ext4: teach ext4_statfs() to deal with clusters if bigalloc is enabled
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
98
99
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
107 };
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 #else
110 #define IS_EXT3_SB(sb) (0)
111 #endif
112
113 void *ext4_kvmalloc(size_t size, gfp_t flags)
114 {
115 void *ret;
116
117 ret = kmalloc(size, flags);
118 if (!ret)
119 ret = __vmalloc(size, flags, PAGE_KERNEL);
120 return ret;
121 }
122
123 void *ext4_kvzalloc(size_t size, gfp_t flags)
124 {
125 void *ret;
126
127 ret = kzalloc(size, flags);
128 if (!ret)
129 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
130 return ret;
131 }
132
133 void ext4_kvfree(void *ptr)
134 {
135 if (is_vmalloc_addr(ptr))
136 vfree(ptr);
137 else
138 kfree(ptr);
139
140 }
141
142 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le32_to_cpu(bg->bg_block_bitmap_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
148 }
149
150 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
151 struct ext4_group_desc *bg)
152 {
153 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
154 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
155 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
156 }
157
158 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
159 struct ext4_group_desc *bg)
160 {
161 return le32_to_cpu(bg->bg_inode_table_lo) |
162 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
163 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
164 }
165
166 __u32 ext4_free_blks_count(struct super_block *sb,
167 struct ext4_group_desc *bg)
168 {
169 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
170 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
171 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
172 }
173
174 __u32 ext4_free_inodes_count(struct super_block *sb,
175 struct ext4_group_desc *bg)
176 {
177 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
178 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
179 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
180 }
181
182 __u32 ext4_used_dirs_count(struct super_block *sb,
183 struct ext4_group_desc *bg)
184 {
185 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
186 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
187 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
188 }
189
190 __u32 ext4_itable_unused_count(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le16_to_cpu(bg->bg_itable_unused_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
196 }
197
198 void ext4_block_bitmap_set(struct super_block *sb,
199 struct ext4_group_desc *bg, ext4_fsblk_t blk)
200 {
201 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
204 }
205
206 void ext4_inode_bitmap_set(struct super_block *sb,
207 struct ext4_group_desc *bg, ext4_fsblk_t blk)
208 {
209 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
210 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
211 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
212 }
213
214 void ext4_inode_table_set(struct super_block *sb,
215 struct ext4_group_desc *bg, ext4_fsblk_t blk)
216 {
217 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
218 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
219 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
220 }
221
222 void ext4_free_blks_set(struct super_block *sb,
223 struct ext4_group_desc *bg, __u32 count)
224 {
225 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
226 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
227 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
228 }
229
230 void ext4_free_inodes_set(struct super_block *sb,
231 struct ext4_group_desc *bg, __u32 count)
232 {
233 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
234 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
235 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
236 }
237
238 void ext4_used_dirs_set(struct super_block *sb,
239 struct ext4_group_desc *bg, __u32 count)
240 {
241 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
242 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
243 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
244 }
245
246 void ext4_itable_unused_set(struct super_block *sb,
247 struct ext4_group_desc *bg, __u32 count)
248 {
249 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
252 }
253
254
255 /* Just increment the non-pointer handle value */
256 static handle_t *ext4_get_nojournal(void)
257 {
258 handle_t *handle = current->journal_info;
259 unsigned long ref_cnt = (unsigned long)handle;
260
261 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
262
263 ref_cnt++;
264 handle = (handle_t *)ref_cnt;
265
266 current->journal_info = handle;
267 return handle;
268 }
269
270
271 /* Decrement the non-pointer handle value */
272 static void ext4_put_nojournal(handle_t *handle)
273 {
274 unsigned long ref_cnt = (unsigned long)handle;
275
276 BUG_ON(ref_cnt == 0);
277
278 ref_cnt--;
279 handle = (handle_t *)ref_cnt;
280
281 current->journal_info = handle;
282 }
283
284 /*
285 * Wrappers for jbd2_journal_start/end.
286 *
287 * The only special thing we need to do here is to make sure that all
288 * journal_end calls result in the superblock being marked dirty, so
289 * that sync() will call the filesystem's write_super callback if
290 * appropriate.
291 *
292 * To avoid j_barrier hold in userspace when a user calls freeze(),
293 * ext4 prevents a new handle from being started by s_frozen, which
294 * is in an upper layer.
295 */
296 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
297 {
298 journal_t *journal;
299 handle_t *handle;
300
301 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
302 if (sb->s_flags & MS_RDONLY)
303 return ERR_PTR(-EROFS);
304
305 journal = EXT4_SB(sb)->s_journal;
306 handle = ext4_journal_current_handle();
307
308 /*
309 * If a handle has been started, it should be allowed to
310 * finish, otherwise deadlock could happen between freeze
311 * and others(e.g. truncate) due to the restart of the
312 * journal handle if the filesystem is forzen and active
313 * handles are not stopped.
314 */
315 if (!handle)
316 vfs_check_frozen(sb, SB_FREEZE_TRANS);
317
318 if (!journal)
319 return ext4_get_nojournal();
320 /*
321 * Special case here: if the journal has aborted behind our
322 * backs (eg. EIO in the commit thread), then we still need to
323 * take the FS itself readonly cleanly.
324 */
325 if (is_journal_aborted(journal)) {
326 ext4_abort(sb, "Detected aborted journal");
327 return ERR_PTR(-EROFS);
328 }
329 return jbd2_journal_start(journal, nblocks);
330 }
331
332 /*
333 * The only special thing we need to do here is to make sure that all
334 * jbd2_journal_stop calls result in the superblock being marked dirty, so
335 * that sync() will call the filesystem's write_super callback if
336 * appropriate.
337 */
338 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
339 {
340 struct super_block *sb;
341 int err;
342 int rc;
343
344 if (!ext4_handle_valid(handle)) {
345 ext4_put_nojournal(handle);
346 return 0;
347 }
348 sb = handle->h_transaction->t_journal->j_private;
349 err = handle->h_err;
350 rc = jbd2_journal_stop(handle);
351
352 if (!err)
353 err = rc;
354 if (err)
355 __ext4_std_error(sb, where, line, err);
356 return err;
357 }
358
359 void ext4_journal_abort_handle(const char *caller, unsigned int line,
360 const char *err_fn, struct buffer_head *bh,
361 handle_t *handle, int err)
362 {
363 char nbuf[16];
364 const char *errstr = ext4_decode_error(NULL, err, nbuf);
365
366 BUG_ON(!ext4_handle_valid(handle));
367
368 if (bh)
369 BUFFER_TRACE(bh, "abort");
370
371 if (!handle->h_err)
372 handle->h_err = err;
373
374 if (is_handle_aborted(handle))
375 return;
376
377 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
378 caller, line, errstr, err_fn);
379
380 jbd2_journal_abort_handle(handle);
381 }
382
383 static void __save_error_info(struct super_block *sb, const char *func,
384 unsigned int line)
385 {
386 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
387
388 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
389 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
390 es->s_last_error_time = cpu_to_le32(get_seconds());
391 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
392 es->s_last_error_line = cpu_to_le32(line);
393 if (!es->s_first_error_time) {
394 es->s_first_error_time = es->s_last_error_time;
395 strncpy(es->s_first_error_func, func,
396 sizeof(es->s_first_error_func));
397 es->s_first_error_line = cpu_to_le32(line);
398 es->s_first_error_ino = es->s_last_error_ino;
399 es->s_first_error_block = es->s_last_error_block;
400 }
401 /*
402 * Start the daily error reporting function if it hasn't been
403 * started already
404 */
405 if (!es->s_error_count)
406 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
407 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
408 }
409
410 static void save_error_info(struct super_block *sb, const char *func,
411 unsigned int line)
412 {
413 __save_error_info(sb, func, line);
414 ext4_commit_super(sb, 1);
415 }
416
417 /*
418 * The del_gendisk() function uninitializes the disk-specific data
419 * structures, including the bdi structure, without telling anyone
420 * else. Once this happens, any attempt to call mark_buffer_dirty()
421 * (for example, by ext4_commit_super), will cause a kernel OOPS.
422 * This is a kludge to prevent these oops until we can put in a proper
423 * hook in del_gendisk() to inform the VFS and file system layers.
424 */
425 static int block_device_ejected(struct super_block *sb)
426 {
427 struct inode *bd_inode = sb->s_bdev->bd_inode;
428 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
429
430 return bdi->dev == NULL;
431 }
432
433
434 /* Deal with the reporting of failure conditions on a filesystem such as
435 * inconsistencies detected or read IO failures.
436 *
437 * On ext2, we can store the error state of the filesystem in the
438 * superblock. That is not possible on ext4, because we may have other
439 * write ordering constraints on the superblock which prevent us from
440 * writing it out straight away; and given that the journal is about to
441 * be aborted, we can't rely on the current, or future, transactions to
442 * write out the superblock safely.
443 *
444 * We'll just use the jbd2_journal_abort() error code to record an error in
445 * the journal instead. On recovery, the journal will complain about
446 * that error until we've noted it down and cleared it.
447 */
448
449 static void ext4_handle_error(struct super_block *sb)
450 {
451 if (sb->s_flags & MS_RDONLY)
452 return;
453
454 if (!test_opt(sb, ERRORS_CONT)) {
455 journal_t *journal = EXT4_SB(sb)->s_journal;
456
457 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
458 if (journal)
459 jbd2_journal_abort(journal, -EIO);
460 }
461 if (test_opt(sb, ERRORS_RO)) {
462 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
463 sb->s_flags |= MS_RDONLY;
464 }
465 if (test_opt(sb, ERRORS_PANIC))
466 panic("EXT4-fs (device %s): panic forced after error\n",
467 sb->s_id);
468 }
469
470 void __ext4_error(struct super_block *sb, const char *function,
471 unsigned int line, const char *fmt, ...)
472 {
473 struct va_format vaf;
474 va_list args;
475
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
480 sb->s_id, function, line, current->comm, &vaf);
481 va_end(args);
482
483 ext4_handle_error(sb);
484 }
485
486 void ext4_error_inode(struct inode *inode, const char *function,
487 unsigned int line, ext4_fsblk_t block,
488 const char *fmt, ...)
489 {
490 va_list args;
491 struct va_format vaf;
492 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
493
494 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
495 es->s_last_error_block = cpu_to_le64(block);
496 save_error_info(inode->i_sb, function, line);
497 va_start(args, fmt);
498 vaf.fmt = fmt;
499 vaf.va = &args;
500 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
501 inode->i_sb->s_id, function, line, inode->i_ino);
502 if (block)
503 printk(KERN_CONT "block %llu: ", block);
504 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
505 va_end(args);
506
507 ext4_handle_error(inode->i_sb);
508 }
509
510 void ext4_error_file(struct file *file, const char *function,
511 unsigned int line, ext4_fsblk_t block,
512 const char *fmt, ...)
513 {
514 va_list args;
515 struct va_format vaf;
516 struct ext4_super_block *es;
517 struct inode *inode = file->f_dentry->d_inode;
518 char pathname[80], *path;
519
520 es = EXT4_SB(inode->i_sb)->s_es;
521 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
522 save_error_info(inode->i_sb, function, line);
523 path = d_path(&(file->f_path), pathname, sizeof(pathname));
524 if (IS_ERR(path))
525 path = "(unknown)";
526 printk(KERN_CRIT
527 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
528 inode->i_sb->s_id, function, line, inode->i_ino);
529 if (block)
530 printk(KERN_CONT "block %llu: ", block);
531 va_start(args, fmt);
532 vaf.fmt = fmt;
533 vaf.va = &args;
534 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
535 va_end(args);
536
537 ext4_handle_error(inode->i_sb);
538 }
539
540 static const char *ext4_decode_error(struct super_block *sb, int errno,
541 char nbuf[16])
542 {
543 char *errstr = NULL;
544
545 switch (errno) {
546 case -EIO:
547 errstr = "IO failure";
548 break;
549 case -ENOMEM:
550 errstr = "Out of memory";
551 break;
552 case -EROFS:
553 if (!sb || (EXT4_SB(sb)->s_journal &&
554 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
555 errstr = "Journal has aborted";
556 else
557 errstr = "Readonly filesystem";
558 break;
559 default:
560 /* If the caller passed in an extra buffer for unknown
561 * errors, textualise them now. Else we just return
562 * NULL. */
563 if (nbuf) {
564 /* Check for truncated error codes... */
565 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
566 errstr = nbuf;
567 }
568 break;
569 }
570
571 return errstr;
572 }
573
574 /* __ext4_std_error decodes expected errors from journaling functions
575 * automatically and invokes the appropriate error response. */
576
577 void __ext4_std_error(struct super_block *sb, const char *function,
578 unsigned int line, int errno)
579 {
580 char nbuf[16];
581 const char *errstr;
582
583 /* Special case: if the error is EROFS, and we're not already
584 * inside a transaction, then there's really no point in logging
585 * an error. */
586 if (errno == -EROFS && journal_current_handle() == NULL &&
587 (sb->s_flags & MS_RDONLY))
588 return;
589
590 errstr = ext4_decode_error(sb, errno, nbuf);
591 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
592 sb->s_id, function, line, errstr);
593 save_error_info(sb, function, line);
594
595 ext4_handle_error(sb);
596 }
597
598 /*
599 * ext4_abort is a much stronger failure handler than ext4_error. The
600 * abort function may be used to deal with unrecoverable failures such
601 * as journal IO errors or ENOMEM at a critical moment in log management.
602 *
603 * We unconditionally force the filesystem into an ABORT|READONLY state,
604 * unless the error response on the fs has been set to panic in which
605 * case we take the easy way out and panic immediately.
606 */
607
608 void __ext4_abort(struct super_block *sb, const char *function,
609 unsigned int line, const char *fmt, ...)
610 {
611 va_list args;
612
613 save_error_info(sb, function, line);
614 va_start(args, fmt);
615 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
616 function, line);
617 vprintk(fmt, args);
618 printk("\n");
619 va_end(args);
620
621 if ((sb->s_flags & MS_RDONLY) == 0) {
622 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
623 sb->s_flags |= MS_RDONLY;
624 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
625 if (EXT4_SB(sb)->s_journal)
626 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
627 save_error_info(sb, function, line);
628 }
629 if (test_opt(sb, ERRORS_PANIC))
630 panic("EXT4-fs panic from previous error\n");
631 }
632
633 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
634 {
635 struct va_format vaf;
636 va_list args;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643 }
644
645 void __ext4_warning(struct super_block *sb, const char *function,
646 unsigned int line, const char *fmt, ...)
647 {
648 struct va_format vaf;
649 va_list args;
650
651 va_start(args, fmt);
652 vaf.fmt = fmt;
653 vaf.va = &args;
654 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
655 sb->s_id, function, line, &vaf);
656 va_end(args);
657 }
658
659 void __ext4_grp_locked_error(const char *function, unsigned int line,
660 struct super_block *sb, ext4_group_t grp,
661 unsigned long ino, ext4_fsblk_t block,
662 const char *fmt, ...)
663 __releases(bitlock)
664 __acquires(bitlock)
665 {
666 struct va_format vaf;
667 va_list args;
668 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
669
670 es->s_last_error_ino = cpu_to_le32(ino);
671 es->s_last_error_block = cpu_to_le64(block);
672 __save_error_info(sb, function, line);
673
674 va_start(args, fmt);
675
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
679 sb->s_id, function, line, grp);
680 if (ino)
681 printk(KERN_CONT "inode %lu: ", ino);
682 if (block)
683 printk(KERN_CONT "block %llu:", (unsigned long long) block);
684 printk(KERN_CONT "%pV\n", &vaf);
685 va_end(args);
686
687 if (test_opt(sb, ERRORS_CONT)) {
688 ext4_commit_super(sb, 0);
689 return;
690 }
691
692 ext4_unlock_group(sb, grp);
693 ext4_handle_error(sb);
694 /*
695 * We only get here in the ERRORS_RO case; relocking the group
696 * may be dangerous, but nothing bad will happen since the
697 * filesystem will have already been marked read/only and the
698 * journal has been aborted. We return 1 as a hint to callers
699 * who might what to use the return value from
700 * ext4_grp_locked_error() to distinguish between the
701 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
702 * aggressively from the ext4 function in question, with a
703 * more appropriate error code.
704 */
705 ext4_lock_group(sb, grp);
706 return;
707 }
708
709 void ext4_update_dynamic_rev(struct super_block *sb)
710 {
711 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
712
713 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
714 return;
715
716 ext4_warning(sb,
717 "updating to rev %d because of new feature flag, "
718 "running e2fsck is recommended",
719 EXT4_DYNAMIC_REV);
720
721 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
722 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
723 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
724 /* leave es->s_feature_*compat flags alone */
725 /* es->s_uuid will be set by e2fsck if empty */
726
727 /*
728 * The rest of the superblock fields should be zero, and if not it
729 * means they are likely already in use, so leave them alone. We
730 * can leave it up to e2fsck to clean up any inconsistencies there.
731 */
732 }
733
734 /*
735 * Open the external journal device
736 */
737 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
738 {
739 struct block_device *bdev;
740 char b[BDEVNAME_SIZE];
741
742 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
743 if (IS_ERR(bdev))
744 goto fail;
745 return bdev;
746
747 fail:
748 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
749 __bdevname(dev, b), PTR_ERR(bdev));
750 return NULL;
751 }
752
753 /*
754 * Release the journal device
755 */
756 static int ext4_blkdev_put(struct block_device *bdev)
757 {
758 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
759 }
760
761 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
762 {
763 struct block_device *bdev;
764 int ret = -ENODEV;
765
766 bdev = sbi->journal_bdev;
767 if (bdev) {
768 ret = ext4_blkdev_put(bdev);
769 sbi->journal_bdev = NULL;
770 }
771 return ret;
772 }
773
774 static inline struct inode *orphan_list_entry(struct list_head *l)
775 {
776 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
777 }
778
779 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
780 {
781 struct list_head *l;
782
783 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
784 le32_to_cpu(sbi->s_es->s_last_orphan));
785
786 printk(KERN_ERR "sb_info orphan list:\n");
787 list_for_each(l, &sbi->s_orphan) {
788 struct inode *inode = orphan_list_entry(l);
789 printk(KERN_ERR " "
790 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
791 inode->i_sb->s_id, inode->i_ino, inode,
792 inode->i_mode, inode->i_nlink,
793 NEXT_ORPHAN(inode));
794 }
795 }
796
797 static void ext4_put_super(struct super_block *sb)
798 {
799 struct ext4_sb_info *sbi = EXT4_SB(sb);
800 struct ext4_super_block *es = sbi->s_es;
801 int i, err;
802
803 ext4_unregister_li_request(sb);
804 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
805
806 flush_workqueue(sbi->dio_unwritten_wq);
807 destroy_workqueue(sbi->dio_unwritten_wq);
808
809 lock_super(sb);
810 if (sb->s_dirt)
811 ext4_commit_super(sb, 1);
812
813 if (sbi->s_journal) {
814 err = jbd2_journal_destroy(sbi->s_journal);
815 sbi->s_journal = NULL;
816 if (err < 0)
817 ext4_abort(sb, "Couldn't clean up the journal");
818 }
819
820 del_timer(&sbi->s_err_report);
821 ext4_release_system_zone(sb);
822 ext4_mb_release(sb);
823 ext4_ext_release(sb);
824 ext4_xattr_put_super(sb);
825
826 if (!(sb->s_flags & MS_RDONLY)) {
827 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
828 es->s_state = cpu_to_le16(sbi->s_mount_state);
829 ext4_commit_super(sb, 1);
830 }
831 if (sbi->s_proc) {
832 remove_proc_entry(sb->s_id, ext4_proc_root);
833 }
834 kobject_del(&sbi->s_kobj);
835
836 for (i = 0; i < sbi->s_gdb_count; i++)
837 brelse(sbi->s_group_desc[i]);
838 ext4_kvfree(sbi->s_group_desc);
839 ext4_kvfree(sbi->s_flex_groups);
840 percpu_counter_destroy(&sbi->s_freeclusters_counter);
841 percpu_counter_destroy(&sbi->s_freeinodes_counter);
842 percpu_counter_destroy(&sbi->s_dirs_counter);
843 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
844 brelse(sbi->s_sbh);
845 #ifdef CONFIG_QUOTA
846 for (i = 0; i < MAXQUOTAS; i++)
847 kfree(sbi->s_qf_names[i]);
848 #endif
849
850 /* Debugging code just in case the in-memory inode orphan list
851 * isn't empty. The on-disk one can be non-empty if we've
852 * detected an error and taken the fs readonly, but the
853 * in-memory list had better be clean by this point. */
854 if (!list_empty(&sbi->s_orphan))
855 dump_orphan_list(sb, sbi);
856 J_ASSERT(list_empty(&sbi->s_orphan));
857
858 invalidate_bdev(sb->s_bdev);
859 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
860 /*
861 * Invalidate the journal device's buffers. We don't want them
862 * floating about in memory - the physical journal device may
863 * hotswapped, and it breaks the `ro-after' testing code.
