Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81
82 /*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113 static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119 };
120 MODULE_ALIAS_FS("ext2");
121 MODULE_ALIAS("ext2");
122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123 #else
124 #define IS_EXT2_SB(sb) (0)
125 #endif
126
127
128 static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("ext3");
136 MODULE_ALIAS("ext3");
137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139 static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146 }
147
148 static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150 {
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158 }
159
160 static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162 {
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167 }
168
169 void ext4_superblock_csum_set(struct super_block *sb)
170 {
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177 }
178
179 void *ext4_kvmalloc(size_t size, gfp_t flags)
180 {
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187 }
188
189 void *ext4_kvzalloc(size_t size, gfp_t flags)
190 {
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197 }
198
199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205 }
206
207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213 }
214
215 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221 }
222
223 __u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229 }
230
231 __u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245 }
246
247 __u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249 {
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253 }
254
255 void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262
263 void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273 {
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277 }
278
279 void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285 }
286
287 void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301 }
302
303 void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305 {
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309 }
310
311
312 static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314 {
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339 }
340
341 static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343 {
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346 }
347
348 /*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356 static int block_device_ejected(struct super_block *sb)
357 {
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362 }
363
364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365 {
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382 }
383
384 /* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399 static void ext4_handle_error(struct super_block *sb)
400 {
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427 }
428
429 #define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433 void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435 {
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450 }
451
452 void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455 {
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480 }
481
482 void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485 {
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517 }
518
519 const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521 {
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557 }
558
559 /* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562 void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564 {
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583 }
584
585 /*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595 void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627 }
628
629 void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631 {
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643 }
644
645 #define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649 void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664 }
665
666 void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668 {
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682 }
683
684 void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688 __releases(bitlock)
689 __acquires(bitlock)
690 {
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734 }
735
736 void ext4_update_dynamic_rev(struct super_block *sb)
737 {
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759 }
760
761 /*
762 * Open the external journal device
763 */
764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765 {
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774 fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778 }
779
780 /*
781 * Release the journal device
782 */
783 static void ext4_blkdev_put(struct block_device *bdev)
784 {
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786 }
787
788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789 {
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796 }
797
798 static inline struct inode *orphan_list_entry(struct list_head *l)
799 {
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801 }
802
803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804 {
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819 }
820
821 static void ext4_put_super(struct super_block *sb)
822 {
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
863 brelse(sbi->s_sbh);
864 #ifdef CONFIG_QUOTA
865 for (i = 0; i < EXT4_MAXQUOTAS; i++)
866 kfree(sbi->s_qf_names[i]);
867 #endif
868
869 /* Debugging code just in case the in-memory inode orphan list
870 * isn't empty. The on-disk one can be non-empty if we've
871 * detected an error and taken the fs readonly, but the
872 * in-memory list had better be clean by this point. */
873 if (!list_empty(&sbi->s_orphan))
874 dump_orphan_list(sb, sbi);
875 J_ASSERT(list_empty(&sbi->s_orphan));
876
877 sync_blockdev(sb->s_bdev);
878 invalidate_bdev(sb->s_bdev);
879 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
880 /*
