ext4: Fix bigalloc quota accounting and i_blocks value
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
98
99
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
107 };
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 #else
110 #define IS_EXT3_SB(sb) (0)
111 #endif
112
113 void *ext4_kvmalloc(size_t size, gfp_t flags)
114 {
115 void *ret;
116
117 ret = kmalloc(size, flags);
118 if (!ret)
119 ret = __vmalloc(size, flags, PAGE_KERNEL);
120 return ret;
121 }
122
123 void *ext4_kvzalloc(size_t size, gfp_t flags)
124 {
125 void *ret;
126
127 ret = kzalloc(size, flags);
128 if (!ret)
129 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
130 return ret;
131 }
132
133 void ext4_kvfree(void *ptr)
134 {
135 if (is_vmalloc_addr(ptr))
136 vfree(ptr);
137 else
138 kfree(ptr);
139
140 }
141
142 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le32_to_cpu(bg->bg_block_bitmap_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
148 }
149
150 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
151 struct ext4_group_desc *bg)
152 {
153 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
154 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
155 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
156 }
157
158 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
159 struct ext4_group_desc *bg)
160 {
161 return le32_to_cpu(bg->bg_inode_table_lo) |
162 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
163 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
164 }
165
166 __u32 ext4_free_blks_count(struct super_block *sb,
167 struct ext4_group_desc *bg)
168 {
169 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
170 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
171 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
172 }
173
174 __u32 ext4_free_inodes_count(struct super_block *sb,
175 struct ext4_group_desc *bg)
176 {
177 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
178 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
179 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
180 }
181
182 __u32 ext4_used_dirs_count(struct super_block *sb,
183 struct ext4_group_desc *bg)
184 {
185 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
186 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
187 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
188 }
189
190 __u32 ext4_itable_unused_count(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le16_to_cpu(bg->bg_itable_unused_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
196 }
197
198 void ext4_block_bitmap_set(struct super_block *sb,
199 struct ext4_group_desc *bg, ext4_fsblk_t blk)
200 {
201 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
204 }
205
206 void ext4_inode_bitmap_set(struct super_block *sb,
207 struct ext4_group_desc *bg, ext4_fsblk_t blk)
208 {
209 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
210 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
211 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
212 }
213
214 void ext4_inode_table_set(struct super_block *sb,
215 struct ext4_group_desc *bg, ext4_fsblk_t blk)
216 {
217 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
218 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
219 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
220 }
221
222 void ext4_free_blks_set(struct super_block *sb,
223 struct ext4_group_desc *bg, __u32 count)
224 {
225 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
226 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
227 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
228 }
229
230 void ext4_free_inodes_set(struct super_block *sb,
231 struct ext4_group_desc *bg, __u32 count)
232 {
233 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
234 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
235 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
236 }
237
238 void ext4_used_dirs_set(struct super_block *sb,
239 struct ext4_group_desc *bg, __u32 count)
240 {
241 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
242 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
243 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
244 }
245
246 void ext4_itable_unused_set(struct super_block *sb,
247 struct ext4_group_desc *bg, __u32 count)
248 {
249 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
252 }
253
254
255 /* Just increment the non-pointer handle value */
256 static handle_t *ext4_get_nojournal(void)
257 {
258 handle_t *handle = current->journal_info;
259 unsigned long ref_cnt = (unsigned long)handle;
260
261 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
262
263 ref_cnt++;
264 handle = (handle_t *)ref_cnt;
265
266 current->journal_info = handle;
267 return handle;
268 }
269
270
271 /* Decrement the non-pointer handle value */
272 static void ext4_put_nojournal(handle_t *handle)
273 {
274 unsigned long ref_cnt = (unsigned long)handle;
275
276 BUG_ON(ref_cnt == 0);
277
278 ref_cnt--;
279 handle = (handle_t *)ref_cnt;
280
281 current->journal_info = handle;
282 }
283
284 /*
285 * Wrappers for jbd2_journal_start/end.
286 *
287 * The only special thing we need to do here is to make sure that all
288 * journal_end calls result in the superblock being marked dirty, so
289 * that sync() will call the filesystem's write_super callback if
290 * appropriate.
291 *
292 * To avoid j_barrier hold in userspace when a user calls freeze(),
293 * ext4 prevents a new handle from being started by s_frozen, which
294 * is in an upper layer.
295 */
296 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
297 {
298 journal_t *journal;
299 handle_t *handle;
300
301 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
302 if (sb->s_flags & MS_RDONLY)
303 return ERR_PTR(-EROFS);
304
305 journal = EXT4_SB(sb)->s_journal;
306 handle = ext4_journal_current_handle();
307
308 /*
309 * If a handle has been started, it should be allowed to
310 * finish, otherwise deadlock could happen between freeze
311 * and others(e.g. truncate) due to the restart of the
312 * journal handle if the filesystem is forzen and active
313 * handles are not stopped.
314 */
315 if (!handle)
316 vfs_check_frozen(sb, SB_FREEZE_TRANS);
317
318 if (!journal)
319 return ext4_get_nojournal();
320 /*
321 * Special case here: if the journal has aborted behind our
322 * backs (eg. EIO in the commit thread), then we still need to
323 * take the FS itself readonly cleanly.
324 */
325 if (is_journal_aborted(journal)) {
326 ext4_abort(sb, "Detected aborted journal");
327 return ERR_PTR(-EROFS);
328 }
329 return jbd2_journal_start(journal, nblocks);
330 }
331
332 /*
333 * The only special thing we need to do here is to make sure that all
334 * jbd2_journal_stop calls result in the superblock being marked dirty, so
335 * that sync() will call the filesystem's write_super callback if
336 * appropriate.
337 */
338 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
339 {
340 struct super_block *sb;
341 int err;
342 int rc;
343
344 if (!ext4_handle_valid(handle)) {
345 ext4_put_nojournal(handle);
346 return 0;
347 }
348 sb = handle->h_transaction->t_journal->j_private;
349 err = handle->h_err;
350 rc = jbd2_journal_stop(handle);
351
352 if (!err)
353 err = rc;
354 if (err)
355 __ext4_std_error(sb, where, line, err);
356 return err;
357 }
358
359 void ext4_journal_abort_handle(const char *caller, unsigned int line,
360 const char *err_fn, struct buffer_head *bh,
361 handle_t *handle, int err)
362 {
363 char nbuf[16];
364 const char *errstr = ext4_decode_error(NULL, err, nbuf);
365
366 BUG_ON(!ext4_handle_valid(handle));
367
368 if (bh)
369 BUFFER_TRACE(bh, "abort");
370
371 if (!handle->h_err)
372 handle->h_err = err;
373
374 if (is_handle_aborted(handle))
375 return;
376
377 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
378 caller, line, errstr, err_fn);
379
380 jbd2_journal_abort_handle(handle);
381 }
382
383 static void __save_error_info(struct super_block *sb, const char *func,
384 unsigned int line)
385 {
386 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
387
388 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
389 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
390 es->s_last_error_time = cpu_to_le32(get_seconds());
391 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
392 es->s_last_error_line = cpu_to_le32(line);
393 if (!es->s_first_error_time) {
394 es->s_first_error_time = es->s_last_error_time;
395 strncpy(es->s_first_error_func, func,
396 sizeof(es->s_first_error_func));
397 es->s_first_error_line = cpu_to_le32(line);
398 es->s_first_error_ino = es->s_last_error_ino;
399 es->s_first_error_block = es->s_last_error_block;
400 }
401 /*
402 * Start the daily error reporting function if it hasn't been
403 * started already
404 */
405 if (!es->s_error_count)
406 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
407 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
408 }
409
410 static void save_error_info(struct super_block *sb, const char *func,
411 unsigned int line)
412 {
413 __save_error_info(sb, func, line);
414 ext4_commit_super(sb, 1);
415 }
416
417 /*
418 * The del_gendisk() function uninitializes the disk-specific data
419 * structures, including the bdi structure, without telling anyone
420 * else. Once this happens, any attempt to call mark_buffer_dirty()
421 * (for example, by ext4_commit_super), will cause a kernel OOPS.
422 * This is a kludge to prevent these oops until we can put in a proper
423 * hook in del_gendisk() to inform the VFS and file system layers.
424 */
425 static int block_device_ejected(struct super_block *sb)
426 {
427 struct inode *bd_inode = sb->s_bdev->bd_inode;
428 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
429
430 return bdi->dev == NULL;
431 }
432
433
434 /* Deal with the reporting of failure conditions on a filesystem such as
435 * inconsistencies detected or read IO failures.
436 *
437 * On ext2, we can store the error state of the filesystem in the
438 * superblock. That is not possible on ext4, because we may have other
439 * write ordering constraints on the superblock which prevent us from
440 * writing it out straight away; and given that the journal is about to
441 * be aborted, we can't rely on the current, or future, transactions to
442 * write out the superblock safely.
443 *
444 * We'll just use the jbd2_journal_abort() error code to record an error in
445 * the journal instead. On recovery, the journal will complain about
446 * that error until we've noted it down and cleared it.
447 */
448
449 static void ext4_handle_error(struct super_block *sb)
450 {
451 if (sb->s_flags & MS_RDONLY)
452 return;
453
454 if (!test_opt(sb, ERRORS_CONT)) {
455 journal_t *journal = EXT4_SB(sb)->s_journal;
456
457 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
458 if (journal)
459 jbd2_journal_abort(journal, -EIO);
460 }
461 if (test_opt(sb, ERRORS_RO)) {
462 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
463 sb->s_flags |= MS_RDONLY;
464 }
465 if (test_opt(sb, ERRORS_PANIC))
466 panic("EXT4-fs (device %s): panic forced after error\n",
467 sb->s_id);
468 }
469
470 void __ext4_error(struct super_block *sb, const char *function,
471 unsigned int line, const char *fmt, ...)
472 {
473 struct va_format vaf;
474 va_list args;
475
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
480 sb->s_id, function, line, current->comm, &vaf);
481 va_end(args);
482
483 ext4_handle_error(sb);
484 }
485
486 void ext4_error_inode(struct inode *inode, const char *function,
487 unsigned int line, ext4_fsblk_t block,
488 const char *fmt, ...)
489 {
490 va_list args;
491 struct va_format vaf;
492 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
493
494 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
495 es->s_last_error_block = cpu_to_le64(block);
496 save_error_info(inode->i_sb, function, line);
497 va_start(args, fmt);
498 vaf.fmt = fmt;
499 vaf.va = &args;
500 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
501 inode->i_sb->s_id, function, line, inode->i_ino);
502 if (block)
503 printk(KERN_CONT "block %llu: ", block);
504 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
505 va_end(args);
506
507 ext4_handle_error(inode->i_sb);
508 }
509
510 void ext4_error_file(struct file *file, const char *function,
511 unsigned int line, ext4_fsblk_t block,
512 const char *fmt, ...)
513 {
514 va_list args;
515 struct va_format vaf;
516 struct ext4_super_block *es;
517 struct inode *inode = file->f_dentry->d_inode;
518 char pathname[80], *path;
519
520 es = EXT4_SB(inode->i_sb)->s_es;
521 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
522 save_error_info(inode->i_sb, function, line);
523 path = d_path(&(file->f_path), pathname, sizeof(pathname));
524 if (IS_ERR(path))
525 path = "(unknown)";
526 printk(KERN_CRIT
527 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
528 inode->i_sb->s_id, function, line, inode->i_ino);
529 if (block)
530 printk(KERN_CONT "block %llu: ", block);
531 va_start(args, fmt);
532 vaf.fmt = fmt;
533 vaf.va = &args;
534 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
535 va_end(args);
536
537 ext4_handle_error(inode->i_sb);
538 }
539
540 static const char *ext4_decode_error(struct super_block *sb, int errno,
541 char nbuf[16])
542 {
543 char *errstr = NULL;
544
545 switch (errno) {
546 case -EIO:
547 errstr = "IO failure";
548 break;
549 case -ENOMEM:
550 errstr = "Out of memory";
551 break;
552 case -EROFS:
553 if (!sb || (EXT4_SB(sb)->s_journal &&
554 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
555 errstr = "Journal has aborted";
556 else
557 errstr = "Readonly filesystem";
558 break;
559 default:
560 /* If the caller passed in an extra buffer for unknown
561 * errors, textualise them now. Else we just return
562 * NULL. */
563 if (nbuf) {
564 /* Check for truncated error codes... */
565 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
566 errstr = nbuf;
567 }
568 break;
569 }
570
571 return errstr;
572 }
573
574 /* __ext4_std_error decodes expected errors from journaling functions
575 * automatically and invokes the appropriate error response. */
576
577 void __ext4_std_error(struct super_block *sb, const char *function,
578 unsigned int line, int errno)
579 {
580 char nbuf[16];
581 const char *errstr;
582
583 /* Special case: if the error is EROFS, and we're not already
584 * inside a transaction, then there's really no point in logging
585 * an error. */
586 if (errno == -EROFS && journal_current_handle() == NULL &&
587 (sb->s_flags & MS_RDONLY))
588 return;
589
590 errstr = ext4_decode_error(sb, errno, nbuf);
591 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
592 sb->s_id, function, line, errstr);
593 save_error_info(sb, function, line);
594
595 ext4_handle_error(sb);
596 }
597
598 /*
599 * ext4_abort is a much stronger failure handler than ext4_error. The
600 * abort function may be used to deal with unrecoverable failures such
601 * as journal IO errors or ENOMEM at a critical moment in log management.
602 *
603 * We unconditionally force the filesystem into an ABORT|READONLY state,
604 * unless the error response on the fs has been set to panic in which
605 * case we take the easy way out and panic immediately.
606 */
607
608 void __ext4_abort(struct super_block *sb, const char *function,
609 unsigned int line, const char *fmt, ...)
610 {
611 va_list args;
612
613 save_error_info(sb, function, line);
614 va_start(args, fmt);
615 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
616 function, line);
617 vprintk(fmt, args);
618 printk("\n");
619 va_end(args);
620
621 if ((sb->s_flags & MS_RDONLY) == 0) {
622 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
623 sb->s_flags |= MS_RDONLY;
624 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
625 if (EXT4_SB(sb)->s_journal)
626 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
627 save_error_info(sb, function, line);
628 }
629 if (test_opt(sb, ERRORS_PANIC))
630 panic("EXT4-fs panic from previous error\n");
631 }
632
633 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
634 {
635 struct va_format vaf;
636 va_list args;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643 }
644
645 void __ext4_warning(struct super_block *sb, const char *function,
646 unsigned int line, const char *fmt, ...)
647 {
648 struct va_format vaf;
649 va_list args;
650
651 va_start(args, fmt);
652 vaf.fmt = fmt;
653 vaf.va = &args;
654 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
655 sb->s_id, function, line, &vaf);
656 va_end(args);
657 }
658
659 void __ext4_grp_locked_error(const char *function, unsigned int line,
660 struct super_block *sb, ext4_group_t grp,
661 unsigned long ino, ext4_fsblk_t block,
662 const char *fmt, ...)
663 __releases(bitlock)
664 __acquires(bitlock)
665 {
666 struct va_format vaf;
667 va_list args;
668 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
669
670 es->s_last_error_ino = cpu_to_le32(ino);
671 es->s_last_error_block = cpu_to_le64(block);
672 __save_error_info(sb, function, line);
673
674 va_start(args, fmt);
675
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
679 sb->s_id, function, line, grp);
680 if (ino)
681 printk(KERN_CONT "inode %lu: ", ino);
682 if (block)
683 printk(KERN_CONT "block %llu:", (unsigned long long) block);
684 printk(KERN_CONT "%pV\n", &vaf);
685 va_end(args);
686
687 if (test_opt(sb, ERRORS_CONT)) {
688 ext4_commit_super(sb, 0);
689 return;
690 }
691
692 ext4_unlock_group(sb, grp);
693 ext4_handle_error(sb);
694 /*
695 * We only get here in the ERRORS_RO case; relocking the group
696 * may be dangerous, but nothing bad will happen since the
697 * filesystem will have already been marked read/only and the
698 * journal has been aborted. We return 1 as a hint to callers
699 * who might what to use the return value from
700 * ext4_grp_locked_error() to distinguish between the
701 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
702 * aggressively from the ext4 function in question, with a
703 * more appropriate error code.
704 */
705 ext4_lock_group(sb, grp);
706 return;
707 }
708
709 void ext4_update_dynamic_rev(struct super_block *sb)
710 {
711 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
712
713 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
714 return;
715
716 ext4_warning(sb,
717 "updating to rev %d because of new feature flag, "
718 "running e2fsck is recommended",
719 EXT4_DYNAMIC_REV);
720
721 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
722 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
723 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
724 /* leave es->s_feature_*compat flags alone */
725 /* es->s_uuid will be set by e2fsck if empty */
726
727 /*
728 * The rest of the superblock fields should be zero, and if not it
729 * means they are likely already in use, so leave them alone. We
730 * can leave it up to e2fsck to clean up any inconsistencies there.
731 */
732 }
733
734 /*
735 * Open the external journal device
736 */
737 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
738 {
739 struct block_device *bdev;
740 char b[BDEVNAME_SIZE];
741
742 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
743 if (IS_ERR(bdev))
744 goto fail;
745 return bdev;
746
747 fail:
748 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
749 __bdevname(dev, b), PTR_ERR(bdev));
750 return NULL;
751 }
752
753 /*
754 * Release the journal device
755 */
756 static int ext4_blkdev_put(struct block_device *bdev)
757 {
758 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
759 }
760
761 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
762 {
763 struct block_device *bdev;
764 int ret = -ENODEV;
765
766 bdev = sbi->journal_bdev;
767 if (bdev) {
768 ret = ext4_blkdev_put(bdev);
769 sbi->journal_bdev = NULL;
770 }
771 return ret;
772 }
773
774 static inline struct inode *orphan_list_entry(struct list_head *l)
775 {
776 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
777 }
778
779 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
780 {
781 struct list_head *l;
782
783 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
784 le32_to_cpu(sbi->s_es->s_last_orphan));
785
786 printk(KERN_ERR "sb_info orphan list:\n");
787 list_for_each(l, &sbi->s_orphan) {
788 struct inode *inode = orphan_list_entry(l);
789 printk(KERN_ERR " "
790 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
791 inode->i_sb->s_id, inode->i_ino, inode,
792 inode->i_mode, inode->i_nlink,
793 NEXT_ORPHAN(inode));
794 }
795 }
796
797 static void ext4_put_super(struct super_block *sb)
798 {
799 struct ext4_sb_info *sbi = EXT4_SB(sb);
800 struct ext4_super_block *es = sbi->s_es;
801 int i, err;
802
803 ext4_unregister_li_request(sb);
804 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
805
806 flush_workqueue(sbi->dio_unwritten_wq);
807 destroy_workqueue(sbi->dio_unwritten_wq);
808
809 lock_super(sb);
810 if (sb->s_dirt)
811 ext4_commit_super(sb, 1);
812
813 if (sbi->s_journal) {
814 err = jbd2_journal_destroy(sbi->s_journal);
815 sbi->s_journal = NULL;
816 if (err < 0)
817 ext4_abort(sb, "Couldn't clean up the journal");
818 }
819
820 del_timer(&sbi->s_err_report);
821 ext4_release_system_zone(sb);
822 ext4_mb_release(sb);
823 ext4_ext_release(sb);
824 ext4_xattr_put_super(sb);
825
826 if (!(sb->s_flags & MS_RDONLY)) {
827 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
828 es->s_state = cpu_to_le16(sbi->s_mount_state);
829 ext4_commit_super(sb, 1);
830 }
831 if (sbi->s_proc) {
832 remove_proc_entry(sb->s_id, ext4_proc_root);
833 }
834 kobject_del(&sbi->s_kobj);
835
836 for (i = 0; i < sbi->s_gdb_count; i++)
837 brelse(sbi->s_group_desc[i]);
838 ext4_kvfree(sbi->s_group_desc);
839 ext4_kvfree(sbi->s_flex_groups);
840 percpu_counter_destroy(&sbi->s_freeclusters_counter);
841 percpu_counter_destroy(&sbi->s_freeinodes_counter);
842 percpu_counter_destroy(&sbi->s_dirs_counter);
843 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
844 brelse(sbi->s_sbh);
845 #ifdef CONFIG_QUOTA
846 for (i = 0; i < MAXQUOTAS; i++)
847 kfree(sbi->s_qf_names[i]);
848 #endif
849
850 /* Debugging code just in case the in-memory inode orphan list
851 * isn't empty. The on-disk one can be non-empty if we've
852 * detected an error and taken the fs readonly, but the
853 * in-memory list had better be clean by this point. */
854 if (!list_empty(&sbi->s_orphan))
855 dump_orphan_list(sb, sbi);
856 J_ASSERT(list_empty(&sbi->s_orphan));
857
858 invalidate_bdev(sb->s_bdev);
859 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
860 /*
861 * Invalidate the journal device's buffers. We don't want them
862 * floating about in memory - the physical journal device may
863 * hotswapped, and it breaks the `ro-after' testing code.
