ext4: fix undefined bit shift result in ext4_fill_flex_info
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
142
143 return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145
146 void ext4_superblock_csum_set(struct super_block *sb)
147 {
148 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
149
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152 return;
153
154 es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159 void *ret;
160
161 ret = kmalloc(size, flags);
162 if (!ret)
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
164 return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = kzalloc(size, flags);
172 if (!ret)
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174 return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179 if (is_vmalloc_addr(ptr))
180 vfree(ptr);
181 else
182 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
292 {
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302 handle_t *handle = current->journal_info;
303 unsigned long ref_cnt = (unsigned long)handle;
304
305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306
307 ref_cnt++;
308 handle = (handle_t *)ref_cnt;
309
310 current->journal_info = handle;
311 return handle;
312 }
313
314
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318 unsigned long ref_cnt = (unsigned long)handle;
319
320 BUG_ON(ref_cnt == 0);
321
322 ref_cnt--;
323 handle = (handle_t *)ref_cnt;
324
325 current->journal_info = handle;
326 }
327
328 /*
329 * Wrappers for jbd2_journal_start/end.
330 *
331 * The only special thing we need to do here is to make sure that all
332 * journal_end calls result in the superblock being marked dirty, so
333 * that sync() will call the filesystem's write_super callback if
334 * appropriate.
335 */
336 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
337 {
338 journal_t *journal;
339
340 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
341 if (sb->s_flags & MS_RDONLY)
342 return ERR_PTR(-EROFS);
343
344 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
345 journal = EXT4_SB(sb)->s_journal;
346 if (!journal)
347 return ext4_get_nojournal();
348 /*
349 * Special case here: if the journal has aborted behind our
350 * backs (eg. EIO in the commit thread), then we still need to
351 * take the FS itself readonly cleanly.
352 */
353 if (is_journal_aborted(journal)) {
354 ext4_abort(sb, "Detected aborted journal");
355 return ERR_PTR(-EROFS);
356 }
357 return jbd2_journal_start(journal, nblocks);
358 }
359
360 /*
361 * The only special thing we need to do here is to make sure that all
362 * jbd2_journal_stop calls result in the superblock being marked dirty, so
363 * that sync() will call the filesystem's write_super callback if
364 * appropriate.
365 */
366 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
367 {
368 struct super_block *sb;
369 int err;
370 int rc;
371
372 if (!ext4_handle_valid(handle)) {
373 ext4_put_nojournal(handle);
374 return 0;
375 }
376 sb = handle->h_transaction->t_journal->j_private;
377 err = handle->h_err;
378 rc = jbd2_journal_stop(handle);
379
380 if (!err)
381 err = rc;
382 if (err)
383 __ext4_std_error(sb, where, line, err);
384 return err;
385 }
386
387 void ext4_journal_abort_handle(const char *caller, unsigned int line,
388 const char *err_fn, struct buffer_head *bh,
389 handle_t *handle, int err)
390 {
391 char nbuf[16];
392 const char *errstr = ext4_decode_error(NULL, err, nbuf);
393
394 BUG_ON(!ext4_handle_valid(handle));
395
396 if (bh)
397 BUFFER_TRACE(bh, "abort");
398
399 if (!handle->h_err)
400 handle->h_err = err;
401
402 if (is_handle_aborted(handle))
403 return;
404
405 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
406 caller, line, errstr, err_fn);
407
408 jbd2_journal_abort_handle(handle);
409 }
410
411 static void __save_error_info(struct super_block *sb, const char *func,
412 unsigned int line)
413 {
414 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
415
416 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
417 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
418 es->s_last_error_time = cpu_to_le32(get_seconds());
419 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
420 es->s_last_error_line = cpu_to_le32(line);
421 if (!es->s_first_error_time) {
422 es->s_first_error_time = es->s_last_error_time;
423 strncpy(es->s_first_error_func, func,
424 sizeof(es->s_first_error_func));
425 es->s_first_error_line = cpu_to_le32(line);
426 es->s_first_error_ino = es->s_last_error_ino;
427 es->s_first_error_block = es->s_last_error_block;
428 }
429 /*
430 * Start the daily error reporting function if it hasn't been
431 * started already
432 */
433 if (!es->s_error_count)
434 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
435 le32_add_cpu(&es->s_error_count, 1);
436 }
437
438 static void save_error_info(struct super_block *sb, const char *func,
439 unsigned int line)
440 {
441 __save_error_info(sb, func, line);
442 ext4_commit_super(sb, 1);
443 }
444
445 /*
446 * The del_gendisk() function uninitializes the disk-specific data
447 * structures, including the bdi structure, without telling anyone
448 * else. Once this happens, any attempt to call mark_buffer_dirty()
449 * (for example, by ext4_commit_super), will cause a kernel OOPS.
450 * This is a kludge to prevent these oops until we can put in a proper
451 * hook in del_gendisk() to inform the VFS and file system layers.
452 */
453 static int block_device_ejected(struct super_block *sb)
454 {
455 struct inode *bd_inode = sb->s_bdev->bd_inode;
456 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
457
458 return bdi->dev == NULL;
459 }
460
461 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
462 {
463 struct super_block *sb = journal->j_private;
464 struct ext4_sb_info *sbi = EXT4_SB(sb);
465 int error = is_journal_aborted(journal);
466 struct ext4_journal_cb_entry *jce, *tmp;
467
468 spin_lock(&sbi->s_md_lock);
469 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
470 list_del_init(&jce->jce_list);
471 spin_unlock(&sbi->s_md_lock);
472 jce->jce_func(sb, jce, error);
473 spin_lock(&sbi->s_md_lock);
474 }
475 spin_unlock(&sbi->s_md_lock);
476 }
477
478 /* Deal with the reporting of failure conditions on a filesystem such as
479 * inconsistencies detected or read IO failures.
480 *
481 * On ext2, we can store the error state of the filesystem in the
482 * superblock. That is not possible on ext4, because we may have other
483 * write ordering constraints on the superblock which prevent us from
484 * writing it out straight away; and given that the journal is about to
485 * be aborted, we can't rely on the current, or future, transactions to
486 * write out the superblock safely.
487 *
488 * We'll just use the jbd2_journal_abort() error code to record an error in
489 * the journal instead. On recovery, the journal will complain about
490 * that error until we've noted it down and cleared it.
491 */
492
493 static void ext4_handle_error(struct super_block *sb)
494 {
495 if (sb->s_flags & MS_RDONLY)
496 return;
497
498 if (!test_opt(sb, ERRORS_CONT)) {
499 journal_t *journal = EXT4_SB(sb)->s_journal;
500
501 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
502 if (journal)
503 jbd2_journal_abort(journal, -EIO);
504 }
505 if (test_opt(sb, ERRORS_RO)) {
506 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
507 sb->s_flags |= MS_RDONLY;
508 }
509 if (test_opt(sb, ERRORS_PANIC))
510 panic("EXT4-fs (device %s): panic forced after error\n",
511 sb->s_id);
512 }
513
514 void __ext4_error(struct super_block *sb, const char *function,
515 unsigned int line, const char *fmt, ...)
516 {
517 struct va_format vaf;
518 va_list args;
519
520 va_start(args, fmt);
521 vaf.fmt = fmt;
522 vaf.va = &args;
523 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
524 sb->s_id, function, line, current->comm, &vaf);
525 va_end(args);
526 save_error_info(sb, function, line);
527
528 ext4_handle_error(sb);
529 }
530
531 void ext4_error_inode(struct inode *inode, const char *function,
532 unsigned int line, ext4_fsblk_t block,
533 const char *fmt, ...)
534 {
535 va_list args;
536 struct va_format vaf;
537 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
538
539 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
540 es->s_last_error_block = cpu_to_le64(block);
541 save_error_info(inode->i_sb, function, line);
542 va_start(args, fmt);
543 vaf.fmt = fmt;
544 vaf.va = &args;
545 if (block)
546 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
547 "inode #%lu: block %llu: comm %s: %pV\n",
548 inode->i_sb->s_id, function, line, inode->i_ino,
549 block, current->comm, &vaf);
550 else
551 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
552 "inode #%lu: comm %s: %pV\n",
553 inode->i_sb->s_id, function, line, inode->i_ino,
554 current->comm, &vaf);
555 va_end(args);
556
557 ext4_handle_error(inode->i_sb);
558 }
559
560 void ext4_error_file(struct file *file, const char *function,
561 unsigned int line, ext4_fsblk_t block,
562 const char *fmt, ...)
563 {
564 va_list args;
565 struct va_format vaf;
566 struct ext4_super_block *es;
567 struct inode *inode = file->f_dentry->d_inode;
568 char pathname[80], *path;
569
570 es = EXT4_SB(inode->i_sb)->s_es;
571 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
572 save_error_info(inode->i_sb, function, line);
573 path = d_path(&(file->f_path), pathname, sizeof(pathname));
574 if (IS_ERR(path))
575 path = "(unknown)";
576 va_start(args, fmt);
577 vaf.fmt = fmt;
578 vaf.va = &args;
579 if (block)
580 printk(KERN_CRIT
581 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
582 "block %llu: comm %s: path %s: %pV\n",
583 inode->i_sb->s_id, function, line, inode->i_ino,
584 block, current->comm, path, &vaf);
585 else
586 printk(KERN_CRIT
587 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
588 "comm %s: path %s: %pV\n",
589 inode->i_sb->s_id, function, line, inode->i_ino,
590 current->comm, path, &vaf);
591 va_end(args);
592
593 ext4_handle_error(inode->i_sb);
594 }
595
596 static const char *ext4_decode_error(struct super_block *sb, int errno,
597 char nbuf[16])
598 {
599 char *errstr = NULL;
600
601 switch (errno) {
602 case -EIO:
603 errstr = "IO failure";
604 break;
605 case -ENOMEM:
606 errstr = "Out of memory";
607 break;
608 case -EROFS:
609 if (!sb || (EXT4_SB(sb)->s_journal &&
610 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
611 errstr = "Journal has aborted";
612 else
613 errstr = "Readonly filesystem";
614 break;
615 default:
616 /* If the caller passed in an extra buffer for unknown
617 * errors, textualise them now. Else we just return
618 * NULL. */
619 if (nbuf) {
620 /* Check for truncated error codes... */
621 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
622 errstr = nbuf;
623 }
624 break;
625 }
626
627 return errstr;
628 }
629
630 /* __ext4_std_error decodes expected errors from journaling functions
631 * automatically and invokes the appropriate error response. */
632
633 void __ext4_std_error(struct super_block *sb, const char *function,
634 unsigned int line, int errno)
635 {
636 char nbuf[16];
637 const char *errstr;
638
639 /* Special case: if the error is EROFS, and we're not already
640 * inside a transaction, then there's really no point in logging
641 * an error. */
642 if (errno == -EROFS && journal_current_handle() == NULL &&
643 (sb->s_flags & MS_RDONLY))
644 return;
645
646 errstr = ext4_decode_error(sb, errno, nbuf);
647 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
648 sb->s_id, function, line, errstr);
649 save_error_info(sb, function, line);
650
651 ext4_handle_error(sb);
652 }
653
654 /*
655 * ext4_abort is a much stronger failure handler than ext4_error. The
656 * abort function may be used to deal with unrecoverable failures such
657 * as journal IO errors or ENOMEM at a critical moment in log management.
658 *
659 * We unconditionally force the filesystem into an ABORT|READONLY state,
660 * unless the error response on the fs has been set to panic in which
661 * case we take the easy way out and panic immediately.
662 */
663
664 void __ext4_abort(struct super_block *sb, const char *function,
665 unsigned int line, const char *fmt, ...)
666 {
667 va_list args;
668
669 save_error_info(sb, function, line);
670 va_start(args, fmt);
671 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
672 function, line);
673 vprintk(fmt, args);
674 printk("\n");
675 va_end(args);
676
677 if ((sb->s_flags & MS_RDONLY) == 0) {
678 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
679 sb->s_flags |= MS_RDONLY;
680 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
681 if (EXT4_SB(sb)->s_journal)
682 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
683 save_error_info(sb, function, line);
684 }
685 if (test_opt(sb, ERRORS_PANIC))
686 panic("EXT4-fs panic from previous error\n");
687 }
688
689 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
690 {
691 struct va_format vaf;
692 va_list args;
693
694 va_start(args, fmt);
695 vaf.fmt = fmt;
696 vaf.va = &args;
697 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
698 va_end(args);
699 }
700
701 void __ext4_warning(struct super_block *sb, const char *function,
702 unsigned int line, const char *fmt, ...)
703 {
704 struct va_format vaf;
705 va_list args;
706
707 va_start(args, fmt);
708 vaf.fmt = fmt;
709 vaf.va = &args;
710 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
711 sb->s_id, function, line, &vaf);
712 va_end(args);
713 }
714
715 void __ext4_grp_locked_error(const char *function, unsigned int line,
716 struct super_block *sb, ext4_group_t grp,
717 unsigned long ino, ext4_fsblk_t block,
718 const char *fmt, ...)
719 __releases(bitlock)
720 __acquires(bitlock)
721 {
722 struct va_format vaf;
723 va_list args;
724 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
725
726 es->s_last_error_ino = cpu_to_le32(ino);
727 es->s_last_error_block = cpu_to_le64(block);
728 __save_error_info(sb, function, line);
729
730 va_start(args, fmt);
731
732 vaf.fmt = fmt;
733 vaf.va = &args;
734 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
735 sb->s_id, function, line, grp);
736 if (ino)
737 printk(KERN_CONT "inode %lu: ", ino);
738 if (block)
739 printk(KERN_CONT "block %llu:", (unsigned long long) block);
740 printk(KERN_CONT "%pV\n", &vaf);
741 va_end(args);
742
743 if (test_opt(sb, ERRORS_CONT)) {
744 ext4_commit_super(sb, 0);
745 return;
746 }
747
748 ext4_unlock_group(sb, grp);
749 ext4_handle_error(sb);
750 /*
751 * We only get here in the ERRORS_RO case; relocking the group
752 * may be dangerous, but nothing bad will happen since the
753 * filesystem will have already been marked read/only and the
754 * journal has been aborted. We return 1 as a hint to callers
755 * who might what to use the return value from
756 * ext4_grp_locked_error() to distinguish between the
757 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
758 * aggressively from the ext4 function in question, with a
759 * more appropriate error code.
760 */
761 ext4_lock_group(sb, grp);
762 return;
763 }
764
765 void ext4_update_dynamic_rev(struct super_block *sb)
766 {
767 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
768
769 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
770 return;
771
772 ext4_warning(sb,
773 "updating to rev %d because of new feature flag, "
774 "running e2fsck is recommended",
775 EXT4_DYNAMIC_REV);
776
777 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
778 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
779 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
780 /* leave es->s_feature_*compat flags alone */
781 /* es->s_uuid will be set by e2fsck if empty */
782
783 /*
784 * The rest of the superblock fields should be zero, and if not it
785 * means they are likely already in use, so leave them alone. We
786 * can leave it up to e2fsck to clean up any inconsistencies there.
787 */
788 }
789
790 /*
791 * Open the external journal device
792 */
793 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
794 {
795 struct block_device *bdev;
796 char b[BDEVNAME_SIZE];
797
798 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
799 if (IS_ERR(bdev))
800 goto fail;
801 return bdev;
802
803 fail:
804 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
805 __bdevname(dev, b), PTR_ERR(bdev));
806 return NULL;
807 }
808
809 /*
810 * Release the journal device
811 */
812 static int ext4_blkdev_put(struct block_device *bdev)
813 {
814 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
815 }
816
817 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
818 {
819 struct block_device *bdev;
820 int ret = -ENODEV;
821
822 bdev = sbi->journal_bdev;
823 if (bdev) {
824 ret = ext4_blkdev_put(bdev);
825 sbi->journal_bdev = NULL;
826 }
827 return ret;
828 }
829
830 static inline struct inode *orphan_list_entry(struct list_head *l)
831 {
832 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
833 }
834
835 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
836 {
837 struct list_head *l;
838
839 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
840 le32_to_cpu(sbi->s_es->s_last_orphan));
841
842 printk(KERN_ERR "sb_info orphan list:\n");
843 list_for_each(l, &sbi->s_orphan) {
844 struct inode *inode = orphan_list_entry(l);
845 printk(KERN_ERR " "
846 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
847 inode->i_sb->s_id, inode->i_ino, inode,
848 inode->i_mode, inode->i_nlink,
849 NEXT_ORPHAN(inode));
850 }
851 }
852
853 static void ext4_put_super(struct super_block *sb)
854 {
855 struct ext4_sb_info *sbi = EXT4_SB(sb);
856 struct ext4_super_block *es = sbi->s_es;
857 int i, err;
858
859 ext4_unregister_li_request(sb);
860 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
861
862 flush_workqueue(sbi->dio_unwritten_wq);
863 destroy_workqueue(sbi->dio_unwritten_wq);
864
865 if (sbi->s_journal) {
866 err = jbd2_journal_destroy(sbi->s_journal);
867 sbi->s_journal = NULL;
868 if (err < 0)
869 ext4_abort(sb, "Couldn't clean up the journal");
870 }
871
872 del_timer(&sbi->s_err_report);
873 ext4_release_system_zone(sb);
874 ext4_mb_release(sb);
875 ext4_ext_release(sb);
876 ext4_xattr_put_super(sb);
877
878 if (!(sb->s_flags & MS_RDONLY)) {
879 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
880 es->s_state = cpu_to_le16(sbi->s_mount_state);
881 }
882 if (!(sb->s_flags & MS_RDONLY))
883 ext4_commit_super(sb, 1);
884
885 if (sbi->s_proc) {
886 remove_proc_entry("options", sbi->s_proc);
887 remove_proc_entry(sb->s_id, ext4_proc_root);
888 }
889 kobject_del(&sbi->s_kobj);
890
891 for (i = 0; i < sbi->s_gdb_count; i++)
892 brelse(sbi->s_group_desc[i]);
893 ext4_kvfree(sbi->s_group_desc);
894 ext4_kvfree(sbi->s_flex_groups);
895 percpu_counter_destroy(&sbi->s_freeclusters_counter);
896 percpu_counter_destroy(&sbi->s_freeinodes_counter);
897 percpu_counter_destroy(&sbi->s_dirs_counter);
898 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
899 brelse(sbi->s_sbh);
900 #ifdef CONFIG_QUOTA
901 for (i = 0; i < MAXQUOTAS; i++)
902 kfree(sbi->s_qf_names[i]);
903 #endif
904
905 /* Debugging code just in case the in-memory inode orphan list
906 * isn't empty. The on-disk one can be non-empty if we've
907 * detected an error and taken the fs readonly, but the
908 * in-memory list had better be clean by this point. */
909 if (!list_empty(&sbi->s_orphan))
910 dump_orphan_list(sb, sbi);
911 J_ASSERT(list_empty(&sbi->s_orphan));
912
913 invalidate_bdev(sb->s_bdev);
914 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
915 /*
916 * Invalidate the journal device's buffers. We don't want them
917 * floating about in memory - the physical journal device may
918 * hotswapped, and it breaks the `ro-after' testing code.
919 */
920 sync_blockdev(sbi->journal_bdev);
921 invalidate_bdev(sbi->journal_bdev);
922 ext4_blkdev_remove(sbi);
923 }
924 if (sbi->s_mmp_tsk)
925 kthread_stop(sbi->s_mmp_tsk);
926 sb->s_fs_info = NULL;
927 /*
928 * Now that we are completely done shutting down the
929 * superblock, we need to actually destroy the kobject.