881 * Invalidate the journal device's buffers. We don't want them
882 * floating about in memory - the physical journal device may
883 * hotswapped, and it breaks the `ro-after' testing code.
884 */
885 sync_blockdev(sbi->journal_bdev);
886 invalidate_bdev(sbi->journal_bdev);
887 ext4_blkdev_remove(sbi);
888 }
889 if (sbi->s_mb_cache) {
890 ext4_xattr_destroy_cache(sbi->s_mb_cache);
891 sbi->s_mb_cache = NULL;
892 }
893 if (sbi->s_mmp_tsk)
894 kthread_stop(sbi->s_mmp_tsk);
895 sb->s_fs_info = NULL;
896 /*
897 * Now that we are completely done shutting down the
898 * superblock, we need to actually destroy the kobject.
899 */
900 kobject_put(&sbi->s_kobj);
901 wait_for_completion(&sbi->s_kobj_unregister);
902 if (sbi->s_chksum_driver)
903 crypto_free_shash(sbi->s_chksum_driver);
904 kfree(sbi->s_blockgroup_lock);
905 kfree(sbi);
906 }
907
908 static struct kmem_cache *ext4_inode_cachep;
909
910 /*
911 * Called inside transaction, so use GFP_NOFS
912 */
913 static struct inode *ext4_alloc_inode(struct super_block *sb)
914 {
915 struct ext4_inode_info *ei;
916
917 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
918 if (!ei)
919 return NULL;
920
921 ei->vfs_inode.i_version = 1;
922 spin_lock_init(&ei->i_raw_lock);
923 INIT_LIST_HEAD(&ei->i_prealloc_list);
924 spin_lock_init(&ei->i_prealloc_lock);
925 ext4_es_init_tree(&ei->i_es_tree);
926 rwlock_init(&ei->i_es_lock);
927 INIT_LIST_HEAD(&ei->i_es_list);
928 ei->i_es_all_nr = 0;
929 ei->i_es_shk_nr = 0;
930 ei->i_es_shrink_lblk = 0;
931 ei->i_reserved_data_blocks = 0;
932 ei->i_reserved_meta_blocks = 0;
933 ei->i_allocated_meta_blocks = 0;
934 ei->i_da_metadata_calc_len = 0;
935 ei->i_da_metadata_calc_last_lblock = 0;
936 spin_lock_init(&(ei->i_block_reservation_lock));
937 #ifdef CONFIG_QUOTA
938 ei->i_reserved_quota = 0;
939 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
940 #endif
941 ei->jinode = NULL;
942 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
943 spin_lock_init(&ei->i_completed_io_lock);
944 ei->i_sync_tid = 0;
945 ei->i_datasync_tid = 0;
946 atomic_set(&ei->i_unwritten, 0);
947 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
948 #ifdef CONFIG_EXT4_FS_ENCRYPTION
949 ei->i_crypt_info = NULL;
950 #endif
951 return &ei->vfs_inode;
952 }
953
954 static int ext4_drop_inode(struct inode *inode)
955 {
956 int drop = generic_drop_inode(inode);
957
958 trace_ext4_drop_inode(inode, drop);
959 return drop;
960 }
961
962 static void ext4_i_callback(struct rcu_head *head)
963 {
964 struct inode *inode = container_of(head, struct inode, i_rcu);
965 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
966 }
967
968 static void ext4_destroy_inode(struct inode *inode)
969 {
970 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
971 ext4_msg(inode->i_sb, KERN_ERR,
972 "Inode %lu (%p): orphan list check failed!",
973 inode->i_ino, EXT4_I(inode));
974 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
975 EXT4_I(inode), sizeof(struct ext4_inode_info),
976 true);
977 dump_stack();
978 }
979 call_rcu(&inode->i_rcu, ext4_i_callback);
980 }
981
982 static void init_once(void *foo)
983 {
984 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
985
986 INIT_LIST_HEAD(&ei->i_orphan);
987 init_rwsem(&ei->xattr_sem);
988 init_rwsem(&ei->i_data_sem);
989 init_rwsem(&ei->i_mmap_sem);
990 inode_init_once(&ei->vfs_inode);
991 }
992
993 static int __init init_inodecache(void)
994 {
995 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
996 sizeof(struct ext4_inode_info),
997 0, (SLAB_RECLAIM_ACCOUNT|
998 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
999 init_once);
1000 if (ext4_inode_cachep == NULL)
1001 return -ENOMEM;
1002 return 0;
1003 }
1004
1005 static void destroy_inodecache(void)
1006 {
1007 /*
1008 * Make sure all delayed rcu free inodes are flushed before we
1009 * destroy cache.
1010 */
1011 rcu_barrier();
1012 kmem_cache_destroy(ext4_inode_cachep);
1013 }
1014
1015 void ext4_clear_inode(struct inode *inode)
1016 {
1017 invalidate_inode_buffers(inode);
1018 clear_inode(inode);
1019 dquot_drop(inode);
1020 ext4_discard_preallocations(inode);
1021 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1022 if (EXT4_I(inode)->jinode) {
1023 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1024 EXT4_I(inode)->jinode);
1025 jbd2_free_inode(EXT4_I(inode)->jinode);
1026 EXT4_I(inode)->jinode = NULL;
1027 }
1028 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1029 if (EXT4_I(inode)->i_crypt_info)
1030 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1031 #endif
1032 }
1033
1034 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1035 u64 ino, u32 generation)
1036 {
1037 struct inode *inode;
1038
1039 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1040 return ERR_PTR(-ESTALE);
1041 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1042 return ERR_PTR(-ESTALE);
1043
1044 /* iget isn't really right if the inode is currently unallocated!!
1045 *
1046 * ext4_read_inode will return a bad_inode if the inode had been
1047 * deleted, so we should be safe.
1048 *
1049 * Currently we don't know the generation for parent directory, so
1050 * a generation of 0 means "accept any"
1051 */
1052 inode = ext4_iget_normal(sb, ino);
1053 if (IS_ERR(inode))
1054 return ERR_CAST(inode);
1055 if (generation && inode->i_generation != generation) {
1056 iput(inode);
1057 return ERR_PTR(-ESTALE);
1058 }
1059
1060 return inode;
1061 }
1062
1063 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1064 int fh_len, int fh_type)
1065 {
1066 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1067 ext4_nfs_get_inode);
1068 }
1069
1070 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1071 int fh_len, int fh_type)
1072 {
1073 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1074 ext4_nfs_get_inode);
1075 }
1076
1077 /*
1078 * Try to release metadata pages (indirect blocks, directories) which are
1079 * mapped via the block device. Since these pages could have journal heads
1080 * which would prevent try_to_free_buffers() from freeing them, we must use
1081 * jbd2 layer's try_to_free_buffers() function to release them.