864 */
865 sync_blockdev(sbi->journal_bdev);
866 invalidate_bdev(sbi->journal_bdev);
867 ext4_blkdev_remove(sbi);
868 }
869 if (sbi->s_mmp_tsk)
870 kthread_stop(sbi->s_mmp_tsk);
871 sb->s_fs_info = NULL;
872 /*
873 * Now that we are completely done shutting down the
874 * superblock, we need to actually destroy the kobject.
875 */
876 unlock_super(sb);
877 kobject_put(&sbi->s_kobj);
878 wait_for_completion(&sbi->s_kobj_unregister);
879 kfree(sbi->s_blockgroup_lock);
880 kfree(sbi);
881 }
882
883 static struct kmem_cache *ext4_inode_cachep;
884
885 /*
886 * Called inside transaction, so use GFP_NOFS
887 */
888 static struct inode *ext4_alloc_inode(struct super_block *sb)
889 {
890 struct ext4_inode_info *ei;
891
892 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
893 if (!ei)
894 return NULL;
895
896 ei->vfs_inode.i_version = 1;
897 ei->vfs_inode.i_data.writeback_index = 0;
898 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
899 INIT_LIST_HEAD(&ei->i_prealloc_list);
900 spin_lock_init(&ei->i_prealloc_lock);
901 ei->i_reserved_data_blocks = 0;
902 ei->i_reserved_meta_blocks = 0;
903 ei->i_allocated_meta_blocks = 0;
904 ei->i_da_metadata_calc_len = 0;
905 spin_lock_init(&(ei->i_block_reservation_lock));
906 #ifdef CONFIG_QUOTA
907 ei->i_reserved_quota = 0;
908 #endif
909 ei->jinode = NULL;
910 INIT_LIST_HEAD(&ei->i_completed_io_list);
911 spin_lock_init(&ei->i_completed_io_lock);
912 ei->cur_aio_dio = NULL;
913 ei->i_sync_tid = 0;
914 ei->i_datasync_tid = 0;
915 atomic_set(&ei->i_ioend_count, 0);
916 atomic_set(&ei->i_aiodio_unwritten, 0);
917
918 return &ei->vfs_inode;
919 }
920
921 static int ext4_drop_inode(struct inode *inode)
922 {
923 int drop = generic_drop_inode(inode);
924
925 trace_ext4_drop_inode(inode, drop);
926 return drop;
927 }
928
929 static void ext4_i_callback(struct rcu_head *head)
930 {
931 struct inode *inode = container_of(head, struct inode, i_rcu);
932 INIT_LIST_HEAD(&inode->i_dentry);
933 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
934 }
935
936 static void ext4_destroy_inode(struct inode *inode)
937 {
938 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
939 ext4_msg(inode->i_sb, KERN_ERR,
940 "Inode %lu (%p): orphan list check failed!",
941 inode->i_ino, EXT4_I(inode));
942 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
943 EXT4_I(inode), sizeof(struct ext4_inode_info),
944 true);
945 dump_stack();
946 }
947 call_rcu(&inode->i_rcu, ext4_i_callback);
948 }
949
950 static void init_once(void *foo)
951 {
952 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
953
954 INIT_LIST_HEAD(&ei->i_orphan);
955 #ifdef CONFIG_EXT4_FS_XATTR
956 init_rwsem(&ei->xattr_sem);
957 #endif
958 init_rwsem(&ei->i_data_sem);
959 inode_init_once(&ei->vfs_inode);
960 }
961
962 static int init_inodecache(void)
963 {
964 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
965 sizeof(struct ext4_inode_info),
966 0, (SLAB_RECLAIM_ACCOUNT|
967 SLAB_MEM_SPREAD),
968 init_once);
969 if (ext4_inode_cachep == NULL)
970 return -ENOMEM;
971 return 0;
972 }
973
974 static void destroy_inodecache(void)
975 {
976 kmem_cache_destroy(ext4_inode_cachep);
977 }
978
979 void ext4_clear_inode(struct inode *inode)
980 {
981 invalidate_inode_buffers(inode);
982 end_writeback(inode);
983 dquot_drop(inode);
984 ext4_discard_preallocations(inode);
985 if (EXT4_I(inode)->jinode) {
986 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
987 EXT4_I(inode)->jinode);
988 jbd2_free_inode(EXT4_I(inode)->jinode);
989 EXT4_I(inode)->jinode = NULL;
990 }
991 }
992
993 static inline void ext4_show_quota_options(struct seq_file *seq,
994 struct super_block *sb)
995 {
996 #if defined(CONFIG_QUOTA)
997 struct ext4_sb_info *sbi = EXT4_SB(sb);
998
999 if (sbi->s_jquota_fmt) {
1000 char *fmtname = "";
1001
1002 switch (sbi->s_jquota_fmt) {
1003 case QFMT_VFS_OLD:
1004 fmtname = "vfsold";
1005 break;
1006 case QFMT_VFS_V0:
1007 fmtname = "vfsv0";
1008 break;
1009 case QFMT_VFS_V1:
1010 fmtname = "vfsv1";
1011 break;
1012 }
1013 seq_printf(seq, ",jqfmt=%s", fmtname);
1014 }
1015
1016 if (sbi->s_qf_names[USRQUOTA])
1017 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1018
1019 if (sbi->s_qf_names[GRPQUOTA])
1020 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1021
1022 if (test_opt(sb, USRQUOTA))
1023 seq_puts(seq, ",usrquota");
1024
1025 if (test_opt(sb, GRPQUOTA))
1026 seq_puts(seq, ",grpquota");
1027 #endif
1028 }
1029
1030 /*
1031 * Show an option if
1032 * - it's set to a non-default value OR
1033 * - if the per-sb default is different from the global default
1034 */
1035 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
1036 {
1037 int def_errors;
1038 unsigned long def_mount_opts;
1039 struct super_block *sb = vfs->mnt_sb;
1040 struct ext4_sb_info *sbi = EXT4_SB(sb);
1041 struct ext4_super_block *es = sbi->s_es;
1042
1043 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1044 def_errors = le16_to_cpu(es->s_errors);
1045
1046 if (sbi->s_sb_block != 1)
1047 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1048 if (test_opt(sb, MINIX_DF))
1049 seq_puts(seq, ",minixdf");
1050 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1051 seq_puts(seq, ",grpid");
1052 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1053 seq_puts(seq, ",nogrpid");
1054 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1055 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1056 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1057 }
1058 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1059 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1060 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1061 }
1062 if (test_opt(sb, ERRORS_RO)) {
1063 if (def_errors == EXT4_ERRORS_PANIC ||
1064 def_errors == EXT4_ERRORS_CONTINUE) {
1065 seq_puts(seq, ",errors=remount-ro");
1066 }
1067 }
1068 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1069 seq_puts(seq, ",errors=continue");
1070 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1071 seq_puts(seq, ",errors=panic");
1072 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1073 seq_puts(seq, ",nouid32");
1074 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1075 seq_puts(seq, ",debug");
1076 if (test_opt(sb, OLDALLOC))
1077 seq_puts(seq, ",oldalloc");
1078 #ifdef CONFIG_EXT4_FS_XATTR
1079 if (test_opt(sb, XATTR_USER))
1080 seq_puts(seq, ",user_xattr");
1081 if (!test_opt(sb, XATTR_USER))
1082 seq_puts(seq, ",nouser_xattr");
1083 #endif
1084 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1085 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1086 seq_puts(seq, ",acl");
1087 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1088 seq_puts(seq, ",noacl");
1089 #endif
1090 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1091 seq_printf(seq, ",commit=%u",
1092 (unsigned) (sbi->s_commit_interval / HZ));
1093 }
1094 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1095 seq_printf(seq, ",min_batch_time=%u",
1096 (unsigned) sbi->s_min_batch_time);
1097 }
1098 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1099 seq_printf(seq, ",max_batch_time=%u",
1100 (unsigned) sbi->s_min_batch_time);
1101 }
1102
1103 /*
1104 * We're changing the default of barrier mount option, so
1105 * let's always display its mount state so it's clear what its
1106 * status is.
1107 */
1108 seq_puts(seq, ",barrier=");
1109 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1110 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1111 seq_puts(seq, ",journal_async_commit");
1112 else if (test_opt(sb, JOURNAL_CHECKSUM))
1113 seq_puts(seq, ",journal_checksum");
1114 if (test_opt(sb, I_VERSION))
1115 seq_puts(seq, ",i_version");
1116 if (!test_opt(sb, DELALLOC) &&
1117 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1118 seq_puts(seq, ",nodelalloc");
1119
1120 if (!test_opt(sb, MBLK_IO_SUBMIT))
1121 seq_puts(seq, ",nomblk_io_submit");
1122 if (sbi->s_stripe)
1123 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1124 /*
1125 * journal mode get enabled in different ways
1126 * So just print the value even if we didn't specify it
1127 */
1128 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1129 seq_puts(seq, ",data=journal");
1130 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1131 seq_puts(seq, ",data=ordered");
1132 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1133 seq_puts(seq, ",data=writeback");
1134
1135 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1136 seq_printf(seq, ",inode_readahead_blks=%u",
1137 sbi->s_inode_readahead_blks);
1138
1139 if (test_opt(sb, DATA_ERR_ABORT))
1140 seq_puts(seq, ",data_err=abort");
1141
1142 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1143 seq_puts(seq, ",noauto_da_alloc");
1144
1145 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1146 seq_puts(seq, ",discard");
1147
1148 if (test_opt(sb, NOLOAD))
1149 seq_puts(seq, ",norecovery");
1150
1151 if (test_opt(sb, DIOREAD_NOLOCK))
1152 seq_puts(seq, ",dioread_nolock");
1153
1154 if (test_opt(sb, BLOCK_VALIDITY) &&
1155 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1156 seq_puts(seq, ",block_validity");
1157
1158 if (!test_opt(sb, INIT_INODE_TABLE))
1159 seq_puts(seq, ",noinit_inode_table");
1160 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1161 seq_printf(seq, ",init_inode_table=%u",
1162 (unsigned) sbi->s_li_wait_mult);
1163
1164 ext4_show_quota_options(seq, sb);
1165
1166 return 0;
1167 }
1168
1169 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1170 u64 ino, u32 generation)
1171 {
1172 struct inode *inode;
1173
1174 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1175 return ERR_PTR(-ESTALE);
1176 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1177 return ERR_PTR(-ESTALE);
1178
1179 /* iget isn't really right if the inode is currently unallocated!!
1180 *
1181 * ext4_read_inode will return a bad_inode if the inode had been
1182 * deleted, so we should be safe.
1183 *
1184 * Currently we don't know the generation for parent directory, so
1185 * a generation of 0 means "accept any"
1186 */
1187 inode = ext4_iget(sb, ino);
1188 if (IS_ERR(inode))
1189 return ERR_CAST(inode);
1190 if (generation && inode->i_generation != generation) {
1191 iput(inode);
1192 return ERR_PTR(-ESTALE);
1193 }
1194
1195 return inode;
1196 }
1197
1198 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1199 int fh_len, int fh_type)
1200 {
1201 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1202 ext4_nfs_get_inode);
1203 }
1204
1205 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1206 int fh_len, int fh_type)
1207 {
1208 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1209 ext4_nfs_get_inode);
1210 }
1211
1212 /*
1213 * Try to release metadata pages (indirect blocks, directories) which are
1214 * mapped via the block device. Since these pages could have journal heads
1215 * which would prevent try_to_free_buffers() from freeing them, we must use
1216 * jbd2 layer's try_to_free_buffers() function to release them.
1217 */
1218 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1219 gfp_t wait)
1220 {
1221 journal_t *journal = EXT4_SB(sb)->s_journal;
1222
1223 WARN_ON(PageChecked(page));
1224 if (!page_has_buffers(page))
1225 return 0;
1226 if (journal)
1227 return jbd2_journal_try_to_free_buffers(journal, page,
1228 wait & ~__GFP_WAIT);
1229 return try_to_free_buffers(page);
1230 }
1231
1232 #ifdef CONFIG_QUOTA
1233 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1234 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1235
1236 static int ext4_write_dquot(struct dquot *dquot);
1237 static int ext4_acquire_dquot(struct dquot *dquot);
1238 static int ext4_release_dquot(struct dquot *dquot);
1239 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1240 static int ext4_write_info(struct super_block *sb, int type);
1241 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1242 struct path *path);
1243 static int ext4_quota_off(struct super_block *sb, int type);
1244 static int ext4_quota_on_mount(struct super_block *sb, int type);
1245 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1246 size_t len, loff_t off);
1247 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1248 const char *data, size_t len, loff_t off);
1249
1250 static const struct dquot_operations ext4_quota_operations = {
1251 .get_reserved_space = ext4_get_reserved_space,
1252 .write_dquot = ext4_write_dquot,
1253 .acquire_dquot = ext4_acquire_dquot,
1254 .release_dquot = ext4_release_dquot,
1255 .mark_dirty = ext4_mark_dquot_dirty,
1256 .write_info = ext4_write_info,
1257 .alloc_dquot = dquot_alloc,
1258 .destroy_dquot = dquot_destroy,
1259 };
1260
1261 static const struct quotactl_ops ext4_qctl_operations = {
1262 .quota_on = ext4_quota_on,
1263 .quota_off = ext4_quota_off,
1264 .quota_sync = dquot_quota_sync,
1265 .get_info = dquot_get_dqinfo,
1266 .set_info = dquot_set_dqinfo,
1267 .get_dqblk = dquot_get_dqblk,
1268 .set_dqblk = dquot_set_dqblk
1269 };
1270 #endif
1271
1272 static const struct super_operations ext4_sops = {
1273 .alloc_inode = ext4_alloc_inode,
1274 .destroy_inode = ext4_destroy_inode,
1275 .write_inode = ext4_write_inode,
1276 .dirty_inode = ext4_dirty_inode,
1277 .drop_inode = ext4_drop_inode,
1278 .evict_inode = ext4_evict_inode,
1279 .put_super = ext4_put_super,
1280 .sync_fs = ext4_sync_fs,
1281 .freeze_fs = ext4_freeze,
1282 .unfreeze_fs = ext4_unfreeze,
1283 .statfs = ext4_statfs,
1284 .remount_fs = ext4_remount,
1285 .show_options = ext4_show_options,
1286 #ifdef CONFIG_QUOTA
1287 .quota_read = ext4_quota_read,
1288 .quota_write = ext4_quota_write,
1289 #endif
1290 .bdev_try_to_free_page = bdev_try_to_free_page,
1291 };
1292
1293 static const struct super_operations ext4_nojournal_sops = {
1294 .alloc_inode = ext4_alloc_inode,
1295 .destroy_inode = ext4_destroy_inode,
1296 .write_inode = ext4_write_inode,
1297 .dirty_inode = ext4_dirty_inode,
1298 .drop_inode = ext4_drop_inode,
1299 .evict_inode = ext4_evict_inode,
1300 .write_super = ext4_write_super,
1301 .put_super = ext4_put_super,
1302 .statfs = ext4_statfs,
1303 .remount_fs = ext4_remount,
1304 .show_options = ext4_show_options,
1305 #ifdef CONFIG_QUOTA
1306 .quota_read = ext4_quota_read,
1307 .quota_write = ext4_quota_write,
1308 #endif
1309 .bdev_try_to_free_page = bdev_try_to_free_page,
1310 };
1311
1312 static const struct export_operations ext4_export_ops = {
1313 .fh_to_dentry = ext4_fh_to_dentry,
1314 .fh_to_parent = ext4_fh_to_parent,
1315 .get_parent = ext4_get_parent,
1316 };
1317
1318 enum {
1319 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1320 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1321 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1322 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1323 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1324 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1325 Opt_journal_update, Opt_journal_dev,
1326 Opt_journal_checksum, Opt_journal_async_commit,
1327 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1328 Opt_data_err_abort, Opt_data_err_ignore,
1329 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1330 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1331 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1332 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1333 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1334 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1335 Opt_inode_readahead_blks, Opt_journal_ioprio,
1336 Opt_dioread_nolock, Opt_dioread_lock,
1337 Opt_discard, Opt_nodiscard,
1338 Opt_init_inode_table, Opt_noinit_inode_table,
1339 };
1340
1341 static const match_table_t tokens = {
1342 {Opt_bsd_df, "bsddf"},
1343 {Opt_minix_df, "minixdf"},
1344 {Opt_grpid, "grpid"},
1345 {Opt_grpid, "bsdgroups"},
1346 {Opt_nogrpid, "nogrpid"},
1347 {Opt_nogrpid, "sysvgroups"},
1348 {Opt_resgid, "resgid=%u"},
1349 {Opt_resuid, "resuid=%u"},
1350 {Opt_sb, "sb=%u"},
1351 {Opt_err_cont, "errors=continue"},
1352 {Opt_err_panic, "errors=panic"},
1353 {Opt_err_ro, "errors=remount-ro"},
1354 {Opt_nouid32, "nouid32"},
1355 {Opt_debug, "debug"},
1356 {Opt_oldalloc, "oldalloc"},
1357 {Opt_orlov, "orlov"},
1358 {Opt_user_xattr, "user_xattr"},
1359 {Opt_nouser_xattr, "nouser_xattr"},
1360 {Opt_acl, "acl"},
1361 {Opt_noacl, "noacl"},
1362 {Opt_noload, "noload"},
1363 {Opt_noload, "norecovery"},
1364 {Opt_nobh, "nobh"},
1365 {Opt_bh, "bh"},
1366 {Opt_commit, "commit=%u"},
1367 {Opt_min_batch_time, "min_batch_time=%u"},
1368 {Opt_max_batch_time, "max_batch_time=%u"},
1369 {Opt_journal_update, "journal=update"},
1370 {Opt_journal_dev, "journal_dev=%u"},
1371 {Opt_journal_checksum, "journal_checksum"},
1372 {Opt_journal_async_commit, "journal_async_commit"},
1373 {Opt_abort, "abort"},
1374 {Opt_data_journal, "data=journal"},
1375 {Opt_data_ordered, "data=ordered"},
1376 {Opt_data_writeback, "data=writeback"},
1377 {Opt_data_err_abort, "data_err=abort"},
1378 {Opt_data_err_ignore, "data_err=ignore"},
1379 {Opt_offusrjquota, "usrjquota="},
1380 {Opt_usrjquota, "usrjquota=%s"},
1381 {Opt_offgrpjquota, "grpjquota="},
1382 {Opt_grpjquota, "grpjquota=%s"},
1383 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1384 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1385 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1386 {Opt_grpquota, "grpquota"},
1387 {Opt_noquota, "noquota"},
1388 {Opt_quota, "quota"},
1389 {Opt_usrquota, "usrquota"},
1390 {Opt_barrier, "barrier=%u"},
1391 {Opt_barrier, "barrier"},
1392 {Opt_nobarrier, "nobarrier"},
1393 {Opt_i_version, "i_version"},
1394 {Opt_stripe, "stripe=%u"},
1395 {Opt_resize, "resize"},
1396 {Opt_delalloc, "delalloc"},
1397 {Opt_nodelalloc, "nodelalloc"},
1398 {Opt_mblk_io_submit, "mblk_io_submit"},
1399 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1400 {Opt_block_validity, "block_validity"},
1401 {Opt_noblock_validity, "noblock_validity"},
1402 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1403 {Opt_journal_ioprio, "journal_ioprio=%u"},
1404 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1405 {Opt_auto_da_alloc, "auto_da_alloc"},
1406 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1407 {Opt_dioread_nolock, "dioread_nolock"},
1408 {Opt_dioread_lock, "dioread_lock"},
1409 {Opt_discard, "discard"},
1410 {Opt_nodiscard, "nodiscard"},
1411 {Opt_init_inode_table, "init_itable=%u"},
1412 {Opt_init_inode_table, "init_itable"},
1413 {Opt_noinit_inode_table, "noinit_itable"},
1414 {Opt_err, NULL},
1415 };
1416
1417 static ext4_fsblk_t get_sb_block(void **data)
1418 {
1419 ext4_fsblk_t sb_block;
1420 char *options = (char *) *data;
1421
1422 if (!options || strncmp(options, "sb=", 3) != 0)
1423 return 1; /* Default location */
1424
1425 options += 3;
1426 /* TODO: use simple_strtoll with >32bit ext4 */
1427 sb_block = simple_strtoul(options, &options, 0);
1428 if (*options && *options != ',') {
1429 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1430 (char *) *data);
1431 return 1;
1432 }
1433 if (*options == ',')