930 */
931 kobject_put(&sbi->s_kobj);
932 wait_for_completion(&sbi->s_kobj_unregister);
933 if (sbi->s_chksum_driver)
934 crypto_free_shash(sbi->s_chksum_driver);
935 kfree(sbi->s_blockgroup_lock);
936 kfree(sbi);
937 }
938
939 static struct kmem_cache *ext4_inode_cachep;
940
941 /*
942 * Called inside transaction, so use GFP_NOFS
943 */
944 static struct inode *ext4_alloc_inode(struct super_block *sb)
945 {
946 struct ext4_inode_info *ei;
947
948 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
949 if (!ei)
950 return NULL;
951
952 ei->vfs_inode.i_version = 1;
953 ei->vfs_inode.i_data.writeback_index = 0;
954 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
955 INIT_LIST_HEAD(&ei->i_prealloc_list);
956 spin_lock_init(&ei->i_prealloc_lock);
957 ei->i_reserved_data_blocks = 0;
958 ei->i_reserved_meta_blocks = 0;
959 ei->i_allocated_meta_blocks = 0;
960 ei->i_da_metadata_calc_len = 0;
961 ei->i_da_metadata_calc_last_lblock = 0;
962 spin_lock_init(&(ei->i_block_reservation_lock));
963 #ifdef CONFIG_QUOTA
964 ei->i_reserved_quota = 0;
965 #endif
966 ei->jinode = NULL;
967 INIT_LIST_HEAD(&ei->i_completed_io_list);
968 spin_lock_init(&ei->i_completed_io_lock);
969 ei->i_sync_tid = 0;
970 ei->i_datasync_tid = 0;
971 atomic_set(&ei->i_ioend_count, 0);
972 atomic_set(&ei->i_unwritten, 0);
973
974 return &ei->vfs_inode;
975 }
976
977 static int ext4_drop_inode(struct inode *inode)
978 {
979 int drop = generic_drop_inode(inode);
980
981 trace_ext4_drop_inode(inode, drop);
982 return drop;
983 }
984
985 static void ext4_i_callback(struct rcu_head *head)
986 {
987 struct inode *inode = container_of(head, struct inode, i_rcu);
988 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
989 }
990
991 static void ext4_destroy_inode(struct inode *inode)
992 {
993 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
994 ext4_msg(inode->i_sb, KERN_ERR,
995 "Inode %lu (%p): orphan list check failed!",
996 inode->i_ino, EXT4_I(inode));
997 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
998 EXT4_I(inode), sizeof(struct ext4_inode_info),
999 true);
1000 dump_stack();
1001 }
1002 call_rcu(&inode->i_rcu, ext4_i_callback);
1003 }
1004
1005 static void init_once(void *foo)
1006 {
1007 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1008
1009 INIT_LIST_HEAD(&ei->i_orphan);
1010 #ifdef CONFIG_EXT4_FS_XATTR
1011 init_rwsem(&ei->xattr_sem);
1012 #endif
1013 init_rwsem(&ei->i_data_sem);
1014 inode_init_once(&ei->vfs_inode);
1015 }
1016
1017 static int init_inodecache(void)
1018 {
1019 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1020 sizeof(struct ext4_inode_info),
1021 0, (SLAB_RECLAIM_ACCOUNT|
1022 SLAB_MEM_SPREAD),
1023 init_once);
1024 if (ext4_inode_cachep == NULL)
1025 return -ENOMEM;
1026 return 0;
1027 }
1028
1029 static void destroy_inodecache(void)
1030 {
1031 kmem_cache_destroy(ext4_inode_cachep);
1032 }
1033
1034 void ext4_clear_inode(struct inode *inode)
1035 {
1036 invalidate_inode_buffers(inode);
1037 clear_inode(inode);
1038 dquot_drop(inode);
1039 ext4_discard_preallocations(inode);
1040 if (EXT4_I(inode)->jinode) {
1041 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1042 EXT4_I(inode)->jinode);
1043 jbd2_free_inode(EXT4_I(inode)->jinode);
1044 EXT4_I(inode)->jinode = NULL;
1045 }
1046 }
1047
1048 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1049 u64 ino, u32 generation)
1050 {
1051 struct inode *inode;
1052
1053 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1054 return ERR_PTR(-ESTALE);
1055 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1056 return ERR_PTR(-ESTALE);
1057
1058 /* iget isn't really right if the inode is currently unallocated!!
1059 *
1060 * ext4_read_inode will return a bad_inode if the inode had been
1061 * deleted, so we should be safe.
1062 *
1063 * Currently we don't know the generation for parent directory, so
1064 * a generation of 0 means "accept any"
1065 */
1066 inode = ext4_iget(sb, ino);
1067 if (IS_ERR(inode))
1068 return ERR_CAST(inode);
1069 if (generation && inode->i_generation != generation) {
1070 iput(inode);
1071 return ERR_PTR(-ESTALE);
1072 }
1073
1074 return inode;
1075 }
1076
1077 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1078 int fh_len, int fh_type)
1079 {
1080 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1081 ext4_nfs_get_inode);
1082 }
1083
1084 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1085 int fh_len, int fh_type)
1086 {
1087 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1088 ext4_nfs_get_inode);
1089 }
1090
1091 /*
1092 * Try to release metadata pages (indirect blocks, directories) which are
1093 * mapped via the block device. Since these pages could have journal heads
1094 * which would prevent try_to_free_buffers() from freeing them, we must use
1095 * jbd2 layer's try_to_free_buffers() function to release them.
1096 */
1097 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1098 gfp_t wait)
1099 {
1100 journal_t *journal = EXT4_SB(sb)->s_journal;
1101
1102 WARN_ON(PageChecked(page));
1103 if (!page_has_buffers(page))
1104 return 0;
1105 if (journal)
1106 return jbd2_journal_try_to_free_buffers(journal, page,
1107 wait & ~__GFP_WAIT);
1108 return try_to_free_buffers(page);
1109 }
1110
1111 #ifdef CONFIG_QUOTA
1112 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1113 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1114
1115 static int ext4_write_dquot(struct dquot *dquot);
1116 static int ext4_acquire_dquot(struct dquot *dquot);
1117 static int ext4_release_dquot(struct dquot *dquot);
1118 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1119 static int ext4_write_info(struct super_block *sb, int type);
1120 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1121 struct path *path);
1122 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1123 int format_id);
1124 static int ext4_quota_off(struct super_block *sb, int type);
1125 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1126 static int ext4_quota_on_mount(struct super_block *sb, int type);
1127 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1128 size_t len, loff_t off);
1129 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1130 const char *data, size_t len, loff_t off);
1131 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1132 unsigned int flags);
1133 static int ext4_enable_quotas(struct super_block *sb);
1134
1135 static const struct dquot_operations ext4_quota_operations = {
1136 .get_reserved_space = ext4_get_reserved_space,
1137 .write_dquot = ext4_write_dquot,
1138 .acquire_dquot = ext4_acquire_dquot,
1139 .release_dquot = ext4_release_dquot,
1140 .mark_dirty = ext4_mark_dquot_dirty,
1141 .write_info = ext4_write_info,
1142 .alloc_dquot = dquot_alloc,
1143 .destroy_dquot = dquot_destroy,
1144 };
1145
1146 static const struct quotactl_ops ext4_qctl_operations = {
1147 .quota_on = ext4_quota_on,
1148 .quota_off = ext4_quota_off,
1149 .quota_sync = dquot_quota_sync,
1150 .get_info = dquot_get_dqinfo,
1151 .set_info = dquot_set_dqinfo,
1152 .get_dqblk = dquot_get_dqblk,
1153 .set_dqblk = dquot_set_dqblk
1154 };
1155
1156 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1157 .quota_on_meta = ext4_quota_on_sysfile,
1158 .quota_off = ext4_quota_off_sysfile,
1159 .quota_sync = dquot_quota_sync,
1160 .get_info = dquot_get_dqinfo,
1161 .set_info = dquot_set_dqinfo,
1162 .get_dqblk = dquot_get_dqblk,
1163 .set_dqblk = dquot_set_dqblk
1164 };
1165 #endif
1166
1167 static const struct super_operations ext4_sops = {
1168 .alloc_inode = ext4_alloc_inode,
1169 .destroy_inode = ext4_destroy_inode,
1170 .write_inode = ext4_write_inode,
1171 .dirty_inode = ext4_dirty_inode,
1172 .drop_inode = ext4_drop_inode,
1173 .evict_inode = ext4_evict_inode,
1174 .put_super = ext4_put_super,
1175 .sync_fs = ext4_sync_fs,
1176 .freeze_fs = ext4_freeze,
1177 .unfreeze_fs = ext4_unfreeze,
1178 .statfs = ext4_statfs,
1179 .remount_fs = ext4_remount,
1180 .show_options = ext4_show_options,
1181 #ifdef CONFIG_QUOTA
1182 .quota_read = ext4_quota_read,
1183 .quota_write = ext4_quota_write,
1184 #endif
1185 .bdev_try_to_free_page = bdev_try_to_free_page,
1186 };
1187
1188 static const struct super_operations ext4_nojournal_sops = {
1189 .alloc_inode = ext4_alloc_inode,
1190 .destroy_inode = ext4_destroy_inode,
1191 .write_inode = ext4_write_inode,
1192 .dirty_inode = ext4_dirty_inode,
1193 .drop_inode = ext4_drop_inode,
1194 .evict_inode = ext4_evict_inode,
1195 .put_super = ext4_put_super,
1196 .statfs = ext4_statfs,
1197 .remount_fs = ext4_remount,
1198 .show_options = ext4_show_options,
1199 #ifdef CONFIG_QUOTA
1200 .quota_read = ext4_quota_read,
1201 .quota_write = ext4_quota_write,
1202 #endif
1203 .bdev_try_to_free_page = bdev_try_to_free_page,
1204 };
1205
1206 static const struct export_operations ext4_export_ops = {
1207 .fh_to_dentry = ext4_fh_to_dentry,
1208 .fh_to_parent = ext4_fh_to_parent,
1209 .get_parent = ext4_get_parent,
1210 };
1211
1212 enum {
1213 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1214 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1215 Opt_nouid32, Opt_debug, Opt_removed,
1216 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1217 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1218 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1219 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1220 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1221 Opt_data_err_abort, Opt_data_err_ignore,
1222 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1223 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1224 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1225 Opt_usrquota, Opt_grpquota, Opt_i_version,
1226 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1227 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1228 Opt_inode_readahead_blks, Opt_journal_ioprio,
1229 Opt_dioread_nolock, Opt_dioread_lock,
1230 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1231 Opt_max_dir_size_kb,
1232 };
1233
1234 static const match_table_t tokens = {
1235 {Opt_bsd_df, "bsddf"},
1236 {Opt_minix_df, "minixdf"},
1237 {Opt_grpid, "grpid"},
1238 {Opt_grpid, "bsdgroups"},
1239 {Opt_nogrpid, "nogrpid"},
1240 {Opt_nogrpid, "sysvgroups"},
1241 {Opt_resgid, "resgid=%u"},
1242 {Opt_resuid, "resuid=%u"},
1243 {Opt_sb, "sb=%u"},
1244 {Opt_err_cont, "errors=continue"},
1245 {Opt_err_panic, "errors=panic"},
1246 {Opt_err_ro, "errors=remount-ro"},
1247 {Opt_nouid32, "nouid32"},
1248 {Opt_debug, "debug"},
1249 {Opt_removed, "oldalloc"},
1250 {Opt_removed, "orlov"},
1251 {Opt_user_xattr, "user_xattr"},
1252 {Opt_nouser_xattr, "nouser_xattr"},
1253 {Opt_acl, "acl"},
1254 {Opt_noacl, "noacl"},
1255 {Opt_noload, "norecovery"},
1256 {Opt_noload, "noload"},
1257 {Opt_removed, "nobh"},
1258 {Opt_removed, "bh"},
1259 {Opt_commit, "commit=%u"},
1260 {Opt_min_batch_time, "min_batch_time=%u"},
1261 {Opt_max_batch_time, "max_batch_time=%u"},
1262 {Opt_journal_dev, "journal_dev=%u"},
1263 {Opt_journal_checksum, "journal_checksum"},
1264 {Opt_journal_async_commit, "journal_async_commit"},
1265 {Opt_abort, "abort"},
1266 {Opt_data_journal, "data=journal"},
1267 {Opt_data_ordered, "data=ordered"},
1268 {Opt_data_writeback, "data=writeback"},
1269 {Opt_data_err_abort, "data_err=abort"},
1270 {Opt_data_err_ignore, "data_err=ignore"},
1271 {Opt_offusrjquota, "usrjquota="},
1272 {Opt_usrjquota, "usrjquota=%s"},
1273 {Opt_offgrpjquota, "grpjquota="},
1274 {Opt_grpjquota, "grpjquota=%s"},
1275 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1276 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1277 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1278 {Opt_grpquota, "grpquota"},
1279 {Opt_noquota, "noquota"},
1280 {Opt_quota, "quota"},
1281 {Opt_usrquota, "usrquota"},
1282 {Opt_barrier, "barrier=%u"},
1283 {Opt_barrier, "barrier"},
1284 {Opt_nobarrier, "nobarrier"},
1285 {Opt_i_version, "i_version"},
1286 {Opt_stripe, "stripe=%u"},
1287 {Opt_delalloc, "delalloc"},
1288 {Opt_nodelalloc, "nodelalloc"},
1289 {Opt_mblk_io_submit, "mblk_io_submit"},
1290 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1291 {Opt_block_validity, "block_validity"},
1292 {Opt_noblock_validity, "noblock_validity"},
1293 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1294 {Opt_journal_ioprio, "journal_ioprio=%u"},
1295 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1296 {Opt_auto_da_alloc, "auto_da_alloc"},
1297 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1298 {Opt_dioread_nolock, "dioread_nolock"},
1299 {Opt_dioread_lock, "dioread_lock"},
1300 {Opt_discard, "discard"},
1301 {Opt_nodiscard, "nodiscard"},
1302 {Opt_init_itable, "init_itable=%u"},
1303 {Opt_init_itable, "init_itable"},
1304 {Opt_noinit_itable, "noinit_itable"},
1305 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1306 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1307 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1308 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1309 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1310 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1311 {Opt_err, NULL},
1312 };
1313
1314 static ext4_fsblk_t get_sb_block(void **data)
1315 {
1316 ext4_fsblk_t sb_block;
1317 char *options = (char *) *data;
1318
1319 if (!options || strncmp(options, "sb=", 3) != 0)
1320 return 1; /* Default location */
1321
1322 options += 3;
1323 /* TODO: use simple_strtoll with >32bit ext4 */
1324 sb_block = simple_strtoul(options, &options, 0);
1325 if (*options && *options != ',') {
1326 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1327 (char *) *data);
1328 return 1;
1329 }
1330 if (*options == ',')
1331 options++;
1332 *data = (void *) options;
1333
1334 return sb_block;
1335 }
1336
1337 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1338 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1339 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1340
1341 #ifdef CONFIG_QUOTA
1342 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1343 {
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1345 char *qname;
1346
1347 if (sb_any_quota_loaded(sb) &&
1348 !sbi->s_qf_names[qtype]) {
1349 ext4_msg(sb, KERN_ERR,
1350 "Cannot change journaled "
1351 "quota options when quota turned on");
1352 return -1;
1353 }
1354 qname = match_strdup(args);
1355 if (!qname) {
1356 ext4_msg(sb, KERN_ERR,
1357 "Not enough memory for storing quotafile name");
1358 return -1;
1359 }
1360 if (sbi->s_qf_names[qtype] &&
1361 strcmp(sbi->s_qf_names[qtype], qname)) {
1362 ext4_msg(sb, KERN_ERR,
1363 "%s quota file already specified", QTYPE2NAME(qtype));
1364 kfree(qname);
1365 return -1;
1366 }
1367 sbi->s_qf_names[qtype] = qname;
1368 if (strchr(sbi->s_qf_names[qtype], '/')) {
1369 ext4_msg(sb, KERN_ERR,
1370 "quotafile must be on filesystem root");
1371 kfree(sbi->s_qf_names[qtype]);
1372 sbi->s_qf_names[qtype] = NULL;
1373 return -1;
1374 }
1375 set_opt(sb, QUOTA);
1376 return 1;
1377 }
1378
1379 static int clear_qf_name(struct super_block *sb, int qtype)
1380 {
1381
1382 struct ext4_sb_info *sbi = EXT4_SB(sb);
1383
1384 if (sb_any_quota_loaded(sb) &&
1385 sbi->s_qf_names[qtype]) {
1386 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1387 " when quota turned on");
1388 return -1;
1389 }
1390 /*
1391 * The space will be released later when all options are confirmed
1392 * to be correct
1393 */
1394 sbi->s_qf_names[qtype] = NULL;
1395 return 1;
1396 }
1397 #endif
1398
1399 #define MOPT_SET 0x0001
1400 #define MOPT_CLEAR 0x0002
1401 #define MOPT_NOSUPPORT 0x0004
1402 #define MOPT_EXPLICIT 0x0008
1403 #define MOPT_CLEAR_ERR 0x0010
1404 #define MOPT_GTE0 0x0020
1405 #ifdef CONFIG_QUOTA
1406 #define MOPT_Q 0
1407 #define MOPT_QFMT 0x0040
1408 #else
1409 #define MOPT_Q MOPT_NOSUPPORT
1410 #define MOPT_QFMT MOPT_NOSUPPORT
1411 #endif
1412 #define MOPT_DATAJ 0x0080
1413
1414 static const struct mount_opts {
1415 int token;
1416 int mount_opt;
1417 int flags;
1418 } ext4_mount_opts[] = {
1419 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1420 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1421 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1422 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1423 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1424 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1425 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1426 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1427 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1428 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1429 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1430 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1431 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1432 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1433 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1434 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1435 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1436 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1437 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1438 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1439 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1440 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1441 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1442 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1443 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1444 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1445 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1446 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1447 {Opt_commit, 0, MOPT_GTE0},
1448 {Opt_max_batch_time, 0, MOPT_GTE0},
1449 {Opt_min_batch_time, 0, MOPT_GTE0},
1450 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1451 {Opt_init_itable, 0, MOPT_GTE0},
1452 {Opt_stripe, 0, MOPT_GTE0},
1453 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1454 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1455 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1456 #ifdef CONFIG_EXT4_FS_XATTR
1457 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1458 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1459 #else
1460 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1461 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1462 #endif
1463 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1464 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1465 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1466 #else
1467 {Opt_acl, 0, MOPT_NOSUPPORT},
1468 {Opt_noacl, 0, MOPT_NOSUPPORT},
1469 #endif
1470 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1471 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1472 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1473 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1474 MOPT_SET | MOPT_Q},
1475 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1476 MOPT_SET | MOPT_Q},
1477 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1478 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1479 {Opt_usrjquota, 0, MOPT_Q},
1480 {Opt_grpjquota, 0, MOPT_Q},
1481 {Opt_offusrjquota, 0, MOPT_Q},
1482 {Opt_offgrpjquota, 0, MOPT_Q},
1483 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1484 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1485 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1486 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1487 {Opt_err, 0, 0}
1488 };
1489
1490 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1491 substring_t *args, unsigned long *journal_devnum,
1492 unsigned int *journal_ioprio, int is_remount)
1493 {
1494 struct ext4_sb_info *sbi = EXT4_SB(sb);
1495 const struct mount_opts *m;
1496 kuid_t uid;
1497 kgid_t gid;
1498 int arg = 0;
1499
1500 #ifdef CONFIG_QUOTA
1501 if (token == Opt_usrjquota)
1502 return set_qf_name(sb, USRQUOTA, &args[0]);
1503 else if (token == Opt_grpjquota)
1504 return set_qf_name(sb, GRPQUOTA, &args[0]);
1505 else if (token == Opt_offusrjquota)
1506 return clear_qf_name(sb, USRQUOTA);
