476 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3477 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3478 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3479 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3480 "redundant flags; please run fsck.");
3481
3482 /* Check for a known checksum algorithm */
3483 if (!ext4_verify_csum_type(sb, es)) {
3484 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3485 "unknown checksum algorithm.");
3486 silent = 1;
3487 goto cantfind_ext4;
3488 }
3489
3490 /* Load the checksum driver */
3491 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3492 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3493 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3494 if (IS_ERR(sbi->s_chksum_driver)) {
3495 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3496 ret = PTR_ERR(sbi->s_chksum_driver);
3497 sbi->s_chksum_driver = NULL;
3498 goto failed_mount;
3499 }
3500 }
3501
3502 /* Check superblock checksum */
3503 if (!ext4_superblock_csum_verify(sb, es)) {
3504 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3505 "invalid superblock checksum. Run e2fsck?");
3506 silent = 1;
3507 goto cantfind_ext4;
3508 }
3509
3510 /* Precompute checksum seed for all metadata */
3511 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3512 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3513 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3514 sizeof(es->s_uuid));
3515
3516 /* Set defaults before we parse the mount options */
3517 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3518 set_opt(sb, INIT_INODE_TABLE);
3519 if (def_mount_opts & EXT4_DEFM_DEBUG)
3520 set_opt(sb, DEBUG);
3521 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3522 set_opt(sb, GRPID);
3523 if (def_mount_opts & EXT4_DEFM_UID16)
3524 set_opt(sb, NO_UID32);
3525 /* xattr user namespace & acls are now defaulted on */
3526 set_opt(sb, XATTR_USER);
3527 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3528 set_opt(sb, POSIX_ACL);
3529 #endif
3530 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3531 set_opt(sb, JOURNAL_DATA);
3532 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3533 set_opt(sb, ORDERED_DATA);
3534 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3535 set_opt(sb, WRITEBACK_DATA);
3536
3537 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3538 set_opt(sb, ERRORS_PANIC);
3539 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3540 set_opt(sb, ERRORS_CONT);
3541 else
3542 set_opt(sb, ERRORS_RO);
3543 /* block_validity enabled by default; disable with noblock_validity */
3544 set_opt(sb, BLOCK_VALIDITY);
3545 if (def_mount_opts & EXT4_DEFM_DISCARD)
3546 set_opt(sb, DISCARD);
3547
3548 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3549 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3550 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3551 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3552 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3553
3554 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3555 set_opt(sb, BARRIER);
3556
3557 /*
3558 * enable delayed allocation by default
3559 * Use -o nodelalloc to turn it off
3560 */
3561 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3562 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3563 set_opt(sb, DELALLOC);
3564
3565 /*
3566 * set default s_li_wait_mult for lazyinit, for the case there is
3567 * no mount option specified.
3568 */
3569 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3570
3571 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3572 &journal_devnum, &journal_ioprio, 0)) {
3573 ext4_msg(sb, KERN_WARNING,
3574 "failed to parse options in superblock: %s",
3575 sbi->s_es->s_mount_opts);
3576 }
3577 sbi->s_def_mount_opt = sbi->s_mount_opt;
3578 if (!parse_options((char *) data, sb, &journal_devnum,
3579 &journal_ioprio, 0))
3580 goto failed_mount;
3581
3582 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3583 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3584 "with data=journal disables delayed "
3585 "allocation and O_DIRECT support!\n");
3586 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3587 ext4_msg(sb, KERN_ERR, "can't mount with "
3588 "both data=journal and delalloc");
3589 goto failed_mount;
3590 }
3591 if (test_opt(sb, DIOREAD_NOLOCK)) {
3592 ext4_msg(sb, KERN_ERR, "can't mount with "
3593 "both data=journal and dioread_nolock");
3594 goto failed_mount;
3595 }
3596 if (test_opt(sb, DELALLOC))
3597 clear_opt(sb, DELALLOC);
3598 }
3599
3600 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3601 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3602
3603 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3604 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3605 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3606 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3607 ext4_msg(sb, KERN_WARNING,
3608 "feature flags set on rev 0 fs, "
3609 "running e2fsck is recommended");
3610
3611 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3612 set_opt2(sb, HURD_COMPAT);
3613 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3614 EXT4_FEATURE_INCOMPAT_64BIT)) {
3615 ext4_msg(sb, KERN_ERR,
3616 "The Hurd can't support 64-bit file systems");
3617 goto failed_mount;
3618 }
3619 }
3620
3621 if (IS_EXT2_SB(sb)) {
3622 if (ext2_feature_set_ok(sb))
3623 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3624 "using the ext4 subsystem");
3625 else {
3626 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3627 "to feature incompatibilities");
3628 goto failed_mount;
3629 }
3630 }
3631
3632 if (IS_EXT3_SB(sb)) {
3633 if (ext3_feature_set_ok(sb))
3634 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3635 "using the ext4 subsystem");
3636 else {
3637 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3638 "to feature incompatibilities");
3639 goto failed_mount;
3640 }
3641 }
3642
3643 /*
3644 * Check feature flags regardless of the revision level, since we
3645 * previously didn't change the revision level when setting the flags,
3646 * so there is a chance incompat flags are set on a rev 0 filesystem.
3647 */
3648 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3649 goto failed_mount;
3650
3651 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3652 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3653 blocksize > EXT4_MAX_BLOCK_SIZE) {
3654 ext4_msg(sb, KERN_ERR,
3655 "Unsupported filesystem blocksize %d", blocksize);
3656 goto failed_mount;
3657 }
3658
3659 if (sb->s_blocksize != blocksize) {
3660 /* Validate the filesystem blocksize */
3661 if (!sb_set_blocksize(sb, blocksize)) {
3662 ext4_msg(sb, KERN_ERR, "bad block size %d",
3663 blocksize);
3664 goto failed_mount;
3665 }
3666
3667 brelse(bh);
3668 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3669 offset = do_div(logical_sb_block, blocksize);
3670 bh = sb_bread_unmovable(sb, logical_sb_block);
3671 if (!bh) {
3672 ext4_msg(sb, KERN_ERR,
3673 "Can't read superblock on 2nd try");
3674 goto failed_mount;
3675 }
3676 es = (struct ext4_super_block *)(bh->b_data + offset);
3677 sbi->s_es = es;
3678 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3679 ext4_msg(sb, KERN_ERR,
3680 "Magic mismatch, very weird!");
3681 goto failed_mount;
3682 }
3683 }
3684
3685 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3686 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3687 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3688 has_huge_files);
3689 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3690
3691 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3692 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3693 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3694 } else {
3695 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3696 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3697 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3698 (!is_power_of_2(sbi->s_inode_size)) ||
3699 (sbi->s_inode_size > blocksize)) {
3700 ext4_msg(sb, KERN_ERR,
3701 "unsupported inode size: %d",
3702 sbi->s_inode_size);
3703 goto failed_mount;
3704 }
3705 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3706 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3707 }
3708
3709 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3710 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3711 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3712 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3713 !is_power_of_2(sbi->s_desc_size)) {
3714 ext4_msg(sb, KERN_ERR,
3715 "unsupported descriptor size %lu",
3716 sbi->s_desc_size);
3717 goto failed_mount;
3718 }
3719 } else
3720 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3721
3722 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3723 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3724 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3725 goto cantfind_ext4;
3726
3727 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3728 if (sbi->s_inodes_per_block == 0)
3729 goto cantfind_ext4;
3730 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3731 sbi->s_inodes_per_block;
3732 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3733 sbi->s_sbh = bh;
3734 sbi->s_mount_state = le16_to_cpu(es->s_state);
3735 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3736 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3737
3738 for (i = 0; i < 4; i++)
3739 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3740 sbi->s_def_hash_version = es->s_def_hash_version;
3741 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3742 i = le32_to_cpu(es->s_flags);
3743 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3744 sbi->s_hash_unsigned = 3;
3745 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3746 #ifdef __CHAR_UNSIGNED__
3747 if (!(sb->s_flags & MS_RDONLY))
3748 es->s_flags |=
3749 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3750 sbi->s_hash_unsigned = 3;
3751 #else
3752 if (!(sb->s_flags & MS_RDONLY))
3753 es->s_flags |=
3754 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3755 #endif
3756 }
3757 }
3758
3759 /* Handle clustersize */
3760 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3761 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3762 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3763 if (has_bigalloc) {
3764 if (clustersize < blocksize) {
3765 ext4_msg(sb, KERN_ERR,
3766 "cluster size (%d) smaller than "
3767 "block size (%d)", clustersize, blocksize);
3768 goto failed_mount;
3769 }
3770 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3771 le32_to_cpu(es->s_log_block_size);
3772 sbi->s_clusters_per_group =
3773 le32_to_cpu(es->s_clusters_per_group);
3774 if (sbi->s_clusters_per_group > blocksize * 8) {
3775 ext4_msg(sb, KERN_ERR,
3776 "#clusters per group too big: %lu",
3777 sbi->s_clusters_per_group);
3778 goto failed_mount;
3779 }
3780 if (sbi->s_blocks_per_group !=
3781 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3782 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3783 "clusters per group (%lu) inconsistent",
3784 sbi->s_blocks_per_group,
3785 sbi->s_clusters_per_group);
3786 goto failed_mount;
3787 }
3788 } else {
3789 if (clustersize != blocksize) {
3790 ext4_warning(sb, "fragment/cluster size (%d) != "
3791 "block size (%d)", clustersize,
3792 blocksize);
3793 clustersize = blocksize;
3794 }
3795 if (sbi->s_blocks_per_group > blocksize * 8) {
3796 ext4_msg(sb, KERN_ERR,
3797 "#blocks per group too big: %lu",
3798 sbi->s_blocks_per_group);
3799 goto failed_mount;
3800 }
3801 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3802 sbi->s_cluster_bits = 0;
3803 }
3804 sbi->s_cluster_ratio = clustersize / blocksize;
3805
3806 if (sbi->s_inodes_per_group > blocksize * 8) {
3807 ext4_msg(sb, KERN_ERR,
3808 "#inodes per group too big: %lu",
3809 sbi->s_inodes_per_group);
3810 goto failed_mount;
3811 }
3812
3813 /* Do we have standard group size of clustersize * 8 blocks ? */
3814 if (sbi->s_blocks_per_group == clustersize << 3)
3815 set_opt2(sb, STD_GROUP_SIZE);
3816
3817 /*
3818 * Test whether we have more sectors than will fit in sector_t,
3819 * and whether the max offset is addressable by the page cache.