1434 options++;
1435 *data = (void *) options;
1436
1437 return sb_block;
1438 }
1439
1440 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1441 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1442 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1443
1444 #ifdef CONFIG_QUOTA
1445 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1446 {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 char *qname;
1449
1450 if (sb_any_quota_loaded(sb) &&
1451 !sbi->s_qf_names[qtype]) {
1452 ext4_msg(sb, KERN_ERR,
1453 "Cannot change journaled "
1454 "quota options when quota turned on");
1455 return 0;
1456 }
1457 qname = match_strdup(args);
1458 if (!qname) {
1459 ext4_msg(sb, KERN_ERR,
1460 "Not enough memory for storing quotafile name");
1461 return 0;
1462 }
1463 if (sbi->s_qf_names[qtype] &&
1464 strcmp(sbi->s_qf_names[qtype], qname)) {
1465 ext4_msg(sb, KERN_ERR,
1466 "%s quota file already specified", QTYPE2NAME(qtype));
1467 kfree(qname);
1468 return 0;
1469 }
1470 sbi->s_qf_names[qtype] = qname;
1471 if (strchr(sbi->s_qf_names[qtype], '/')) {
1472 ext4_msg(sb, KERN_ERR,
1473 "quotafile must be on filesystem root");
1474 kfree(sbi->s_qf_names[qtype]);
1475 sbi->s_qf_names[qtype] = NULL;
1476 return 0;
1477 }
1478 set_opt(sb, QUOTA);
1479 return 1;
1480 }
1481
1482 static int clear_qf_name(struct super_block *sb, int qtype)
1483 {
1484
1485 struct ext4_sb_info *sbi = EXT4_SB(sb);
1486
1487 if (sb_any_quota_loaded(sb) &&
1488 sbi->s_qf_names[qtype]) {
1489 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1490 " when quota turned on");
1491 return 0;
1492 }
1493 /*
1494 * The space will be released later when all options are confirmed
1495 * to be correct
1496 */
1497 sbi->s_qf_names[qtype] = NULL;
1498 return 1;
1499 }
1500 #endif
1501
1502 static int parse_options(char *options, struct super_block *sb,
1503 unsigned long *journal_devnum,
1504 unsigned int *journal_ioprio,
1505 ext4_fsblk_t *n_blocks_count, int is_remount)
1506 {
1507 struct ext4_sb_info *sbi = EXT4_SB(sb);
1508 char *p;
1509 substring_t args[MAX_OPT_ARGS];
1510 int data_opt = 0;
1511 int option;
1512 #ifdef CONFIG_QUOTA
1513 int qfmt;
1514 #endif
1515
1516 if (!options)
1517 return 1;
1518
1519 while ((p = strsep(&options, ",")) != NULL) {
1520 int token;
1521 if (!*p)
1522 continue;
1523
1524 /*
1525 * Initialize args struct so we know whether arg was
1526 * found; some options take optional arguments.
1527 */
1528 args[0].to = args[0].from = NULL;
1529 token = match_token(p, tokens, args);
1530 switch (token) {
1531 case Opt_bsd_df:
1532 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1533 clear_opt(sb, MINIX_DF);
1534 break;
1535 case Opt_minix_df:
1536 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1537 set_opt(sb, MINIX_DF);
1538
1539 break;
1540 case Opt_grpid:
1541 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1542 set_opt(sb, GRPID);
1543
1544 break;
1545 case Opt_nogrpid:
1546 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1547 clear_opt(sb, GRPID);
1548
1549 break;
1550 case Opt_resuid:
1551 if (match_int(&args[0], &option))
1552 return 0;
1553 sbi->s_resuid = option;
1554 break;
1555 case Opt_resgid:
1556 if (match_int(&args[0], &option))
1557 return 0;
1558 sbi->s_resgid = option;
1559 break;
1560 case Opt_sb:
1561 /* handled by get_sb_block() instead of here */
1562 /* *sb_block = match_int(&args[0]); */
1563 break;
1564 case Opt_err_panic:
1565 clear_opt(sb, ERRORS_CONT);
1566 clear_opt(sb, ERRORS_RO);
1567 set_opt(sb, ERRORS_PANIC);
1568 break;
1569 case Opt_err_ro:
1570 clear_opt(sb, ERRORS_CONT);
1571 clear_opt(sb, ERRORS_PANIC);
1572 set_opt(sb, ERRORS_RO);
1573 break;
1574 case Opt_err_cont:
1575 clear_opt(sb, ERRORS_RO);
1576 clear_opt(sb, ERRORS_PANIC);
1577 set_opt(sb, ERRORS_CONT);
1578 break;
1579 case Opt_nouid32:
1580 set_opt(sb, NO_UID32);
1581 break;
1582 case Opt_debug:
1583 set_opt(sb, DEBUG);
1584 break;
1585 case Opt_oldalloc:
1586 set_opt(sb, OLDALLOC);
1587 break;
1588 case Opt_orlov:
1589 clear_opt(sb, OLDALLOC);
1590 break;
1591 #ifdef CONFIG_EXT4_FS_XATTR
1592 case Opt_user_xattr:
1593 set_opt(sb, XATTR_USER);
1594 break;
1595 case Opt_nouser_xattr:
1596 clear_opt(sb, XATTR_USER);
1597 break;
1598 #else
1599 case Opt_user_xattr:
1600 case Opt_nouser_xattr:
1601 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1602 break;
1603 #endif
1604 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1605 case Opt_acl:
1606 set_opt(sb, POSIX_ACL);
1607 break;
1608 case Opt_noacl:
1609 clear_opt(sb, POSIX_ACL);
1610 break;
1611 #else
1612 case Opt_acl:
1613 case Opt_noacl:
1614 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1615 break;
1616 #endif
1617 case Opt_journal_update:
1618 /* @@@ FIXME */
1619 /* Eventually we will want to be able to create
1620 a journal file here. For now, only allow the
1621 user to specify an existing inode to be the
1622 journal file. */
1623 if (is_remount) {
1624 ext4_msg(sb, KERN_ERR,
1625 "Cannot specify journal on remount");
1626 return 0;
1627 }
1628 set_opt(sb, UPDATE_JOURNAL);
1629 break;
1630 case Opt_journal_dev:
1631 if (is_remount) {
1632 ext4_msg(sb, KERN_ERR,
1633 "Cannot specify journal on remount");
1634 return 0;
1635 }
1636 if (match_int(&args[0], &option))
1637 return 0;
1638 *journal_devnum = option;
1639 break;
1640 case Opt_journal_checksum:
1641 set_opt(sb, JOURNAL_CHECKSUM);
1642 break;
1643 case Opt_journal_async_commit:
1644 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1645 set_opt(sb, JOURNAL_CHECKSUM);
1646 break;
1647 case Opt_noload:
1648 set_opt(sb, NOLOAD);
1649 break;
1650 case Opt_commit:
1651 if (match_int(&args[0], &option))
1652 return 0;
1653 if (option < 0)
1654 return 0;
1655 if (option == 0)
1656 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1657 sbi->s_commit_interval = HZ * option;
1658 break;
1659 case Opt_max_batch_time:
1660 if (match_int(&args[0], &option))
1661 return 0;
1662 if (option < 0)
1663 return 0;
1664 if (option == 0)
1665 option = EXT4_DEF_MAX_BATCH_TIME;
1666 sbi->s_max_batch_time = option;
1667 break;
1668 case Opt_min_batch_time:
1669 if (match_int(&args[0], &option))
1670 return 0;
1671 if (option < 0)
1672 return 0;
1673 sbi->s_min_batch_time = option;
1674 break;
1675 case Opt_data_journal:
1676 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1677 goto datacheck;
1678 case Opt_data_ordered:
1679 data_opt = EXT4_MOUNT_ORDERED_DATA;
1680 goto datacheck;
1681 case Opt_data_writeback:
1682 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1683 datacheck:
1684 if (is_remount) {
1685 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1686 ext4_msg(sb, KERN_ERR,
1687 "Cannot change data mode on remount");
1688 return 0;
1689 }
1690 } else {
1691 clear_opt(sb, DATA_FLAGS);
1692 sbi->s_mount_opt |= data_opt;
1693 }
1694 break;
1695 case Opt_data_err_abort:
1696 set_opt(sb, DATA_ERR_ABORT);
1697 break;
1698 case Opt_data_err_ignore:
1699 clear_opt(sb, DATA_ERR_ABORT);
1700 break;
1701 #ifdef CONFIG_QUOTA
1702 case Opt_usrjquota:
1703 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1704 return 0;
1705 break;
1706 case Opt_grpjquota:
1707 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1708 return 0;
1709 break;
1710 case Opt_offusrjquota:
1711 if (!clear_qf_name(sb, USRQUOTA))
1712 return 0;
1713 break;
1714 case Opt_offgrpjquota:
1715 if (!clear_qf_name(sb, GRPQUOTA))
1716 return 0;
1717 break;
1718
1719 case Opt_jqfmt_vfsold:
1720 qfmt = QFMT_VFS_OLD;
1721 goto set_qf_format;
1722 case Opt_jqfmt_vfsv0:
1723 qfmt = QFMT_VFS_V0;
1724 goto set_qf_format;
1725 case Opt_jqfmt_vfsv1:
1726 qfmt = QFMT_VFS_V1;
1727 set_qf_format:
1728 if (sb_any_quota_loaded(sb) &&
1729 sbi->s_jquota_fmt != qfmt) {
1730 ext4_msg(sb, KERN_ERR, "Cannot change "
1731 "journaled quota options when "
1732 "quota turned on");
1733 return 0;
1734 }
1735 sbi->s_jquota_fmt = qfmt;
1736 break;
1737 case Opt_quota:
1738 case Opt_usrquota:
1739 set_opt(sb, QUOTA);
1740 set_opt(sb, USRQUOTA);
1741 break;
1742 case Opt_grpquota:
1743 set_opt(sb, QUOTA);
1744 set_opt(sb, GRPQUOTA);
1745 break;
1746 case Opt_noquota:
1747 if (sb_any_quota_loaded(sb)) {
1748 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1749 "options when quota turned on");
1750 return 0;
1751 }
1752 clear_opt(sb, QUOTA);
1753 clear_opt(sb, USRQUOTA);
1754 clear_opt(sb, GRPQUOTA);
1755 break;
1756 #else
1757 case Opt_quota:
1758 case Opt_usrquota:
1759 case Opt_grpquota:
1760 ext4_msg(sb, KERN_ERR,
1761 "quota options not supported");
1762 break;
1763 case Opt_usrjquota:
1764 case Opt_grpjquota:
1765 case Opt_offusrjquota:
1766 case Opt_offgrpjquota:
1767 case Opt_jqfmt_vfsold:
1768 case Opt_jqfmt_vfsv0:
1769 case Opt_jqfmt_vfsv1:
1770 ext4_msg(sb, KERN_ERR,
1771 "journaled quota options not supported");
1772 break;
1773 case Opt_noquota:
1774 break;
1775 #endif
1776 case Opt_abort:
1777 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1778 break;
1779 case Opt_nobarrier:
1780 clear_opt(sb, BARRIER);
1781 break;
1782 case Opt_barrier:
1783 if (args[0].from) {
1784 if (match_int(&args[0], &option))
1785 return 0;
1786 } else
1787 option = 1; /* No argument, default to 1 */
1788 if (option)
1789 set_opt(sb, BARRIER);
1790 else
1791 clear_opt(sb, BARRIER);
1792 break;
1793 case Opt_ignore:
1794 break;
1795 case Opt_resize:
1796 if (!is_remount) {
1797 ext4_msg(sb, KERN_ERR,
1798 "resize option only available "
1799 "for remount");
1800 return 0;
1801 }
1802 if (match_int(&args[0], &option) != 0)
1803 return 0;
1804 *n_blocks_count = option;
1805 break;
1806 case Opt_nobh:
1807 ext4_msg(sb, KERN_WARNING,
1808 "Ignoring deprecated nobh option");
1809 break;
1810 case Opt_bh:
1811 ext4_msg(sb, KERN_WARNING,
1812 "Ignoring deprecated bh option");
1813 break;
1814 case Opt_i_version:
1815 set_opt(sb, I_VERSION);
1816 sb->s_flags |= MS_I_VERSION;
1817 break;
1818 case Opt_nodelalloc:
1819 clear_opt(sb, DELALLOC);
1820 clear_opt2(sb, EXPLICIT_DELALLOC);
1821 break;
1822 case Opt_mblk_io_submit:
1823 set_opt(sb, MBLK_IO_SUBMIT);
1824 break;
1825 case Opt_nomblk_io_submit:
1826 clear_opt(sb, MBLK_IO_SUBMIT);
1827 break;
1828 case Opt_stripe:
1829 if (match_int(&args[0], &option))
1830 return 0;
1831 if (option < 0)
1832 return 0;
1833 sbi->s_stripe = option;
1834 break;
1835 case Opt_delalloc:
1836 set_opt(sb, DELALLOC);
1837 set_opt2(sb, EXPLICIT_DELALLOC);
1838 break;
1839 case Opt_block_validity:
1840 set_opt(sb, BLOCK_VALIDITY);
1841 break;
1842 case Opt_noblock_validity:
1843 clear_opt(sb, BLOCK_VALIDITY);
1844 break;
1845 case Opt_inode_readahead_blks:
1846 if (match_int(&args[0], &option))
1847 return 0;
1848 if (option < 0 || option > (1 << 30))
1849 return 0;
1850 if (option && !is_power_of_2(option)) {
1851 ext4_msg(sb, KERN_ERR,
1852 "EXT4-fs: inode_readahead_blks"
1853 " must be a power of 2");
1854 return 0;
1855 }
1856 sbi->s_inode_readahead_blks = option;
1857 break;
1858 case Opt_journal_ioprio:
1859 if (match_int(&args[0], &option))
1860 return 0;
1861 if (option < 0 || option > 7)
1862 break;
1863 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1864 option);
1865 break;
1866 case Opt_noauto_da_alloc:
1867 set_opt(sb, NO_AUTO_DA_ALLOC);
1868 break;
1869 case Opt_auto_da_alloc:
1870 if (args[0].from) {
1871 if (match_int(&args[0], &option))
1872 return 0;
1873 } else
1874 option = 1; /* No argument, default to 1 */
1875 if (option)
1876 clear_opt(sb, NO_AUTO_DA_ALLOC);
1877 else
1878 set_opt(sb,NO_AUTO_DA_ALLOC);
1879 break;
1880 case Opt_discard:
1881 set_opt(sb, DISCARD);
1882 break;
1883 case Opt_nodiscard:
1884 clear_opt(sb, DISCARD);
1885 break;
1886 case Opt_dioread_nolock:
1887 set_opt(sb, DIOREAD_NOLOCK);
1888 break;
1889 case Opt_dioread_lock:
1890 clear_opt(sb, DIOREAD_NOLOCK);
1891 break;
1892 case Opt_init_inode_table:
1893 set_opt(sb, INIT_INODE_TABLE);
1894 if (args[0].from) {
1895 if (match_int(&args[0], &option))
1896 return 0;
1897 } else
1898 option = EXT4_DEF_LI_WAIT_MULT;
1899 if (option < 0)
1900 return 0;
1901 sbi->s_li_wait_mult = option;
1902 break;
1903 case Opt_noinit_inode_table:
1904 clear_opt(sb, INIT_INODE_TABLE);
1905 break;
1906 default:
1907 ext4_msg(sb, KERN_ERR,
1908 "Unrecognized mount option \"%s\" "
1909 "or missing value", p);
1910 return 0;
1911 }
1912 }
1913 #ifdef CONFIG_QUOTA
1914 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1915 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1916 clear_opt(sb, USRQUOTA);
1917
1918 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1919 clear_opt(sb, GRPQUOTA);
1920
1921 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1922 ext4_msg(sb, KERN_ERR, "old and new quota "
1923 "format mixing");
1924 return 0;
1925 }
1926
1927 if (!sbi->s_jquota_fmt) {
1928 ext4_msg(sb, KERN_ERR, "journaled quota format "
1929 "not specified");
1930 return 0;
1931 }
1932 } else {
1933 if (sbi->s_jquota_fmt) {
1934 ext4_msg(sb, KERN_ERR, "journaled quota format "
1935 "specified with no journaling "
1936 "enabled");
1937 return 0;
1938 }
1939 }
1940 #endif
1941 return 1;
1942 }
1943
1944 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946 {
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1985
1986 ext4_commit_super(sb, 1);
1987 done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999 }
2000
2001 static int ext4_fill_flex_info(struct super_block *sb)
2002 {
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct ext4_group_desc *gdp = NULL;
2005 ext4_group_t flex_group_count;
2006 ext4_group_t flex_group;
2007 int groups_per_flex = 0;
2008 size_t size;
2009 int i;
2010
2011 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2012 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
2013
2014 if (groups_per_flex < 2) {
2015 sbi->s_log_groups_per_flex = 0;
2016 return 1;
2017 }
2018
2019 /* We allocate both existing and potentially added groups */
2020 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2021 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2022 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2023 size = flex_group_count * sizeof(struct flex_groups);
2024 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2025 if (sbi->s_flex_groups == NULL) {
2026 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2027 flex_group_count);
2028 goto failed;
2029 }
2030
2031 for (i = 0; i < sbi->s_groups_count; i++) {
2032 gdp = ext4_get_group_desc(sb, i, NULL);
2033
2034 flex_group = ext4_flex_group(sbi, i);
2035 atomic_add(ext4_free_inodes_count(sb, gdp),
2036 &sbi->s_flex_groups[flex_group].free_inodes);
2037 atomic_add(ext4_free_blks_count(sb, gdp),
2038 &sbi->s_flex_groups[flex_group].free_clusters);
2039 atomic_add(ext4_used_dirs_count(sb, gdp),
2040 &sbi->s_flex_groups[flex_group].used_dirs);
2041 }
2042
2043 return 1;
2044 failed:
2045 return 0;
2046 }
2047
2048 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2049 struct ext4_group_desc *gdp)
2050 {
2051 __u16 crc = 0;
2052
2053 if (sbi->s_es->s_feature_ro_compat &
2054 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2055 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2056 __le32 le_group = cpu_to_le32(block_group);
2057
2058 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2059 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2060 crc = crc16(crc, (__u8 *)gdp, offset);
2061 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2062 /* for checksum of struct ext4_group_desc do the rest...*/
2063 if ((sbi->s_es->s_feature_incompat &
2064 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2065 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2066 crc = crc16(crc, (__u8 *)gdp + offset,
2067 le16_to_cpu(sbi->s_es->s_desc_size) -
2068 offset);
2069 }
2070
2071 return cpu_to_le16(crc);
2072 }
2073
2074 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2075 struct ext4_group_desc *gdp)
2076 {
2077 if ((sbi->s_es->s_feature_ro_compat &
2078 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2079 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2080 return 0;
2081
2082 return 1;
2083 }
2084
2085 /* Called at mount-time, super-block is locked */
2086 static int ext4_check_descriptors(struct super_block *sb,
2087 ext4_group_t *first_not_zeroed)
2088 {
2089 struct ext4_sb_info *sbi = EXT4_SB(sb);
2090 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2091 ext4_fsblk_t last_block;
2092 ext4_fsblk_t block_bitmap;
2093 ext4_fsblk_t inode_bitmap;
2094 ext4_fsblk_t inode_table;
2095 int flexbg_flag = 0;
2096 ext4_group_t i, grp = sbi->s_groups_count;
2097
2098 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2099 flexbg_flag = 1;
2100
2101 ext4_debug("Checking group descriptors");
2102
2103 for (i = 0; i < sbi->s_groups_count; i++) {
2104 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2105
2106 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2107 last_block = ext4_blocks_count(sbi->s_es) - 1;
2108 else
2109 last_block = first_block +
2110 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2111
2112 if ((grp == sbi->s_groups_count) &&
2113 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2114 grp = i;
2115
2116 block_bitmap = ext4_block_bitmap(sb, gdp);
2117 if (block_bitmap < first_block || block_bitmap > last_block) {
2118 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2119 "Block bitmap for group %u not in group "
2120 "(block %llu)!", i, block_bitmap);
2121 return 0;
2122 }
2123 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2124 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2125 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2126 "Inode bitmap for group %u not in group "
2127 "(block %llu)!", i, inode_bitmap);
2128 return 0;
2129 }
2130 inode_table = ext4_inode_table(sb, gdp);
2131 if (inode_table < first_block ||
2132 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2133 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2134 "Inode table for group %u not in group "
2135 "(block %llu)!", i, inode_table);
2136 return 0;
2137 }
2138 ext4_lock_group(sb, i);
2139 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2140 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2141 "Checksum for group %u failed (%u!=%u)",
2142 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2143 gdp)), le16_to_cpu(gdp->bg_checksum));
2144 if (!(sb->s_flags & MS_RDONLY)) {
2145 ext4_unlock_group(sb, i);
2146 return 0;
2147 }
2148 }
2149 ext4_unlock_group(sb, i);
2150 if (!flexbg_flag)
2151 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2152 }
2153 if (NULL != first_not_zeroed)
2154 *first_not_zeroed = grp;
2155
2156 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2157 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2158 return 1;
2159 }
2160
2161 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2162 * the superblock) which were deleted from all directories, but held open by
2163 * a process at the time of a crash. We walk the list and try to delete these
2164 * inodes at recovery time (only with a read-write filesystem).