1507 else if (token == Opt_offgrpjquota)
1508 return clear_qf_name(sb, GRPQUOTA);
1509 #endif
1510 if (args->from && match_int(args, &arg))
1511 return -1;
1512 switch (token) {
1513 case Opt_noacl:
1514 case Opt_nouser_xattr:
1515 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1516 break;
1517 case Opt_sb:
1518 return 1; /* handled by get_sb_block() */
1519 case Opt_removed:
1520 ext4_msg(sb, KERN_WARNING,
1521 "Ignoring removed %s option", opt);
1522 return 1;
1523 case Opt_resuid:
1524 uid = make_kuid(current_user_ns(), arg);
1525 if (!uid_valid(uid)) {
1526 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1527 return -1;
1528 }
1529 sbi->s_resuid = uid;
1530 return 1;
1531 case Opt_resgid:
1532 gid = make_kgid(current_user_ns(), arg);
1533 if (!gid_valid(gid)) {
1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1535 return -1;
1536 }
1537 sbi->s_resgid = gid;
1538 return 1;
1539 case Opt_abort:
1540 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1541 return 1;
1542 case Opt_i_version:
1543 sb->s_flags |= MS_I_VERSION;
1544 return 1;
1545 case Opt_journal_dev:
1546 if (is_remount) {
1547 ext4_msg(sb, KERN_ERR,
1548 "Cannot specify journal on remount");
1549 return -1;
1550 }
1551 *journal_devnum = arg;
1552 return 1;
1553 case Opt_journal_ioprio:
1554 if (arg < 0 || arg > 7)
1555 return -1;
1556 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1557 return 1;
1558 }
1559
1560 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1561 if (token != m->token)
1562 continue;
1563 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1564 return -1;
1565 if (m->flags & MOPT_EXPLICIT)
1566 set_opt2(sb, EXPLICIT_DELALLOC);
1567 if (m->flags & MOPT_CLEAR_ERR)
1568 clear_opt(sb, ERRORS_MASK);
1569 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1570 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1571 "options when quota turned on");
1572 return -1;
1573 }
1574
1575 if (m->flags & MOPT_NOSUPPORT) {
1576 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1577 } else if (token == Opt_commit) {
1578 if (arg == 0)
1579 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1580 sbi->s_commit_interval = HZ * arg;
1581 } else if (token == Opt_max_batch_time) {
1582 if (arg == 0)
1583 arg = EXT4_DEF_MAX_BATCH_TIME;
1584 sbi->s_max_batch_time = arg;
1585 } else if (token == Opt_min_batch_time) {
1586 sbi->s_min_batch_time = arg;
1587 } else if (token == Opt_inode_readahead_blks) {
1588 if (arg > (1 << 30))
1589 return -1;
1590 if (arg && !is_power_of_2(arg)) {
1591 ext4_msg(sb, KERN_ERR,
1592 "EXT4-fs: inode_readahead_blks"
1593 " must be a power of 2");
1594 return -1;
1595 }
1596 sbi->s_inode_readahead_blks = arg;
1597 } else if (token == Opt_init_itable) {
1598 set_opt(sb, INIT_INODE_TABLE);
1599 if (!args->from)
1600 arg = EXT4_DEF_LI_WAIT_MULT;
1601 sbi->s_li_wait_mult = arg;
1602 } else if (token == Opt_max_dir_size_kb) {
1603 sbi->s_max_dir_size_kb = arg;
1604 } else if (token == Opt_stripe) {
1605 sbi->s_stripe = arg;
1606 } else if (m->flags & MOPT_DATAJ) {
1607 if (is_remount) {
1608 if (!sbi->s_journal)
1609 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1610 else if (test_opt(sb, DATA_FLAGS) !=
1611 m->mount_opt) {
1612 ext4_msg(sb, KERN_ERR,
1613 "Cannot change data mode on remount");
1614 return -1;
1615 }
1616 } else {
1617 clear_opt(sb, DATA_FLAGS);
1618 sbi->s_mount_opt |= m->mount_opt;
1619 }
1620 #ifdef CONFIG_QUOTA
1621 } else if (m->flags & MOPT_QFMT) {
1622 if (sb_any_quota_loaded(sb) &&
1623 sbi->s_jquota_fmt != m->mount_opt) {
1624 ext4_msg(sb, KERN_ERR, "Cannot "
1625 "change journaled quota options "
1626 "when quota turned on");
1627 return -1;
1628 }
1629 sbi->s_jquota_fmt = m->mount_opt;
1630 #endif
1631 } else {
1632 if (!args->from)
1633 arg = 1;
1634 if (m->flags & MOPT_CLEAR)
1635 arg = !arg;
1636 else if (unlikely(!(m->flags & MOPT_SET))) {
1637 ext4_msg(sb, KERN_WARNING,
1638 "buggy handling of option %s", opt);
1639 WARN_ON(1);
1640 return -1;
1641 }
1642 if (arg != 0)
1643 sbi->s_mount_opt |= m->mount_opt;
1644 else
1645 sbi->s_mount_opt &= ~m->mount_opt;
1646 }
1647 return 1;
1648 }
1649 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1650 "or missing value", opt);
1651 return -1;
1652 }
1653
1654 static int parse_options(char *options, struct super_block *sb,
1655 unsigned long *journal_devnum,
1656 unsigned int *journal_ioprio,
1657 int is_remount)
1658 {
1659 #ifdef CONFIG_QUOTA
1660 struct ext4_sb_info *sbi = EXT4_SB(sb);
1661 #endif
1662 char *p;
1663 substring_t args[MAX_OPT_ARGS];
1664 int token;
1665
1666 if (!options)
1667 return 1;
1668
1669 while ((p = strsep(&options, ",")) != NULL) {
1670 if (!*p)
1671 continue;
1672 /*
1673 * Initialize args struct so we know whether arg was
1674 * found; some options take optional arguments.
1675 */
1676 args[0].to = args[0].from = NULL;
1677 token = match_token(p, tokens, args);
1678 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1679 journal_ioprio, is_remount) < 0)
1680 return 0;
1681 }
1682 #ifdef CONFIG_QUOTA
1683 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1684 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1685 clear_opt(sb, USRQUOTA);
1686
1687 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1688 clear_opt(sb, GRPQUOTA);
1689
1690 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1691 ext4_msg(sb, KERN_ERR, "old and new quota "
1692 "format mixing");
1693 return 0;
1694 }
1695
1696 if (!sbi->s_jquota_fmt) {
1697 ext4_msg(sb, KERN_ERR, "journaled quota format "
1698 "not specified");
1699 return 0;
1700 }
1701 } else {
1702 if (sbi->s_jquota_fmt) {
1703 ext4_msg(sb, KERN_ERR, "journaled quota format "
1704 "specified with no journaling "
1705 "enabled");
1706 return 0;
1707 }
1708 }
1709 #endif
1710 return 1;
1711 }
1712
1713 static inline void ext4_show_quota_options(struct seq_file *seq,
1714 struct super_block *sb)
1715 {
1716 #if defined(CONFIG_QUOTA)
1717 struct ext4_sb_info *sbi = EXT4_SB(sb);
1718
1719 if (sbi->s_jquota_fmt) {
1720 char *fmtname = "";
1721
1722 switch (sbi->s_jquota_fmt) {
1723 case QFMT_VFS_OLD:
1724 fmtname = "vfsold";
1725 break;
1726 case QFMT_VFS_V0:
1727 fmtname = "vfsv0";
1728 break;
1729 case QFMT_VFS_V1:
1730 fmtname = "vfsv1";
1731 break;
1732 }
1733 seq_printf(seq, ",jqfmt=%s", fmtname);
1734 }
1735
1736 if (sbi->s_qf_names[USRQUOTA])
1737 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1738
1739 if (sbi->s_qf_names[GRPQUOTA])
1740 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1741
1742 if (test_opt(sb, USRQUOTA))
1743 seq_puts(seq, ",usrquota");
1744
1745 if (test_opt(sb, GRPQUOTA))
1746 seq_puts(seq, ",grpquota");
1747 #endif
1748 }
1749
1750 static const char *token2str(int token)
1751 {
1752 const struct match_token *t;
1753
1754 for (t = tokens; t->token != Opt_err; t++)
1755 if (t->token == token && !strchr(t->pattern, '='))
1756 break;
1757 return t->pattern;
1758 }
1759
1760 /*
1761 * Show an option if
1762 * - it's set to a non-default value OR
1763 * - if the per-sb default is different from the global default
1764 */
1765 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1766 int nodefs)
1767 {
1768 struct ext4_sb_info *sbi = EXT4_SB(sb);
1769 struct ext4_super_block *es = sbi->s_es;
1770 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1771 const struct mount_opts *m;
1772 char sep = nodefs ? '\n' : ',';
1773
1774 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1775 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1776
1777 if (sbi->s_sb_block != 1)
1778 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1779
1780 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1781 int want_set = m->flags & MOPT_SET;
1782 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1783 (m->flags & MOPT_CLEAR_ERR))
1784 continue;
1785 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1786 continue; /* skip if same as the default */
1787 if ((want_set &&
1788 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1789 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1790 continue; /* select Opt_noFoo vs Opt_Foo */
1791 SEQ_OPTS_PRINT("%s", token2str(m->token));
1792 }
1793
1794 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1795 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1796 SEQ_OPTS_PRINT("resuid=%u",
1797 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1798 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1799 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1800 SEQ_OPTS_PRINT("resgid=%u",
1801 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1802 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1803 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1804 SEQ_OPTS_PUTS("errors=remount-ro");
1805 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1806 SEQ_OPTS_PUTS("errors=continue");
1807 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1808 SEQ_OPTS_PUTS("errors=panic");
1809 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1810 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1811 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1812 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1813 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1814 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1815 if (sb->s_flags & MS_I_VERSION)
1816 SEQ_OPTS_PUTS("i_version");
1817 if (nodefs || sbi->s_stripe)
1818 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1819 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1820 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1821 SEQ_OPTS_PUTS("data=journal");
1822 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1823 SEQ_OPTS_PUTS("data=ordered");
1824 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1825 SEQ_OPTS_PUTS("data=writeback");
1826 }
1827 if (nodefs ||
1828 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1829 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1830 sbi->s_inode_readahead_blks);
1831
1832 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1833 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1834 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1835 if (nodefs || sbi->s_max_dir_size_kb)
1836 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1837
1838 ext4_show_quota_options(seq, sb);
1839 return 0;
1840 }
1841
1842 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1843 {
1844 return _ext4_show_options(seq, root->d_sb, 0);
1845 }
1846
1847 static int options_seq_show(struct seq_file *seq, void *offset)
1848 {
1849 struct super_block *sb = seq->private;
1850 int rc;
1851
1852 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1853 rc = _ext4_show_options(seq, sb, 1);
1854 seq_puts(seq, "\n");
1855 return rc;
1856 }
1857
1858 static int options_open_fs(struct inode *inode, struct file *file)
1859 {
1860 return single_open(file, options_seq_show, PDE(inode)->data);
1861 }
1862
1863 static const struct file_operations ext4_seq_options_fops = {
1864 .owner = THIS_MODULE,
1865 .open = options_open_fs,
1866 .read = seq_read,
1867 .llseek = seq_lseek,
1868 .release = single_release,
1869 };
1870
1871 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1872 int read_only)
1873 {
1874 struct ext4_sb_info *sbi = EXT4_SB(sb);
1875 int res = 0;
1876
1877 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1878 ext4_msg(sb, KERN_ERR, "revision level too high, "
1879 "forcing read-only mode");
1880 res = MS_RDONLY;
1881 }
1882 if (read_only)
1883 goto done;
1884 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1885 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1886 "running e2fsck is recommended");
1887 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1888 ext4_msg(sb, KERN_WARNING,
1889 "warning: mounting fs with errors, "
1890 "running e2fsck is recommended");
1891 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1892 le16_to_cpu(es->s_mnt_count) >=
1893 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1894 ext4_msg(sb, KERN_WARNING,
1895 "warning: maximal mount count reached, "
1896 "running e2fsck is recommended");
1897 else if (le32_to_cpu(es->s_checkinterval) &&
1898 (le32_to_cpu(es->s_lastcheck) +
1899 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1900 ext4_msg(sb, KERN_WARNING,
1901 "warning: checktime reached, "
1902 "running e2fsck is recommended");
1903 if (!sbi->s_journal)
1904 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1905 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1906 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1907 le16_add_cpu(&es->s_mnt_count, 1);
1908 es->s_mtime = cpu_to_le32(get_seconds());
1909 ext4_update_dynamic_rev(sb);
1910 if (sbi->s_journal)
1911 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1912
1913 ext4_commit_super(sb, 1);
1914 done:
1915 if (test_opt(sb, DEBUG))
1916 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1917 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1918 sb->s_blocksize,
1919 sbi->s_groups_count,
1920 EXT4_BLOCKS_PER_GROUP(sb),
1921 EXT4_INODES_PER_GROUP(sb),
1922 sbi->s_mount_opt, sbi->s_mount_opt2);
1923
1924 cleancache_init_fs(sb);
1925 return res;
1926 }
1927
1928 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1929 {
1930 struct ext4_sb_info *sbi = EXT4_SB(sb);
1931 struct flex_groups *new_groups;
1932 int size;
1933
1934 if (!sbi->s_log_groups_per_flex)
1935 return 0;
1936
1937 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1938 if (size <= sbi->s_flex_groups_allocated)
1939 return 0;
1940
1941 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1942 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1943 if (!new_groups) {
1944 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1945 size / (int) sizeof(struct flex_groups));
1946 return -ENOMEM;
1947 }
1948
1949 if (sbi->s_flex_groups) {
1950 memcpy(new_groups, sbi->s_flex_groups,
1951 (sbi->s_flex_groups_allocated *
1952 sizeof(struct flex_groups)));
1953 ext4_kvfree(sbi->s_flex_groups);
1954 }
1955 sbi->s_flex_groups = new_groups;
1956 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1957 return 0;
1958 }
1959
1960 static int ext4_fill_flex_info(struct super_block *sb)
1961 {
1962 struct ext4_sb_info *sbi = EXT4_SB(sb);
1963 struct ext4_group_desc *gdp = NULL;
1964 ext4_group_t flex_group;
1965 unsigned int groups_per_flex = 0;
1966 int i, err;
1967
1968 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1969 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1970 sbi->s_log_groups_per_flex = 0;
1971 return 1;
1972 }
1973 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1974
1975 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1976 if (err)
1977 goto failed;
1978
1979 for (i = 0; i < sbi->s_groups_count; i++) {
1980 gdp = ext4_get_group_desc(sb, i, NULL);
1981
1982 flex_group = ext4_flex_group(sbi, i);
1983 atomic_add(ext4_free_inodes_count(sb, gdp),
1984 &sbi->s_flex_groups[flex_group].free_inodes);
1985 atomic_add(ext4_free_group_clusters(sb, gdp),
1986 &sbi->s_flex_groups[flex_group].free_clusters);
1987 atomic_add(ext4_used_dirs_count(sb, gdp),
1988 &sbi->s_flex_groups[flex_group].used_dirs);
1989 }
1990
1991 return 1;
1992 failed:
1993 return 0;
1994 }
1995
1996 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1997 struct ext4_group_desc *gdp)
1998 {
1999 int offset;
2000 __u16 crc = 0;
2001 __le32 le_group = cpu_to_le32(block_group);
2002
2003 if ((sbi->s_es->s_feature_ro_compat &
2004 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
2005 /* Use new metadata_csum algorithm */
2006 __u16 old_csum;
2007 __u32 csum32;
2008
2009 old_csum = gdp->bg_checksum;
2010 gdp->bg_checksum = 0;
2011 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2012 sizeof(le_group));
2013 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2014 sbi->s_desc_size);
2015 gdp->bg_checksum = old_csum;
2016
2017 crc = csum32 & 0xFFFF;
2018 goto out;
2019 }
2020
2021 /* old crc16 code */
2022 offset = offsetof(struct ext4_group_desc, bg_checksum);
2023
2024 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2025 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2026 crc = crc16(crc, (__u8 *)gdp, offset);
2027 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2028 /* for checksum of struct ext4_group_desc do the rest...*/
2029 if ((sbi->s_es->s_feature_incompat &
2030 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2031 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2032 crc = crc16(crc, (__u8 *)gdp + offset,
2033 le16_to_cpu(sbi->s_es->s_desc_size) -
2034 offset);
2035
2036 out:
2037 return cpu_to_le16(crc);
2038 }
2039
2040 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2041 struct ext4_group_desc *gdp)
2042 {
2043 if (ext4_has_group_desc_csum(sb) &&
2044 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2045 block_group, gdp)))
2046 return 0;
2047
2048 return 1;
2049 }
2050
2051 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2052 struct ext4_group_desc *gdp)
2053 {
2054 if (!ext4_has_group_desc_csum(sb))
2055 return;
2056 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2057 }
2058
2059 /* Called at mount-time, super-block is locked */
2060 static int ext4_check_descriptors(struct super_block *sb,
2061 ext4_group_t *first_not_zeroed)
2062 {
2063 struct ext4_sb_info *sbi = EXT4_SB(sb);
2064 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2065 ext4_fsblk_t last_block;
2066 ext4_fsblk_t block_bitmap;
2067 ext4_fsblk_t inode_bitmap;
2068 ext4_fsblk_t inode_table;
2069 int flexbg_flag = 0;
2070 ext4_group_t i, grp = sbi->s_groups_count;
2071
2072 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2073 flexbg_flag = 1;
2074
2075 ext4_debug("Checking group descriptors");
2076
2077 for (i = 0; i < sbi->s_groups_count; i++) {
2078 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2079
2080 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2081 last_block = ext4_blocks_count(sbi->s_es) - 1;
2082 else
2083 last_block = first_block +
2084 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2085
2086 if ((grp == sbi->s_groups_count) &&
2087 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2088 grp = i;
2089
2090 block_bitmap = ext4_block_bitmap(sb, gdp);
2091 if (block_bitmap < first_block || block_bitmap > last_block) {
2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2093 "Block bitmap for group %u not in group "
2094 "(block %llu)!", i, block_bitmap);
2095 return 0;
2096 }
2097 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2098 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2100 "Inode bitmap for group %u not in group "
2101 "(block %llu)!", i, inode_bitmap);
2102 return 0;
2103 }
2104 inode_table = ext4_inode_table(sb, gdp);
2105 if (inode_table < first_block ||
2106 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2107 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2108 "Inode table for group %u not in group "
2109 "(block %llu)!", i, inode_table);
2110 return 0;
2111 }
2112 ext4_lock_group(sb, i);
2113 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2114 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2115 "Checksum for group %u failed (%u!=%u)",
2116 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2117 gdp)), le16_to_cpu(gdp->bg_checksum));
2118 if (!(sb->s_flags & MS_RDONLY)) {
2119 ext4_unlock_group(sb, i);
2120 return 0;
2121 }
2122 }
2123 ext4_unlock_group(sb, i);
2124 if (!flexbg_flag)
2125 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2126 }
2127 if (NULL != first_not_zeroed)
2128 *first_not_zeroed = grp;
2129
2130 ext4_free_blocks_count_set(sbi->s_es,
2131 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2132 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2133 return 1;
2134 }
2135
2136 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2137 * the superblock) which were deleted from all directories, but held open by
2138 * a process at the time of a crash. We walk the list and try to delete these
2139 * inodes at recovery time (only with a read-write filesystem).