864 */
865 sync_blockdev(sbi->journal_bdev);
866 invalidate_bdev(sbi->journal_bdev);
867 ext4_blkdev_remove(sbi);
868 }
869 if (sbi->s_mmp_tsk)
870 kthread_stop(sbi->s_mmp_tsk);
871 sb->s_fs_info = NULL;
872 /*
873 * Now that we are completely done shutting down the
874 * superblock, we need to actually destroy the kobject.
875 */
876 unlock_super(sb);
877 kobject_put(&sbi->s_kobj);
878 wait_for_completion(&sbi->s_kobj_unregister);
879 kfree(sbi->s_blockgroup_lock);
880 kfree(sbi);
881 }
882
883 static struct kmem_cache *ext4_inode_cachep;
884
885 /*
886 * Called inside transaction, so use GFP_NOFS
887 */
888 static struct inode *ext4_alloc_inode(struct super_block *sb)
889 {
890 struct ext4_inode_info *ei;
891
892 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
893 if (!ei)
894 return NULL;
895
896 ei->vfs_inode.i_version = 1;
897 ei->vfs_inode.i_data.writeback_index = 0;
898 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
899 INIT_LIST_HEAD(&ei->i_prealloc_list);
900 spin_lock_init(&ei->i_prealloc_lock);
901 ei->i_reserved_data_blocks = 0;
902 ei->i_reserved_meta_blocks = 0;
903 ei->i_allocated_meta_blocks = 0;
904 ei->i_da_metadata_calc_len = 0;
905 spin_lock_init(&(ei->i_block_reservation_lock));
906 #ifdef CONFIG_QUOTA
907 ei->i_reserved_quota = 0;
908 #endif
909 ei->jinode = NULL;
910 INIT_LIST_HEAD(&ei->i_completed_io_list);
911 spin_lock_init(&ei->i_completed_io_lock);
912 ei->cur_aio_dio = NULL;
913 ei->i_sync_tid = 0;
914 ei->i_datasync_tid = 0;
915 atomic_set(&ei->i_ioend_count, 0);
916 atomic_set(&ei->i_aiodio_unwritten, 0);
917
918 return &ei->vfs_inode;
919 }
920
921 static int ext4_drop_inode(struct inode *inode)
922 {
923 int drop = generic_drop_inode(inode);
924
925 trace_ext4_drop_inode(inode, drop);
926 return drop;
927 }
928
929 static void ext4_i_callback(struct rcu_head *head)
930 {
931 struct inode *inode = container_of(head, struct inode, i_rcu);
932 INIT_LIST_HEAD(&inode->i_dentry);
933 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
934 }
935
936 static void ext4_destroy_inode(struct inode *inode)
937 {
938 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
939 ext4_msg(inode->i_sb, KERN_ERR,
940 "Inode %lu (%p): orphan list check failed!",
941 inode->i_ino, EXT4_I(inode));
942 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
943 EXT4_I(inode), sizeof(struct ext4_inode_info),
944 true);
945 dump_stack();
946 }
947 call_rcu(&inode->i_rcu, ext4_i_callback);
948 }
949
950 static void init_once(void *foo)
951 {
952 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
953
954 INIT_LIST_HEAD(&ei->i_orphan);
955 #ifdef CONFIG_EXT4_FS_XATTR
956 init_rwsem(&ei->xattr_sem);
957 #endif
958 init_rwsem(&ei->i_data_sem);
959 inode_init_once(&ei->vfs_inode);
960 }
961
962 static int init_inodecache(void)
963 {
964 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
965 sizeof(struct ext4_inode_info),
966 0, (SLAB_RECLAIM_ACCOUNT|
967 SLAB_MEM_SPREAD),
968 init_once);
969 if (ext4_inode_cachep == NULL)
970 return -ENOMEM;
971 return 0;
972 }
973
974 static void destroy_inodecache(void)
975 {
976 kmem_cache_destroy(ext4_inode_cachep);
977 }
978
979 void ext4_clear_inode(struct inode *inode)
980 {
981 invalidate_inode_buffers(inode);
982 end_writeback(inode);
983 dquot_drop(inode);
984 ext4_discard_preallocations(inode);
985 if (EXT4_I(inode)->jinode) {
986 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
987 EXT4_I(inode)->jinode);
988 jbd2_free_inode(EXT4_I(inode)->jinode);
989 EXT4_I(inode)->jinode = NULL;
990 }
991 }
992
993 static inline void ext4_show_quota_options(struct seq_file *seq,
994 struct super_block *sb)
995 {
996 #if defined(CONFIG_QUOTA)
997 struct ext4_sb_info *sbi = EXT4_SB(sb);
998
999 if (sbi->s_jquota_fmt) {
1000 char *fmtname = "";
1001
1002 switch (sbi->s_jquota_fmt) {
1003 case QFMT_VFS_OLD:
1004 fmtname = "vfsold";
1005 break;
1006 case QFMT_VFS_V0:
1007 fmtname = "vfsv0";
1008 break;
1009 case QFMT_VFS_V1:
1010 fmtname = "vfsv1";
1011 break;
1012 }
1013 seq_printf(seq, ",jqfmt=%s", fmtname);
1014 }
1015
1016 if (sbi->s_qf_names[USRQUOTA])
1017 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1018
1019 if (sbi->s_qf_names[GRPQUOTA])
1020 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1021
1022 if (test_opt(sb, USRQUOTA))
1023 seq_puts(seq, ",usrquota");
1024
1025 if (test_opt(sb, GRPQUOTA))
1026 seq_puts(seq, ",grpquota");
1027 #endif
1028 }
1029
1030 /*
1031 * Show an option if
1032 * - it's set to a non-default value OR
1033 * - if the per-sb default is different from the global default
1034 */
1035 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
1036 {
1037 int def_errors;
1038 unsigned long def_mount_opts;
1039 struct super_block *sb = vfs->mnt_sb;
1040 struct ext4_sb_info *sbi = EXT4_SB(sb);
1041 struct ext4_super_block *es = sbi->s_es;
1042
1043 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1044 def_errors = le16_to_cpu(es->s_errors);
1045
1046 if (sbi->s_sb_block != 1)
1047 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1048 if (test_opt(sb, MINIX_DF))
1049 seq_puts(seq, ",minixdf");
1050 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1051 seq_puts(seq, ",grpid");
1052 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1053 seq_puts(seq, ",nogrpid");
1054 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1055 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1056 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1057 }
1058 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1059 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1060 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1061 }
1062 if (test_opt(sb, ERRORS_RO)) {
1063 if (def_errors == EXT4_ERRORS_PANIC ||
1064 def_errors == EXT4_ERRORS_CONTINUE) {
1065 seq_puts(seq, ",errors=remount-ro");
1066 }
1067 }
1068 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1069 seq_puts(seq, ",errors=continue");
1070 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1071 seq_puts(seq, ",errors=panic");
1072 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1073 seq_puts(seq, ",nouid32");
1074 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1075 seq_puts(seq, ",debug");
1076 if (test_opt(sb, OLDALLOC))
1077 seq_puts(seq, ",oldalloc");
1078 #ifdef CONFIG_EXT4_FS_XATTR
1079 if (test_opt(sb, XATTR_USER))
1080 seq_puts(seq, ",user_xattr");
1081 if (!test_opt(sb, XATTR_USER))
1082 seq_puts(seq, ",nouser_xattr");
1083 #endif
1084 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1085 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1086 seq_puts(seq, ",acl");
1087 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1088 seq_puts(seq, ",noacl");
1089 #endif
1090 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1091 seq_printf(seq, ",commit=%u",
1092 (unsigned) (sbi->s_commit_interval / HZ));
1093 }
1094 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1095 seq_printf(seq, ",min_batch_time=%u",
1096 (unsigned) sbi->s_min_batch_time);
1097 }
1098 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1099 seq_printf(seq, ",max_batch_time=%u",
1100 (unsigned) sbi->s_min_batch_time);
1101 }
1102
1103 /*
1104 * We're changing the default of barrier mount option, so
1105 * let's always display its mount state so it's clear what its
1106 * status is.
1107 */
1108 seq_puts(seq, ",barrier=");
1109 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1110 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1111 seq_puts(seq, ",journal_async_commit");
1112 else if (test_opt(sb, JOURNAL_CHECKSUM))
1113 seq_puts(seq, ",journal_checksum");
1114 if (test_opt(sb, I_VERSION))
1115 seq_puts(seq, ",i_version");
1116 if (!test_opt(sb, DELALLOC) &&
1117 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1118 seq_puts(seq, ",nodelalloc");
1119
1120 if (!test_opt(sb, MBLK_IO_SUBMIT))
1121 seq_puts(seq, ",nomblk_io_submit");
1122 if (sbi->s_stripe)
1123 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1124 /*
1125 * journal mode get enabled in different ways
1126 * So just print the value even if we didn't specify it
1127 */
1128 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1129 seq_puts(seq, ",data=journal");
1130 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1131 seq_puts(seq, ",data=ordered");
1132 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1133 seq_puts(seq, ",data=writeback");
1134
1135 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1136 seq_printf(seq, ",inode_readahead_blks=%u",
1137 sbi->s_inode_readahead_blks);
1138
1139 if (test_opt(sb, DATA_ERR_ABORT))
1140 seq_puts(seq, ",data_err=abort");
1141
1142 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1143 seq_puts(seq, ",noauto_da_alloc");
1144
1145 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1146 seq_puts(seq, ",discard");
1147
1148 if (test_opt(sb, NOLOAD))
1149 seq_puts(seq, ",norecovery");
1150
1151 if (test_opt(sb, DIOREAD_NOLOCK))
1152 seq_puts(seq, ",dioread_nolock");
1153
1154 if (test_opt(sb, BLOCK_VALIDITY) &&
1155 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1156 seq_puts(seq, ",block_validity");
1157
1158 if (!test_opt(sb, INIT_INODE_TABLE))
1159 seq_puts(seq, ",noinit_inode_table");
1160 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1161 seq_printf(seq, ",init_inode_table=%u",
1162 (unsigned) sbi->s_li_wait_mult);
1163
1164 ext4_show_quota_options(seq, sb);
1165
1166 return 0;
1167 }
1168
1169 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1170 u64 ino, u32 generation)
1171 {
1172 struct inode *inode;
1173
1174 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1175 return ERR_PTR(-ESTALE);
1176 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1177 return ERR_PTR(-ESTALE);
1178
1179 /* iget isn't really right if the inode is currently unallocated!!
1180 *
1181 * ext4_read_inode will return a bad_inode if the inode had been
1182 * deleted, so we should be safe.
1183 *
1184 * Currently we don't know the generation for parent directory, so
1185 * a generation of 0 means "accept any"
1186 */
1187 inode = ext4_iget(sb, ino);
1188 if (IS_ERR(inode))
1189 return ERR_CAST(inode);
1190 if (generation && inode->i_generation != generation) {
1191 iput(inode);
1192 return ERR_PTR(-ESTALE);
1193 }
1194
1195 return inode;
1196 }
1197
1198 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1199 int fh_len, int fh_type)
1200 {
1201 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1202 ext4_nfs_get_inode);
1203 }
1204
1205 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1206 int fh_len, int fh_type)
1207 {
1208 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1209 ext4_nfs_get_inode);
1210 }
1211
1212 /*
1213 * Try to release metadata pages (indirect blocks, directories) which are
1214 * mapped via the block device. Since these pages could have journal heads
1215 * which would prevent try_to_free_buffers() from freeing them, we must use
1216 * jbd2 layer's try_to_free_buffers() function to release them.
1217 */
1218 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1219 gfp_t wait)
1220 {
1221 journal_t *journal = EXT4_SB(sb)->s_journal;
1222
1223 WARN_ON(PageChecked(page));
1224 if (!page_has_buffers(page))
1225 return 0;
1226 if (journal)
1227 return jbd2_journal_try_to_free_buffers(journal, page,
1228 wait & ~__GFP_WAIT);
1229 return try_to_free_buffers(page);
1230 }
1231
1232 #ifdef CONFIG_QUOTA
1233 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1234 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1235
1236 static int ext4_write_dquot(struct dquot *dquot);
1237 static int ext4_acquire_dquot(struct dquot *dquot);
1238 static int ext4_release_dquot(struct dquot *dquot);
1239 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1240 static int ext4_write_info(struct super_block *sb, int type);
1241 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1242 struct path *path);
1243 static int ext4_quota_off(struct super_block *sb, int type);
1244 static int ext4_quota_on_mount(struct super_block *sb, int type);
1245 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1246 size_t len, loff_t off);
1247 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1248 const char *data, size_t len, loff_t off);
1249
1250 static const struct dquot_operations ext4_quota_operations = {
1251 .get_reserved_space = ext4_get_reserved_space,
1252 .write_dquot = ext4_write_dquot,
1253 .acquire_dquot = ext4_acquire_dquot,
1254 .release_dquot = ext4_release_dquot,
1255 .mark_dirty = ext4_mark_dquot_dirty,
1256 .write_info = ext4_write_info,
1257 .alloc_dquot = dquot_alloc,
1258 .destroy_dquot = dquot_destroy,
1259 };
1260
1261 static const struct quotactl_ops ext4_qctl_operations = {
1262 .quota_on = ext4_quota_on,
1263 .quota_off = ext4_quota_off,
1264 .quota_sync = dquot_quota_sync,
1265 .get_info = dquot_get_dqinfo,
1266 .set_info = dquot_set_dqinfo,
1267 .get_dqblk = dquot_get_dqblk,
1268 .set_dqblk = dquot_set_dqblk
1269 };
1270 #endif
1271
1272 static const struct super_operations ext4_sops = {
1273 .alloc_inode = ext4_alloc_inode,
1274 .destroy_inode = ext4_destroy_inode,
1275 .write_inode = ext4_write_inode,
1276 .dirty_inode = ext4_dirty_inode,
1277 .drop_inode = ext4_drop_inode,
1278 .evict_inode = ext4_evict_inode,
1279 .put_super = ext4_put_super,
1280 .sync_fs = ext4_sync_fs,
1281 .freeze_fs = ext4_freeze,
1282 .unfreeze_fs = ext4_unfreeze,
1283 .statfs = ext4_statfs,
1284 .remount_fs = ext4_remount,
1285 .show_options = ext4_show_options,
1286 #ifdef CONFIG_QUOTA
1287 .quota_read = ext4_quota_read,
1288 .quota_write = ext4_quota_write,
1289 #endif
1290 .bdev_try_to_free_page = bdev_try_to_free_page,
1291 };
1292
1293 static const struct super_operations ext4_nojournal_sops = {
1294 .alloc_inode = ext4_alloc_inode,
1295 .destroy_inode = ext4_destroy_inode,
1296 .write_inode = ext4_write_inode,
1297 .dirty_inode = ext4_dirty_inode,
1298 .drop_inode = ext4_drop_inode,
1299 .evict_inode = ext4_evict_inode,
1300 .write_super = ext4_write_super,
1301 .put_super = ext4_put_super,
1302 .statfs = ext4_statfs,
1303 .remount_fs = ext4_remount,
1304 .show_options = ext4_show_options,
1305 #ifdef CONFIG_QUOTA
1306 .quota_read = ext4_quota_read,
1307 .quota_write = ext4_quota_write,
1308 #endif
1309 .bdev_try_to_free_page = bdev_try_to_free_page,
1310 };
1311
1312 static const struct export_operations ext4_export_ops = {
1313 .fh_to_dentry = ext4_fh_to_dentry,
1314 .fh_to_parent = ext4_fh_to_parent,
1315 .get_parent = ext4_get_parent,
1316 };
1317
1318 enum {
1319 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1320 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1321 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1322 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1323 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1324 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1325 Opt_journal_update, Opt_journal_dev,
1326 Opt_journal_checksum, Opt_journal_async_commit,
1327 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1328 Opt_data_err_abort, Opt_data_err_ignore,
1329 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1330 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1331 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1332 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1333 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1334 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1335 Opt_inode_readahead_blks, Opt_journal_ioprio,
1336 Opt_dioread_nolock, Opt_dioread_lock,
1337 Opt_discard, Opt_nodiscard,
1338 Opt_init_inode_table, Opt_noinit_inode_table,
1339 };
1340
1341 static const match_table_t tokens = {
1342 {Opt_bsd_df, "bsddf"},
1343 {Opt_minix_df, "minixdf"},
1344 {Opt_grpid, "grpid"},
1345 {Opt_grpid, "bsdgroups"},
1346 {Opt_nogrpid, "nogrpid"},
1347 {Opt_nogrpid, "sysvgroups"},
1348 {Opt_resgid, "resgid=%u"},
1349 {Opt_resuid, "resuid=%u"},
1350 {Opt_sb, "sb=%u"},
1351 {Opt_err_cont, "errors=continue"},
1352 {Opt_err_panic, "errors=panic"},
1353 {Opt_err_ro, "errors=remount-ro"},
1354 {Opt_nouid32, "nouid32"},
1355 {Opt_debug, "debug"},
1356 {Opt_oldalloc, "oldalloc"},
1357 {Opt_orlov, "orlov"},
1358 {Opt_user_xattr, "user_xattr"},
1359 {Opt_nouser_xattr, "nouser_xattr"},
1360 {Opt_acl, "acl"},
1361 {Opt_noacl, "noacl"},
1362 {Opt_noload, "noload"},
1363 {Opt_noload, "norecovery"},
1364 {Opt_nobh, "nobh"},
1365 {Opt_bh, "bh"},
1366 {Opt_commit, "commit=%u"},
1367 {Opt_min_batch_time, "min_batch_time=%u"},
1368 {Opt_max_batch_time, "max_batch_time=%u"},
1369 {Opt_journal_update, "journal=update"},
1370 {Opt_journal_dev, "journal_dev=%u"},
1371 {Opt_journal_checksum, "journal_checksum"},
1372 {Opt_journal_async_commit, "journal_async_commit"},
1373 {Opt_abort, "abort"},
1374 {Opt_data_journal, "data=journal"},
1375 {Opt_data_ordered, "data=ordered"},
1376 {Opt_data_writeback, "data=writeback"},
1377 {Opt_data_err_abort, "data_err=abort"},
1378 {Opt_data_err_ignore, "data_err=ignore"},
1379 {Opt_offusrjquota, "usrjquota="},
1380 {Opt_usrjquota, "usrjquota=%s"},
1381 {Opt_offgrpjquota, "grpjquota="},
1382 {Opt_grpjquota, "grpjquota=%s"},
1383 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1384 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1385 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1386 {Opt_grpquota, "grpquota"},
1387 {Opt_noquota, "noquota"},
1388 {Opt_quota, "quota"},
1389 {Opt_usrquota, "usrquota"},
1390 {Opt_barrier, "barrier=%u"},
1391 {Opt_barrier, "barrier"},
1392 {Opt_nobarrier, "nobarrier"},
1393 {Opt_i_version, "i_version"},
1394 {Opt_stripe, "stripe=%u"},
1395 {Opt_resize, "resize"},
1396 {Opt_delalloc, "delalloc"},
1397 {Opt_nodelalloc, "nodelalloc"},
1398 {Opt_mblk_io_submit, "mblk_io_submit"},
1399 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1400 {Opt_block_validity, "block_validity"},
1401 {Opt_noblock_validity, "noblock_validity"},
1402 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1403 {Opt_journal_ioprio, "journal_ioprio=%u"},
1404 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1405 {Opt_auto_da_alloc, "auto_da_alloc"},
1406 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1407 {Opt_dioread_nolock, "dioread_nolock"},
1408 {Opt_dioread_lock, "dioread_lock"},
1409 {Opt_discard, "discard"},
1410 {Opt_nodiscard, "nodiscard"},
1411 {Opt_init_inode_table, "init_itable=%u"},
1412 {Opt_init_inode_table, "init_itable"},
1413 {Opt_noinit_inode_table, "noinit_itable"},
1414 {Opt_err, NULL},
1415 };
1416
1417 static ext4_fsblk_t get_sb_block(void **data)
1418 {
1419 ext4_fsblk_t sb_block;
1420 char *options = (char *) *data;
1421
1422 if (!options || strncmp(options, "sb=", 3) != 0)
1423 return 1; /* Default location */
1424
1425 options += 3;
1426 /* TODO: use simple_strtoll with >32bit ext4 */
1427 sb_block = simple_strtoul(options, &options, 0);
1428 if (*options && *options != ',') {
1429 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1430 (char *) *data);
1431 return 1;
1432 }
1433 if (*options == ',')