2165 *
2166 * In order to keep the orphan inode chain consistent during traversal (in
2167 * case of crash during recovery), we link each inode into the superblock
2168 * orphan list_head and handle it the same way as an inode deletion during
2169 * normal operation (which journals the operations for us).
2170 *
2171 * We only do an iget() and an iput() on each inode, which is very safe if we
2172 * accidentally point at an in-use or already deleted inode. The worst that
2173 * can happen in this case is that we get a "bit already cleared" message from
2174 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2175 * e2fsck was run on this filesystem, and it must have already done the orphan
2176 * inode cleanup for us, so we can safely abort without any further action.
2177 */
2178 static void ext4_orphan_cleanup(struct super_block *sb,
2179 struct ext4_super_block *es)
2180 {
2181 unsigned int s_flags = sb->s_flags;
2182 int nr_orphans = 0, nr_truncates = 0;
2183 #ifdef CONFIG_QUOTA
2184 int i;
2185 #endif
2186 if (!es->s_last_orphan) {
2187 jbd_debug(4, "no orphan inodes to clean up\n");
2188 return;
2189 }
2190
2191 if (bdev_read_only(sb->s_bdev)) {
2192 ext4_msg(sb, KERN_ERR, "write access "
2193 "unavailable, skipping orphan cleanup");
2194 return;
2195 }
2196
2197 /* Check if feature set would not allow a r/w mount */
2198 if (!ext4_feature_set_ok(sb, 0)) {
2199 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2200 "unknown ROCOMPAT features");
2201 return;
2202 }
2203
2204 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2205 if (es->s_last_orphan)
2206 jbd_debug(1, "Errors on filesystem, "
2207 "clearing orphan list.\n");
2208 es->s_last_orphan = 0;
2209 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2210 return;
2211 }
2212
2213 if (s_flags & MS_RDONLY) {
2214 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2215 sb->s_flags &= ~MS_RDONLY;
2216 }
2217 #ifdef CONFIG_QUOTA
2218 /* Needed for iput() to work correctly and not trash data */
2219 sb->s_flags |= MS_ACTIVE;
2220 /* Turn on quotas so that they are updated correctly */
2221 for (i = 0; i < MAXQUOTAS; i++) {
2222 if (EXT4_SB(sb)->s_qf_names[i]) {
2223 int ret = ext4_quota_on_mount(sb, i);
2224 if (ret < 0)
2225 ext4_msg(sb, KERN_ERR,
2226 "Cannot turn on journaled "
2227 "quota: error %d", ret);
2228 }
2229 }
2230 #endif
2231
2232 while (es->s_last_orphan) {
2233 struct inode *inode;
2234
2235 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2236 if (IS_ERR(inode)) {
2237 es->s_last_orphan = 0;
2238 break;
2239 }
2240
2241 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2242 dquot_initialize(inode);
2243 if (inode->i_nlink) {
2244 ext4_msg(sb, KERN_DEBUG,
2245 "%s: truncating inode %lu to %lld bytes",
2246 __func__, inode->i_ino, inode->i_size);
2247 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2248 inode->i_ino, inode->i_size);
2249 ext4_truncate(inode);
2250 nr_truncates++;
2251 } else {
2252 ext4_msg(sb, KERN_DEBUG,
2253 "%s: deleting unreferenced inode %lu",
2254 __func__, inode->i_ino);
2255 jbd_debug(2, "deleting unreferenced inode %lu\n",
2256 inode->i_ino);
2257 nr_orphans++;
2258 }
2259 iput(inode); /* The delete magic happens here! */
2260 }
2261
2262 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2263
2264 if (nr_orphans)
2265 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2266 PLURAL(nr_orphans));
2267 if (nr_truncates)
2268 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2269 PLURAL(nr_truncates));
2270 #ifdef CONFIG_QUOTA
2271 /* Turn quotas off */
2272 for (i = 0; i < MAXQUOTAS; i++) {
2273 if (sb_dqopt(sb)->files[i])
2274 dquot_quota_off(sb, i);
2275 }
2276 #endif
2277 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2278 }
2279
2280 /*
2281 * Maximal extent format file size.
2282 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2283 * extent format containers, within a sector_t, and within i_blocks
2284 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2285 * so that won't be a limiting factor.
2286 *
2287 * However there is other limiting factor. We do store extents in the form
2288 * of starting block and length, hence the resulting length of the extent
2289 * covering maximum file size must fit into on-disk format containers as
2290 * well. Given that length is always by 1 unit bigger than max unit (because
2291 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2292 *
2293 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2294 */
2295 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2296 {
2297 loff_t res;
2298 loff_t upper_limit = MAX_LFS_FILESIZE;
2299
2300 /* small i_blocks in vfs inode? */
2301 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2302 /*
2303 * CONFIG_LBDAF is not enabled implies the inode
2304 * i_block represent total blocks in 512 bytes
2305 * 32 == size of vfs inode i_blocks * 8
2306 */
2307 upper_limit = (1LL << 32) - 1;
2308
2309 /* total blocks in file system block size */
2310 upper_limit >>= (blkbits - 9);
2311 upper_limit <<= blkbits;
2312 }
2313
2314 /*
2315 * 32-bit extent-start container, ee_block. We lower the maxbytes
2316 * by one fs block, so ee_len can cover the extent of maximum file
2317 * size
2318 */
2319 res = (1LL << 32) - 1;
2320 res <<= blkbits;
2321
2322 /* Sanity check against vm- & vfs- imposed limits */
2323 if (res > upper_limit)
2324 res = upper_limit;
2325
2326 return res;
2327 }
2328
2329 /*
2330 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2331 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2332 * We need to be 1 filesystem block less than the 2^48 sector limit.
2333 */
2334 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2335 {
2336 loff_t res = EXT4_NDIR_BLOCKS;
2337 int meta_blocks;
2338 loff_t upper_limit;
2339 /* This is calculated to be the largest file size for a dense, block
2340 * mapped file such that the file's total number of 512-byte sectors,
2341 * including data and all indirect blocks, does not exceed (2^48 - 1).
2342 *
2343 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2344 * number of 512-byte sectors of the file.
2345 */
2346
2347 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2348 /*
2349 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2350 * the inode i_block field represents total file blocks in
2351 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2352 */
2353 upper_limit = (1LL << 32) - 1;
2354
2355 /* total blocks in file system block size */
2356 upper_limit >>= (bits - 9);
2357
2358 } else {
2359 /*
2360 * We use 48 bit ext4_inode i_blocks
2361 * With EXT4_HUGE_FILE_FL set the i_blocks
2362 * represent total number of blocks in
2363 * file system block size
2364 */
2365 upper_limit = (1LL << 48) - 1;
2366
2367 }
2368
2369 /* indirect blocks */
2370 meta_blocks = 1;
2371 /* double indirect blocks */
2372 meta_blocks += 1 + (1LL << (bits-2));
2373 /* tripple indirect blocks */
2374 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2375
2376 upper_limit -= meta_blocks;
2377 upper_limit <<= bits;
2378
2379 res += 1LL << (bits-2);
2380 res += 1LL << (2*(bits-2));
2381 res += 1LL << (3*(bits-2));
2382 res <<= bits;
2383 if (res > upper_limit)
2384 res = upper_limit;
2385
2386 if (res > MAX_LFS_FILESIZE)
2387 res = MAX_LFS_FILESIZE;
2388
2389 return res;
2390 }
2391
2392 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2393 ext4_fsblk_t logical_sb_block, int nr)
2394 {
2395 struct ext4_sb_info *sbi = EXT4_SB(sb);
2396 ext4_group_t bg, first_meta_bg;
2397 int has_super = 0;
2398
2399 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2400
2401 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2402 nr < first_meta_bg)
2403 return logical_sb_block + nr + 1;
2404 bg = sbi->s_desc_per_block * nr;
2405 if (ext4_bg_has_super(sb, bg))
2406 has_super = 1;
2407
2408 return (has_super + ext4_group_first_block_no(sb, bg));
2409 }
2410
2411 /**
2412 * ext4_get_stripe_size: Get the stripe size.
2413 * @sbi: In memory super block info
2414 *
2415 * If we have specified it via mount option, then
2416 * use the mount option value. If the value specified at mount time is
2417 * greater than the blocks per group use the super block value.
2418 * If the super block value is greater than blocks per group return 0.
2419 * Allocator needs it be less than blocks per group.
2420 *
2421 */
2422 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2423 {
2424 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2425 unsigned long stripe_width =
2426 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2427 int ret;
2428
2429 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2430 ret = sbi->s_stripe;
2431 else if (stripe_width <= sbi->s_blocks_per_group)
2432 ret = stripe_width;
2433 else if (stride <= sbi->s_blocks_per_group)
2434 ret = stride;
2435 else
2436 ret = 0;
2437
2438 /*
2439 * If the stripe width is 1, this makes no sense and
2440 * we set it to 0 to turn off stripe handling code.
2441 */
2442 if (ret <= 1)
2443 ret = 0;
2444
2445 return ret;
2446 }
2447
2448 /* sysfs supprt */
2449
2450 struct ext4_attr {
2451 struct attribute attr;
2452 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2453 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2454 const char *, size_t);
2455 int offset;
2456 };
2457
2458 static int parse_strtoul(const char *buf,
2459 unsigned long max, unsigned long *value)
2460 {
2461 char *endp;
2462
2463 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2464 endp = skip_spaces(endp);
2465 if (*endp || *value > max)
2466 return -EINVAL;
2467
2468 return 0;
2469 }
2470
2471 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2472 struct ext4_sb_info *sbi,
2473 char *buf)
2474 {
2475 return snprintf(buf, PAGE_SIZE, "%llu\n",
2476 (s64) EXT4_C2B(sbi,
2477 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2478 }
2479
2480 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi, char *buf)
2482 {
2483 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484
2485 if (!sb->s_bdev->bd_part)
2486 return snprintf(buf, PAGE_SIZE, "0\n");
2487 return snprintf(buf, PAGE_SIZE, "%lu\n",
2488 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 sbi->s_sectors_written_start) >> 1);
2490 }
2491
2492 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi, char *buf)
2494 {
2495 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2496
2497 if (!sb->s_bdev->bd_part)
2498 return snprintf(buf, PAGE_SIZE, "0\n");
2499 return snprintf(buf, PAGE_SIZE, "%llu\n",
2500 (unsigned long long)(sbi->s_kbytes_written +
2501 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2503 }
2504
2505 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi, char *buf)
2507 {
2508 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2509 }
2510
2511 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2512 struct ext4_sb_info *sbi, char *buf)
2513 {
2514 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2515 }
2516
2517 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2518 struct ext4_sb_info *sbi,
2519 const char *buf, size_t count)
2520 {
2521 unsigned long t;
2522
2523 if (parse_strtoul(buf, 0x40000000, &t))
2524 return -EINVAL;
2525
2526 if (t && !is_power_of_2(t))
2527 return -EINVAL;
2528
2529 sbi->s_inode_readahead_blks = t;
2530 return count;
2531 }
2532
2533 static ssize_t sbi_ui_show(struct ext4_attr *a,
2534 struct ext4_sb_info *sbi, char *buf)
2535 {
2536 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2537
2538 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2539 }
2540
2541 static ssize_t sbi_ui_store(struct ext4_attr *a,
2542 struct ext4_sb_info *sbi,
2543 const char *buf, size_t count)
2544 {
2545 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2546 unsigned long t;
2547
2548 if (parse_strtoul(buf, 0xffffffff, &t))
2549 return -EINVAL;
2550 *ui = t;
2551 return count;
2552 }
2553
2554 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2555 static struct ext4_attr ext4_attr_##_name = { \
2556 .attr = {.name = __stringify(_name), .mode = _mode }, \
2557 .show = _show, \
2558 .store = _store, \
2559 .offset = offsetof(struct ext4_sb_info, _elname), \
2560 }
2561 #define EXT4_ATTR(name, mode, show, store) \
2562 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2563
2564 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2565 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2566 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2567 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2568 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2569 #define ATTR_LIST(name) &ext4_attr_##name.attr
2570
2571 EXT4_RO_ATTR(delayed_allocation_blocks);
2572 EXT4_RO_ATTR(session_write_kbytes);
2573 EXT4_RO_ATTR(lifetime_write_kbytes);
2574 EXT4_RO_ATTR(extent_cache_hits);
2575 EXT4_RO_ATTR(extent_cache_misses);
2576 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2577 inode_readahead_blks_store, s_inode_readahead_blks);
2578 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2579 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2580 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2581 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2582 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2583 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2584 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2585 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2586
2587 static struct attribute *ext4_attrs[] = {
2588 ATTR_LIST(delayed_allocation_blocks),
2589 ATTR_LIST(session_write_kbytes),
2590 ATTR_LIST(lifetime_write_kbytes),
2591 ATTR_LIST(extent_cache_hits),
2592 ATTR_LIST(extent_cache_misses),
2593 ATTR_LIST(inode_readahead_blks),
2594 ATTR_LIST(inode_goal),
2595 ATTR_LIST(mb_stats),
2596 ATTR_LIST(mb_max_to_scan),
2597 ATTR_LIST(mb_min_to_scan),
2598 ATTR_LIST(mb_order2_req),
2599 ATTR_LIST(mb_stream_req),
2600 ATTR_LIST(mb_group_prealloc),
2601 ATTR_LIST(max_writeback_mb_bump),
2602 NULL,
2603 };
2604
2605 /* Features this copy of ext4 supports */
2606 EXT4_INFO_ATTR(lazy_itable_init);
2607 EXT4_INFO_ATTR(batched_discard);
2608
2609 static struct attribute *ext4_feat_attrs[] = {
2610 ATTR_LIST(lazy_itable_init),
2611 ATTR_LIST(batched_discard),
2612 NULL,
2613 };
2614
2615 static ssize_t ext4_attr_show(struct kobject *kobj,
2616 struct attribute *attr, char *buf)
2617 {
2618 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2619 s_kobj);
2620 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2621
2622 return a->show ? a->show(a, sbi, buf) : 0;
2623 }
2624
2625 static ssize_t ext4_attr_store(struct kobject *kobj,
2626 struct attribute *attr,
2627 const char *buf, size_t len)
2628 {
2629 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2630 s_kobj);
2631 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2632
2633 return a->store ? a->store(a, sbi, buf, len) : 0;
2634 }
2635
2636 static void ext4_sb_release(struct kobject *kobj)
2637 {
2638 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2639 s_kobj);
2640 complete(&sbi->s_kobj_unregister);
2641 }
2642
2643 static const struct sysfs_ops ext4_attr_ops = {
2644 .show = ext4_attr_show,
2645 .store = ext4_attr_store,
2646 };
2647
2648 static struct kobj_type ext4_ktype = {
2649 .default_attrs = ext4_attrs,
2650 .sysfs_ops = &ext4_attr_ops,
2651 .release = ext4_sb_release,
2652 };
2653
2654 static void ext4_feat_release(struct kobject *kobj)
2655 {
2656 complete(&ext4_feat->f_kobj_unregister);
2657 }
2658
2659 static struct kobj_type ext4_feat_ktype = {
2660 .default_attrs = ext4_feat_attrs,
2661 .sysfs_ops = &ext4_attr_ops,
2662 .release = ext4_feat_release,
2663 };
2664
2665 /*
2666 * Check whether this filesystem can be mounted based on
2667 * the features present and the RDONLY/RDWR mount requested.