2140 *
2141 * In order to keep the orphan inode chain consistent during traversal (in
2142 * case of crash during recovery), we link each inode into the superblock
2143 * orphan list_head and handle it the same way as an inode deletion during
2144 * normal operation (which journals the operations for us).
2145 *
2146 * We only do an iget() and an iput() on each inode, which is very safe if we
2147 * accidentally point at an in-use or already deleted inode. The worst that
2148 * can happen in this case is that we get a "bit already cleared" message from
2149 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2150 * e2fsck was run on this filesystem, and it must have already done the orphan
2151 * inode cleanup for us, so we can safely abort without any further action.
2152 */
2153 static void ext4_orphan_cleanup(struct super_block *sb,
2154 struct ext4_super_block *es)
2155 {
2156 unsigned int s_flags = sb->s_flags;
2157 int nr_orphans = 0, nr_truncates = 0;
2158 #ifdef CONFIG_QUOTA
2159 int i;
2160 #endif
2161 if (!es->s_last_orphan) {
2162 jbd_debug(4, "no orphan inodes to clean up\n");
2163 return;
2164 }
2165
2166 if (bdev_read_only(sb->s_bdev)) {
2167 ext4_msg(sb, KERN_ERR, "write access "
2168 "unavailable, skipping orphan cleanup");
2169 return;
2170 }
2171
2172 /* Check if feature set would not allow a r/w mount */
2173 if (!ext4_feature_set_ok(sb, 0)) {
2174 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2175 "unknown ROCOMPAT features");
2176 return;
2177 }
2178
2179 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2180 /* don't clear list on RO mount w/ errors */
2181 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2182 jbd_debug(1, "Errors on filesystem, "
2183 "clearing orphan list.\n");
2184 es->s_last_orphan = 0;
2185 }
2186 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2187 return;
2188 }
2189
2190 if (s_flags & MS_RDONLY) {
2191 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2192 sb->s_flags &= ~MS_RDONLY;
2193 }
2194 #ifdef CONFIG_QUOTA
2195 /* Needed for iput() to work correctly and not trash data */
2196 sb->s_flags |= MS_ACTIVE;
2197 /* Turn on quotas so that they are updated correctly */
2198 for (i = 0; i < MAXQUOTAS; i++) {
2199 if (EXT4_SB(sb)->s_qf_names[i]) {
2200 int ret = ext4_quota_on_mount(sb, i);
2201 if (ret < 0)
2202 ext4_msg(sb, KERN_ERR,
2203 "Cannot turn on journaled "
2204 "quota: error %d", ret);
2205 }
2206 }
2207 #endif
2208
2209 while (es->s_last_orphan) {
2210 struct inode *inode;
2211
2212 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2213 if (IS_ERR(inode)) {
2214 es->s_last_orphan = 0;
2215 break;
2216 }
2217
2218 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2219 dquot_initialize(inode);
2220 if (inode->i_nlink) {
2221 ext4_msg(sb, KERN_DEBUG,
2222 "%s: truncating inode %lu to %lld bytes",
2223 __func__, inode->i_ino, inode->i_size);
2224 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2225 inode->i_ino, inode->i_size);
2226 ext4_truncate(inode);
2227 nr_truncates++;
2228 } else {
2229 ext4_msg(sb, KERN_DEBUG,
2230 "%s: deleting unreferenced inode %lu",
2231 __func__, inode->i_ino);
2232 jbd_debug(2, "deleting unreferenced inode %lu\n",
2233 inode->i_ino);
2234 nr_orphans++;
2235 }
2236 iput(inode); /* The delete magic happens here! */
2237 }
2238
2239 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2240
2241 if (nr_orphans)
2242 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2243 PLURAL(nr_orphans));
2244 if (nr_truncates)
2245 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2246 PLURAL(nr_truncates));
2247 #ifdef CONFIG_QUOTA
2248 /* Turn quotas off */
2249 for (i = 0; i < MAXQUOTAS; i++) {
2250 if (sb_dqopt(sb)->files[i])
2251 dquot_quota_off(sb, i);
2252 }
2253 #endif
2254 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2255 }
2256
2257 /*
2258 * Maximal extent format file size.
2259 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2260 * extent format containers, within a sector_t, and within i_blocks
2261 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2262 * so that won't be a limiting factor.
2263 *
2264 * However there is other limiting factor. We do store extents in the form
2265 * of starting block and length, hence the resulting length of the extent
2266 * covering maximum file size must fit into on-disk format containers as
2267 * well. Given that length is always by 1 unit bigger than max unit (because
2268 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2269 *
2270 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2271 */
2272 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2273 {
2274 loff_t res;
2275 loff_t upper_limit = MAX_LFS_FILESIZE;
2276
2277 /* small i_blocks in vfs inode? */
2278 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2279 /*
2280 * CONFIG_LBDAF is not enabled implies the inode
2281 * i_block represent total blocks in 512 bytes
2282 * 32 == size of vfs inode i_blocks * 8
2283 */
2284 upper_limit = (1LL << 32) - 1;
2285
2286 /* total blocks in file system block size */
2287 upper_limit >>= (blkbits - 9);
2288 upper_limit <<= blkbits;
2289 }
2290
2291 /*
2292 * 32-bit extent-start container, ee_block. We lower the maxbytes
2293 * by one fs block, so ee_len can cover the extent of maximum file
2294 * size
2295 */
2296 res = (1LL << 32) - 1;
2297 res <<= blkbits;
2298
2299 /* Sanity check against vm- & vfs- imposed limits */
2300 if (res > upper_limit)
2301 res = upper_limit;
2302
2303 return res;
2304 }
2305
2306 /*
2307 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2308 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2309 * We need to be 1 filesystem block less than the 2^48 sector limit.
2310 */
2311 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2312 {
2313 loff_t res = EXT4_NDIR_BLOCKS;
2314 int meta_blocks;
2315 loff_t upper_limit;
2316 /* This is calculated to be the largest file size for a dense, block
2317 * mapped file such that the file's total number of 512-byte sectors,
2318 * including data and all indirect blocks, does not exceed (2^48 - 1).
2319 *
2320 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2321 * number of 512-byte sectors of the file.
2322 */
2323
2324 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2325 /*
2326 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2327 * the inode i_block field represents total file blocks in
2328 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2329 */
2330 upper_limit = (1LL << 32) - 1;
2331
2332 /* total blocks in file system block size */
2333 upper_limit >>= (bits - 9);
2334
2335 } else {
2336 /*
2337 * We use 48 bit ext4_inode i_blocks
2338 * With EXT4_HUGE_FILE_FL set the i_blocks
2339 * represent total number of blocks in
2340 * file system block size
2341 */
2342 upper_limit = (1LL << 48) - 1;
2343
2344 }
2345
2346 /* indirect blocks */
2347 meta_blocks = 1;
2348 /* double indirect blocks */
2349 meta_blocks += 1 + (1LL << (bits-2));
2350 /* tripple indirect blocks */
2351 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2352
2353 upper_limit -= meta_blocks;
2354 upper_limit <<= bits;
2355
2356 res += 1LL << (bits-2);
2357 res += 1LL << (2*(bits-2));
2358 res += 1LL << (3*(bits-2));
2359 res <<= bits;
2360 if (res > upper_limit)
2361 res = upper_limit;
2362
2363 if (res > MAX_LFS_FILESIZE)
2364 res = MAX_LFS_FILESIZE;
2365
2366 return res;
2367 }
2368
2369 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2370 ext4_fsblk_t logical_sb_block, int nr)
2371 {
2372 struct ext4_sb_info *sbi = EXT4_SB(sb);
2373 ext4_group_t bg, first_meta_bg;
2374 int has_super = 0;
2375
2376 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2377
2378 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2379 nr < first_meta_bg)
2380 return logical_sb_block + nr + 1;
2381 bg = sbi->s_desc_per_block * nr;
2382 if (ext4_bg_has_super(sb, bg))
2383 has_super = 1;
2384
2385 return (has_super + ext4_group_first_block_no(sb, bg));
2386 }
2387
2388 /**
2389 * ext4_get_stripe_size: Get the stripe size.
2390 * @sbi: In memory super block info
2391 *
2392 * If we have specified it via mount option, then
2393 * use the mount option value. If the value specified at mount time is
2394 * greater than the blocks per group use the super block value.
2395 * If the super block value is greater than blocks per group return 0.
2396 * Allocator needs it be less than blocks per group.
2397 *
2398 */
2399 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2400 {
2401 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2402 unsigned long stripe_width =
2403 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2404 int ret;
2405
2406 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2407 ret = sbi->s_stripe;
2408 else if (stripe_width <= sbi->s_blocks_per_group)
2409 ret = stripe_width;
2410 else if (stride <= sbi->s_blocks_per_group)
2411 ret = stride;
2412 else
2413 ret = 0;
2414
2415 /*
2416 * If the stripe width is 1, this makes no sense and
2417 * we set it to 0 to turn off stripe handling code.
2418 */
2419 if (ret <= 1)
2420 ret = 0;
2421
2422 return ret;
2423 }
2424
2425 /* sysfs supprt */
2426
2427 struct ext4_attr {
2428 struct attribute attr;
2429 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2430 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2431 const char *, size_t);
2432 int offset;
2433 };
2434
2435 static int parse_strtoul(const char *buf,
2436 unsigned long max, unsigned long *value)
2437 {
2438 char *endp;
2439
2440 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2441 endp = skip_spaces(endp);
2442 if (*endp || *value > max)
2443 return -EINVAL;
2444
2445 return 0;
2446 }
2447
2448 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2449 struct ext4_sb_info *sbi,
2450 char *buf)
2451 {
2452 return snprintf(buf, PAGE_SIZE, "%llu\n",
2453 (s64) EXT4_C2B(sbi,
2454 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2455 }
2456
2457 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2458 struct ext4_sb_info *sbi, char *buf)
2459 {
2460 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2461
2462 if (!sb->s_bdev->bd_part)
2463 return snprintf(buf, PAGE_SIZE, "0\n");
2464 return snprintf(buf, PAGE_SIZE, "%lu\n",
2465 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2466 sbi->s_sectors_written_start) >> 1);
2467 }
2468
2469 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2470 struct ext4_sb_info *sbi, char *buf)
2471 {
2472 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2473
2474 if (!sb->s_bdev->bd_part)
2475 return snprintf(buf, PAGE_SIZE, "0\n");
2476 return snprintf(buf, PAGE_SIZE, "%llu\n",
2477 (unsigned long long)(sbi->s_kbytes_written +
2478 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2479 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2480 }
2481
2482 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2483 struct ext4_sb_info *sbi,
2484 const char *buf, size_t count)
2485 {
2486 unsigned long t;
2487
2488 if (parse_strtoul(buf, 0x40000000, &t))
2489 return -EINVAL;
2490
2491 if (t && !is_power_of_2(t))
2492 return -EINVAL;
2493
2494 sbi->s_inode_readahead_blks = t;
2495 return count;
2496 }
2497
2498 static ssize_t sbi_ui_show(struct ext4_attr *a,
2499 struct ext4_sb_info *sbi, char *buf)
2500 {
2501 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2502
2503 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2504 }
2505
2506 static ssize_t sbi_ui_store(struct ext4_attr *a,
2507 struct ext4_sb_info *sbi,
2508 const char *buf, size_t count)
2509 {
2510 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2511 unsigned long t;
2512
2513 if (parse_strtoul(buf, 0xffffffff, &t))
2514 return -EINVAL;
2515 *ui = t;
2516 return count;
2517 }
2518
2519 static ssize_t trigger_test_error(struct ext4_attr *a,
2520 struct ext4_sb_info *sbi,
2521 const char *buf, size_t count)
2522 {
2523 int len = count;
2524
2525 if (!capable(CAP_SYS_ADMIN))
2526 return -EPERM;
2527
2528 if (len && buf[len-1] == '\n')
2529 len--;
2530
2531 if (len)
2532 ext4_error(sbi->s_sb, "%.*s", len, buf);
2533 return count;
2534 }
2535
2536 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2537 static struct ext4_attr ext4_attr_##_name = { \
2538 .attr = {.name = __stringify(_name), .mode = _mode }, \
2539 .show = _show, \
2540 .store = _store, \
2541 .offset = offsetof(struct ext4_sb_info, _elname), \
2542 }
2543 #define EXT4_ATTR(name, mode, show, store) \
2544 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2545
2546 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2547 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2548 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2549 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2550 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2551 #define ATTR_LIST(name) &ext4_attr_##name.attr
2552
2553 EXT4_RO_ATTR(delayed_allocation_blocks);
2554 EXT4_RO_ATTR(session_write_kbytes);
2555 EXT4_RO_ATTR(lifetime_write_kbytes);
2556 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2557 inode_readahead_blks_store, s_inode_readahead_blks);
2558 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2559 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2560 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2561 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2562 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2563 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2564 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2565 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2566 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2567 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2568
2569 static struct attribute *ext4_attrs[] = {
2570 ATTR_LIST(delayed_allocation_blocks),
2571 ATTR_LIST(session_write_kbytes),
2572 ATTR_LIST(lifetime_write_kbytes),
2573 ATTR_LIST(inode_readahead_blks),
2574 ATTR_LIST(inode_goal),
2575 ATTR_LIST(mb_stats),
2576 ATTR_LIST(mb_max_to_scan),
2577 ATTR_LIST(mb_min_to_scan),
2578 ATTR_LIST(mb_order2_req),
2579 ATTR_LIST(mb_stream_req),
2580 ATTR_LIST(mb_group_prealloc),
2581 ATTR_LIST(max_writeback_mb_bump),
2582 ATTR_LIST(extent_max_zeroout_kb),
2583 ATTR_LIST(trigger_fs_error),
2584 NULL,
2585 };
2586
2587 /* Features this copy of ext4 supports */
2588 EXT4_INFO_ATTR(lazy_itable_init);
2589 EXT4_INFO_ATTR(batched_discard);
2590 EXT4_INFO_ATTR(meta_bg_resize);
2591
2592 static struct attribute *ext4_feat_attrs[] = {
2593 ATTR_LIST(lazy_itable_init),
2594 ATTR_LIST(batched_discard),
2595 ATTR_LIST(meta_bg_resize),
2596 NULL,
2597 };
2598
2599 static ssize_t ext4_attr_show(struct kobject *kobj,
2600 struct attribute *attr, char *buf)
2601 {
2602 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2603 s_kobj);
2604 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2605
2606 return a->show ? a->show(a, sbi, buf) : 0;
2607 }
2608
2609 static ssize_t ext4_attr_store(struct kobject *kobj,
2610 struct attribute *attr,
2611 const char *buf, size_t len)
2612 {
2613 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2614 s_kobj);
2615 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2616
2617 return a->store ? a->store(a, sbi, buf, len) : 0;
2618 }
2619
2620 static void ext4_sb_release(struct kobject *kobj)
2621 {
2622 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2623 s_kobj);
2624 complete(&sbi->s_kobj_unregister);
2625 }
2626
2627 static const struct sysfs_ops ext4_attr_ops = {
2628 .show = ext4_attr_show,
2629 .store = ext4_attr_store,
2630 };
2631
2632 static struct kobj_type ext4_ktype = {
2633 .default_attrs = ext4_attrs,
2634 .sysfs_ops = &ext4_attr_ops,
2635 .release = ext4_sb_release,
2636 };
2637
2638 static void ext4_feat_release(struct kobject *kobj)
2639 {
2640 complete(&ext4_feat->f_kobj_unregister);
2641 }
2642
2643 static struct kobj_type ext4_feat_ktype = {
2644 .default_attrs = ext4_feat_attrs,
2645 .sysfs_ops = &ext4_attr_ops,
2646 .release = ext4_feat_release,
2647 };
2648
2649 /*
2650 * Check whether this filesystem can be mounted based on
2651 * the features present and the RDONLY/RDWR mount requested.
2652 * Returns 1 if this filesystem can be mounted as requested,
2653 * 0 if it cannot be.
2654 */
2655 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2656 {
2657 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2658 ext4_msg(sb, KERN_ERR,
2659 "Couldn't mount because of "
2660 "unsupported optional features (%x)",
2661 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2662 ~EXT4_FEATURE_INCOMPAT_SUPP));
2663 return 0;
2664 }
2665
2666 if (readonly)
2667 return 1;
2668
2669 /* Check that feature set is OK for a read-write mount */
2670 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2671 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2672 "unsupported optional features (%x)",
2673 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2674 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2675 return 0;
2676 }
2677 /*
2678 * Large file size enabled file system can only be mounted
2679 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2680 */
2681 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2682 if (sizeof(blkcnt_t) < sizeof(u64)) {
2683 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2684 "cannot be mounted RDWR without "
2685 "CONFIG_LBDAF");
2686 return 0;
2687 }
2688 }
2689 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2690 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2691 ext4_msg(sb, KERN_ERR,
2692 "Can't support bigalloc feature without "
2693 "extents feature\n");
2694 return 0;
2695 }
2696
2697 #ifndef CONFIG_QUOTA
2698 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2699 !readonly) {
2700 ext4_msg(sb, KERN_ERR,
2701 "Filesystem with quota feature cannot be mounted RDWR "
2702 "without CONFIG_QUOTA");
2703 return 0;
2704 }
2705 #endif /* CONFIG_QUOTA */
2706 return 1;
2707 }
2708
2709 /*
2710 * This function is called once a day if we have errors logged
2711 * on the file system
2712 */
2713 static void print_daily_error_info(unsigned long arg)
2714 {
2715 struct super_block *sb = (struct super_block *) arg;
2716 struct ext4_sb_info *sbi;
2717 struct ext4_super_block *es;
2718
2719 sbi = EXT4_SB(sb);
2720 es = sbi->s_es;
2721
2722 if (es->s_error_count)
2723 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2724 le32_to_cpu(es->s_error_count));
2725 if (es->s_first_error_time) {
2726 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2727 sb->s_id, le32_to_cpu(es->s_first_error_time),
2728 (int) sizeof(es->s_first_error_func),
2729 es->s_first_error_func,
2730 le32_to_cpu(es->s_first_error_line));
2731 if (es->s_first_error_ino)
2732 printk(": inode %u",
2733 le32_to_cpu(es->s_first_error_ino));
2734 if (es->s_first_error_block)
2735 printk(": block %llu", (unsigned long long)
2736 le64_to_cpu(es->s_first_error_block));
2737 printk("\n");
2738 }
2739 if (es->s_last_error_time) {
2740 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2741 sb->s_id, le32_to_cpu(es->s_last_error_time),
2742 (int) sizeof(es->s_last_error_func),
2743 es->s_last_error_func,
2744 le32_to_cpu(es->s_last_error_line));
2745 if (es->s_last_error_ino)
2746 printk(": inode %u",
2747 le32_to_cpu(es->s_last_error_ino));
2748 if (es->s_last_error_block)
2749 printk(": block %llu", (unsigned long long)
2750 le64_to_cpu(es->s_last_error_block));
2751 printk("\n");
2752 }
2753 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2754 }
2755
2756 /* Find next suitable group and run ext4_init_inode_table */
2757 static int ext4_run_li_request(struct ext4_li_request *elr)
2758 {
2759 struct ext4_group_desc *gdp = NULL;
2760 ext4_group_t group, ngroups;
2761 struct super_block *sb;
2762 unsigned long timeout = 0;
2763 int ret = 0;
2764
2765 sb = elr->lr_super;
2766 ngroups = EXT4_SB(sb)->s_groups_count;
2767
2768 sb_start_write(sb);
2769 for (group = elr->lr_next_group; group < ngroups; group++) {
2770 gdp = ext4_get_group_desc(sb, group, NULL);
2771 if (!gdp) {
2772 ret = 1;
2773 break;
2774 }
2775
2776 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2777 break;
2778 }
2779
2780 if (group == ngroups)
2781 ret = 1;
2782
2783 if (!ret) {
2784 timeout = jiffies;
2785 ret = ext4_init_inode_table(sb, group,
2786 elr->lr_timeout ? 0 : 1);
2787 if (elr->lr_timeout == 0) {
2788 timeout = (jiffies - timeout) *
2789 elr->lr_sbi->s_li_wait_mult;
2790 elr->lr_timeout = timeout;
2791 }
2792 elr->lr_next_sched = jiffies + elr->lr_timeout;
2793 elr->lr_next_group = group + 1;
2794 }
2795 sb_end_write(sb);
2796
2797 return ret;
2798 }
2799
2800 /*
2801 * Remove lr_request from the list_request and free the
2802 * request structure. Should be called with li_list_mtx held
2803 */
2804 static void ext4_remove_li_request(struct ext4_li_request *elr)
2805 {
2806 struct ext4_sb_info *sbi;
2807
2808 if (!elr)
2809 return;
2810
2811 sbi = elr->lr_sbi;
2812
2813 list_del(&elr->lr_request);
2814 sbi->s_li_request = NULL;
2815 kfree(elr);
2816 }
2817
2818 static void ext4_unregister_li_request(struct super_block *sb)
2819 {
2820 mutex_lock(&ext4_li_mtx);
2821 if (!ext4_li_info) {
2822 mutex_unlock(&ext4_li_mtx);
2823 return;
2824 }
2825
2826 mutex_lock(&ext4_li_info->li_list_mtx);
2827 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2828 mutex_unlock(&ext4_li_info->li_list_mtx);
2829 mutex_unlock(&ext4_li_mtx);
2830 }
2831
2832 static struct task_struct *ext4_lazyinit_task;
2833
2834 /*
2835 * This is the function where ext4lazyinit thread lives. It walks
2836 * through the request list searching for next scheduled filesystem.