1082 */
1083 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1084 gfp_t wait)
1085 {
1086 journal_t *journal = EXT4_SB(sb)->s_journal;
1087
1088 WARN_ON(PageChecked(page));
1089 if (!page_has_buffers(page))
1090 return 0;
1091 if (journal)
1092 return jbd2_journal_try_to_free_buffers(journal, page,
1093 wait & ~__GFP_DIRECT_RECLAIM);
1094 return try_to_free_buffers(page);
1095 }
1096
1097 #ifdef CONFIG_QUOTA
1098 static char *quotatypes[] = INITQFNAMES;
1099 #define QTYPE2NAME(t) (quotatypes[t])
1100
1101 static int ext4_write_dquot(struct dquot *dquot);
1102 static int ext4_acquire_dquot(struct dquot *dquot);
1103 static int ext4_release_dquot(struct dquot *dquot);
1104 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1105 static int ext4_write_info(struct super_block *sb, int type);
1106 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1107 struct path *path);
1108 static int ext4_quota_off(struct super_block *sb, int type);
1109 static int ext4_quota_on_mount(struct super_block *sb, int type);
1110 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1111 size_t len, loff_t off);
1112 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1113 const char *data, size_t len, loff_t off);
1114 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1115 unsigned int flags);
1116 static int ext4_enable_quotas(struct super_block *sb);
1117 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1118
1119 static struct dquot **ext4_get_dquots(struct inode *inode)
1120 {
1121 return EXT4_I(inode)->i_dquot;
1122 }
1123
1124 static const struct dquot_operations ext4_quota_operations = {
1125 .get_reserved_space = ext4_get_reserved_space,
1126 .write_dquot = ext4_write_dquot,
1127 .acquire_dquot = ext4_acquire_dquot,
1128 .release_dquot = ext4_release_dquot,
1129 .mark_dirty = ext4_mark_dquot_dirty,
1130 .write_info = ext4_write_info,
1131 .alloc_dquot = dquot_alloc,
1132 .destroy_dquot = dquot_destroy,
1133 .get_projid = ext4_get_projid,
1134 .get_next_id = ext4_get_next_id,
1135 };
1136
1137 static const struct quotactl_ops ext4_qctl_operations = {
1138 .quota_on = ext4_quota_on,
1139 .quota_off = ext4_quota_off,
1140 .quota_sync = dquot_quota_sync,
1141 .get_state = dquot_get_state,
1142 .set_info = dquot_set_dqinfo,
1143 .get_dqblk = dquot_get_dqblk,
1144 .set_dqblk = dquot_set_dqblk,
1145 .get_nextdqblk = dquot_get_next_dqblk,
1146 };
1147 #endif
1148
1149 static const struct super_operations ext4_sops = {
1150 .alloc_inode = ext4_alloc_inode,
1151 .destroy_inode = ext4_destroy_inode,
1152 .write_inode = ext4_write_inode,
1153 .dirty_inode = ext4_dirty_inode,
1154 .drop_inode = ext4_drop_inode,
1155 .evict_inode = ext4_evict_inode,
1156 .put_super = ext4_put_super,
1157 .sync_fs = ext4_sync_fs,
1158 .freeze_fs = ext4_freeze,
1159 .unfreeze_fs = ext4_unfreeze,
1160 .statfs = ext4_statfs,
1161 .remount_fs = ext4_remount,
1162 .show_options = ext4_show_options,
1163 #ifdef CONFIG_QUOTA
1164 .quota_read = ext4_quota_read,
1165 .quota_write = ext4_quota_write,
1166 .get_dquots = ext4_get_dquots,
1167 #endif
1168 .bdev_try_to_free_page = bdev_try_to_free_page,
1169 };
1170
1171 static const struct export_operations ext4_export_ops = {
1172 .fh_to_dentry = ext4_fh_to_dentry,
1173 .fh_to_parent = ext4_fh_to_parent,
1174 .get_parent = ext4_get_parent,
1175 };
1176
1177 enum {
1178 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1179 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1180 Opt_nouid32, Opt_debug, Opt_removed,
1181 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1182 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1183 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1184 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1185 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1186 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1187 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1188 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1189 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1190 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1191 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1192 Opt_lazytime, Opt_nolazytime,
1193 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1194 Opt_inode_readahead_blks, Opt_journal_ioprio,
1195 Opt_dioread_nolock, Opt_dioread_lock,
1196 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1197 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1198 };
1199
1200 static const match_table_t tokens = {
1201 {Opt_bsd_df, "bsddf"},
1202 {Opt_minix_df, "minixdf"},
1203 {Opt_grpid, "grpid"},
1204 {Opt_grpid, "bsdgroups"},
1205 {Opt_nogrpid, "nogrpid"},
1206 {Opt_nogrpid, "sysvgroups"},
1207 {Opt_resgid, "resgid=%u"},
1208 {Opt_resuid, "resuid=%u"},
1209 {Opt_sb, "sb=%u"},
1210 {Opt_err_cont, "errors=continue"},
1211 {Opt_err_panic, "errors=panic"},
1212 {Opt_err_ro, "errors=remount-ro"},
1213 {Opt_nouid32, "nouid32"},
1214 {Opt_debug, "debug"},
1215 {Opt_removed, "oldalloc"},
1216 {Opt_removed, "orlov"},
1217 {Opt_user_xattr, "user_xattr"},
1218 {Opt_nouser_xattr, "nouser_xattr"},
1219 {Opt_acl, "acl"},
1220 {Opt_noacl, "noacl"},
1221 {Opt_noload, "norecovery"},
1222 {Opt_noload, "noload"},
1223 {Opt_removed, "nobh"},
1224 {Opt_removed, "bh"},
1225 {Opt_commit, "commit=%u"},
1226 {Opt_min_batch_time, "min_batch_time=%u"},
1227 {Opt_max_batch_time, "max_batch_time=%u"},
1228 {Opt_journal_dev, "journal_dev=%u"},
1229 {Opt_journal_path, "journal_path=%s"},
1230 {Opt_journal_checksum, "journal_checksum"},
1231 {Opt_nojournal_checksum, "nojournal_checksum"},
1232 {Opt_journal_async_commit, "journal_async_commit"},
1233 {Opt_abort, "abort"},
1234 {Opt_data_journal, "data=journal"},