2668 * Returns 1 if this filesystem can be mounted as requested,
2669 * 0 if it cannot be.
2670 */
2671 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2672 {
2673 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2674 ext4_msg(sb, KERN_ERR,
2675 "Couldn't mount because of "
2676 "unsupported optional features (%x)",
2677 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2678 ~EXT4_FEATURE_INCOMPAT_SUPP));
2679 return 0;
2680 }
2681
2682 if (readonly)
2683 return 1;
2684
2685 /* Check that feature set is OK for a read-write mount */
2686 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2687 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2688 "unsupported optional features (%x)",
2689 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2690 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2691 return 0;
2692 }
2693 /*
2694 * Large file size enabled file system can only be mounted
2695 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2696 */
2697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2698 if (sizeof(blkcnt_t) < sizeof(u64)) {
2699 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2700 "cannot be mounted RDWR without "
2701 "CONFIG_LBDAF");
2702 return 0;
2703 }
2704 }
2705 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2706 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2707 ext4_msg(sb, KERN_ERR,
2708 "Can't support bigalloc feature without "
2709 "extents feature\n");
2710 return 0;
2711 }
2712 return 1;
2713 }
2714
2715 /*
2716 * This function is called once a day if we have errors logged
2717 * on the file system
2718 */
2719 static void print_daily_error_info(unsigned long arg)
2720 {
2721 struct super_block *sb = (struct super_block *) arg;
2722 struct ext4_sb_info *sbi;
2723 struct ext4_super_block *es;
2724
2725 sbi = EXT4_SB(sb);
2726 es = sbi->s_es;
2727
2728 if (es->s_error_count)
2729 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2730 le32_to_cpu(es->s_error_count));
2731 if (es->s_first_error_time) {
2732 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2733 sb->s_id, le32_to_cpu(es->s_first_error_time),
2734 (int) sizeof(es->s_first_error_func),
2735 es->s_first_error_func,
2736 le32_to_cpu(es->s_first_error_line));
2737 if (es->s_first_error_ino)
2738 printk(": inode %u",
2739 le32_to_cpu(es->s_first_error_ino));
2740 if (es->s_first_error_block)
2741 printk(": block %llu", (unsigned long long)
2742 le64_to_cpu(es->s_first_error_block));
2743 printk("\n");
2744 }
2745 if (es->s_last_error_time) {
2746 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2747 sb->s_id, le32_to_cpu(es->s_last_error_time),
2748 (int) sizeof(es->s_last_error_func),
2749 es->s_last_error_func,
2750 le32_to_cpu(es->s_last_error_line));
2751 if (es->s_last_error_ino)
2752 printk(": inode %u",
2753 le32_to_cpu(es->s_last_error_ino));
2754 if (es->s_last_error_block)
2755 printk(": block %llu", (unsigned long long)
2756 le64_to_cpu(es->s_last_error_block));
2757 printk("\n");
2758 }
2759 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2760 }
2761
2762 /* Find next suitable group and run ext4_init_inode_table */
2763 static int ext4_run_li_request(struct ext4_li_request *elr)
2764 {
2765 struct ext4_group_desc *gdp = NULL;
2766 ext4_group_t group, ngroups;
2767 struct super_block *sb;
2768 unsigned long timeout = 0;
2769 int ret = 0;
2770
2771 sb = elr->lr_super;
2772 ngroups = EXT4_SB(sb)->s_groups_count;
2773
2774 for (group = elr->lr_next_group; group < ngroups; group++) {
2775 gdp = ext4_get_group_desc(sb, group, NULL);
2776 if (!gdp) {
2777 ret = 1;
2778 break;
2779 }
2780
2781 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2782 break;
2783 }
2784
2785 if (group == ngroups)
2786 ret = 1;
2787
2788 if (!ret) {
2789 timeout = jiffies;
2790 ret = ext4_init_inode_table(sb, group,
2791 elr->lr_timeout ? 0 : 1);
2792 if (elr->lr_timeout == 0) {
2793 timeout = (jiffies - timeout) *
2794 elr->lr_sbi->s_li_wait_mult;
2795 elr->lr_timeout = timeout;
2796 }
2797 elr->lr_next_sched = jiffies + elr->lr_timeout;
2798 elr->lr_next_group = group + 1;
2799 }
2800
2801 return ret;
2802 }
2803
2804 /*
2805 * Remove lr_request from the list_request and free the
2806 * request structure. Should be called with li_list_mtx held
2807 */
2808 static void ext4_remove_li_request(struct ext4_li_request *elr)
2809 {
2810 struct ext4_sb_info *sbi;
2811
2812 if (!elr)
2813 return;
2814
2815 sbi = elr->lr_sbi;
2816
2817 list_del(&elr->lr_request);
2818 sbi->s_li_request = NULL;
2819 kfree(elr);
2820 }
2821
2822 static void ext4_unregister_li_request(struct super_block *sb)
2823 {
2824 mutex_lock(&ext4_li_mtx);
2825 if (!ext4_li_info) {
2826 mutex_unlock(&ext4_li_mtx);
2827 return;
2828 }
2829
2830 mutex_lock(&ext4_li_info->li_list_mtx);
2831 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2832 mutex_unlock(&ext4_li_info->li_list_mtx);
2833 mutex_unlock(&ext4_li_mtx);
2834 }
2835
2836 static struct task_struct *ext4_lazyinit_task;
2837
2838 /*
2839 * This is the function where ext4lazyinit thread lives. It walks
2840 * through the request list searching for next scheduled filesystem.
2841 * When such a fs is found, run the lazy initialization request
2842 * (ext4_rn_li_request) and keep track of the time spend in this
2843 * function. Based on that time we compute next schedule time of
2844 * the request. When walking through the list is complete, compute
2845 * next waking time and put itself into sleep.
2846 */
2847 static int ext4_lazyinit_thread(void *arg)
2848 {
2849 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2850 struct list_head *pos, *n;
2851 struct ext4_li_request *elr;
2852 unsigned long next_wakeup, cur;
2853
2854 BUG_ON(NULL == eli);
2855
2856 cont_thread:
2857 while (true) {
2858 next_wakeup = MAX_JIFFY_OFFSET;
2859
2860 mutex_lock(&eli->li_list_mtx);
2861 if (list_empty(&eli->li_request_list)) {
2862 mutex_unlock(&eli->li_list_mtx);
2863 goto exit_thread;
2864 }
2865
2866 list_for_each_safe(pos, n, &eli->li_request_list) {
2867 elr = list_entry(pos, struct ext4_li_request,
2868 lr_request);
2869
2870 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2871 if (ext4_run_li_request(elr) != 0) {
2872 /* error, remove the lazy_init job */
2873 ext4_remove_li_request(elr);
2874 continue;
2875 }
2876 }
2877
2878 if (time_before(elr->lr_next_sched, next_wakeup))
2879 next_wakeup = elr->lr_next_sched;
2880 }
2881 mutex_unlock(&eli->li_list_mtx);
2882
2883 if (freezing(current))
2884 refrigerator();
2885
2886 cur = jiffies;
2887 if ((time_after_eq(cur, next_wakeup)) ||
2888 (MAX_JIFFY_OFFSET == next_wakeup)) {
2889 cond_resched();
2890 continue;
2891 }
2892
2893 schedule_timeout_interruptible(next_wakeup - cur);
2894
2895 if (kthread_should_stop()) {
2896 ext4_clear_request_list();
2897 goto exit_thread;
2898 }
2899 }
2900
2901 exit_thread:
2902 /*
2903 * It looks like the request list is empty, but we need
2904 * to check it under the li_list_mtx lock, to prevent any
2905 * additions into it, and of course we should lock ext4_li_mtx
2906 * to atomically free the list and ext4_li_info, because at
2907 * this point another ext4 filesystem could be registering
2908 * new one.
2909 */
2910 mutex_lock(&ext4_li_mtx);
2911 mutex_lock(&eli->li_list_mtx);
2912 if (!list_empty(&eli->li_request_list)) {
2913 mutex_unlock(&eli->li_list_mtx);
2914 mutex_unlock(&ext4_li_mtx);
2915 goto cont_thread;
2916 }
2917 mutex_unlock(&eli->li_list_mtx);
2918 kfree(ext4_li_info);
2919 ext4_li_info = NULL;
2920 mutex_unlock(&ext4_li_mtx);
2921
2922 return 0;
2923 }
2924
2925 static void ext4_clear_request_list(void)
2926 {
2927 struct list_head *pos, *n;
2928 struct ext4_li_request *elr;
2929
2930 mutex_lock(&ext4_li_info->li_list_mtx);
2931 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2932 elr = list_entry(pos, struct ext4_li_request,
2933 lr_request);
2934 ext4_remove_li_request(elr);
2935 }
2936 mutex_unlock(&ext4_li_info->li_list_mtx);
2937 }
2938
2939 static int ext4_run_lazyinit_thread(void)
2940 {
2941 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2942 ext4_li_info, "ext4lazyinit");
2943 if (IS_ERR(ext4_lazyinit_task)) {
2944 int err = PTR_ERR(ext4_lazyinit_task);
2945 ext4_clear_request_list();
2946 kfree(ext4_li_info);
2947 ext4_li_info = NULL;
2948 printk(KERN_CRIT "EXT4: error %d creating inode table "
2949 "initialization thread\n",
2950 err);
2951 return err;
2952 }
2953 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2954 return 0;
2955 }
2956
2957 /*
2958 * Check whether it make sense to run itable init. thread or not.
2959 * If there is at least one uninitialized inode table, return
2960 * corresponding group number, else the loop goes through all
2961 * groups and return total number of groups.
2962 */
2963 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2964 {
2965 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2966 struct ext4_group_desc *gdp = NULL;
2967
2968 for (group = 0; group < ngroups; group++) {
2969 gdp = ext4_get_group_desc(sb, group, NULL);
2970 if (!gdp)
2971 continue;
2972
2973 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2974 break;
2975 }
2976
2977 return group;
2978 }
2979
2980 static int ext4_li_info_new(void)
2981 {
2982 struct ext4_lazy_init *eli = NULL;
2983
2984 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2985 if (!eli)
2986 return -ENOMEM;
2987
2988 INIT_LIST_HEAD(&eli->li_request_list);
2989 mutex_init(&eli->li_list_mtx);
2990
2991 eli->li_state |= EXT4_LAZYINIT_QUIT;
2992
2993 ext4_li_info = eli;
2994
2995 return 0;
2996 }
2997
2998 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2999 ext4_group_t start)
3000 {
3001 struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 struct ext4_li_request *elr;
3003 unsigned long rnd;
3004
3005 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3006 if (!elr)
3007 return NULL;
3008
3009 elr->lr_super = sb;
3010 elr->lr_sbi = sbi;
3011 elr->lr_next_group = start;
3012
3013 /*
3014 * Randomize first schedule time of the request to
3015 * spread the inode table initialization requests
3016 * better.
3017 */
3018 get_random_bytes(&rnd, sizeof(rnd));
3019 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3020 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3021
3022 return elr;
3023 }
3024
3025 static int ext4_register_li_request(struct super_block *sb,
3026 ext4_group_t first_not_zeroed)
3027 {
3028 struct ext4_sb_info *sbi = EXT4_SB(sb);
3029 struct ext4_li_request *elr;
3030 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3031 int ret = 0;
3032
3033 if (sbi->s_li_request != NULL) {
3034 /*
3035 * Reset timeout so it can be computed again, because
3036 * s_li_wait_mult might have changed.
3037 */
3038 sbi->s_li_request->lr_timeout = 0;
3039 return 0;
3040 }
3041
3042 if (first_not_zeroed == ngroups ||
3043 (sb->s_flags & MS_RDONLY) ||
3044 !test_opt(sb, INIT_INODE_TABLE))
3045 return 0;
3046
3047 elr = ext4_li_request_new(sb, first_not_zeroed);
3048 if (!elr)
3049 return -ENOMEM;
3050
3051 mutex_lock(&ext4_li_mtx);
3052
3053 if (NULL == ext4_li_info) {
3054 ret = ext4_li_info_new();
3055 if (ret)
3056 goto out;
3057 }
3058
3059 mutex_lock(&ext4_li_info->li_list_mtx);
3060 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3061 mutex_unlock(&ext4_li_info->li_list_mtx);
3062
3063 sbi->s_li_request = elr;
3064 /*
3065 * set elr to NULL here since it has been inserted to
3066 * the request_list and the removal and free of it is
3067 * handled by ext4_clear_request_list from now on.
3068 */
3069 elr = NULL;
3070
3071 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3072 ret = ext4_run_lazyinit_thread();
3073 if (ret)
3074 goto out;
3075 }
3076 out:
3077 mutex_unlock(&ext4_li_mtx);
3078 if (ret)
3079 kfree(elr);
3080 return ret;
3081 }
3082
3083 /*
3084 * We do not need to lock anything since this is called on
3085 * module unload.
3086 */
3087 static void ext4_destroy_lazyinit_thread(void)
3088 {
3089 /*
3090 * If thread exited earlier
3091 * there's nothing to be done.
3092 */
3093 if (!ext4_li_info || !ext4_lazyinit_task)
3094 return;
3095
3096 kthread_stop(ext4_lazyinit_task);
3097 }
3098
3099 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3100 __releases(kernel_lock)
3101 __acquires(kernel_lock)
3102 {
3103 char *orig_data = kstrdup(data, GFP_KERNEL);
3104 struct buffer_head *bh;
3105 struct ext4_super_block *es = NULL;
3106 struct ext4_sb_info *sbi;
3107 ext4_fsblk_t block;
3108 ext4_fsblk_t sb_block = get_sb_block(&data);
3109 ext4_fsblk_t logical_sb_block;
3110 unsigned long offset = 0;
3111 unsigned long journal_devnum = 0;
3112 unsigned long def_mount_opts;
3113 struct inode *root;
3114 char *cp;
3115 const char *descr;
3116 int ret = -ENOMEM;
3117 int blocksize, clustersize;
3118 unsigned int db_count;
3119 unsigned int i;
3120 int needs_recovery, has_huge_files, has_bigalloc;
3121 __u64 blocks_count;
3122 int err;
3123 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3124 ext4_group_t first_not_zeroed;
3125
3126 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3127 if (!sbi)
3128 goto out_free_orig;
3129
3130 sbi->s_blockgroup_lock =
3131 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3132 if (!sbi->s_blockgroup_lock) {
3133 kfree(sbi);
3134 goto out_free_orig;
3135 }
3136 sb->s_fs_info = sbi;
3137 sbi->s_mount_opt = 0;
3138 sbi->s_resuid = EXT4_DEF_RESUID;
3139 sbi->s_resgid = EXT4_DEF_RESGID;
3140 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3141 sbi->s_sb_block = sb_block;
3142 if (sb->s_bdev->bd_part)
3143 sbi->s_sectors_written_start =
3144 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3145
3146 /* Cleanup superblock name */
3147 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3148 *cp = '!';
3149
3150 ret = -EINVAL;
3151 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3152 if (!blocksize) {
3153 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3154 goto out_fail;
3155 }
3156
3157 /*
3158 * The ext4 superblock will not be buffer aligned for other than 1kB
3159 * block sizes. We need to calculate the offset from buffer start.
3160 */
3161 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3162 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3163 offset = do_div(logical_sb_block, blocksize);
3164 } else {
3165 logical_sb_block = sb_block;
3166 }
3167
3168 if (!(bh = sb_bread(sb, logical_sb_block))) {
3169 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3170 goto out_fail;
3171 }
3172 /*
3173 * Note: s_es must be initialized as soon as possible because
3174 * some ext4 macro-instructions depend on its value
3175 */
3176 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3177 sbi->s_es = es;
3178 sb->s_magic = le16_to_cpu(es->s_magic);
3179 if (sb->s_magic != EXT4_SUPER_MAGIC)
3180 goto cantfind_ext4;
3181 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3182
3183 /* Set defaults before we parse the mount options */
3184 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3185 set_opt(sb, INIT_INODE_TABLE);
3186 if (def_mount_opts & EXT4_DEFM_DEBUG)
3187 set_opt(sb, DEBUG);
3188 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3189 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3190 "2.6.38");
3191 set_opt(sb, GRPID);
3192 }
3193 if (def_mount_opts & EXT4_DEFM_UID16)
3194 set_opt(sb, NO_UID32);
3195 /* xattr user namespace & acls are now defaulted on */
3196 #ifdef CONFIG_EXT4_FS_XATTR
3197 set_opt(sb, XATTR_USER);
3198 #endif
3199 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3200 set_opt(sb, POSIX_ACL);
3201 #endif
3202 set_opt(sb, MBLK_IO_SUBMIT);
3203 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3204 set_opt(sb, JOURNAL_DATA);
3205 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3206 set_opt(sb, ORDERED_DATA);
3207 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3208 set_opt(sb, WRITEBACK_DATA);
3209
3210 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3211 set_opt(sb, ERRORS_PANIC);
3212 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3213 set_opt(sb, ERRORS_CONT);
3214 else
3215 set_opt(sb, ERRORS_RO);
3216 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3217 set_opt(sb, BLOCK_VALIDITY);
3218 if (def_mount_opts & EXT4_DEFM_DISCARD)
3219 set_opt(sb, DISCARD);
3220
3221 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3222 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3223 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3224 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3225 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3226
3227 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3228 set_opt(sb, BARRIER);
3229
3230 /*
3231 * enable delayed allocation by default
3232 * Use -o nodelalloc to turn it off
3233 */
3234 if (!IS_EXT3_SB(sb) &&
3235 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3236 set_opt(sb, DELALLOC);
3237
3238 /*
3239 * set default s_li_wait_mult for lazyinit, for the case there is
3240 * no mount option specified.