3820 */
3821 err = generic_check_addressable(sb->s_blocksize_bits,
3822 ext4_blocks_count(es));
3823 if (err) {
3824 ext4_msg(sb, KERN_ERR, "filesystem"
3825 " too large to mount safely on this system");
3826 if (sizeof(sector_t) < 8)
3827 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3828 goto failed_mount;
3829 }
3830
3831 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3832 goto cantfind_ext4;
3833
3834 /* check blocks count against device size */
3835 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3836 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3837 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3838 "exceeds size of device (%llu blocks)",
3839 ext4_blocks_count(es), blocks_count);
3840 goto failed_mount;
3841 }
3842
3843 /*
3844 * It makes no sense for the first data block to be beyond the end
3845 * of the filesystem.
3846 */
3847 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3848 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3849 "block %u is beyond end of filesystem (%llu)",
3850 le32_to_cpu(es->s_first_data_block),
3851 ext4_blocks_count(es));
3852 goto failed_mount;
3853 }
3854 blocks_count = (ext4_blocks_count(es) -
3855 le32_to_cpu(es->s_first_data_block) +
3856 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3857 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3858 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3859 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3860 "(block count %llu, first data block %u, "
3861 "blocks per group %lu)", sbi->s_groups_count,
3862 ext4_blocks_count(es),
3863 le32_to_cpu(es->s_first_data_block),
3864 EXT4_BLOCKS_PER_GROUP(sb));
3865 goto failed_mount;
3866 }
3867 sbi->s_groups_count = blocks_count;
3868 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3869 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3870 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3871 EXT4_DESC_PER_BLOCK(sb);
3872 sbi->s_group_desc = ext4_kvmalloc(db_count *
3873 sizeof(struct buffer_head *),
3874 GFP_KERNEL);
3875 if (sbi->s_group_desc == NULL) {
3876 ext4_msg(sb, KERN_ERR, "not enough memory");
3877 ret = -ENOMEM;
3878 goto failed_mount;
3879 }
3880
3881 if (ext4_proc_root)
3882 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3883
3884 if (sbi->s_proc)
3885 proc_create_data("options", S_IRUGO, sbi->s_proc,
3886 &ext4_seq_options_fops, sb);
3887
3888 bgl_lock_init(sbi->s_blockgroup_lock);
3889
3890 for (i = 0; i < db_count; i++) {
3891 block = descriptor_loc(sb, logical_sb_block, i);
3892 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3893 if (!sbi->s_group_desc[i]) {
3894 ext4_msg(sb, KERN_ERR,
3895 "can't read group descriptor %d", i);
3896 db_count = i;
3897 goto failed_mount2;
3898 }
3899 }
3900 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3901 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3902 goto failed_mount2;
3903 }
3904
3905 sbi->s_gdb_count = db_count;
3906 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3907 spin_lock_init(&sbi->s_next_gen_lock);
3908
3909 init_timer(&sbi->s_err_report);
3910 sbi->s_err_report.function = print_daily_error_info;
3911 sbi->s_err_report.data = (unsigned long) sb;
3912
3913 /* Register extent status tree shrinker */
3914 if (ext4_es_register_shrinker(sbi))
3915 goto failed_mount3;
3916
3917 sbi->s_stripe = ext4_get_stripe_size(sbi);
3918 sbi->s_extent_max_zeroout_kb = 32;
3919
3920 /*
3921 * set up enough so that it can read an inode
3922 */
3923 sb->s_op = &ext4_sops;
3924 sb->s_export_op = &ext4_export_ops;
3925 sb->s_xattr = ext4_xattr_handlers;
3926 #ifdef CONFIG_QUOTA
3927 sb->dq_op = &ext4_quota_operations;
3928 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3929 sb->s_qcop = &ext4_qctl_sysfile_operations;
3930 else
3931 sb->s_qcop = &ext4_qctl_operations;
3932 #endif
3933 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3934
3935 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3936 mutex_init(&sbi->s_orphan_lock);
3937
3938 sb->s_root = NULL;
3939
3940 needs_recovery = (es->s_last_orphan != 0 ||
3941 EXT4_HAS_INCOMPAT_FEATURE(sb,
3942 EXT4_FEATURE_INCOMPAT_RECOVER));
3943
3944 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3945 !(sb->s_flags & MS_RDONLY))
3946 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3947 goto failed_mount3;
3948
3949 /*
3950 * The first inode we look at is the journal inode. Don't try
3951 * root first: it may be modified in the journal!
3952 */
3953 if (!test_opt(sb, NOLOAD) &&
3954 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3955 if (ext4_load_journal(sb, es, journal_devnum))
3956 goto failed_mount3;
3957 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3958 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3959 ext4_msg(sb, KERN_ERR, "required journal recovery "
3960 "suppressed and not mounted read-only");
3961 goto failed_mount_wq;
3962 } else {
3963 clear_opt(sb, DATA_FLAGS);
3964 sbi->s_journal = NULL;
3965 needs_recovery = 0;
3966 goto no_journal;
3967 }
3968
3969 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3970 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3971 JBD2_FEATURE_INCOMPAT_64BIT)) {
3972 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3973 goto failed_mount_wq;
3974 }
3975
3976 if (!set_journal_csum_feature_set(sb)) {
3977 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3978 "feature set");
3979 goto failed_mount_wq;
3980 }
3981
3982 /* We have now updated the journal if required, so we can
3983 * validate the data journaling mode. */
3984 switch (test_opt(sb, DATA_FLAGS)) {
3985 case 0:
3986 /* No mode set, assume a default based on the journal
3987 * capabilities: ORDERED_DATA if the journal can
3988 * cope, else JOURNAL_DATA
3989 */
3990 if (jbd2_journal_check_available_features
3991 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3992 set_opt(sb, ORDERED_DATA);
3993 else
3994 set_opt(sb, JOURNAL_DATA);
3995 break;
3996
3997 case EXT4_MOUNT_ORDERED_DATA:
3998 case EXT4_MOUNT_WRITEBACK_DATA:
3999 if (!jbd2_journal_check_available_features
4000 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4001 ext4_msg(sb, KERN_ERR, "Journal does not support "
4002 "requested data journaling mode");
4003 goto failed_mount_wq;
4004 }
4005 default:
4006 break;
4007 }
4008 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4009
4010 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4011
4012 no_journal:
4013 if (ext4_mballoc_ready) {
4014 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4015 if (!sbi->s_mb_cache) {
4016 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4017 goto failed_mount_wq;
4018 }
4019 }
4020
4021 /*
4022 * Get the # of file system overhead blocks from the
4023 * superblock if present.