1235 {Opt_data_ordered, "data=ordered"},
1236 {Opt_data_writeback, "data=writeback"},
1237 {Opt_data_err_abort, "data_err=abort"},
1238 {Opt_data_err_ignore, "data_err=ignore"},
1239 {Opt_offusrjquota, "usrjquota="},
1240 {Opt_usrjquota, "usrjquota=%s"},
1241 {Opt_offgrpjquota, "grpjquota="},
1242 {Opt_grpjquota, "grpjquota=%s"},
1243 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1244 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1245 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1246 {Opt_grpquota, "grpquota"},
1247 {Opt_noquota, "noquota"},
1248 {Opt_quota, "quota"},
1249 {Opt_usrquota, "usrquota"},
1250 {Opt_barrier, "barrier=%u"},
1251 {Opt_barrier, "barrier"},
1252 {Opt_nobarrier, "nobarrier"},
1253 {Opt_i_version, "i_version"},
1254 {Opt_dax, "dax"},
1255 {Opt_stripe, "stripe=%u"},
1256 {Opt_delalloc, "delalloc"},
1257 {Opt_lazytime, "lazytime"},
1258 {Opt_nolazytime, "nolazytime"},
1259 {Opt_nodelalloc, "nodelalloc"},
1260 {Opt_removed, "mblk_io_submit"},
1261 {Opt_removed, "nomblk_io_submit"},
1262 {Opt_block_validity, "block_validity"},
1263 {Opt_noblock_validity, "noblock_validity"},
1264 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1265 {Opt_journal_ioprio, "journal_ioprio=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1267 {Opt_auto_da_alloc, "auto_da_alloc"},
1268 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1269 {Opt_dioread_nolock, "dioread_nolock"},
1270 {Opt_dioread_lock, "dioread_lock"},
1271 {Opt_discard, "discard"},
1272 {Opt_nodiscard, "nodiscard"},
1273 {Opt_init_itable, "init_itable=%u"},
1274 {Opt_init_itable, "init_itable"},
1275 {Opt_noinit_itable, "noinit_itable"},
1276 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1277 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1278 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1279 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1280 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1282 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1283 {Opt_err, NULL},
1284 };
1285
1286 static ext4_fsblk_t get_sb_block(void **data)
1287 {
1288 ext4_fsblk_t sb_block;
1289 char *options = (char *) *data;
1290
1291 if (!options || strncmp(options, "sb=", 3) != 0)
1292 return 1; /* Default location */
1293
1294 options += 3;
1295 /* TODO: use simple_strtoll with >32bit ext4 */
1296 sb_block = simple_strtoul(options, &options, 0);
1297 if (*options && *options != ',') {
1298 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1299 (char *) *data);
1300 return 1;
1301 }
1302 if (*options == ',')
1303 options++;
1304 *data = (void *) options;
1305
1306 return sb_block;
1307 }
1308
1309 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1310 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1311 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1312
1313 #ifdef CONFIG_QUOTA
1314 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1315 {
1316 struct ext4_sb_info *sbi = EXT4_SB(sb);
1317 char *qname;
1318 int ret = -1;
1319
1320 if (sb_any_quota_loaded(sb) &&
1321 !sbi->s_qf_names[qtype]) {
1322 ext4_msg(sb, KERN_ERR,
1323 "Cannot change journaled "
1324 "quota options when quota turned on");
1325 return -1;
1326 }
1327 if (ext4_has_feature_quota(sb)) {
1328 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1329 "ignored when QUOTA feature is enabled");
1330 return 1;
1331 }
1332 qname = match_strdup(args);
1333 if (!qname) {
1334 ext4_msg(sb, KERN_ERR,
1335 "Not enough memory for storing quotafile name");
1336 return -1;
1337 }
1338 if (sbi->s_qf_names[qtype]) {
1339 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1340 ret = 1;
1341 else
1342 ext4_msg(sb, KERN_ERR,
1343 "%s quota file already specified",
1344 QTYPE2NAME(qtype));
1345 goto errout;
1346 }
1347 if (strchr(qname, '/')) {
1348 ext4_msg(sb, KERN_ERR,
1349 "quotafile must be on filesystem root");
1350 goto errout;
1351 }
1352 sbi->s_qf_names[qtype] = qname;
1353 set_opt(sb, QUOTA);
1354 return 1;
1355 errout:
1356 kfree(qname);
1357 return ret;
1358 }
1359
1360 static int clear_qf_name(struct super_block *sb, int qtype)
1361 {
1362
1363 struct ext4_sb_info *sbi = EXT4_SB(sb);
1364
1365 if (sb_any_quota_loaded(sb) &&
1366 sbi->s_qf_names[qtype]) {
1367 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1368 " when quota turned on");
1369 return -1;
1370 }
1371 kfree(sbi->s_qf_names[qtype]);
1372 sbi->s_qf_names[qtype] = NULL;
1373 return 1;
1374 }
1375 #endif
1376
1377 #define MOPT_SET 0x0001
1378 #define MOPT_CLEAR 0x0002
1379 #define MOPT_NOSUPPORT 0x0004
1380 #define MOPT_EXPLICIT 0x0008
1381 #define MOPT_CLEAR_ERR 0x0010
1382 #define MOPT_GTE0 0x0020
1383 #ifdef CONFIG_QUOTA
1384 #define MOPT_Q 0
1385 #define MOPT_QFMT 0x0040
1386 #else
1387 #define MOPT_Q MOPT_NOSUPPORT
1388 #define MOPT_QFMT MOPT_NOSUPPORT
1389 #endif
1390 #define MOPT_DATAJ 0x0080
1391 #define MOPT_NO_EXT2 0x0100
1392 #define MOPT_NO_EXT3 0x0200
1393 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1394 #define MOPT_STRING 0x0400
1395
1396 static const struct mount_opts {
1397 int token;
1398 int mount_opt;
1399 int flags;
1400 } ext4_mount_opts[] = {
1401 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1402 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1403 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1404 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1405 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1406 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1407 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1408 MOPT_EXT4_ONLY | MOPT_SET},
1409 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1410 MOPT_EXT4_ONLY | MOPT_CLEAR},