2837 * When such a fs is found, run the lazy initialization request
2838 * (ext4_rn_li_request) and keep track of the time spend in this
2839 * function. Based on that time we compute next schedule time of
2840 * the request. When walking through the list is complete, compute
2841 * next waking time and put itself into sleep.
2842 */
2843 static int ext4_lazyinit_thread(void *arg)
2844 {
2845 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2846 struct list_head *pos, *n;
2847 struct ext4_li_request *elr;
2848 unsigned long next_wakeup, cur;
2849
2850 BUG_ON(NULL == eli);
2851
2852 cont_thread:
2853 while (true) {
2854 next_wakeup = MAX_JIFFY_OFFSET;
2855
2856 mutex_lock(&eli->li_list_mtx);
2857 if (list_empty(&eli->li_request_list)) {
2858 mutex_unlock(&eli->li_list_mtx);
2859 goto exit_thread;
2860 }
2861
2862 list_for_each_safe(pos, n, &eli->li_request_list) {
2863 elr = list_entry(pos, struct ext4_li_request,
2864 lr_request);
2865
2866 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2867 if (ext4_run_li_request(elr) != 0) {
2868 /* error, remove the lazy_init job */
2869 ext4_remove_li_request(elr);
2870 continue;
2871 }
2872 }
2873
2874 if (time_before(elr->lr_next_sched, next_wakeup))
2875 next_wakeup = elr->lr_next_sched;
2876 }
2877 mutex_unlock(&eli->li_list_mtx);
2878
2879 try_to_freeze();
2880
2881 cur = jiffies;
2882 if ((time_after_eq(cur, next_wakeup)) ||
2883 (MAX_JIFFY_OFFSET == next_wakeup)) {
2884 cond_resched();
2885 continue;
2886 }
2887
2888 schedule_timeout_interruptible(next_wakeup - cur);
2889
2890 if (kthread_should_stop()) {
2891 ext4_clear_request_list();
2892 goto exit_thread;
2893 }
2894 }
2895
2896 exit_thread:
2897 /*
2898 * It looks like the request list is empty, but we need
2899 * to check it under the li_list_mtx lock, to prevent any
2900 * additions into it, and of course we should lock ext4_li_mtx
2901 * to atomically free the list and ext4_li_info, because at
2902 * this point another ext4 filesystem could be registering
2903 * new one.
2904 */
2905 mutex_lock(&ext4_li_mtx);
2906 mutex_lock(&eli->li_list_mtx);
2907 if (!list_empty(&eli->li_request_list)) {
2908 mutex_unlock(&eli->li_list_mtx);
2909 mutex_unlock(&ext4_li_mtx);
2910 goto cont_thread;
2911 }
2912 mutex_unlock(&eli->li_list_mtx);
2913 kfree(ext4_li_info);
2914 ext4_li_info = NULL;
2915 mutex_unlock(&ext4_li_mtx);
2916
2917 return 0;
2918 }
2919
2920 static void ext4_clear_request_list(void)
2921 {
2922 struct list_head *pos, *n;
2923 struct ext4_li_request *elr;
2924
2925 mutex_lock(&ext4_li_info->li_list_mtx);
2926 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2927 elr = list_entry(pos, struct ext4_li_request,
2928 lr_request);
2929 ext4_remove_li_request(elr);
2930 }
2931 mutex_unlock(&ext4_li_info->li_list_mtx);
2932 }
2933
2934 static int ext4_run_lazyinit_thread(void)
2935 {
2936 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2937 ext4_li_info, "ext4lazyinit");
2938 if (IS_ERR(ext4_lazyinit_task)) {
2939 int err = PTR_ERR(ext4_lazyinit_task);
2940 ext4_clear_request_list();
2941 kfree(ext4_li_info);
2942 ext4_li_info = NULL;
2943 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2944 "initialization thread\n",
2945 err);
2946 return err;
2947 }
2948 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2949 return 0;
2950 }
2951
2952 /*
2953 * Check whether it make sense to run itable init. thread or not.
2954 * If there is at least one uninitialized inode table, return
2955 * corresponding group number, else the loop goes through all
2956 * groups and return total number of groups.
2957 */
2958 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2959 {
2960 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2961 struct ext4_group_desc *gdp = NULL;
2962
2963 for (group = 0; group < ngroups; group++) {
2964 gdp = ext4_get_group_desc(sb, group, NULL);
2965 if (!gdp)
2966 continue;
2967
2968 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2969 break;
2970 }
2971
2972 return group;
2973 }
2974
2975 static int ext4_li_info_new(void)
2976 {
2977 struct ext4_lazy_init *eli = NULL;
2978
2979 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2980 if (!eli)
2981 return -ENOMEM;
2982
2983 INIT_LIST_HEAD(&eli->li_request_list);
2984 mutex_init(&eli->li_list_mtx);
2985
2986 eli->li_state |= EXT4_LAZYINIT_QUIT;
2987
2988 ext4_li_info = eli;
2989
2990 return 0;
2991 }
2992
2993 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2994 ext4_group_t start)
2995 {
2996 struct ext4_sb_info *sbi = EXT4_SB(sb);
2997 struct ext4_li_request *elr;
2998 unsigned long rnd;
2999
3000 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3001 if (!elr)
3002 return NULL;
3003
3004 elr->lr_super = sb;
3005 elr->lr_sbi = sbi;
3006 elr->lr_next_group = start;
3007
3008 /*
3009 * Randomize first schedule time of the request to
3010 * spread the inode table initialization requests
3011 * better.
3012 */
3013 get_random_bytes(&rnd, sizeof(rnd));
3014 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3015 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3016
3017 return elr;
3018 }
3019
3020 static int ext4_register_li_request(struct super_block *sb,
3021 ext4_group_t first_not_zeroed)
3022 {
3023 struct ext4_sb_info *sbi = EXT4_SB(sb);
3024 struct ext4_li_request *elr;
3025 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3026 int ret = 0;
3027
3028 if (sbi->s_li_request != NULL) {
3029 /*
3030 * Reset timeout so it can be computed again, because
3031 * s_li_wait_mult might have changed.
3032 */
3033 sbi->s_li_request->lr_timeout = 0;
3034 return 0;
3035 }
3036
3037 if (first_not_zeroed == ngroups ||
3038 (sb->s_flags & MS_RDONLY) ||
3039 !test_opt(sb, INIT_INODE_TABLE))
3040 return 0;
3041
3042 elr = ext4_li_request_new(sb, first_not_zeroed);
3043 if (!elr)
3044 return -ENOMEM;
3045
3046 mutex_lock(&ext4_li_mtx);
3047
3048 if (NULL == ext4_li_info) {
3049 ret = ext4_li_info_new();
3050 if (ret)
3051 goto out;
3052 }
3053
3054 mutex_lock(&ext4_li_info->li_list_mtx);
3055 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3056 mutex_unlock(&ext4_li_info->li_list_mtx);
3057
3058 sbi->s_li_request = elr;
3059 /*
3060 * set elr to NULL here since it has been inserted to
3061 * the request_list and the removal and free of it is
3062 * handled by ext4_clear_request_list from now on.
3063 */
3064 elr = NULL;
3065
3066 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3067 ret = ext4_run_lazyinit_thread();
3068 if (ret)
3069 goto out;
3070 }
3071 out:
3072 mutex_unlock(&ext4_li_mtx);
3073 if (ret)
3074 kfree(elr);
3075 return ret;
3076 }
3077
3078 /*
3079 * We do not need to lock anything since this is called on
3080 * module unload.
3081 */
3082 static void ext4_destroy_lazyinit_thread(void)
3083 {
3084 /*
3085 * If thread exited earlier
3086 * there's nothing to be done.
3087 */
3088 if (!ext4_li_info || !ext4_lazyinit_task)
3089 return;
3090
3091 kthread_stop(ext4_lazyinit_task);
3092 }
3093
3094 static int set_journal_csum_feature_set(struct super_block *sb)
3095 {
3096 int ret = 1;
3097 int compat, incompat;
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099
3100 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3101 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3102 /* journal checksum v2 */
3103 compat = 0;
3104 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3105 } else {
3106 /* journal checksum v1 */
3107 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3108 incompat = 0;
3109 }
3110
3111 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3112 ret = jbd2_journal_set_features(sbi->s_journal,
3113 compat, 0,
3114 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3115 incompat);
3116 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3117 ret = jbd2_journal_set_features(sbi->s_journal,
3118 compat, 0,
3119 incompat);
3120 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3121 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3122 } else {
3123 jbd2_journal_clear_features(sbi->s_journal,
3124 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3125 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3126 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3127 }
3128
3129 return ret;
3130 }
3131
3132 /*
3133 * Note: calculating the overhead so we can be compatible with
3134 * historical BSD practice is quite difficult in the face of
3135 * clusters/bigalloc. This is because multiple metadata blocks from
3136 * different block group can end up in the same allocation cluster.
3137 * Calculating the exact overhead in the face of clustered allocation
3138 * requires either O(all block bitmaps) in memory or O(number of block
3139 * groups**2) in time. We will still calculate the superblock for
3140 * older file systems --- and if we come across with a bigalloc file
3141 * system with zero in s_overhead_clusters the estimate will be close to
3142 * correct especially for very large cluster sizes --- but for newer
3143 * file systems, it's better to calculate this figure once at mkfs
3144 * time, and store it in the superblock. If the superblock value is
3145 * present (even for non-bigalloc file systems), we will use it.
3146 */
3147 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3148 char *buf)
3149 {
3150 struct ext4_sb_info *sbi = EXT4_SB(sb);
3151 struct ext4_group_desc *gdp;
3152 ext4_fsblk_t first_block, last_block, b;
3153 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3154 int s, j, count = 0;
3155
3156 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3157 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3158 sbi->s_itb_per_group + 2);
3159
3160 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3161 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3162 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3163 for (i = 0; i < ngroups; i++) {
3164 gdp = ext4_get_group_desc(sb, i, NULL);
3165 b = ext4_block_bitmap(sb, gdp);
3166 if (b >= first_block && b <= last_block) {
3167 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3168 count++;
3169 }
3170 b = ext4_inode_bitmap(sb, gdp);
3171 if (b >= first_block && b <= last_block) {
3172 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3173 count++;
3174 }
3175 b = ext4_inode_table(sb, gdp);
3176 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3177 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3178 int c = EXT4_B2C(sbi, b - first_block);
3179 ext4_set_bit(c, buf);
3180 count++;
3181 }
3182 if (i != grp)
3183 continue;
3184 s = 0;
3185 if (ext4_bg_has_super(sb, grp)) {
3186 ext4_set_bit(s++, buf);
3187 count++;
3188 }
3189 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3190 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3191 count++;
3192 }
3193 }
3194 if (!count)
3195 return 0;
3196 return EXT4_CLUSTERS_PER_GROUP(sb) -
3197 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3198 }
3199
3200 /*
3201 * Compute the overhead and stash it in sbi->s_overhead
3202 */
3203 int ext4_calculate_overhead(struct super_block *sb)
3204 {
3205 struct ext4_sb_info *sbi = EXT4_SB(sb);
3206 struct ext4_super_block *es = sbi->s_es;
3207 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3208 ext4_fsblk_t overhead = 0;
3209 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3210
3211 memset(buf, 0, PAGE_SIZE);
3212 if (!buf)
3213 return -ENOMEM;
3214
3215 /*
3216 * Compute the overhead (FS structures). This is constant
3217 * for a given filesystem unless the number of block groups
3218 * changes so we cache the previous value until it does.
3219 */
3220
3221 /*
3222 * All of the blocks before first_data_block are overhead
3223 */
3224 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3225
3226 /*
3227 * Add the overhead found in each block group
3228 */
3229 for (i = 0; i < ngroups; i++) {
3230 int blks;
3231
3232 blks = count_overhead(sb, i, buf);
3233 overhead += blks;
3234 if (blks)
3235 memset(buf, 0, PAGE_SIZE);
3236 cond_resched();
3237 }
3238 sbi->s_overhead = overhead;
3239 smp_wmb();
3240 free_page((unsigned long) buf);
3241 return 0;
3242 }
3243
3244 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3245 {
3246 char *orig_data = kstrdup(data, GFP_KERNEL);
3247 struct buffer_head *bh;
3248 struct ext4_super_block *es = NULL;
3249 struct ext4_sb_info *sbi;
3250 ext4_fsblk_t block;
3251 ext4_fsblk_t sb_block = get_sb_block(&data);
3252 ext4_fsblk_t logical_sb_block;
3253 unsigned long offset = 0;
3254 unsigned long journal_devnum = 0;
3255 unsigned long def_mount_opts;
3256 struct inode *root;
3257 char *cp;
3258 const char *descr;
3259 int ret = -ENOMEM;
3260 int blocksize, clustersize;
3261 unsigned int db_count;
3262 unsigned int i;
3263 int needs_recovery, has_huge_files, has_bigalloc;
3264 __u64 blocks_count;
3265 int err;
3266 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3267 ext4_group_t first_not_zeroed;
3268
3269 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3270 if (!sbi)
3271 goto out_free_orig;
3272
3273 sbi->s_blockgroup_lock =
3274 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3275 if (!sbi->s_blockgroup_lock) {
3276 kfree(sbi);
3277 goto out_free_orig;
3278 }
3279 sb->s_fs_info = sbi;
3280 sbi->s_sb = sb;
3281 sbi->s_mount_opt = 0;
3282 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3283 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3284 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3285 sbi->s_sb_block = sb_block;
3286 if (sb->s_bdev->bd_part)
3287 sbi->s_sectors_written_start =
3288 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3289
3290 /* Cleanup superblock name */
3291 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3292 *cp = '!';
3293
3294 ret = -EINVAL;
3295 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3296 if (!blocksize) {
3297 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3298 goto out_fail;
3299 }
3300
3301 /*
3302 * The ext4 superblock will not be buffer aligned for other than 1kB
3303 * block sizes. We need to calculate the offset from buffer start.
3304 */
3305 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3306 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3307 offset = do_div(logical_sb_block, blocksize);
3308 } else {
3309 logical_sb_block = sb_block;
3310 }
3311
3312 if (!(bh = sb_bread(sb, logical_sb_block))) {
3313 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3314 goto out_fail;
3315 }
3316 /*
3317 * Note: s_es must be initialized as soon as possible because
3318 * some ext4 macro-instructions depend on its value
3319 */
3320 es = (struct ext4_super_block *) (bh->b_data + offset);
3321 sbi->s_es = es;
3322 sb->s_magic = le16_to_cpu(es->s_magic);
3323 if (sb->s_magic != EXT4_SUPER_MAGIC)
3324 goto cantfind_ext4;
3325 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3326
3327 /* Warn if metadata_csum and gdt_csum are both set. */
3328 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3329 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3330 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3331 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3332 "redundant flags; please run fsck.");
3333
3334 /* Check for a known checksum algorithm */
3335 if (!ext4_verify_csum_type(sb, es)) {
3336 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3337 "unknown checksum algorithm.");
3338 silent = 1;
3339 goto cantfind_ext4;
3340 }
3341
3342 /* Load the checksum driver */
3343 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3344 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3345 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3346 if (IS_ERR(sbi->s_chksum_driver)) {
3347 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3348 ret = PTR_ERR(sbi->s_chksum_driver);
3349 sbi->s_chksum_driver = NULL;
3350 goto failed_mount;
3351 }
3352 }
3353
3354 /* Check superblock checksum */
3355 if (!ext4_superblock_csum_verify(sb, es)) {
3356 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3357 "invalid superblock checksum. Run e2fsck?");
3358 silent = 1;
3359 goto cantfind_ext4;
3360 }
3361
3362 /* Precompute checksum seed for all metadata */
3363 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3364 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3365 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3366 sizeof(es->s_uuid));
3367
3368 /* Set defaults before we parse the mount options */
3369 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3370 set_opt(sb, INIT_INODE_TABLE);
3371 if (def_mount_opts & EXT4_DEFM_DEBUG)
3372 set_opt(sb, DEBUG);
3373 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3374 set_opt(sb, GRPID);
3375 if (def_mount_opts & EXT4_DEFM_UID16)
3376 set_opt(sb, NO_UID32);
3377 /* xattr user namespace & acls are now defaulted on */
3378 #ifdef CONFIG_EXT4_FS_XATTR
3379 set_opt(sb, XATTR_USER);
3380 #endif
3381 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3382 set_opt(sb, POSIX_ACL);
3383 #endif
3384 set_opt(sb, MBLK_IO_SUBMIT);
3385 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3386 set_opt(sb, JOURNAL_DATA);
3387 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3388 set_opt(sb, ORDERED_DATA);
3389 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3390 set_opt(sb, WRITEBACK_DATA);
3391
3392 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3393 set_opt(sb, ERRORS_PANIC);
3394 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3395 set_opt(sb, ERRORS_CONT);
3396 else
3397 set_opt(sb, ERRORS_RO);
3398 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3399 set_opt(sb, BLOCK_VALIDITY);
3400 if (def_mount_opts & EXT4_DEFM_DISCARD)
3401 set_opt(sb, DISCARD);
3402
3403 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3404 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3405 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3406 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3407 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3408
3409 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3410 set_opt(sb, BARRIER);
3411
3412 /*
3413 * enable delayed allocation by default
3414 * Use -o nodelalloc to turn it off
3415 */
3416 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3417 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3418 set_opt(sb, DELALLOC);
3419
3420 /*
3421 * set default s_li_wait_mult for lazyinit, for the case there is
3422 * no mount option specified.