4024 */
4025 if (es->s_overhead_clusters)
4026 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4027 else {
4028 err = ext4_calculate_overhead(sb);
4029 if (err)
4030 goto failed_mount_wq;
4031 }
4032
4033 /*
4034 * The maximum number of concurrent works can be high and
4035 * concurrency isn't really necessary. Limit it to 1.
4036 */
4037 EXT4_SB(sb)->rsv_conversion_wq =
4038 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4039 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4040 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4041 ret = -ENOMEM;
4042 goto failed_mount4;
4043 }
4044
4045 /*
4046 * The jbd2_journal_load will have done any necessary log recovery,
4047 * so we can safely mount the rest of the filesystem now.
4048 */
4049
4050 root = ext4_iget(sb, EXT4_ROOT_INO);
4051 if (IS_ERR(root)) {
4052 ext4_msg(sb, KERN_ERR, "get root inode failed");
4053 ret = PTR_ERR(root);
4054 root = NULL;
4055 goto failed_mount4;
4056 }
4057 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4058 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4059 iput(root);
4060 goto failed_mount4;
4061 }
4062 sb->s_root = d_make_root(root);
4063 if (!sb->s_root) {
4064 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4065 ret = -ENOMEM;
4066 goto failed_mount4;
4067 }
4068
4069 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4070 sb->s_flags |= MS_RDONLY;
4071
4072 /* determine the minimum size of new large inodes, if present */
4073 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4074 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4075 EXT4_GOOD_OLD_INODE_SIZE;
4076 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4077 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4078 if (sbi->s_want_extra_isize <
4079 le16_to_cpu(es->s_want_extra_isize))
4080 sbi->s_want_extra_isize =
4081 le16_to_cpu(es->s_want_extra_isize);
4082 if (sbi->s_want_extra_isize <
4083 le16_to_cpu(es->s_min_extra_isize))
4084 sbi->s_want_extra_isize =
4085 le16_to_cpu(es->s_min_extra_isize);
4086 }
4087 }
4088 /* Check if enough inode space is available */
4089 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4090 sbi->s_inode_size) {
4091 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4092 EXT4_GOOD_OLD_INODE_SIZE;
4093 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4094 "available");
4095 }
4096
4097 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4098 if (err) {
4099 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4100 "reserved pool", ext4_calculate_resv_clusters(sb));
4101 goto failed_mount4a;
4102 }
4103
4104 err = ext4_setup_system_zone(sb);
4105 if (err) {
4106 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4107 "zone (%d)", err);
4108 goto failed_mount4a;
4109 }
4110
4111 ext4_ext_init(sb);
4112 err = ext4_mb_init(sb);
4113 if (err) {
4114 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4115 err);
4116 goto failed_mount5;
4117 }
4118
4119 block = ext4_count_free_clusters(sb);
4120 ext4_free_blocks_count_set(sbi->s_es,
4121 EXT4_C2B(sbi, block));
4122 err = percpu_counter_init(&sbi->s_freeclusters_counter, block);
4123 if (!err) {
4124 unsigned long freei = ext4_count_free_inodes(sb);
4125 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4126 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei);
4127 }
4128 if (!err)
4129 err = percpu_counter_init(&sbi->s_dirs_counter,
4130 ext4_count_dirs(sb));
4131 if (!err)
4132 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
4133 if (err) {
4134 ext4_msg(sb, KERN_ERR, "insufficient memory");
4135 goto failed_mount6;
4136 }
4137
4138 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4139 if (!ext4_fill_flex_info(sb)) {
4140 ext4_msg(sb, KERN_ERR,
4141 "unable to initialize "
4142 "flex_bg meta info!");
4143 goto failed_mount6;
4144 }
4145
4146 err = ext4_register_li_request(sb, first_not_zeroed);
4147 if (err)
4148 goto failed_mount6;
4149
4150 sbi->s_kobj.kset = ext4_kset;
4151 init_completion(&sbi->s_kobj_unregister);
4152 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4153 "%s", sb->s_id);
4154 if (err)
4155 goto failed_mount7;
4156
4157 #ifdef CONFIG_QUOTA
4158 /* Enable quota usage during mount. */
4159 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4160 !(sb->s_flags & MS_RDONLY)) {
4161 err = ext4_enable_quotas(sb);
4162 if (err)
4163 goto failed_mount8;
4164 }
4165 #endif /* CONFIG_QUOTA */
4166
4167 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4168 ext4_orphan_cleanup(sb, es);
4169 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4170 if (needs_recovery) {
4171 ext4_msg(sb, KERN_INFO, "recovery complete");
4172 ext4_mark_recovery_complete(sb, es);
4173 }
4174 if (EXT4_SB(sb)->s_journal) {
4175 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4176 descr = " journalled data mode";
4177 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4178 descr = " ordered data mode";
4179 else
4180 descr = " writeback data mode";
4181 } else
4182 descr = "out journal";
4183
4184 if (test_opt(sb, DISCARD)) {
4185 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4186 if (!blk_queue_discard(q))
4187 ext4_msg(sb, KERN_WARNING,
4188 "mounting with \"discard\" option, but "
4189 "the device does not support discard");
4190 }
4191
4192 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4193 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4194 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4195
4196 if (es->s_error_count)
4197 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4198
4199 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4200 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4201 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4202 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4203
4204 kfree(orig_data);
4205 return 0;
4206
4207 cantfind_ext4:
4208 if (!silent)
4209 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4210 goto failed_mount;
4211
4212 #ifdef CONFIG_QUOTA
4213 failed_mount8:
4214 kobject_del(&sbi->s_kobj);
4215 #endif
4216 failed_mount7:
4217 ext4_unregister_li_request(sb);
4218 failed_mount6:
4219 ext4_mb_release(sb);
4220 if (sbi->s_flex_groups)
4221 ext4_kvfree(sbi->s_flex_groups);
4222 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4223 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4224 percpu_counter_destroy(&sbi->s_dirs_counter);
4225 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4226 failed_mount5:
4227 ext4_ext_release(sb);
4228 ext4_release_system_zone(sb);
4229 failed_mount4a:
4230 dput(sb->s_root);
4231 sb->s_root = NULL;
4232 failed_mount4:
4233 ext4_msg(sb, KERN_ERR, "mount failed");
4234 if (EXT4_SB(sb)->rsv_conversion_wq)
4235 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4236 failed_mount_wq:
4237 if (sbi->s_journal) {
4238 jbd2_journal_destroy(sbi->s_journal);
4239 sbi->s_journal = NULL;
4240 }
4241 ext4_es_unregister_shrinker(sbi);
4242 failed_mount3:
4243 del_timer_sync(&sbi->s_err_report);
4244 if (sbi->s_mmp_tsk)
4245 kthread_stop(sbi->s_mmp_tsk);
4246 failed_mount2:
4247 for (i = 0; i < db_count; i++)
4248 brelse(sbi->s_group_desc[i]);
4249 ext4_kvfree(sbi->s_group_desc);
4250 failed_mount:
4251 if (sbi->s_chksum_driver)
4252 crypto_free_shash(sbi->s_chksum_driver);
4253 if (sbi->s_proc) {
4254 remove_proc_entry("options", sbi->s_proc);
4255 remove_proc_entry(sb->s_id, ext4_proc_root);
4256 }
4257 #ifdef CONFIG_QUOTA
4258 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4259 kfree(sbi->s_qf_names[i]);
4260 #endif
4261 ext4_blkdev_remove(sbi);
4262 brelse(bh);
4263 out_fail:
4264 sb->s_fs_info = NULL;
4265 kfree(sbi->s_blockgroup_lock);
4266 kfree(sbi);
4267 out_free_orig:
4268 kfree(orig_data);
4269 return err ? err : ret;
4270 }
4271
4272 /*
4273 * Setup any per-fs journal parameters now. We'll do this both on
4274 * initial mount, once the journal has been initialised but before we've
4275 * done any recovery; and again on any subsequent remount.