1411 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1412 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1413 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1414 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1415 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1416 MOPT_EXT4_ONLY | MOPT_CLEAR},
1417 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1418 MOPT_EXT4_ONLY | MOPT_CLEAR},
1419 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1420 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1421 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1422 EXT4_MOUNT_JOURNAL_CHECKSUM),
1423 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1424 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1425 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1428 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1429 MOPT_NO_EXT2},
1430 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1431 MOPT_NO_EXT2},
1432 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1433 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1434 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1435 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1436 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1437 {Opt_commit, 0, MOPT_GTE0},
1438 {Opt_max_batch_time, 0, MOPT_GTE0},
1439 {Opt_min_batch_time, 0, MOPT_GTE0},
1440 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1441 {Opt_init_itable, 0, MOPT_GTE0},
1442 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1443 {Opt_stripe, 0, MOPT_GTE0},
1444 {Opt_resuid, 0, MOPT_GTE0},
1445 {Opt_resgid, 0, MOPT_GTE0},
1446 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1447 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1448 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1449 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1451 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1452 MOPT_NO_EXT2 | MOPT_DATAJ},
1453 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1454 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1455 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1456 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1457 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1458 #else
1459 {Opt_acl, 0, MOPT_NOSUPPORT},
1460 {Opt_noacl, 0, MOPT_NOSUPPORT},
1461 #endif
1462 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1463 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1464 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1465 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1466 MOPT_SET | MOPT_Q},
1467 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1468 MOPT_SET | MOPT_Q},
1469 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1470 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1471 {Opt_usrjquota, 0, MOPT_Q},
1472 {Opt_grpjquota, 0, MOPT_Q},
1473 {Opt_offusrjquota, 0, MOPT_Q},
1474 {Opt_offgrpjquota, 0, MOPT_Q},
1475 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1477 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1478 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1479 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1480 {Opt_err, 0, 0}
1481 };
1482
1483 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1484 substring_t *args, unsigned long *journal_devnum,
1485 unsigned int *journal_ioprio, int is_remount)
1486 {
1487 struct ext4_sb_info *sbi = EXT4_SB(sb);
1488 const struct mount_opts *m;
1489 kuid_t uid;
1490 kgid_t gid;
1491 int arg = 0;
1492
1493 #ifdef CONFIG_QUOTA
1494 if (token == Opt_usrjquota)
1495 return set_qf_name(sb, USRQUOTA, &args[0]);
1496 else if (token == Opt_grpjquota)
1497 return set_qf_name(sb, GRPQUOTA, &args[0]);
1498 else if (token == Opt_offusrjquota)
1499 return clear_qf_name(sb, USRQUOTA);
1500 else if (token == Opt_offgrpjquota)
1501 return clear_qf_name(sb, GRPQUOTA);
1502 #endif
1503 switch (token) {
1504 case Opt_noacl:
1505 case Opt_nouser_xattr:
1506 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1507 break;
1508 case Opt_sb:
1509 return 1; /* handled by get_sb_block() */
1510 case Opt_removed:
1511 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1512 return 1;
1513 case Opt_abort:
1514 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1515 return 1;
1516 case Opt_i_version:
1517 sb->s_flags |= MS_I_VERSION;
1518 return 1;
1519 case Opt_lazytime:
1520 sb->s_flags |= MS_LAZYTIME;
1521 return 1;
1522 case Opt_nolazytime:
1523 sb->s_flags &= ~MS_LAZYTIME;
1524 return 1;
1525 }
1526
1527 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1528 if (token == m->token)
1529 break;
1530
1531 if (m->token == Opt_err) {
1532 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1533 "or missing value", opt);
1534 return -1;
1535 }
1536
1537 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1538 ext4_msg(sb, KERN_ERR,
1539 "Mount option \"%s\" incompatible with ext2", opt);
1540 return -1;
1541 }
1542 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1543 ext4_msg(sb, KERN_ERR,
1544 "Mount option \"%s\" incompatible with ext3", opt);
1545 return -1;
1546 }
1547
1548 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1549 return -1;
1550 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1551 return -1;
1552 if (m->flags & MOPT_EXPLICIT) {
1553 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1554 set_opt2(sb, EXPLICIT_DELALLOC);
1555 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1556 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1557 } else
1558 return -1;
1559 }
1560 if (m->flags & MOPT_CLEAR_ERR)
1561 clear_opt(sb, ERRORS_MASK);
1562 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1563 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1564 "options when quota turned on");