3423 */
3424 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3425
3426 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3427 &journal_devnum, &journal_ioprio, 0)) {
3428 ext4_msg(sb, KERN_WARNING,
3429 "failed to parse options in superblock: %s",
3430 sbi->s_es->s_mount_opts);
3431 }
3432 sbi->s_def_mount_opt = sbi->s_mount_opt;
3433 if (!parse_options((char *) data, sb, &journal_devnum,
3434 &journal_ioprio, 0))
3435 goto failed_mount;
3436
3437 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3438 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3439 "with data=journal disables delayed "
3440 "allocation and O_DIRECT support!\n");
3441 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3442 ext4_msg(sb, KERN_ERR, "can't mount with "
3443 "both data=journal and delalloc");
3444 goto failed_mount;
3445 }
3446 if (test_opt(sb, DIOREAD_NOLOCK)) {
3447 ext4_msg(sb, KERN_ERR, "can't mount with "
3448 "both data=journal and delalloc");
3449 goto failed_mount;
3450 }
3451 if (test_opt(sb, DELALLOC))
3452 clear_opt(sb, DELALLOC);
3453 }
3454
3455 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3456 if (test_opt(sb, DIOREAD_NOLOCK)) {
3457 if (blocksize < PAGE_SIZE) {
3458 ext4_msg(sb, KERN_ERR, "can't mount with "
3459 "dioread_nolock if block size != PAGE_SIZE");
3460 goto failed_mount;
3461 }
3462 }
3463
3464 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3465 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3466
3467 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3468 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3469 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3470 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3471 ext4_msg(sb, KERN_WARNING,
3472 "feature flags set on rev 0 fs, "
3473 "running e2fsck is recommended");
3474
3475 if (IS_EXT2_SB(sb)) {
3476 if (ext2_feature_set_ok(sb))
3477 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3478 "using the ext4 subsystem");
3479 else {
3480 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3481 "to feature incompatibilities");
3482 goto failed_mount;
3483 }
3484 }
3485
3486 if (IS_EXT3_SB(sb)) {
3487 if (ext3_feature_set_ok(sb))
3488 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3489 "using the ext4 subsystem");
3490 else {
3491 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3492 "to feature incompatibilities");
3493 goto failed_mount;
3494 }
3495 }
3496
3497 /*
3498 * Check feature flags regardless of the revision level, since we
3499 * previously didn't change the revision level when setting the flags,
3500 * so there is a chance incompat flags are set on a rev 0 filesystem.
3501 */
3502 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3503 goto failed_mount;
3504
3505 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3506 blocksize > EXT4_MAX_BLOCK_SIZE) {
3507 ext4_msg(sb, KERN_ERR,
3508 "Unsupported filesystem blocksize %d", blocksize);
3509 goto failed_mount;
3510 }
3511
3512 if (sb->s_blocksize != blocksize) {
3513 /* Validate the filesystem blocksize */
3514 if (!sb_set_blocksize(sb, blocksize)) {
3515 ext4_msg(sb, KERN_ERR, "bad block size %d",
3516 blocksize);
3517 goto failed_mount;
3518 }
3519
3520 brelse(bh);
3521 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3522 offset = do_div(logical_sb_block, blocksize);
3523 bh = sb_bread(sb, logical_sb_block);
3524 if (!bh) {
3525 ext4_msg(sb, KERN_ERR,
3526 "Can't read superblock on 2nd try");
3527 goto failed_mount;
3528 }
3529 es = (struct ext4_super_block *)(bh->b_data + offset);
3530 sbi->s_es = es;
3531 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3532 ext4_msg(sb, KERN_ERR,
3533 "Magic mismatch, very weird!");
3534 goto failed_mount;
3535 }
3536 }
3537
3538 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3539 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3540 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3541 has_huge_files);
3542 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3543
3544 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3545 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3546 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3547 } else {
3548 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3549 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3550 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3551 (!is_power_of_2(sbi->s_inode_size)) ||
3552 (sbi->s_inode_size > blocksize)) {
3553 ext4_msg(sb, KERN_ERR,
3554 "unsupported inode size: %d",
3555 sbi->s_inode_size);
3556 goto failed_mount;
3557 }
3558 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3559 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3560 }
3561
3562 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3563 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3564 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3565 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3566 !is_power_of_2(sbi->s_desc_size)) {
3567 ext4_msg(sb, KERN_ERR,
3568 "unsupported descriptor size %lu",
3569 sbi->s_desc_size);
3570 goto failed_mount;
3571 }
3572 } else
3573 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3574
3575 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3576 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3577 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3578 goto cantfind_ext4;
3579
3580 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3581 if (sbi->s_inodes_per_block == 0)
3582 goto cantfind_ext4;
3583 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3584 sbi->s_inodes_per_block;
3585 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3586 sbi->s_sbh = bh;
3587 sbi->s_mount_state = le16_to_cpu(es->s_state);
3588 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3589 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3590
3591 for (i = 0; i < 4; i++)
3592 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3593 sbi->s_def_hash_version = es->s_def_hash_version;
3594 i = le32_to_cpu(es->s_flags);
3595 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3596 sbi->s_hash_unsigned = 3;
3597 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3598 #ifdef __CHAR_UNSIGNED__
3599 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3600 sbi->s_hash_unsigned = 3;
3601 #else
3602 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3603 #endif
3604 }
3605
3606 /* Handle clustersize */
3607 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3608 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3609 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3610 if (has_bigalloc) {
3611 if (clustersize < blocksize) {
3612 ext4_msg(sb, KERN_ERR,
3613 "cluster size (%d) smaller than "
3614 "block size (%d)", clustersize, blocksize);
3615 goto failed_mount;
3616 }
3617 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3618 le32_to_cpu(es->s_log_block_size);
3619 sbi->s_clusters_per_group =
3620 le32_to_cpu(es->s_clusters_per_group);
3621 if (sbi->s_clusters_per_group > blocksize * 8) {
3622 ext4_msg(sb, KERN_ERR,
3623 "#clusters per group too big: %lu",
3624 sbi->s_clusters_per_group);
3625 goto failed_mount;
3626 }
3627 if (sbi->s_blocks_per_group !=
3628 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3629 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3630 "clusters per group (%lu) inconsistent",
3631 sbi->s_blocks_per_group,
3632 sbi->s_clusters_per_group);
3633 goto failed_mount;
3634 }
3635 } else {
3636 if (clustersize != blocksize) {
3637 ext4_warning(sb, "fragment/cluster size (%d) != "
3638 "block size (%d)", clustersize,
3639 blocksize);
3640 clustersize = blocksize;
3641 }
3642 if (sbi->s_blocks_per_group > blocksize * 8) {
3643 ext4_msg(sb, KERN_ERR,
3644 "#blocks per group too big: %lu",
3645 sbi->s_blocks_per_group);
3646 goto failed_mount;
3647 }
3648 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3649 sbi->s_cluster_bits = 0;
3650 }
3651 sbi->s_cluster_ratio = clustersize / blocksize;
3652
3653 if (sbi->s_inodes_per_group > blocksize * 8) {
3654 ext4_msg(sb, KERN_ERR,
3655 "#inodes per group too big: %lu",
3656 sbi->s_inodes_per_group);
3657 goto failed_mount;
3658 }
3659
3660 /*
3661 * Test whether we have more sectors than will fit in sector_t,
3662 * and whether the max offset is addressable by the page cache.
3663 */
3664 err = generic_check_addressable(sb->s_blocksize_bits,
3665 ext4_blocks_count(es));
3666 if (err) {
3667 ext4_msg(sb, KERN_ERR, "filesystem"
3668 " too large to mount safely on this system");
3669 if (sizeof(sector_t) < 8)
3670 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3671 ret = err;
3672 goto failed_mount;
3673 }
3674
3675 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3676 goto cantfind_ext4;
3677
3678 /* check blocks count against device size */
3679 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3680 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3681 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3682 "exceeds size of device (%llu blocks)",
3683 ext4_blocks_count(es), blocks_count);
3684 goto failed_mount;
3685 }
3686
3687 /*
3688 * It makes no sense for the first data block to be beyond the end
3689 * of the filesystem.
3690 */
3691 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3692 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3693 "block %u is beyond end of filesystem (%llu)",
3694 le32_to_cpu(es->s_first_data_block),
3695 ext4_blocks_count(es));
3696 goto failed_mount;
3697 }
3698 blocks_count = (ext4_blocks_count(es) -
3699 le32_to_cpu(es->s_first_data_block) +
3700 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3701 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3702 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3703 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3704 "(block count %llu, first data block %u, "
3705 "blocks per group %lu)", sbi->s_groups_count,
3706 ext4_blocks_count(es),
3707 le32_to_cpu(es->s_first_data_block),
3708 EXT4_BLOCKS_PER_GROUP(sb));
3709 goto failed_mount;
3710 }
3711 sbi->s_groups_count = blocks_count;
3712 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3713 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3714 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3715 EXT4_DESC_PER_BLOCK(sb);
3716 sbi->s_group_desc = ext4_kvmalloc(db_count *
3717 sizeof(struct buffer_head *),
3718 GFP_KERNEL);
3719 if (sbi->s_group_desc == NULL) {
3720 ext4_msg(sb, KERN_ERR, "not enough memory");
3721 ret = -ENOMEM;
3722 goto failed_mount;
3723 }
3724
3725 if (ext4_proc_root)
3726 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3727
3728 if (sbi->s_proc)
3729 proc_create_data("options", S_IRUGO, sbi->s_proc,
3730 &ext4_seq_options_fops, sb);
3731
3732 bgl_lock_init(sbi->s_blockgroup_lock);
3733
3734 for (i = 0; i < db_count; i++) {
3735 block = descriptor_loc(sb, logical_sb_block, i);
3736 sbi->s_group_desc[i] = sb_bread(sb, block);
3737 if (!sbi->s_group_desc[i]) {
3738 ext4_msg(sb, KERN_ERR,
3739 "can't read group descriptor %d", i);
3740 db_count = i;
3741 goto failed_mount2;
3742 }
3743 }
3744 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3745 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3746 goto failed_mount2;
3747 }
3748 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3749 if (!ext4_fill_flex_info(sb)) {
3750 ext4_msg(sb, KERN_ERR,
3751 "unable to initialize "
3752 "flex_bg meta info!");
3753 goto failed_mount2;
3754 }
3755
3756 sbi->s_gdb_count = db_count;
3757 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3758 spin_lock_init(&sbi->s_next_gen_lock);
3759
3760 init_timer(&sbi->s_err_report);
3761 sbi->s_err_report.function = print_daily_error_info;
3762 sbi->s_err_report.data = (unsigned long) sb;
3763
3764 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3765 ext4_count_free_clusters(sb));
3766 if (!err) {
3767 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3768 ext4_count_free_inodes(sb));
3769 }
3770 if (!err) {
3771 err = percpu_counter_init(&sbi->s_dirs_counter,
3772 ext4_count_dirs(sb));
3773 }
3774 if (!err) {
3775 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3776 }
3777 if (err) {
3778 ext4_msg(sb, KERN_ERR, "insufficient memory");
3779 ret = err;
3780 goto failed_mount3;
3781 }
3782
3783 sbi->s_stripe = ext4_get_stripe_size(sbi);
3784 sbi->s_max_writeback_mb_bump = 128;
3785 sbi->s_extent_max_zeroout_kb = 32;
3786
3787 /*
3788 * set up enough so that it can read an inode
3789 */
3790 if (!test_opt(sb, NOLOAD) &&
3791 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3792 sb->s_op = &ext4_sops;
3793 else
3794 sb->s_op = &ext4_nojournal_sops;
3795 sb->s_export_op = &ext4_export_ops;
3796 sb->s_xattr = ext4_xattr_handlers;
3797 #ifdef CONFIG_QUOTA
3798 sb->s_qcop = &ext4_qctl_operations;
3799 sb->dq_op = &ext4_quota_operations;
3800
3801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
3802 /* Use qctl operations for hidden quota files. */
3803 sb->s_qcop = &ext4_qctl_sysfile_operations;
3804 }
3805 #endif
3806 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3807
3808 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3809 mutex_init(&sbi->s_orphan_lock);
3810 sbi->s_resize_flags = 0;
3811
3812 sb->s_root = NULL;
3813
3814 needs_recovery = (es->s_last_orphan != 0 ||
3815 EXT4_HAS_INCOMPAT_FEATURE(sb,
3816 EXT4_FEATURE_INCOMPAT_RECOVER));
3817
3818 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3819 !(sb->s_flags & MS_RDONLY))
3820 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3821 goto failed_mount3;
3822
3823 /*
3824 * The first inode we look at is the journal inode. Don't try
3825 * root first: it may be modified in the journal!
3826 */
3827 if (!test_opt(sb, NOLOAD) &&
3828 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3829 if (ext4_load_journal(sb, es, journal_devnum))
3830 goto failed_mount3;
3831 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3832 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3833 ext4_msg(sb, KERN_ERR, "required journal recovery "
3834 "suppressed and not mounted read-only");
3835 goto failed_mount_wq;
3836 } else {
3837 clear_opt(sb, DATA_FLAGS);
3838 sbi->s_journal = NULL;
3839 needs_recovery = 0;
3840 goto no_journal;
3841 }
3842
3843 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3844 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3845 JBD2_FEATURE_INCOMPAT_64BIT)) {
3846 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3847 goto failed_mount_wq;
3848 }
3849
3850 if (!set_journal_csum_feature_set(sb)) {
3851 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3852 "feature set");
3853 goto failed_mount_wq;
3854 }
3855
3856 /* We have now updated the journal if required, so we can
3857 * validate the data journaling mode. */
3858 switch (test_opt(sb, DATA_FLAGS)) {
3859 case 0:
3860 /* No mode set, assume a default based on the journal
3861 * capabilities: ORDERED_DATA if the journal can
3862 * cope, else JOURNAL_DATA
3863 */
3864 if (jbd2_journal_check_available_features
3865 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3866 set_opt(sb, ORDERED_DATA);
3867 else
3868 set_opt(sb, JOURNAL_DATA);
3869 break;
3870
3871 case EXT4_MOUNT_ORDERED_DATA:
3872 case EXT4_MOUNT_WRITEBACK_DATA:
3873 if (!jbd2_journal_check_available_features
3874 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3875 ext4_msg(sb, KERN_ERR, "Journal does not support "
3876 "requested data journaling mode");
3877 goto failed_mount_wq;
3878 }
3879 default:
3880 break;
3881 }
3882 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3883
3884 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3885
3886 /*
3887 * The journal may have updated the bg summary counts, so we
3888 * need to update the global counters.
3889 */
3890 percpu_counter_set(&sbi->s_freeclusters_counter,
3891 ext4_count_free_clusters(sb));
3892 percpu_counter_set(&sbi->s_freeinodes_counter,
3893 ext4_count_free_inodes(sb));
3894 percpu_counter_set(&sbi->s_dirs_counter,
3895 ext4_count_dirs(sb));
3896 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3897
3898 no_journal:
3899 /*
3900 * Get the # of file system overhead blocks from the
3901 * superblock if present.
3902 */
3903 if (es->s_overhead_clusters)
3904 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3905 else {
3906 ret = ext4_calculate_overhead(sb);
3907 if (ret)
3908 goto failed_mount_wq;
3909 }
3910
3911 /*
3912 * The maximum number of concurrent works can be high and
3913 * concurrency isn't really necessary. Limit it to 1.
3914 */
3915 EXT4_SB(sb)->dio_unwritten_wq =
3916 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3917 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3918 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3919 goto failed_mount_wq;
3920 }
3921
3922 /*
3923 * The jbd2_journal_load will have done any necessary log recovery,
3924 * so we can safely mount the rest of the filesystem now.
3925 */
3926
3927 root = ext4_iget(sb, EXT4_ROOT_INO);
3928 if (IS_ERR(root)) {
3929 ext4_msg(sb, KERN_ERR, "get root inode failed");
3930 ret = PTR_ERR(root);
3931 root = NULL;
3932 goto failed_mount4;
3933 }
3934 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3935 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3936 iput(root);
3937 goto failed_mount4;
3938 }
3939 sb->s_root = d_make_root(root);
3940 if (!sb->s_root) {
3941 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3942 ret = -ENOMEM;
3943 goto failed_mount4;
3944 }
3945
3946 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3947 sb->s_flags |= MS_RDONLY;
3948
3949 /* determine the minimum size of new large inodes, if present */
3950 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3951 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3952 EXT4_GOOD_OLD_INODE_SIZE;
3953 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3954 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3955 if (sbi->s_want_extra_isize <
3956 le16_to_cpu(es->s_want_extra_isize))
3957 sbi->s_want_extra_isize =
3958 le16_to_cpu(es->s_want_extra_isize);
3959 if (sbi->s_want_extra_isize <
3960 le16_to_cpu(es->s_min_extra_isize))
3961 sbi->s_want_extra_isize =
3962 le16_to_cpu(es->s_min_extra_isize);
3963 }
3964 }
3965 /* Check if enough inode space is available */
3966 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3967 sbi->s_inode_size) {
3968 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3969 EXT4_GOOD_OLD_INODE_SIZE;
3970 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3971 "available");
3972 }
3973
3974 err = ext4_setup_system_zone(sb);
3975 if (err) {
3976 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3977 "zone (%d)", err);
3978 goto failed_mount4a;
3979 }
3980
3981 ext4_ext_init(sb);
3982 err = ext4_mb_init(sb);
3983 if (err) {
3984 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3985 err);
3986 goto failed_mount5;
3987 }
3988
3989 err = ext4_register_li_request(sb, first_not_zeroed);
3990 if (err)
3991 goto failed_mount6;
3992
3993 sbi->s_kobj.kset = ext4_kset;
3994 init_completion(&sbi->s_kobj_unregister);
3995 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3996 "%s", sb->s_id);
3997 if (err)
3998 goto failed_mount7;
3999
4000 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4001 ext4_orphan_cleanup(sb, es);
4002 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4003 if (needs_recovery) {
4004 ext4_msg(sb, KERN_INFO, "recovery complete");
4005 ext4_mark_recovery_complete(sb, es);
4006 }
4007 if (EXT4_SB(sb)->s_journal) {
4008 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4009 descr = " journalled data mode";
4010 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4011 descr = " ordered data mode";
4012 else
4013 descr = " writeback data mode";
4014 } else
4015 descr = "out journal";
4016
4017 #ifdef CONFIG_QUOTA
4018 /* Enable quota usage during mount. */
4019 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4020 !(sb->s_flags & MS_RDONLY)) {
4021 ret = ext4_enable_quotas(sb);
4022 if (ret)
4023 goto failed_mount7;
4024 }
4025 #endif /* CONFIG_QUOTA */
4026
4027 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4028 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4029 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4030
4031 if (es->s_error_count)
4032 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4033
4034 kfree(orig_data);
4035 return 0;
4036
4037 cantfind_ext4:
4038 if (!silent)
4039 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4040 goto failed_mount;
4041
4042 failed_mount7:
4043 ext4_unregister_li_request(sb);
4044 failed_mount6:
4045 ext4_mb_release(sb);
4046 failed_mount5:
4047 ext4_ext_release(sb);
4048 ext4_release_system_zone(sb);
4049 failed_mount4a:
4050 dput(sb->s_root);
4051 sb->s_root = NULL;
4052 failed_mount4:
4053 ext4_msg(sb, KERN_ERR, "mount failed");
4054 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4055 failed_mount_wq:
4056 if (sbi->s_journal) {
4057 jbd2_journal_destroy(sbi->s_journal);
4058 sbi->s_journal = NULL;
4059 }
4060 failed_mount3:
4061 del_timer(&sbi->s_err_report);
4062 if (sbi->s_flex_groups)
4063 ext4_kvfree(sbi->s_flex_groups);
4064 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4065 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4066 percpu_counter_destroy(&sbi->s_dirs_counter);
4067 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4068 if (sbi->s_mmp_tsk)
4069 kthread_stop(sbi->s_mmp_tsk);
4070 failed_mount2:
4071 for (i = 0; i < db_count; i++)
4072 brelse(sbi->s_group_desc[i]);
4073 ext4_kvfree(sbi->s_group_desc);
4074 failed_mount:
4075 if (sbi->s_chksum_driver)
4076 crypto_free_shash(sbi->s_chksum_driver);
4077 if (sbi->s_proc) {
4078 remove_proc_entry("options", sbi->s_proc);
4079 remove_proc_entry(sb->s_id, ext4_proc_root);
4080 }
4081 #ifdef CONFIG_QUOTA
4082 for (i = 0; i < MAXQUOTAS; i++)
4083 kfree(sbi->s_qf_names[i]);
4084 #endif
4085 ext4_blkdev_remove(sbi);
4086 brelse(bh);
4087 out_fail:
4088 sb->s_fs_info = NULL;
4089 kfree(sbi->s_blockgroup_lock);
4090 kfree(sbi);
4091 out_free_orig:
4092 kfree(orig_data);
4093 return ret;
4094 }
4095
4096 /*
4097 * Setup any per-fs journal parameters now. We'll do this both on
4098 * initial mount, once the journal has been initialised but before we've
4099 * done any recovery; and again on any subsequent remount.