3241 */
3242 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3243
3244 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3245 &journal_devnum, &journal_ioprio, NULL, 0)) {
3246 ext4_msg(sb, KERN_WARNING,
3247 "failed to parse options in superblock: %s",
3248 sbi->s_es->s_mount_opts);
3249 }
3250 if (!parse_options((char *) data, sb, &journal_devnum,
3251 &journal_ioprio, NULL, 0))
3252 goto failed_mount;
3253
3254 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3255 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3256 "with data=journal disables delayed "
3257 "allocation and O_DIRECT support!\n");
3258 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3259 ext4_msg(sb, KERN_ERR, "can't mount with "
3260 "both data=journal and delalloc");
3261 goto failed_mount;
3262 }
3263 if (test_opt(sb, DIOREAD_NOLOCK)) {
3264 ext4_msg(sb, KERN_ERR, "can't mount with "
3265 "both data=journal and delalloc");
3266 goto failed_mount;
3267 }
3268 if (test_opt(sb, DELALLOC))
3269 clear_opt(sb, DELALLOC);
3270 }
3271
3272 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3273 if (test_opt(sb, DIOREAD_NOLOCK)) {
3274 if (blocksize < PAGE_SIZE) {
3275 ext4_msg(sb, KERN_ERR, "can't mount with "
3276 "dioread_nolock if block size != PAGE_SIZE");
3277 goto failed_mount;
3278 }
3279 }
3280
3281 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3282 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3283
3284 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3285 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3286 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3287 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3288 ext4_msg(sb, KERN_WARNING,
3289 "feature flags set on rev 0 fs, "
3290 "running e2fsck is recommended");
3291
3292 if (IS_EXT2_SB(sb)) {
3293 if (ext2_feature_set_ok(sb))
3294 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3295 "using the ext4 subsystem");
3296 else {
3297 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3298 "to feature incompatibilities");
3299 goto failed_mount;
3300 }
3301 }
3302
3303 if (IS_EXT3_SB(sb)) {
3304 if (ext3_feature_set_ok(sb))
3305 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3306 "using the ext4 subsystem");
3307 else {
3308 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3309 "to feature incompatibilities");
3310 goto failed_mount;
3311 }
3312 }
3313
3314 /*
3315 * Check feature flags regardless of the revision level, since we
3316 * previously didn't change the revision level when setting the flags,
3317 * so there is a chance incompat flags are set on a rev 0 filesystem.
3318 */
3319 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3320 goto failed_mount;
3321
3322 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3323 blocksize > EXT4_MAX_BLOCK_SIZE) {
3324 ext4_msg(sb, KERN_ERR,
3325 "Unsupported filesystem blocksize %d", blocksize);
3326 goto failed_mount;
3327 }
3328
3329 if (sb->s_blocksize != blocksize) {
3330 /* Validate the filesystem blocksize */
3331 if (!sb_set_blocksize(sb, blocksize)) {
3332 ext4_msg(sb, KERN_ERR, "bad block size %d",
3333 blocksize);
3334 goto failed_mount;
3335 }
3336
3337 brelse(bh);
3338 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3339 offset = do_div(logical_sb_block, blocksize);
3340 bh = sb_bread(sb, logical_sb_block);
3341 if (!bh) {
3342 ext4_msg(sb, KERN_ERR,
3343 "Can't read superblock on 2nd try");
3344 goto failed_mount;
3345 }
3346 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3347 sbi->s_es = es;
3348 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3349 ext4_msg(sb, KERN_ERR,
3350 "Magic mismatch, very weird!");
3351 goto failed_mount;
3352 }
3353 }
3354
3355 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3356 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3357 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3358 has_huge_files);
3359 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3360
3361 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3362 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3363 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3364 } else {
3365 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3366 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3367 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3368 (!is_power_of_2(sbi->s_inode_size)) ||
3369 (sbi->s_inode_size > blocksize)) {
3370 ext4_msg(sb, KERN_ERR,
3371 "unsupported inode size: %d",
3372 sbi->s_inode_size);
3373 goto failed_mount;
3374 }
3375 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3376 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3377 }
3378
3379 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3380 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3381 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3382 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3383 !is_power_of_2(sbi->s_desc_size)) {
3384 ext4_msg(sb, KERN_ERR,
3385 "unsupported descriptor size %lu",
3386 sbi->s_desc_size);
3387 goto failed_mount;
3388 }
3389 } else
3390 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3391
3392 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3393 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3394 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3395 goto cantfind_ext4;
3396
3397 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3398 if (sbi->s_inodes_per_block == 0)
3399 goto cantfind_ext4;
3400 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3401 sbi->s_inodes_per_block;
3402 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3403 sbi->s_sbh = bh;
3404 sbi->s_mount_state = le16_to_cpu(es->s_state);
3405 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3406 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3407
3408 for (i = 0; i < 4; i++)
3409 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3410 sbi->s_def_hash_version = es->s_def_hash_version;
3411 i = le32_to_cpu(es->s_flags);
3412 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3413 sbi->s_hash_unsigned = 3;
3414 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3415 #ifdef __CHAR_UNSIGNED__
3416 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3417 sbi->s_hash_unsigned = 3;
3418 #else
3419 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3420 #endif
3421 sb->s_dirt = 1;
3422 }
3423
3424 /* Handle clustersize */
3425 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3426 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3427 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3428 if (has_bigalloc) {
3429 if (clustersize < blocksize) {
3430 ext4_msg(sb, KERN_ERR,
3431 "cluster size (%d) smaller than "
3432 "block size (%d)", clustersize, blocksize);
3433 goto failed_mount;
3434 }
3435 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3436 le32_to_cpu(es->s_log_block_size);
3437 sbi->s_clusters_per_group =
3438 le32_to_cpu(es->s_clusters_per_group);
3439 if (sbi->s_clusters_per_group > blocksize * 8) {
3440 ext4_msg(sb, KERN_ERR,
3441 "#clusters per group too big: %lu",
3442 sbi->s_clusters_per_group);
3443 goto failed_mount;
3444 }
3445 if (sbi->s_blocks_per_group !=
3446 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3447 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3448 "clusters per group (%lu) inconsistent",
3449 sbi->s_blocks_per_group,
3450 sbi->s_clusters_per_group);
3451 goto failed_mount;
3452 }
3453 } else {
3454 if (clustersize != blocksize) {
3455 ext4_warning(sb, "fragment/cluster size (%d) != "
3456 "block size (%d)", clustersize,
3457 blocksize);
3458 clustersize = blocksize;
3459 }
3460 if (sbi->s_blocks_per_group > blocksize * 8) {
3461 ext4_msg(sb, KERN_ERR,
3462 "#blocks per group too big: %lu",
3463 sbi->s_blocks_per_group);
3464 goto failed_mount;
3465 }
3466 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3467 sbi->s_cluster_bits = 0;
3468 }
3469 sbi->s_cluster_ratio = clustersize / blocksize;
3470
3471 if (sbi->s_inodes_per_group > blocksize * 8) {
3472 ext4_msg(sb, KERN_ERR,
3473 "#inodes per group too big: %lu",
3474 sbi->s_inodes_per_group);
3475 goto failed_mount;
3476 }
3477
3478 /*
3479 * Test whether we have more sectors than will fit in sector_t,
3480 * and whether the max offset is addressable by the page cache.
3481 */
3482 err = generic_check_addressable(sb->s_blocksize_bits,
3483 ext4_blocks_count(es));
3484 if (err) {
3485 ext4_msg(sb, KERN_ERR, "filesystem"
3486 " too large to mount safely on this system");
3487 if (sizeof(sector_t) < 8)
3488 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3489 ret = err;
3490 goto failed_mount;
3491 }
3492
3493 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3494 goto cantfind_ext4;
3495
3496 /* check blocks count against device size */
3497 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3498 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3499 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3500 "exceeds size of device (%llu blocks)",
3501 ext4_blocks_count(es), blocks_count);
3502 goto failed_mount;
3503 }
3504
3505 /*
3506 * It makes no sense for the first data block to be beyond the end
3507 * of the filesystem.
3508 */
3509 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3510 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3511 "block %u is beyond end of filesystem (%llu)",
3512 le32_to_cpu(es->s_first_data_block),
3513 ext4_blocks_count(es));
3514 goto failed_mount;
3515 }
3516 blocks_count = (ext4_blocks_count(es) -
3517 le32_to_cpu(es->s_first_data_block) +
3518 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3519 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3520 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3521 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3522 "(block count %llu, first data block %u, "
3523 "blocks per group %lu)", sbi->s_groups_count,
3524 ext4_blocks_count(es),
3525 le32_to_cpu(es->s_first_data_block),
3526 EXT4_BLOCKS_PER_GROUP(sb));
3527 goto failed_mount;
3528 }
3529 sbi->s_groups_count = blocks_count;
3530 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3531 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3532 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3533 EXT4_DESC_PER_BLOCK(sb);
3534 sbi->s_group_desc = ext4_kvmalloc(db_count *
3535 sizeof(struct buffer_head *),
3536 GFP_KERNEL);
3537 if (sbi->s_group_desc == NULL) {
3538 ext4_msg(sb, KERN_ERR, "not enough memory");
3539 goto failed_mount;
3540 }
3541
3542 #ifdef CONFIG_PROC_FS
3543 if (ext4_proc_root)
3544 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3545 #endif
3546
3547 bgl_lock_init(sbi->s_blockgroup_lock);
3548
3549 for (i = 0; i < db_count; i++) {
3550 block = descriptor_loc(sb, logical_sb_block, i);
3551 sbi->s_group_desc[i] = sb_bread(sb, block);
3552 if (!sbi->s_group_desc[i]) {
3553 ext4_msg(sb, KERN_ERR,
3554 "can't read group descriptor %d", i);
3555 db_count = i;
3556 goto failed_mount2;
3557 }
3558 }
3559 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3560 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3561 goto failed_mount2;
3562 }
3563 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3564 if (!ext4_fill_flex_info(sb)) {
3565 ext4_msg(sb, KERN_ERR,
3566 "unable to initialize "
3567 "flex_bg meta info!");
3568 goto failed_mount2;
3569 }
3570
3571 sbi->s_gdb_count = db_count;
3572 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3573 spin_lock_init(&sbi->s_next_gen_lock);
3574
3575 init_timer(&sbi->s_err_report);
3576 sbi->s_err_report.function = print_daily_error_info;
3577 sbi->s_err_report.data = (unsigned long) sb;
3578
3579 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3580 ext4_count_free_blocks(sb));
3581 if (!err) {
3582 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3583 ext4_count_free_inodes(sb));
3584 }
3585 if (!err) {
3586 err = percpu_counter_init(&sbi->s_dirs_counter,
3587 ext4_count_dirs(sb));
3588 }
3589 if (!err) {
3590 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3591 }
3592 if (err) {
3593 ext4_msg(sb, KERN_ERR, "insufficient memory");
3594 goto failed_mount3;
3595 }
3596
3597 sbi->s_stripe = ext4_get_stripe_size(sbi);
3598 sbi->s_max_writeback_mb_bump = 128;
3599
3600 /*
3601 * set up enough so that it can read an inode
3602 */
3603 if (!test_opt(sb, NOLOAD) &&
3604 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3605 sb->s_op = &ext4_sops;
3606 else
3607 sb->s_op = &ext4_nojournal_sops;
3608 sb->s_export_op = &ext4_export_ops;
3609 sb->s_xattr = ext4_xattr_handlers;
3610 #ifdef CONFIG_QUOTA
3611 sb->s_qcop = &ext4_qctl_operations;
3612 sb->dq_op = &ext4_quota_operations;
3613 #endif
3614 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3615
3616 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3617 mutex_init(&sbi->s_orphan_lock);
3618 sbi->s_resize_flags = 0;
3619
3620 sb->s_root = NULL;
3621
3622 needs_recovery = (es->s_last_orphan != 0 ||
3623 EXT4_HAS_INCOMPAT_FEATURE(sb,
3624 EXT4_FEATURE_INCOMPAT_RECOVER));
3625
3626 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3627 !(sb->s_flags & MS_RDONLY))
3628 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3629 goto failed_mount3;
3630
3631 /*
3632 * The first inode we look at is the journal inode. Don't try
3633 * root first: it may be modified in the journal!
3634 */
3635 if (!test_opt(sb, NOLOAD) &&
3636 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3637 if (ext4_load_journal(sb, es, journal_devnum))
3638 goto failed_mount3;
3639 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3640 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3641 ext4_msg(sb, KERN_ERR, "required journal recovery "
3642 "suppressed and not mounted read-only");
3643 goto failed_mount_wq;
3644 } else {
3645 clear_opt(sb, DATA_FLAGS);
3646 sbi->s_journal = NULL;
3647 needs_recovery = 0;
3648 goto no_journal;
3649 }
3650
3651 if (ext4_blocks_count(es) > 0xffffffffULL &&
3652 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3653 JBD2_FEATURE_INCOMPAT_64BIT)) {
3654 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3655 goto failed_mount_wq;
3656 }
3657
3658 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3659 jbd2_journal_set_features(sbi->s_journal,
3660 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3661 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3662 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3663 jbd2_journal_set_features(sbi->s_journal,
3664 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3665 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3666 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3667 } else {
3668 jbd2_journal_clear_features(sbi->s_journal,
3669 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3670 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3671 }
3672
3673 /* We have now updated the journal if required, so we can
3674 * validate the data journaling mode. */
3675 switch (test_opt(sb, DATA_FLAGS)) {
3676 case 0:
3677 /* No mode set, assume a default based on the journal
3678 * capabilities: ORDERED_DATA if the journal can
3679 * cope, else JOURNAL_DATA
3680 */
3681 if (jbd2_journal_check_available_features
3682 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3683 set_opt(sb, ORDERED_DATA);
3684 else
3685 set_opt(sb, JOURNAL_DATA);
3686 break;
3687
3688 case EXT4_MOUNT_ORDERED_DATA:
3689 case EXT4_MOUNT_WRITEBACK_DATA:
3690 if (!jbd2_journal_check_available_features
3691 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3692 ext4_msg(sb, KERN_ERR, "Journal does not support "
3693 "requested data journaling mode");
3694 goto failed_mount_wq;
3695 }
3696 default:
3697 break;
3698 }
3699 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3700
3701 /*
3702 * The journal may have updated the bg summary counts, so we
3703 * need to update the global counters.
3704 */
3705 percpu_counter_set(&sbi->s_freeclusters_counter,
3706 ext4_count_free_blocks(sb));
3707 percpu_counter_set(&sbi->s_freeinodes_counter,
3708 ext4_count_free_inodes(sb));
3709 percpu_counter_set(&sbi->s_dirs_counter,
3710 ext4_count_dirs(sb));
3711 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3712
3713 no_journal:
3714 /*
3715 * The maximum number of concurrent works can be high and
3716 * concurrency isn't really necessary. Limit it to 1.
3717 */
3718 EXT4_SB(sb)->dio_unwritten_wq =
3719 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3720 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3721 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3722 goto failed_mount_wq;
3723 }
3724
3725 /*
3726 * The jbd2_journal_load will have done any necessary log recovery,
3727 * so we can safely mount the rest of the filesystem now.
3728 */
3729
3730 root = ext4_iget(sb, EXT4_ROOT_INO);
3731 if (IS_ERR(root)) {
3732 ext4_msg(sb, KERN_ERR, "get root inode failed");
3733 ret = PTR_ERR(root);
3734 root = NULL;
3735 goto failed_mount4;
3736 }
3737 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3738 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3739 goto failed_mount4;
3740 }
3741 sb->s_root = d_alloc_root(root);
3742 if (!sb->s_root) {
3743 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3744 ret = -ENOMEM;
3745 goto failed_mount4;
3746 }
3747
3748 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3749
3750 /* determine the minimum size of new large inodes, if present */
3751 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3752 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3753 EXT4_GOOD_OLD_INODE_SIZE;
3754 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3755 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3756 if (sbi->s_want_extra_isize <
3757 le16_to_cpu(es->s_want_extra_isize))
3758 sbi->s_want_extra_isize =
3759 le16_to_cpu(es->s_want_extra_isize);
3760 if (sbi->s_want_extra_isize <
3761 le16_to_cpu(es->s_min_extra_isize))
3762 sbi->s_want_extra_isize =
3763 le16_to_cpu(es->s_min_extra_isize);
3764 }
3765 }
3766 /* Check if enough inode space is available */
3767 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3768 sbi->s_inode_size) {
3769 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3770 EXT4_GOOD_OLD_INODE_SIZE;
3771 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3772 "available");
3773 }
3774
3775 err = ext4_setup_system_zone(sb);
3776 if (err) {
3777 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3778 "zone (%d)", err);
3779 goto failed_mount4;
3780 }
3781
3782 ext4_ext_init(sb);
3783 err = ext4_mb_init(sb, needs_recovery);
3784 if (err) {
3785 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3786 err);
3787 goto failed_mount4;
3788 }
3789
3790 err = ext4_register_li_request(sb, first_not_zeroed);
3791 if (err)
3792 goto failed_mount4;
3793
3794 sbi->s_kobj.kset = ext4_kset;
3795 init_completion(&sbi->s_kobj_unregister);
3796 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3797 "%s", sb->s_id);
3798 if (err) {
3799 ext4_mb_release(sb);
3800 ext4_ext_release(sb);
3801 goto failed_mount4;
3802 };
3803
3804 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3805 ext4_orphan_cleanup(sb, es);
3806 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3807 if (needs_recovery) {
3808 ext4_msg(sb, KERN_INFO, "recovery complete");
3809 ext4_mark_recovery_complete(sb, es);
3810 }
3811 if (EXT4_SB(sb)->s_journal) {
3812 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3813 descr = " journalled data mode";
3814 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3815 descr = " ordered data mode";
3816 else
3817 descr = " writeback data mode";
3818 } else
3819 descr = "out journal";
3820
3821 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3822 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3823 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3824
3825 if (es->s_error_count)
3826 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3827
3828 kfree(orig_data);
3829 return 0;
3830
3831 cantfind_ext4:
3832 if (!silent)
3833 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3834 goto failed_mount;
3835
3836 failed_mount4:
3837 iput(root);
3838 sb->s_root = NULL;
3839 ext4_msg(sb, KERN_ERR, "mount failed");
3840 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3841 failed_mount_wq:
3842 ext4_release_system_zone(sb);
3843 if (sbi->s_journal) {
3844 jbd2_journal_destroy(sbi->s_journal);
3845 sbi->s_journal = NULL;
3846 }
3847 failed_mount3:
3848 del_timer(&sbi->s_err_report);
3849 if (sbi->s_flex_groups)
3850 ext4_kvfree(sbi->s_flex_groups);
3851 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3852 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3853 percpu_counter_destroy(&sbi->s_dirs_counter);
3854 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3855 if (sbi->s_mmp_tsk)
3856 kthread_stop(sbi->s_mmp_tsk);
3857 failed_mount2:
3858 for (i = 0; i < db_count; i++)
3859 brelse(sbi->s_group_desc[i]);
3860 ext4_kvfree(sbi->s_group_desc);
3861 failed_mount:
3862 if (sbi->s_proc) {
3863 remove_proc_entry(sb->s_id, ext4_proc_root);
3864 }
3865 #ifdef CONFIG_QUOTA
3866 for (i = 0; i < MAXQUOTAS; i++)
3867 kfree(sbi->s_qf_names[i]);
3868 #endif
3869 ext4_blkdev_remove(sbi);
3870 brelse(bh);
3871 out_fail:
3872 sb->s_fs_info = NULL;
3873 kfree(sbi->s_blockgroup_lock);
3874 kfree(sbi);
3875 out_free_orig:
3876 kfree(orig_data);
3877 return ret;
3878 }
3879
3880 /*
3881 * Setup any per-fs journal parameters now. We'll do this both on
3882 * initial mount, once the journal has been initialised but before we've
3883 * done any recovery; and again on any subsequent remount.