1565 return -1;
1566 }
1567
1568 if (m->flags & MOPT_NOSUPPORT) {
1569 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1570 } else if (token == Opt_commit) {
1571 if (arg == 0)
1572 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1573 sbi->s_commit_interval = HZ * arg;
1574 } else if (token == Opt_max_batch_time) {
1575 sbi->s_max_batch_time = arg;
1576 } else if (token == Opt_min_batch_time) {
1577 sbi->s_min_batch_time = arg;
1578 } else if (token == Opt_inode_readahead_blks) {
1579 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1580 ext4_msg(sb, KERN_ERR,
1581 "EXT4-fs: inode_readahead_blks must be "
1582 "0 or a power of 2 smaller than 2^31");
1583 return -1;
1584 }
1585 sbi->s_inode_readahead_blks = arg;
1586 } else if (token == Opt_init_itable) {
1587 set_opt(sb, INIT_INODE_TABLE);
1588 if (!args->from)
1589 arg = EXT4_DEF_LI_WAIT_MULT;
1590 sbi->s_li_wait_mult = arg;
1591 } else if (token == Opt_max_dir_size_kb) {
1592 sbi->s_max_dir_size_kb = arg;
1593 } else if (token == Opt_stripe) {
1594 sbi->s_stripe = arg;
1595 } else if (token == Opt_resuid) {
1596 uid = make_kuid(current_user_ns(), arg);
1597 if (!uid_valid(uid)) {
1598 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1599 return -1;
1600 }
1601 sbi->s_resuid = uid;
1602 } else if (token == Opt_resgid) {
1603 gid = make_kgid(current_user_ns(), arg);
1604 if (!gid_valid(gid)) {
1605 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1606 return -1;
1607 }
1608 sbi->s_resgid = gid;
1609 } else if (token == Opt_journal_dev) {
1610 if (is_remount) {
1611 ext4_msg(sb, KERN_ERR,
1612 "Cannot specify journal on remount");
1613 return -1;
1614 }
1615 *journal_devnum = arg;
1616 } else if (token == Opt_journal_path) {
1617 char *journal_path;
1618 struct inode *journal_inode;
1619 struct path path;
1620 int error;
1621
1622 if (is_remount) {
1623 ext4_msg(sb, KERN_ERR,
1624 "Cannot specify journal on remount");
1625 return -1;
1626 }
1627 journal_path = match_strdup(&args[0]);
1628 if (!journal_path) {
1629 ext4_msg(sb, KERN_ERR, "error: could not dup "
1630 "journal device string");
1631 return -1;
1632 }
1633
1634 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1635 if (error) {
1636 ext4_msg(sb, KERN_ERR, "error: could not find "
1637 "journal device path: error %d", error);
1638 kfree(journal_path);
1639 return -1;
1640 }
1641
1642 journal_inode = d_inode(path.dentry);
1643 if (!S_ISBLK(journal_inode->i_mode)) {
1644 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1645 "is not a block device", journal_path);
1646 path_put(&path);
1647 kfree(journal_path);
1648 return -1;
1649 }
1650
1651 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1652 path_put(&path);
1653 kfree(journal_path);
1654 } else if (token == Opt_journal_ioprio) {
1655 if (arg > 7) {
1656 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1657 " (must be 0-7)");
1658 return -1;
1659 }
1660 *journal_ioprio =
1661 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1662 } else if (token == Opt_test_dummy_encryption) {
1663 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1664 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1665 ext4_msg(sb, KERN_WARNING,
1666 "Test dummy encryption mode enabled");
1667 #else
1668 ext4_msg(sb, KERN_WARNING,
1669 "Test dummy encryption mount option ignored");
1670 #endif
1671 } else if (m->flags & MOPT_DATAJ) {
1672 if (is_remount) {
1673 if (!sbi->s_journal)
1674 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1675 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1676 ext4_msg(sb, KERN_ERR,
1677 "Cannot change data mode on remount");
1678 return -1;
1679 }
1680 } else {
1681 clear_opt(sb, DATA_FLAGS);
1682 sbi->s_mount_opt |= m->mount_opt;
1683 }
1684 #ifdef CONFIG_QUOTA
1685 } else if (m->flags & MOPT_QFMT) {
1686 if (sb_any_quota_loaded(sb) &&
1687 sbi->s_jquota_fmt != m->mount_opt) {
1688 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1689 "quota options when quota turned on");
1690 return -1;
1691 }
1692 if (ext4_has_feature_quota(sb)) {
1693 ext4_msg(sb, KERN_INFO,
1694 "Quota format mount options ignored "
1695 "when QUOTA feature is enabled");
1696 return 1;
1697 }
1698 sbi->s_jquota_fmt = m->mount_opt;
1699 #endif
1700 } else if (token == Opt_dax) {
1701 #ifdef CONFIG_FS_DAX
1702 ext4_msg(sb, KERN_WARNING,
1703 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1704 sbi->s_mount_opt |= m->mount_opt;
1705 #else
1706 ext4_msg(sb, KERN_INFO, "dax option not supported");
1707 return -1;
1708 #endif
1709 } else if (token == Opt_data_err_abort) {
1710 sbi->s_mount_opt |= m->mount_opt;
1711 } else if (token == Opt_data_err_ignore) {
1712 sbi->s_mount_opt &= ~m->mount_opt;
1713 } else {
1714 if (!args->from)
1715 arg = 1;
1716 if (m->flags & MOPT_CLEAR)
1717 arg = !arg;
1718 else if (unlikely(!(m->flags & MOPT_SET))) {
1719 ext4_msg(sb, KERN_WARNING,
1720 "buggy handling of option %s", opt);
1721 WARN_ON(1);
1722 return -1;
1723 }
1724 if (arg != 0)
1725 sbi->s_mount_opt |= m->mount_opt;
1726 else
1727 sbi->s_mount_opt &= ~m->mount_opt;
1728 }
1729 return 1;
1730 }
1731
1732 static int parse_options(char *options, struct super_block *sb,
1733 unsigned long *journal_devnum,
1734 unsigned int *journal_ioprio,
1735 int is_remount)
1736 {
1737 struct ext4_sb_info *sbi = EXT4_SB(sb);
1738 char *p;
1739 substring_t args[MAX_OPT_ARGS];
1740 int token;
1741
1742 if (!options)
1743 return 1;
1744
1745 while ((p = strsep(&options, ",")) != NULL) {
1746 if (!*p)
1747 continue;
1748 /*
1749 * Initialize args struct so we know whether arg was
1750 * found; some options take optional arguments.
