6a40ec1aabf6090803b1e28410f8397fcce45936
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 static struct ext4_lazy_init *ext4_li_info;
58 static struct mutex ext4_li_mtx;
59 static struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84
85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
86 static struct file_system_type ext2_fs_type = {
87 .owner = THIS_MODULE,
88 .name = "ext2",
89 .mount = ext4_mount,
90 .kill_sb = kill_block_super,
91 .fs_flags = FS_REQUIRES_DEV,
92 };
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97
98
99 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
100 static struct file_system_type ext3_fs_type = {
101 .owner = THIS_MODULE,
102 .name = "ext3",
103 .mount = ext4_mount,
104 .kill_sb = kill_block_super,
105 .fs_flags = FS_REQUIRES_DEV,
106 };
107 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
108 #else
109 #define IS_EXT3_SB(sb) (0)
110 #endif
111
112 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
113 struct ext4_group_desc *bg)
114 {
115 return le32_to_cpu(bg->bg_block_bitmap_lo) |
116 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
117 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
118 }
119
120 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
121 struct ext4_group_desc *bg)
122 {
123 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
124 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
125 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
126 }
127
128 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
129 struct ext4_group_desc *bg)
130 {
131 return le32_to_cpu(bg->bg_inode_table_lo) |
132 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
133 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
134 }
135
136 __u32 ext4_free_blks_count(struct super_block *sb,
137 struct ext4_group_desc *bg)
138 {
139 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
140 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
141 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
142 }
143
144 __u32 ext4_free_inodes_count(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
150 }
151
152 __u32 ext4_used_dirs_count(struct super_block *sb,
153 struct ext4_group_desc *bg)
154 {
155 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
158 }
159
160 __u32 ext4_itable_unused_count(struct super_block *sb,
161 struct ext4_group_desc *bg)
162 {
163 return le16_to_cpu(bg->bg_itable_unused_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
166 }
167
168 void ext4_block_bitmap_set(struct super_block *sb,
169 struct ext4_group_desc *bg, ext4_fsblk_t blk)
170 {
171 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
172 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
173 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
174 }
175
176 void ext4_inode_bitmap_set(struct super_block *sb,
177 struct ext4_group_desc *bg, ext4_fsblk_t blk)
178 {
179 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
180 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
181 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
182 }
183
184 void ext4_inode_table_set(struct super_block *sb,
185 struct ext4_group_desc *bg, ext4_fsblk_t blk)
186 {
187 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
188 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
189 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
190 }
191
192 void ext4_free_blks_set(struct super_block *sb,
193 struct ext4_group_desc *bg, __u32 count)
194 {
195 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
196 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
197 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
198 }
199
200 void ext4_free_inodes_set(struct super_block *sb,
201 struct ext4_group_desc *bg, __u32 count)
202 {
203 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
206 }
207
208 void ext4_used_dirs_set(struct super_block *sb,
209 struct ext4_group_desc *bg, __u32 count)
210 {
211 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
214 }
215
216 void ext4_itable_unused_set(struct super_block *sb,
217 struct ext4_group_desc *bg, __u32 count)
218 {
219 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
222 }
223
224
225 /* Just increment the non-pointer handle value */
226 static handle_t *ext4_get_nojournal(void)
227 {
228 handle_t *handle = current->journal_info;
229 unsigned long ref_cnt = (unsigned long)handle;
230
231 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
232
233 ref_cnt++;
234 handle = (handle_t *)ref_cnt;
235
236 current->journal_info = handle;
237 return handle;
238 }
239
240
241 /* Decrement the non-pointer handle value */
242 static void ext4_put_nojournal(handle_t *handle)
243 {
244 unsigned long ref_cnt = (unsigned long)handle;
245
246 BUG_ON(ref_cnt == 0);
247
248 ref_cnt--;
249 handle = (handle_t *)ref_cnt;
250
251 current->journal_info = handle;
252 }
253
254 /*
255 * Wrappers for jbd2_journal_start/end.
256 *
257 * The only special thing we need to do here is to make sure that all
258 * journal_end calls result in the superblock being marked dirty, so
259 * that sync() will call the filesystem's write_super callback if
260 * appropriate.
261 *
262 * To avoid j_barrier hold in userspace when a user calls freeze(),
263 * ext4 prevents a new handle from being started by s_frozen, which
264 * is in an upper layer.
265 */
266 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
267 {
268 journal_t *journal;
269 handle_t *handle;
270
271 if (sb->s_flags & MS_RDONLY)
272 return ERR_PTR(-EROFS);
273
274 journal = EXT4_SB(sb)->s_journal;
275 handle = ext4_journal_current_handle();
276
277 /*
278 * If a handle has been started, it should be allowed to
279 * finish, otherwise deadlock could happen between freeze
280 * and others(e.g. truncate) due to the restart of the
281 * journal handle if the filesystem is forzen and active
282 * handles are not stopped.
283 */
284 if (!handle)
285 vfs_check_frozen(sb, SB_FREEZE_TRANS);
286
287 if (!journal)
288 return ext4_get_nojournal();
289 /*
290 * Special case here: if the journal has aborted behind our
291 * backs (eg. EIO in the commit thread), then we still need to
292 * take the FS itself readonly cleanly.
293 */
294 if (is_journal_aborted(journal)) {
295 ext4_abort(sb, "Detected aborted journal");
296 return ERR_PTR(-EROFS);
297 }
298 return jbd2_journal_start(journal, nblocks);
299 }
300
301 /*
302 * The only special thing we need to do here is to make sure that all
303 * jbd2_journal_stop calls result in the superblock being marked dirty, so
304 * that sync() will call the filesystem's write_super callback if
305 * appropriate.
306 */
307 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
308 {
309 struct super_block *sb;
310 int err;
311 int rc;
312
313 if (!ext4_handle_valid(handle)) {
314 ext4_put_nojournal(handle);
315 return 0;
316 }
317 sb = handle->h_transaction->t_journal->j_private;
318 err = handle->h_err;
319 rc = jbd2_journal_stop(handle);
320
321 if (!err)
322 err = rc;
323 if (err)
324 __ext4_std_error(sb, where, line, err);
325 return err;
326 }
327
328 void ext4_journal_abort_handle(const char *caller, unsigned int line,
329 const char *err_fn, struct buffer_head *bh,
330 handle_t *handle, int err)
331 {
332 char nbuf[16];
333 const char *errstr = ext4_decode_error(NULL, err, nbuf);
334
335 BUG_ON(!ext4_handle_valid(handle));
336
337 if (bh)
338 BUFFER_TRACE(bh, "abort");
339
340 if (!handle->h_err)
341 handle->h_err = err;
342
343 if (is_handle_aborted(handle))
344 return;
345
346 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
347 caller, line, errstr, err_fn);
348
349 jbd2_journal_abort_handle(handle);
350 }
351
352 static void __save_error_info(struct super_block *sb, const char *func,
353 unsigned int line)
354 {
355 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
356
357 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
358 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
359 es->s_last_error_time = cpu_to_le32(get_seconds());
360 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
361 es->s_last_error_line = cpu_to_le32(line);
362 if (!es->s_first_error_time) {
363 es->s_first_error_time = es->s_last_error_time;
364 strncpy(es->s_first_error_func, func,
365 sizeof(es->s_first_error_func));
366 es->s_first_error_line = cpu_to_le32(line);
367 es->s_first_error_ino = es->s_last_error_ino;
368 es->s_first_error_block = es->s_last_error_block;
369 }
370 /*
371 * Start the daily error reporting function if it hasn't been
372 * started already
373 */
374 if (!es->s_error_count)
375 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
376 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
377 }
378
379 static void save_error_info(struct super_block *sb, const char *func,
380 unsigned int line)
381 {
382 __save_error_info(sb, func, line);
383 ext4_commit_super(sb, 1);
384 }
385
386
387 /* Deal with the reporting of failure conditions on a filesystem such as
388 * inconsistencies detected or read IO failures.
389 *
390 * On ext2, we can store the error state of the filesystem in the
391 * superblock. That is not possible on ext4, because we may have other
392 * write ordering constraints on the superblock which prevent us from
393 * writing it out straight away; and given that the journal is about to
394 * be aborted, we can't rely on the current, or future, transactions to
395 * write out the superblock safely.
396 *
397 * We'll just use the jbd2_journal_abort() error code to record an error in
398 * the journal instead. On recovery, the journal will complain about
399 * that error until we've noted it down and cleared it.
400 */
401
402 static void ext4_handle_error(struct super_block *sb)
403 {
404 if (sb->s_flags & MS_RDONLY)
405 return;
406
407 if (!test_opt(sb, ERRORS_CONT)) {
408 journal_t *journal = EXT4_SB(sb)->s_journal;
409
410 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
411 if (journal)
412 jbd2_journal_abort(journal, -EIO);
413 }
414 if (test_opt(sb, ERRORS_RO)) {
415 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
416 sb->s_flags |= MS_RDONLY;
417 }
418 if (test_opt(sb, ERRORS_PANIC))
419 panic("EXT4-fs (device %s): panic forced after error\n",
420 sb->s_id);
421 }
422
423 void __ext4_error(struct super_block *sb, const char *function,
424 unsigned int line, const char *fmt, ...)
425 {
426 struct va_format vaf;
427 va_list args;
428
429 va_start(args, fmt);
430 vaf.fmt = fmt;
431 vaf.va = &args;
432 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
433 sb->s_id, function, line, current->comm, &vaf);
434 va_end(args);
435
436 ext4_handle_error(sb);
437 }
438
439 void ext4_error_inode(struct inode *inode, const char *function,
440 unsigned int line, ext4_fsblk_t block,
441 const char *fmt, ...)
442 {
443 va_list args;
444 struct va_format vaf;
445 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
446
447 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
448 es->s_last_error_block = cpu_to_le64(block);
449 save_error_info(inode->i_sb, function, line);
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
454 inode->i_sb->s_id, function, line, inode->i_ino);
455 if (block)
456 printk(KERN_CONT "block %llu: ", block);
457 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
458 va_end(args);
459
460 ext4_handle_error(inode->i_sb);
461 }
462
463 void ext4_error_file(struct file *file, const char *function,
464 unsigned int line, ext4_fsblk_t block,
465 const char *fmt, ...)
466 {
467 va_list args;
468 struct va_format vaf;
469 struct ext4_super_block *es;
470 struct inode *inode = file->f_dentry->d_inode;
471 char pathname[80], *path;
472
473 es = EXT4_SB(inode->i_sb)->s_es;
474 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
475 save_error_info(inode->i_sb, function, line);
476 path = d_path(&(file->f_path), pathname, sizeof(pathname));
477 if (IS_ERR(path))
478 path = "(unknown)";
479 printk(KERN_CRIT
480 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
481 inode->i_sb->s_id, function, line, inode->i_ino);
482 if (block)
483 printk(KERN_CONT "block %llu: ", block);
484 va_start(args, fmt);
485 vaf.fmt = fmt;
486 vaf.va = &args;
487 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
488 va_end(args);
489
490 ext4_handle_error(inode->i_sb);
491 }
492
493 static const char *ext4_decode_error(struct super_block *sb, int errno,
494 char nbuf[16])
495 {
496 char *errstr = NULL;
497
498 switch (errno) {
499 case -EIO:
500 errstr = "IO failure";
501 break;
502 case -ENOMEM:
503 errstr = "Out of memory";
504 break;
505 case -EROFS:
506 if (!sb || (EXT4_SB(sb)->s_journal &&
507 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
508 errstr = "Journal has aborted";
509 else
510 errstr = "Readonly filesystem";
511 break;
512 default:
513 /* If the caller passed in an extra buffer for unknown
514 * errors, textualise them now. Else we just return
515 * NULL. */
516 if (nbuf) {
517 /* Check for truncated error codes... */
518 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
519 errstr = nbuf;
520 }
521 break;
522 }
523
524 return errstr;
525 }
526
527 /* __ext4_std_error decodes expected errors from journaling functions
528 * automatically and invokes the appropriate error response. */
529
530 void __ext4_std_error(struct super_block *sb, const char *function,
531 unsigned int line, int errno)
532 {
533 char nbuf[16];
534 const char *errstr;
535
536 /* Special case: if the error is EROFS, and we're not already
537 * inside a transaction, then there's really no point in logging
538 * an error. */
539 if (errno == -EROFS && journal_current_handle() == NULL &&
540 (sb->s_flags & MS_RDONLY))
541 return;
542
543 errstr = ext4_decode_error(sb, errno, nbuf);
544 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
545 sb->s_id, function, line, errstr);
546 save_error_info(sb, function, line);
547
548 ext4_handle_error(sb);
549 }
550
551 /*
552 * ext4_abort is a much stronger failure handler than ext4_error. The
553 * abort function may be used to deal with unrecoverable failures such
554 * as journal IO errors or ENOMEM at a critical moment in log management.
555 *
556 * We unconditionally force the filesystem into an ABORT|READONLY state,
557 * unless the error response on the fs has been set to panic in which
558 * case we take the easy way out and panic immediately.
559 */
560
561 void __ext4_abort(struct super_block *sb, const char *function,
562 unsigned int line, const char *fmt, ...)
563 {
564 va_list args;
565
566 save_error_info(sb, function, line);
567 va_start(args, fmt);
568 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
569 function, line);
570 vprintk(fmt, args);
571 printk("\n");
572 va_end(args);
573
574 if ((sb->s_flags & MS_RDONLY) == 0) {
575 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
576 sb->s_flags |= MS_RDONLY;
577 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
578 if (EXT4_SB(sb)->s_journal)
579 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
580 save_error_info(sb, function, line);
581 }
582 if (test_opt(sb, ERRORS_PANIC))
583 panic("EXT4-fs panic from previous error\n");
584 }
585
586 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
587 {
588 struct va_format vaf;
589 va_list args;
590
591 va_start(args, fmt);
592 vaf.fmt = fmt;
593 vaf.va = &args;
594 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
595 va_end(args);
596 }
597
598 void __ext4_warning(struct super_block *sb, const char *function,
599 unsigned int line, const char *fmt, ...)
600 {
601 struct va_format vaf;
602 va_list args;
603
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610 }
611
612 void __ext4_grp_locked_error(const char *function, unsigned int line,
613 struct super_block *sb, ext4_group_t grp,
614 unsigned long ino, ext4_fsblk_t block,
615 const char *fmt, ...)
616 __releases(bitlock)
617 __acquires(bitlock)
618 {
619 struct va_format vaf;
620 va_list args;
621 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
622
623 es->s_last_error_ino = cpu_to_le32(ino);
624 es->s_last_error_block = cpu_to_le64(block);
625 __save_error_info(sb, function, line);
626
627 va_start(args, fmt);
628
629 vaf.fmt = fmt;
630 vaf.va = &args;
631 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
632 sb->s_id, function, line, grp);
633 if (ino)
634 printk(KERN_CONT "inode %lu: ", ino);
635 if (block)
636 printk(KERN_CONT "block %llu:", (unsigned long long) block);
637 printk(KERN_CONT "%pV\n", &vaf);
638 va_end(args);
639
640 if (test_opt(sb, ERRORS_CONT)) {
641 ext4_commit_super(sb, 0);
642 return;
643 }
644
645 ext4_unlock_group(sb, grp);
646 ext4_handle_error(sb);
647 /*
648 * We only get here in the ERRORS_RO case; relocking the group
649 * may be dangerous, but nothing bad will happen since the
650 * filesystem will have already been marked read/only and the
651 * journal has been aborted. We return 1 as a hint to callers
652 * who might what to use the return value from
653 * ext4_grp_locked_error() to distinguish between the
654 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
655 * aggressively from the ext4 function in question, with a
656 * more appropriate error code.
657 */
658 ext4_lock_group(sb, grp);
659 return;
660 }
661
662 void ext4_update_dynamic_rev(struct super_block *sb)
663 {
664 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
665
666 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
667 return;
668
669 ext4_warning(sb,
670 "updating to rev %d because of new feature flag, "
671 "running e2fsck is recommended",
672 EXT4_DYNAMIC_REV);
673
674 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
675 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
676 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
677 /* leave es->s_feature_*compat flags alone */
678 /* es->s_uuid will be set by e2fsck if empty */
679
680 /*
681 * The rest of the superblock fields should be zero, and if not it
682 * means they are likely already in use, so leave them alone. We
683 * can leave it up to e2fsck to clean up any inconsistencies there.
684 */
685 }
686
687 /*
688 * Open the external journal device
689 */
690 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
691 {
692 struct block_device *bdev;
693 char b[BDEVNAME_SIZE];
694
695 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
696 if (IS_ERR(bdev))
697 goto fail;
698 return bdev;
699
700 fail:
701 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
702 __bdevname(dev, b), PTR_ERR(bdev));
703 return NULL;
704 }
705
706 /*
707 * Release the journal device
708 */
709 static int ext4_blkdev_put(struct block_device *bdev)
710 {
711 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
712 }
713
714 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
715 {
716 struct block_device *bdev;
717 int ret = -ENODEV;
718
719 bdev = sbi->journal_bdev;
720 if (bdev) {
721 ret = ext4_blkdev_put(bdev);
722 sbi->journal_bdev = NULL;
723 }
724 return ret;
725 }
726
727 static inline struct inode *orphan_list_entry(struct list_head *l)
728 {
729 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
730 }
731
732 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
733 {
734 struct list_head *l;
735
736 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
737 le32_to_cpu(sbi->s_es->s_last_orphan));
738
739 printk(KERN_ERR "sb_info orphan list:\n");
740 list_for_each(l, &sbi->s_orphan) {
741 struct inode *inode = orphan_list_entry(l);
742 printk(KERN_ERR " "
743 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
744 inode->i_sb->s_id, inode->i_ino, inode,
745 inode->i_mode, inode->i_nlink,
746 NEXT_ORPHAN(inode));
747 }
748 }
749
750 static void ext4_put_super(struct super_block *sb)
751 {
752 struct ext4_sb_info *sbi = EXT4_SB(sb);
753 struct ext4_super_block *es = sbi->s_es;
754 int i, err;
755
756 ext4_unregister_li_request(sb);
757 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
758
759 flush_workqueue(sbi->dio_unwritten_wq);
760 destroy_workqueue(sbi->dio_unwritten_wq);
761
762 lock_super(sb);
763 if (sb->s_dirt)
764 ext4_commit_super(sb, 1);
765
766 if (sbi->s_journal) {
767 err = jbd2_journal_destroy(sbi->s_journal);
768 sbi->s_journal = NULL;
769 if (err < 0)
770 ext4_abort(sb, "Couldn't clean up the journal");
771 }
772
773 del_timer(&sbi->s_err_report);
774 ext4_release_system_zone(sb);
775 ext4_mb_release(sb);
776 ext4_ext_release(sb);
777 ext4_xattr_put_super(sb);
778
779 if (!(sb->s_flags & MS_RDONLY)) {
780 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
781 es->s_state = cpu_to_le16(sbi->s_mount_state);
782 ext4_commit_super(sb, 1);
783 }
784 if (sbi->s_proc) {
785 remove_proc_entry(sb->s_id, ext4_proc_root);
786 }
787 kobject_del(&sbi->s_kobj);
788
789 for (i = 0; i < sbi->s_gdb_count; i++)
790 brelse(sbi->s_group_desc[i]);
791 kfree(sbi->s_group_desc);
792 if (is_vmalloc_addr(sbi->s_flex_groups))
793 vfree(sbi->s_flex_groups);
794 else
795 kfree(sbi->s_flex_groups);
796 percpu_counter_destroy(&sbi->s_freeblocks_counter);
797 percpu_counter_destroy(&sbi->s_freeinodes_counter);
798 percpu_counter_destroy(&sbi->s_dirs_counter);
799 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
800 brelse(sbi->s_sbh);
801 #ifdef CONFIG_QUOTA
802 for (i = 0; i < MAXQUOTAS; i++)
803 kfree(sbi->s_qf_names[i]);
804 #endif
805
806 /* Debugging code just in case the in-memory inode orphan list
807 * isn't empty. The on-disk one can be non-empty if we've
808 * detected an error and taken the fs readonly, but the
809 * in-memory list had better be clean by this point. */
810 if (!list_empty(&sbi->s_orphan))
811 dump_orphan_list(sb, sbi);
812 J_ASSERT(list_empty(&sbi->s_orphan));
813
814 invalidate_bdev(sb->s_bdev);
815 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
816 /*
817 * Invalidate the journal device's buffers. We don't want them
818 * floating about in memory - the physical journal device may
819 * hotswapped, and it breaks the `ro-after' testing code.