1434 options++;
1435 *data = (void *) options;
1436
1437 return sb_block;
1438 }
1439
1440 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1441 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1442 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1443
1444 #ifdef CONFIG_QUOTA
1445 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1446 {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 char *qname;
1449
1450 if (sb_any_quota_loaded(sb) &&
1451 !sbi->s_qf_names[qtype]) {
1452 ext4_msg(sb, KERN_ERR,
1453 "Cannot change journaled "
1454 "quota options when quota turned on");
1455 return 0;
1456 }
1457 qname = match_strdup(args);
1458 if (!qname) {
1459 ext4_msg(sb, KERN_ERR,
1460 "Not enough memory for storing quotafile name");
1461 return 0;
1462 }
1463 if (sbi->s_qf_names[qtype] &&
1464 strcmp(sbi->s_qf_names[qtype], qname)) {
1465 ext4_msg(sb, KERN_ERR,
1466 "%s quota file already specified", QTYPE2NAME(qtype));
1467 kfree(qname);
1468 return 0;
1469 }
1470 sbi->s_qf_names[qtype] = qname;
1471 if (strchr(sbi->s_qf_names[qtype], '/')) {
1472 ext4_msg(sb, KERN_ERR,
1473 "quotafile must be on filesystem root");
1474 kfree(sbi->s_qf_names[qtype]);
1475 sbi->s_qf_names[qtype] = NULL;
1476 return 0;
1477 }
1478 set_opt(sb, QUOTA);
1479 return 1;
1480 }
1481
1482 static int clear_qf_name(struct super_block *sb, int qtype)
1483 {
1484
1485 struct ext4_sb_info *sbi = EXT4_SB(sb);
1486
1487 if (sb_any_quota_loaded(sb) &&
1488 sbi->s_qf_names[qtype]) {
1489 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1490 " when quota turned on");
1491 return 0;
1492 }
1493 /*
1494 * The space will be released later when all options are confirmed
1495 * to be correct
1496 */
1497 sbi->s_qf_names[qtype] = NULL;
1498 return 1;
1499 }
1500 #endif
1501
1502 static int parse_options(char *options, struct super_block *sb,
1503 unsigned long *journal_devnum,
1504 unsigned int *journal_ioprio,
1505 ext4_fsblk_t *n_blocks_count, int is_remount)
1506 {
1507 struct ext4_sb_info *sbi = EXT4_SB(sb);
1508 char *p;
1509 substring_t args[MAX_OPT_ARGS];
1510 int data_opt = 0;
1511 int option;
1512 #ifdef CONFIG_QUOTA
1513 int qfmt;
1514 #endif
1515
1516 if (!options)
1517 return 1;
1518
1519 while ((p = strsep(&options, ",")) != NULL) {
1520 int token;
1521 if (!*p)
1522 continue;
1523
1524 /*
1525 * Initialize args struct so we know whether arg was
1526 * found; some options take optional arguments.
1527 */
1528 args[0].to = args[0].from = NULL;
1529 token = match_token(p, tokens, args);
1530 switch (token) {
1531 case Opt_bsd_df:
1532 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1533 clear_opt(sb, MINIX_DF);
1534 break;
1535 case Opt_minix_df:
1536 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1537 set_opt(sb, MINIX_DF);
1538
1539 break;
1540 case Opt_grpid:
1541 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1542 set_opt(sb, GRPID);
1543
1544 break;
1545 case Opt_nogrpid:
1546 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1547 clear_opt(sb, GRPID);
1548
1549 break;
1550 case Opt_resuid:
1551 if (match_int(&args[0], &option))
1552 return 0;
1553 sbi->s_resuid = option;
1554 break;
1555 case Opt_resgid:
1556 if (match_int(&args[0], &option))
1557 return 0;
1558 sbi->s_resgid = option;
1559 break;
1560 case Opt_sb:
1561 /* handled by get_sb_block() instead of here */
1562 /* *sb_block = match_int(&args[0]); */
1563 break;
1564 case Opt_err_panic:
1565 clear_opt(sb, ERRORS_CONT);
1566 clear_opt(sb, ERRORS_RO);
1567 set_opt(sb, ERRORS_PANIC);
1568 break;
1569 case Opt_err_ro:
1570 clear_opt(sb, ERRORS_CONT);
1571 clear_opt(sb, ERRORS_PANIC);
1572 set_opt(sb, ERRORS_RO);
1573 break;
1574 case Opt_err_cont:
1575 clear_opt(sb, ERRORS_RO);
1576 clear_opt(sb, ERRORS_PANIC);
1577 set_opt(sb, ERRORS_CONT);
1578 break;
1579 case Opt_nouid32:
1580 set_opt(sb, NO_UID32);
1581 break;
1582 case Opt_debug:
1583 set_opt(sb, DEBUG);
1584 break;
1585 case Opt_oldalloc:
1586 set_opt(sb, OLDALLOC);
1587 break;
1588 case Opt_orlov:
1589 clear_opt(sb, OLDALLOC);
1590 break;
1591 #ifdef CONFIG_EXT4_FS_XATTR
1592 case Opt_user_xattr:
1593 set_opt(sb, XATTR_USER);
1594 break;
1595 case Opt_nouser_xattr:
1596 clear_opt(sb, XATTR_USER);
1597 break;
1598 #else
1599 case Opt_user_xattr:
1600 case Opt_nouser_xattr:
1601 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1602 break;
1603 #endif
1604 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1605 case Opt_acl:
1606 set_opt(sb, POSIX_ACL);
1607 break;
1608 case Opt_noacl:
1609 clear_opt(sb, POSIX_ACL);
1610 break;
1611 #else
1612 case Opt_acl:
1613 case Opt_noacl:
1614 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1615 break;
1616 #endif
1617 case Opt_journal_update:
1618 /* @@@ FIXME */
1619 /* Eventually we will want to be able to create
1620 a journal file here. For now, only allow the
1621 user to specify an existing inode to be the
1622 journal file. */
1623 if (is_remount) {
1624 ext4_msg(sb, KERN_ERR,
1625 "Cannot specify journal on remount");
1626 return 0;
1627 }
1628 set_opt(sb, UPDATE_JOURNAL);
1629 break;
1630 case Opt_journal_dev:
1631 if (is_remount) {
1632 ext4_msg(sb, KERN_ERR,
1633 "Cannot specify journal on remount");
1634 return 0;
1635 }
1636 if (match_int(&args[0], &option))
1637 return 0;
1638 *journal_devnum = option;
1639 break;
1640 case Opt_journal_checksum:
1641 set_opt(sb, JOURNAL_CHECKSUM);
1642 break;
1643 case Opt_journal_async_commit:
1644 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1645 set_opt(sb, JOURNAL_CHECKSUM);
1646 break;
1647 case Opt_noload:
1648 set_opt(sb, NOLOAD);
1649 break;
1650 case Opt_commit:
1651 if (match_int(&args[0], &option))
1652 return 0;
1653 if (option < 0)
1654 return 0;
1655 if (option == 0)
1656 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1657 sbi->s_commit_interval = HZ * option;
1658 break;
1659 case Opt_max_batch_time:
1660 if (match_int(&args[0], &option))
1661 return 0;
1662 if (option < 0)
1663 return 0;
1664 if (option == 0)
1665 option = EXT4_DEF_MAX_BATCH_TIME;
1666 sbi->s_max_batch_time = option;
1667 break;
1668 case Opt_min_batch_time:
1669 if (match_int(&args[0], &option))
1670 return 0;
1671 if (option < 0)
1672 return 0;
1673 sbi->s_min_batch_time = option;
1674 break;
1675 case Opt_data_journal:
1676 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1677 goto datacheck;
1678 case Opt_data_ordered:
1679 data_opt = EXT4_MOUNT_ORDERED_DATA;
1680 goto datacheck;
1681 case Opt_data_writeback:
1682 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1683 datacheck:
1684 if (is_remount) {
1685 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1686 ext4_msg(sb, KERN_ERR,
1687 "Cannot change data mode on remount");
1688 return 0;
1689 }
1690 } else {
1691 clear_opt(sb, DATA_FLAGS);
1692 sbi->s_mount_opt |= data_opt;
1693 }
1694 break;
1695 case Opt_data_err_abort:
1696 set_opt(sb, DATA_ERR_ABORT);
1697 break;
1698 case Opt_data_err_ignore:
1699 clear_opt(sb, DATA_ERR_ABORT);
1700 break;
1701 #ifdef CONFIG_QUOTA
1702 case Opt_usrjquota:
1703 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1704 return 0;
1705 break;
1706 case Opt_grpjquota:
1707 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1708 return 0;
1709 break;
1710 case Opt_offusrjquota:
1711 if (!clear_qf_name(sb, USRQUOTA))
1712 return 0;
1713 break;
1714 case Opt_offgrpjquota:
1715 if (!clear_qf_name(sb, GRPQUOTA))
1716 return 0;
1717 break;
1718
1719 case Opt_jqfmt_vfsold:
1720 qfmt = QFMT_VFS_OLD;
1721 goto set_qf_format;
1722 case Opt_jqfmt_vfsv0:
1723 qfmt = QFMT_VFS_V0;
1724 goto set_qf_format;
1725 case Opt_jqfmt_vfsv1:
1726 qfmt = QFMT_VFS_V1;
1727 set_qf_format:
1728 if (sb_any_quota_loaded(sb) &&
1729 sbi->s_jquota_fmt != qfmt) {
1730 ext4_msg(sb, KERN_ERR, "Cannot change "
1731 "journaled quota options when "
1732 "quota turned on");
1733 return 0;
1734 }
1735 sbi->s_jquota_fmt = qfmt;
1736 break;
1737 case Opt_quota:
1738 case Opt_usrquota:
1739 set_opt(sb, QUOTA);
1740 set_opt(sb, USRQUOTA);
1741 break;
1742 case Opt_grpquota:
1743 set_opt(sb, QUOTA);
1744 set_opt(sb, GRPQUOTA);
1745 break;
1746 case Opt_noquota:
1747 if (sb_any_quota_loaded(sb)) {
1748 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1749 "options when quota turned on");
1750 return 0;
1751 }
1752 clear_opt(sb, QUOTA);
1753 clear_opt(sb, USRQUOTA);
1754 clear_opt(sb, GRPQUOTA);
1755 break;
1756 #else
1757 case Opt_quota:
1758 case Opt_usrquota:
1759 case Opt_grpquota:
1760 ext4_msg(sb, KERN_ERR,
1761 "quota options not supported");
1762 break;
1763 case Opt_usrjquota:
1764 case Opt_grpjquota:
1765 case Opt_offusrjquota:
1766 case Opt_offgrpjquota:
1767 case Opt_jqfmt_vfsold:
1768 case Opt_jqfmt_vfsv0:
1769 case Opt_jqfmt_vfsv1:
1770 ext4_msg(sb, KERN_ERR,
1771 "journaled quota options not supported");
1772 break;
1773 case Opt_noquota:
1774 break;
1775 #endif
1776 case Opt_abort:
1777 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1778 break;
1779 case Opt_nobarrier:
1780 clear_opt(sb, BARRIER);
1781 break;
1782 case Opt_barrier:
1783 if (args[0].from) {
1784 if (match_int(&args[0], &option))
1785 return 0;
1786 } else
1787 option = 1; /* No argument, default to 1 */
1788 if (option)
1789 set_opt(sb, BARRIER);
1790 else
1791 clear_opt(sb, BARRIER);
1792 break;
1793 case Opt_ignore:
1794 break;
1795 case Opt_resize:
1796 if (!is_remount) {
1797 ext4_msg(sb, KERN_ERR,
1798 "resize option only available "
1799 "for remount");
1800 return 0;
1801 }
1802 if (match_int(&args[0], &option) != 0)
1803 return 0;
1804 *n_blocks_count = option;
1805 break;
1806 case Opt_nobh:
1807 ext4_msg(sb, KERN_WARNING,
1808 "Ignoring deprecated nobh option");
1809 break;
1810 case Opt_bh:
1811 ext4_msg(sb, KERN_WARNING,
1812 "Ignoring deprecated bh option");
1813 break;
1814 case Opt_i_version:
1815 set_opt(sb, I_VERSION);
1816 sb->s_flags |= MS_I_VERSION;
1817 break;
1818 case Opt_nodelalloc:
1819 clear_opt(sb, DELALLOC);
1820 clear_opt2(sb, EXPLICIT_DELALLOC);
1821 break;
1822 case Opt_mblk_io_submit:
1823 set_opt(sb, MBLK_IO_SUBMIT);
1824 break;
1825 case Opt_nomblk_io_submit:
1826 clear_opt(sb, MBLK_IO_SUBMIT);
1827 break;
1828 case Opt_stripe:
1829 if (match_int(&args[0], &option))
1830 return 0;
1831 if (option < 0)
1832 return 0;
1833 sbi->s_stripe = option;
1834 break;
1835 case Opt_delalloc:
1836 set_opt(sb, DELALLOC);
1837 set_opt2(sb, EXPLICIT_DELALLOC);
1838 break;
1839 case Opt_block_validity:
1840 set_opt(sb, BLOCK_VALIDITY);
1841 break;
1842 case Opt_noblock_validity:
1843 clear_opt(sb, BLOCK_VALIDITY);
1844 break;
1845 case Opt_inode_readahead_blks:
1846 if (match_int(&args[0], &option))
1847 return 0;
1848 if (option < 0 || option > (1 << 30))
1849 return 0;
1850 if (option && !is_power_of_2(option)) {
1851 ext4_msg(sb, KERN_ERR,
1852 "EXT4-fs: inode_readahead_blks"
1853 " must be a power of 2");
1854 return 0;
1855 }
1856 sbi->s_inode_readahead_blks = option;
1857 break;
1858 case Opt_journal_ioprio:
1859 if (match_int(&args[0], &option))
1860 return 0;
1861 if (option < 0 || option > 7)
1862 break;
1863 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1864 option);
1865 break;
1866 case Opt_noauto_da_alloc:
1867 set_opt(sb, NO_AUTO_DA_ALLOC);
1868 break;
1869 case Opt_auto_da_alloc:
1870 if (args[0].from) {
1871 if (match_int(&args[0], &option))
1872 return 0;
1873 } else
1874 option = 1; /* No argument, default to 1 */
1875 if (option)
1876 clear_opt(sb, NO_AUTO_DA_ALLOC);
1877 else
1878 set_opt(sb,NO_AUTO_DA_ALLOC);
1879 break;
1880 case Opt_discard:
1881 set_opt(sb, DISCARD);
1882 break;
1883 case Opt_nodiscard:
1884 clear_opt(sb, DISCARD);
1885 break;
1886 case Opt_dioread_nolock:
1887 set_opt(sb, DIOREAD_NOLOCK);
1888 break;
1889 case Opt_dioread_lock:
1890 clear_opt(sb, DIOREAD_NOLOCK);
1891 break;
1892 case Opt_init_inode_table:
1893 set_opt(sb, INIT_INODE_TABLE);
1894 if (args[0].from) {
1895 if (match_int(&args[0], &option))
1896 return 0;
1897 } else
1898 option = EXT4_DEF_LI_WAIT_MULT;
1899 if (option < 0)
1900 return 0;
1901 sbi->s_li_wait_mult = option;
1902 break;
1903 case Opt_noinit_inode_table:
1904 clear_opt(sb, INIT_INODE_TABLE);
1905 break;
1906 default:
1907 ext4_msg(sb, KERN_ERR,
1908 "Unrecognized mount option \"%s\" "
1909 "or missing value", p);
1910 return 0;
1911 }
1912 }
1913 #ifdef CONFIG_QUOTA
1914 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1915 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1916 clear_opt(sb, USRQUOTA);
1917
1918 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1919 clear_opt(sb, GRPQUOTA);
1920
1921 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1922 ext4_msg(sb, KERN_ERR, "old and new quota "
1923 "format mixing");
1924 return 0;
1925 }
1926
1927 if (!sbi->s_jquota_fmt) {
1928 ext4_msg(sb, KERN_ERR, "journaled quota format "
1929 "not specified");
1930 return 0;
1931 }
1932 } else {
1933 if (sbi->s_jquota_fmt) {
1934 ext4_msg(sb, KERN_ERR, "journaled quota format "
1935 "specified with no journaling "
1936 "enabled");
1937 return 0;
1938 }
1939 }
1940 #endif
1941 return 1;
1942 }
1943
1944 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946 {
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1985
1986 ext4_commit_super(sb, 1);
1987 done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999 }
2000
2001 static int ext4_fill_flex_info(struct super_block *sb)
2002 {
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct ext4_group_desc *gdp = NULL;
2005 ext4_group_t flex_group_count;
2006 ext4_group_t flex_group;
2007 int groups_per_flex = 0;
2008 size_t size;
2009 int i;
2010
2011 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2012 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
2013
2014 if (groups_per_flex < 2) {
2015 sbi->s_log_groups_per_flex = 0;
2016 return 1;
2017 }
2018
2019 /* We allocate both existing and potentially added groups */
2020 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2021 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2022 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2023 size = flex_group_count * sizeof(struct flex_groups);
2024 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2025 if (sbi->s_flex_groups == NULL) {
2026 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2027 flex_group_count);
2028 goto failed;
2029 }
2030
2031 for (i = 0; i < sbi->s_groups_count; i++) {
2032 gdp = ext4_get_group_desc(sb, i, NULL);
2033
2034 flex_group = ext4_flex_group(sbi, i);
2035 atomic_add(ext4_free_inodes_count(sb, gdp),
2036 &sbi->s_flex_groups[flex_group].free_inodes);
2037 atomic_add(ext4_free_blks_count(sb, gdp),
2038 &sbi->s_flex_groups[flex_group].free_clusters);
2039 atomic_add(ext4_used_dirs_count(sb, gdp),
2040 &sbi->s_flex_groups[flex_group].used_dirs);
2041 }
2042
2043 return 1;
2044 failed:
2045 return 0;
2046 }
2047
2048 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2049 struct ext4_group_desc *gdp)
2050 {
2051 __u16 crc = 0;
2052
2053 if (sbi->s_es->s_feature_ro_compat &
2054 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2055 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2056 __le32 le_group = cpu_to_le32(block_group);
2057
2058 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2059 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2060 crc = crc16(crc, (__u8 *)gdp, offset);
2061 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2062 /* for checksum of struct ext4_group_desc do the rest...*/
2063 if ((sbi->s_es->s_feature_incompat &
2064 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2065 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2066 crc = crc16(crc, (__u8 *)gdp + offset,
2067 le16_to_cpu(sbi->s_es->s_desc_size) -
2068 offset);
2069 }
2070
2071 return cpu_to_le16(crc);
2072 }
2073
2074 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2075 struct ext4_group_desc *gdp)
2076 {
2077 if ((sbi->s_es->s_feature_ro_compat &
2078 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2079 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2080 return 0;
2081
2082 return 1;
2083 }
2084
2085 /* Called at mount-time, super-block is locked */
2086 static int ext4_check_descriptors(struct super_block *sb,
2087 ext4_group_t *first_not_zeroed)
2088 {
2089 struct ext4_sb_info *sbi = EXT4_SB(sb);
2090 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2091 ext4_fsblk_t last_block;
2092 ext4_fsblk_t block_bitmap;
2093 ext4_fsblk_t inode_bitmap;
2094 ext4_fsblk_t inode_table;
2095 int flexbg_flag = 0;
2096 ext4_group_t i, grp = sbi->s_groups_count;
2097
2098 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2099 flexbg_flag = 1;
2100
2101 ext4_debug("Checking group descriptors");
2102
2103 for (i = 0; i < sbi->s_groups_count; i++) {
2104 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2105
2106 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2107 last_block = ext4_blocks_count(sbi->s_es) - 1;
2108 else
2109 last_block = first_block +
2110 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2111
2112 if ((grp == sbi->s_groups_count) &&
2113 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2114 grp = i;
2115
2116 block_bitmap = ext4_block_bitmap(sb, gdp);
2117 if (block_bitmap < first_block || block_bitmap > last_block) {
2118 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2119 "Block bitmap for group %u not in group "
2120 "(block %llu)!", i, block_bitmap);
2121 return 0;
2122 }
2123 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2124 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2125 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2126 "Inode bitmap for group %u not in group "
2127 "(block %llu)!", i, inode_bitmap);
2128 return 0;
2129 }
2130 inode_table = ext4_inode_table(sb, gdp);
2131 if (inode_table < first_block ||
2132 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2133 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2134 "Inode table for group %u not in group "
2135 "(block %llu)!", i, inode_table);
2136 return 0;
2137 }
2138 ext4_lock_group(sb, i);
2139 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2140 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2141 "Checksum for group %u failed (%u!=%u)",
2142 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2143 gdp)), le16_to_cpu(gdp->bg_checksum));
2144 if (!(sb->s_flags & MS_RDONLY)) {
2145 ext4_unlock_group(sb, i);
2146 return 0;
2147 }
2148 }
2149 ext4_unlock_group(sb, i);
2150 if (!flexbg_flag)
2151 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2152 }
2153 if (NULL != first_not_zeroed)
2154 *first_not_zeroed = grp;
2155
2156 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2157 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2158 return 1;
2159 }
2160
2161 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2162 * the superblock) which were deleted from all directories, but held open by
2163 * a process at the time of a crash. We walk the list and try to delete these
2164 * inodes at recovery time (only with a read-write filesystem).