1751 */
1752 args[0].to = args[0].from = NULL;
1753 token = match_token(p, tokens, args);
1754 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1755 journal_ioprio, is_remount) < 0)
1756 return 0;
1757 }
1758 #ifdef CONFIG_QUOTA
1759 if (ext4_has_feature_quota(sb) &&
1760 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1761 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1762 "mount options ignored.");
1763 clear_opt(sb, USRQUOTA);
1764 clear_opt(sb, GRPQUOTA);
1765 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1766 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1767 clear_opt(sb, USRQUOTA);
1768
1769 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1770 clear_opt(sb, GRPQUOTA);
1771
1772 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1773 ext4_msg(sb, KERN_ERR, "old and new quota "
1774 "format mixing");
1775 return 0;
1776 }
1777
1778 if (!sbi->s_jquota_fmt) {
1779 ext4_msg(sb, KERN_ERR, "journaled quota format "
1780 "not specified");
1781 return 0;
1782 }
1783 }
1784 #endif
1785 if (test_opt(sb, DIOREAD_NOLOCK)) {
1786 int blocksize =
1787 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1788
1789 if (blocksize < PAGE_SIZE) {
1790 ext4_msg(sb, KERN_ERR, "can't mount with "
1791 "dioread_nolock if block size != PAGE_SIZE");
1792 return 0;
1793 }
1794 }
1795 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1796 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1797 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1798 "in data=ordered mode");
1799 return 0;
1800 }
1801 return 1;
1802 }
1803
1804 static inline void ext4_show_quota_options(struct seq_file *seq,
1805 struct super_block *sb)
1806 {
1807 #if defined(CONFIG_QUOTA)
1808 struct ext4_sb_info *sbi = EXT4_SB(sb);
1809
1810 if (sbi->s_jquota_fmt) {
1811 char *fmtname = "";
1812
1813 switch (sbi->s_jquota_fmt) {
1814 case QFMT_VFS_OLD:
1815 fmtname = "vfsold";
1816 break;
1817 case QFMT_VFS_V0:
1818 fmtname = "vfsv0";
1819 break;
1820 case QFMT_VFS_V1:
1821 fmtname = "vfsv1";
1822 break;
1823 }
1824 seq_printf(seq, ",jqfmt=%s", fmtname);
1825 }
1826
1827 if (sbi->s_qf_names[USRQUOTA])
1828 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1829
1830 if (sbi->s_qf_names[GRPQUOTA])
1831 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1832 #endif
1833 }
1834
1835 static const char *token2str(int token)
1836 {
1837 const struct match_token *t;
1838
1839 for (t = tokens; t->token != Opt_err; t++)
1840 if (t->token == token && !strchr(t->pattern, '='))
1841 break;
1842 return t->pattern;
1843 }
1844
1845 /*
1846 * Show an option if
1847 * - it's set to a non-default value OR
1848 * - if the per-sb default is different from the global default
1849 */
1850 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1851 int nodefs)
1852 {
1853 struct ext4_sb_info *sbi = EXT4_SB(sb);
1854 struct ext4_super_block *es = sbi->s_es;
1855 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1856 const struct mount_opts *m;
1857 char sep = nodefs ? '\n' : ',';
1858
1859 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1860 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1861
1862 if (sbi->s_sb_block != 1)
1863 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1864
1865 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1866 int want_set = m->flags & MOPT_SET;
1867 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1868 (m->flags & MOPT_CLEAR_ERR))
1869 continue;
1870 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1871 continue; /* skip if same as the default */
1872 if ((want_set &&
1873 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1874 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1875 continue; /* select Opt_noFoo vs Opt_Foo */
1876 SEQ_OPTS_PRINT("%s", token2str(m->token));
1877 }
1878
1879 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1880 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1881 SEQ_OPTS_PRINT("resuid=%u",
1882 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1883 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1884 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1885 SEQ_OPTS_PRINT("resgid=%u",
1886 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1887 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1888 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1889 SEQ_OPTS_PUTS("errors=remount-ro");
1890 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1891 SEQ_OPTS_PUTS("errors=continue");
1892 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1893 SEQ_OPTS_PUTS("errors=panic");
1894 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1895 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1896 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1897 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1898 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1899 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1900 if (sb->s_flags & MS_I_VERSION)
1901 SEQ_OPTS_PUTS("i_version");
1902 if (nodefs || sbi->s_stripe)
1903 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1904 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1905 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1906 SEQ_OPTS_PUTS("data=journal");
1907 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1908 SEQ_OPTS_PUTS("data=ordered");
1909 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1910 SEQ_OPTS_PUTS("data=writeback");
1911 }
1912 if (nodefs ||
1913 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1914 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1915 sbi->s_inode_readahead_blks);
1916
1917 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1918 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1919 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1920 if (nodefs || sbi->s_max_dir_size_kb)
1921 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1922 if (test_opt(sb, DATA_ERR_ABORT))
1923 SEQ_OPTS_PUTS("data_err=abort");
1924
1925 ext4_show_quota_options(seq, sb);
1926 return 0;
1927 }
1928
1929 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1930 {
1931 return _ext4_show_options(seq, root->d_sb, 0);
1932 }
1933
1934 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1935 {
1936 struct super_block *sb = seq->private;
1937 int rc;
1938