820 */
821 sync_blockdev(sbi->journal_bdev);
822 invalidate_bdev(sbi->journal_bdev);
823 ext4_blkdev_remove(sbi);
824 }
825 sb->s_fs_info = NULL;
826 /*
827 * Now that we are completely done shutting down the
828 * superblock, we need to actually destroy the kobject.
829 */
830 unlock_super(sb);
831 kobject_put(&sbi->s_kobj);
832 wait_for_completion(&sbi->s_kobj_unregister);
833 kfree(sbi->s_blockgroup_lock);
834 kfree(sbi);
835 }
836
837 static struct kmem_cache *ext4_inode_cachep;
838
839 /*
840 * Called inside transaction, so use GFP_NOFS
841 */
842 static struct inode *ext4_alloc_inode(struct super_block *sb)
843 {
844 struct ext4_inode_info *ei;
845
846 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
847 if (!ei)
848 return NULL;
849
850 ei->vfs_inode.i_version = 1;
851 ei->vfs_inode.i_data.writeback_index = 0;
852 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
853 INIT_LIST_HEAD(&ei->i_prealloc_list);
854 spin_lock_init(&ei->i_prealloc_lock);
855 ei->i_reserved_data_blocks = 0;
856 ei->i_reserved_meta_blocks = 0;
857 ei->i_allocated_meta_blocks = 0;
858 ei->i_da_metadata_calc_len = 0;
859 spin_lock_init(&(ei->i_block_reservation_lock));
860 #ifdef CONFIG_QUOTA
861 ei->i_reserved_quota = 0;
862 #endif
863 ei->jinode = NULL;
864 INIT_LIST_HEAD(&ei->i_completed_io_list);
865 spin_lock_init(&ei->i_completed_io_lock);
866 ei->cur_aio_dio = NULL;
867 ei->i_sync_tid = 0;
868 ei->i_datasync_tid = 0;
869 atomic_set(&ei->i_ioend_count, 0);
870 atomic_set(&ei->i_aiodio_unwritten, 0);
871
872 return &ei->vfs_inode;
873 }
874
875 static int ext4_drop_inode(struct inode *inode)
876 {
877 int drop = generic_drop_inode(inode);
878
879 trace_ext4_drop_inode(inode, drop);
880 return drop;
881 }
882
883 static void ext4_i_callback(struct rcu_head *head)
884 {
885 struct inode *inode = container_of(head, struct inode, i_rcu);
886 INIT_LIST_HEAD(&inode->i_dentry);
887 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
888 }
889
890 static void ext4_destroy_inode(struct inode *inode)
891 {
892 ext4_ioend_wait(inode);
893 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
894 ext4_msg(inode->i_sb, KERN_ERR,
895 "Inode %lu (%p): orphan list check failed!",
896 inode->i_ino, EXT4_I(inode));
897 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
898 EXT4_I(inode), sizeof(struct ext4_inode_info),
899 true);
900 dump_stack();
901 }
902 call_rcu(&inode->i_rcu, ext4_i_callback);
903 }
904
905 static void init_once(void *foo)
906 {
907 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
908
909 INIT_LIST_HEAD(&ei->i_orphan);
910 #ifdef CONFIG_EXT4_FS_XATTR
911 init_rwsem(&ei->xattr_sem);
912 #endif
913 init_rwsem(&ei->i_data_sem);
914 inode_init_once(&ei->vfs_inode);
915 }
916
917 static int init_inodecache(void)
918 {
919 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
920 sizeof(struct ext4_inode_info),
921 0, (SLAB_RECLAIM_ACCOUNT|
922 SLAB_MEM_SPREAD),
923 init_once);
924 if (ext4_inode_cachep == NULL)
925 return -ENOMEM;
926 return 0;
927 }
928
929 static void destroy_inodecache(void)
930 {
931 kmem_cache_destroy(ext4_inode_cachep);
932 }
933
934 void ext4_clear_inode(struct inode *inode)
935 {
936 invalidate_inode_buffers(inode);
937 end_writeback(inode);
938 dquot_drop(inode);
939 ext4_discard_preallocations(inode);
940 if (EXT4_I(inode)->jinode) {
941 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
942 EXT4_I(inode)->jinode);
943 jbd2_free_inode(EXT4_I(inode)->jinode);
944 EXT4_I(inode)->jinode = NULL;
945 }
946 }
947
948 static inline void ext4_show_quota_options(struct seq_file *seq,
949 struct super_block *sb)
950 {
951 #if defined(CONFIG_QUOTA)
952 struct ext4_sb_info *sbi = EXT4_SB(sb);
953
954 if (sbi->s_jquota_fmt) {
955 char *fmtname = "";
956
957 switch (sbi->s_jquota_fmt) {
958 case QFMT_VFS_OLD:
959 fmtname = "vfsold";
960 break;
961 case QFMT_VFS_V0:
962 fmtname = "vfsv0";
963 break;
964 case QFMT_VFS_V1:
965 fmtname = "vfsv1";
966 break;
967 }
968 seq_printf(seq, ",jqfmt=%s", fmtname);
969 }
970
971 if (sbi->s_qf_names[USRQUOTA])
972 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
973
974 if (sbi->s_qf_names[GRPQUOTA])
975 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
976
977 if (test_opt(sb, USRQUOTA))
978 seq_puts(seq, ",usrquota");
979
980 if (test_opt(sb, GRPQUOTA))
981 seq_puts(seq, ",grpquota");
982 #endif
983 }
984
985 /*
986 * Show an option if
987 * - it's set to a non-default value OR
988 * - if the per-sb default is different from the global default
989 */
990 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
991 {
992 int def_errors;
993 unsigned long def_mount_opts;
994 struct super_block *sb = vfs->mnt_sb;
995 struct ext4_sb_info *sbi = EXT4_SB(sb);
996 struct ext4_super_block *es = sbi->s_es;
997
998 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
999 def_errors = le16_to_cpu(es->s_errors);
1000
1001 if (sbi->s_sb_block != 1)
1002 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1003 if (test_opt(sb, MINIX_DF))
1004 seq_puts(seq, ",minixdf");
1005 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1006 seq_puts(seq, ",grpid");
1007 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1008 seq_puts(seq, ",nogrpid");
1009 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1010 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1011 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1012 }
1013 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1014 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1015 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1016 }
1017 if (test_opt(sb, ERRORS_RO)) {
1018 if (def_errors == EXT4_ERRORS_PANIC ||
1019 def_errors == EXT4_ERRORS_CONTINUE) {
1020 seq_puts(seq, ",errors=remount-ro");
1021 }
1022 }
1023 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1024 seq_puts(seq, ",errors=continue");
1025 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1026 seq_puts(seq, ",errors=panic");
1027 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1028 seq_puts(seq, ",nouid32");
1029 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1030 seq_puts(seq, ",debug");
1031 if (test_opt(sb, OLDALLOC))
1032 seq_puts(seq, ",oldalloc");
1033 #ifdef CONFIG_EXT4_FS_XATTR
1034 if (test_opt(sb, XATTR_USER))
1035 seq_puts(seq, ",user_xattr");
1036 if (!test_opt(sb, XATTR_USER))
1037 seq_puts(seq, ",nouser_xattr");
1038 #endif
1039 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1040 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1041 seq_puts(seq, ",acl");
1042 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1043 seq_puts(seq, ",noacl");
1044 #endif
1045 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1046 seq_printf(seq, ",commit=%u",
1047 (unsigned) (sbi->s_commit_interval / HZ));
1048 }
1049 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1050 seq_printf(seq, ",min_batch_time=%u",
1051 (unsigned) sbi->s_min_batch_time);
1052 }
1053 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1054 seq_printf(seq, ",max_batch_time=%u",
1055 (unsigned) sbi->s_min_batch_time);
1056 }
1057
1058 /*
1059 * We're changing the default of barrier mount option, so
1060 * let's always display its mount state so it's clear what its
1061 * status is.
1062 */
1063 seq_puts(seq, ",barrier=");
1064 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1065 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1066 seq_puts(seq, ",journal_async_commit");
1067 else if (test_opt(sb, JOURNAL_CHECKSUM))
1068 seq_puts(seq, ",journal_checksum");
1069 if (test_opt(sb, I_VERSION))
1070 seq_puts(seq, ",i_version");
1071 if (!test_opt(sb, DELALLOC) &&
1072 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1073 seq_puts(seq, ",nodelalloc");
1074
1075 if (!test_opt(sb, MBLK_IO_SUBMIT))
1076 seq_puts(seq, ",nomblk_io_submit");
1077 if (sbi->s_stripe)
1078 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1079 /*
1080 * journal mode get enabled in different ways
1081 * So just print the value even if we didn't specify it
1082 */
1083 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1084 seq_puts(seq, ",data=journal");
1085 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1086 seq_puts(seq, ",data=ordered");
1087 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1088 seq_puts(seq, ",data=writeback");
1089
1090 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1091 seq_printf(seq, ",inode_readahead_blks=%u",
1092 sbi->s_inode_readahead_blks);
1093
1094 if (test_opt(sb, DATA_ERR_ABORT))
1095 seq_puts(seq, ",data_err=abort");
1096
1097 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1098 seq_puts(seq, ",noauto_da_alloc");
1099
1100 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1101 seq_puts(seq, ",discard");
1102
1103 if (test_opt(sb, NOLOAD))
1104 seq_puts(seq, ",norecovery");
1105
1106 if (test_opt(sb, DIOREAD_NOLOCK))
1107 seq_puts(seq, ",dioread_nolock");
1108
1109 if (test_opt(sb, BLOCK_VALIDITY) &&
1110 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1111 seq_puts(seq, ",block_validity");
1112
1113 if (!test_opt(sb, INIT_INODE_TABLE))
1114 seq_puts(seq, ",noinit_inode_table");
1115 else if (sbi->s_li_wait_mult)
1116 seq_printf(seq, ",init_inode_table=%u",
1117 (unsigned) sbi->s_li_wait_mult);
1118
1119 ext4_show_quota_options(seq, sb);
1120
1121 return 0;
1122 }
1123
1124 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1125 u64 ino, u32 generation)
1126 {
1127 struct inode *inode;
1128
1129 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1130 return ERR_PTR(-ESTALE);
1131 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1132 return ERR_PTR(-ESTALE);
1133
1134 /* iget isn't really right if the inode is currently unallocated!!
1135 *
1136 * ext4_read_inode will return a bad_inode if the inode had been
1137 * deleted, so we should be safe.
1138 *
1139 * Currently we don't know the generation for parent directory, so
1140 * a generation of 0 means "accept any"
1141 */
1142 inode = ext4_iget(sb, ino);
1143 if (IS_ERR(inode))
1144 return ERR_CAST(inode);
1145 if (generation && inode->i_generation != generation) {
1146 iput(inode);
1147 return ERR_PTR(-ESTALE);
1148 }
1149
1150 return inode;
1151 }
1152
1153 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1154 int fh_len, int fh_type)
1155 {
1156 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1157 ext4_nfs_get_inode);
1158 }
1159
1160 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1161 int fh_len, int fh_type)
1162 {
1163 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1164 ext4_nfs_get_inode);
1165 }
1166
1167 /*
1168 * Try to release metadata pages (indirect blocks, directories) which are
1169 * mapped via the block device. Since these pages could have journal heads
1170 * which would prevent try_to_free_buffers() from freeing them, we must use
1171 * jbd2 layer's try_to_free_buffers() function to release them.
1172 */
1173 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1174 gfp_t wait)
1175 {
1176 journal_t *journal = EXT4_SB(sb)->s_journal;
1177
1178 WARN_ON(PageChecked(page));
1179 if (!page_has_buffers(page))
1180 return 0;
1181 if (journal)
1182 return jbd2_journal_try_to_free_buffers(journal, page,
1183 wait & ~__GFP_WAIT);
1184 return try_to_free_buffers(page);
1185 }
1186
1187 #ifdef CONFIG_QUOTA
1188 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1189 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1190
1191 static int ext4_write_dquot(struct dquot *dquot);
1192 static int ext4_acquire_dquot(struct dquot *dquot);
1193 static int ext4_release_dquot(struct dquot *dquot);
1194 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1195 static int ext4_write_info(struct super_block *sb, int type);
1196 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1197 struct path *path);
1198 static int ext4_quota_off(struct super_block *sb, int type);
1199 static int ext4_quota_on_mount(struct super_block *sb, int type);
1200 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1201 size_t len, loff_t off);
1202 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1203 const char *data, size_t len, loff_t off);
1204
1205 static const struct dquot_operations ext4_quota_operations = {
1206 .get_reserved_space = ext4_get_reserved_space,
1207 .write_dquot = ext4_write_dquot,
1208 .acquire_dquot = ext4_acquire_dquot,
1209 .release_dquot = ext4_release_dquot,
1210 .mark_dirty = ext4_mark_dquot_dirty,
1211 .write_info = ext4_write_info,
1212 .alloc_dquot = dquot_alloc,
1213 .destroy_dquot = dquot_destroy,
1214 };
1215
1216 static const struct quotactl_ops ext4_qctl_operations = {
1217 .quota_on = ext4_quota_on,
1218 .quota_off = ext4_quota_off,
1219 .quota_sync = dquot_quota_sync,
1220 .get_info = dquot_get_dqinfo,
1221 .set_info = dquot_set_dqinfo,
1222 .get_dqblk = dquot_get_dqblk,
1223 .set_dqblk = dquot_set_dqblk
1224 };
1225 #endif
1226
1227 static const struct super_operations ext4_sops = {
1228 .alloc_inode = ext4_alloc_inode,
1229 .destroy_inode = ext4_destroy_inode,
1230 .write_inode = ext4_write_inode,
1231 .dirty_inode = ext4_dirty_inode,
1232 .drop_inode = ext4_drop_inode,
1233 .evict_inode = ext4_evict_inode,
1234 .put_super = ext4_put_super,
1235 .sync_fs = ext4_sync_fs,
1236 .freeze_fs = ext4_freeze,
1237 .unfreeze_fs = ext4_unfreeze,
1238 .statfs = ext4_statfs,
1239 .remount_fs = ext4_remount,
1240 .show_options = ext4_show_options,
1241 #ifdef CONFIG_QUOTA
1242 .quota_read = ext4_quota_read,
1243 .quota_write = ext4_quota_write,
1244 #endif
1245 .bdev_try_to_free_page = bdev_try_to_free_page,
1246 };
1247
1248 static const struct super_operations ext4_nojournal_sops = {
1249 .alloc_inode = ext4_alloc_inode,
1250 .destroy_inode = ext4_destroy_inode,
1251 .write_inode = ext4_write_inode,
1252 .dirty_inode = ext4_dirty_inode,
1253 .drop_inode = ext4_drop_inode,
1254 .evict_inode = ext4_evict_inode,
1255 .write_super = ext4_write_super,
1256 .put_super = ext4_put_super,
1257 .statfs = ext4_statfs,
1258 .remount_fs = ext4_remount,
1259 .show_options = ext4_show_options,
1260 #ifdef CONFIG_QUOTA
1261 .quota_read = ext4_quota_read,
1262 .quota_write = ext4_quota_write,
1263 #endif
1264 .bdev_try_to_free_page = bdev_try_to_free_page,
1265 };
1266
1267 static const struct export_operations ext4_export_ops = {
1268 .fh_to_dentry = ext4_fh_to_dentry,
1269 .fh_to_parent = ext4_fh_to_parent,
1270 .get_parent = ext4_get_parent,
1271 };
1272
1273 enum {
1274 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1275 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1276 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1277 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1278 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1279 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1280 Opt_journal_update, Opt_journal_dev,
1281 Opt_journal_checksum, Opt_journal_async_commit,
1282 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1283 Opt_data_err_abort, Opt_data_err_ignore,
1284 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1285 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1286 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1287 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1288 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1289 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1290 Opt_inode_readahead_blks, Opt_journal_ioprio,
1291 Opt_dioread_nolock, Opt_dioread_lock,
1292 Opt_discard, Opt_nodiscard,
1293 Opt_init_inode_table, Opt_noinit_inode_table,
1294 };
1295
1296 static const match_table_t tokens = {
1297 {Opt_bsd_df, "bsddf"},
1298 {Opt_minix_df, "minixdf"},
1299 {Opt_grpid, "grpid"},
1300 {Opt_grpid, "bsdgroups"},
1301 {Opt_nogrpid, "nogrpid"},
1302 {Opt_nogrpid, "sysvgroups"},
1303 {Opt_resgid, "resgid=%u"},
1304 {Opt_resuid, "resuid=%u"},
1305 {Opt_sb, "sb=%u"},
1306 {Opt_err_cont, "errors=continue"},
1307 {Opt_err_panic, "errors=panic"},
1308 {Opt_err_ro, "errors=remount-ro"},
1309 {Opt_nouid32, "nouid32"},
1310 {Opt_debug, "debug"},
1311 {Opt_oldalloc, "oldalloc"},
1312 {Opt_orlov, "orlov"},
1313 {Opt_user_xattr, "user_xattr"},
1314 {Opt_nouser_xattr, "nouser_xattr"},
1315 {Opt_acl, "acl"},
1316 {Opt_noacl, "noacl"},
1317 {Opt_noload, "noload"},
1318 {Opt_noload, "norecovery"},
1319 {Opt_nobh, "nobh"},
1320 {Opt_bh, "bh"},
1321 {Opt_commit, "commit=%u"},
1322 {Opt_min_batch_time, "min_batch_time=%u"},
1323 {Opt_max_batch_time, "max_batch_time=%u"},
1324 {Opt_journal_update, "journal=update"},
1325 {Opt_journal_dev, "journal_dev=%u"},
1326 {Opt_journal_checksum, "journal_checksum"},
1327 {Opt_journal_async_commit, "journal_async_commit"},
1328 {Opt_abort, "abort"},
1329 {Opt_data_journal, "data=journal"},
1330 {Opt_data_ordered, "data=ordered"},
1331 {Opt_data_writeback, "data=writeback"},
1332 {Opt_data_err_abort, "data_err=abort"},
1333 {Opt_data_err_ignore, "data_err=ignore"},
1334 {Opt_offusrjquota, "usrjquota="},
1335 {Opt_usrjquota, "usrjquota=%s"},
1336 {Opt_offgrpjquota, "grpjquota="},
1337 {Opt_grpjquota, "grpjquota=%s"},
1338 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1339 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1340 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1341 {Opt_grpquota, "grpquota"},
1342 {Opt_noquota, "noquota"},
1343 {Opt_quota, "quota"},
1344 {Opt_usrquota, "usrquota"},
1345 {Opt_barrier, "barrier=%u"},
1346 {Opt_barrier, "barrier"},
1347 {Opt_nobarrier, "nobarrier"},
1348 {Opt_i_version, "i_version"},
1349 {Opt_stripe, "stripe=%u"},
1350 {Opt_resize, "resize"},
1351 {Opt_delalloc, "delalloc"},
1352 {Opt_nodelalloc, "nodelalloc"},
1353 {Opt_mblk_io_submit, "mblk_io_submit"},
1354 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1355 {Opt_block_validity, "block_validity"},
1356 {Opt_noblock_validity, "noblock_validity"},
1357 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1358 {Opt_journal_ioprio, "journal_ioprio=%u"},
1359 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1360 {Opt_auto_da_alloc, "auto_da_alloc"},
1361 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1362 {Opt_dioread_nolock, "dioread_nolock"},