2165 *
2166 * In order to keep the orphan inode chain consistent during traversal (in
2167 * case of crash during recovery), we link each inode into the superblock
2168 * orphan list_head and handle it the same way as an inode deletion during
2169 * normal operation (which journals the operations for us).
2170 *
2171 * We only do an iget() and an iput() on each inode, which is very safe if we
2172 * accidentally point at an in-use or already deleted inode. The worst that
2173 * can happen in this case is that we get a "bit already cleared" message from
2174 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2175 * e2fsck was run on this filesystem, and it must have already done the orphan
2176 * inode cleanup for us, so we can safely abort without any further action.
2177 */
2178 static void ext4_orphan_cleanup(struct super_block *sb,
2179 struct ext4_super_block *es)
2180 {
2181 unsigned int s_flags = sb->s_flags;
2182 int nr_orphans = 0, nr_truncates = 0;
2183 #ifdef CONFIG_QUOTA
2184 int i;
2185 #endif
2186 if (!es->s_last_orphan) {
2187 jbd_debug(4, "no orphan inodes to clean up\n");
2188 return;
2189 }
2190
2191 if (bdev_read_only(sb->s_bdev)) {
2192 ext4_msg(sb, KERN_ERR, "write access "
2193 "unavailable, skipping orphan cleanup");
2194 return;
2195 }
2196
2197 /* Check if feature set would not allow a r/w mount */
2198 if (!ext4_feature_set_ok(sb, 0)) {
2199 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2200 "unknown ROCOMPAT features");
2201 return;
2202 }
2203
2204 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2205 if (es->s_last_orphan)
2206 jbd_debug(1, "Errors on filesystem, "
2207 "clearing orphan list.\n");
2208 es->s_last_orphan = 0;
2209 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2210 return;
2211 }
2212
2213 if (s_flags & MS_RDONLY) {
2214 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2215 sb->s_flags &= ~MS_RDONLY;
2216 }
2217 #ifdef CONFIG_QUOTA
2218 /* Needed for iput() to work correctly and not trash data */
2219 sb->s_flags |= MS_ACTIVE;
2220 /* Turn on quotas so that they are updated correctly */
2221 for (i = 0; i < MAXQUOTAS; i++) {
2222 if (EXT4_SB(sb)->s_qf_names[i]) {
2223 int ret = ext4_quota_on_mount(sb, i);
2224 if (ret < 0)
2225 ext4_msg(sb, KERN_ERR,
2226 "Cannot turn on journaled "
2227 "quota: error %d", ret);
2228 }
2229 }
2230 #endif
2231
2232 while (es->s_last_orphan) {
2233 struct inode *inode;
2234
2235 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2236 if (IS_ERR(inode)) {
2237 es->s_last_orphan = 0;
2238 break;
2239 }
2240
2241 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2242 dquot_initialize(inode);
2243 if (inode->i_nlink) {
2244 ext4_msg(sb, KERN_DEBUG,
2245 "%s: truncating inode %lu to %lld bytes",
2246 __func__, inode->i_ino, inode->i_size);
2247 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2248 inode->i_ino, inode->i_size);
2249 ext4_truncate(inode);
2250 nr_truncates++;
2251 } else {
2252 ext4_msg(sb, KERN_DEBUG,
2253 "%s: deleting unreferenced inode %lu",
2254 __func__, inode->i_ino);
2255 jbd_debug(2, "deleting unreferenced inode %lu\n",
2256 inode->i_ino);
2257 nr_orphans++;
2258 }
2259 iput(inode); /* The delete magic happens here! */
2260 }
2261
2262 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2263
2264 if (nr_orphans)
2265 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2266 PLURAL(nr_orphans));
2267 if (nr_truncates)
2268 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2269 PLURAL(nr_truncates));
2270 #ifdef CONFIG_QUOTA
2271 /* Turn quotas off */
2272 for (i = 0; i < MAXQUOTAS; i++) {
2273 if (sb_dqopt(sb)->files[i])
2274 dquot_quota_off(sb, i);
2275 }
2276 #endif
2277 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2278 }
2279
2280 /*
2281 * Maximal extent format file size.
2282 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2283 * extent format containers, within a sector_t, and within i_blocks
2284 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2285 * so that won't be a limiting factor.
2286 *
2287 * However there is other limiting factor. We do store extents in the form
2288 * of starting block and length, hence the resulting length of the extent
2289 * covering maximum file size must fit into on-disk format containers as
2290 * well. Given that length is always by 1 unit bigger than max unit (because
2291 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2292 *
2293 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2294 */
2295 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2296 {
2297 loff_t res;
2298 loff_t upper_limit = MAX_LFS_FILESIZE;
2299
2300 /* small i_blocks in vfs inode? */
2301 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2302 /*
2303 * CONFIG_LBDAF is not enabled implies the inode
2304 * i_block represent total blocks in 512 bytes
2305 * 32 == size of vfs inode i_blocks * 8
2306 */
2307 upper_limit = (1LL << 32) - 1;
2308
2309 /* total blocks in file system block size */
2310 upper_limit >>= (blkbits - 9);
2311 upper_limit <<= blkbits;
2312 }
2313
2314 /*
2315 * 32-bit extent-start container, ee_block. We lower the maxbytes
2316 * by one fs block, so ee_len can cover the extent of maximum file
2317 * size
2318 */
2319 res = (1LL << 32) - 1;
2320 res <<= blkbits;
2321
2322 /* Sanity check against vm- & vfs- imposed limits */
2323 if (res > upper_limit)
2324 res = upper_limit;
2325
2326 return res;
2327 }
2328
2329 /*
2330 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2331 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2332 * We need to be 1 filesystem block less than the 2^48 sector limit.
2333 */
2334 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2335 {
2336 loff_t res = EXT4_NDIR_BLOCKS;
2337 int meta_blocks;
2338 loff_t upper_limit;
2339 /* This is calculated to be the largest file size for a dense, block
2340 * mapped file such that the file's total number of 512-byte sectors,
2341 * including data and all indirect blocks, does not exceed (2^48 - 1).
2342 *
2343 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2344 * number of 512-byte sectors of the file.
2345 */
2346
2347 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2348 /*
2349 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2350 * the inode i_block field represents total file blocks in
2351 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2352 */
2353 upper_limit = (1LL << 32) - 1;
2354
2355 /* total blocks in file system block size */
2356 upper_limit >>= (bits - 9);
2357
2358 } else {
2359 /*
2360 * We use 48 bit ext4_inode i_blocks
2361 * With EXT4_HUGE_FILE_FL set the i_blocks
2362 * represent total number of blocks in
2363 * file system block size
2364 */
2365 upper_limit = (1LL << 48) - 1;
2366
2367 }
2368
2369 /* indirect blocks */
2370 meta_blocks = 1;
2371 /* double indirect blocks */
2372 meta_blocks += 1 + (1LL << (bits-2));
2373 /* tripple indirect blocks */
2374 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2375
2376 upper_limit -= meta_blocks;
2377 upper_limit <<= bits;
2378
2379 res += 1LL << (bits-2);
2380 res += 1LL << (2*(bits-2));
2381 res += 1LL << (3*(bits-2));
2382 res <<= bits;
2383 if (res > upper_limit)
2384 res = upper_limit;
2385
2386 if (res > MAX_LFS_FILESIZE)
2387 res = MAX_LFS_FILESIZE;
2388
2389 return res;
2390 }
2391
2392 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2393 ext4_fsblk_t logical_sb_block, int nr)
2394 {
2395 struct ext4_sb_info *sbi = EXT4_SB(sb);
2396 ext4_group_t bg, first_meta_bg;
2397 int has_super = 0;
2398
2399 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2400
2401 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2402 nr < first_meta_bg)
2403 return logical_sb_block + nr + 1;
2404 bg = sbi->s_desc_per_block * nr;
2405 if (ext4_bg_has_super(sb, bg))
2406 has_super = 1;
2407
2408 return (has_super + ext4_group_first_block_no(sb, bg));
2409 }
2410
2411 /**
2412 * ext4_get_stripe_size: Get the stripe size.
2413 * @sbi: In memory super block info
2414 *
2415 * If we have specified it via mount option, then
2416 * use the mount option value. If the value specified at mount time is
2417 * greater than the blocks per group use the super block value.
2418 * If the super block value is greater than blocks per group return 0.
2419 * Allocator needs it be less than blocks per group.
2420 *
2421 */
2422 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2423 {
2424 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2425 unsigned long stripe_width =
2426 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2427 int ret;
2428
2429 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2430 ret = sbi->s_stripe;
2431 else if (stripe_width <= sbi->s_blocks_per_group)
2432 ret = stripe_width;
2433 else if (stride <= sbi->s_blocks_per_group)
2434 ret = stride;
2435 else
2436 ret = 0;
2437
2438 /*
2439 * If the stripe width is 1, this makes no sense and
2440 * we set it to 0 to turn off stripe handling code.
2441 */
2442 if (ret <= 1)
2443 ret = 0;
2444
2445 return ret;
2446 }
2447
2448 /* sysfs supprt */
2449
2450 struct ext4_attr {
2451 struct attribute attr;
2452 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2453 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2454 const char *, size_t);
2455 int offset;
2456 };
2457
2458 static int parse_strtoul(const char *buf,
2459 unsigned long max, unsigned long *value)
2460 {
2461 char *endp;
2462
2463 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2464 endp = skip_spaces(endp);
2465 if (*endp || *value > max)
2466 return -EINVAL;
2467
2468 return 0;
2469 }
2470
2471 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2472 struct ext4_sb_info *sbi,
2473 char *buf)
2474 {
2475 return snprintf(buf, PAGE_SIZE, "%llu\n",
2476 (s64) percpu_counter_sum(&sbi->s_dirtyclusters_counter));
2477 }
2478
2479 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2480 struct ext4_sb_info *sbi, char *buf)
2481 {
2482 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2483
2484 if (!sb->s_bdev->bd_part)
2485 return snprintf(buf, PAGE_SIZE, "0\n");
2486 return snprintf(buf, PAGE_SIZE, "%lu\n",
2487 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2488 sbi->s_sectors_written_start) >> 1);
2489 }
2490
2491 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi, char *buf)
2493 {
2494 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2495
2496 if (!sb->s_bdev->bd_part)
2497 return snprintf(buf, PAGE_SIZE, "0\n");
2498 return snprintf(buf, PAGE_SIZE, "%llu\n",
2499 (unsigned long long)(sbi->s_kbytes_written +
2500 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2501 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2502 }
2503
2504 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2505 struct ext4_sb_info *sbi, char *buf)
2506 {
2507 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2508 }
2509
2510 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2511 struct ext4_sb_info *sbi, char *buf)
2512 {
2513 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2514 }
2515
2516 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2517 struct ext4_sb_info *sbi,
2518 const char *buf, size_t count)
2519 {
2520 unsigned long t;
2521
2522 if (parse_strtoul(buf, 0x40000000, &t))
2523 return -EINVAL;
2524
2525 if (t && !is_power_of_2(t))
2526 return -EINVAL;
2527
2528 sbi->s_inode_readahead_blks = t;
2529 return count;
2530 }
2531
2532 static ssize_t sbi_ui_show(struct ext4_attr *a,
2533 struct ext4_sb_info *sbi, char *buf)
2534 {
2535 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2536
2537 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2538 }
2539
2540 static ssize_t sbi_ui_store(struct ext4_attr *a,
2541 struct ext4_sb_info *sbi,
2542 const char *buf, size_t count)
2543 {
2544 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2545 unsigned long t;
2546
2547 if (parse_strtoul(buf, 0xffffffff, &t))
2548 return -EINVAL;
2549 *ui = t;
2550 return count;
2551 }
2552
2553 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2554 static struct ext4_attr ext4_attr_##_name = { \
2555 .attr = {.name = __stringify(_name), .mode = _mode }, \
2556 .show = _show, \
2557 .store = _store, \
2558 .offset = offsetof(struct ext4_sb_info, _elname), \
2559 }
2560 #define EXT4_ATTR(name, mode, show, store) \
2561 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2562
2563 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2564 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2565 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2566 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2567 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2568 #define ATTR_LIST(name) &ext4_attr_##name.attr
2569
2570 EXT4_RO_ATTR(delayed_allocation_blocks);
2571 EXT4_RO_ATTR(session_write_kbytes);
2572 EXT4_RO_ATTR(lifetime_write_kbytes);
2573 EXT4_RO_ATTR(extent_cache_hits);
2574 EXT4_RO_ATTR(extent_cache_misses);
2575 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2576 inode_readahead_blks_store, s_inode_readahead_blks);
2577 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2578 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2579 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2580 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2581 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2582 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2583 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2584 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2585
2586 static struct attribute *ext4_attrs[] = {
2587 ATTR_LIST(delayed_allocation_blocks),
2588 ATTR_LIST(session_write_kbytes),
2589 ATTR_LIST(lifetime_write_kbytes),
2590 ATTR_LIST(extent_cache_hits),
2591 ATTR_LIST(extent_cache_misses),
2592 ATTR_LIST(inode_readahead_blks),
2593 ATTR_LIST(inode_goal),
2594 ATTR_LIST(mb_stats),
2595 ATTR_LIST(mb_max_to_scan),
2596 ATTR_LIST(mb_min_to_scan),
2597 ATTR_LIST(mb_order2_req),
2598 ATTR_LIST(mb_stream_req),
2599 ATTR_LIST(mb_group_prealloc),
2600 ATTR_LIST(max_writeback_mb_bump),
2601 NULL,
2602 };
2603
2604 /* Features this copy of ext4 supports */
2605 EXT4_INFO_ATTR(lazy_itable_init);
2606 EXT4_INFO_ATTR(batched_discard);
2607
2608 static struct attribute *ext4_feat_attrs[] = {
2609 ATTR_LIST(lazy_itable_init),
2610 ATTR_LIST(batched_discard),
2611 NULL,
2612 };
2613
2614 static ssize_t ext4_attr_show(struct kobject *kobj,
2615 struct attribute *attr, char *buf)
2616 {
2617 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2618 s_kobj);
2619 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2620
2621 return a->show ? a->show(a, sbi, buf) : 0;
2622 }
2623
2624 static ssize_t ext4_attr_store(struct kobject *kobj,
2625 struct attribute *attr,
2626 const char *buf, size_t len)
2627 {
2628 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2629 s_kobj);
2630 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2631
2632 return a->store ? a->store(a, sbi, buf, len) : 0;
2633 }
2634
2635 static void ext4_sb_release(struct kobject *kobj)
2636 {
2637 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2638 s_kobj);
2639 complete(&sbi->s_kobj_unregister);
2640 }
2641
2642 static const struct sysfs_ops ext4_attr_ops = {
2643 .show = ext4_attr_show,
2644 .store = ext4_attr_store,
2645 };
2646
2647 static struct kobj_type ext4_ktype = {
2648 .default_attrs = ext4_attrs,
2649 .sysfs_ops = &ext4_attr_ops,
2650 .release = ext4_sb_release,
2651 };
2652
2653 static void ext4_feat_release(struct kobject *kobj)
2654 {
2655 complete(&ext4_feat->f_kobj_unregister);
2656 }
2657
2658 static struct kobj_type ext4_feat_ktype = {
2659 .default_attrs = ext4_feat_attrs,
2660 .sysfs_ops = &ext4_attr_ops,
2661 .release = ext4_feat_release,
2662 };
2663
2664 /*
2665 * Check whether this filesystem can be mounted based on
2666 * the features present and the RDONLY/RDWR mount requested.