4276 */
4277 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4278 {
4279 struct ext4_sb_info *sbi = EXT4_SB(sb);
4280
4281 journal->j_commit_interval = sbi->s_commit_interval;
4282 journal->j_min_batch_time = sbi->s_min_batch_time;
4283 journal->j_max_batch_time = sbi->s_max_batch_time;
4284
4285 write_lock(&journal->j_state_lock);
4286 if (test_opt(sb, BARRIER))
4287 journal->j_flags |= JBD2_BARRIER;
4288 else
4289 journal->j_flags &= ~JBD2_BARRIER;
4290 if (test_opt(sb, DATA_ERR_ABORT))
4291 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4292 else
4293 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4294 write_unlock(&journal->j_state_lock);
4295 }
4296
4297 static journal_t *ext4_get_journal(struct super_block *sb,
4298 unsigned int journal_inum)
4299 {
4300 struct inode *journal_inode;
4301 journal_t *journal;
4302
4303 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4304
4305 /* First, test for the existence of a valid inode on disk. Bad
4306 * things happen if we iget() an unused inode, as the subsequent
4307 * iput() will try to delete it. */
4308
4309 journal_inode = ext4_iget(sb, journal_inum);
4310 if (IS_ERR(journal_inode)) {
4311 ext4_msg(sb, KERN_ERR, "no journal found");
4312 return NULL;
4313 }
4314 if (!journal_inode->i_nlink) {
4315 make_bad_inode(journal_inode);
4316 iput(journal_inode);
4317 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4318 return NULL;
4319 }
4320
4321 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4322 journal_inode, journal_inode->i_size);
4323 if (!S_ISREG(journal_inode->i_mode)) {
4324 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4325 iput(journal_inode);
4326 return NULL;
4327 }
4328
4329 journal = jbd2_journal_init_inode(journal_inode);
4330 if (!journal) {
4331 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4332 iput(journal_inode);
4333 return NULL;
4334 }
4335 journal->j_private = sb;
4336 ext4_init_journal_params(sb, journal);
4337 return journal;
4338 }
4339
4340 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4341 dev_t j_dev)
4342 {
4343 struct buffer_head *bh;
4344 journal_t *journal;
4345 ext4_fsblk_t start;
4346 ext4_fsblk_t len;
4347 int hblock, blocksize;
4348 ext4_fsblk_t sb_block;
4349 unsigned long offset;
4350 struct ext4_super_block *es;
4351 struct block_device *bdev;
4352
4353 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4354
4355 bdev = ext4_blkdev_get(j_dev, sb);
4356 if (bdev == NULL)
4357 return NULL;
4358
4359 blocksize = sb->s_blocksize;
4360 hblock = bdev_logical_block_size(bdev);
4361 if (blocksize < hblock) {
4362 ext4_msg(sb, KERN_ERR,
4363 "blocksize too small for journal device");
4364 goto out_bdev;
4365 }
4366
4367 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4368 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4369 set_blocksize(bdev, blocksize);
4370 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4371 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4372 "external journal");
4373 goto out_bdev;
4374 }
4375
4376 es = (struct ext4_super_block *) (bh->b_data + offset);
4377 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4378 !(le32_to_cpu(es->s_feature_incompat) &
4379 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4380 ext4_msg(sb, KERN_ERR, "external journal has "
4381 "bad superblock");
4382 brelse(bh);
4383 goto out_bdev;
4384 }
4385
4386 if ((le32_to_cpu(es->s_feature_ro_compat) &
4387 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4388 es->s_checksum != ext4_superblock_csum(sb, es)) {
4389 ext4_msg(sb, KERN_ERR, "external journal has "
4390 "corrupt superblock");
4391 brelse(bh);
4392 goto out_bdev;
4393 }
4394
4395 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4396 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4397 brelse(bh);
4398 goto out_bdev;
4399 }
4400
4401 len = ext4_blocks_count(es);
4402 start = sb_block + 1;
4403 brelse(bh); /* we're done with the superblock */
4404
4405 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4406 start, len, blocksize);
4407 if (!journal) {
4408 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4409 goto out_bdev;
4410 }
4411 journal->j_private = sb;
4412 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4413 wait_on_buffer(journal->j_sb_buffer);
4414 if (!buffer_uptodate(journal->j_sb_buffer)) {
4415 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4416 goto out_journal;
4417 }
4418 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4419 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4420 "user (unsupported) - %d",
4421 be32_to_cpu(journal->j_superblock->s_nr_users));
4422 goto out_journal;
4423 }
4424 EXT4_SB(sb)->journal_bdev = bdev;
4425 ext4_init_journal_params(sb, journal);
4426 return journal;
4427
4428 out_journal:
4429 jbd2_journal_destroy(journal);
4430 out_bdev:
4431 ext4_blkdev_put(bdev);
4432 return NULL;
4433 }
4434
4435 static int ext4_load_journal(struct super_block *sb,
4436 struct ext4_super_block *es,
4437 unsigned long journal_devnum)
4438 {
4439 journal_t *journal;
4440 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4441 dev_t journal_dev;
4442 int err = 0;
4443 int really_read_only;
4444
4445 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4446
4447 if (journal_devnum &&
4448 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4449 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4450 "numbers have changed");
4451 journal_dev = new_decode_dev(journal_devnum);
4452 } else
4453 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4454
4455 really_read_only = bdev_read_only(sb->s_bdev);
4456
4457 /*
4458 * Are we loading a blank journal or performing recovery after a
4459 * crash? For recovery, we need to check in advance whether we
4460 * can get read-write access to the device.
4461 */
4462 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4463 if (sb->s_flags & MS_RDONLY) {
4464 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4465 "required on readonly filesystem");
4466 if (really_read_only) {
4467 ext4_msg(sb, KERN_ERR, "write access "
4468 "unavailable, cannot proceed");
4469 return -EROFS;
4470 }
4471 ext4_msg(sb, KERN_INFO, "write access will "
4472 "be enabled during recovery");
4473 }
4474 }
4475
4476 if (journal_inum && journal_dev) {
4477 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4478 "and inode journals!");
4479 return -EINVAL;
4480 }
4481
4482 if (journal_inum) {
4483 if (!(journal = ext4_get_journal(sb, journal_inum)))
4484 return -EINVAL;
4485 } else {
4486 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4487 return -EINVAL;
4488 }
4489
4490 if (!(journal->j_flags & JBD2_BARRIER))
4491 ext4_msg(sb, KERN_INFO, "barriers disabled");
4492
4493 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4494 err = jbd2_journal_wipe(journal, !really_read_only);
4495 if (!err) {
4496 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4497 if (save)
4498 memcpy(save, ((char *) es) +
4499 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4500 err = jbd2_journal_load(journal);
4501 if (save)
4502 memcpy(((char *) es) + EXT4_S_ERR_START,
4503 save, EXT4_S_ERR_LEN);
4504 kfree(save);
4505 }
4506
4507 if (err) {
4508 ext4_msg(sb, KERN_ERR, "error loading journal");
4509 jbd2_journal_destroy(journal);
4510 return err;
4511 }
4512
4513 EXT4_SB(sb)->s_journal = journal;
4514 ext4_clear_journal_err(sb, es);
4515
4516 if (!really_read_only && journal_devnum &&
4517 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4518 es->s_journal_dev = cpu_to_le32(journal_devnum);
4519
4520 /* Make sure we flush the recovery flag to disk. */
4521 ext4_commit_super(sb, 1);
4522 }
4523
4524 return 0;
4525 }
4526
4527 static int ext4_commit_super(struct super_block *sb, int sync)
4528 {
4529 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4530 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4531 int error = 0;
4532
4533 if (!sbh || block_device_ejected(sb))
4534 return error;
4535 if (buffer_write_io_error(sbh)) {
4536 /*
4537 * Oh, dear. A previous attempt to write the
4538 * superblock failed. This could happen because the
4539 * USB device was yanked out. Or it could happen to
4540 * be a transient write error and maybe the block will
4541 * be remapped. Nothing we can do but to retry the
4542 * write and hope for the best.