1363 {Opt_dioread_lock, "dioread_lock"},
1364 {Opt_discard, "discard"},
1365 {Opt_nodiscard, "nodiscard"},
1366 {Opt_init_inode_table, "init_itable=%u"},
1367 {Opt_init_inode_table, "init_itable"},
1368 {Opt_noinit_inode_table, "noinit_itable"},
1369 {Opt_err, NULL},
1370 };
1371
1372 static ext4_fsblk_t get_sb_block(void **data)
1373 {
1374 ext4_fsblk_t sb_block;
1375 char *options = (char *) *data;
1376
1377 if (!options || strncmp(options, "sb=", 3) != 0)
1378 return 1; /* Default location */
1379
1380 options += 3;
1381 /* TODO: use simple_strtoll with >32bit ext4 */
1382 sb_block = simple_strtoul(options, &options, 0);
1383 if (*options && *options != ',') {
1384 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1385 (char *) *data);
1386 return 1;
1387 }
1388 if (*options == ',')
1389 options++;
1390 *data = (void *) options;
1391
1392 return sb_block;
1393 }
1394
1395 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1396 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1397 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1398
1399 #ifdef CONFIG_QUOTA
1400 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1401 {
1402 struct ext4_sb_info *sbi = EXT4_SB(sb);
1403 char *qname;
1404
1405 if (sb_any_quota_loaded(sb) &&
1406 !sbi->s_qf_names[qtype]) {
1407 ext4_msg(sb, KERN_ERR,
1408 "Cannot change journaled "
1409 "quota options when quota turned on");
1410 return 0;
1411 }
1412 qname = match_strdup(args);
1413 if (!qname) {
1414 ext4_msg(sb, KERN_ERR,
1415 "Not enough memory for storing quotafile name");
1416 return 0;
1417 }
1418 if (sbi->s_qf_names[qtype] &&
1419 strcmp(sbi->s_qf_names[qtype], qname)) {
1420 ext4_msg(sb, KERN_ERR,
1421 "%s quota file already specified", QTYPE2NAME(qtype));
1422 kfree(qname);
1423 return 0;
1424 }
1425 sbi->s_qf_names[qtype] = qname;
1426 if (strchr(sbi->s_qf_names[qtype], '/')) {
1427 ext4_msg(sb, KERN_ERR,
1428 "quotafile must be on filesystem root");
1429 kfree(sbi->s_qf_names[qtype]);
1430 sbi->s_qf_names[qtype] = NULL;
1431 return 0;
1432 }
1433 set_opt(sb, QUOTA);
1434 return 1;
1435 }
1436
1437 static int clear_qf_name(struct super_block *sb, int qtype)
1438 {
1439
1440 struct ext4_sb_info *sbi = EXT4_SB(sb);
1441
1442 if (sb_any_quota_loaded(sb) &&
1443 sbi->s_qf_names[qtype]) {
1444 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1445 " when quota turned on");
1446 return 0;
1447 }
1448 /*
1449 * The space will be released later when all options are confirmed
1450 * to be correct
1451 */
1452 sbi->s_qf_names[qtype] = NULL;
1453 return 1;
1454 }
1455 #endif
1456
1457 static int parse_options(char *options, struct super_block *sb,
1458 unsigned long *journal_devnum,
1459 unsigned int *journal_ioprio,
1460 ext4_fsblk_t *n_blocks_count, int is_remount)
1461 {
1462 struct ext4_sb_info *sbi = EXT4_SB(sb);
1463 char *p;
1464 substring_t args[MAX_OPT_ARGS];
1465 int data_opt = 0;
1466 int option;
1467 #ifdef CONFIG_QUOTA
1468 int qfmt;
1469 #endif
1470
1471 if (!options)
1472 return 1;
1473
1474 while ((p = strsep(&options, ",")) != NULL) {
1475 int token;
1476 if (!*p)
1477 continue;
1478
1479 /*
1480 * Initialize args struct so we know whether arg was
1481 * found; some options take optional arguments.
1482 */
1483 args[0].to = args[0].from = NULL;
1484 token = match_token(p, tokens, args);
1485 switch (token) {
1486 case Opt_bsd_df:
1487 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1488 clear_opt(sb, MINIX_DF);
1489 break;
1490 case Opt_minix_df:
1491 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1492 set_opt(sb, MINIX_DF);
1493
1494 break;
1495 case Opt_grpid:
1496 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1497 set_opt(sb, GRPID);
1498
1499 break;
1500 case Opt_nogrpid:
1501 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1502 clear_opt(sb, GRPID);
1503
1504 break;
1505 case Opt_resuid:
1506 if (match_int(&args[0], &option))
1507 return 0;
1508 sbi->s_resuid = option;
1509 break;
1510 case Opt_resgid:
1511 if (match_int(&args[0], &option))
1512 return 0;
1513 sbi->s_resgid = option;
1514 break;
1515 case Opt_sb:
1516 /* handled by get_sb_block() instead of here */
1517 /* *sb_block = match_int(&args[0]); */
1518 break;
1519 case Opt_err_panic:
1520 clear_opt(sb, ERRORS_CONT);
1521 clear_opt(sb, ERRORS_RO);
1522 set_opt(sb, ERRORS_PANIC);
1523 break;
1524 case Opt_err_ro:
1525 clear_opt(sb, ERRORS_CONT);
1526 clear_opt(sb, ERRORS_PANIC);
1527 set_opt(sb, ERRORS_RO);
1528 break;
1529 case Opt_err_cont:
1530 clear_opt(sb, ERRORS_RO);
1531 clear_opt(sb, ERRORS_PANIC);
1532 set_opt(sb, ERRORS_CONT);
1533 break;
1534 case Opt_nouid32:
1535 set_opt(sb, NO_UID32);
1536 break;
1537 case Opt_debug:
1538 set_opt(sb, DEBUG);
1539 break;
1540 case Opt_oldalloc:
1541 set_opt(sb, OLDALLOC);
1542 break;
1543 case Opt_orlov:
1544 clear_opt(sb, OLDALLOC);
1545 break;
1546 #ifdef CONFIG_EXT4_FS_XATTR
1547 case Opt_user_xattr:
1548 set_opt(sb, XATTR_USER);
1549 break;
1550 case Opt_nouser_xattr:
1551 clear_opt(sb, XATTR_USER);
1552 break;
1553 #else
1554 case Opt_user_xattr:
1555 case Opt_nouser_xattr:
1556 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1557 break;
1558 #endif
1559 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1560 case Opt_acl:
1561 set_opt(sb, POSIX_ACL);
1562 break;
1563 case Opt_noacl:
1564 clear_opt(sb, POSIX_ACL);
1565 break;
1566 #else
1567 case Opt_acl:
1568 case Opt_noacl:
1569 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1570 break;
1571 #endif
1572 case Opt_journal_update:
1573 /* @@@ FIXME */
1574 /* Eventually we will want to be able to create
1575 a journal file here. For now, only allow the
1576 user to specify an existing inode to be the
1577 journal file. */
1578 if (is_remount) {
1579 ext4_msg(sb, KERN_ERR,
1580 "Cannot specify journal on remount");
1581 return 0;
1582 }
1583 set_opt(sb, UPDATE_JOURNAL);
1584 break;
1585 case Opt_journal_dev:
1586 if (is_remount) {
1587 ext4_msg(sb, KERN_ERR,
1588 "Cannot specify journal on remount");
1589 return 0;
1590 }
1591 if (match_int(&args[0], &option))
1592 return 0;
1593 *journal_devnum = option;
1594 break;
1595 case Opt_journal_checksum:
1596 set_opt(sb, JOURNAL_CHECKSUM);
1597 break;
1598 case Opt_journal_async_commit:
1599 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1600 set_opt(sb, JOURNAL_CHECKSUM);
1601 break;
1602 case Opt_noload:
1603 set_opt(sb, NOLOAD);
1604 break;
1605 case Opt_commit:
1606 if (match_int(&args[0], &option))
1607 return 0;
1608 if (option < 0)
1609 return 0;
1610 if (option == 0)
1611 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1612 sbi->s_commit_interval = HZ * option;
1613 break;
1614 case Opt_max_batch_time:
1615 if (match_int(&args[0], &option))
1616 return 0;
1617 if (option < 0)
1618 return 0;
1619 if (option == 0)
1620 option = EXT4_DEF_MAX_BATCH_TIME;
1621 sbi->s_max_batch_time = option;
1622 break;
1623 case Opt_min_batch_time:
1624 if (match_int(&args[0], &option))
1625 return 0;
1626 if (option < 0)
1627 return 0;
1628 sbi->s_min_batch_time = option;
1629 break;
1630 case Opt_data_journal:
1631 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1632 goto datacheck;
1633 case Opt_data_ordered:
1634 data_opt = EXT4_MOUNT_ORDERED_DATA;
1635 goto datacheck;
1636 case Opt_data_writeback:
1637 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1638 datacheck:
1639 if (is_remount) {
1640 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1641 ext4_msg(sb, KERN_ERR,
1642 "Cannot change data mode on remount");
1643 return 0;
1644 }
1645 } else {
1646 clear_opt(sb, DATA_FLAGS);
1647 sbi->s_mount_opt |= data_opt;
1648 }
1649 break;
1650 case Opt_data_err_abort:
1651 set_opt(sb, DATA_ERR_ABORT);
1652 break;
1653 case Opt_data_err_ignore:
1654 clear_opt(sb, DATA_ERR_ABORT);
1655 break;
1656 #ifdef CONFIG_QUOTA
1657 case Opt_usrjquota:
1658 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1659 return 0;
1660 break;
1661 case Opt_grpjquota:
1662 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1663 return 0;
1664 break;
1665 case Opt_offusrjquota:
1666 if (!clear_qf_name(sb, USRQUOTA))
1667 return 0;
1668 break;
1669 case Opt_offgrpjquota:
1670 if (!clear_qf_name(sb, GRPQUOTA))
1671 return 0;
1672 break;
1673
1674 case Opt_jqfmt_vfsold:
1675 qfmt = QFMT_VFS_OLD;
1676 goto set_qf_format;
1677 case Opt_jqfmt_vfsv0:
1678 qfmt = QFMT_VFS_V0;
1679 goto set_qf_format;
1680 case Opt_jqfmt_vfsv1:
1681 qfmt = QFMT_VFS_V1;
1682 set_qf_format:
1683 if (sb_any_quota_loaded(sb) &&
1684 sbi->s_jquota_fmt != qfmt) {
1685 ext4_msg(sb, KERN_ERR, "Cannot change "
1686 "journaled quota options when "
1687 "quota turned on");
1688 return 0;
1689 }
1690 sbi->s_jquota_fmt = qfmt;
1691 break;
1692 case Opt_quota:
1693 case Opt_usrquota:
1694 set_opt(sb, QUOTA);
1695 set_opt(sb, USRQUOTA);
1696 break;
1697 case Opt_grpquota:
1698 set_opt(sb, QUOTA);
1699 set_opt(sb, GRPQUOTA);
1700 break;
1701 case Opt_noquota:
1702 if (sb_any_quota_loaded(sb)) {
1703 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1704 "options when quota turned on");
1705 return 0;
1706 }
1707 clear_opt(sb, QUOTA);
1708 clear_opt(sb, USRQUOTA);
1709 clear_opt(sb, GRPQUOTA);
1710 break;
1711 #else
1712 case Opt_quota:
1713 case Opt_usrquota:
1714 case Opt_grpquota:
1715 ext4_msg(sb, KERN_ERR,
1716 "quota options not supported");
1717 break;
1718 case Opt_usrjquota:
1719 case Opt_grpjquota:
1720 case Opt_offusrjquota:
1721 case Opt_offgrpjquota:
1722 case Opt_jqfmt_vfsold:
1723 case Opt_jqfmt_vfsv0:
1724 case Opt_jqfmt_vfsv1:
1725 ext4_msg(sb, KERN_ERR,
1726 "journaled quota options not supported");
1727 break;
1728 case Opt_noquota:
1729 break;
1730 #endif
1731 case Opt_abort:
1732 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1733 break;
1734 case Opt_nobarrier:
1735 clear_opt(sb, BARRIER);
1736 break;
1737 case Opt_barrier:
1738 if (args[0].from) {
1739 if (match_int(&args[0], &option))
1740 return 0;
1741 } else
1742 option = 1; /* No argument, default to 1 */
1743 if (option)
1744 set_opt(sb, BARRIER);
1745 else
1746 clear_opt(sb, BARRIER);
1747 break;
1748 case Opt_ignore:
1749 break;
1750 case Opt_resize:
1751 if (!is_remount) {
1752 ext4_msg(sb, KERN_ERR,
1753 "resize option only available "
1754 "for remount");
1755 return 0;
1756 }
1757 if (match_int(&args[0], &option) != 0)
1758 return 0;
1759 *n_blocks_count = option;
1760 break;
1761 case Opt_nobh:
1762 ext4_msg(sb, KERN_WARNING,
1763 "Ignoring deprecated nobh option");
1764 break;
1765 case Opt_bh:
1766 ext4_msg(sb, KERN_WARNING,
1767 "Ignoring deprecated bh option");
1768 break;
1769 case Opt_i_version:
1770 set_opt(sb, I_VERSION);
1771 sb->s_flags |= MS_I_VERSION;
1772 break;
1773 case Opt_nodelalloc:
1774 clear_opt(sb, DELALLOC);
1775 break;
1776 case Opt_mblk_io_submit:
1777 set_opt(sb, MBLK_IO_SUBMIT);
1778 break;
1779 case Opt_nomblk_io_submit:
1780 clear_opt(sb, MBLK_IO_SUBMIT);
1781 break;
1782 case Opt_stripe:
1783 if (match_int(&args[0], &option))
1784 return 0;
1785 if (option < 0)
1786 return 0;
1787 sbi->s_stripe = option;
1788 break;
1789 case Opt_delalloc:
1790 set_opt(sb, DELALLOC);
1791 break;
1792 case Opt_block_validity:
1793 set_opt(sb, BLOCK_VALIDITY);
1794 break;
1795 case Opt_noblock_validity:
1796 clear_opt(sb, BLOCK_VALIDITY);
1797 break;
1798 case Opt_inode_readahead_blks:
1799 if (match_int(&args[0], &option))
1800 return 0;
1801 if (option < 0 || option > (1 << 30))
1802 return 0;
1803 if (option && !is_power_of_2(option)) {
1804 ext4_msg(sb, KERN_ERR,
1805 "EXT4-fs: inode_readahead_blks"
1806 " must be a power of 2");
1807 return 0;
1808 }
1809 sbi->s_inode_readahead_blks = option;
1810 break;
1811 case Opt_journal_ioprio:
1812 if (match_int(&args[0], &option))
1813 return 0;
1814 if (option < 0 || option > 7)
1815 break;
1816 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1817 option);
1818 break;
1819 case Opt_noauto_da_alloc:
1820 set_opt(sb, NO_AUTO_DA_ALLOC);
1821 break;
1822 case Opt_auto_da_alloc:
1823 if (args[0].from) {
1824 if (match_int(&args[0], &option))
1825 return 0;
1826 } else
1827 option = 1; /* No argument, default to 1 */
1828 if (option)
1829 clear_opt(sb, NO_AUTO_DA_ALLOC);
1830 else
1831 set_opt(sb,NO_AUTO_DA_ALLOC);
1832 break;
1833 case Opt_discard:
1834 set_opt(sb, DISCARD);
1835 break;
1836 case Opt_nodiscard:
1837 clear_opt(sb, DISCARD);
1838 break;
1839 case Opt_dioread_nolock:
1840 set_opt(sb, DIOREAD_NOLOCK);
1841 break;
1842 case Opt_dioread_lock:
1843 clear_opt(sb, DIOREAD_NOLOCK);
1844 break;
1845 case Opt_init_inode_table:
1846 set_opt(sb, INIT_INODE_TABLE);
1847 if (args[0].from) {
1848 if (match_int(&args[0], &option))
1849 return 0;
1850 } else
1851 option = EXT4_DEF_LI_WAIT_MULT;
1852 if (option < 0)
1853 return 0;
1854 sbi->s_li_wait_mult = option;
1855 break;
1856 case Opt_noinit_inode_table:
1857 clear_opt(sb, INIT_INODE_TABLE);
1858 break;
1859 default:
1860 ext4_msg(sb, KERN_ERR,
1861 "Unrecognized mount option \"%s\" "
1862 "or missing value", p);
1863 return 0;
1864 }
1865 }
1866 #ifdef CONFIG_QUOTA
1867 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1868 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1869 clear_opt(sb, USRQUOTA);
1870
1871 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1872 clear_opt(sb, GRPQUOTA);
1873
1874 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1875 ext4_msg(sb, KERN_ERR, "old and new quota "
1876 "format mixing");
1877 return 0;
1878 }
1879
1880 if (!sbi->s_jquota_fmt) {
1881 ext4_msg(sb, KERN_ERR, "journaled quota format "
1882 "not specified");
1883 return 0;
1884 }
1885 } else {
1886 if (sbi->s_jquota_fmt) {
1887 ext4_msg(sb, KERN_ERR, "journaled quota format "
1888 "specified with no journaling "
1889 "enabled");
1890 return 0;
1891 }
1892 }
1893 #endif
1894 return 1;
1895 }
1896
1897 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1898 int read_only)
1899 {
1900 struct ext4_sb_info *sbi = EXT4_SB(sb);
1901 int res = 0;
1902
1903 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1904 ext4_msg(sb, KERN_ERR, "revision level too high, "
1905 "forcing read-only mode");
1906 res = MS_RDONLY;
1907 }
1908 if (read_only)
1909 return res;
1910 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1911 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1912 "running e2fsck is recommended");
1913 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1914 ext4_msg(sb, KERN_WARNING,
1915 "warning: mounting fs with errors, "
1916 "running e2fsck is recommended");
1917 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1918 le16_to_cpu(es->s_mnt_count) >=
1919 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1920 ext4_msg(sb, KERN_WARNING,
1921 "warning: maximal mount count reached, "
1922 "running e2fsck is recommended");
1923 else if (le32_to_cpu(es->s_checkinterval) &&
1924 (le32_to_cpu(es->s_lastcheck) +
1925 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1926 ext4_msg(sb, KERN_WARNING,
1927 "warning: checktime reached, "
1928 "running e2fsck is recommended");
1929 if (!sbi->s_journal)
1930 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1931 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1932 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1933 le16_add_cpu(&es->s_mnt_count, 1);
1934 es->s_mtime = cpu_to_le32(get_seconds());
1935 ext4_update_dynamic_rev(sb);
1936 if (sbi->s_journal)
1937 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1938
1939 ext4_commit_super(sb, 1);
1940 if (test_opt(sb, DEBUG))
1941 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1942 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1943 sb->s_blocksize,
1944 sbi->s_groups_count,
1945 EXT4_BLOCKS_PER_GROUP(sb),
1946 EXT4_INODES_PER_GROUP(sb),
1947 sbi->s_mount_opt, sbi->s_mount_opt2);
1948
1949 return res;
1950 }
1951
1952 static int ext4_fill_flex_info(struct super_block *sb)
1953 {
1954 struct ext4_sb_info *sbi = EXT4_SB(sb);
1955 struct ext4_group_desc *gdp = NULL;
1956 ext4_group_t flex_group_count;
1957 ext4_group_t flex_group;
1958 int groups_per_flex = 0;
1959 size_t size;
1960 int i;
1961
1962 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1963 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1964
1965 if (groups_per_flex < 2) {
1966 sbi->s_log_groups_per_flex = 0;
1967 return 1;
1968 }
1969
1970 /* We allocate both existing and potentially added groups */
1971 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1972 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1973 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1974 size = flex_group_count * sizeof(struct flex_groups);
1975 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1976 if (sbi->s_flex_groups == NULL) {
1977 sbi->s_flex_groups = vzalloc(size);
1978 if (sbi->s_flex_groups == NULL) {
1979 ext4_msg(sb, KERN_ERR,
1980 "not enough memory for %u flex groups",
1981 flex_group_count);
1982 goto failed;
1983 }
1984 }
1985
1986 for (i = 0; i < sbi->s_groups_count; i++) {
1987 gdp = ext4_get_group_desc(sb, i, NULL);
1988
1989 flex_group = ext4_flex_group(sbi, i);
1990 atomic_add(ext4_free_inodes_count(sb, gdp),
1991 &sbi->s_flex_groups[flex_group].free_inodes);
1992 atomic_add(ext4_free_blks_count(sb, gdp),
1993 &sbi->s_flex_groups[flex_group].free_blocks);
1994 atomic_add(ext4_used_dirs_count(sb, gdp),
1995 &sbi->s_flex_groups[flex_group].used_dirs);
1996 }
1997
1998 return 1;
1999 failed:
2000 return 0;
2001 }
2002
2003 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2004 struct ext4_group_desc *gdp)
2005 {
2006 __u16 crc = 0;
2007
2008 if (sbi->s_es->s_feature_ro_compat &
2009 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2010 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2011 __le32 le_group = cpu_to_le32(block_group);
2012
2013 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2014 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2015 crc = crc16(crc, (__u8 *)gdp, offset);
2016 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2017 /* for checksum of struct ext4_group_desc do the rest...*/
2018 if ((sbi->s_es->s_feature_incompat &