3884 */
3885 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3886 {
3887 struct ext4_sb_info *sbi = EXT4_SB(sb);
3888
3889 journal->j_commit_interval = sbi->s_commit_interval;
3890 journal->j_min_batch_time = sbi->s_min_batch_time;
3891 journal->j_max_batch_time = sbi->s_max_batch_time;
3892
3893 write_lock(&journal->j_state_lock);
3894 if (test_opt(sb, BARRIER))
3895 journal->j_flags |= JBD2_BARRIER;
3896 else
3897 journal->j_flags &= ~JBD2_BARRIER;
3898 if (test_opt(sb, DATA_ERR_ABORT))
3899 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3900 else
3901 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3902 write_unlock(&journal->j_state_lock);
3903 }
3904
3905 static journal_t *ext4_get_journal(struct super_block *sb,
3906 unsigned int journal_inum)
3907 {
3908 struct inode *journal_inode;
3909 journal_t *journal;
3910
3911 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3912
3913 /* First, test for the existence of a valid inode on disk. Bad
3914 * things happen if we iget() an unused inode, as the subsequent
3915 * iput() will try to delete it. */
3916
3917 journal_inode = ext4_iget(sb, journal_inum);
3918 if (IS_ERR(journal_inode)) {
3919 ext4_msg(sb, KERN_ERR, "no journal found");
3920 return NULL;
3921 }
3922 if (!journal_inode->i_nlink) {
3923 make_bad_inode(journal_inode);
3924 iput(journal_inode);
3925 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3926 return NULL;
3927 }
3928
3929 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3930 journal_inode, journal_inode->i_size);
3931 if (!S_ISREG(journal_inode->i_mode)) {
3932 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3933 iput(journal_inode);
3934 return NULL;
3935 }
3936
3937 journal = jbd2_journal_init_inode(journal_inode);
3938 if (!journal) {
3939 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3940 iput(journal_inode);
3941 return NULL;
3942 }
3943 journal->j_private = sb;
3944 ext4_init_journal_params(sb, journal);
3945 return journal;
3946 }
3947
3948 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3949 dev_t j_dev)
3950 {
3951 struct buffer_head *bh;
3952 journal_t *journal;
3953 ext4_fsblk_t start;
3954 ext4_fsblk_t len;
3955 int hblock, blocksize;
3956 ext4_fsblk_t sb_block;
3957 unsigned long offset;
3958 struct ext4_super_block *es;
3959 struct block_device *bdev;
3960
3961 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3962
3963 bdev = ext4_blkdev_get(j_dev, sb);
3964 if (bdev == NULL)
3965 return NULL;
3966
3967 blocksize = sb->s_blocksize;
3968 hblock = bdev_logical_block_size(bdev);
3969 if (blocksize < hblock) {
3970 ext4_msg(sb, KERN_ERR,
3971 "blocksize too small for journal device");
3972 goto out_bdev;
3973 }
3974
3975 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3976 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3977 set_blocksize(bdev, blocksize);
3978 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3979 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3980 "external journal");
3981 goto out_bdev;
3982 }
3983
3984 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3985 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3986 !(le32_to_cpu(es->s_feature_incompat) &
3987 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3988 ext4_msg(sb, KERN_ERR, "external journal has "
3989 "bad superblock");
3990 brelse(bh);
3991 goto out_bdev;
3992 }
3993
3994 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3995 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3996 brelse(bh);
3997 goto out_bdev;
3998 }
3999
4000 len = ext4_blocks_count(es);
4001 start = sb_block + 1;
4002 brelse(bh); /* we're done with the superblock */
4003
4004 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4005 start, len, blocksize);
4006 if (!journal) {
4007 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4008 goto out_bdev;
4009 }
4010 journal->j_private = sb;
4011 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4012 wait_on_buffer(journal->j_sb_buffer);
4013 if (!buffer_uptodate(journal->j_sb_buffer)) {
4014 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4015 goto out_journal;
4016 }
4017 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4018 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4019 "user (unsupported) - %d",
4020 be32_to_cpu(journal->j_superblock->s_nr_users));
4021 goto out_journal;
4022 }
4023 EXT4_SB(sb)->journal_bdev = bdev;
4024 ext4_init_journal_params(sb, journal);
4025 return journal;
4026
4027 out_journal:
4028 jbd2_journal_destroy(journal);
4029 out_bdev:
4030 ext4_blkdev_put(bdev);
4031 return NULL;
4032 }
4033
4034 static int ext4_load_journal(struct super_block *sb,
4035 struct ext4_super_block *es,
4036 unsigned long journal_devnum)
4037 {
4038 journal_t *journal;
4039 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4040 dev_t journal_dev;
4041 int err = 0;
4042 int really_read_only;
4043
4044 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4045
4046 if (journal_devnum &&
4047 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4048 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4049 "numbers have changed");
4050 journal_dev = new_decode_dev(journal_devnum);
4051 } else
4052 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4053
4054 really_read_only = bdev_read_only(sb->s_bdev);
4055
4056 /*
4057 * Are we loading a blank journal or performing recovery after a
4058 * crash? For recovery, we need to check in advance whether we
4059 * can get read-write access to the device.
4060 */
4061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4062 if (sb->s_flags & MS_RDONLY) {
4063 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4064 "required on readonly filesystem");
4065 if (really_read_only) {
4066 ext4_msg(sb, KERN_ERR, "write access "
4067 "unavailable, cannot proceed");
4068 return -EROFS;
4069 }
4070 ext4_msg(sb, KERN_INFO, "write access will "
4071 "be enabled during recovery");
4072 }
4073 }
4074
4075 if (journal_inum && journal_dev) {
4076 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4077 "and inode journals!");
4078 return -EINVAL;
4079 }
4080
4081 if (journal_inum) {
4082 if (!(journal = ext4_get_journal(sb, journal_inum)))
4083 return -EINVAL;
4084 } else {
4085 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4086 return -EINVAL;
4087 }
4088
4089 if (!(journal->j_flags & JBD2_BARRIER))
4090 ext4_msg(sb, KERN_INFO, "barriers disabled");
4091
4092 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4093 err = jbd2_journal_update_format(journal);
4094 if (err) {
4095 ext4_msg(sb, KERN_ERR, "error updating journal");
4096 jbd2_journal_destroy(journal);
4097 return err;
4098 }
4099 }
4100
4101 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4102 err = jbd2_journal_wipe(journal, !really_read_only);
4103 if (!err) {
4104 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4105 if (save)
4106 memcpy(save, ((char *) es) +
4107 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4108 err = jbd2_journal_load(journal);
4109 if (save)
4110 memcpy(((char *) es) + EXT4_S_ERR_START,
4111 save, EXT4_S_ERR_LEN);
4112 kfree(save);
4113 }
4114
4115 if (err) {
4116 ext4_msg(sb, KERN_ERR, "error loading journal");
4117 jbd2_journal_destroy(journal);
4118 return err;
4119 }
4120
4121 EXT4_SB(sb)->s_journal = journal;
4122 ext4_clear_journal_err(sb, es);
4123
4124 if (!really_read_only && journal_devnum &&
4125 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4126 es->s_journal_dev = cpu_to_le32(journal_devnum);
4127
4128 /* Make sure we flush the recovery flag to disk. */
4129 ext4_commit_super(sb, 1);
4130 }
4131
4132 return 0;
4133 }
4134
4135 static int ext4_commit_super(struct super_block *sb, int sync)
4136 {
4137 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4138 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4139 int error = 0;
4140
4141 if (!sbh || block_device_ejected(sb))
4142 return error;
4143 if (buffer_write_io_error(sbh)) {
4144 /*
4145 * Oh, dear. A previous attempt to write the
4146 * superblock failed. This could happen because the
4147 * USB device was yanked out. Or it could happen to
4148 * be a transient write error and maybe the block will
4149 * be remapped. Nothing we can do but to retry the
4150 * write and hope for the best.
4151 */
4152 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4153 "superblock detected");
4154 clear_buffer_write_io_error(sbh);
4155 set_buffer_uptodate(sbh);
4156 }
4157 /*
4158 * If the file system is mounted read-only, don't update the
4159 * superblock write time. This avoids updating the superblock
4160 * write time when we are mounting the root file system
4161 * read/only but we need to replay the journal; at that point,
4162 * for people who are east of GMT and who make their clock
4163 * tick in localtime for Windows bug-for-bug compatibility,
4164 * the clock is set in the future, and this will cause e2fsck
4165 * to complain and force a full file system check.
4166 */
4167 if (!(sb->s_flags & MS_RDONLY))
4168 es->s_wtime = cpu_to_le32(get_seconds());
4169 if (sb->s_bdev->bd_part)
4170 es->s_kbytes_written =
4171 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4172 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4173 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4174 else
4175 es->s_kbytes_written =
4176 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4177 ext4_free_blocks_count_set(es,
4178 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4179 &EXT4_SB(sb)->s_freeclusters_counter)));
4180 es->s_free_inodes_count =
4181 cpu_to_le32(percpu_counter_sum_positive(
4182 &EXT4_SB(sb)->s_freeinodes_counter));
4183 sb->s_dirt = 0;
4184 BUFFER_TRACE(sbh, "marking dirty");
4185 mark_buffer_dirty(sbh);
4186 if (sync) {
4187 error = sync_dirty_buffer(sbh);
4188 if (error)
4189 return error;
4190
4191 error = buffer_write_io_error(sbh);
4192 if (error) {
4193 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4194 "superblock");
4195 clear_buffer_write_io_error(sbh);
4196 set_buffer_uptodate(sbh);
4197 }
4198 }
4199 return error;
4200 }
4201
4202 /*
4203 * Have we just finished recovery? If so, and if we are mounting (or
4204 * remounting) the filesystem readonly, then we will end up with a
4205 * consistent fs on disk. Record that fact.
4206 */
4207 static void ext4_mark_recovery_complete(struct super_block *sb,
4208 struct ext4_super_block *es)
4209 {
4210 journal_t *journal = EXT4_SB(sb)->s_journal;
4211
4212 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4213 BUG_ON(journal != NULL);
4214 return;
4215 }
4216 jbd2_journal_lock_updates(journal);
4217 if (jbd2_journal_flush(journal) < 0)
4218 goto out;
4219
4220 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4221 sb->s_flags & MS_RDONLY) {
4222 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4223 ext4_commit_super(sb, 1);
4224 }
4225
4226 out:
4227 jbd2_journal_unlock_updates(journal);
4228 }
4229
4230 /*
4231 * If we are mounting (or read-write remounting) a filesystem whose journal
4232 * has recorded an error from a previous lifetime, move that error to the
4233 * main filesystem now.
4234 */
4235 static void ext4_clear_journal_err(struct super_block *sb,
4236 struct ext4_super_block *es)
4237 {
4238 journal_t *journal;
4239 int j_errno;
4240 const char *errstr;
4241
4242 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4243
4244 journal = EXT4_SB(sb)->s_journal;
4245
4246 /*
4247 * Now check for any error status which may have been recorded in the
4248 * journal by a prior ext4_error() or ext4_abort()
4249 */
4250
4251 j_errno = jbd2_journal_errno(journal);
4252 if (j_errno) {
4253 char nbuf[16];
4254
4255 errstr = ext4_decode_error(sb, j_errno, nbuf);
4256 ext4_warning(sb, "Filesystem error recorded "
4257 "from previous mount: %s", errstr);
4258 ext4_warning(sb, "Marking fs in need of filesystem check.");
4259
4260 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4261 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4262 ext4_commit_super(sb, 1);
4263
4264 jbd2_journal_clear_err(journal);
4265 }
4266 }
4267
4268 /*
4269 * Force the running and committing transactions to commit,
4270 * and wait on the commit.
4271 */
4272 int ext4_force_commit(struct super_block *sb)
4273 {
4274 journal_t *journal;
4275 int ret = 0;
4276
4277 if (sb->s_flags & MS_RDONLY)
4278 return 0;
4279
4280 journal = EXT4_SB(sb)->s_journal;
4281 if (journal) {
4282 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4283 ret = ext4_journal_force_commit(journal);
4284 }
4285
4286 return ret;
4287 }
4288
4289 static void ext4_write_super(struct super_block *sb)
4290 {
4291 lock_super(sb);
4292 ext4_commit_super(sb, 1);
4293 unlock_super(sb);
4294 }
4295
4296 static int ext4_sync_fs(struct super_block *sb, int wait)
4297 {
4298 int ret = 0;
4299 tid_t target;
4300 struct ext4_sb_info *sbi = EXT4_SB(sb);
4301
4302 trace_ext4_sync_fs(sb, wait);
4303 flush_workqueue(sbi->dio_unwritten_wq);
4304 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4305 if (wait)
4306 jbd2_log_wait_commit(sbi->s_journal, target);
4307 }
4308 return ret;
4309 }
4310
4311 /*
4312 * LVM calls this function before a (read-only) snapshot is created. This
4313 * gives us a chance to flush the journal completely and mark the fs clean.
4314 *
4315 * Note that only this function cannot bring a filesystem to be in a clean
4316 * state independently, because ext4 prevents a new handle from being started
4317 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4318 * the upper layer.
4319 */
4320 static int ext4_freeze(struct super_block *sb)
4321 {
4322 int error = 0;
4323 journal_t *journal;
4324
4325 if (sb->s_flags & MS_RDONLY)
4326 return 0;
4327
4328 journal = EXT4_SB(sb)->s_journal;
4329
4330 /* Now we set up the journal barrier. */
4331 jbd2_journal_lock_updates(journal);
4332
4333 /*
4334 * Don't clear the needs_recovery flag if we failed to flush
4335 * the journal.
4336 */
4337 error = jbd2_journal_flush(journal);
4338 if (error < 0)
4339 goto out;
4340
4341 /* Journal blocked and flushed, clear needs_recovery flag. */
4342 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4343 error = ext4_commit_super(sb, 1);
4344 out:
4345 /* we rely on s_frozen to stop further updates */
4346 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4347 return error;
4348 }
4349
4350 /*
4351 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4352 * flag here, even though the filesystem is not technically dirty yet.
4353 */
4354 static int ext4_unfreeze(struct super_block *sb)
4355 {
4356 if (sb->s_flags & MS_RDONLY)
4357 return 0;
4358
4359 lock_super(sb);
4360 /* Reset the needs_recovery flag before the fs is unlocked. */
4361 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4362 ext4_commit_super(sb, 1);
4363 unlock_super(sb);
4364 return 0;
4365 }
4366
4367 /*
4368 * Structure to save mount options for ext4_remount's benefit
4369 */
4370 struct ext4_mount_options {
4371 unsigned long s_mount_opt;
4372 unsigned long s_mount_opt2;
4373 uid_t s_resuid;
4374 gid_t s_resgid;
4375 unsigned long s_commit_interval;
4376 u32 s_min_batch_time, s_max_batch_time;
4377 #ifdef CONFIG_QUOTA
4378 int s_jquota_fmt;
4379 char *s_qf_names[MAXQUOTAS];
4380 #endif
4381 };
4382
4383 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4384 {
4385 struct ext4_super_block *es;
4386 struct ext4_sb_info *sbi = EXT4_SB(sb);
4387 ext4_fsblk_t n_blocks_count = 0;
4388 unsigned long old_sb_flags;
4389 struct ext4_mount_options old_opts;
4390 int enable_quota = 0;
4391 ext4_group_t g;
4392 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4393 int err = 0;
4394 #ifdef CONFIG_QUOTA
4395 int i;
4396 #endif
4397 char *orig_data = kstrdup(data, GFP_KERNEL);
4398
4399 /* Store the original options */
4400 lock_super(sb);
4401 old_sb_flags = sb->s_flags;
4402 old_opts.s_mount_opt = sbi->s_mount_opt;
4403 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4404 old_opts.s_resuid = sbi->s_resuid;
4405 old_opts.s_resgid = sbi->s_resgid;
4406 old_opts.s_commit_interval = sbi->s_commit_interval;
4407 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4408 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4409 #ifdef CONFIG_QUOTA
4410 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4411 for (i = 0; i < MAXQUOTAS; i++)
4412 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4413 #endif
4414 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4415 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4416
4417 /*
4418 * Allow the "check" option to be passed as a remount option.
4419 */
4420 if (!parse_options(data, sb, NULL, &journal_ioprio,
4421 &n_blocks_count, 1)) {
4422 err = -EINVAL;
4423 goto restore_opts;
4424 }
4425
4426 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4427 ext4_abort(sb, "Abort forced by user");
4428
4429 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4430 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4431
4432 es = sbi->s_es;
4433
4434 if (sbi->s_journal) {
4435 ext4_init_journal_params(sb, sbi->s_journal);
4436 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4437 }
4438
4439 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4440 n_blocks_count > ext4_blocks_count(es)) {
4441 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4442 err = -EROFS;
4443 goto restore_opts;
4444 }
4445
4446 if (*flags & MS_RDONLY) {
4447 err = dquot_suspend(sb, -1);
4448 if (err < 0)
4449 goto restore_opts;
4450
4451 /*
4452 * First of all, the unconditional stuff we have to do
4453 * to disable replay of the journal when we next remount
4454 */
4455 sb->s_flags |= MS_RDONLY;
4456
4457 /*
4458 * OK, test if we are remounting a valid rw partition
4459 * readonly, and if so set the rdonly flag and then
4460 * mark the partition as valid again.
4461 */
4462 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4463 (sbi->s_mount_state & EXT4_VALID_FS))
4464 es->s_state = cpu_to_le16(sbi->s_mount_state);
4465
4466 if (sbi->s_journal)
4467 ext4_mark_recovery_complete(sb, es);
4468 } else {
4469 /* Make sure we can mount this feature set readwrite */
4470 if (!ext4_feature_set_ok(sb, 0)) {
4471 err = -EROFS;
4472 goto restore_opts;
4473 }
4474 /*
4475 * Make sure the group descriptor checksums
4476 * are sane. If they aren't, refuse to remount r/w.
4477 */
4478 for (g = 0; g < sbi->s_groups_count; g++) {
4479 struct ext4_group_desc *gdp =
4480 ext4_get_group_desc(sb, g, NULL);
4481
4482 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4483 ext4_msg(sb, KERN_ERR,
4484 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4485 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4486 le16_to_cpu(gdp->bg_checksum));
4487 err = -EINVAL;
4488 goto restore_opts;
4489 }
4490 }
4491
4492 /*
4493 * If we have an unprocessed orphan list hanging
4494 * around from a previously readonly bdev mount,
4495 * require a full umount/remount for now.
4496 */
4497 if (es->s_last_orphan) {
4498 ext4_msg(sb, KERN_WARNING, "Couldn't "
4499 "remount RDWR because of unprocessed "
4500 "orphan inode list. Please "
4501 "umount/remount instead");
4502 err = -EINVAL;
4503 goto restore_opts;
4504 }
4505
4506 /*
4507 * Mounting a RDONLY partition read-write, so reread
4508 * and store the current valid flag. (It may have
4509 * been changed by e2fsck since we originally mounted
4510 * the partition.)