4543 */
4544 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4545 "superblock detected");
4546 clear_buffer_write_io_error(sbh);
4547 set_buffer_uptodate(sbh);
4548 }
4549 /*
4550 * If the file system is mounted read-only, don't update the
4551 * superblock write time. This avoids updating the superblock
4552 * write time when we are mounting the root file system
4553 * read/only but we need to replay the journal; at that point,
4554 * for people who are east of GMT and who make their clock
4555 * tick in localtime for Windows bug-for-bug compatibility,
4556 * the clock is set in the future, and this will cause e2fsck
4557 * to complain and force a full file system check.
4558 */
4559 if (!(sb->s_flags & MS_RDONLY))
4560 es->s_wtime = cpu_to_le32(get_seconds());
4561 if (sb->s_bdev->bd_part)
4562 es->s_kbytes_written =
4563 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4564 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4565 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4566 else
4567 es->s_kbytes_written =
4568 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4569 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4570 ext4_free_blocks_count_set(es,
4571 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4572 &EXT4_SB(sb)->s_freeclusters_counter)));
4573 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4574 es->s_free_inodes_count =
4575 cpu_to_le32(percpu_counter_sum_positive(
4576 &EXT4_SB(sb)->s_freeinodes_counter));
4577 BUFFER_TRACE(sbh, "marking dirty");
4578 ext4_superblock_csum_set(sb);
4579 mark_buffer_dirty(sbh);
4580 if (sync) {
4581 error = sync_dirty_buffer(sbh);
4582 if (error)
4583 return error;
4584
4585 error = buffer_write_io_error(sbh);
4586 if (error) {
4587 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4588 "superblock");
4589 clear_buffer_write_io_error(sbh);
4590 set_buffer_uptodate(sbh);
4591 }
4592 }
4593 return error;
4594 }
4595
4596 /*
4597 * Have we just finished recovery? If so, and if we are mounting (or
4598 * remounting) the filesystem readonly, then we will end up with a
4599 * consistent fs on disk. Record that fact.
4600 */
4601 static void ext4_mark_recovery_complete(struct super_block *sb,
4602 struct ext4_super_block *es)
4603 {
4604 journal_t *journal = EXT4_SB(sb)->s_journal;
4605
4606 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4607 BUG_ON(journal != NULL);
4608 return;
4609 }
4610 jbd2_journal_lock_updates(journal);
4611 if (jbd2_journal_flush(journal) < 0)
4612 goto out;
4613
4614 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4615 sb->s_flags & MS_RDONLY) {
4616 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4617 ext4_commit_super(sb, 1);
4618 }
4619
4620 out:
4621 jbd2_journal_unlock_updates(journal);
4622 }
4623
4624 /*
4625 * If we are mounting (or read-write remounting) a filesystem whose journal
4626 * has recorded an error from a previous lifetime, move that error to the
4627 * main filesystem now.
4628 */
4629 static void ext4_clear_journal_err(struct super_block *sb,
4630 struct ext4_super_block *es)
4631 {
4632 journal_t *journal;
4633 int j_errno;
4634 const char *errstr;
4635
4636 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4637
4638 journal = EXT4_SB(sb)->s_journal;
4639
4640 /*
4641 * Now check for any error status which may have been recorded in the
4642 * journal by a prior ext4_error() or ext4_abort()
4643 */
4644
4645 j_errno = jbd2_journal_errno(journal);
4646 if (j_errno) {
4647 char nbuf[16];
4648
4649 errstr = ext4_decode_error(sb, j_errno, nbuf);
4650 ext4_warning(sb, "Filesystem error recorded "
4651 "from previous mount: %s", errstr);
4652 ext4_warning(sb, "Marking fs in need of filesystem check.");
4653
4654 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4655 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4656 ext4_commit_super(sb, 1);
4657
4658 jbd2_journal_clear_err(journal);
4659 jbd2_journal_update_sb_errno(journal);
4660 }
4661 }
4662
4663 /*
4664 * Force the running and committing transactions to commit,
4665 * and wait on the commit.
4666 */
4667 int ext4_force_commit(struct super_block *sb)
4668 {
4669 journal_t *journal;
4670
4671 if (sb->s_flags & MS_RDONLY)
4672 return 0;
4673
4674 journal = EXT4_SB(sb)->s_journal;
4675 return ext4_journal_force_commit(journal);
4676 }
4677
4678 static int ext4_sync_fs(struct super_block *sb, int wait)
4679 {
4680 int ret = 0;
4681 tid_t target;
4682 bool needs_barrier = false;
4683 struct ext4_sb_info *sbi = EXT4_SB(sb);
4684
4685 trace_ext4_sync_fs(sb, wait);
4686 flush_workqueue(sbi->rsv_conversion_wq);
4687 /*
4688 * Writeback quota in non-journalled quota case - journalled quota has
4689 * no dirty dquots
4690 */
4691 dquot_writeback_dquots(sb, -1);
4692 /*
4693 * Data writeback is possible w/o journal transaction, so barrier must
4694 * being sent at the end of the function. But we can skip it if
4695 * transaction_commit will do it for us.
4696 */
4697 if (sbi->s_journal) {
4698 target = jbd2_get_latest_transaction(sbi->s_journal);
4699 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4700 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4701 needs_barrier = true;
4702
4703 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4704 if (wait)
4705 ret = jbd2_log_wait_commit(sbi->s_journal,
4706 target);
4707 }
4708 } else if (wait && test_opt(sb, BARRIER))
4709 needs_barrier = true;
4710 if (needs_barrier) {
4711 int err;
4712 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4713 if (!ret)
4714 ret = err;
4715 }
4716
4717 return ret;
4718 }
4719
4720 /*
4721 * LVM calls this function before a (read-only) snapshot is created. This
4722 * gives us a chance to flush the journal completely and mark the fs clean.
4723 *
4724 * Note that only this function cannot bring a filesystem to be in a clean
4725 * state independently. It relies on upper layer to stop all data & metadata
4726 * modifications.
4727 */
4728 static int ext4_freeze(struct super_block *sb)
4729 {
4730 int error = 0;
4731 journal_t *journal;
4732
4733 if (sb->s_flags & MS_RDONLY)
4734 return 0;
4735
4736 journal = EXT4_SB(sb)->s_journal;
4737
4738 if (journal) {
4739 /* Now we set up the journal barrier. */
4740 jbd2_journal_lock_updates(journal);
4741
4742 /*
4743 * Don't clear the needs_recovery flag if we failed to
4744 * flush the journal.
4745 */
4746 error = jbd2_journal_flush(journal);
4747 if (error < 0)
4748 goto out;
4749 }
4750
4751 /* Journal blocked and flushed, clear needs_recovery flag. */
4752 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4753 error = ext4_commit_super(sb, 1);
4754 out:
4755 if (journal)
4756 /* we rely on upper layer to stop further updates */
4757 jbd2_journal_unlock_updates(journal);
4758 return error;
4759 }
4760
4761 /*
4762 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4763 * flag here, even though the filesystem is not technically dirty yet.