2019 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2020 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2021 crc = crc16(crc, (__u8 *)gdp + offset,
2022 le16_to_cpu(sbi->s_es->s_desc_size) -
2023 offset);
2024 }
2025
2026 return cpu_to_le16(crc);
2027 }
2028
2029 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2030 struct ext4_group_desc *gdp)
2031 {
2032 if ((sbi->s_es->s_feature_ro_compat &
2033 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2034 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 /* Called at mount-time, super-block is locked */
2041 static int ext4_check_descriptors(struct super_block *sb,
2042 ext4_group_t *first_not_zeroed)
2043 {
2044 struct ext4_sb_info *sbi = EXT4_SB(sb);
2045 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2046 ext4_fsblk_t last_block;
2047 ext4_fsblk_t block_bitmap;
2048 ext4_fsblk_t inode_bitmap;
2049 ext4_fsblk_t inode_table;
2050 int flexbg_flag = 0;
2051 ext4_group_t i, grp = sbi->s_groups_count;
2052
2053 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2054 flexbg_flag = 1;
2055
2056 ext4_debug("Checking group descriptors");
2057
2058 for (i = 0; i < sbi->s_groups_count; i++) {
2059 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2060
2061 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2062 last_block = ext4_blocks_count(sbi->s_es) - 1;
2063 else
2064 last_block = first_block +
2065 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2066
2067 if ((grp == sbi->s_groups_count) &&
2068 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2069 grp = i;
2070
2071 block_bitmap = ext4_block_bitmap(sb, gdp);
2072 if (block_bitmap < first_block || block_bitmap > last_block) {
2073 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2074 "Block bitmap for group %u not in group "
2075 "(block %llu)!", i, block_bitmap);
2076 return 0;
2077 }
2078 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2079 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2080 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2081 "Inode bitmap for group %u not in group "
2082 "(block %llu)!", i, inode_bitmap);
2083 return 0;
2084 }
2085 inode_table = ext4_inode_table(sb, gdp);
2086 if (inode_table < first_block ||
2087 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089 "Inode table for group %u not in group "
2090 "(block %llu)!", i, inode_table);
2091 return 0;
2092 }
2093 ext4_lock_group(sb, i);
2094 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2095 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2096 "Checksum for group %u failed (%u!=%u)",
2097 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2098 gdp)), le16_to_cpu(gdp->bg_checksum));
2099 if (!(sb->s_flags & MS_RDONLY)) {
2100 ext4_unlock_group(sb, i);
2101 return 0;
2102 }
2103 }
2104 ext4_unlock_group(sb, i);
2105 if (!flexbg_flag)
2106 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2107 }
2108 if (NULL != first_not_zeroed)
2109 *first_not_zeroed = grp;
2110
2111 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2112 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2113 return 1;
2114 }
2115
2116 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2117 * the superblock) which were deleted from all directories, but held open by
2118 * a process at the time of a crash. We walk the list and try to delete these
2119 * inodes at recovery time (only with a read-write filesystem).
2120 *
2121 * In order to keep the orphan inode chain consistent during traversal (in
2122 * case of crash during recovery), we link each inode into the superblock
2123 * orphan list_head and handle it the same way as an inode deletion during
2124 * normal operation (which journals the operations for us).
2125 *
2126 * We only do an iget() and an iput() on each inode, which is very safe if we
2127 * accidentally point at an in-use or already deleted inode. The worst that
2128 * can happen in this case is that we get a "bit already cleared" message from
2129 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2130 * e2fsck was run on this filesystem, and it must have already done the orphan
2131 * inode cleanup for us, so we can safely abort without any further action.
2132 */
2133 static void ext4_orphan_cleanup(struct super_block *sb,
2134 struct ext4_super_block *es)
2135 {
2136 unsigned int s_flags = sb->s_flags;
2137 int nr_orphans = 0, nr_truncates = 0;
2138 #ifdef CONFIG_QUOTA
2139 int i;
2140 #endif
2141 if (!es->s_last_orphan) {
2142 jbd_debug(4, "no orphan inodes to clean up\n");
2143 return;
2144 }
2145
2146 if (bdev_read_only(sb->s_bdev)) {
2147 ext4_msg(sb, KERN_ERR, "write access "
2148 "unavailable, skipping orphan cleanup");
2149 return;
2150 }
2151
2152 /* Check if feature set would not allow a r/w mount */
2153 if (!ext4_feature_set_ok(sb, 0)) {
2154 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2155 "unknown ROCOMPAT features");
2156 return;
2157 }
2158
2159 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2160 if (es->s_last_orphan)
2161 jbd_debug(1, "Errors on filesystem, "
2162 "clearing orphan list.\n");
2163 es->s_last_orphan = 0;
2164 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2165 return;
2166 }
2167
2168 if (s_flags & MS_RDONLY) {
2169 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2170 sb->s_flags &= ~MS_RDONLY;
2171 }
2172 #ifdef CONFIG_QUOTA
2173 /* Needed for iput() to work correctly and not trash data */
2174 sb->s_flags |= MS_ACTIVE;
2175 /* Turn on quotas so that they are updated correctly */
2176 for (i = 0; i < MAXQUOTAS; i++) {
2177 if (EXT4_SB(sb)->s_qf_names[i]) {
2178 int ret = ext4_quota_on_mount(sb, i);
2179 if (ret < 0)
2180 ext4_msg(sb, KERN_ERR,
2181 "Cannot turn on journaled "
2182 "quota: error %d", ret);
2183 }
2184 }
2185 #endif
2186
2187 while (es->s_last_orphan) {
2188 struct inode *inode;
2189
2190 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2191 if (IS_ERR(inode)) {
2192 es->s_last_orphan = 0;
2193 break;
2194 }
2195
2196 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2197 dquot_initialize(inode);
2198 if (inode->i_nlink) {
2199 ext4_msg(sb, KERN_DEBUG,
2200 "%s: truncating inode %lu to %lld bytes",
2201 __func__, inode->i_ino, inode->i_size);
2202 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2203 inode->i_ino, inode->i_size);
2204 ext4_truncate(inode);
2205 nr_truncates++;
2206 } else {
2207 ext4_msg(sb, KERN_DEBUG,
2208 "%s: deleting unreferenced inode %lu",
2209 __func__, inode->i_ino);
2210 jbd_debug(2, "deleting unreferenced inode %lu\n",
2211 inode->i_ino);
2212 nr_orphans++;
2213 }
2214 iput(inode); /* The delete magic happens here! */
2215 }
2216
2217 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2218
2219 if (nr_orphans)
2220 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2221 PLURAL(nr_orphans));
2222 if (nr_truncates)
2223 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2224 PLURAL(nr_truncates));
2225 #ifdef CONFIG_QUOTA
2226 /* Turn quotas off */
2227 for (i = 0; i < MAXQUOTAS; i++) {
2228 if (sb_dqopt(sb)->files[i])
2229 dquot_quota_off(sb, i);
2230 }
2231 #endif
2232 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2233 }
2234
2235 /*
2236 * Maximal extent format file size.
2237 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2238 * extent format containers, within a sector_t, and within i_blocks
2239 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2240 * so that won't be a limiting factor.
2241 *
2242 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2243 */
2244 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2245 {
2246 loff_t res;
2247 loff_t upper_limit = MAX_LFS_FILESIZE;
2248
2249 /* small i_blocks in vfs inode? */
2250 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2251 /*
2252 * CONFIG_LBDAF is not enabled implies the inode
2253 * i_block represent total blocks in 512 bytes
2254 * 32 == size of vfs inode i_blocks * 8
2255 */
2256 upper_limit = (1LL << 32) - 1;
2257
2258 /* total blocks in file system block size */
2259 upper_limit >>= (blkbits - 9);
2260 upper_limit <<= blkbits;
2261 }
2262
2263 /* 32-bit extent-start container, ee_block */
2264 res = 1LL << 32;
2265 res <<= blkbits;
2266 res -= 1;
2267
2268 /* Sanity check against vm- & vfs- imposed limits */
2269 if (res > upper_limit)
2270 res = upper_limit;
2271
2272 return res;
2273 }
2274
2275 /*
2276 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2277 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2278 * We need to be 1 filesystem block less than the 2^48 sector limit.
2279 */
2280 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2281 {
2282 loff_t res = EXT4_NDIR_BLOCKS;
2283 int meta_blocks;
2284 loff_t upper_limit;
2285 /* This is calculated to be the largest file size for a dense, block
2286 * mapped file such that the file's total number of 512-byte sectors,
2287 * including data and all indirect blocks, does not exceed (2^48 - 1).
2288 *
2289 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2290 * number of 512-byte sectors of the file.
2291 */
2292
2293 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2294 /*
2295 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2296 * the inode i_block field represents total file blocks in
2297 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2298 */
2299 upper_limit = (1LL << 32) - 1;
2300
2301 /* total blocks in file system block size */
2302 upper_limit >>= (bits - 9);
2303
2304 } else {
2305 /*
2306 * We use 48 bit ext4_inode i_blocks
2307 * With EXT4_HUGE_FILE_FL set the i_blocks
2308 * represent total number of blocks in
2309 * file system block size
2310 */
2311 upper_limit = (1LL << 48) - 1;
2312
2313 }
2314
2315 /* indirect blocks */
2316 meta_blocks = 1;
2317 /* double indirect blocks */
2318 meta_blocks += 1 + (1LL << (bits-2));
2319 /* tripple indirect blocks */
2320 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2321
2322 upper_limit -= meta_blocks;
2323 upper_limit <<= bits;
2324
2325 res += 1LL << (bits-2);
2326 res += 1LL << (2*(bits-2));
2327 res += 1LL << (3*(bits-2));
2328 res <<= bits;
2329 if (res > upper_limit)
2330 res = upper_limit;
2331
2332 if (res > MAX_LFS_FILESIZE)
2333 res = MAX_LFS_FILESIZE;
2334
2335 return res;
2336 }
2337
2338 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2339 ext4_fsblk_t logical_sb_block, int nr)
2340 {
2341 struct ext4_sb_info *sbi = EXT4_SB(sb);
2342 ext4_group_t bg, first_meta_bg;
2343 int has_super = 0;
2344
2345 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2346
2347 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2348 nr < first_meta_bg)
2349 return logical_sb_block + nr + 1;
2350 bg = sbi->s_desc_per_block * nr;
2351 if (ext4_bg_has_super(sb, bg))
2352 has_super = 1;
2353
2354 return (has_super + ext4_group_first_block_no(sb, bg));
2355 }
2356
2357 /**
2358 * ext4_get_stripe_size: Get the stripe size.
2359 * @sbi: In memory super block info
2360 *
2361 * If we have specified it via mount option, then
2362 * use the mount option value. If the value specified at mount time is
2363 * greater than the blocks per group use the super block value.
2364 * If the super block value is greater than blocks per group return 0.
2365 * Allocator needs it be less than blocks per group.
2366 *
2367 */
2368 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2369 {
2370 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2371 unsigned long stripe_width =
2372 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2373
2374 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2375 return sbi->s_stripe;
2376
2377 if (stripe_width <= sbi->s_blocks_per_group)
2378 return stripe_width;
2379
2380 if (stride <= sbi->s_blocks_per_group)
2381 return stride;
2382
2383 return 0;
2384 }
2385
2386 /* sysfs supprt */
2387
2388 struct ext4_attr {
2389 struct attribute attr;
2390 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2391 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2392 const char *, size_t);
2393 int offset;
2394 };
2395
2396 static int parse_strtoul(const char *buf,
2397 unsigned long max, unsigned long *value)
2398 {
2399 char *endp;
2400
2401 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2402 endp = skip_spaces(endp);
2403 if (*endp || *value > max)
2404 return -EINVAL;
2405
2406 return 0;
2407 }
2408
2409 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2410 struct ext4_sb_info *sbi,
2411 char *buf)
2412 {
2413 return snprintf(buf, PAGE_SIZE, "%llu\n",
2414 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2415 }
2416
2417 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2418 struct ext4_sb_info *sbi, char *buf)
2419 {
2420 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2421
2422 if (!sb->s_bdev->bd_part)
2423 return snprintf(buf, PAGE_SIZE, "0\n");
2424 return snprintf(buf, PAGE_SIZE, "%lu\n",
2425 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2426 sbi->s_sectors_written_start) >> 1);
2427 }
2428
2429 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2430 struct ext4_sb_info *sbi, char *buf)
2431 {
2432 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2433
2434 if (!sb->s_bdev->bd_part)
2435 return snprintf(buf, PAGE_SIZE, "0\n");
2436 return snprintf(buf, PAGE_SIZE, "%llu\n",
2437 (unsigned long long)(sbi->s_kbytes_written +
2438 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2439 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2440 }
2441
2442 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2443 struct ext4_sb_info *sbi,
2444 const char *buf, size_t count)
2445 {
2446 unsigned long t;
2447
2448 if (parse_strtoul(buf, 0x40000000, &t))
2449 return -EINVAL;
2450
2451 if (t && !is_power_of_2(t))
2452 return -EINVAL;
2453
2454 sbi->s_inode_readahead_blks = t;
2455 return count;
2456 }
2457
2458 static ssize_t sbi_ui_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi, char *buf)
2460 {
2461 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2462
2463 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2464 }
2465
2466 static ssize_t sbi_ui_store(struct ext4_attr *a,
2467 struct ext4_sb_info *sbi,
2468 const char *buf, size_t count)
2469 {
2470 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2471 unsigned long t;
2472
2473 if (parse_strtoul(buf, 0xffffffff, &t))
2474 return -EINVAL;
2475 *ui = t;
2476 return count;
2477 }
2478
2479 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2480 static struct ext4_attr ext4_attr_##_name = { \
2481 .attr = {.name = __stringify(_name), .mode = _mode }, \
2482 .show = _show, \
2483 .store = _store, \
2484 .offset = offsetof(struct ext4_sb_info, _elname), \
2485 }
2486 #define EXT4_ATTR(name, mode, show, store) \
2487 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2488
2489 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2490 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2491 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2492 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2493 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2494 #define ATTR_LIST(name) &ext4_attr_##name.attr
2495
2496 EXT4_RO_ATTR(delayed_allocation_blocks);
2497 EXT4_RO_ATTR(session_write_kbytes);
2498 EXT4_RO_ATTR(lifetime_write_kbytes);
2499 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2500 inode_readahead_blks_store, s_inode_readahead_blks);
2501 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2502 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2503 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2504 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2505 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2506 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2507 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2508 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2509
2510 static struct attribute *ext4_attrs[] = {
2511 ATTR_LIST(delayed_allocation_blocks),
2512 ATTR_LIST(session_write_kbytes),
2513 ATTR_LIST(lifetime_write_kbytes),
2514 ATTR_LIST(inode_readahead_blks),
2515 ATTR_LIST(inode_goal),
2516 ATTR_LIST(mb_stats),
2517 ATTR_LIST(mb_max_to_scan),
2518 ATTR_LIST(mb_min_to_scan),
2519 ATTR_LIST(mb_order2_req),
2520 ATTR_LIST(mb_stream_req),
2521 ATTR_LIST(mb_group_prealloc),
2522 ATTR_LIST(max_writeback_mb_bump),
2523 NULL,
2524 };
2525
2526 /* Features this copy of ext4 supports */
2527 EXT4_INFO_ATTR(lazy_itable_init);
2528 EXT4_INFO_ATTR(batched_discard);
2529
2530 static struct attribute *ext4_feat_attrs[] = {
2531 ATTR_LIST(lazy_itable_init),
2532 ATTR_LIST(batched_discard),
2533 NULL,
2534 };
2535
2536 static ssize_t ext4_attr_show(struct kobject *kobj,
2537 struct attribute *attr, char *buf)
2538 {
2539 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2540 s_kobj);
2541 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2542
2543 return a->show ? a->show(a, sbi, buf) : 0;
2544 }
2545
2546 static ssize_t ext4_attr_store(struct kobject *kobj,
2547 struct attribute *attr,
2548 const char *buf, size_t len)
2549 {
2550 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2551 s_kobj);
2552 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2553
2554 return a->store ? a->store(a, sbi, buf, len) : 0;
2555 }
2556
2557 static void ext4_sb_release(struct kobject *kobj)
2558 {
2559 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2560 s_kobj);
2561 complete(&sbi->s_kobj_unregister);
2562 }
2563
2564 static const struct sysfs_ops ext4_attr_ops = {
2565 .show = ext4_attr_show,
2566 .store = ext4_attr_store,
2567 };
2568
2569 static struct kobj_type ext4_ktype = {
2570 .default_attrs = ext4_attrs,
2571 .sysfs_ops = &ext4_attr_ops,
2572 .release = ext4_sb_release,
2573 };
2574
2575 static void ext4_feat_release(struct kobject *kobj)
2576 {
2577 complete(&ext4_feat->f_kobj_unregister);
2578 }
2579
2580 static struct kobj_type ext4_feat_ktype = {
2581 .default_attrs = ext4_feat_attrs,
2582 .sysfs_ops = &ext4_attr_ops,
2583 .release = ext4_feat_release,
2584 };
2585
2586 /*
2587 * Check whether this filesystem can be mounted based on
2588 * the features present and the RDONLY/RDWR mount requested.