4511 */
4512 if (sbi->s_journal)
4513 ext4_clear_journal_err(sb, es);
4514 sbi->s_mount_state = le16_to_cpu(es->s_state);
4515 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4516 goto restore_opts;
4517 if (!ext4_setup_super(sb, es, 0))
4518 sb->s_flags &= ~MS_RDONLY;
4519 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4520 EXT4_FEATURE_INCOMPAT_MMP))
4521 if (ext4_multi_mount_protect(sb,
4522 le64_to_cpu(es->s_mmp_block))) {
4523 err = -EROFS;
4524 goto restore_opts;
4525 }
4526 enable_quota = 1;
4527 }
4528 }
4529
4530 /*
4531 * Reinitialize lazy itable initialization thread based on
4532 * current settings
4533 */
4534 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4535 ext4_unregister_li_request(sb);
4536 else {
4537 ext4_group_t first_not_zeroed;
4538 first_not_zeroed = ext4_has_uninit_itable(sb);
4539 ext4_register_li_request(sb, first_not_zeroed);
4540 }
4541
4542 ext4_setup_system_zone(sb);
4543 if (sbi->s_journal == NULL)
4544 ext4_commit_super(sb, 1);
4545
4546 #ifdef CONFIG_QUOTA
4547 /* Release old quota file names */
4548 for (i = 0; i < MAXQUOTAS; i++)
4549 if (old_opts.s_qf_names[i] &&
4550 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4551 kfree(old_opts.s_qf_names[i]);
4552 #endif
4553 unlock_super(sb);
4554 if (enable_quota)
4555 dquot_resume(sb, -1);
4556
4557 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4558 kfree(orig_data);
4559 return 0;
4560
4561 restore_opts:
4562 sb->s_flags = old_sb_flags;
4563 sbi->s_mount_opt = old_opts.s_mount_opt;
4564 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4565 sbi->s_resuid = old_opts.s_resuid;
4566 sbi->s_resgid = old_opts.s_resgid;
4567 sbi->s_commit_interval = old_opts.s_commit_interval;
4568 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4569 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4570 #ifdef CONFIG_QUOTA
4571 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4572 for (i = 0; i < MAXQUOTAS; i++) {
4573 if (sbi->s_qf_names[i] &&
4574 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4575 kfree(sbi->s_qf_names[i]);
4576 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4577 }
4578 #endif
4579 unlock_super(sb);
4580 kfree(orig_data);
4581 return err;
4582 }
4583
4584 /*
4585 * Note: calculating the overhead so we can be compatible with
4586 * historical BSD practice is quite difficult in the face of
4587 * clusters/bigalloc. This is because multiple metadata blocks from
4588 * different block group can end up in the same allocation cluster.
4589 * Calculating the exact overhead in the face of clustered allocation
4590 * requires either O(all block bitmaps) in memory or O(number of block
4591 * groups**2) in time. We will still calculate the superblock for
4592 * older file systems --- and if we come across with a bigalloc file
4593 * system with zero in s_overhead_clusters the estimate will be close to
4594 * correct especially for very large cluster sizes --- but for newer
4595 * file systems, it's better to calculate this figure once at mkfs
4596 * time, and store it in the superblock. If the superblock value is
4597 * present (even for non-bigalloc file systems), we will use it.
4598 */
4599 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4600 {
4601 struct super_block *sb = dentry->d_sb;
4602 struct ext4_sb_info *sbi = EXT4_SB(sb);
4603 struct ext4_super_block *es = sbi->s_es;
4604 struct ext4_group_desc *gdp;
4605 u64 fsid;
4606 s64 bfree;
4607
4608 if (test_opt(sb, MINIX_DF)) {
4609 sbi->s_overhead_last = 0;
4610 } else if (es->s_overhead_clusters) {
4611 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4612 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4613 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4614 ext4_fsblk_t overhead = 0;
4615
4616 /*
4617 * Compute the overhead (FS structures). This is constant
4618 * for a given filesystem unless the number of block groups
4619 * changes so we cache the previous value until it does.
4620 */
4621
4622 /*
4623 * All of the blocks before first_data_block are
4624 * overhead
4625 */
4626 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4627
4628 /*
4629 * Add the overhead found in each block group
4630 */
4631 for (i = 0; i < ngroups; i++) {
4632 gdp = ext4_get_group_desc(sb, i, NULL);
4633 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4634 cond_resched();
4635 }
4636 sbi->s_overhead_last = overhead;
4637 smp_wmb();
4638 sbi->s_blocks_last = ext4_blocks_count(es);
4639 }
4640
4641 buf->f_type = EXT4_SUPER_MAGIC;
4642 buf->f_bsize = sb->s_blocksize;
4643 buf->f_blocks = (ext4_blocks_count(es) -
4644 EXT4_C2B(sbi, sbi->s_overhead_last));
4645 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4646 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4647 /* prevent underflow in case that few free space is available */
4648 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4649 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4650 if (buf->f_bfree < ext4_r_blocks_count(es))
4651 buf->f_bavail = 0;
4652 buf->f_files = le32_to_cpu(es->s_inodes_count);
4653 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4654 buf->f_namelen = EXT4_NAME_LEN;
4655 fsid = le64_to_cpup((void *)es->s_uuid) ^
4656 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4657 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4658 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4659
4660 return 0;
4661 }
4662
4663 /* Helper function for writing quotas on sync - we need to start transaction
4664 * before quota file is locked for write. Otherwise the are possible deadlocks:
4665 * Process 1 Process 2
4666 * ext4_create() quota_sync()
4667 * jbd2_journal_start() write_dquot()
4668 * dquot_initialize() down(dqio_mutex)
4669 * down(dqio_mutex) jbd2_journal_start()
4670 *
4671 */
4672
4673 #ifdef CONFIG_QUOTA
4674
4675 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4676 {
4677 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4678 }
4679
4680 static int ext4_write_dquot(struct dquot *dquot)
4681 {
4682 int ret, err;
4683 handle_t *handle;
4684 struct inode *inode;
4685
4686 inode = dquot_to_inode(dquot);
4687 handle = ext4_journal_start(inode,
4688 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4689 if (IS_ERR(handle))
4690 return PTR_ERR(handle);
4691 ret = dquot_commit(dquot);
4692 err = ext4_journal_stop(handle);
4693 if (!ret)
4694 ret = err;
4695 return ret;
4696 }
4697
4698 static int ext4_acquire_dquot(struct dquot *dquot)
4699 {
4700 int ret, err;
4701 handle_t *handle;
4702
4703 handle = ext4_journal_start(dquot_to_inode(dquot),
4704 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4705 if (IS_ERR(handle))
4706 return PTR_ERR(handle);
4707 ret = dquot_acquire(dquot);
4708 err = ext4_journal_stop(handle);
4709 if (!ret)
4710 ret = err;
4711 return ret;
4712 }
4713
4714 static int ext4_release_dquot(struct dquot *dquot)
4715 {
4716 int ret, err;
4717 handle_t *handle;
4718
4719 handle = ext4_journal_start(dquot_to_inode(dquot),
4720 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4721 if (IS_ERR(handle)) {
4722 /* Release dquot anyway to avoid endless cycle in dqput() */
4723 dquot_release(dquot);
4724 return PTR_ERR(handle);
4725 }
4726 ret = dquot_release(dquot);
4727 err = ext4_journal_stop(handle);
4728 if (!ret)
4729 ret = err;
4730 return ret;
4731 }
4732
4733 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4734 {
4735 /* Are we journaling quotas? */
4736 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4737 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4738 dquot_mark_dquot_dirty(dquot);
4739 return ext4_write_dquot(dquot);
4740 } else {
4741 return dquot_mark_dquot_dirty(dquot);
4742 }
4743 }
4744
4745 static int ext4_write_info(struct super_block *sb, int type)
4746 {
4747 int ret, err;
4748 handle_t *handle;
4749
4750 /* Data block + inode block */
4751 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4752 if (IS_ERR(handle))
4753 return PTR_ERR(handle);
4754 ret = dquot_commit_info(sb, type);
4755 err = ext4_journal_stop(handle);
4756 if (!ret)
4757 ret = err;
4758 return ret;
4759 }
4760
4761 /*
4762 * Turn on quotas during mount time - we need to find
4763 * the quota file and such...
4764 */
4765 static int ext4_quota_on_mount(struct super_block *sb, int type)
4766 {
4767 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4768 EXT4_SB(sb)->s_jquota_fmt, type);
4769 }
4770
4771 /*
4772 * Standard function to be called on quota_on
4773 */
4774 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4775 struct path *path)
4776 {
4777 int err;
4778
4779 if (!test_opt(sb, QUOTA))
4780 return -EINVAL;
4781
4782 /* Quotafile not on the same filesystem? */
4783 if (path->mnt->mnt_sb != sb)
4784 return -EXDEV;
4785 /* Journaling quota? */
4786 if (EXT4_SB(sb)->s_qf_names[type]) {
4787 /* Quotafile not in fs root? */
4788 if (path->dentry->d_parent != sb->s_root)
4789 ext4_msg(sb, KERN_WARNING,
4790 "Quota file not on filesystem root. "
4791 "Journaled quota will not work");
4792 }
4793
4794 /*
4795 * When we journal data on quota file, we have to flush journal to see
4796 * all updates to the file when we bypass pagecache...
4797 */
4798 if (EXT4_SB(sb)->s_journal &&
4799 ext4_should_journal_data(path->dentry->d_inode)) {
4800 /*
4801 * We don't need to lock updates but journal_flush() could
4802 * otherwise be livelocked...
4803 */
4804 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4805 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4806 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4807 if (err)
4808 return err;
4809 }
4810
4811 return dquot_quota_on(sb, type, format_id, path);
4812 }
4813
4814 static int ext4_quota_off(struct super_block *sb, int type)
4815 {
4816 struct inode *inode = sb_dqopt(sb)->files[type];
4817 handle_t *handle;
4818
4819 /* Force all delayed allocation blocks to be allocated.
4820 * Caller already holds s_umount sem */
4821 if (test_opt(sb, DELALLOC))
4822 sync_filesystem(sb);
4823
4824 if (!inode)
4825 goto out;
4826
4827 /* Update modification times of quota files when userspace can
4828 * start looking at them */
4829 handle = ext4_journal_start(inode, 1);
4830 if (IS_ERR(handle))
4831 goto out;
4832 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4833 ext4_mark_inode_dirty(handle, inode);
4834 ext4_journal_stop(handle);
4835
4836 out:
4837 return dquot_quota_off(sb, type);
4838 }
4839
4840 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4841 * acquiring the locks... As quota files are never truncated and quota code
4842 * itself serializes the operations (and no one else should touch the files)
4843 * we don't have to be afraid of races */
4844 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4845 size_t len, loff_t off)
4846 {
4847 struct inode *inode = sb_dqopt(sb)->files[type];
4848 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4849 int err = 0;
4850 int offset = off & (sb->s_blocksize - 1);
4851 int tocopy;
4852 size_t toread;
4853 struct buffer_head *bh;
4854 loff_t i_size = i_size_read(inode);
4855
4856 if (off > i_size)
4857 return 0;
4858 if (off+len > i_size)
4859 len = i_size-off;
4860 toread = len;
4861 while (toread > 0) {
4862 tocopy = sb->s_blocksize - offset < toread ?
4863 sb->s_blocksize - offset : toread;
4864 bh = ext4_bread(NULL, inode, blk, 0, &err);
4865 if (err)
4866 return err;
4867 if (!bh) /* A hole? */
4868 memset(data, 0, tocopy);
4869 else
4870 memcpy(data, bh->b_data+offset, tocopy);
4871 brelse(bh);
4872 offset = 0;
4873 toread -= tocopy;
4874 data += tocopy;
4875 blk++;
4876 }
4877 return len;
4878 }
4879
4880 /* Write to quotafile (we know the transaction is already started and has
4881 * enough credits) */
4882 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4883 const char *data, size_t len, loff_t off)
4884 {
4885 struct inode *inode = sb_dqopt(sb)->files[type];
4886 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4887 int err = 0;
4888 int offset = off & (sb->s_blocksize - 1);
4889 struct buffer_head *bh;
4890 handle_t *handle = journal_current_handle();
4891
4892 if (EXT4_SB(sb)->s_journal && !handle) {
4893 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4894 " cancelled because transaction is not started",
4895 (unsigned long long)off, (unsigned long long)len);
4896 return -EIO;
4897 }
4898 /*
4899 * Since we account only one data block in transaction credits,
4900 * then it is impossible to cross a block boundary.
4901 */
4902 if (sb->s_blocksize - offset < len) {
4903 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4904 " cancelled because not block aligned",
4905 (unsigned long long)off, (unsigned long long)len);
4906 return -EIO;
4907 }
4908
4909 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4910 bh = ext4_bread(handle, inode, blk, 1, &err);
4911 if (!bh)
4912 goto out;
4913 err = ext4_journal_get_write_access(handle, bh);
4914 if (err) {
4915 brelse(bh);
4916 goto out;
4917 }
4918 lock_buffer(bh);
4919 memcpy(bh->b_data+offset, data, len);
4920 flush_dcache_page(bh->b_page);
4921 unlock_buffer(bh);
4922 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4923 brelse(bh);
4924 out:
4925 if (err) {
4926 mutex_unlock(&inode->i_mutex);
4927 return err;
4928 }
4929 if (inode->i_size < off + len) {
4930 i_size_write(inode, off + len);
4931 EXT4_I(inode)->i_disksize = inode->i_size;
4932 ext4_mark_inode_dirty(handle, inode);
4933 }
4934 mutex_unlock(&inode->i_mutex);
4935 return len;
4936 }
4937
4938 #endif
4939
4940 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4941 const char *dev_name, void *data)
4942 {
4943 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4944 }
4945
4946 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4947 static inline void register_as_ext2(void)
4948 {
4949 int err = register_filesystem(&ext2_fs_type);
4950 if (err)
4951 printk(KERN_WARNING
4952 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4953 }
4954
4955 static inline void unregister_as_ext2(void)
4956 {
4957 unregister_filesystem(&ext2_fs_type);
4958 }
4959
4960 static inline int ext2_feature_set_ok(struct super_block *sb)
4961 {
4962 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4963 return 0;
4964 if (sb->s_flags & MS_RDONLY)
4965 return 1;
4966 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4967 return 0;
4968 return 1;
4969 }
4970 MODULE_ALIAS("ext2");
4971 #else
4972 static inline void register_as_ext2(void) { }
4973 static inline void unregister_as_ext2(void) { }
4974 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4975 #endif
4976
4977 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4978 static inline void register_as_ext3(void)
4979 {
4980 int err = register_filesystem(&ext3_fs_type);
4981 if (err)
4982 printk(KERN_WARNING
4983 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4984 }
4985
4986 static inline void unregister_as_ext3(void)
4987 {
4988 unregister_filesystem(&ext3_fs_type);
4989 }
4990
4991 static inline int ext3_feature_set_ok(struct super_block *sb)
4992 {
4993 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4994 return 0;
4995 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4996 return 0;
4997 if (sb->s_flags & MS_RDONLY)
4998 return 1;
4999 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5000 return 0;
5001 return 1;
5002 }
5003 MODULE_ALIAS("ext3");
5004 #else
5005 static inline void register_as_ext3(void) { }
5006 static inline void unregister_as_ext3(void) { }
5007 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5008 #endif
5009
5010 static struct file_system_type ext4_fs_type = {
5011 .owner = THIS_MODULE,
5012 .name = "ext4",
5013 .mount = ext4_mount,
5014 .kill_sb = kill_block_super,
5015 .fs_flags = FS_REQUIRES_DEV,
5016 };
5017
5018 static int __init ext4_init_feat_adverts(void)
5019 {
5020 struct ext4_features *ef;
5021 int ret = -ENOMEM;
5022
5023 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5024 if (!ef)
5025 goto out;
5026
5027 ef->f_kobj.kset = ext4_kset;
5028 init_completion(&ef->f_kobj_unregister);
5029 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5030 "features");
5031 if (ret) {
5032 kfree(ef);
5033 goto out;
5034 }
5035
5036 ext4_feat = ef;
5037 ret = 0;
5038 out:
5039 return ret;
5040 }
5041
5042 static void ext4_exit_feat_adverts(void)
5043 {
5044 kobject_put(&ext4_feat->f_kobj);
5045 wait_for_completion(&ext4_feat->f_kobj_unregister);
5046 kfree(ext4_feat);
5047 }
5048
5049 /* Shared across all ext4 file systems */
5050 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5051 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5052
5053 static int __init ext4_init_fs(void)
5054 {
5055 int i, err;
5056
5057 ext4_check_flag_values();
5058
5059 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5060 mutex_init(&ext4__aio_mutex[i]);
5061 init_waitqueue_head(&ext4__ioend_wq[i]);
5062 }
5063
5064 err = ext4_init_pageio();
5065 if (err)
5066 return err;
5067 err = ext4_init_system_zone();
5068 if (err)
5069 goto out7;
5070 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5071 if (!ext4_kset)
5072 goto out6;
5073 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5074 if (!ext4_proc_root)
5075 goto out5;
5076
5077 err = ext4_init_feat_adverts();
5078 if (err)
5079 goto out4;
5080
5081 err = ext4_init_mballoc();
5082 if (err)
5083 goto out3;
5084
5085 err = ext4_init_xattr();
5086 if (err)
5087 goto out2;
5088 err = init_inodecache();
5089 if (err)
5090 goto out1;
5091 register_as_ext3();
5092 register_as_ext2();
5093 err = register_filesystem(&ext4_fs_type);
5094 if (err)
5095 goto out;
5096
5097 ext4_li_info = NULL;
5098 mutex_init(&ext4_li_mtx);
5099 return 0;
5100 out:
5101 unregister_as_ext2();
5102 unregister_as_ext3();
5103 destroy_inodecache();
5104 out1:
5105 ext4_exit_xattr();
5106 out2:
5107 ext4_exit_mballoc();
5108 out3:
5109 ext4_exit_feat_adverts();
5110 out4:
5111 remove_proc_entry("fs/ext4", NULL);
5112 out5:
5113 kset_unregister(ext4_kset);
5114 out6:
5115 ext4_exit_system_zone();
5116 out7:
5117 ext4_exit_pageio();
5118 return err;
5119 }
5120
5121 static void __exit ext4_exit_fs(void)
5122 {
5123 ext4_destroy_lazyinit_thread();
5124 unregister_as_ext2();
5125 unregister_as_ext3();
5126 unregister_filesystem(&ext4_fs_type);
5127 destroy_inodecache();
5128 ext4_exit_xattr();
5129 ext4_exit_mballoc();
5130 ext4_exit_feat_adverts();
5131 remove_proc_entry("fs/ext4", NULL);
5132 kset_unregister(ext4_kset);
5133 ext4_exit_system_zone();
5134 ext4_exit_pageio();
5135 }
5136
5137 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5138 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5139 MODULE_LICENSE("GPL");
5140 module_init(ext4_init_fs)
5141 module_exit(ext4_exit_fs)
This page took 0.229976 seconds and 5 git commands to generate.