2667 * Returns 1 if this filesystem can be mounted as requested,
2668 * 0 if it cannot be.
2669 */
2670 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2671 {
2672 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2673 ext4_msg(sb, KERN_ERR,
2674 "Couldn't mount because of "
2675 "unsupported optional features (%x)",
2676 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2677 ~EXT4_FEATURE_INCOMPAT_SUPP));
2678 return 0;
2679 }
2680
2681 if (readonly)
2682 return 1;
2683
2684 /* Check that feature set is OK for a read-write mount */
2685 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2686 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2687 "unsupported optional features (%x)",
2688 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2689 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2690 return 0;
2691 }
2692 /*
2693 * Large file size enabled file system can only be mounted
2694 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2695 */
2696 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2697 if (sizeof(blkcnt_t) < sizeof(u64)) {
2698 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2699 "cannot be mounted RDWR without "
2700 "CONFIG_LBDAF");
2701 return 0;
2702 }
2703 }
2704 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2705 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2706 ext4_msg(sb, KERN_ERR,
2707 "Can't support bigalloc feature without "
2708 "extents feature\n");
2709 return 0;
2710 }
2711 return 1;
2712 }
2713
2714 /*
2715 * This function is called once a day if we have errors logged
2716 * on the file system
2717 */
2718 static void print_daily_error_info(unsigned long arg)
2719 {
2720 struct super_block *sb = (struct super_block *) arg;
2721 struct ext4_sb_info *sbi;
2722 struct ext4_super_block *es;
2723
2724 sbi = EXT4_SB(sb);
2725 es = sbi->s_es;
2726
2727 if (es->s_error_count)
2728 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2729 le32_to_cpu(es->s_error_count));
2730 if (es->s_first_error_time) {
2731 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2732 sb->s_id, le32_to_cpu(es->s_first_error_time),
2733 (int) sizeof(es->s_first_error_func),
2734 es->s_first_error_func,
2735 le32_to_cpu(es->s_first_error_line));
2736 if (es->s_first_error_ino)
2737 printk(": inode %u",
2738 le32_to_cpu(es->s_first_error_ino));
2739 if (es->s_first_error_block)
2740 printk(": block %llu", (unsigned long long)
2741 le64_to_cpu(es->s_first_error_block));
2742 printk("\n");
2743 }
2744 if (es->s_last_error_time) {
2745 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2746 sb->s_id, le32_to_cpu(es->s_last_error_time),
2747 (int) sizeof(es->s_last_error_func),
2748 es->s_last_error_func,
2749 le32_to_cpu(es->s_last_error_line));
2750 if (es->s_last_error_ino)
2751 printk(": inode %u",
2752 le32_to_cpu(es->s_last_error_ino));
2753 if (es->s_last_error_block)
2754 printk(": block %llu", (unsigned long long)
2755 le64_to_cpu(es->s_last_error_block));
2756 printk("\n");
2757 }
2758 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2759 }
2760
2761 /* Find next suitable group and run ext4_init_inode_table */
2762 static int ext4_run_li_request(struct ext4_li_request *elr)
2763 {
2764 struct ext4_group_desc *gdp = NULL;
2765 ext4_group_t group, ngroups;
2766 struct super_block *sb;
2767 unsigned long timeout = 0;
2768 int ret = 0;
2769
2770 sb = elr->lr_super;
2771 ngroups = EXT4_SB(sb)->s_groups_count;
2772
2773 for (group = elr->lr_next_group; group < ngroups; group++) {
2774 gdp = ext4_get_group_desc(sb, group, NULL);
2775 if (!gdp) {
2776 ret = 1;
2777 break;
2778 }
2779
2780 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2781 break;
2782 }
2783
2784 if (group == ngroups)
2785 ret = 1;
2786
2787 if (!ret) {
2788 timeout = jiffies;
2789 ret = ext4_init_inode_table(sb, group,
2790 elr->lr_timeout ? 0 : 1);
2791 if (elr->lr_timeout == 0) {
2792 timeout = (jiffies - timeout) *
2793 elr->lr_sbi->s_li_wait_mult;
2794 elr->lr_timeout = timeout;
2795 }
2796 elr->lr_next_sched = jiffies + elr->lr_timeout;
2797 elr->lr_next_group = group + 1;
2798 }
2799
2800 return ret;
2801 }
2802
2803 /*
2804 * Remove lr_request from the list_request and free the
2805 * request structure. Should be called with li_list_mtx held
2806 */
2807 static void ext4_remove_li_request(struct ext4_li_request *elr)
2808 {
2809 struct ext4_sb_info *sbi;
2810
2811 if (!elr)
2812 return;
2813
2814 sbi = elr->lr_sbi;
2815
2816 list_del(&elr->lr_request);
2817 sbi->s_li_request = NULL;
2818 kfree(elr);
2819 }
2820
2821 static void ext4_unregister_li_request(struct super_block *sb)
2822 {
2823 mutex_lock(&ext4_li_mtx);
2824 if (!ext4_li_info) {
2825 mutex_unlock(&ext4_li_mtx);
2826 return;
2827 }
2828
2829 mutex_lock(&ext4_li_info->li_list_mtx);
2830 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2831 mutex_unlock(&ext4_li_info->li_list_mtx);
2832 mutex_unlock(&ext4_li_mtx);
2833 }
2834
2835 static struct task_struct *ext4_lazyinit_task;
2836
2837 /*
2838 * This is the function where ext4lazyinit thread lives. It walks
2839 * through the request list searching for next scheduled filesystem.
2840 * When such a fs is found, run the lazy initialization request
2841 * (ext4_rn_li_request) and keep track of the time spend in this
2842 * function. Based on that time we compute next schedule time of
2843 * the request. When walking through the list is complete, compute
2844 * next waking time and put itself into sleep.
2845 */
2846 static int ext4_lazyinit_thread(void *arg)
2847 {
2848 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2849 struct list_head *pos, *n;
2850 struct ext4_li_request *elr;
2851 unsigned long next_wakeup, cur;
2852
2853 BUG_ON(NULL == eli);
2854
2855 cont_thread:
2856 while (true) {
2857 next_wakeup = MAX_JIFFY_OFFSET;
2858
2859 mutex_lock(&eli->li_list_mtx);
2860 if (list_empty(&eli->li_request_list)) {
2861 mutex_unlock(&eli->li_list_mtx);
2862 goto exit_thread;
2863 }
2864
2865 list_for_each_safe(pos, n, &eli->li_request_list) {
2866 elr = list_entry(pos, struct ext4_li_request,
2867 lr_request);
2868
2869 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2870 if (ext4_run_li_request(elr) != 0) {
2871 /* error, remove the lazy_init job */
2872 ext4_remove_li_request(elr);
2873 continue;
2874 }
2875 }
2876
2877 if (time_before(elr->lr_next_sched, next_wakeup))
2878 next_wakeup = elr->lr_next_sched;
2879 }
2880 mutex_unlock(&eli->li_list_mtx);
2881
2882 if (freezing(current))
2883 refrigerator();
2884
2885 cur = jiffies;
2886 if ((time_after_eq(cur, next_wakeup)) ||
2887 (MAX_JIFFY_OFFSET == next_wakeup)) {
2888 cond_resched();
2889 continue;
2890 }
2891
2892 schedule_timeout_interruptible(next_wakeup - cur);
2893
2894 if (kthread_should_stop()) {
2895 ext4_clear_request_list();
2896 goto exit_thread;
2897 }
2898 }
2899
2900 exit_thread:
2901 /*
2902 * It looks like the request list is empty, but we need
2903 * to check it under the li_list_mtx lock, to prevent any
2904 * additions into it, and of course we should lock ext4_li_mtx
2905 * to atomically free the list and ext4_li_info, because at
2906 * this point another ext4 filesystem could be registering
2907 * new one.
2908 */
2909 mutex_lock(&ext4_li_mtx);
2910 mutex_lock(&eli->li_list_mtx);
2911 if (!list_empty(&eli->li_request_list)) {
2912 mutex_unlock(&eli->li_list_mtx);
2913 mutex_unlock(&ext4_li_mtx);
2914 goto cont_thread;
2915 }
2916 mutex_unlock(&eli->li_list_mtx);
2917 kfree(ext4_li_info);
2918 ext4_li_info = NULL;
2919 mutex_unlock(&ext4_li_mtx);
2920
2921 return 0;
2922 }
2923
2924 static void ext4_clear_request_list(void)
2925 {
2926 struct list_head *pos, *n;
2927 struct ext4_li_request *elr;
2928
2929 mutex_lock(&ext4_li_info->li_list_mtx);
2930 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2931 elr = list_entry(pos, struct ext4_li_request,
2932 lr_request);
2933 ext4_remove_li_request(elr);
2934 }
2935 mutex_unlock(&ext4_li_info->li_list_mtx);
2936 }
2937
2938 static int ext4_run_lazyinit_thread(void)
2939 {
2940 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2941 ext4_li_info, "ext4lazyinit");
2942 if (IS_ERR(ext4_lazyinit_task)) {
2943 int err = PTR_ERR(ext4_lazyinit_task);
2944 ext4_clear_request_list();
2945 kfree(ext4_li_info);
2946 ext4_li_info = NULL;
2947 printk(KERN_CRIT "EXT4: error %d creating inode table "
2948 "initialization thread\n",
2949 err);
2950 return err;
2951 }
2952 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2953 return 0;
2954 }
2955
2956 /*
2957 * Check whether it make sense to run itable init. thread or not.
2958 * If there is at least one uninitialized inode table, return
2959 * corresponding group number, else the loop goes through all
2960 * groups and return total number of groups.
2961 */
2962 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2963 {
2964 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2965 struct ext4_group_desc *gdp = NULL;
2966
2967 for (group = 0; group < ngroups; group++) {
2968 gdp = ext4_get_group_desc(sb, group, NULL);
2969 if (!gdp)
2970 continue;
2971
2972 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2973 break;
2974 }
2975
2976 return group;
2977 }
2978
2979 static int ext4_li_info_new(void)
2980 {
2981 struct ext4_lazy_init *eli = NULL;
2982
2983 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2984 if (!eli)
2985 return -ENOMEM;
2986
2987 INIT_LIST_HEAD(&eli->li_request_list);
2988 mutex_init(&eli->li_list_mtx);
2989
2990 eli->li_state |= EXT4_LAZYINIT_QUIT;
2991
2992 ext4_li_info = eli;
2993
2994 return 0;
2995 }
2996
2997 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2998 ext4_group_t start)
2999 {
3000 struct ext4_sb_info *sbi = EXT4_SB(sb);
3001 struct ext4_li_request *elr;
3002 unsigned long rnd;
3003
3004 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3005 if (!elr)
3006 return NULL;
3007
3008 elr->lr_super = sb;
3009 elr->lr_sbi = sbi;
3010 elr->lr_next_group = start;
3011
3012 /*
3013 * Randomize first schedule time of the request to
3014 * spread the inode table initialization requests
3015 * better.
3016 */
3017 get_random_bytes(&rnd, sizeof(rnd));
3018 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3019 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3020
3021 return elr;
3022 }
3023
3024 static int ext4_register_li_request(struct super_block *sb,
3025 ext4_group_t first_not_zeroed)
3026 {
3027 struct ext4_sb_info *sbi = EXT4_SB(sb);
3028 struct ext4_li_request *elr;
3029 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3030 int ret = 0;
3031
3032 if (sbi->s_li_request != NULL) {
3033 /*
3034 * Reset timeout so it can be computed again, because
3035 * s_li_wait_mult might have changed.
3036 */
3037 sbi->s_li_request->lr_timeout = 0;
3038 return 0;
3039 }
3040
3041 if (first_not_zeroed == ngroups ||
3042 (sb->s_flags & MS_RDONLY) ||
3043 !test_opt(sb, INIT_INODE_TABLE))
3044 return 0;
3045
3046 elr = ext4_li_request_new(sb, first_not_zeroed);
3047 if (!elr)
3048 return -ENOMEM;
3049
3050 mutex_lock(&ext4_li_mtx);
3051
3052 if (NULL == ext4_li_info) {
3053 ret = ext4_li_info_new();
3054 if (ret)
3055 goto out;
3056 }
3057
3058 mutex_lock(&ext4_li_info->li_list_mtx);
3059 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3060 mutex_unlock(&ext4_li_info->li_list_mtx);
3061
3062 sbi->s_li_request = elr;
3063 /*
3064 * set elr to NULL here since it has been inserted to
3065 * the request_list and the removal and free of it is
3066 * handled by ext4_clear_request_list from now on.
3067 */
3068 elr = NULL;
3069
3070 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3071 ret = ext4_run_lazyinit_thread();
3072 if (ret)
3073 goto out;
3074 }
3075 out:
3076 mutex_unlock(&ext4_li_mtx);
3077 if (ret)
3078 kfree(elr);
3079 return ret;
3080 }
3081
3082 /*
3083 * We do not need to lock anything since this is called on
3084 * module unload.
3085 */
3086 static void ext4_destroy_lazyinit_thread(void)
3087 {
3088 /*
3089 * If thread exited earlier
3090 * there's nothing to be done.
3091 */
3092 if (!ext4_li_info || !ext4_lazyinit_task)
3093 return;
3094
3095 kthread_stop(ext4_lazyinit_task);
3096 }
3097
3098 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3099 __releases(kernel_lock)
3100 __acquires(kernel_lock)
3101 {
3102 char *orig_data = kstrdup(data, GFP_KERNEL);
3103 struct buffer_head *bh;
3104 struct ext4_super_block *es = NULL;
3105 struct ext4_sb_info *sbi;
3106 ext4_fsblk_t block;
3107 ext4_fsblk_t sb_block = get_sb_block(&data);
3108 ext4_fsblk_t logical_sb_block;
3109 unsigned long offset = 0;
3110 unsigned long journal_devnum = 0;
3111 unsigned long def_mount_opts;
3112 struct inode *root;
3113 char *cp;
3114 const char *descr;
3115 int ret = -ENOMEM;
3116 int blocksize, clustersize;
3117 unsigned int db_count;
3118 unsigned int i;
3119 int needs_recovery, has_huge_files, has_bigalloc;
3120 __u64 blocks_count;
3121 int err;
3122 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3123 ext4_group_t first_not_zeroed;
3124
3125 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3126 if (!sbi)
3127 goto out_free_orig;
3128
3129 sbi->s_blockgroup_lock =
3130 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3131 if (!sbi->s_blockgroup_lock) {
3132 kfree(sbi);
3133 goto out_free_orig;
3134 }
3135 sb->s_fs_info = sbi;
3136 sbi->s_mount_opt = 0;
3137 sbi->s_resuid = EXT4_DEF_RESUID;
3138 sbi->s_resgid = EXT4_DEF_RESGID;
3139 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3140 sbi->s_sb_block = sb_block;
3141 if (sb->s_bdev->bd_part)
3142 sbi->s_sectors_written_start =
3143 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3144
3145 /* Cleanup superblock name */
3146 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3147 *cp = '!';
3148
3149 ret = -EINVAL;
3150 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3151 if (!blocksize) {
3152 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3153 goto out_fail;
3154 }
3155
3156 /*
3157 * The ext4 superblock will not be buffer aligned for other than 1kB
3158 * block sizes. We need to calculate the offset from buffer start.
3159 */
3160 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3161 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3162 offset = do_div(logical_sb_block, blocksize);
3163 } else {
3164 logical_sb_block = sb_block;
3165 }
3166
3167 if (!(bh = sb_bread(sb, logical_sb_block))) {
3168 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3169 goto out_fail;
3170 }
3171 /*
3172 * Note: s_es must be initialized as soon as possible because
3173 * some ext4 macro-instructions depend on its value
3174 */
3175 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3176 sbi->s_es = es;
3177 sb->s_magic = le16_to_cpu(es->s_magic);
3178 if (sb->s_magic != EXT4_SUPER_MAGIC)
3179 goto cantfind_ext4;
3180 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3181
3182 /* Set defaults before we parse the mount options */
3183 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3184 set_opt(sb, INIT_INODE_TABLE);
3185 if (def_mount_opts & EXT4_DEFM_DEBUG)
3186 set_opt(sb, DEBUG);
3187 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3188 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3189 "2.6.38");
3190 set_opt(sb, GRPID);
3191 }
3192 if (def_mount_opts & EXT4_DEFM_UID16)
3193 set_opt(sb, NO_UID32);
3194 /* xattr user namespace & acls are now defaulted on */
3195 #ifdef CONFIG_EXT4_FS_XATTR
3196 set_opt(sb, XATTR_USER);
3197 #endif
3198 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3199 set_opt(sb, POSIX_ACL);
3200 #endif
3201 set_opt(sb, MBLK_IO_SUBMIT);
3202 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3203 set_opt(sb, JOURNAL_DATA);
3204 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3205 set_opt(sb, ORDERED_DATA);
3206 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3207 set_opt(sb, WRITEBACK_DATA);
3208
3209 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3210 set_opt(sb, ERRORS_PANIC);
3211 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3212 set_opt(sb, ERRORS_CONT);
3213 else
3214 set_opt(sb, ERRORS_RO);
3215 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3216 set_opt(sb, BLOCK_VALIDITY);
3217 if (def_mount_opts & EXT4_DEFM_DISCARD)
3218 set_opt(sb, DISCARD);
3219
3220 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3221 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3222 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3223 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3224 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3225
3226 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3227 set_opt(sb, BARRIER);
3228
3229 /*
3230 * enable delayed allocation by default
3231 * Use -o nodelalloc to turn it off
3232 */
3233 if (!IS_EXT3_SB(sb) &&
3234 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3235 set_opt(sb, DELALLOC);
3236
3237 /*
3238 * set default s_li_wait_mult for lazyinit, for the case there is
3239 * no mount option specified.