2589 * Returns 1 if this filesystem can be mounted as requested,
2590 * 0 if it cannot be.
2591 */
2592 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2593 {
2594 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2595 ext4_msg(sb, KERN_ERR,
2596 "Couldn't mount because of "
2597 "unsupported optional features (%x)",
2598 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2599 ~EXT4_FEATURE_INCOMPAT_SUPP));
2600 return 0;
2601 }
2602
2603 if (readonly)
2604 return 1;
2605
2606 /* Check that feature set is OK for a read-write mount */
2607 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2608 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2609 "unsupported optional features (%x)",
2610 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2611 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2612 return 0;
2613 }
2614 /*
2615 * Large file size enabled file system can only be mounted
2616 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2617 */
2618 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2619 if (sizeof(blkcnt_t) < sizeof(u64)) {
2620 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2621 "cannot be mounted RDWR without "
2622 "CONFIG_LBDAF");
2623 return 0;
2624 }
2625 }
2626 return 1;
2627 }
2628
2629 /*
2630 * This function is called once a day if we have errors logged
2631 * on the file system
2632 */
2633 static void print_daily_error_info(unsigned long arg)
2634 {
2635 struct super_block *sb = (struct super_block *) arg;
2636 struct ext4_sb_info *sbi;
2637 struct ext4_super_block *es;
2638
2639 sbi = EXT4_SB(sb);
2640 es = sbi->s_es;
2641
2642 if (es->s_error_count)
2643 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2644 le32_to_cpu(es->s_error_count));
2645 if (es->s_first_error_time) {
2646 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2647 sb->s_id, le32_to_cpu(es->s_first_error_time),
2648 (int) sizeof(es->s_first_error_func),
2649 es->s_first_error_func,
2650 le32_to_cpu(es->s_first_error_line));
2651 if (es->s_first_error_ino)
2652 printk(": inode %u",
2653 le32_to_cpu(es->s_first_error_ino));
2654 if (es->s_first_error_block)
2655 printk(": block %llu", (unsigned long long)
2656 le64_to_cpu(es->s_first_error_block));
2657 printk("\n");
2658 }
2659 if (es->s_last_error_time) {
2660 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2661 sb->s_id, le32_to_cpu(es->s_last_error_time),
2662 (int) sizeof(es->s_last_error_func),
2663 es->s_last_error_func,
2664 le32_to_cpu(es->s_last_error_line));
2665 if (es->s_last_error_ino)
2666 printk(": inode %u",
2667 le32_to_cpu(es->s_last_error_ino));
2668 if (es->s_last_error_block)
2669 printk(": block %llu", (unsigned long long)
2670 le64_to_cpu(es->s_last_error_block));
2671 printk("\n");
2672 }
2673 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2674 }
2675
2676 /* Find next suitable group and run ext4_init_inode_table */
2677 static int ext4_run_li_request(struct ext4_li_request *elr)
2678 {
2679 struct ext4_group_desc *gdp = NULL;
2680 ext4_group_t group, ngroups;
2681 struct super_block *sb;
2682 unsigned long timeout = 0;
2683 int ret = 0;
2684
2685 sb = elr->lr_super;
2686 ngroups = EXT4_SB(sb)->s_groups_count;
2687
2688 for (group = elr->lr_next_group; group < ngroups; group++) {
2689 gdp = ext4_get_group_desc(sb, group, NULL);
2690 if (!gdp) {
2691 ret = 1;
2692 break;
2693 }
2694
2695 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2696 break;
2697 }
2698
2699 if (group == ngroups)
2700 ret = 1;
2701
2702 if (!ret) {
2703 timeout = jiffies;
2704 ret = ext4_init_inode_table(sb, group,
2705 elr->lr_timeout ? 0 : 1);
2706 if (elr->lr_timeout == 0) {
2707 timeout = jiffies - timeout;
2708 if (elr->lr_sbi->s_li_wait_mult)
2709 timeout *= elr->lr_sbi->s_li_wait_mult;
2710 else
2711 timeout *= 20;
2712 elr->lr_timeout = timeout;
2713 }
2714 elr->lr_next_sched = jiffies + elr->lr_timeout;
2715 elr->lr_next_group = group + 1;
2716 }
2717
2718 return ret;
2719 }
2720
2721 /*
2722 * Remove lr_request from the list_request and free the
2723 * request structure. Should be called with li_list_mtx held
2724 */
2725 static void ext4_remove_li_request(struct ext4_li_request *elr)
2726 {
2727 struct ext4_sb_info *sbi;
2728
2729 if (!elr)
2730 return;
2731
2732 sbi = elr->lr_sbi;
2733
2734 list_del(&elr->lr_request);
2735 sbi->s_li_request = NULL;
2736 kfree(elr);
2737 }
2738
2739 static void ext4_unregister_li_request(struct super_block *sb)
2740 {
2741 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2742
2743 if (!ext4_li_info)
2744 return;
2745
2746 mutex_lock(&ext4_li_info->li_list_mtx);
2747 ext4_remove_li_request(elr);
2748 mutex_unlock(&ext4_li_info->li_list_mtx);
2749 }
2750
2751 static struct task_struct *ext4_lazyinit_task;
2752
2753 /*
2754 * This is the function where ext4lazyinit thread lives. It walks
2755 * through the request list searching for next scheduled filesystem.
2756 * When such a fs is found, run the lazy initialization request
2757 * (ext4_rn_li_request) and keep track of the time spend in this
2758 * function. Based on that time we compute next schedule time of
2759 * the request. When walking through the list is complete, compute
2760 * next waking time and put itself into sleep.
2761 */
2762 static int ext4_lazyinit_thread(void *arg)
2763 {
2764 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2765 struct list_head *pos, *n;
2766 struct ext4_li_request *elr;
2767 unsigned long next_wakeup, cur;
2768
2769 BUG_ON(NULL == eli);
2770
2771 eli->li_task = current;
2772 wake_up(&eli->li_wait_task);
2773
2774 cont_thread:
2775 while (true) {
2776 next_wakeup = MAX_JIFFY_OFFSET;
2777
2778 mutex_lock(&eli->li_list_mtx);
2779 if (list_empty(&eli->li_request_list)) {
2780 mutex_unlock(&eli->li_list_mtx);
2781 goto exit_thread;
2782 }
2783
2784 list_for_each_safe(pos, n, &eli->li_request_list) {
2785 elr = list_entry(pos, struct ext4_li_request,
2786 lr_request);
2787
2788 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2789 if (ext4_run_li_request(elr) != 0) {
2790 /* error, remove the lazy_init job */
2791 ext4_remove_li_request(elr);
2792 continue;
2793 }
2794 }
2795
2796 if (time_before(elr->lr_next_sched, next_wakeup))
2797 next_wakeup = elr->lr_next_sched;
2798 }
2799 mutex_unlock(&eli->li_list_mtx);
2800
2801 if (freezing(current))
2802 refrigerator();
2803
2804 cur = jiffies;
2805 if ((time_after_eq(cur, next_wakeup)) ||
2806 (MAX_JIFFY_OFFSET == next_wakeup)) {
2807 cond_resched();
2808 continue;
2809 }
2810
2811 schedule_timeout_interruptible(next_wakeup - cur);
2812
2813 if (kthread_should_stop()) {
2814 ext4_clear_request_list();
2815 goto exit_thread;
2816 }
2817 }
2818
2819 exit_thread:
2820 /*
2821 * It looks like the request list is empty, but we need
2822 * to check it under the li_list_mtx lock, to prevent any
2823 * additions into it, and of course we should lock ext4_li_mtx
2824 * to atomically free the list and ext4_li_info, because at
2825 * this point another ext4 filesystem could be registering
2826 * new one.
2827 */
2828 mutex_lock(&ext4_li_mtx);
2829 mutex_lock(&eli->li_list_mtx);
2830 if (!list_empty(&eli->li_request_list)) {
2831 mutex_unlock(&eli->li_list_mtx);
2832 mutex_unlock(&ext4_li_mtx);
2833 goto cont_thread;
2834 }
2835 mutex_unlock(&eli->li_list_mtx);
2836 eli->li_task = NULL;
2837 wake_up(&eli->li_wait_task);
2838
2839 kfree(ext4_li_info);
2840 ext4_li_info = NULL;
2841 mutex_unlock(&ext4_li_mtx);
2842
2843 return 0;
2844 }
2845
2846 static void ext4_clear_request_list(void)
2847 {
2848 struct list_head *pos, *n;
2849 struct ext4_li_request *elr;
2850
2851 mutex_lock(&ext4_li_info->li_list_mtx);
2852 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2853 elr = list_entry(pos, struct ext4_li_request,
2854 lr_request);
2855 ext4_remove_li_request(elr);
2856 }
2857 mutex_unlock(&ext4_li_info->li_list_mtx);
2858 }
2859
2860 static int ext4_run_lazyinit_thread(void)
2861 {
2862 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2863 ext4_li_info, "ext4lazyinit");
2864 if (IS_ERR(ext4_lazyinit_task)) {
2865 int err = PTR_ERR(ext4_lazyinit_task);
2866 ext4_clear_request_list();
2867 kfree(ext4_li_info);
2868 ext4_li_info = NULL;
2869 printk(KERN_CRIT "EXT4: error %d creating inode table "
2870 "initialization thread\n",
2871 err);
2872 return err;
2873 }
2874 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2875
2876 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2877 return 0;
2878 }
2879
2880 /*
2881 * Check whether it make sense to run itable init. thread or not.
2882 * If there is at least one uninitialized inode table, return
2883 * corresponding group number, else the loop goes through all
2884 * groups and return total number of groups.
2885 */
2886 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2887 {
2888 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2889 struct ext4_group_desc *gdp = NULL;
2890
2891 for (group = 0; group < ngroups; group++) {
2892 gdp = ext4_get_group_desc(sb, group, NULL);
2893 if (!gdp)
2894 continue;
2895
2896 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2897 break;
2898 }
2899
2900 return group;
2901 }
2902
2903 static int ext4_li_info_new(void)
2904 {
2905 struct ext4_lazy_init *eli = NULL;
2906
2907 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2908 if (!eli)
2909 return -ENOMEM;
2910
2911 eli->li_task = NULL;
2912 INIT_LIST_HEAD(&eli->li_request_list);
2913 mutex_init(&eli->li_list_mtx);
2914
2915 init_waitqueue_head(&eli->li_wait_task);
2916 eli->li_state |= EXT4_LAZYINIT_QUIT;
2917
2918 ext4_li_info = eli;
2919
2920 return 0;
2921 }
2922
2923 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2924 ext4_group_t start)
2925 {
2926 struct ext4_sb_info *sbi = EXT4_SB(sb);
2927 struct ext4_li_request *elr;
2928 unsigned long rnd;
2929
2930 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2931 if (!elr)
2932 return NULL;
2933
2934 elr->lr_super = sb;
2935 elr->lr_sbi = sbi;
2936 elr->lr_next_group = start;
2937
2938 /*
2939 * Randomize first schedule time of the request to
2940 * spread the inode table initialization requests
2941 * better.
2942 */
2943 get_random_bytes(&rnd, sizeof(rnd));
2944 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2945 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2946
2947 return elr;
2948 }
2949
2950 static int ext4_register_li_request(struct super_block *sb,
2951 ext4_group_t first_not_zeroed)
2952 {
2953 struct ext4_sb_info *sbi = EXT4_SB(sb);
2954 struct ext4_li_request *elr;
2955 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2956 int ret = 0;
2957
2958 if (sbi->s_li_request != NULL)
2959 return 0;
2960
2961 if (first_not_zeroed == ngroups ||
2962 (sb->s_flags & MS_RDONLY) ||
2963 !test_opt(sb, INIT_INODE_TABLE))
2964 return 0;
2965
2966 elr = ext4_li_request_new(sb, first_not_zeroed);
2967 if (!elr)
2968 return -ENOMEM;
2969
2970 mutex_lock(&ext4_li_mtx);
2971
2972 if (NULL == ext4_li_info) {
2973 ret = ext4_li_info_new();
2974 if (ret)
2975 goto out;
2976 }
2977
2978 mutex_lock(&ext4_li_info->li_list_mtx);
2979 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2980 mutex_unlock(&ext4_li_info->li_list_mtx);
2981
2982 sbi->s_li_request = elr;
2983 /*
2984 * set elr to NULL here since it has been inserted to
2985 * the request_list and the removal and free of it is
2986 * handled by ext4_clear_request_list from now on.
2987 */
2988 elr = NULL;
2989
2990 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2991 ret = ext4_run_lazyinit_thread();
2992 if (ret)
2993 goto out;
2994 }
2995 out:
2996 mutex_unlock(&ext4_li_mtx);
2997 if (ret)
2998 kfree(elr);
2999 return ret;
3000 }
3001
3002 /*
3003 * We do not need to lock anything since this is called on
3004 * module unload.
3005 */
3006 static void ext4_destroy_lazyinit_thread(void)
3007 {
3008 /*
3009 * If thread exited earlier
3010 * there's nothing to be done.
3011 */
3012 if (!ext4_li_info || !ext4_lazyinit_task)
3013 return;
3014
3015 kthread_stop(ext4_lazyinit_task);
3016 }
3017
3018 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3019 __releases(kernel_lock)
3020 __acquires(kernel_lock)
3021 {
3022 char *orig_data = kstrdup(data, GFP_KERNEL);
3023 struct buffer_head *bh;
3024 struct ext4_super_block *es = NULL;
3025 struct ext4_sb_info *sbi;
3026 ext4_fsblk_t block;
3027 ext4_fsblk_t sb_block = get_sb_block(&data);
3028 ext4_fsblk_t logical_sb_block;
3029 unsigned long offset = 0;
3030 unsigned long journal_devnum = 0;
3031 unsigned long def_mount_opts;
3032 struct inode *root;
3033 char *cp;
3034 const char *descr;
3035 int ret = -ENOMEM;
3036 int blocksize;
3037 unsigned int db_count;
3038 unsigned int i;
3039 int needs_recovery, has_huge_files;
3040 __u64 blocks_count;
3041 int err;
3042 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3043 ext4_group_t first_not_zeroed;
3044
3045 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3046 if (!sbi)
3047 goto out_free_orig;
3048
3049 sbi->s_blockgroup_lock =
3050 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3051 if (!sbi->s_blockgroup_lock) {
3052 kfree(sbi);
3053 goto out_free_orig;
3054 }
3055 sb->s_fs_info = sbi;
3056 sbi->s_mount_opt = 0;
3057 sbi->s_resuid = EXT4_DEF_RESUID;
3058 sbi->s_resgid = EXT4_DEF_RESGID;
3059 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3060 sbi->s_sb_block = sb_block;
3061 if (sb->s_bdev->bd_part)
3062 sbi->s_sectors_written_start =
3063 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3064
3065 /* Cleanup superblock name */
3066 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3067 *cp = '!';
3068
3069 ret = -EINVAL;
3070 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3071 if (!blocksize) {
3072 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3073 goto out_fail;
3074 }
3075
3076 /*
3077 * The ext4 superblock will not be buffer aligned for other than 1kB
3078 * block sizes. We need to calculate the offset from buffer start.