4764 */
4765 static int ext4_unfreeze(struct super_block *sb)
4766 {
4767 if (sb->s_flags & MS_RDONLY)
4768 return 0;
4769
4770 /* Reset the needs_recovery flag before the fs is unlocked. */
4771 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4772 ext4_commit_super(sb, 1);
4773 return 0;
4774 }
4775
4776 /*
4777 * Structure to save mount options for ext4_remount's benefit
4778 */
4779 struct ext4_mount_options {
4780 unsigned long s_mount_opt;
4781 unsigned long s_mount_opt2;
4782 kuid_t s_resuid;
4783 kgid_t s_resgid;
4784 unsigned long s_commit_interval;
4785 u32 s_min_batch_time, s_max_batch_time;
4786 #ifdef CONFIG_QUOTA
4787 int s_jquota_fmt;
4788 char *s_qf_names[EXT4_MAXQUOTAS];
4789 #endif
4790 };
4791
4792 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4793 {
4794 struct ext4_super_block *es;
4795 struct ext4_sb_info *sbi = EXT4_SB(sb);
4796 unsigned long old_sb_flags;
4797 struct ext4_mount_options old_opts;
4798 int enable_quota = 0;
4799 ext4_group_t g;
4800 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4801 int err = 0;
4802 #ifdef CONFIG_QUOTA
4803 int i, j;
4804 #endif
4805 char *orig_data = kstrdup(data, GFP_KERNEL);
4806
4807 /* Store the original options */
4808 old_sb_flags = sb->s_flags;
4809 old_opts.s_mount_opt = sbi->s_mount_opt;
4810 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4811 old_opts.s_resuid = sbi->s_resuid;
4812 old_opts.s_resgid = sbi->s_resgid;
4813 old_opts.s_commit_interval = sbi->s_commit_interval;
4814 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4815 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4816 #ifdef CONFIG_QUOTA
4817 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4818 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4819 if (sbi->s_qf_names[i]) {
4820 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4821 GFP_KERNEL);
4822 if (!old_opts.s_qf_names[i]) {
4823 for (j = 0; j < i; j++)
4824 kfree(old_opts.s_qf_names[j]);
4825 kfree(orig_data);
4826 return -ENOMEM;
4827 }
4828 } else
4829 old_opts.s_qf_names[i] = NULL;
4830 #endif
4831 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4832 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4833
4834 /*
4835 * Allow the "check" option to be passed as a remount option.
4836 */
4837 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4838 err = -EINVAL;
4839 goto restore_opts;
4840 }
4841
4842 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4843 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4844 ext4_msg(sb, KERN_ERR, "can't mount with "
4845 "both data=journal and delalloc");
4846 err = -EINVAL;
4847 goto restore_opts;
4848 }
4849 if (test_opt(sb, DIOREAD_NOLOCK)) {
4850 ext4_msg(sb, KERN_ERR, "can't mount with "
4851 "both data=journal and dioread_nolock");
4852 err = -EINVAL;
4853 goto restore_opts;
4854 }
4855 }
4856
4857 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4858 ext4_abort(sb, "Abort forced by user");
4859
4860 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4861 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4862
4863 es = sbi->s_es;
4864
4865 if (sbi->s_journal) {
4866 ext4_init_journal_params(sb, sbi->s_journal);
4867 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4868 }
4869
4870 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4871 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4872 err = -EROFS;
4873 goto restore_opts;
4874 }
4875
4876 if (*flags & MS_RDONLY) {
4877 err = sync_filesystem(sb);
4878 if (err < 0)
4879 goto restore_opts;
4880 err = dquot_suspend(sb, -1);
4881 if (err < 0)
4882 goto restore_opts;
4883
4884 /*
4885 * First of all, the unconditional stuff we have to do
4886 * to disable replay of the journal when we next remount
4887 */
4888 sb->s_flags |= MS_RDONLY;
4889
4890 /*
4891 * OK, test if we are remounting a valid rw partition
4892 * readonly, and if so set the rdonly flag and then
4893 * mark the partition as valid again.
4894 */
4895 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4896 (sbi->s_mount_state & EXT4_VALID_FS))
4897 es->s_state = cpu_to_le16(sbi->s_mount_state);
4898
4899 if (sbi->s_journal)
4900 ext4_mark_recovery_complete(sb, es);
4901 } else {
4902 /* Make sure we can mount this feature set readwrite */
4903 if (!ext4_feature_set_ok(sb, 0)) {
4904 err = -EROFS;
4905 goto restore_opts;
4906 }
4907 /*
4908 * Make sure the group descriptor checksums
4909 * are sane. If they aren't, refuse to remount r/w.
4910 */
4911 for (g = 0; g < sbi->s_groups_count; g++) {
4912 struct ext4_group_desc *gdp =
4913 ext4_get_group_desc(sb, g, NULL);
4914
4915 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4916 ext4_msg(sb, KERN_ERR,
4917 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4918 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4919 le16_to_cpu(gdp->bg_checksum));
4920 err = -EINVAL;
4921 goto restore_opts;
4922 }
4923 }
4924
4925 /*
4926 * If we have an unprocessed orphan list hanging
4927 * around from a previously readonly bdev mount,
4928 * require a full umount/remount for now.
4929 */
4930 if (es->s_last_orphan) {
4931 ext4_msg(sb, KERN_WARNING, "Couldn't "
4932 "remount RDWR because of unprocessed "
4933 "orphan inode list. Please "
4934 "umount/remount instead");
4935 err = -EINVAL;
4936 goto restore_opts;
4937 }
4938
4939 /*
4940 * Mounting a RDONLY partition read-write, so reread
4941 * and store the current valid flag. (It may have
4942 * been changed by e2fsck since we originally mounted
4943 * the partition.)
4944 */
4945 if (sbi->s_journal)
4946 ext4_clear_journal_err(sb, es);
4947 sbi->s_mount_state = le16_to_cpu(es->s_state);
4948 if (!ext4_setup_super(sb, es, 0))
4949 sb->s_flags &= ~MS_RDONLY;
4950 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4951 EXT4_FEATURE_INCOMPAT_MMP))
4952 if (ext4_multi_mount_protect(sb,
4953 le64_to_cpu(es->s_mmp_block))) {
4954 err = -EROFS;
4955 goto restore_opts;
4956 }
4957 enable_quota = 1;
4958 }
4959 }
4960
4961 /*
4962 * Reinitialize lazy itable initialization thread based on
4963 * current settings
4964 */
4965 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4966 ext4_unregister_li_request(sb);
4967 else {
4968 ext4_group_t first_not_zeroed;
4969 first_not_zeroed = ext4_has_uninit_itable(sb);
4970 ext4_register_li_request(sb, first_not_zeroed);
4971 }
4972
4973 ext4_setup_system_zone(sb);
4974 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4975 ext4_commit_super(sb, 1);
4976
4977 #ifdef CONFIG_QUOTA
4978 /* Release old quota file names */
4979 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4980 kfree(old_opts.s_qf_names[i]);
4981 if (enable_quota) {
4982 if (sb_any_quota_suspended(sb))
4983 dquot_resume(sb, -1);
4984 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4985 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4986 err = ext4_enable_quotas(sb);
4987 if (err)
4988 goto restore_opts;
4989 }
4990 }
4991 #endif
4992
4993 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4994 kfree(orig_data);
4995 return 0;
4996
4997 restore_opts:
4998 sb->s_flags = old_sb_flags;
4999 sbi->s_mount_opt = old_opts.s_mount_opt;
5000 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5001 sbi->s_resuid = old_opts.s_resuid;
5002 sbi->s_resgid = old_opts.s_resgid;
5003 sbi->s_commit_interval = old_opts.s_commit_interval;
5004 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5005 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5006 #ifdef CONFIG_QUOTA
5007 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5008 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5009 kfree(sbi->s_qf_names[i]);
5010 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5011 }
5012 #endif
5013 kfree(orig_data);
5014 return err;
5015 }
5016
5017 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5018 {
5019 struct super_block *sb = dentry->d_sb;
5020 struct ext4_sb_info *sbi = EXT4_SB(sb);
5021 struct ext4_super_block *es = sbi->s_es;
5022 ext4_fsblk_t overhead = 0, resv_blocks;
5023 u64 fsid;
5024 s64 bfree;
5025 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5026
5027 if (!test_opt(sb, MINIX_DF))
5028 overhead = sbi->s_overhead;
5029
5030 buf->f_type = EXT4_SUPER_MAGIC;
5031 buf->f_bsize = sb->s_blocksize;
5032 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5033 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5034 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5035 /* prevent underflow in case that few free space is available */
5036 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5037 buf->f_bavail = buf->f_bfree -
5038 (ext4_r_blocks_count(es) + resv_blocks);
5039 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5040 buf->f_bavail = 0;