4100 */
4101 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4102 {
4103 struct ext4_sb_info *sbi = EXT4_SB(sb);
4104
4105 journal->j_commit_interval = sbi->s_commit_interval;
4106 journal->j_min_batch_time = sbi->s_min_batch_time;
4107 journal->j_max_batch_time = sbi->s_max_batch_time;
4108
4109 write_lock(&journal->j_state_lock);
4110 if (test_opt(sb, BARRIER))
4111 journal->j_flags |= JBD2_BARRIER;
4112 else
4113 journal->j_flags &= ~JBD2_BARRIER;
4114 if (test_opt(sb, DATA_ERR_ABORT))
4115 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4116 else
4117 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4118 write_unlock(&journal->j_state_lock);
4119 }
4120
4121 static journal_t *ext4_get_journal(struct super_block *sb,
4122 unsigned int journal_inum)
4123 {
4124 struct inode *journal_inode;
4125 journal_t *journal;
4126
4127 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4128
4129 /* First, test for the existence of a valid inode on disk. Bad
4130 * things happen if we iget() an unused inode, as the subsequent
4131 * iput() will try to delete it. */
4132
4133 journal_inode = ext4_iget(sb, journal_inum);
4134 if (IS_ERR(journal_inode)) {
4135 ext4_msg(sb, KERN_ERR, "no journal found");
4136 return NULL;
4137 }
4138 if (!journal_inode->i_nlink) {
4139 make_bad_inode(journal_inode);
4140 iput(journal_inode);
4141 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4142 return NULL;
4143 }
4144
4145 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4146 journal_inode, journal_inode->i_size);
4147 if (!S_ISREG(journal_inode->i_mode)) {
4148 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4149 iput(journal_inode);
4150 return NULL;
4151 }
4152
4153 journal = jbd2_journal_init_inode(journal_inode);
4154 if (!journal) {
4155 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4156 iput(journal_inode);
4157 return NULL;
4158 }
4159 journal->j_private = sb;
4160 ext4_init_journal_params(sb, journal);
4161 return journal;
4162 }
4163
4164 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4165 dev_t j_dev)
4166 {
4167 struct buffer_head *bh;
4168 journal_t *journal;
4169 ext4_fsblk_t start;
4170 ext4_fsblk_t len;
4171 int hblock, blocksize;
4172 ext4_fsblk_t sb_block;
4173 unsigned long offset;
4174 struct ext4_super_block *es;
4175 struct block_device *bdev;
4176
4177 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4178
4179 bdev = ext4_blkdev_get(j_dev, sb);
4180 if (bdev == NULL)
4181 return NULL;
4182
4183 blocksize = sb->s_blocksize;
4184 hblock = bdev_logical_block_size(bdev);
4185 if (blocksize < hblock) {
4186 ext4_msg(sb, KERN_ERR,
4187 "blocksize too small for journal device");
4188 goto out_bdev;
4189 }
4190
4191 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4192 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4193 set_blocksize(bdev, blocksize);
4194 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4195 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4196 "external journal");
4197 goto out_bdev;
4198 }
4199
4200 es = (struct ext4_super_block *) (bh->b_data + offset);
4201 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4202 !(le32_to_cpu(es->s_feature_incompat) &
4203 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4204 ext4_msg(sb, KERN_ERR, "external journal has "
4205 "bad superblock");
4206 brelse(bh);
4207 goto out_bdev;
4208 }
4209
4210 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4211 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4212 brelse(bh);
4213 goto out_bdev;
4214 }
4215
4216 len = ext4_blocks_count(es);
4217 start = sb_block + 1;
4218 brelse(bh); /* we're done with the superblock */
4219
4220 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4221 start, len, blocksize);
4222 if (!journal) {
4223 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4224 goto out_bdev;
4225 }
4226 journal->j_private = sb;
4227 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4228 wait_on_buffer(journal->j_sb_buffer);
4229 if (!buffer_uptodate(journal->j_sb_buffer)) {
4230 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4231 goto out_journal;
4232 }
4233 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4234 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4235 "user (unsupported) - %d",
4236 be32_to_cpu(journal->j_superblock->s_nr_users));
4237 goto out_journal;
4238 }
4239 EXT4_SB(sb)->journal_bdev = bdev;
4240 ext4_init_journal_params(sb, journal);
4241 return journal;
4242
4243 out_journal:
4244 jbd2_journal_destroy(journal);
4245 out_bdev:
4246 ext4_blkdev_put(bdev);
4247 return NULL;
4248 }
4249
4250 static int ext4_load_journal(struct super_block *sb,
4251 struct ext4_super_block *es,
4252 unsigned long journal_devnum)
4253 {
4254 journal_t *journal;
4255 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4256 dev_t journal_dev;
4257 int err = 0;
4258 int really_read_only;
4259
4260 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4261
4262 if (journal_devnum &&
4263 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4264 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4265 "numbers have changed");
4266 journal_dev = new_decode_dev(journal_devnum);
4267 } else
4268 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4269
4270 really_read_only = bdev_read_only(sb->s_bdev);
4271
4272 /*
4273 * Are we loading a blank journal or performing recovery after a
4274 * crash? For recovery, we need to check in advance whether we
4275 * can get read-write access to the device.
4276 */
4277 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4278 if (sb->s_flags & MS_RDONLY) {
4279 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4280 "required on readonly filesystem");
4281 if (really_read_only) {
4282 ext4_msg(sb, KERN_ERR, "write access "
4283 "unavailable, cannot proceed");
4284 return -EROFS;
4285 }
4286 ext4_msg(sb, KERN_INFO, "write access will "
4287 "be enabled during recovery");
4288 }
4289 }
4290
4291 if (journal_inum && journal_dev) {
4292 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4293 "and inode journals!");
4294 return -EINVAL;
4295 }
4296
4297 if (journal_inum) {
4298 if (!(journal = ext4_get_journal(sb, journal_inum)))
4299 return -EINVAL;
4300 } else {
4301 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4302 return -EINVAL;
4303 }
4304
4305 if (!(journal->j_flags & JBD2_BARRIER))
4306 ext4_msg(sb, KERN_INFO, "barriers disabled");
4307
4308 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4309 err = jbd2_journal_wipe(journal, !really_read_only);
4310 if (!err) {
4311 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4312 if (save)
4313 memcpy(save, ((char *) es) +
4314 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4315 err = jbd2_journal_load(journal);
4316 if (save)
4317 memcpy(((char *) es) + EXT4_S_ERR_START,
4318 save, EXT4_S_ERR_LEN);
4319 kfree(save);
4320 }
4321
4322 if (err) {
4323 ext4_msg(sb, KERN_ERR, "error loading journal");
4324 jbd2_journal_destroy(journal);
4325 return err;
4326 }
4327
4328 EXT4_SB(sb)->s_journal = journal;
4329 ext4_clear_journal_err(sb, es);
4330
4331 if (!really_read_only && journal_devnum &&
4332 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4333 es->s_journal_dev = cpu_to_le32(journal_devnum);
4334
4335 /* Make sure we flush the recovery flag to disk. */
4336 ext4_commit_super(sb, 1);
4337 }
4338
4339 return 0;
4340 }
4341
4342 static int ext4_commit_super(struct super_block *sb, int sync)
4343 {
4344 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4345 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4346 int error = 0;
4347
4348 if (!sbh || block_device_ejected(sb))
4349 return error;
4350 if (buffer_write_io_error(sbh)) {
4351 /*
4352 * Oh, dear. A previous attempt to write the
4353 * superblock failed. This could happen because the
4354 * USB device was yanked out. Or it could happen to
4355 * be a transient write error and maybe the block will
4356 * be remapped. Nothing we can do but to retry the
4357 * write and hope for the best.
4358 */
4359 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4360 "superblock detected");
4361 clear_buffer_write_io_error(sbh);
4362 set_buffer_uptodate(sbh);
4363 }
4364 /*
4365 * If the file system is mounted read-only, don't update the
4366 * superblock write time. This avoids updating the superblock
4367 * write time when we are mounting the root file system
4368 * read/only but we need to replay the journal; at that point,
4369 * for people who are east of GMT and who make their clock
4370 * tick in localtime for Windows bug-for-bug compatibility,
4371 * the clock is set in the future, and this will cause e2fsck
4372 * to complain and force a full file system check.
4373 */
4374 if (!(sb->s_flags & MS_RDONLY))
4375 es->s_wtime = cpu_to_le32(get_seconds());
4376 if (sb->s_bdev->bd_part)
4377 es->s_kbytes_written =
4378 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4379 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4380 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4381 else
4382 es->s_kbytes_written =
4383 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4384 ext4_free_blocks_count_set(es,
4385 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4386 &EXT4_SB(sb)->s_freeclusters_counter)));
4387 es->s_free_inodes_count =
4388 cpu_to_le32(percpu_counter_sum_positive(
4389 &EXT4_SB(sb)->s_freeinodes_counter));
4390 BUFFER_TRACE(sbh, "marking dirty");
4391 ext4_superblock_csum_set(sb);
4392 mark_buffer_dirty(sbh);
4393 if (sync) {
4394 error = sync_dirty_buffer(sbh);
4395 if (error)
4396 return error;
4397
4398 error = buffer_write_io_error(sbh);
4399 if (error) {
4400 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4401 "superblock");
4402 clear_buffer_write_io_error(sbh);
4403 set_buffer_uptodate(sbh);
4404 }
4405 }
4406 return error;
4407 }
4408
4409 /*
4410 * Have we just finished recovery? If so, and if we are mounting (or
4411 * remounting) the filesystem readonly, then we will end up with a
4412 * consistent fs on disk. Record that fact.
4413 */
4414 static void ext4_mark_recovery_complete(struct super_block *sb,
4415 struct ext4_super_block *es)
4416 {
4417 journal_t *journal = EXT4_SB(sb)->s_journal;
4418
4419 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4420 BUG_ON(journal != NULL);
4421 return;
4422 }
4423 jbd2_journal_lock_updates(journal);
4424 if (jbd2_journal_flush(journal) < 0)
4425 goto out;
4426
4427 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4428 sb->s_flags & MS_RDONLY) {
4429 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4430 ext4_commit_super(sb, 1);
4431 }
4432
4433 out:
4434 jbd2_journal_unlock_updates(journal);
4435 }
4436
4437 /*
4438 * If we are mounting (or read-write remounting) a filesystem whose journal
4439 * has recorded an error from a previous lifetime, move that error to the
4440 * main filesystem now.
4441 */
4442 static void ext4_clear_journal_err(struct super_block *sb,
4443 struct ext4_super_block *es)
4444 {
4445 journal_t *journal;
4446 int j_errno;
4447 const char *errstr;
4448
4449 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4450
4451 journal = EXT4_SB(sb)->s_journal;
4452
4453 /*
4454 * Now check for any error status which may have been recorded in the
4455 * journal by a prior ext4_error() or ext4_abort()
4456 */
4457
4458 j_errno = jbd2_journal_errno(journal);
4459 if (j_errno) {
4460 char nbuf[16];
4461
4462 errstr = ext4_decode_error(sb, j_errno, nbuf);
4463 ext4_warning(sb, "Filesystem error recorded "
4464 "from previous mount: %s", errstr);
4465 ext4_warning(sb, "Marking fs in need of filesystem check.");
4466
4467 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4468 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4469 ext4_commit_super(sb, 1);
4470
4471 jbd2_journal_clear_err(journal);
4472 jbd2_journal_update_sb_errno(journal);
4473 }
4474 }
4475
4476 /*
4477 * Force the running and committing transactions to commit,
4478 * and wait on the commit.
4479 */
4480 int ext4_force_commit(struct super_block *sb)
4481 {
4482 journal_t *journal;
4483 int ret = 0;
4484
4485 if (sb->s_flags & MS_RDONLY)
4486 return 0;
4487
4488 journal = EXT4_SB(sb)->s_journal;
4489 if (journal)
4490 ret = ext4_journal_force_commit(journal);
4491
4492 return ret;
4493 }
4494
4495 static int ext4_sync_fs(struct super_block *sb, int wait)
4496 {
4497 int ret = 0;
4498 tid_t target;
4499 struct ext4_sb_info *sbi = EXT4_SB(sb);
4500
4501 trace_ext4_sync_fs(sb, wait);
4502 flush_workqueue(sbi->dio_unwritten_wq);
4503 /*
4504 * Writeback quota in non-journalled quota case - journalled quota has
4505 * no dirty dquots
4506 */
4507 dquot_writeback_dquots(sb, -1);
4508 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4509 if (wait)
4510 jbd2_log_wait_commit(sbi->s_journal, target);
4511 }
4512 return ret;
4513 }
4514
4515 /*
4516 * LVM calls this function before a (read-only) snapshot is created. This
4517 * gives us a chance to flush the journal completely and mark the fs clean.
4518 *
4519 * Note that only this function cannot bring a filesystem to be in a clean
4520 * state independently. It relies on upper layer to stop all data & metadata
4521 * modifications.
4522 */
4523 static int ext4_freeze(struct super_block *sb)
4524 {
4525 int error = 0;
4526 journal_t *journal;
4527
4528 if (sb->s_flags & MS_RDONLY)
4529 return 0;
4530
4531 journal = EXT4_SB(sb)->s_journal;
4532
4533 /* Now we set up the journal barrier. */
4534 jbd2_journal_lock_updates(journal);
4535
4536 /*
4537 * Don't clear the needs_recovery flag if we failed to flush
4538 * the journal.
4539 */
4540 error = jbd2_journal_flush(journal);
4541 if (error < 0)
4542 goto out;
4543
4544 /* Journal blocked and flushed, clear needs_recovery flag. */
4545 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4546 error = ext4_commit_super(sb, 1);
4547 out:
4548 /* we rely on upper layer to stop further updates */
4549 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4550 return error;
4551 }
4552
4553 /*
4554 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4555 * flag here, even though the filesystem is not technically dirty yet.
4556 */
4557 static int ext4_unfreeze(struct super_block *sb)
4558 {
4559 if (sb->s_flags & MS_RDONLY)
4560 return 0;
4561
4562 /* Reset the needs_recovery flag before the fs is unlocked. */
4563 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4564 ext4_commit_super(sb, 1);
4565 return 0;
4566 }
4567
4568 /*
4569 * Structure to save mount options for ext4_remount's benefit
4570 */
4571 struct ext4_mount_options {
4572 unsigned long s_mount_opt;
4573 unsigned long s_mount_opt2;
4574 kuid_t s_resuid;
4575 kgid_t s_resgid;
4576 unsigned long s_commit_interval;
4577 u32 s_min_batch_time, s_max_batch_time;
4578 #ifdef CONFIG_QUOTA
4579 int s_jquota_fmt;
4580 char *s_qf_names[MAXQUOTAS];
4581 #endif
4582 };
4583
4584 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4585 {
4586 struct ext4_super_block *es;
4587 struct ext4_sb_info *sbi = EXT4_SB(sb);
4588 unsigned long old_sb_flags;
4589 struct ext4_mount_options old_opts;
4590 int enable_quota = 0;
4591 ext4_group_t g;
4592 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4593 int err = 0;
4594 #ifdef CONFIG_QUOTA
4595 int i;
4596 #endif
4597 char *orig_data = kstrdup(data, GFP_KERNEL);
4598
4599 /* Store the original options */
4600 old_sb_flags = sb->s_flags;
4601 old_opts.s_mount_opt = sbi->s_mount_opt;
4602 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4603 old_opts.s_resuid = sbi->s_resuid;
4604 old_opts.s_resgid = sbi->s_resgid;
4605 old_opts.s_commit_interval = sbi->s_commit_interval;
4606 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4607 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4608 #ifdef CONFIG_QUOTA
4609 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4610 for (i = 0; i < MAXQUOTAS; i++)
4611 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4612 #endif
4613 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4614 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4615
4616 /*
4617 * Allow the "check" option to be passed as a remount option.
4618 */
4619 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4620 err = -EINVAL;
4621 goto restore_opts;
4622 }
4623
4624 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4625 ext4_abort(sb, "Abort forced by user");
4626
4627 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4628 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4629
4630 es = sbi->s_es;
4631
4632 if (sbi->s_journal) {
4633 ext4_init_journal_params(sb, sbi->s_journal);
4634 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4635 }
4636
4637 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4638 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4639 err = -EROFS;
4640 goto restore_opts;
4641 }
4642
4643 if (*flags & MS_RDONLY) {
4644 err = dquot_suspend(sb, -1);
4645 if (err < 0)
4646 goto restore_opts;
4647
4648 /*
4649 * First of all, the unconditional stuff we have to do
4650 * to disable replay of the journal when we next remount
4651 */
4652 sb->s_flags |= MS_RDONLY;
4653
4654 /*
4655 * OK, test if we are remounting a valid rw partition
4656 * readonly, and if so set the rdonly flag and then
4657 * mark the partition as valid again.
4658 */
4659 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4660 (sbi->s_mount_state & EXT4_VALID_FS))
4661 es->s_state = cpu_to_le16(sbi->s_mount_state);
4662
4663 if (sbi->s_journal)
4664 ext4_mark_recovery_complete(sb, es);
4665 } else {
4666 /* Make sure we can mount this feature set readwrite */
4667 if (!ext4_feature_set_ok(sb, 0)) {
4668 err = -EROFS;
4669 goto restore_opts;
4670 }
4671 /*
4672 * Make sure the group descriptor checksums
4673 * are sane. If they aren't, refuse to remount r/w.
4674 */
4675 for (g = 0; g < sbi->s_groups_count; g++) {
4676 struct ext4_group_desc *gdp =
4677 ext4_get_group_desc(sb, g, NULL);
4678
4679 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4680 ext4_msg(sb, KERN_ERR,
4681 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4682 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4683 le16_to_cpu(gdp->bg_checksum));
4684 err = -EINVAL;
4685 goto restore_opts;
4686 }
4687 }
4688
4689 /*
4690 * If we have an unprocessed orphan list hanging
4691 * around from a previously readonly bdev mount,
4692 * require a full umount/remount for now.