3079 */
3080 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3081 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3082 offset = do_div(logical_sb_block, blocksize);
3083 } else {
3084 logical_sb_block = sb_block;
3085 }
3086
3087 if (!(bh = sb_bread(sb, logical_sb_block))) {
3088 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3089 goto out_fail;
3090 }
3091 /*
3092 * Note: s_es must be initialized as soon as possible because
3093 * some ext4 macro-instructions depend on its value
3094 */
3095 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3096 sbi->s_es = es;
3097 sb->s_magic = le16_to_cpu(es->s_magic);
3098 if (sb->s_magic != EXT4_SUPER_MAGIC)
3099 goto cantfind_ext4;
3100 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3101
3102 /* Set defaults before we parse the mount options */
3103 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3104 set_opt(sb, INIT_INODE_TABLE);
3105 if (def_mount_opts & EXT4_DEFM_DEBUG)
3106 set_opt(sb, DEBUG);
3107 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3108 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3109 "2.6.38");
3110 set_opt(sb, GRPID);
3111 }
3112 if (def_mount_opts & EXT4_DEFM_UID16)
3113 set_opt(sb, NO_UID32);
3114 /* xattr user namespace & acls are now defaulted on */
3115 #ifdef CONFIG_EXT4_FS_XATTR
3116 set_opt(sb, XATTR_USER);
3117 #endif
3118 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3119 set_opt(sb, POSIX_ACL);
3120 #endif
3121 set_opt(sb, MBLK_IO_SUBMIT);
3122 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3123 set_opt(sb, JOURNAL_DATA);
3124 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3125 set_opt(sb, ORDERED_DATA);
3126 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3127 set_opt(sb, WRITEBACK_DATA);
3128
3129 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3130 set_opt(sb, ERRORS_PANIC);
3131 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3132 set_opt(sb, ERRORS_CONT);
3133 else
3134 set_opt(sb, ERRORS_RO);
3135 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3136 set_opt(sb, BLOCK_VALIDITY);
3137 if (def_mount_opts & EXT4_DEFM_DISCARD)
3138 set_opt(sb, DISCARD);
3139
3140 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3141 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3142 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3143 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3144 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3145
3146 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3147 set_opt(sb, BARRIER);
3148
3149 /*
3150 * enable delayed allocation by default
3151 * Use -o nodelalloc to turn it off
3152 */
3153 if (!IS_EXT3_SB(sb) &&
3154 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3155 set_opt(sb, DELALLOC);
3156
3157 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3158 &journal_devnum, &journal_ioprio, NULL, 0)) {
3159 ext4_msg(sb, KERN_WARNING,
3160 "failed to parse options in superblock: %s",
3161 sbi->s_es->s_mount_opts);
3162 }
3163 if (!parse_options((char *) data, sb, &journal_devnum,
3164 &journal_ioprio, NULL, 0))
3165 goto failed_mount;
3166
3167 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3168 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3169
3170 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3171 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3172 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3173 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3174 ext4_msg(sb, KERN_WARNING,
3175 "feature flags set on rev 0 fs, "
3176 "running e2fsck is recommended");
3177
3178 if (IS_EXT2_SB(sb)) {
3179 if (ext2_feature_set_ok(sb))
3180 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3181 "using the ext4 subsystem");
3182 else {
3183 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3184 "to feature incompatibilities");
3185 goto failed_mount;
3186 }
3187 }
3188
3189 if (IS_EXT3_SB(sb)) {
3190 if (ext3_feature_set_ok(sb))
3191 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3192 "using the ext4 subsystem");
3193 else {
3194 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3195 "to feature incompatibilities");
3196 goto failed_mount;
3197 }
3198 }
3199
3200 /*
3201 * Check feature flags regardless of the revision level, since we
3202 * previously didn't change the revision level when setting the flags,
3203 * so there is a chance incompat flags are set on a rev 0 filesystem.
3204 */
3205 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3206 goto failed_mount;
3207
3208 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3209
3210 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3211 blocksize > EXT4_MAX_BLOCK_SIZE) {
3212 ext4_msg(sb, KERN_ERR,
3213 "Unsupported filesystem blocksize %d", blocksize);
3214 goto failed_mount;
3215 }
3216
3217 if (sb->s_blocksize != blocksize) {
3218 /* Validate the filesystem blocksize */
3219 if (!sb_set_blocksize(sb, blocksize)) {
3220 ext4_msg(sb, KERN_ERR, "bad block size %d",
3221 blocksize);
3222 goto failed_mount;
3223 }
3224
3225 brelse(bh);
3226 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3227 offset = do_div(logical_sb_block, blocksize);
3228 bh = sb_bread(sb, logical_sb_block);
3229 if (!bh) {
3230 ext4_msg(sb, KERN_ERR,
3231 "Can't read superblock on 2nd try");
3232 goto failed_mount;
3233 }
3234 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3235 sbi->s_es = es;
3236 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3237 ext4_msg(sb, KERN_ERR,
3238 "Magic mismatch, very weird!");
3239 goto failed_mount;
3240 }
3241 }
3242
3243 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3244 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3245 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3246 has_huge_files);
3247 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3248
3249 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3250 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3251 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3252 } else {
3253 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3254 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3255 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3256 (!is_power_of_2(sbi->s_inode_size)) ||
3257 (sbi->s_inode_size > blocksize)) {
3258 ext4_msg(sb, KERN_ERR,
3259 "unsupported inode size: %d",
3260 sbi->s_inode_size);
3261 goto failed_mount;
3262 }
3263 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3264 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3265 }
3266
3267 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3268 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3269 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3270 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3271 !is_power_of_2(sbi->s_desc_size)) {
3272 ext4_msg(sb, KERN_ERR,
3273 "unsupported descriptor size %lu",
3274 sbi->s_desc_size);
3275 goto failed_mount;
3276 }
3277 } else
3278 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3279
3280 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3281 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3282 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3283 goto cantfind_ext4;
3284
3285 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3286 if (sbi->s_inodes_per_block == 0)
3287 goto cantfind_ext4;
3288 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3289 sbi->s_inodes_per_block;
3290 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3291 sbi->s_sbh = bh;
3292 sbi->s_mount_state = le16_to_cpu(es->s_state);
3293 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3294 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3295
3296 for (i = 0; i < 4; i++)
3297 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3298 sbi->s_def_hash_version = es->s_def_hash_version;
3299 i = le32_to_cpu(es->s_flags);
3300 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3301 sbi->s_hash_unsigned = 3;
3302 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3303 #ifdef __CHAR_UNSIGNED__
3304 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3305 sbi->s_hash_unsigned = 3;
3306 #else
3307 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3308 #endif
3309 sb->s_dirt = 1;
3310 }
3311
3312 if (sbi->s_blocks_per_group > blocksize * 8) {
3313 ext4_msg(sb, KERN_ERR,
3314 "#blocks per group too big: %lu",
3315 sbi->s_blocks_per_group);
3316 goto failed_mount;
3317 }
3318 if (sbi->s_inodes_per_group > blocksize * 8) {
3319 ext4_msg(sb, KERN_ERR,
3320 "#inodes per group too big: %lu",
3321 sbi->s_inodes_per_group);
3322 goto failed_mount;
3323 }
3324
3325 /*
3326 * Test whether we have more sectors than will fit in sector_t,
3327 * and whether the max offset is addressable by the page cache.
3328 */
3329 err = generic_check_addressable(sb->s_blocksize_bits,
3330 ext4_blocks_count(es));
3331 if (err) {
3332 ext4_msg(sb, KERN_ERR, "filesystem"
3333 " too large to mount safely on this system");
3334 if (sizeof(sector_t) < 8)
3335 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3336 ret = err;
3337 goto failed_mount;
3338 }
3339
3340 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3341 goto cantfind_ext4;
3342
3343 /* check blocks count against device size */
3344 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3345 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3346 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3347 "exceeds size of device (%llu blocks)",
3348 ext4_blocks_count(es), blocks_count);
3349 goto failed_mount;
3350 }
3351
3352 /*
3353 * It makes no sense for the first data block to be beyond the end
3354 * of the filesystem.
3355 */
3356 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3357 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3358 "block %u is beyond end of filesystem (%llu)",
3359 le32_to_cpu(es->s_first_data_block),
3360 ext4_blocks_count(es));
3361 goto failed_mount;
3362 }
3363 blocks_count = (ext4_blocks_count(es) -
3364 le32_to_cpu(es->s_first_data_block) +
3365 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3366 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3367 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3368 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3369 "(block count %llu, first data block %u, "
3370 "blocks per group %lu)", sbi->s_groups_count,
3371 ext4_blocks_count(es),
3372 le32_to_cpu(es->s_first_data_block),
3373 EXT4_BLOCKS_PER_GROUP(sb));
3374 goto failed_mount;
3375 }
3376 sbi->s_groups_count = blocks_count;
3377 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3378 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3379 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3380 EXT4_DESC_PER_BLOCK(sb);
3381 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3382 GFP_KERNEL);
3383 if (sbi->s_group_desc == NULL) {
3384 ext4_msg(sb, KERN_ERR, "not enough memory");
3385 goto failed_mount;
3386 }
3387
3388 #ifdef CONFIG_PROC_FS
3389 if (ext4_proc_root)
3390 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3391 #endif
3392
3393 bgl_lock_init(sbi->s_blockgroup_lock);
3394
3395 for (i = 0; i < db_count; i++) {
3396 block = descriptor_loc(sb, logical_sb_block, i);
3397 sbi->s_group_desc[i] = sb_bread(sb, block);
3398 if (!sbi->s_group_desc[i]) {
3399 ext4_msg(sb, KERN_ERR,
3400 "can't read group descriptor %d", i);
3401 db_count = i;
3402 goto failed_mount2;
3403 }
3404 }
3405 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3406 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3407 goto failed_mount2;
3408 }
3409 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3410 if (!ext4_fill_flex_info(sb)) {
3411 ext4_msg(sb, KERN_ERR,
3412 "unable to initialize "
3413 "flex_bg meta info!");
3414 goto failed_mount2;
3415 }
3416
3417 sbi->s_gdb_count = db_count;
3418 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3419 spin_lock_init(&sbi->s_next_gen_lock);
3420
3421 init_timer(&sbi->s_err_report);
3422 sbi->s_err_report.function = print_daily_error_info;
3423 sbi->s_err_report.data = (unsigned long) sb;
3424
3425 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3426 ext4_count_free_blocks(sb));
3427 if (!err) {
3428 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3429 ext4_count_free_inodes(sb));
3430 }
3431 if (!err) {
3432 err = percpu_counter_init(&sbi->s_dirs_counter,
3433 ext4_count_dirs(sb));
3434 }
3435 if (!err) {
3436 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3437 }
3438 if (err) {
3439 ext4_msg(sb, KERN_ERR, "insufficient memory");
3440 goto failed_mount3;
3441 }
3442
3443 sbi->s_stripe = ext4_get_stripe_size(sbi);
3444 sbi->s_max_writeback_mb_bump = 128;
3445
3446 /*
3447 * set up enough so that it can read an inode
3448 */
3449 if (!test_opt(sb, NOLOAD) &&
3450 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3451 sb->s_op = &ext4_sops;
3452 else
3453 sb->s_op = &ext4_nojournal_sops;
3454 sb->s_export_op = &ext4_export_ops;
3455 sb->s_xattr = ext4_xattr_handlers;
3456 #ifdef CONFIG_QUOTA
3457 sb->s_qcop = &ext4_qctl_operations;
3458 sb->dq_op = &ext4_quota_operations;
3459 #endif
3460 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3461
3462 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3463 mutex_init(&sbi->s_orphan_lock);
3464 mutex_init(&sbi->s_resize_lock);
3465
3466 sb->s_root = NULL;
3467
3468 needs_recovery = (es->s_last_orphan != 0 ||
3469 EXT4_HAS_INCOMPAT_FEATURE(sb,
3470 EXT4_FEATURE_INCOMPAT_RECOVER));
3471
3472 /*
3473 * The first inode we look at is the journal inode. Don't try
3474 * root first: it may be modified in the journal!
3475 */
3476 if (!test_opt(sb, NOLOAD) &&
3477 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3478 if (ext4_load_journal(sb, es, journal_devnum))
3479 goto failed_mount3;
3480 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3481 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3482 ext4_msg(sb, KERN_ERR, "required journal recovery "
3483 "suppressed and not mounted read-only");
3484 goto failed_mount_wq;
3485 } else {
3486 clear_opt(sb, DATA_FLAGS);
3487 set_opt(sb, WRITEBACK_DATA);
3488 sbi->s_journal = NULL;
3489 needs_recovery = 0;
3490 goto no_journal;
3491 }
3492
3493 if (ext4_blocks_count(es) > 0xffffffffULL &&
3494 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3495 JBD2_FEATURE_INCOMPAT_64BIT)) {
3496 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3497 goto failed_mount_wq;
3498 }
3499
3500 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3501 jbd2_journal_set_features(sbi->s_journal,
3502 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3503 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3504 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3505 jbd2_journal_set_features(sbi->s_journal,
3506 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3507 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3508 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3509 } else {
3510 jbd2_journal_clear_features(sbi->s_journal,
3511 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3512 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3513 }
3514
3515 /* We have now updated the journal if required, so we can
3516 * validate the data journaling mode. */
3517 switch (test_opt(sb, DATA_FLAGS)) {
3518 case 0:
3519 /* No mode set, assume a default based on the journal
3520 * capabilities: ORDERED_DATA if the journal can
3521 * cope, else JOURNAL_DATA
3522 */
3523 if (jbd2_journal_check_available_features
3524 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3525 set_opt(sb, ORDERED_DATA);
3526 else
3527 set_opt(sb, JOURNAL_DATA);
3528 break;
3529
3530 case EXT4_MOUNT_ORDERED_DATA:
3531 case EXT4_MOUNT_WRITEBACK_DATA:
3532 if (!jbd2_journal_check_available_features
3533 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3534 ext4_msg(sb, KERN_ERR, "Journal does not support "
3535 "requested data journaling mode");
3536 goto failed_mount_wq;
3537 }
3538 default:
3539 break;
3540 }
3541 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3542
3543 /*
3544 * The journal may have updated the bg summary counts, so we
3545 * need to update the global counters.
3546 */
3547 percpu_counter_set(&sbi->s_freeblocks_counter,
3548 ext4_count_free_blocks(sb));
3549 percpu_counter_set(&sbi->s_freeinodes_counter,
3550 ext4_count_free_inodes(sb));
3551 percpu_counter_set(&sbi->s_dirs_counter,
3552 ext4_count_dirs(sb));
3553 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3554
3555 no_journal:
3556 /*
3557 * The maximum number of concurrent works can be high and
3558 * concurrency isn't really necessary. Limit it to 1.
3559 */
3560 EXT4_SB(sb)->dio_unwritten_wq =
3561 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3562 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3563 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3564 goto failed_mount_wq;
3565 }
3566
3567 /*
3568 * The jbd2_journal_load will have done any necessary log recovery,
3569 * so we can safely mount the rest of the filesystem now.
3570 */
3571
3572 root = ext4_iget(sb, EXT4_ROOT_INO);
3573 if (IS_ERR(root)) {
3574 ext4_msg(sb, KERN_ERR, "get root inode failed");
3575 ret = PTR_ERR(root);
3576 root = NULL;
3577 goto failed_mount4;
3578 }
3579 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3580 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3581 goto failed_mount4;
3582 }
3583 sb->s_root = d_alloc_root(root);
3584 if (!sb->s_root) {
3585 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3586 ret = -ENOMEM;
3587 goto failed_mount4;
3588 }
3589
3590 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3591
3592 /* determine the minimum size of new large inodes, if present */
3593 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3594 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3595 EXT4_GOOD_OLD_INODE_SIZE;
3596 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3597 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3598 if (sbi->s_want_extra_isize <
3599 le16_to_cpu(es->s_want_extra_isize))
3600 sbi->s_want_extra_isize =
3601 le16_to_cpu(es->s_want_extra_isize);
3602 if (sbi->s_want_extra_isize <
3603 le16_to_cpu(es->s_min_extra_isize))
3604 sbi->s_want_extra_isize =
3605 le16_to_cpu(es->s_min_extra_isize);
3606 }
3607 }
3608 /* Check if enough inode space is available */
3609 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3610 sbi->s_inode_size) {
3611 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3612 EXT4_GOOD_OLD_INODE_SIZE;
3613 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3614 "available");
3615 }
3616
3617 if (test_opt(sb, DELALLOC) &&
3618 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3619 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3620 "requested data journaling mode");
3621 clear_opt(sb, DELALLOC);
3622 }
3623 if (test_opt(sb, DIOREAD_NOLOCK)) {
3624 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3625 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3626 "option - requested data journaling mode");
3627 clear_opt(sb, DIOREAD_NOLOCK);
3628 }
3629 if (sb->s_blocksize < PAGE_SIZE) {
3630 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3631 "option - block size is too small");
3632 clear_opt(sb, DIOREAD_NOLOCK);
3633 }
3634 }
3635
3636 err = ext4_setup_system_zone(sb);
3637 if (err) {
3638 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3639 "zone (%d)", err);
3640 goto failed_mount4;
3641 }
3642
3643 ext4_ext_init(sb);
3644 err = ext4_mb_init(sb, needs_recovery);
3645 if (err) {
3646 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3647 err);
3648 goto failed_mount4;
3649 }
3650
3651 err = ext4_register_li_request(sb, first_not_zeroed);
3652 if (err)
3653 goto failed_mount4;
3654
3655 sbi->s_kobj.kset = ext4_kset;
3656 init_completion(&sbi->s_kobj_unregister);
3657 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3658 "%s", sb->s_id);
3659 if (err) {
3660 ext4_mb_release(sb);
3661 ext4_ext_release(sb);
3662 goto failed_mount4;
3663 };
3664
3665 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3666 ext4_orphan_cleanup(sb, es);
3667 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3668 if (needs_recovery) {
3669 ext4_msg(sb, KERN_INFO, "recovery complete");
3670 ext4_mark_recovery_complete(sb, es);
3671 }
3672 if (EXT4_SB(sb)->s_journal) {
3673 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3674 descr = " journalled data mode";
3675 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3676 descr = " ordered data mode";
3677 else
3678 descr = " writeback data mode";
3679 } else
3680 descr = "out journal";
3681
3682 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3683 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3684 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3685
3686 if (es->s_error_count)
3687 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3688
3689 kfree(orig_data);
3690 return 0;
3691
3692 cantfind_ext4:
3693 if (!silent)
3694 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3695 goto failed_mount;
3696
3697 failed_mount4:
3698 iput(root);
3699 sb->s_root = NULL;
3700 ext4_msg(sb, KERN_ERR, "mount failed");
3701 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3702 failed_mount_wq:
3703 ext4_release_system_zone(sb);
3704 if (sbi->s_journal) {
3705 jbd2_journal_destroy(sbi->s_journal);
3706 sbi->s_journal = NULL;
3707 }
3708 failed_mount3:
3709 del_timer(&sbi->s_err_report);
3710 if (sbi->s_flex_groups) {
3711 if (is_vmalloc_addr(sbi->s_flex_groups))
3712 vfree(sbi->s_flex_groups);
3713 else
3714 kfree(sbi->s_flex_groups);
3715 }
3716 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3717 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3718 percpu_counter_destroy(&sbi->s_dirs_counter);
3719 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3720 failed_mount2:
3721 for (i = 0; i < db_count; i++)
3722 brelse(sbi->s_group_desc[i]);
3723 kfree(sbi->s_group_desc);
3724 failed_mount:
3725 if (sbi->s_proc) {
3726 remove_proc_entry(sb->s_id, ext4_proc_root);
3727 }
3728 #ifdef CONFIG_QUOTA
3729 for (i = 0; i < MAXQUOTAS; i++)
3730 kfree(sbi->s_qf_names[i]);
3731 #endif
3732 ext4_blkdev_remove(sbi);
3733 brelse(bh);
3734 out_fail:
3735 sb->s_fs_info = NULL;
3736 kfree(sbi->s_blockgroup_lock);
3737 kfree(sbi);
3738 out_free_orig:
3739 kfree(orig_data);
3740 return ret;
3741 }
3742
3743 /*
3744 * Setup any per-fs journal parameters now. We'll do this both on
3745 * initial mount, once the journal has been initialised but before we've
3746 * done any recovery; and again on any subsequent remount.