5041 buf->f_files = le32_to_cpu(es->s_inodes_count);
5042 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5043 buf->f_namelen = EXT4_NAME_LEN;
5044 fsid = le64_to_cpup((void *)es->s_uuid) ^
5045 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5046 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5047 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5048
5049 return 0;
5050 }
5051
5052 /* Helper function for writing quotas on sync - we need to start transaction
5053 * before quota file is locked for write. Otherwise the are possible deadlocks:
5054 * Process 1 Process 2
5055 * ext4_create() quota_sync()
5056 * jbd2_journal_start() write_dquot()
5057 * dquot_initialize() down(dqio_mutex)
5058 * down(dqio_mutex) jbd2_journal_start()
5059 *
5060 */
5061
5062 #ifdef CONFIG_QUOTA
5063
5064 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5065 {
5066 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5067 }
5068
5069 static int ext4_write_dquot(struct dquot *dquot)
5070 {
5071 int ret, err;
5072 handle_t *handle;
5073 struct inode *inode;
5074
5075 inode = dquot_to_inode(dquot);
5076 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5077 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5078 if (IS_ERR(handle))
5079 return PTR_ERR(handle);
5080 ret = dquot_commit(dquot);
5081 err = ext4_journal_stop(handle);
5082 if (!ret)
5083 ret = err;
5084 return ret;
5085 }
5086
5087 static int ext4_acquire_dquot(struct dquot *dquot)
5088 {
5089 int ret, err;
5090 handle_t *handle;
5091
5092 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5093 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5094 if (IS_ERR(handle))
5095 return PTR_ERR(handle);
5096 ret = dquot_acquire(dquot);
5097 err = ext4_journal_stop(handle);
5098 if (!ret)
5099 ret = err;
5100 return ret;
5101 }
5102
5103 static int ext4_release_dquot(struct dquot *dquot)
5104 {
5105 int ret, err;
5106 handle_t *handle;
5107
5108 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5109 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5110 if (IS_ERR(handle)) {
5111 /* Release dquot anyway to avoid endless cycle in dqput() */
5112 dquot_release(dquot);
5113 return PTR_ERR(handle);
5114 }
5115 ret = dquot_release(dquot);
5116 err = ext4_journal_stop(handle);
5117 if (!ret)
5118 ret = err;
5119 return ret;
5120 }
5121
5122 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5123 {
5124 struct super_block *sb = dquot->dq_sb;
5125 struct ext4_sb_info *sbi = EXT4_SB(sb);
5126
5127 /* Are we journaling quotas? */
5128 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5129 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5130 dquot_mark_dquot_dirty(dquot);
5131 return ext4_write_dquot(dquot);
5132 } else {
5133 return dquot_mark_dquot_dirty(dquot);
5134 }
5135 }
5136
5137 static int ext4_write_info(struct super_block *sb, int type)
5138 {
5139 int ret, err;
5140 handle_t *handle;
5141
5142 /* Data block + inode block */
5143 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5144 if (IS_ERR(handle))
5145 return PTR_ERR(handle);
5146 ret = dquot_commit_info(sb, type);
5147 err = ext4_journal_stop(handle);
5148 if (!ret)
5149 ret = err;
5150 return ret;
5151 }
5152
5153 /*
5154 * Turn on quotas during mount time - we need to find
5155 * the quota file and such...
5156 */
5157 static int ext4_quota_on_mount(struct super_block *sb, int type)
5158 {
5159 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5160 EXT4_SB(sb)->s_jquota_fmt, type);
5161 }
5162
5163 /*
5164 * Standard function to be called on quota_on
5165 */
5166 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5167 struct path *path)
5168 {
5169 int err;
5170
5171 if (!test_opt(sb, QUOTA))
5172 return -EINVAL;
5173
5174 /* Quotafile not on the same filesystem? */
5175 if (path->dentry->d_sb != sb)
5176 return -EXDEV;
5177 /* Journaling quota? */
5178 if (EXT4_SB(sb)->s_qf_names[type]) {
5179 /* Quotafile not in fs root? */
5180 if (path->dentry->d_parent != sb->s_root)
5181 ext4_msg(sb, KERN_WARNING,
5182 "Quota file not on filesystem root. "
5183 "Journaled quota will not work");
5184 }
5185
5186 /*
5187 * When we journal data on quota file, we have to flush journal to see
5188 * all updates to the file when we bypass pagecache...
5189 */
5190 if (EXT4_SB(sb)->s_journal &&
5191 ext4_should_journal_data(path->dentry->d_inode)) {
5192 /*
5193 * We don't need to lock updates but journal_flush() could
5194 * otherwise be livelocked...
5195 */
5196 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5197 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5198 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5199 if (err)
5200 return err;
5201 }
5202
5203 return dquot_quota_on(sb, type, format_id, path);
5204 }
5205
5206 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5207 unsigned int flags)
5208 {
5209 int err;
5210 struct inode *qf_inode;
5211 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5212 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5213 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5214 };
5215
5216 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5217
5218 if (!qf_inums[type])
5219 return -EPERM;
5220
5221 qf_inode = ext4_iget(sb, qf_inums[type]);
5222 if (IS_ERR(qf_inode)) {
5223 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5224 return PTR_ERR(qf_inode);
5225 }
5226
5227 /* Don't account quota for quota files to avoid recursion */
5228 qf_inode->i_flags |= S_NOQUOTA;
5229 err = dquot_enable(qf_inode, type, format_id, flags);
5230 iput(qf_inode);
5231
5232 return err;
5233 }
5234
5235 /* Enable usage tracking for all quota types. */
5236 static int ext4_enable_quotas(struct super_block *sb)
5237 {
5238 int type, err = 0;
5239 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5240 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5241 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5242 };
5243
5244 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5245 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5246 if (qf_inums[type]) {
5247 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5248 DQUOT_USAGE_ENABLED);
5249 if (err) {
5250 ext4_warning(sb,
5251 "Failed to enable quota tracking "
5252 "(type=%d, err=%d). Please run "
5253 "e2fsck to fix.", type, err);
5254 return err;
5255 }
5256 }
5257 }
5258 return 0;
5259 }
5260
5261 /*
5262 * quota_on function that is used when QUOTA feature is set.
5263 */
5264 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5265 int format_id)
5266 {
5267 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5268 return -EINVAL;
5269
5270 /*
5271 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5272 */
5273 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5274 }
5275
5276 static int ext4_quota_off(struct super_block *sb, int type)
5277 {
5278 struct inode *inode = sb_dqopt(sb)->files[type];
5279 handle_t *handle;
5280
5281 /* Force all delayed allocation blocks to be allocated.
5282 * Caller already holds s_umount sem */
5283 if (test_opt(sb, DELALLOC))
5284 sync_filesystem(sb);
5285
5286 if (!inode)
5287 goto out;
5288
5289 /* Update modification times of quota files when userspace can
5290 * start looking at them */
5291 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5292 if (IS_ERR(handle))
5293 goto out;
5294 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5295 ext4_mark_inode_dirty(handle, inode);
5296 ext4_journal_stop(handle);
5297
5298 out:
5299 return dquot_quota_off(sb, type);
5300 }
5301
5302 /*
5303 * quota_off function that is used when QUOTA feature is set.
5304 */
5305 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5306 {
5307 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5308 return -EINVAL;
5309
5310 /* Disable only the limits. */
5311 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5312 }
5313
5314 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5315 * acquiring the locks... As quota files are never truncated and quota code
5316 * itself serializes the operations (and no one else should touch the files)
5317 * we don't have to be afraid of races */
5318 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5319 size_t len, loff_t off)
5320 {
5321 struct inode *inode = sb_dqopt(sb)->files[type];
5322 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5323 int offset = off & (sb->s_blocksize - 1);
5324 int tocopy;
5325 size_t toread;
5326 struct buffer_head *bh;
5327 loff_t i_size = i_size_read(inode);
5328
5329 if (off > i_size)
5330 return 0;
5331 if (off+len > i_size)
5332 len = i_size-off;
5333 toread = len;
5334 while (toread > 0) {
5335 tocopy = sb->s_blocksize - offset < toread ?