3240 */
3241 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3242
3243 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3244 &journal_devnum, &journal_ioprio, NULL, 0)) {
3245 ext4_msg(sb, KERN_WARNING,
3246 "failed to parse options in superblock: %s",
3247 sbi->s_es->s_mount_opts);
3248 }
3249 if (!parse_options((char *) data, sb, &journal_devnum,
3250 &journal_ioprio, NULL, 0))
3251 goto failed_mount;
3252
3253 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3254 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3255 "with data=journal disables delayed "
3256 "allocation and O_DIRECT support!\n");
3257 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3258 ext4_msg(sb, KERN_ERR, "can't mount with "
3259 "both data=journal and delalloc");
3260 goto failed_mount;
3261 }
3262 if (test_opt(sb, DIOREAD_NOLOCK)) {
3263 ext4_msg(sb, KERN_ERR, "can't mount with "
3264 "both data=journal and delalloc");
3265 goto failed_mount;
3266 }
3267 if (test_opt(sb, DELALLOC))
3268 clear_opt(sb, DELALLOC);
3269 }
3270
3271 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3272 if (test_opt(sb, DIOREAD_NOLOCK)) {
3273 if (blocksize < PAGE_SIZE) {
3274 ext4_msg(sb, KERN_ERR, "can't mount with "
3275 "dioread_nolock if block size != PAGE_SIZE");
3276 goto failed_mount;
3277 }
3278 }
3279
3280 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3281 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3282
3283 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3284 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3285 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3286 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3287 ext4_msg(sb, KERN_WARNING,
3288 "feature flags set on rev 0 fs, "
3289 "running e2fsck is recommended");
3290
3291 if (IS_EXT2_SB(sb)) {
3292 if (ext2_feature_set_ok(sb))
3293 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3294 "using the ext4 subsystem");
3295 else {
3296 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3297 "to feature incompatibilities");
3298 goto failed_mount;
3299 }
3300 }
3301
3302 if (IS_EXT3_SB(sb)) {
3303 if (ext3_feature_set_ok(sb))
3304 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3305 "using the ext4 subsystem");
3306 else {
3307 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3308 "to feature incompatibilities");
3309 goto failed_mount;
3310 }
3311 }
3312
3313 /*
3314 * Check feature flags regardless of the revision level, since we
3315 * previously didn't change the revision level when setting the flags,
3316 * so there is a chance incompat flags are set on a rev 0 filesystem.
3317 */
3318 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3319 goto failed_mount;
3320
3321 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3322 blocksize > EXT4_MAX_BLOCK_SIZE) {
3323 ext4_msg(sb, KERN_ERR,
3324 "Unsupported filesystem blocksize %d", blocksize);
3325 goto failed_mount;
3326 }
3327
3328 if (sb->s_blocksize != blocksize) {
3329 /* Validate the filesystem blocksize */
3330 if (!sb_set_blocksize(sb, blocksize)) {
3331 ext4_msg(sb, KERN_ERR, "bad block size %d",
3332 blocksize);
3333 goto failed_mount;
3334 }
3335
3336 brelse(bh);
3337 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3338 offset = do_div(logical_sb_block, blocksize);
3339 bh = sb_bread(sb, logical_sb_block);
3340 if (!bh) {
3341 ext4_msg(sb, KERN_ERR,
3342 "Can't read superblock on 2nd try");
3343 goto failed_mount;
3344 }
3345 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3346 sbi->s_es = es;
3347 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3348 ext4_msg(sb, KERN_ERR,
3349 "Magic mismatch, very weird!");
3350 goto failed_mount;
3351 }
3352 }
3353
3354 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3355 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3356 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3357 has_huge_files);
3358 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3359
3360 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3361 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3362 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3363 } else {
3364 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3365 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3366 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3367 (!is_power_of_2(sbi->s_inode_size)) ||
3368 (sbi->s_inode_size > blocksize)) {
3369 ext4_msg(sb, KERN_ERR,
3370 "unsupported inode size: %d",
3371 sbi->s_inode_size);
3372 goto failed_mount;
3373 }
3374 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3375 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3376 }
3377
3378 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3379 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3380 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3381 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3382 !is_power_of_2(sbi->s_desc_size)) {
3383 ext4_msg(sb, KERN_ERR,
3384 "unsupported descriptor size %lu",
3385 sbi->s_desc_size);
3386 goto failed_mount;
3387 }
3388 } else
3389 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3390
3391 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3392 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3393 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3394 goto cantfind_ext4;
3395
3396 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3397 if (sbi->s_inodes_per_block == 0)
3398 goto cantfind_ext4;
3399 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3400 sbi->s_inodes_per_block;
3401 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3402 sbi->s_sbh = bh;
3403 sbi->s_mount_state = le16_to_cpu(es->s_state);
3404 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3405 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3406
3407 for (i = 0; i < 4; i++)
3408 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3409 sbi->s_def_hash_version = es->s_def_hash_version;
3410 i = le32_to_cpu(es->s_flags);
3411 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3412 sbi->s_hash_unsigned = 3;
3413 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3414 #ifdef __CHAR_UNSIGNED__
3415 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3416 sbi->s_hash_unsigned = 3;
3417 #else
3418 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3419 #endif
3420 sb->s_dirt = 1;
3421 }
3422
3423 /* Handle clustersize */
3424 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3425 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3426 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3427 if (has_bigalloc) {
3428 if (clustersize < blocksize) {
3429 ext4_msg(sb, KERN_ERR,
3430 "cluster size (%d) smaller than "
3431 "block size (%d)", clustersize, blocksize);
3432 goto failed_mount;
3433 }
3434 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3435 le32_to_cpu(es->s_log_block_size);
3436 sbi->s_clusters_per_group =
3437 le32_to_cpu(es->s_clusters_per_group);
3438 if (sbi->s_clusters_per_group > blocksize * 8) {
3439 ext4_msg(sb, KERN_ERR,
3440 "#clusters per group too big: %lu",
3441 sbi->s_clusters_per_group);
3442 goto failed_mount;
3443 }
3444 if (sbi->s_blocks_per_group !=
3445 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3446 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3447 "clusters per group (%lu) inconsistent",
3448 sbi->s_blocks_per_group,
3449 sbi->s_clusters_per_group);
3450 goto failed_mount;
3451 }
3452 } else {
3453 if (clustersize != blocksize) {
3454 ext4_warning(sb, "fragment/cluster size (%d) != "
3455 "block size (%d)", clustersize,
3456 blocksize);
3457 clustersize = blocksize;
3458 }
3459 if (sbi->s_blocks_per_group > blocksize * 8) {
3460 ext4_msg(sb, KERN_ERR,
3461 "#blocks per group too big: %lu",
3462 sbi->s_blocks_per_group);
3463 goto failed_mount;
3464 }
3465 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3466 sbi->s_cluster_bits = 0;
3467 }
3468 sbi->s_cluster_ratio = clustersize / blocksize;
3469
3470 if (sbi->s_inodes_per_group > blocksize * 8) {
3471 ext4_msg(sb, KERN_ERR,
3472 "#inodes per group too big: %lu",
3473 sbi->s_inodes_per_group);
3474 goto failed_mount;
3475 }
3476
3477 /*
3478 * Test whether we have more sectors than will fit in sector_t,
3479 * and whether the max offset is addressable by the page cache.
3480 */
3481 err = generic_check_addressable(sb->s_blocksize_bits,
3482 ext4_blocks_count(es));
3483 if (err) {
3484 ext4_msg(sb, KERN_ERR, "filesystem"
3485 " too large to mount safely on this system");
3486 if (sizeof(sector_t) < 8)
3487 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3488 ret = err;
3489 goto failed_mount;
3490 }
3491
3492 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3493 goto cantfind_ext4;
3494
3495 /* check blocks count against device size */
3496 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3497 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3498 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3499 "exceeds size of device (%llu blocks)",
3500 ext4_blocks_count(es), blocks_count);
3501 goto failed_mount;
3502 }
3503
3504 /*
3505 * It makes no sense for the first data block to be beyond the end
3506 * of the filesystem.
3507 */
3508 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3509 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3510 "block %u is beyond end of filesystem (%llu)",
3511 le32_to_cpu(es->s_first_data_block),
3512 ext4_blocks_count(es));
3513 goto failed_mount;
3514 }
3515 blocks_count = (ext4_blocks_count(es) -
3516 le32_to_cpu(es->s_first_data_block) +
3517 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3518 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3519 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3520 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3521 "(block count %llu, first data block %u, "
3522 "blocks per group %lu)", sbi->s_groups_count,
3523 ext4_blocks_count(es),
3524 le32_to_cpu(es->s_first_data_block),
3525 EXT4_BLOCKS_PER_GROUP(sb));
3526 goto failed_mount;
3527 }
3528 sbi->s_groups_count = blocks_count;
3529 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3530 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3531 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3532 EXT4_DESC_PER_BLOCK(sb);
3533 sbi->s_group_desc = ext4_kvmalloc(db_count *
3534 sizeof(struct buffer_head *),
3535 GFP_KERNEL);
3536 if (sbi->s_group_desc == NULL) {
3537 ext4_msg(sb, KERN_ERR, "not enough memory");
3538 goto failed_mount;
3539 }
3540
3541 #ifdef CONFIG_PROC_FS
3542 if (ext4_proc_root)
3543 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3544 #endif
3545
3546 bgl_lock_init(sbi->s_blockgroup_lock);
3547
3548 for (i = 0; i < db_count; i++) {
3549 block = descriptor_loc(sb, logical_sb_block, i);
3550 sbi->s_group_desc[i] = sb_bread(sb, block);
3551 if (!sbi->s_group_desc[i]) {
3552 ext4_msg(sb, KERN_ERR,
3553 "can't read group descriptor %d", i);
3554 db_count = i;
3555 goto failed_mount2;
3556 }
3557 }
3558 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3559 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3560 goto failed_mount2;
3561 }
3562 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3563 if (!ext4_fill_flex_info(sb)) {
3564 ext4_msg(sb, KERN_ERR,
3565 "unable to initialize "
3566 "flex_bg meta info!");
3567 goto failed_mount2;
3568 }
3569
3570 sbi->s_gdb_count = db_count;
3571 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3572 spin_lock_init(&sbi->s_next_gen_lock);
3573
3574 init_timer(&sbi->s_err_report);
3575 sbi->s_err_report.function = print_daily_error_info;
3576 sbi->s_err_report.data = (unsigned long) sb;
3577
3578 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3579 ext4_count_free_blocks(sb));
3580 if (!err) {
3581 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3582 ext4_count_free_inodes(sb));
3583 }
3584 if (!err) {
3585 err = percpu_counter_init(&sbi->s_dirs_counter,
3586 ext4_count_dirs(sb));
3587 }
3588 if (!err) {
3589 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3590 }
3591 if (err) {
3592 ext4_msg(sb, KERN_ERR, "insufficient memory");
3593 goto failed_mount3;
3594 }
3595
3596 sbi->s_stripe = ext4_get_stripe_size(sbi);
3597 sbi->s_max_writeback_mb_bump = 128;
3598
3599 /*
3600 * set up enough so that it can read an inode
3601 */
3602 if (!test_opt(sb, NOLOAD) &&
3603 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3604 sb->s_op = &ext4_sops;
3605 else
3606 sb->s_op = &ext4_nojournal_sops;
3607 sb->s_export_op = &ext4_export_ops;
3608 sb->s_xattr = ext4_xattr_handlers;
3609 #ifdef CONFIG_QUOTA
3610 sb->s_qcop = &ext4_qctl_operations;
3611 sb->dq_op = &ext4_quota_operations;
3612 #endif
3613 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3614
3615 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3616 mutex_init(&sbi->s_orphan_lock);
3617 sbi->s_resize_flags = 0;
3618
3619 sb->s_root = NULL;
3620
3621 needs_recovery = (es->s_last_orphan != 0 ||
3622 EXT4_HAS_INCOMPAT_FEATURE(sb,
3623 EXT4_FEATURE_INCOMPAT_RECOVER));
3624
3625 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3626 !(sb->s_flags & MS_RDONLY))
3627 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3628 goto failed_mount3;
3629
3630 /*
3631 * The first inode we look at is the journal inode. Don't try
3632 * root first: it may be modified in the journal!
3633 */
3634 if (!test_opt(sb, NOLOAD) &&
3635 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3636 if (ext4_load_journal(sb, es, journal_devnum))
3637 goto failed_mount3;
3638 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3639 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3640 ext4_msg(sb, KERN_ERR, "required journal recovery "
3641 "suppressed and not mounted read-only");
3642 goto failed_mount_wq;
3643 } else {
3644 clear_opt(sb, DATA_FLAGS);
3645 sbi->s_journal = NULL;
3646 needs_recovery = 0;
3647 goto no_journal;
3648 }
3649
3650 if (ext4_blocks_count(es) > 0xffffffffULL &&
3651 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3652 JBD2_FEATURE_INCOMPAT_64BIT)) {
3653 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3654 goto failed_mount_wq;
3655 }
3656
3657 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3658 jbd2_journal_set_features(sbi->s_journal,
3659 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3660 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3661 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3662 jbd2_journal_set_features(sbi->s_journal,
3663 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3664 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3665 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3666 } else {
3667 jbd2_journal_clear_features(sbi->s_journal,
3668 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3669 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3670 }
3671
3672 /* We have now updated the journal if required, so we can
3673 * validate the data journaling mode. */
3674 switch (test_opt(sb, DATA_FLAGS)) {
3675 case 0:
3676 /* No mode set, assume a default based on the journal
3677 * capabilities: ORDERED_DATA if the journal can
3678 * cope, else JOURNAL_DATA
3679 */
3680 if (jbd2_journal_check_available_features
3681 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3682 set_opt(sb, ORDERED_DATA);
3683 else
3684 set_opt(sb, JOURNAL_DATA);
3685 break;
3686
3687 case EXT4_MOUNT_ORDERED_DATA:
3688 case EXT4_MOUNT_WRITEBACK_DATA:
3689 if (!jbd2_journal_check_available_features
3690 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3691 ext4_msg(sb, KERN_ERR, "Journal does not support "
3692 "requested data journaling mode");
3693 goto failed_mount_wq;
3694 }
3695 default:
3696 break;
3697 }
3698 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3699
3700 /*
3701 * The journal may have updated the bg summary counts, so we
3702 * need to update the global counters.
3703 */
3704 percpu_counter_set(&sbi->s_freeclusters_counter,
3705 ext4_count_free_blocks(sb));
3706 percpu_counter_set(&sbi->s_freeinodes_counter,
3707 ext4_count_free_inodes(sb));
3708 percpu_counter_set(&sbi->s_dirs_counter,
3709 ext4_count_dirs(sb));
3710 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3711
3712 no_journal:
3713 /*
3714 * The maximum number of concurrent works can be high and
3715 * concurrency isn't really necessary. Limit it to 1.
3716 */
3717 EXT4_SB(sb)->dio_unwritten_wq =
3718 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3719 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3720 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3721 goto failed_mount_wq;
3722 }
3723
3724 /*
3725 * The jbd2_journal_load will have done any necessary log recovery,
3726 * so we can safely mount the rest of the filesystem now.
3727 */
3728
3729 root = ext4_iget(sb, EXT4_ROOT_INO);
3730 if (IS_ERR(root)) {
3731 ext4_msg(sb, KERN_ERR, "get root inode failed");
3732 ret = PTR_ERR(root);
3733 root = NULL;
3734 goto failed_mount4;
3735 }
3736 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3737 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3738 goto failed_mount4;
3739 }
3740 sb->s_root = d_alloc_root(root);
3741 if (!sb->s_root) {
3742 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3743 ret = -ENOMEM;
3744 goto failed_mount4;
3745 }
3746
3747 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3748
3749 /* determine the minimum size of new large inodes, if present */
3750 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3751 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3752 EXT4_GOOD_OLD_INODE_SIZE;
3753 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3755 if (sbi->s_want_extra_isize <
3756 le16_to_cpu(es->s_want_extra_isize))
3757 sbi->s_want_extra_isize =
3758 le16_to_cpu(es->s_want_extra_isize);
3759 if (sbi->s_want_extra_isize <
3760 le16_to_cpu(es->s_min_extra_isize))
3761 sbi->s_want_extra_isize =
3762 le16_to_cpu(es->s_min_extra_isize);
3763 }
3764 }
3765 /* Check if enough inode space is available */
3766 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3767 sbi->s_inode_size) {
3768 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3769 EXT4_GOOD_OLD_INODE_SIZE;
3770 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3771 "available");
3772 }
3773
3774 err = ext4_setup_system_zone(sb);
3775 if (err) {
3776 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3777 "zone (%d)", err);
3778 goto failed_mount4;
3779 }
3780
3781 ext4_ext_init(sb);
3782 err = ext4_mb_init(sb, needs_recovery);
3783 if (err) {
3784 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3785 err);
3786 goto failed_mount4;
3787 }
3788
3789 err = ext4_register_li_request(sb, first_not_zeroed);
3790 if (err)
3791 goto failed_mount4;
3792
3793 sbi->s_kobj.kset = ext4_kset;
3794 init_completion(&sbi->s_kobj_unregister);
3795 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3796 "%s", sb->s_id);
3797 if (err) {
3798 ext4_mb_release(sb);
3799 ext4_ext_release(sb);
3800 goto failed_mount4;
3801 };
3802
3803 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3804 ext4_orphan_cleanup(sb, es);
3805 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3806 if (needs_recovery) {
3807 ext4_msg(sb, KERN_INFO, "recovery complete");
3808 ext4_mark_recovery_complete(sb, es);
3809 }
3810 if (EXT4_SB(sb)->s_journal) {
3811 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3812 descr = " journalled data mode";
3813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3814 descr = " ordered data mode";
3815 else
3816 descr = " writeback data mode";
3817 } else
3818 descr = "out journal";
3819
3820 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3821 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3822 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3823
3824 if (es->s_error_count)
3825 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3826
3827 kfree(orig_data);
3828 return 0;
3829
3830 cantfind_ext4:
3831 if (!silent)
3832 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3833 goto failed_mount;
3834
3835 failed_mount4:
3836 iput(root);
3837 sb->s_root = NULL;
3838 ext4_msg(sb, KERN_ERR, "mount failed");
3839 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3840 failed_mount_wq:
3841 ext4_release_system_zone(sb);
3842 if (sbi->s_journal) {
3843 jbd2_journal_destroy(sbi->s_journal);
3844 sbi->s_journal = NULL;
3845 }
3846 failed_mount3:
3847 del_timer(&sbi->s_err_report);
3848 if (sbi->s_flex_groups)
3849 ext4_kvfree(sbi->s_flex_groups);
3850 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3851 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3852 percpu_counter_destroy(&sbi->s_dirs_counter);
3853 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3854 if (sbi->s_mmp_tsk)
3855 kthread_stop(sbi->s_mmp_tsk);
3856 failed_mount2:
3857 for (i = 0; i < db_count; i++)
3858 brelse(sbi->s_group_desc[i]);
3859 ext4_kvfree(sbi->s_group_desc);
3860 failed_mount:
3861 if (sbi->s_proc) {
3862 remove_proc_entry(sb->s_id, ext4_proc_root);
3863 }
3864 #ifdef CONFIG_QUOTA
3865 for (i = 0; i < MAXQUOTAS; i++)
3866 kfree(sbi->s_qf_names[i]);
3867 #endif
3868 ext4_blkdev_remove(sbi);
3869 brelse(bh);
3870 out_fail:
3871 sb->s_fs_info = NULL;
3872 kfree(sbi->s_blockgroup_lock);
3873 kfree(sbi);
3874 out_free_orig:
3875 kfree(orig_data);
3876 return ret;
3877 }
3878
3879 /*
3880 * Setup any per-fs journal parameters now. We'll do this both on
3881 * initial mount, once the journal has been initialised but before we've
3882 * done any recovery; and again on any subsequent remount.