4693 */
4694 if (es->s_last_orphan) {
4695 ext4_msg(sb, KERN_WARNING, "Couldn't "
4696 "remount RDWR because of unprocessed "
4697 "orphan inode list. Please "
4698 "umount/remount instead");
4699 err = -EINVAL;
4700 goto restore_opts;
4701 }
4702
4703 /*
4704 * Mounting a RDONLY partition read-write, so reread
4705 * and store the current valid flag. (It may have
4706 * been changed by e2fsck since we originally mounted
4707 * the partition.)
4708 */
4709 if (sbi->s_journal)
4710 ext4_clear_journal_err(sb, es);
4711 sbi->s_mount_state = le16_to_cpu(es->s_state);
4712 if (!ext4_setup_super(sb, es, 0))
4713 sb->s_flags &= ~MS_RDONLY;
4714 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4715 EXT4_FEATURE_INCOMPAT_MMP))
4716 if (ext4_multi_mount_protect(sb,
4717 le64_to_cpu(es->s_mmp_block))) {
4718 err = -EROFS;
4719 goto restore_opts;
4720 }
4721 enable_quota = 1;
4722 }
4723 }
4724
4725 /*
4726 * Reinitialize lazy itable initialization thread based on
4727 * current settings
4728 */
4729 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4730 ext4_unregister_li_request(sb);
4731 else {
4732 ext4_group_t first_not_zeroed;
4733 first_not_zeroed = ext4_has_uninit_itable(sb);
4734 ext4_register_li_request(sb, first_not_zeroed);
4735 }
4736
4737 ext4_setup_system_zone(sb);
4738 if (sbi->s_journal == NULL)
4739 ext4_commit_super(sb, 1);
4740
4741 #ifdef CONFIG_QUOTA
4742 /* Release old quota file names */
4743 for (i = 0; i < MAXQUOTAS; i++)
4744 if (old_opts.s_qf_names[i] &&
4745 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4746 kfree(old_opts.s_qf_names[i]);
4747 if (enable_quota) {
4748 if (sb_any_quota_suspended(sb))
4749 dquot_resume(sb, -1);
4750 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4751 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4752 err = ext4_enable_quotas(sb);
4753 if (err)
4754 goto restore_opts;
4755 }
4756 }
4757 #endif
4758
4759 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4760 kfree(orig_data);
4761 return 0;
4762
4763 restore_opts:
4764 sb->s_flags = old_sb_flags;
4765 sbi->s_mount_opt = old_opts.s_mount_opt;
4766 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4767 sbi->s_resuid = old_opts.s_resuid;
4768 sbi->s_resgid = old_opts.s_resgid;
4769 sbi->s_commit_interval = old_opts.s_commit_interval;
4770 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4771 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4772 #ifdef CONFIG_QUOTA
4773 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4774 for (i = 0; i < MAXQUOTAS; i++) {
4775 if (sbi->s_qf_names[i] &&
4776 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4777 kfree(sbi->s_qf_names[i]);
4778 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4779 }
4780 #endif
4781 kfree(orig_data);
4782 return err;
4783 }
4784
4785 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4786 {
4787 struct super_block *sb = dentry->d_sb;
4788 struct ext4_sb_info *sbi = EXT4_SB(sb);
4789 struct ext4_super_block *es = sbi->s_es;
4790 ext4_fsblk_t overhead = 0;
4791 u64 fsid;
4792 s64 bfree;
4793
4794 if (!test_opt(sb, MINIX_DF))
4795 overhead = sbi->s_overhead;
4796
4797 buf->f_type = EXT4_SUPER_MAGIC;
4798 buf->f_bsize = sb->s_blocksize;
4799 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4800 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4801 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4802 /* prevent underflow in case that few free space is available */
4803 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4804 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4805 if (buf->f_bfree < ext4_r_blocks_count(es))
4806 buf->f_bavail = 0;
4807 buf->f_files = le32_to_cpu(es->s_inodes_count);
4808 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4809 buf->f_namelen = EXT4_NAME_LEN;
4810 fsid = le64_to_cpup((void *)es->s_uuid) ^
4811 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4812 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4813 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4814
4815 return 0;
4816 }
4817
4818 /* Helper function for writing quotas on sync - we need to start transaction
4819 * before quota file is locked for write. Otherwise the are possible deadlocks:
4820 * Process 1 Process 2
4821 * ext4_create() quota_sync()
4822 * jbd2_journal_start() write_dquot()
4823 * dquot_initialize() down(dqio_mutex)
4824 * down(dqio_mutex) jbd2_journal_start()
4825 *
4826 */
4827
4828 #ifdef CONFIG_QUOTA
4829
4830 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4831 {
4832 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4833 }
4834
4835 static int ext4_write_dquot(struct dquot *dquot)
4836 {
4837 int ret, err;
4838 handle_t *handle;
4839 struct inode *inode;
4840
4841 inode = dquot_to_inode(dquot);
4842 handle = ext4_journal_start(inode,
4843 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4844 if (IS_ERR(handle))
4845 return PTR_ERR(handle);
4846 ret = dquot_commit(dquot);
4847 err = ext4_journal_stop(handle);
4848 if (!ret)
4849 ret = err;
4850 return ret;
4851 }
4852
4853 static int ext4_acquire_dquot(struct dquot *dquot)
4854 {
4855 int ret, err;
4856 handle_t *handle;
4857
4858 handle = ext4_journal_start(dquot_to_inode(dquot),
4859 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4860 if (IS_ERR(handle))
4861 return PTR_ERR(handle);
4862 ret = dquot_acquire(dquot);
4863 err = ext4_journal_stop(handle);
4864 if (!ret)
4865 ret = err;
4866 return ret;
4867 }
4868
4869 static int ext4_release_dquot(struct dquot *dquot)
4870 {
4871 int ret, err;
4872 handle_t *handle;
4873
4874 handle = ext4_journal_start(dquot_to_inode(dquot),
4875 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4876 if (IS_ERR(handle)) {
4877 /* Release dquot anyway to avoid endless cycle in dqput() */
4878 dquot_release(dquot);
4879 return PTR_ERR(handle);
4880 }
4881 ret = dquot_release(dquot);
4882 err = ext4_journal_stop(handle);
4883 if (!ret)
4884 ret = err;
4885 return ret;
4886 }
4887
4888 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4889 {
4890 /* Are we journaling quotas? */
4891 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4892 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4893 dquot_mark_dquot_dirty(dquot);
4894 return ext4_write_dquot(dquot);
4895 } else {
4896 return dquot_mark_dquot_dirty(dquot);
4897 }
4898 }
4899
4900 static int ext4_write_info(struct super_block *sb, int type)
4901 {
4902 int ret, err;
4903 handle_t *handle;
4904
4905 /* Data block + inode block */
4906 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4907 if (IS_ERR(handle))
4908 return PTR_ERR(handle);
4909 ret = dquot_commit_info(sb, type);
4910 err = ext4_journal_stop(handle);
4911 if (!ret)
4912 ret = err;
4913 return ret;
4914 }
4915
4916 /*
4917 * Turn on quotas during mount time - we need to find
4918 * the quota file and such...
4919 */
4920 static int ext4_quota_on_mount(struct super_block *sb, int type)
4921 {
4922 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4923 EXT4_SB(sb)->s_jquota_fmt, type);
4924 }
4925
4926 /*
4927 * Standard function to be called on quota_on
4928 */
4929 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4930 struct path *path)
4931 {
4932 int err;
4933
4934 if (!test_opt(sb, QUOTA))
4935 return -EINVAL;
4936
4937 /* Quotafile not on the same filesystem? */
4938 if (path->dentry->d_sb != sb)
4939 return -EXDEV;
4940 /* Journaling quota? */
4941 if (EXT4_SB(sb)->s_qf_names[type]) {
4942 /* Quotafile not in fs root? */
4943 if (path->dentry->d_parent != sb->s_root)
4944 ext4_msg(sb, KERN_WARNING,
4945 "Quota file not on filesystem root. "
4946 "Journaled quota will not work");
4947 }
4948
4949 /*
4950 * When we journal data on quota file, we have to flush journal to see
4951 * all updates to the file when we bypass pagecache...
4952 */
4953 if (EXT4_SB(sb)->s_journal &&
4954 ext4_should_journal_data(path->dentry->d_inode)) {
4955 /*
4956 * We don't need to lock updates but journal_flush() could
4957 * otherwise be livelocked...
4958 */
4959 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4960 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4961 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4962 if (err)
4963 return err;
4964 }
4965
4966 return dquot_quota_on(sb, type, format_id, path);
4967 }
4968
4969 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4970 unsigned int flags)
4971 {
4972 int err;
4973 struct inode *qf_inode;
4974 unsigned long qf_inums[MAXQUOTAS] = {
4975 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4976 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4977 };
4978
4979 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4980
4981 if (!qf_inums[type])
4982 return -EPERM;
4983
4984 qf_inode = ext4_iget(sb, qf_inums[type]);
4985 if (IS_ERR(qf_inode)) {
4986 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4987 return PTR_ERR(qf_inode);
4988 }
4989
4990 err = dquot_enable(qf_inode, type, format_id, flags);
4991 iput(qf_inode);
4992
4993 return err;
4994 }
4995
4996 /* Enable usage tracking for all quota types. */
4997 static int ext4_enable_quotas(struct super_block *sb)
4998 {
4999 int type, err = 0;
5000 unsigned long qf_inums[MAXQUOTAS] = {
5001 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5002 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5003 };
5004
5005 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5006 for (type = 0; type < MAXQUOTAS; type++) {
5007 if (qf_inums[type]) {
5008 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5009 DQUOT_USAGE_ENABLED);
5010 if (err) {
5011 ext4_warning(sb,
5012 "Failed to enable quota (type=%d) "
5013 "tracking. Please run e2fsck to fix.",
5014 type);
5015 return err;
5016 }
5017 }
5018 }
5019 return 0;
5020 }
5021
5022 /*
5023 * quota_on function that is used when QUOTA feature is set.
5024 */
5025 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5026 int format_id)
5027 {
5028 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5029 return -EINVAL;
5030
5031 /*
5032 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5033 */
5034 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5035 }
5036
5037 static int ext4_quota_off(struct super_block *sb, int type)
5038 {
5039 struct inode *inode = sb_dqopt(sb)->files[type];
5040 handle_t *handle;
5041
5042 /* Force all delayed allocation blocks to be allocated.
5043 * Caller already holds s_umount sem */
5044 if (test_opt(sb, DELALLOC))
5045 sync_filesystem(sb);
5046
5047 if (!inode)
5048 goto out;
5049
5050 /* Update modification times of quota files when userspace can
5051 * start looking at them */
5052 handle = ext4_journal_start(inode, 1);
5053 if (IS_ERR(handle))
5054 goto out;
5055 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5056 ext4_mark_inode_dirty(handle, inode);
5057 ext4_journal_stop(handle);
5058
5059 out:
5060 return dquot_quota_off(sb, type);
5061 }
5062
5063 /*
5064 * quota_off function that is used when QUOTA feature is set.
5065 */
5066 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5067 {
5068 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5069 return -EINVAL;
5070
5071 /* Disable only the limits. */
5072 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5073 }
5074
5075 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5076 * acquiring the locks... As quota files are never truncated and quota code
5077 * itself serializes the operations (and no one else should touch the files)
5078 * we don't have to be afraid of races */
5079 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5080 size_t len, loff_t off)
5081 {
5082 struct inode *inode = sb_dqopt(sb)->files[type];
5083 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5084 int err = 0;
5085 int offset = off & (sb->s_blocksize - 1);
5086 int tocopy;
5087 size_t toread;
5088 struct buffer_head *bh;
5089 loff_t i_size = i_size_read(inode);
5090
5091 if (off > i_size)
5092 return 0;
5093 if (off+len > i_size)
5094 len = i_size-off;
5095 toread = len;
5096 while (toread > 0) {
5097 tocopy = sb->s_blocksize - offset < toread ?
5098 sb->s_blocksize - offset : toread;
5099 bh = ext4_bread(NULL, inode, blk, 0, &err);
5100 if (err)
5101 return err;
5102 if (!bh) /* A hole? */
5103 memset(data, 0, tocopy);
5104 else
5105 memcpy(data, bh->b_data+offset, tocopy);
5106 brelse(bh);
5107 offset = 0;
5108 toread -= tocopy;
5109 data += tocopy;
5110 blk++;
5111 }
5112 return len;
5113 }
5114
5115 /* Write to quotafile (we know the transaction is already started and has
5116 * enough credits) */
5117 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5118 const char *data, size_t len, loff_t off)
5119 {
5120 struct inode *inode = sb_dqopt(sb)->files[type];
5121 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5122 int err = 0;
5123 int offset = off & (sb->s_blocksize - 1);
5124 struct buffer_head *bh;
5125 handle_t *handle = journal_current_handle();
5126
5127 if (EXT4_SB(sb)->s_journal && !handle) {
5128 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5129 " cancelled because transaction is not started",
5130 (unsigned long long)off, (unsigned long long)len);
5131 return -EIO;
5132 }
5133 /*
5134 * Since we account only one data block in transaction credits,
5135 * then it is impossible to cross a block boundary.
5136 */
5137 if (sb->s_blocksize - offset < len) {
5138 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5139 " cancelled because not block aligned",
5140 (unsigned long long)off, (unsigned long long)len);
5141 return -EIO;
5142 }
5143
5144 bh = ext4_bread(handle, inode, blk, 1, &err);
5145 if (!bh)
5146 goto out;
5147 err = ext4_journal_get_write_access(handle, bh);
5148 if (err) {
5149 brelse(bh);
5150 goto out;
5151 }
5152 lock_buffer(bh);
5153 memcpy(bh->b_data+offset, data, len);
5154 flush_dcache_page(bh->b_page);
5155 unlock_buffer(bh);
5156 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5157 brelse(bh);
5158 out:
5159 if (err)
5160 return err;
5161 if (inode->i_size < off + len) {
5162 i_size_write(inode, off + len);
5163 EXT4_I(inode)->i_disksize = inode->i_size;
5164 ext4_mark_inode_dirty(handle, inode);
5165 }
5166 return len;
5167 }
5168
5169 #endif
5170
5171 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5172 const char *dev_name, void *data)
5173 {
5174 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5175 }
5176
5177 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5178 static inline void register_as_ext2(void)
5179 {
5180 int err = register_filesystem(&ext2_fs_type);
5181 if (err)
5182 printk(KERN_WARNING
5183 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5184 }
5185
5186 static inline void unregister_as_ext2(void)
5187 {
5188 unregister_filesystem(&ext2_fs_type);
5189 }
5190
5191 static inline int ext2_feature_set_ok(struct super_block *sb)
5192 {
5193 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5194 return 0;
5195 if (sb->s_flags & MS_RDONLY)
5196 return 1;
5197 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5198 return 0;
5199 return 1;
5200 }
5201 MODULE_ALIAS("ext2");
5202 #else
5203 static inline void register_as_ext2(void) { }
5204 static inline void unregister_as_ext2(void) { }
5205 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5206 #endif
5207
5208 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5209 static inline void register_as_ext3(void)
5210 {
5211 int err = register_filesystem(&ext3_fs_type);
5212 if (err)
5213 printk(KERN_WARNING
5214 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5215 }
5216
5217 static inline void unregister_as_ext3(void)
5218 {
5219 unregister_filesystem(&ext3_fs_type);
5220 }
5221
5222 static inline int ext3_feature_set_ok(struct super_block *sb)
5223 {
5224 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5225 return 0;
5226 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5227 return 0;
5228 if (sb->s_flags & MS_RDONLY)
5229 return 1;
5230 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5231 return 0;
5232 return 1;
5233 }
5234 MODULE_ALIAS("ext3");
5235 #else
5236 static inline void register_as_ext3(void) { }
5237 static inline void unregister_as_ext3(void) { }
5238 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5239 #endif
5240
5241 static struct file_system_type ext4_fs_type = {
5242 .owner = THIS_MODULE,
5243 .name = "ext4",
5244 .mount = ext4_mount,
5245 .kill_sb = kill_block_super,
5246 .fs_flags = FS_REQUIRES_DEV,
5247 };
5248
5249 static int __init ext4_init_feat_adverts(void)
5250 {
5251 struct ext4_features *ef;
5252 int ret = -ENOMEM;
5253
5254 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5255 if (!ef)
5256 goto out;
5257
5258 ef->f_kobj.kset = ext4_kset;
5259 init_completion(&ef->f_kobj_unregister);
5260 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5261 "features");
5262 if (ret) {
5263 kfree(ef);
5264 goto out;
5265 }
5266
5267 ext4_feat = ef;
5268 ret = 0;
5269 out:
5270 return ret;
5271 }
5272
5273 static void ext4_exit_feat_adverts(void)
5274 {
5275 kobject_put(&ext4_feat->f_kobj);
5276 wait_for_completion(&ext4_feat->f_kobj_unregister);
5277 kfree(ext4_feat);
5278 }
5279
5280 /* Shared across all ext4 file systems */
5281 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5282 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5283
5284 static int __init ext4_init_fs(void)
5285 {
5286 int i, err;
5287
5288 ext4_li_info = NULL;
5289 mutex_init(&ext4_li_mtx);
5290
5291 ext4_check_flag_values();
5292
5293 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5294 mutex_init(&ext4__aio_mutex[i]);
5295 init_waitqueue_head(&ext4__ioend_wq[i]);
5296 }
5297
5298 err = ext4_init_pageio();
5299 if (err)
5300 return err;
5301 err = ext4_init_system_zone();
5302 if (err)
5303 goto out6;
5304 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5305 if (!ext4_kset) {
5306 err = -ENOMEM;
5307 goto out5;
5308 }
5309 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5310
5311 err = ext4_init_feat_adverts();
5312 if (err)
5313 goto out4;
5314
5315 err = ext4_init_mballoc();
5316 if (err)
5317 goto out3;
5318
5319 err = ext4_init_xattr();
5320 if (err)
5321 goto out2;
5322 err = init_inodecache();
5323 if (err)
5324 goto out1;
5325 register_as_ext3();
5326 register_as_ext2();
5327 err = register_filesystem(&ext4_fs_type);
5328 if (err)
5329 goto out;
5330
5331 return 0;
5332 out:
5333 unregister_as_ext2();
5334 unregister_as_ext3();
5335 destroy_inodecache();
5336 out1:
5337 ext4_exit_xattr();
5338 out2:
5339 ext4_exit_mballoc();
5340 out3:
5341 ext4_exit_feat_adverts();
5342 out4:
5343 if (ext4_proc_root)
5344 remove_proc_entry("fs/ext4", NULL);
5345 kset_unregister(ext4_kset);
5346 out5:
5347 ext4_exit_system_zone();
5348 out6:
5349 ext4_exit_pageio();
5350 return err;
5351 }
5352
5353 static void __exit ext4_exit_fs(void)
5354 {
5355 ext4_destroy_lazyinit_thread();
5356 unregister_as_ext2();
5357 unregister_as_ext3();
5358 unregister_filesystem(&ext4_fs_type);
5359 destroy_inodecache();
5360 ext4_exit_xattr();
5361 ext4_exit_mballoc();
5362 ext4_exit_feat_adverts();
5363 remove_proc_entry("fs/ext4", NULL);
5364 kset_unregister(ext4_kset);
5365 ext4_exit_system_zone();
5366 ext4_exit_pageio();
5367 }
5368
5369 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5370 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5371 MODULE_LICENSE("GPL");
5372 module_init(ext4_init_fs)
5373 module_exit(ext4_exit_fs)
This page took 0.184505 seconds and 5 git commands to generate.