5336 sb->s_blocksize - offset : toread;
5337 bh = ext4_bread(NULL, inode, blk, 0);
5338 if (IS_ERR(bh))
5339 return PTR_ERR(bh);
5340 if (!bh) /* A hole? */
5341 memset(data, 0, tocopy);
5342 else
5343 memcpy(data, bh->b_data+offset, tocopy);
5344 brelse(bh);
5345 offset = 0;
5346 toread -= tocopy;
5347 data += tocopy;
5348 blk++;
5349 }
5350 return len;
5351 }
5352
5353 /* Write to quotafile (we know the transaction is already started and has
5354 * enough credits) */
5355 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5356 const char *data, size_t len, loff_t off)
5357 {
5358 struct inode *inode = sb_dqopt(sb)->files[type];
5359 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5360 int err, offset = off & (sb->s_blocksize - 1);
5361 struct buffer_head *bh;
5362 handle_t *handle = journal_current_handle();
5363
5364 if (EXT4_SB(sb)->s_journal && !handle) {
5365 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5366 " cancelled because transaction is not started",
5367 (unsigned long long)off, (unsigned long long)len);
5368 return -EIO;
5369 }
5370 /*
5371 * Since we account only one data block in transaction credits,
5372 * then it is impossible to cross a block boundary.
5373 */
5374 if (sb->s_blocksize - offset < len) {
5375 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5376 " cancelled because not block aligned",
5377 (unsigned long long)off, (unsigned long long)len);
5378 return -EIO;
5379 }
5380
5381 bh = ext4_bread(handle, inode, blk, 1);
5382 if (IS_ERR(bh))
5383 return PTR_ERR(bh);
5384 if (!bh)
5385 goto out;
5386 BUFFER_TRACE(bh, "get write access");
5387 err = ext4_journal_get_write_access(handle, bh);
5388 if (err) {
5389 brelse(bh);
5390 return err;
5391 }
5392 lock_buffer(bh);
5393 memcpy(bh->b_data+offset, data, len);
5394 flush_dcache_page(bh->b_page);
5395 unlock_buffer(bh);
5396 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5397 brelse(bh);
5398 out:
5399 if (inode->i_size < off + len) {
5400 i_size_write(inode, off + len);
5401 EXT4_I(inode)->i_disksize = inode->i_size;
5402 ext4_mark_inode_dirty(handle, inode);
5403 }
5404 return len;
5405 }
5406
5407 #endif
5408
5409 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5410 const char *dev_name, void *data)
5411 {
5412 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5413 }
5414
5415 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5416 static inline void register_as_ext2(void)
5417 {
5418 int err = register_filesystem(&ext2_fs_type);
5419 if (err)
5420 printk(KERN_WARNING
5421 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5422 }
5423
5424 static inline void unregister_as_ext2(void)
5425 {
5426 unregister_filesystem(&ext2_fs_type);
5427 }
5428
5429 static inline int ext2_feature_set_ok(struct super_block *sb)
5430 {
5431 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5432 return 0;
5433 if (sb->s_flags & MS_RDONLY)
5434 return 1;
5435 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5436 return 0;
5437 return 1;
5438 }
5439 #else
5440 static inline void register_as_ext2(void) { }
5441 static inline void unregister_as_ext2(void) { }
5442 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5443 #endif
5444
5445 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5446 static inline void register_as_ext3(void)
5447 {
5448 int err = register_filesystem(&ext3_fs_type);
5449 if (err)
5450 printk(KERN_WARNING
5451 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5452 }
5453
5454 static inline void unregister_as_ext3(void)
5455 {
5456 unregister_filesystem(&ext3_fs_type);
5457 }
5458
5459 static inline int ext3_feature_set_ok(struct super_block *sb)
5460 {
5461 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5462 return 0;
5463 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5464 return 0;
5465 if (sb->s_flags & MS_RDONLY)
5466 return 1;
5467 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5468 return 0;
5469 return 1;
5470 }
5471 #else
5472 static inline void register_as_ext3(void) { }
5473 static inline void unregister_as_ext3(void) { }
5474 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5475 #endif
5476
5477 static struct file_system_type ext4_fs_type = {
5478 .owner = THIS_MODULE,
5479 .name = "ext4",
5480 .mount = ext4_mount,
5481 .kill_sb = kill_block_super,
5482 .fs_flags = FS_REQUIRES_DEV,
5483 };
5484 MODULE_ALIAS_FS("ext4");
5485
5486 static int __init ext4_init_feat_adverts(void)
5487 {
5488 struct ext4_features *ef;
5489 int ret = -ENOMEM;
5490
5491 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5492 if (!ef)
5493 goto out;
5494
5495 ef->f_kobj.kset = ext4_kset;
5496 init_completion(&ef->f_kobj_unregister);
5497 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5498 "features");
5499 if (ret) {
5500 kfree(ef);
5501 goto out;
5502 }
5503
5504 ext4_feat = ef;
5505 ret = 0;
5506 out:
5507 return ret;
5508 }
5509
5510 static void ext4_exit_feat_adverts(void)
5511 {
5512 kobject_put(&ext4_feat->f_kobj);
5513 wait_for_completion(&ext4_feat->f_kobj_unregister);
5514 kfree(ext4_feat);
5515 }
5516
5517 /* Shared across all ext4 file systems */
5518 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5519 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5520
5521 static int __init ext4_init_fs(void)
5522 {
5523 int i, err;
5524
5525 ext4_li_info = NULL;
5526 mutex_init(&ext4_li_mtx);
5527
5528 /* Build-time check for flags consistency */
5529 ext4_check_flag_values();
5530
5531 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5532 mutex_init(&ext4__aio_mutex[i]);
5533 init_waitqueue_head(&ext4__ioend_wq[i]);
5534 }
5535
5536 err = ext4_init_es();
5537 if (err)
5538 return err;
5539
5540 err = ext4_init_pageio();
5541 if (err)
5542 goto out7;
5543
5544 err = ext4_init_system_zone();
5545 if (err)
5546 goto out6;
5547 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5548 if (!ext4_kset) {
5549 err = -ENOMEM;
5550 goto out5;
5551 }
5552 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5553
5554 err = ext4_init_feat_adverts();
5555 if (err)
5556 goto out4;
5557
5558 err = ext4_init_mballoc();
5559 if (err)
5560 goto out2;
5561 else
5562 ext4_mballoc_ready = 1;
5563 err = init_inodecache();
5564 if (err)
5565 goto out1;
5566 register_as_ext3();
5567 register_as_ext2();
5568 err = register_filesystem(&ext4_fs_type);
5569 if (err)
5570 goto out;
5571
5572 return 0;
5573 out:
5574 unregister_as_ext2();
5575 unregister_as_ext3();
5576 destroy_inodecache();
5577 out1:
5578 ext4_mballoc_ready = 0;
5579 ext4_exit_mballoc();
5580 out2:
5581 ext4_exit_feat_adverts();
5582 out4:
5583 if (ext4_proc_root)
5584 remove_proc_entry("fs/ext4", NULL);
5585 kset_unregister(ext4_kset);
5586 out5:
5587 ext4_exit_system_zone();
5588 out6:
5589 ext4_exit_pageio();
5590 out7:
5591 ext4_exit_es();
5592
5593 return err;
5594 }
5595
5596 static void __exit ext4_exit_fs(void)
5597 {
5598 ext4_destroy_lazyinit_thread();
5599 unregister_as_ext2();
5600 unregister_as_ext3();
5601 unregister_filesystem(&ext4_fs_type);
5602 destroy_inodecache();
5603 ext4_exit_mballoc();
5604 ext4_exit_feat_adverts();
5605 remove_proc_entry("fs/ext4", NULL);
5606 kset_unregister(ext4_kset);
5607 ext4_exit_system_zone();
5608 ext4_exit_pageio();
5609 ext4_exit_es();
5610 }
5611
5612 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5613 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5614 MODULE_LICENSE("GPL");
5615 module_init(ext4_init_fs)
5616 module_exit(ext4_exit_fs)
This page took 0.243176 seconds and 5 git commands to generate.