3883 */
3884 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3885 {
3886 struct ext4_sb_info *sbi = EXT4_SB(sb);
3887
3888 journal->j_commit_interval = sbi->s_commit_interval;
3889 journal->j_min_batch_time = sbi->s_min_batch_time;
3890 journal->j_max_batch_time = sbi->s_max_batch_time;
3891
3892 write_lock(&journal->j_state_lock);
3893 if (test_opt(sb, BARRIER))
3894 journal->j_flags |= JBD2_BARRIER;
3895 else
3896 journal->j_flags &= ~JBD2_BARRIER;
3897 if (test_opt(sb, DATA_ERR_ABORT))
3898 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3899 else
3900 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3901 write_unlock(&journal->j_state_lock);
3902 }
3903
3904 static journal_t *ext4_get_journal(struct super_block *sb,
3905 unsigned int journal_inum)
3906 {
3907 struct inode *journal_inode;
3908 journal_t *journal;
3909
3910 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3911
3912 /* First, test for the existence of a valid inode on disk. Bad
3913 * things happen if we iget() an unused inode, as the subsequent
3914 * iput() will try to delete it. */
3915
3916 journal_inode = ext4_iget(sb, journal_inum);
3917 if (IS_ERR(journal_inode)) {
3918 ext4_msg(sb, KERN_ERR, "no journal found");
3919 return NULL;
3920 }
3921 if (!journal_inode->i_nlink) {
3922 make_bad_inode(journal_inode);
3923 iput(journal_inode);
3924 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3925 return NULL;
3926 }
3927
3928 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3929 journal_inode, journal_inode->i_size);
3930 if (!S_ISREG(journal_inode->i_mode)) {
3931 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3932 iput(journal_inode);
3933 return NULL;
3934 }
3935
3936 journal = jbd2_journal_init_inode(journal_inode);
3937 if (!journal) {
3938 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3939 iput(journal_inode);
3940 return NULL;
3941 }
3942 journal->j_private = sb;
3943 ext4_init_journal_params(sb, journal);
3944 return journal;
3945 }
3946
3947 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3948 dev_t j_dev)
3949 {
3950 struct buffer_head *bh;
3951 journal_t *journal;
3952 ext4_fsblk_t start;
3953 ext4_fsblk_t len;
3954 int hblock, blocksize;
3955 ext4_fsblk_t sb_block;
3956 unsigned long offset;
3957 struct ext4_super_block *es;
3958 struct block_device *bdev;
3959
3960 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3961
3962 bdev = ext4_blkdev_get(j_dev, sb);
3963 if (bdev == NULL)
3964 return NULL;
3965
3966 blocksize = sb->s_blocksize;
3967 hblock = bdev_logical_block_size(bdev);
3968 if (blocksize < hblock) {
3969 ext4_msg(sb, KERN_ERR,
3970 "blocksize too small for journal device");
3971 goto out_bdev;
3972 }
3973
3974 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3975 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3976 set_blocksize(bdev, blocksize);
3977 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3978 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3979 "external journal");
3980 goto out_bdev;
3981 }
3982
3983 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3984 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3985 !(le32_to_cpu(es->s_feature_incompat) &
3986 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3987 ext4_msg(sb, KERN_ERR, "external journal has "
3988 "bad superblock");
3989 brelse(bh);
3990 goto out_bdev;
3991 }
3992
3993 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3994 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3995 brelse(bh);
3996 goto out_bdev;
3997 }
3998
3999 len = ext4_blocks_count(es);
4000 start = sb_block + 1;
4001 brelse(bh); /* we're done with the superblock */
4002
4003 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4004 start, len, blocksize);
4005 if (!journal) {
4006 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4007 goto out_bdev;
4008 }
4009 journal->j_private = sb;
4010 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4011 wait_on_buffer(journal->j_sb_buffer);
4012 if (!buffer_uptodate(journal->j_sb_buffer)) {
4013 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4014 goto out_journal;
4015 }
4016 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4017 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4018 "user (unsupported) - %d",
4019 be32_to_cpu(journal->j_superblock->s_nr_users));
4020 goto out_journal;
4021 }
4022 EXT4_SB(sb)->journal_bdev = bdev;
4023 ext4_init_journal_params(sb, journal);
4024 return journal;
4025
4026 out_journal:
4027 jbd2_journal_destroy(journal);
4028 out_bdev:
4029 ext4_blkdev_put(bdev);
4030 return NULL;
4031 }
4032
4033 static int ext4_load_journal(struct super_block *sb,
4034 struct ext4_super_block *es,
4035 unsigned long journal_devnum)
4036 {
4037 journal_t *journal;
4038 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4039 dev_t journal_dev;
4040 int err = 0;
4041 int really_read_only;
4042
4043 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4044
4045 if (journal_devnum &&
4046 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4047 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4048 "numbers have changed");
4049 journal_dev = new_decode_dev(journal_devnum);
4050 } else
4051 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4052
4053 really_read_only = bdev_read_only(sb->s_bdev);
4054
4055 /*
4056 * Are we loading a blank journal or performing recovery after a
4057 * crash? For recovery, we need to check in advance whether we
4058 * can get read-write access to the device.
4059 */
4060 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4061 if (sb->s_flags & MS_RDONLY) {
4062 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4063 "required on readonly filesystem");
4064 if (really_read_only) {
4065 ext4_msg(sb, KERN_ERR, "write access "
4066 "unavailable, cannot proceed");
4067 return -EROFS;
4068 }
4069 ext4_msg(sb, KERN_INFO, "write access will "
4070 "be enabled during recovery");
4071 }
4072 }
4073
4074 if (journal_inum && journal_dev) {
4075 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4076 "and inode journals!");
4077 return -EINVAL;
4078 }
4079
4080 if (journal_inum) {
4081 if (!(journal = ext4_get_journal(sb, journal_inum)))
4082 return -EINVAL;
4083 } else {
4084 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4085 return -EINVAL;
4086 }
4087
4088 if (!(journal->j_flags & JBD2_BARRIER))
4089 ext4_msg(sb, KERN_INFO, "barriers disabled");
4090
4091 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4092 err = jbd2_journal_update_format(journal);
4093 if (err) {
4094 ext4_msg(sb, KERN_ERR, "error updating journal");
4095 jbd2_journal_destroy(journal);
4096 return err;
4097 }
4098 }
4099
4100 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4101 err = jbd2_journal_wipe(journal, !really_read_only);
4102 if (!err) {
4103 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4104 if (save)
4105 memcpy(save, ((char *) es) +
4106 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4107 err = jbd2_journal_load(journal);
4108 if (save)
4109 memcpy(((char *) es) + EXT4_S_ERR_START,
4110 save, EXT4_S_ERR_LEN);
4111 kfree(save);
4112 }
4113
4114 if (err) {
4115 ext4_msg(sb, KERN_ERR, "error loading journal");
4116 jbd2_journal_destroy(journal);
4117 return err;
4118 }
4119
4120 EXT4_SB(sb)->s_journal = journal;
4121 ext4_clear_journal_err(sb, es);
4122
4123 if (!really_read_only && journal_devnum &&
4124 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4125 es->s_journal_dev = cpu_to_le32(journal_devnum);
4126
4127 /* Make sure we flush the recovery flag to disk. */
4128 ext4_commit_super(sb, 1);
4129 }
4130
4131 return 0;
4132 }
4133
4134 static int ext4_commit_super(struct super_block *sb, int sync)
4135 {
4136 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4137 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4138 int error = 0;
4139
4140 if (!sbh || block_device_ejected(sb))
4141 return error;
4142 if (buffer_write_io_error(sbh)) {
4143 /*
4144 * Oh, dear. A previous attempt to write the
4145 * superblock failed. This could happen because the
4146 * USB device was yanked out. Or it could happen to
4147 * be a transient write error and maybe the block will
4148 * be remapped. Nothing we can do but to retry the
4149 * write and hope for the best.
4150 */
4151 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4152 "superblock detected");
4153 clear_buffer_write_io_error(sbh);
4154 set_buffer_uptodate(sbh);
4155 }
4156 /*
4157 * If the file system is mounted read-only, don't update the
4158 * superblock write time. This avoids updating the superblock
4159 * write time when we are mounting the root file system
4160 * read/only but we need to replay the journal; at that point,
4161 * for people who are east of GMT and who make their clock
4162 * tick in localtime for Windows bug-for-bug compatibility,
4163 * the clock is set in the future, and this will cause e2fsck
4164 * to complain and force a full file system check.
4165 */
4166 if (!(sb->s_flags & MS_RDONLY))
4167 es->s_wtime = cpu_to_le32(get_seconds());
4168 if (sb->s_bdev->bd_part)
4169 es->s_kbytes_written =
4170 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4171 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4172 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4173 else
4174 es->s_kbytes_written =
4175 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4176 ext4_free_blocks_count_set(es,
4177 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4178 &EXT4_SB(sb)->s_freeclusters_counter)));
4179 es->s_free_inodes_count =
4180 cpu_to_le32(percpu_counter_sum_positive(
4181 &EXT4_SB(sb)->s_freeinodes_counter));
4182 sb->s_dirt = 0;
4183 BUFFER_TRACE(sbh, "marking dirty");
4184 mark_buffer_dirty(sbh);
4185 if (sync) {
4186 error = sync_dirty_buffer(sbh);
4187 if (error)
4188 return error;
4189
4190 error = buffer_write_io_error(sbh);
4191 if (error) {
4192 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4193 "superblock");
4194 clear_buffer_write_io_error(sbh);
4195 set_buffer_uptodate(sbh);
4196 }
4197 }
4198 return error;
4199 }
4200
4201 /*
4202 * Have we just finished recovery? If so, and if we are mounting (or
4203 * remounting) the filesystem readonly, then we will end up with a
4204 * consistent fs on disk. Record that fact.
4205 */
4206 static void ext4_mark_recovery_complete(struct super_block *sb,
4207 struct ext4_super_block *es)
4208 {
4209 journal_t *journal = EXT4_SB(sb)->s_journal;
4210
4211 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4212 BUG_ON(journal != NULL);
4213 return;
4214 }
4215 jbd2_journal_lock_updates(journal);
4216 if (jbd2_journal_flush(journal) < 0)
4217 goto out;
4218
4219 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4220 sb->s_flags & MS_RDONLY) {
4221 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4222 ext4_commit_super(sb, 1);
4223 }
4224
4225 out:
4226 jbd2_journal_unlock_updates(journal);
4227 }
4228
4229 /*
4230 * If we are mounting (or read-write remounting) a filesystem whose journal
4231 * has recorded an error from a previous lifetime, move that error to the
4232 * main filesystem now.
4233 */
4234 static void ext4_clear_journal_err(struct super_block *sb,
4235 struct ext4_super_block *es)
4236 {
4237 journal_t *journal;
4238 int j_errno;
4239 const char *errstr;
4240
4241 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4242
4243 journal = EXT4_SB(sb)->s_journal;
4244
4245 /*
4246 * Now check for any error status which may have been recorded in the
4247 * journal by a prior ext4_error() or ext4_abort()
4248 */
4249
4250 j_errno = jbd2_journal_errno(journal);
4251 if (j_errno) {
4252 char nbuf[16];
4253
4254 errstr = ext4_decode_error(sb, j_errno, nbuf);
4255 ext4_warning(sb, "Filesystem error recorded "
4256 "from previous mount: %s", errstr);
4257 ext4_warning(sb, "Marking fs in need of filesystem check.");
4258
4259 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4260 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4261 ext4_commit_super(sb, 1);
4262
4263 jbd2_journal_clear_err(journal);
4264 }
4265 }
4266
4267 /*
4268 * Force the running and committing transactions to commit,
4269 * and wait on the commit.
4270 */
4271 int ext4_force_commit(struct super_block *sb)
4272 {
4273 journal_t *journal;
4274 int ret = 0;
4275
4276 if (sb->s_flags & MS_RDONLY)
4277 return 0;
4278
4279 journal = EXT4_SB(sb)->s_journal;
4280 if (journal) {
4281 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4282 ret = ext4_journal_force_commit(journal);
4283 }
4284
4285 return ret;
4286 }
4287
4288 static void ext4_write_super(struct super_block *sb)
4289 {
4290 lock_super(sb);
4291 ext4_commit_super(sb, 1);
4292 unlock_super(sb);
4293 }
4294
4295 static int ext4_sync_fs(struct super_block *sb, int wait)
4296 {
4297 int ret = 0;
4298 tid_t target;
4299 struct ext4_sb_info *sbi = EXT4_SB(sb);
4300
4301 trace_ext4_sync_fs(sb, wait);
4302 flush_workqueue(sbi->dio_unwritten_wq);
4303 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4304 if (wait)
4305 jbd2_log_wait_commit(sbi->s_journal, target);
4306 }
4307 return ret;
4308 }
4309
4310 /*
4311 * LVM calls this function before a (read-only) snapshot is created. This
4312 * gives us a chance to flush the journal completely and mark the fs clean.
4313 *
4314 * Note that only this function cannot bring a filesystem to be in a clean
4315 * state independently, because ext4 prevents a new handle from being started
4316 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4317 * the upper layer.
4318 */
4319 static int ext4_freeze(struct super_block *sb)
4320 {
4321 int error = 0;
4322 journal_t *journal;
4323
4324 if (sb->s_flags & MS_RDONLY)
4325 return 0;
4326
4327 journal = EXT4_SB(sb)->s_journal;
4328
4329 /* Now we set up the journal barrier. */
4330 jbd2_journal_lock_updates(journal);
4331
4332 /*
4333 * Don't clear the needs_recovery flag if we failed to flush
4334 * the journal.
4335 */
4336 error = jbd2_journal_flush(journal);
4337 if (error < 0)
4338 goto out;
4339
4340 /* Journal blocked and flushed, clear needs_recovery flag. */
4341 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4342 error = ext4_commit_super(sb, 1);
4343 out:
4344 /* we rely on s_frozen to stop further updates */
4345 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4346 return error;
4347 }
4348
4349 /*
4350 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4351 * flag here, even though the filesystem is not technically dirty yet.
4352 */
4353 static int ext4_unfreeze(struct super_block *sb)
4354 {
4355 if (sb->s_flags & MS_RDONLY)
4356 return 0;
4357
4358 lock_super(sb);
4359 /* Reset the needs_recovery flag before the fs is unlocked. */
4360 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4361 ext4_commit_super(sb, 1);
4362 unlock_super(sb);
4363 return 0;
4364 }
4365
4366 /*
4367 * Structure to save mount options for ext4_remount's benefit
4368 */
4369 struct ext4_mount_options {
4370 unsigned long s_mount_opt;
4371 unsigned long s_mount_opt2;
4372 uid_t s_resuid;
4373 gid_t s_resgid;
4374 unsigned long s_commit_interval;
4375 u32 s_min_batch_time, s_max_batch_time;
4376 #ifdef CONFIG_QUOTA
4377 int s_jquota_fmt;
4378 char *s_qf_names[MAXQUOTAS];
4379 #endif
4380 };
4381
4382 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4383 {
4384 struct ext4_super_block *es;
4385 struct ext4_sb_info *sbi = EXT4_SB(sb);
4386 ext4_fsblk_t n_blocks_count = 0;
4387 unsigned long old_sb_flags;
4388 struct ext4_mount_options old_opts;
4389 int enable_quota = 0;
4390 ext4_group_t g;
4391 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4392 int err = 0;
4393 #ifdef CONFIG_QUOTA
4394 int i;
4395 #endif
4396 char *orig_data = kstrdup(data, GFP_KERNEL);
4397
4398 /* Store the original options */
4399 lock_super(sb);
4400 old_sb_flags = sb->s_flags;
4401 old_opts.s_mount_opt = sbi->s_mount_opt;
4402 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4403 old_opts.s_resuid = sbi->s_resuid;
4404 old_opts.s_resgid = sbi->s_resgid;
4405 old_opts.s_commit_interval = sbi->s_commit_interval;
4406 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4407 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4408 #ifdef CONFIG_QUOTA
4409 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4410 for (i = 0; i < MAXQUOTAS; i++)
4411 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4412 #endif
4413 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4414 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4415
4416 /*
4417 * Allow the "check" option to be passed as a remount option.
4418 */
4419 if (!parse_options(data, sb, NULL, &journal_ioprio,
4420 &n_blocks_count, 1)) {
4421 err = -EINVAL;
4422 goto restore_opts;
4423 }
4424
4425 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4426 ext4_abort(sb, "Abort forced by user");
4427
4428 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4429 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4430
4431 es = sbi->s_es;
4432
4433 if (sbi->s_journal) {
4434 ext4_init_journal_params(sb, sbi->s_journal);
4435 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4436 }
4437
4438 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4439 n_blocks_count > ext4_blocks_count(es)) {
4440 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4441 err = -EROFS;
4442 goto restore_opts;
4443 }
4444
4445 if (*flags & MS_RDONLY) {
4446 err = dquot_suspend(sb, -1);
4447 if (err < 0)
4448 goto restore_opts;
4449
4450 /*
4451 * First of all, the unconditional stuff we have to do
4452 * to disable replay of the journal when we next remount
4453 */
4454 sb->s_flags |= MS_RDONLY;
4455
4456 /*
4457 * OK, test if we are remounting a valid rw partition
4458 * readonly, and if so set the rdonly flag and then
4459 * mark the partition as valid again.
4460 */
4461 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4462 (sbi->s_mount_state & EXT4_VALID_FS))
4463 es->s_state = cpu_to_le16(sbi->s_mount_state);
4464
4465 if (sbi->s_journal)
4466 ext4_mark_recovery_complete(sb, es);
4467 } else {
4468 /* Make sure we can mount this feature set readwrite */
4469 if (!ext4_feature_set_ok(sb, 0)) {
4470 err = -EROFS;
4471 goto restore_opts;
4472 }
4473 /*
4474 * Make sure the group descriptor checksums
4475 * are sane. If they aren't, refuse to remount r/w.
4476 */
4477 for (g = 0; g < sbi->s_groups_count; g++) {
4478 struct ext4_group_desc *gdp =
4479 ext4_get_group_desc(sb, g, NULL);
4480
4481 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4482 ext4_msg(sb, KERN_ERR,
4483 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4484 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4485 le16_to_cpu(gdp->bg_checksum));
4486 err = -EINVAL;
4487 goto restore_opts;
4488 }
4489 }
4490
4491 /*
4492 * If we have an unprocessed orphan list hanging
4493 * around from a previously readonly bdev mount,
4494 * require a full umount/remount for now.
4495 */
4496 if (es->s_last_orphan) {
4497 ext4_msg(sb, KERN_WARNING, "Couldn't "
4498 "remount RDWR because of unprocessed "
4499 "orphan inode list. Please "
4500 "umount/remount instead");
4501 err = -EINVAL;
4502 goto restore_opts;
4503 }
4504
4505 /*
4506 * Mounting a RDONLY partition read-write, so reread
4507 * and store the current valid flag. (It may have
4508 * been changed by e2fsck since we originally mounted
4509 * the partition.)