3747 */
3748 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3749 {
3750 struct ext4_sb_info *sbi = EXT4_SB(sb);
3751
3752 journal->j_commit_interval = sbi->s_commit_interval;
3753 journal->j_min_batch_time = sbi->s_min_batch_time;
3754 journal->j_max_batch_time = sbi->s_max_batch_time;
3755
3756 write_lock(&journal->j_state_lock);
3757 if (test_opt(sb, BARRIER))
3758 journal->j_flags |= JBD2_BARRIER;
3759 else
3760 journal->j_flags &= ~JBD2_BARRIER;
3761 if (test_opt(sb, DATA_ERR_ABORT))
3762 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3763 else
3764 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3765 write_unlock(&journal->j_state_lock);
3766 }
3767
3768 static journal_t *ext4_get_journal(struct super_block *sb,
3769 unsigned int journal_inum)
3770 {
3771 struct inode *journal_inode;
3772 journal_t *journal;
3773
3774 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3775
3776 /* First, test for the existence of a valid inode on disk. Bad
3777 * things happen if we iget() an unused inode, as the subsequent
3778 * iput() will try to delete it. */
3779
3780 journal_inode = ext4_iget(sb, journal_inum);
3781 if (IS_ERR(journal_inode)) {
3782 ext4_msg(sb, KERN_ERR, "no journal found");
3783 return NULL;
3784 }
3785 if (!journal_inode->i_nlink) {
3786 make_bad_inode(journal_inode);
3787 iput(journal_inode);
3788 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3789 return NULL;
3790 }
3791
3792 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3793 journal_inode, journal_inode->i_size);
3794 if (!S_ISREG(journal_inode->i_mode)) {
3795 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3796 iput(journal_inode);
3797 return NULL;
3798 }
3799
3800 journal = jbd2_journal_init_inode(journal_inode);
3801 if (!journal) {
3802 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3803 iput(journal_inode);
3804 return NULL;
3805 }
3806 journal->j_private = sb;
3807 ext4_init_journal_params(sb, journal);
3808 return journal;
3809 }
3810
3811 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3812 dev_t j_dev)
3813 {
3814 struct buffer_head *bh;
3815 journal_t *journal;
3816 ext4_fsblk_t start;
3817 ext4_fsblk_t len;
3818 int hblock, blocksize;
3819 ext4_fsblk_t sb_block;
3820 unsigned long offset;
3821 struct ext4_super_block *es;
3822 struct block_device *bdev;
3823
3824 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3825
3826 bdev = ext4_blkdev_get(j_dev, sb);
3827 if (bdev == NULL)
3828 return NULL;
3829
3830 blocksize = sb->s_blocksize;
3831 hblock = bdev_logical_block_size(bdev);
3832 if (blocksize < hblock) {
3833 ext4_msg(sb, KERN_ERR,
3834 "blocksize too small for journal device");
3835 goto out_bdev;
3836 }
3837
3838 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3839 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3840 set_blocksize(bdev, blocksize);
3841 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3842 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3843 "external journal");
3844 goto out_bdev;
3845 }
3846
3847 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3848 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3849 !(le32_to_cpu(es->s_feature_incompat) &
3850 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3851 ext4_msg(sb, KERN_ERR, "external journal has "
3852 "bad superblock");
3853 brelse(bh);
3854 goto out_bdev;
3855 }
3856
3857 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3858 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3859 brelse(bh);
3860 goto out_bdev;
3861 }
3862
3863 len = ext4_blocks_count(es);
3864 start = sb_block + 1;
3865 brelse(bh); /* we're done with the superblock */
3866
3867 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3868 start, len, blocksize);
3869 if (!journal) {
3870 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3871 goto out_bdev;
3872 }
3873 journal->j_private = sb;
3874 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3875 wait_on_buffer(journal->j_sb_buffer);
3876 if (!buffer_uptodate(journal->j_sb_buffer)) {
3877 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3878 goto out_journal;
3879 }
3880 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3881 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3882 "user (unsupported) - %d",
3883 be32_to_cpu(journal->j_superblock->s_nr_users));
3884 goto out_journal;
3885 }
3886 EXT4_SB(sb)->journal_bdev = bdev;
3887 ext4_init_journal_params(sb, journal);
3888 return journal;
3889
3890 out_journal:
3891 jbd2_journal_destroy(journal);
3892 out_bdev:
3893 ext4_blkdev_put(bdev);
3894 return NULL;
3895 }
3896
3897 static int ext4_load_journal(struct super_block *sb,
3898 struct ext4_super_block *es,
3899 unsigned long journal_devnum)
3900 {
3901 journal_t *journal;
3902 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3903 dev_t journal_dev;
3904 int err = 0;
3905 int really_read_only;
3906
3907 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3908
3909 if (journal_devnum &&
3910 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3911 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3912 "numbers have changed");
3913 journal_dev = new_decode_dev(journal_devnum);
3914 } else
3915 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3916
3917 really_read_only = bdev_read_only(sb->s_bdev);
3918
3919 /*
3920 * Are we loading a blank journal or performing recovery after a
3921 * crash? For recovery, we need to check in advance whether we
3922 * can get read-write access to the device.
3923 */
3924 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3925 if (sb->s_flags & MS_RDONLY) {
3926 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3927 "required on readonly filesystem");
3928 if (really_read_only) {
3929 ext4_msg(sb, KERN_ERR, "write access "
3930 "unavailable, cannot proceed");
3931 return -EROFS;
3932 }
3933 ext4_msg(sb, KERN_INFO, "write access will "
3934 "be enabled during recovery");
3935 }
3936 }
3937
3938 if (journal_inum && journal_dev) {
3939 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3940 "and inode journals!");
3941 return -EINVAL;
3942 }
3943
3944 if (journal_inum) {
3945 if (!(journal = ext4_get_journal(sb, journal_inum)))
3946 return -EINVAL;
3947 } else {
3948 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3949 return -EINVAL;
3950 }
3951
3952 if (!(journal->j_flags & JBD2_BARRIER))
3953 ext4_msg(sb, KERN_INFO, "barriers disabled");
3954
3955 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3956 err = jbd2_journal_update_format(journal);
3957 if (err) {
3958 ext4_msg(sb, KERN_ERR, "error updating journal");
3959 jbd2_journal_destroy(journal);
3960 return err;
3961 }
3962 }
3963
3964 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3965 err = jbd2_journal_wipe(journal, !really_read_only);
3966 if (!err) {
3967 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3968 if (save)
3969 memcpy(save, ((char *) es) +
3970 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3971 err = jbd2_journal_load(journal);
3972 if (save)
3973 memcpy(((char *) es) + EXT4_S_ERR_START,
3974 save, EXT4_S_ERR_LEN);
3975 kfree(save);
3976 }
3977
3978 if (err) {
3979 ext4_msg(sb, KERN_ERR, "error loading journal");
3980 jbd2_journal_destroy(journal);
3981 return err;
3982 }
3983
3984 EXT4_SB(sb)->s_journal = journal;
3985 ext4_clear_journal_err(sb, es);
3986
3987 if (!really_read_only && journal_devnum &&
3988 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3989 es->s_journal_dev = cpu_to_le32(journal_devnum);
3990
3991 /* Make sure we flush the recovery flag to disk. */
3992 ext4_commit_super(sb, 1);
3993 }
3994
3995 return 0;
3996 }
3997
3998 static int ext4_commit_super(struct super_block *sb, int sync)
3999 {
4000 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4001 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4002 int error = 0;
4003
4004 if (!sbh)
4005 return error;
4006 if (buffer_write_io_error(sbh)) {
4007 /*
4008 * Oh, dear. A previous attempt to write the
4009 * superblock failed. This could happen because the
4010 * USB device was yanked out. Or it could happen to
4011 * be a transient write error and maybe the block will
4012 * be remapped. Nothing we can do but to retry the
4013 * write and hope for the best.
4014 */
4015 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4016 "superblock detected");
4017 clear_buffer_write_io_error(sbh);
4018 set_buffer_uptodate(sbh);
4019 }
4020 /*
4021 * If the file system is mounted read-only, don't update the
4022 * superblock write time. This avoids updating the superblock
4023 * write time when we are mounting the root file system
4024 * read/only but we need to replay the journal; at that point,
4025 * for people who are east of GMT and who make their clock
4026 * tick in localtime for Windows bug-for-bug compatibility,
4027 * the clock is set in the future, and this will cause e2fsck
4028 * to complain and force a full file system check.
4029 */
4030 if (!(sb->s_flags & MS_RDONLY))
4031 es->s_wtime = cpu_to_le32(get_seconds());
4032 if (sb->s_bdev->bd_part)
4033 es->s_kbytes_written =
4034 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4035 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4036 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4037 else
4038 es->s_kbytes_written =
4039 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4040 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4041 &EXT4_SB(sb)->s_freeblocks_counter));
4042 es->s_free_inodes_count =
4043 cpu_to_le32(percpu_counter_sum_positive(
4044 &EXT4_SB(sb)->s_freeinodes_counter));
4045 sb->s_dirt = 0;
4046 BUFFER_TRACE(sbh, "marking dirty");
4047 mark_buffer_dirty(sbh);
4048 if (sync) {
4049 error = sync_dirty_buffer(sbh);
4050 if (error)
4051 return error;
4052
4053 error = buffer_write_io_error(sbh);
4054 if (error) {
4055 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4056 "superblock");
4057 clear_buffer_write_io_error(sbh);
4058 set_buffer_uptodate(sbh);
4059 }
4060 }
4061 return error;
4062 }
4063
4064 /*
4065 * Have we just finished recovery? If so, and if we are mounting (or
4066 * remounting) the filesystem readonly, then we will end up with a
4067 * consistent fs on disk. Record that fact.
4068 */
4069 static void ext4_mark_recovery_complete(struct super_block *sb,
4070 struct ext4_super_block *es)
4071 {
4072 journal_t *journal = EXT4_SB(sb)->s_journal;
4073
4074 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4075 BUG_ON(journal != NULL);
4076 return;
4077 }
4078 jbd2_journal_lock_updates(journal);
4079 if (jbd2_journal_flush(journal) < 0)
4080 goto out;
4081
4082 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4083 sb->s_flags & MS_RDONLY) {
4084 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4085 ext4_commit_super(sb, 1);
4086 }
4087
4088 out:
4089 jbd2_journal_unlock_updates(journal);
4090 }
4091
4092 /*
4093 * If we are mounting (or read-write remounting) a filesystem whose journal
4094 * has recorded an error from a previous lifetime, move that error to the
4095 * main filesystem now.
4096 */
4097 static void ext4_clear_journal_err(struct super_block *sb,
4098 struct ext4_super_block *es)
4099 {
4100 journal_t *journal;
4101 int j_errno;
4102 const char *errstr;
4103
4104 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4105
4106 journal = EXT4_SB(sb)->s_journal;
4107
4108 /*
4109 * Now check for any error status which may have been recorded in the
4110 * journal by a prior ext4_error() or ext4_abort()
4111 */
4112
4113 j_errno = jbd2_journal_errno(journal);
4114 if (j_errno) {
4115 char nbuf[16];
4116
4117 errstr = ext4_decode_error(sb, j_errno, nbuf);
4118 ext4_warning(sb, "Filesystem error recorded "
4119 "from previous mount: %s", errstr);
4120 ext4_warning(sb, "Marking fs in need of filesystem check.");
4121
4122 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4123 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4124 ext4_commit_super(sb, 1);
4125
4126 jbd2_journal_clear_err(journal);
4127 }
4128 }
4129
4130 /*
4131 * Force the running and committing transactions to commit,
4132 * and wait on the commit.
4133 */
4134 int ext4_force_commit(struct super_block *sb)
4135 {
4136 journal_t *journal;
4137 int ret = 0;
4138
4139 if (sb->s_flags & MS_RDONLY)
4140 return 0;
4141
4142 journal = EXT4_SB(sb)->s_journal;
4143 if (journal) {
4144 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4145 ret = ext4_journal_force_commit(journal);
4146 }
4147
4148 return ret;
4149 }
4150
4151 static void ext4_write_super(struct super_block *sb)
4152 {
4153 lock_super(sb);
4154 ext4_commit_super(sb, 1);
4155 unlock_super(sb);
4156 }
4157
4158 static int ext4_sync_fs(struct super_block *sb, int wait)
4159 {
4160 int ret = 0;
4161 tid_t target;
4162 struct ext4_sb_info *sbi = EXT4_SB(sb);
4163
4164 trace_ext4_sync_fs(sb, wait);
4165 flush_workqueue(sbi->dio_unwritten_wq);
4166 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4167 if (wait)
4168 jbd2_log_wait_commit(sbi->s_journal, target);
4169 }
4170 return ret;
4171 }
4172
4173 /*
4174 * LVM calls this function before a (read-only) snapshot is created. This
4175 * gives us a chance to flush the journal completely and mark the fs clean.
4176 *
4177 * Note that only this function cannot bring a filesystem to be in a clean
4178 * state independently, because ext4 prevents a new handle from being started
4179 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4180 * the upper layer.
4181 */
4182 static int ext4_freeze(struct super_block *sb)
4183 {
4184 int error = 0;
4185 journal_t *journal;
4186
4187 if (sb->s_flags & MS_RDONLY)
4188 return 0;
4189
4190 journal = EXT4_SB(sb)->s_journal;
4191
4192 /* Now we set up the journal barrier. */
4193 jbd2_journal_lock_updates(journal);
4194
4195 /*
4196 * Don't clear the needs_recovery flag if we failed to flush
4197 * the journal.
4198 */
4199 error = jbd2_journal_flush(journal);
4200 if (error < 0)
4201 goto out;
4202
4203 /* Journal blocked and flushed, clear needs_recovery flag. */
4204 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4205 error = ext4_commit_super(sb, 1);
4206 out:
4207 /* we rely on s_frozen to stop further updates */
4208 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4209 return error;
4210 }
4211
4212 /*
4213 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4214 * flag here, even though the filesystem is not technically dirty yet.
4215 */
4216 static int ext4_unfreeze(struct super_block *sb)
4217 {
4218 if (sb->s_flags & MS_RDONLY)
4219 return 0;
4220
4221 lock_super(sb);
4222 /* Reset the needs_recovery flag before the fs is unlocked. */
4223 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4224 ext4_commit_super(sb, 1);
4225 unlock_super(sb);
4226 return 0;
4227 }
4228
4229 /*
4230 * Structure to save mount options for ext4_remount's benefit
4231 */
4232 struct ext4_mount_options {
4233 unsigned long s_mount_opt;
4234 unsigned long s_mount_opt2;
4235 uid_t s_resuid;
4236 gid_t s_resgid;
4237 unsigned long s_commit_interval;
4238 u32 s_min_batch_time, s_max_batch_time;
4239 #ifdef CONFIG_QUOTA
4240 int s_jquota_fmt;
4241 char *s_qf_names[MAXQUOTAS];
4242 #endif
4243 };
4244
4245 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4246 {
4247 struct ext4_super_block *es;
4248 struct ext4_sb_info *sbi = EXT4_SB(sb);
4249 ext4_fsblk_t n_blocks_count = 0;
4250 unsigned long old_sb_flags;
4251 struct ext4_mount_options old_opts;
4252 int enable_quota = 0;
4253 ext4_group_t g;
4254 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4255 int err;
4256 #ifdef CONFIG_QUOTA
4257 int i;
4258 #endif
4259 char *orig_data = kstrdup(data, GFP_KERNEL);
4260
4261 /* Store the original options */
4262 lock_super(sb);
4263 old_sb_flags = sb->s_flags;
4264 old_opts.s_mount_opt = sbi->s_mount_opt;
4265 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4266 old_opts.s_resuid = sbi->s_resuid;
4267 old_opts.s_resgid = sbi->s_resgid;
4268 old_opts.s_commit_interval = sbi->s_commit_interval;
4269 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4270 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4271 #ifdef CONFIG_QUOTA
4272 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4273 for (i = 0; i < MAXQUOTAS; i++)
4274 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4275 #endif
4276 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4277 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4278
4279 /*
4280 * Allow the "check" option to be passed as a remount option.
4281 */
4282 if (!parse_options(data, sb, NULL, &journal_ioprio,
4283 &n_blocks_count, 1)) {
4284 err = -EINVAL;
4285 goto restore_opts;
4286 }
4287
4288 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4289 ext4_abort(sb, "Abort forced by user");
4290
4291 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4292 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4293
4294 es = sbi->s_es;
4295
4296 if (sbi->s_journal) {
4297 ext4_init_journal_params(sb, sbi->s_journal);
4298 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4299 }
4300
4301 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4302 n_blocks_count > ext4_blocks_count(es)) {
4303 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4304 err = -EROFS;
4305 goto restore_opts;
4306 }
4307
4308 if (*flags & MS_RDONLY) {
4309 err = dquot_suspend(sb, -1);
4310 if (err < 0)
4311 goto restore_opts;
4312
4313 /*
4314 * First of all, the unconditional stuff we have to do
4315 * to disable replay of the journal when we next remount
4316 */
4317 sb->s_flags |= MS_RDONLY;
4318
4319 /*
4320 * OK, test if we are remounting a valid rw partition
4321 * readonly, and if so set the rdonly flag and then
4322 * mark the partition as valid again.
4323 */
4324 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4325 (sbi->s_mount_state & EXT4_VALID_FS))
4326 es->s_state = cpu_to_le16(sbi->s_mount_state);
4327
4328 if (sbi->s_journal)
4329 ext4_mark_recovery_complete(sb, es);
4330 } else {
4331 /* Make sure we can mount this feature set readwrite */
4332 if (!ext4_feature_set_ok(sb, 0)) {
4333 err = -EROFS;
4334 goto restore_opts;
4335 }
4336 /*
4337 * Make sure the group descriptor checksums
4338 * are sane. If they aren't, refuse to remount r/w.
4339 */
4340 for (g = 0; g < sbi->s_groups_count; g++) {
4341 struct ext4_group_desc *gdp =
4342 ext4_get_group_desc(sb, g, NULL);
4343
4344 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4345 ext4_msg(sb, KERN_ERR,
4346 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4347 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4348 le16_to_cpu(gdp->bg_checksum));
4349 err = -EINVAL;
4350 goto restore_opts;
4351 }
4352 }
4353
4354 /*
4355 * If we have an unprocessed orphan list hanging
4356 * around from a previously readonly bdev mount,
4357 * require a full umount/remount for now.