4510 */
4511 if (sbi->s_journal)
4512 ext4_clear_journal_err(sb, es);
4513 sbi->s_mount_state = le16_to_cpu(es->s_state);
4514 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4515 goto restore_opts;
4516 if (!ext4_setup_super(sb, es, 0))
4517 sb->s_flags &= ~MS_RDONLY;
4518 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4519 EXT4_FEATURE_INCOMPAT_MMP))
4520 if (ext4_multi_mount_protect(sb,
4521 le64_to_cpu(es->s_mmp_block))) {
4522 err = -EROFS;
4523 goto restore_opts;
4524 }
4525 enable_quota = 1;
4526 }
4527 }
4528
4529 /*
4530 * Reinitialize lazy itable initialization thread based on
4531 * current settings
4532 */
4533 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4534 ext4_unregister_li_request(sb);
4535 else {
4536 ext4_group_t first_not_zeroed;
4537 first_not_zeroed = ext4_has_uninit_itable(sb);
4538 ext4_register_li_request(sb, first_not_zeroed);
4539 }
4540
4541 ext4_setup_system_zone(sb);
4542 if (sbi->s_journal == NULL)
4543 ext4_commit_super(sb, 1);
4544
4545 #ifdef CONFIG_QUOTA
4546 /* Release old quota file names */
4547 for (i = 0; i < MAXQUOTAS; i++)
4548 if (old_opts.s_qf_names[i] &&
4549 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4550 kfree(old_opts.s_qf_names[i]);
4551 #endif
4552 unlock_super(sb);
4553 if (enable_quota)
4554 dquot_resume(sb, -1);
4555
4556 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4557 kfree(orig_data);
4558 return 0;
4559
4560 restore_opts:
4561 sb->s_flags = old_sb_flags;
4562 sbi->s_mount_opt = old_opts.s_mount_opt;
4563 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4564 sbi->s_resuid = old_opts.s_resuid;
4565 sbi->s_resgid = old_opts.s_resgid;
4566 sbi->s_commit_interval = old_opts.s_commit_interval;
4567 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4568 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4569 #ifdef CONFIG_QUOTA
4570 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4571 for (i = 0; i < MAXQUOTAS; i++) {
4572 if (sbi->s_qf_names[i] &&
4573 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4574 kfree(sbi->s_qf_names[i]);
4575 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4576 }
4577 #endif
4578 unlock_super(sb);
4579 kfree(orig_data);
4580 return err;
4581 }
4582
4583 /*
4584 * Note: calculating the overhead so we can be compatible with
4585 * historical BSD practice is quite difficult in the face of
4586 * clusters/bigalloc. This is because multiple metadata blocks from
4587 * different block group can end up in the same allocation cluster.
4588 * Calculating the exact overhead in the face of clustered allocation
4589 * requires either O(all block bitmaps) in memory or O(number of block
4590 * groups**2) in time. We will still calculate the superblock for
4591 * older file systems --- and if we come across with a bigalloc file
4592 * system with zero in s_overhead_clusters the estimate will be close to
4593 * correct especially for very large cluster sizes --- but for newer
4594 * file systems, it's better to calculate this figure once at mkfs
4595 * time, and store it in the superblock. If the superblock value is
4596 * present (even for non-bigalloc file systems), we will use it.
4597 */
4598 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4599 {
4600 struct super_block *sb = dentry->d_sb;
4601 struct ext4_sb_info *sbi = EXT4_SB(sb);
4602 struct ext4_super_block *es = sbi->s_es;
4603 struct ext4_group_desc *gdp;
4604 u64 fsid;
4605 s64 bfree;
4606
4607 if (test_opt(sb, MINIX_DF)) {
4608 sbi->s_overhead_last = 0;
4609 } else if (es->s_overhead_clusters) {
4610 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4611 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4612 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4613 ext4_fsblk_t overhead = 0;
4614
4615 /*
4616 * Compute the overhead (FS structures). This is constant
4617 * for a given filesystem unless the number of block groups
4618 * changes so we cache the previous value until it does.
4619 */
4620
4621 /*
4622 * All of the blocks before first_data_block are
4623 * overhead
4624 */
4625 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4626
4627 /*
4628 * Add the overhead found in each block group
4629 */
4630 for (i = 0; i < ngroups; i++) {
4631 gdp = ext4_get_group_desc(sb, i, NULL);
4632 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4633 cond_resched();
4634 }
4635 sbi->s_overhead_last = overhead;
4636 smp_wmb();
4637 sbi->s_blocks_last = ext4_blocks_count(es);
4638 }
4639
4640 buf->f_type = EXT4_SUPER_MAGIC;
4641 buf->f_bsize = sb->s_blocksize;
4642 buf->f_blocks = (ext4_blocks_count(es) -
4643 EXT4_C2B(sbi, sbi->s_overhead_last));
4644 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4645 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4646 /* prevent underflow in case that few free space is available */
4647 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4648 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4649 if (buf->f_bfree < ext4_r_blocks_count(es))
4650 buf->f_bavail = 0;
4651 buf->f_files = le32_to_cpu(es->s_inodes_count);
4652 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4653 buf->f_namelen = EXT4_NAME_LEN;
4654 fsid = le64_to_cpup((void *)es->s_uuid) ^
4655 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4656 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4657 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4658
4659 return 0;
4660 }
4661
4662 /* Helper function for writing quotas on sync - we need to start transaction
4663 * before quota file is locked for write. Otherwise the are possible deadlocks:
4664 * Process 1 Process 2
4665 * ext4_create() quota_sync()
4666 * jbd2_journal_start() write_dquot()
4667 * dquot_initialize() down(dqio_mutex)
4668 * down(dqio_mutex) jbd2_journal_start()
4669 *
4670 */
4671
4672 #ifdef CONFIG_QUOTA
4673
4674 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4675 {
4676 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4677 }
4678
4679 static int ext4_write_dquot(struct dquot *dquot)
4680 {
4681 int ret, err;
4682 handle_t *handle;
4683 struct inode *inode;
4684
4685 inode = dquot_to_inode(dquot);
4686 handle = ext4_journal_start(inode,
4687 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4688 if (IS_ERR(handle))
4689 return PTR_ERR(handle);
4690 ret = dquot_commit(dquot);
4691 err = ext4_journal_stop(handle);
4692 if (!ret)
4693 ret = err;
4694 return ret;
4695 }
4696
4697 static int ext4_acquire_dquot(struct dquot *dquot)
4698 {
4699 int ret, err;
4700 handle_t *handle;
4701
4702 handle = ext4_journal_start(dquot_to_inode(dquot),
4703 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4704 if (IS_ERR(handle))
4705 return PTR_ERR(handle);
4706 ret = dquot_acquire(dquot);
4707 err = ext4_journal_stop(handle);
4708 if (!ret)
4709 ret = err;
4710 return ret;
4711 }
4712
4713 static int ext4_release_dquot(struct dquot *dquot)
4714 {
4715 int ret, err;
4716 handle_t *handle;
4717
4718 handle = ext4_journal_start(dquot_to_inode(dquot),
4719 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4720 if (IS_ERR(handle)) {
4721 /* Release dquot anyway to avoid endless cycle in dqput() */
4722 dquot_release(dquot);
4723 return PTR_ERR(handle);
4724 }
4725 ret = dquot_release(dquot);
4726 err = ext4_journal_stop(handle);
4727 if (!ret)
4728 ret = err;
4729 return ret;
4730 }
4731
4732 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4733 {
4734 /* Are we journaling quotas? */
4735 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4736 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4737 dquot_mark_dquot_dirty(dquot);
4738 return ext4_write_dquot(dquot);
4739 } else {
4740 return dquot_mark_dquot_dirty(dquot);
4741 }
4742 }
4743
4744 static int ext4_write_info(struct super_block *sb, int type)
4745 {
4746 int ret, err;
4747 handle_t *handle;
4748
4749 /* Data block + inode block */
4750 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4751 if (IS_ERR(handle))
4752 return PTR_ERR(handle);
4753 ret = dquot_commit_info(sb, type);
4754 err = ext4_journal_stop(handle);
4755 if (!ret)
4756 ret = err;
4757 return ret;
4758 }
4759
4760 /*
4761 * Turn on quotas during mount time - we need to find
4762 * the quota file and such...
4763 */
4764 static int ext4_quota_on_mount(struct super_block *sb, int type)
4765 {
4766 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4767 EXT4_SB(sb)->s_jquota_fmt, type);
4768 }
4769
4770 /*
4771 * Standard function to be called on quota_on
4772 */
4773 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4774 struct path *path)
4775 {
4776 int err;
4777
4778 if (!test_opt(sb, QUOTA))
4779 return -EINVAL;
4780
4781 /* Quotafile not on the same filesystem? */
4782 if (path->mnt->mnt_sb != sb)
4783 return -EXDEV;
4784 /* Journaling quota? */
4785 if (EXT4_SB(sb)->s_qf_names[type]) {
4786 /* Quotafile not in fs root? */
4787 if (path->dentry->d_parent != sb->s_root)
4788 ext4_msg(sb, KERN_WARNING,
4789 "Quota file not on filesystem root. "
4790 "Journaled quota will not work");
4791 }
4792
4793 /*
4794 * When we journal data on quota file, we have to flush journal to see
4795 * all updates to the file when we bypass pagecache...
4796 */
4797 if (EXT4_SB(sb)->s_journal &&
4798 ext4_should_journal_data(path->dentry->d_inode)) {
4799 /*
4800 * We don't need to lock updates but journal_flush() could
4801 * otherwise be livelocked...
4802 */
4803 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4804 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4805 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4806 if (err)
4807 return err;
4808 }
4809
4810 return dquot_quota_on(sb, type, format_id, path);
4811 }
4812
4813 static int ext4_quota_off(struct super_block *sb, int type)
4814 {
4815 struct inode *inode = sb_dqopt(sb)->files[type];
4816 handle_t *handle;
4817
4818 /* Force all delayed allocation blocks to be allocated.
4819 * Caller already holds s_umount sem */
4820 if (test_opt(sb, DELALLOC))
4821 sync_filesystem(sb);
4822
4823 if (!inode)
4824 goto out;
4825
4826 /* Update modification times of quota files when userspace can
4827 * start looking at them */
4828 handle = ext4_journal_start(inode, 1);
4829 if (IS_ERR(handle))
4830 goto out;
4831 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4832 ext4_mark_inode_dirty(handle, inode);
4833 ext4_journal_stop(handle);
4834
4835 out:
4836 return dquot_quota_off(sb, type);
4837 }
4838
4839 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4840 * acquiring the locks... As quota files are never truncated and quota code
4841 * itself serializes the operations (and no one else should touch the files)
4842 * we don't have to be afraid of races */
4843 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4844 size_t len, loff_t off)
4845 {
4846 struct inode *inode = sb_dqopt(sb)->files[type];
4847 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4848 int err = 0;
4849 int offset = off & (sb->s_blocksize - 1);
4850 int tocopy;
4851 size_t toread;
4852 struct buffer_head *bh;
4853 loff_t i_size = i_size_read(inode);
4854
4855 if (off > i_size)
4856 return 0;
4857 if (off+len > i_size)
4858 len = i_size-off;
4859 toread = len;
4860 while (toread > 0) {
4861 tocopy = sb->s_blocksize - offset < toread ?
4862 sb->s_blocksize - offset : toread;
4863 bh = ext4_bread(NULL, inode, blk, 0, &err);
4864 if (err)
4865 return err;
4866 if (!bh) /* A hole? */
4867 memset(data, 0, tocopy);
4868 else
4869 memcpy(data, bh->b_data+offset, tocopy);
4870 brelse(bh);
4871 offset = 0;
4872 toread -= tocopy;
4873 data += tocopy;
4874 blk++;
4875 }
4876 return len;
4877 }
4878
4879 /* Write to quotafile (we know the transaction is already started and has
4880 * enough credits) */
4881 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4882 const char *data, size_t len, loff_t off)
4883 {
4884 struct inode *inode = sb_dqopt(sb)->files[type];
4885 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4886 int err = 0;
4887 int offset = off & (sb->s_blocksize - 1);
4888 struct buffer_head *bh;
4889 handle_t *handle = journal_current_handle();
4890
4891 if (EXT4_SB(sb)->s_journal && !handle) {
4892 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4893 " cancelled because transaction is not started",
4894 (unsigned long long)off, (unsigned long long)len);
4895 return -EIO;
4896 }
4897 /*
4898 * Since we account only one data block in transaction credits,
4899 * then it is impossible to cross a block boundary.
4900 */
4901 if (sb->s_blocksize - offset < len) {
4902 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4903 " cancelled because not block aligned",
4904 (unsigned long long)off, (unsigned long long)len);
4905 return -EIO;
4906 }
4907
4908 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4909 bh = ext4_bread(handle, inode, blk, 1, &err);
4910 if (!bh)
4911 goto out;
4912 err = ext4_journal_get_write_access(handle, bh);
4913 if (err) {
4914 brelse(bh);
4915 goto out;
4916 }
4917 lock_buffer(bh);
4918 memcpy(bh->b_data+offset, data, len);
4919 flush_dcache_page(bh->b_page);
4920 unlock_buffer(bh);
4921 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4922 brelse(bh);
4923 out:
4924 if (err) {
4925 mutex_unlock(&inode->i_mutex);
4926 return err;
4927 }
4928 if (inode->i_size < off + len) {
4929 i_size_write(inode, off + len);
4930 EXT4_I(inode)->i_disksize = inode->i_size;
4931 ext4_mark_inode_dirty(handle, inode);
4932 }
4933 mutex_unlock(&inode->i_mutex);
4934 return len;
4935 }
4936
4937 #endif
4938
4939 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4940 const char *dev_name, void *data)
4941 {
4942 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4943 }
4944
4945 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4946 static inline void register_as_ext2(void)
4947 {
4948 int err = register_filesystem(&ext2_fs_type);
4949 if (err)
4950 printk(KERN_WARNING
4951 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4952 }
4953
4954 static inline void unregister_as_ext2(void)
4955 {
4956 unregister_filesystem(&ext2_fs_type);
4957 }
4958
4959 static inline int ext2_feature_set_ok(struct super_block *sb)
4960 {
4961 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4962 return 0;
4963 if (sb->s_flags & MS_RDONLY)
4964 return 1;
4965 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4966 return 0;
4967 return 1;
4968 }
4969 MODULE_ALIAS("ext2");
4970 #else
4971 static inline void register_as_ext2(void) { }
4972 static inline void unregister_as_ext2(void) { }
4973 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4974 #endif
4975
4976 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4977 static inline void register_as_ext3(void)
4978 {
4979 int err = register_filesystem(&ext3_fs_type);
4980 if (err)
4981 printk(KERN_WARNING
4982 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4983 }
4984
4985 static inline void unregister_as_ext3(void)
4986 {
4987 unregister_filesystem(&ext3_fs_type);
4988 }
4989
4990 static inline int ext3_feature_set_ok(struct super_block *sb)
4991 {
4992 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4993 return 0;
4994 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4995 return 0;
4996 if (sb->s_flags & MS_RDONLY)
4997 return 1;
4998 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4999 return 0;
5000 return 1;
5001 }
5002 MODULE_ALIAS("ext3");
5003 #else
5004 static inline void register_as_ext3(void) { }
5005 static inline void unregister_as_ext3(void) { }
5006 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5007 #endif
5008
5009 static struct file_system_type ext4_fs_type = {
5010 .owner = THIS_MODULE,
5011 .name = "ext4",
5012 .mount = ext4_mount,
5013 .kill_sb = kill_block_super,
5014 .fs_flags = FS_REQUIRES_DEV,
5015 };
5016
5017 static int __init ext4_init_feat_adverts(void)
5018 {
5019 struct ext4_features *ef;
5020 int ret = -ENOMEM;
5021
5022 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5023 if (!ef)
5024 goto out;
5025
5026 ef->f_kobj.kset = ext4_kset;
5027 init_completion(&ef->f_kobj_unregister);
5028 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5029 "features");
5030 if (ret) {
5031 kfree(ef);
5032 goto out;
5033 }
5034
5035 ext4_feat = ef;
5036 ret = 0;
5037 out:
5038 return ret;
5039 }
5040
5041 static void ext4_exit_feat_adverts(void)
5042 {
5043 kobject_put(&ext4_feat->f_kobj);
5044 wait_for_completion(&ext4_feat->f_kobj_unregister);
5045 kfree(ext4_feat);
5046 }
5047
5048 /* Shared across all ext4 file systems */
5049 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5050 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5051
5052 static int __init ext4_init_fs(void)
5053 {
5054 int i, err;
5055
5056 ext4_check_flag_values();
5057
5058 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5059 mutex_init(&ext4__aio_mutex[i]);
5060 init_waitqueue_head(&ext4__ioend_wq[i]);
5061 }
5062
5063 err = ext4_init_pageio();
5064 if (err)
5065 return err;
5066 err = ext4_init_system_zone();
5067 if (err)
5068 goto out7;
5069 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5070 if (!ext4_kset)
5071 goto out6;
5072 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5073 if (!ext4_proc_root)
5074 goto out5;
5075
5076 err = ext4_init_feat_adverts();
5077 if (err)
5078 goto out4;
5079
5080 err = ext4_init_mballoc();
5081 if (err)
5082 goto out3;
5083
5084 err = ext4_init_xattr();
5085 if (err)
5086 goto out2;
5087 err = init_inodecache();
5088 if (err)
5089 goto out1;
5090 register_as_ext3();
5091 register_as_ext2();
5092 err = register_filesystem(&ext4_fs_type);
5093 if (err)
5094 goto out;
5095
5096 ext4_li_info = NULL;
5097 mutex_init(&ext4_li_mtx);
5098 return 0;
5099 out:
5100 unregister_as_ext2();
5101 unregister_as_ext3();
5102 destroy_inodecache();
5103 out1:
5104 ext4_exit_xattr();
5105 out2:
5106 ext4_exit_mballoc();
5107 out3:
5108 ext4_exit_feat_adverts();
5109 out4:
5110 remove_proc_entry("fs/ext4", NULL);
5111 out5:
5112 kset_unregister(ext4_kset);
5113 out6:
5114 ext4_exit_system_zone();
5115 out7:
5116 ext4_exit_pageio();
5117 return err;
5118 }
5119
5120 static void __exit ext4_exit_fs(void)
5121 {
5122 ext4_destroy_lazyinit_thread();
5123 unregister_as_ext2();
5124 unregister_as_ext3();
5125 unregister_filesystem(&ext4_fs_type);
5126 destroy_inodecache();
5127 ext4_exit_xattr();
5128 ext4_exit_mballoc();
5129 ext4_exit_feat_adverts();
5130 remove_proc_entry("fs/ext4", NULL);
5131 kset_unregister(ext4_kset);
5132 ext4_exit_system_zone();
5133 ext4_exit_pageio();
5134 }
5135
5136 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5137 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5138 MODULE_LICENSE("GPL");
5139 module_init(ext4_init_fs)
5140 module_exit(ext4_exit_fs)
This page took 0.150812 seconds and 5 git commands to generate.