4358 */
4359 if (es->s_last_orphan) {
4360 ext4_msg(sb, KERN_WARNING, "Couldn't "
4361 "remount RDWR because of unprocessed "
4362 "orphan inode list. Please "
4363 "umount/remount instead");
4364 err = -EINVAL;
4365 goto restore_opts;
4366 }
4367
4368 /*
4369 * Mounting a RDONLY partition read-write, so reread
4370 * and store the current valid flag. (It may have
4371 * been changed by e2fsck since we originally mounted
4372 * the partition.)
4373 */
4374 if (sbi->s_journal)
4375 ext4_clear_journal_err(sb, es);
4376 sbi->s_mount_state = le16_to_cpu(es->s_state);
4377 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4378 goto restore_opts;
4379 if (!ext4_setup_super(sb, es, 0))
4380 sb->s_flags &= ~MS_RDONLY;
4381 enable_quota = 1;
4382 }
4383 }
4384
4385 /*
4386 * Reinitialize lazy itable initialization thread based on
4387 * current settings
4388 */
4389 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4390 ext4_unregister_li_request(sb);
4391 else {
4392 ext4_group_t first_not_zeroed;
4393 first_not_zeroed = ext4_has_uninit_itable(sb);
4394 ext4_register_li_request(sb, first_not_zeroed);
4395 }
4396
4397 ext4_setup_system_zone(sb);
4398 if (sbi->s_journal == NULL)
4399 ext4_commit_super(sb, 1);
4400
4401 #ifdef CONFIG_QUOTA
4402 /* Release old quota file names */
4403 for (i = 0; i < MAXQUOTAS; i++)
4404 if (old_opts.s_qf_names[i] &&
4405 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4406 kfree(old_opts.s_qf_names[i]);
4407 #endif
4408 unlock_super(sb);
4409 if (enable_quota)
4410 dquot_resume(sb, -1);
4411
4412 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4413 kfree(orig_data);
4414 return 0;
4415
4416 restore_opts:
4417 sb->s_flags = old_sb_flags;
4418 sbi->s_mount_opt = old_opts.s_mount_opt;
4419 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4420 sbi->s_resuid = old_opts.s_resuid;
4421 sbi->s_resgid = old_opts.s_resgid;
4422 sbi->s_commit_interval = old_opts.s_commit_interval;
4423 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4424 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4425 #ifdef CONFIG_QUOTA
4426 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4427 for (i = 0; i < MAXQUOTAS; i++) {
4428 if (sbi->s_qf_names[i] &&
4429 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4430 kfree(sbi->s_qf_names[i]);
4431 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4432 }
4433 #endif
4434 unlock_super(sb);
4435 kfree(orig_data);
4436 return err;
4437 }
4438
4439 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4440 {
4441 struct super_block *sb = dentry->d_sb;
4442 struct ext4_sb_info *sbi = EXT4_SB(sb);
4443 struct ext4_super_block *es = sbi->s_es;
4444 u64 fsid;
4445
4446 if (test_opt(sb, MINIX_DF)) {
4447 sbi->s_overhead_last = 0;
4448 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4449 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4450 ext4_fsblk_t overhead = 0;
4451
4452 /*
4453 * Compute the overhead (FS structures). This is constant
4454 * for a given filesystem unless the number of block groups
4455 * changes so we cache the previous value until it does.
4456 */
4457
4458 /*
4459 * All of the blocks before first_data_block are
4460 * overhead
4461 */
4462 overhead = le32_to_cpu(es->s_first_data_block);
4463
4464 /*
4465 * Add the overhead attributed to the superblock and
4466 * block group descriptors. If the sparse superblocks
4467 * feature is turned on, then not all groups have this.
4468 */
4469 for (i = 0; i < ngroups; i++) {
4470 overhead += ext4_bg_has_super(sb, i) +
4471 ext4_bg_num_gdb(sb, i);
4472 cond_resched();
4473 }
4474
4475 /*
4476 * Every block group has an inode bitmap, a block
4477 * bitmap, and an inode table.
4478 */
4479 overhead += ngroups * (2 + sbi->s_itb_per_group);
4480 sbi->s_overhead_last = overhead;
4481 smp_wmb();
4482 sbi->s_blocks_last = ext4_blocks_count(es);
4483 }
4484
4485 buf->f_type = EXT4_SUPER_MAGIC;
4486 buf->f_bsize = sb->s_blocksize;
4487 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4488 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4489 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4490 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4491 if (buf->f_bfree < ext4_r_blocks_count(es))
4492 buf->f_bavail = 0;
4493 buf->f_files = le32_to_cpu(es->s_inodes_count);
4494 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4495 buf->f_namelen = EXT4_NAME_LEN;
4496 fsid = le64_to_cpup((void *)es->s_uuid) ^
4497 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4498 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4499 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4500
4501 return 0;
4502 }
4503
4504 /* Helper function for writing quotas on sync - we need to start transaction
4505 * before quota file is locked for write. Otherwise the are possible deadlocks:
4506 * Process 1 Process 2
4507 * ext4_create() quota_sync()
4508 * jbd2_journal_start() write_dquot()
4509 * dquot_initialize() down(dqio_mutex)
4510 * down(dqio_mutex) jbd2_journal_start()
4511 *
4512 */
4513
4514 #ifdef CONFIG_QUOTA
4515
4516 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4517 {
4518 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4519 }
4520
4521 static int ext4_write_dquot(struct dquot *dquot)
4522 {
4523 int ret, err;
4524 handle_t *handle;
4525 struct inode *inode;
4526
4527 inode = dquot_to_inode(dquot);
4528 handle = ext4_journal_start(inode,
4529 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4530 if (IS_ERR(handle))
4531 return PTR_ERR(handle);
4532 ret = dquot_commit(dquot);
4533 err = ext4_journal_stop(handle);
4534 if (!ret)
4535 ret = err;
4536 return ret;
4537 }
4538
4539 static int ext4_acquire_dquot(struct dquot *dquot)
4540 {
4541 int ret, err;
4542 handle_t *handle;
4543
4544 handle = ext4_journal_start(dquot_to_inode(dquot),
4545 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4546 if (IS_ERR(handle))
4547 return PTR_ERR(handle);
4548 ret = dquot_acquire(dquot);
4549 err = ext4_journal_stop(handle);
4550 if (!ret)
4551 ret = err;
4552 return ret;
4553 }
4554
4555 static int ext4_release_dquot(struct dquot *dquot)
4556 {
4557 int ret, err;
4558 handle_t *handle;
4559
4560 handle = ext4_journal_start(dquot_to_inode(dquot),
4561 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4562 if (IS_ERR(handle)) {
4563 /* Release dquot anyway to avoid endless cycle in dqput() */
4564 dquot_release(dquot);
4565 return PTR_ERR(handle);
4566 }
4567 ret = dquot_release(dquot);
4568 err = ext4_journal_stop(handle);
4569 if (!ret)
4570 ret = err;
4571 return ret;
4572 }
4573
4574 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4575 {
4576 /* Are we journaling quotas? */
4577 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4578 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4579 dquot_mark_dquot_dirty(dquot);
4580 return ext4_write_dquot(dquot);
4581 } else {
4582 return dquot_mark_dquot_dirty(dquot);
4583 }
4584 }
4585
4586 static int ext4_write_info(struct super_block *sb, int type)
4587 {
4588 int ret, err;
4589 handle_t *handle;
4590
4591 /* Data block + inode block */
4592 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4593 if (IS_ERR(handle))
4594 return PTR_ERR(handle);
4595 ret = dquot_commit_info(sb, type);
4596 err = ext4_journal_stop(handle);
4597 if (!ret)
4598 ret = err;
4599 return ret;
4600 }
4601
4602 /*
4603 * Turn on quotas during mount time - we need to find
4604 * the quota file and such...
4605 */
4606 static int ext4_quota_on_mount(struct super_block *sb, int type)
4607 {
4608 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4609 EXT4_SB(sb)->s_jquota_fmt, type);
4610 }
4611
4612 /*
4613 * Standard function to be called on quota_on
4614 */
4615 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4616 struct path *path)
4617 {
4618 int err;
4619
4620 if (!test_opt(sb, QUOTA))
4621 return -EINVAL;
4622
4623 /* Quotafile not on the same filesystem? */
4624 if (path->mnt->mnt_sb != sb)
4625 return -EXDEV;
4626 /* Journaling quota? */
4627 if (EXT4_SB(sb)->s_qf_names[type]) {
4628 /* Quotafile not in fs root? */
4629 if (path->dentry->d_parent != sb->s_root)
4630 ext4_msg(sb, KERN_WARNING,
4631 "Quota file not on filesystem root. "
4632 "Journaled quota will not work");
4633 }
4634
4635 /*
4636 * When we journal data on quota file, we have to flush journal to see
4637 * all updates to the file when we bypass pagecache...
4638 */
4639 if (EXT4_SB(sb)->s_journal &&
4640 ext4_should_journal_data(path->dentry->d_inode)) {
4641 /*
4642 * We don't need to lock updates but journal_flush() could
4643 * otherwise be livelocked...
4644 */
4645 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4646 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4647 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4648 if (err)
4649 return err;
4650 }
4651
4652 return dquot_quota_on(sb, type, format_id, path);
4653 }
4654
4655 static int ext4_quota_off(struct super_block *sb, int type)
4656 {
4657 struct inode *inode = sb_dqopt(sb)->files[type];
4658 handle_t *handle;
4659
4660 /* Force all delayed allocation blocks to be allocated.
4661 * Caller already holds s_umount sem */
4662 if (test_opt(sb, DELALLOC))
4663 sync_filesystem(sb);
4664
4665 if (!inode)
4666 goto out;
4667
4668 /* Update modification times of quota files when userspace can
4669 * start looking at them */
4670 handle = ext4_journal_start(inode, 1);
4671 if (IS_ERR(handle))
4672 goto out;
4673 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4674 ext4_mark_inode_dirty(handle, inode);
4675 ext4_journal_stop(handle);
4676
4677 out:
4678 return dquot_quota_off(sb, type);
4679 }
4680
4681 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4682 * acquiring the locks... As quota files are never truncated and quota code
4683 * itself serializes the operations (and no one else should touch the files)
4684 * we don't have to be afraid of races */
4685 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4686 size_t len, loff_t off)
4687 {
4688 struct inode *inode = sb_dqopt(sb)->files[type];
4689 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4690 int err = 0;
4691 int offset = off & (sb->s_blocksize - 1);
4692 int tocopy;
4693 size_t toread;
4694 struct buffer_head *bh;
4695 loff_t i_size = i_size_read(inode);
4696
4697 if (off > i_size)
4698 return 0;
4699 if (off+len > i_size)
4700 len = i_size-off;
4701 toread = len;
4702 while (toread > 0) {
4703 tocopy = sb->s_blocksize - offset < toread ?
4704 sb->s_blocksize - offset : toread;
4705 bh = ext4_bread(NULL, inode, blk, 0, &err);
4706 if (err)
4707 return err;
4708 if (!bh) /* A hole? */
4709 memset(data, 0, tocopy);
4710 else
4711 memcpy(data, bh->b_data+offset, tocopy);
4712 brelse(bh);
4713 offset = 0;
4714 toread -= tocopy;
4715 data += tocopy;
4716 blk++;
4717 }
4718 return len;
4719 }
4720
4721 /* Write to quotafile (we know the transaction is already started and has
4722 * enough credits) */
4723 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4724 const char *data, size_t len, loff_t off)
4725 {
4726 struct inode *inode = sb_dqopt(sb)->files[type];
4727 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4728 int err = 0;
4729 int offset = off & (sb->s_blocksize - 1);
4730 struct buffer_head *bh;
4731 handle_t *handle = journal_current_handle();
4732
4733 if (EXT4_SB(sb)->s_journal && !handle) {
4734 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4735 " cancelled because transaction is not started",
4736 (unsigned long long)off, (unsigned long long)len);
4737 return -EIO;
4738 }
4739 /*
4740 * Since we account only one data block in transaction credits,
4741 * then it is impossible to cross a block boundary.
4742 */
4743 if (sb->s_blocksize - offset < len) {
4744 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4745 " cancelled because not block aligned",
4746 (unsigned long long)off, (unsigned long long)len);
4747 return -EIO;
4748 }
4749
4750 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4751 bh = ext4_bread(handle, inode, blk, 1, &err);
4752 if (!bh)
4753 goto out;
4754 err = ext4_journal_get_write_access(handle, bh);
4755 if (err) {
4756 brelse(bh);
4757 goto out;
4758 }
4759 lock_buffer(bh);
4760 memcpy(bh->b_data+offset, data, len);
4761 flush_dcache_page(bh->b_page);
4762 unlock_buffer(bh);
4763 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4764 brelse(bh);
4765 out:
4766 if (err) {
4767 mutex_unlock(&inode->i_mutex);
4768 return err;
4769 }
4770 if (inode->i_size < off + len) {
4771 i_size_write(inode, off + len);
4772 EXT4_I(inode)->i_disksize = inode->i_size;
4773 ext4_mark_inode_dirty(handle, inode);
4774 }
4775 mutex_unlock(&inode->i_mutex);
4776 return len;
4777 }
4778
4779 #endif
4780
4781 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4782 const char *dev_name, void *data)
4783 {
4784 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4785 }
4786
4787 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4788 static inline void register_as_ext2(void)
4789 {
4790 int err = register_filesystem(&ext2_fs_type);
4791 if (err)
4792 printk(KERN_WARNING
4793 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4794 }
4795
4796 static inline void unregister_as_ext2(void)
4797 {
4798 unregister_filesystem(&ext2_fs_type);
4799 }
4800
4801 static inline int ext2_feature_set_ok(struct super_block *sb)
4802 {
4803 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4804 return 0;
4805 if (sb->s_flags & MS_RDONLY)
4806 return 1;
4807 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4808 return 0;
4809 return 1;
4810 }
4811 MODULE_ALIAS("ext2");
4812 #else
4813 static inline void register_as_ext2(void) { }
4814 static inline void unregister_as_ext2(void) { }
4815 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4816 #endif
4817
4818 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4819 static inline void register_as_ext3(void)
4820 {
4821 int err = register_filesystem(&ext3_fs_type);
4822 if (err)
4823 printk(KERN_WARNING
4824 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4825 }
4826
4827 static inline void unregister_as_ext3(void)
4828 {
4829 unregister_filesystem(&ext3_fs_type);
4830 }
4831
4832 static inline int ext3_feature_set_ok(struct super_block *sb)
4833 {
4834 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4835 return 0;
4836 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4837 return 0;
4838 if (sb->s_flags & MS_RDONLY)
4839 return 1;
4840 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4841 return 0;
4842 return 1;
4843 }
4844 MODULE_ALIAS("ext3");
4845 #else
4846 static inline void register_as_ext3(void) { }
4847 static inline void unregister_as_ext3(void) { }
4848 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4849 #endif
4850
4851 static struct file_system_type ext4_fs_type = {
4852 .owner = THIS_MODULE,
4853 .name = "ext4",
4854 .mount = ext4_mount,
4855 .kill_sb = kill_block_super,
4856 .fs_flags = FS_REQUIRES_DEV,
4857 };
4858
4859 static int __init ext4_init_feat_adverts(void)
4860 {
4861 struct ext4_features *ef;
4862 int ret = -ENOMEM;
4863
4864 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4865 if (!ef)
4866 goto out;
4867
4868 ef->f_kobj.kset = ext4_kset;
4869 init_completion(&ef->f_kobj_unregister);
4870 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4871 "features");
4872 if (ret) {
4873 kfree(ef);
4874 goto out;
4875 }
4876
4877 ext4_feat = ef;
4878 ret = 0;
4879 out:
4880 return ret;
4881 }
4882
4883 static void ext4_exit_feat_adverts(void)
4884 {
4885 kobject_put(&ext4_feat->f_kobj);
4886 wait_for_completion(&ext4_feat->f_kobj_unregister);
4887 kfree(ext4_feat);
4888 }
4889
4890 /* Shared across all ext4 file systems */
4891 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4892 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4893
4894 static int __init ext4_init_fs(void)
4895 {
4896 int i, err;
4897
4898 ext4_check_flag_values();
4899
4900 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4901 mutex_init(&ext4__aio_mutex[i]);
4902 init_waitqueue_head(&ext4__ioend_wq[i]);
4903 }
4904
4905 err = ext4_init_pageio();
4906 if (err)
4907 return err;
4908 err = ext4_init_system_zone();
4909 if (err)
4910 goto out7;
4911 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4912 if (!ext4_kset)
4913 goto out6;
4914 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4915 if (!ext4_proc_root)
4916 goto out5;
4917
4918 err = ext4_init_feat_adverts();
4919 if (err)
4920 goto out4;
4921
4922 err = ext4_init_mballoc();
4923 if (err)
4924 goto out3;
4925
4926 err = ext4_init_xattr();
4927 if (err)
4928 goto out2;
4929 err = init_inodecache();
4930 if (err)
4931 goto out1;
4932 register_as_ext3();
4933 register_as_ext2();
4934 err = register_filesystem(&ext4_fs_type);
4935 if (err)
4936 goto out;
4937
4938 ext4_li_info = NULL;
4939 mutex_init(&ext4_li_mtx);
4940 return 0;
4941 out:
4942 unregister_as_ext2();
4943 unregister_as_ext3();
4944 destroy_inodecache();
4945 out1:
4946 ext4_exit_xattr();
4947 out2:
4948 ext4_exit_mballoc();
4949 out3:
4950 ext4_exit_feat_adverts();
4951 out4:
4952 remove_proc_entry("fs/ext4", NULL);
4953 out5:
4954 kset_unregister(ext4_kset);
4955 out6:
4956 ext4_exit_system_zone();
4957 out7:
4958 ext4_exit_pageio();
4959 return err;
4960 }
4961
4962 static void __exit ext4_exit_fs(void)
4963 {
4964 ext4_destroy_lazyinit_thread();
4965 unregister_as_ext2();
4966 unregister_as_ext3();
4967 unregister_filesystem(&ext4_fs_type);
4968 destroy_inodecache();
4969 ext4_exit_xattr();
4970 ext4_exit_mballoc();
4971 ext4_exit_feat_adverts();
4972 remove_proc_entry("fs/ext4", NULL);
4973 kset_unregister(ext4_kset);
4974 ext4_exit_system_zone();
4975 ext4_exit_pageio();
4976 }
4977
4978 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4979 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4980 MODULE_LICENSE("GPL");
4981 module_init(ext4_init_fs)
4982 module_exit(ext4_exit_fs)
This page took 0.203166 seconds and 4 git commands to generate.