1939 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1940 rc = _ext4_show_options(seq, sb, 1);
1941 seq_puts(seq, "\n");
1942 return rc;
1943 }
1944
1945 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1946 int read_only)
1947 {
1948 struct ext4_sb_info *sbi = EXT4_SB(sb);
1949 int res = 0;
1950
1951 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1952 ext4_msg(sb, KERN_ERR, "revision level too high, "
1953 "forcing read-only mode");
1954 res = MS_RDONLY;
1955 }
1956 if (read_only)
1957 goto done;
1958 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1959 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1960 "running e2fsck is recommended");
1961 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1962 ext4_msg(sb, KERN_WARNING,
1963 "warning: mounting fs with errors, "
1964 "running e2fsck is recommended");
1965 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1966 le16_to_cpu(es->s_mnt_count) >=
1967 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1968 ext4_msg(sb, KERN_WARNING,
1969 "warning: maximal mount count reached, "
1970 "running e2fsck is recommended");
1971 else if (le32_to_cpu(es->s_checkinterval) &&
1972 (le32_to_cpu(es->s_lastcheck) +
1973 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1974 ext4_msg(sb, KERN_WARNING,
1975 "warning: checktime reached, "
1976 "running e2fsck is recommended");
1977 if (!sbi->s_journal)
1978 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1979 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1980 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1981 le16_add_cpu(&es->s_mnt_count, 1);
1982 es->s_mtime = cpu_to_le32(get_seconds());
1983 ext4_update_dynamic_rev(sb);
1984 if (sbi->s_journal)
1985 ext4_set_feature_journal_needs_recovery(sb);
1986
1987 ext4_commit_super(sb, 1);
1988 done:
1989 if (test_opt(sb, DEBUG))
1990 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1991 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1992 sb->s_blocksize,
1993 sbi->s_groups_count,
1994 EXT4_BLOCKS_PER_GROUP(sb),
1995 EXT4_INODES_PER_GROUP(sb),
1996 sbi->s_mount_opt, sbi->s_mount_opt2);
1997
1998 cleancache_init_fs(sb);
1999 return res;
2000 }
2001
2002 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2003 {
2004 struct ext4_sb_info *sbi = EXT4_SB(sb);
2005 struct flex_groups *new_groups;
2006 int size;
2007
2008 if (!sbi->s_log_groups_per_flex)
2009 return 0;
2010
2011 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2012 if (size <= sbi->s_flex_groups_allocated)
2013 return 0;
2014
2015 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2016 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2017 if (!new_groups) {
2018 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2019 size / (int) sizeof(struct flex_groups));
2020 return -ENOMEM;
2021 }
2022
2023 if (sbi->s_flex_groups) {
2024 memcpy(new_groups, sbi->s_flex_groups,
2025 (sbi->s_flex_groups_allocated *
2026 sizeof(struct flex_groups)));
2027 kvfree(sbi->s_flex_groups);
2028 }
2029 sbi->s_flex_groups = new_groups;
2030 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2031 return 0;
2032 }
2033
2034 static int ext4_fill_flex_info(struct super_block *sb)
2035 {
2036 struct ext4_sb_info *sbi = EXT4_SB(sb);
2037 struct ext4_group_desc *gdp = NULL;
2038 ext4_group_t flex_group;
2039 int i, err;
2040
2041 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2042 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2043 sbi->s_log_groups_per_flex = 0;
2044 return 1;
2045 }
2046
2047 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2048 if (err)
2049 goto failed;
2050
2051 for (i = 0; i < sbi->s_groups_count; i++) {
2052 gdp = ext4_get_group_desc(sb, i, NULL);
2053
2054 flex_group = ext4_flex_group(sbi, i);
2055 atomic_add(ext4_free_inodes_count(sb, gdp),
2056 &sbi->s_flex_groups[flex_group].free_inodes);
2057 atomic64_add(ext4_free_group_clusters(sb, gdp),
2058 &sbi->s_flex_groups[flex_group].free_clusters);
2059 atomic_add(ext4_used_dirs_count(sb, gdp),
2060 &sbi->s_flex_groups[flex_group].used_dirs);
2061 }
2062
2063 return 1;
2064 failed:
2065 return 0;
2066 }
2067
2068 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2069 struct ext4_group_desc *gdp)
2070 {
2071 int offset;
2072 __u16 crc = 0;
2073 __le32 le_group = cpu_to_le32(block_group);
2074 struct ext4_sb_info *sbi = EXT4_SB(sb);
2075
2076 if (ext4_has_metadata_csum(sbi->s_sb)) {
2077 /* Use new metadata_csum algorithm */
2078 __le16 save_csum;
2079 __u32 csum32;
2080
2081 save_csum = gdp->bg_checksum;
2082 gdp->bg_checksum = 0;
2083 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2084 sizeof(le_group));
2085 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2086 sbi->s_desc_size);
2087 gdp->bg_checksum = save_csum;
2088
2089 crc = csum32 & 0xFFFF;
2090 goto out;
2091 }
2092
2093 /* old crc16 code */
2094 if (!ext4_has_feature_gdt_csum(sb))
2095 return 0;
2096
2097 offset = offsetof(struct ext4_group_desc, bg_checksum);
2098
2099 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2100 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2101 crc = crc16(crc, (__u8 *)gdp, offset);
2102 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2103 /* for checksum of struct ext4_group_desc do the rest...*/
2104 if (ext4_has_feature_64bit(sb) &&
2105 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2106 crc = crc16(crc, (__u8 *)gdp + offset,
2107 le16_to_cpu(sbi->s_es->s_desc_size) -
2108 offset);
2109
2110 out:
2111 return cpu_to_le16(crc);
2112 }
2113
2114 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2115 struct ext4_group_desc *gdp)
2116 {
2117 if (ext4_has_group_desc_csum(sb) &&
2118 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2119 return 0;
2120
2121 return 1;
2122 }
2123
2124 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2125 struct ext4_group_desc *gdp)
2126 {
2127 if (!ext4_has_group_desc_csum(sb))
2128 return;
2129 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2130 }
2131
2132 /* Called at mount-time, super-block is locked */
2133 static int ext4_check_descriptors(struct super_block *sb,
2134 ext4_group_t *first_not_zeroed)
2135 {
2136 struct ext4_sb_info *sbi = EXT4_SB(sb);
2137 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2138 ext4_fsblk_t last_block;
2139 ext4_fsblk_t block_bitmap;
2140 ext4_fsblk_t inode_bitmap;
2141 ext4_fsblk_t inode_table;
2142 int flexbg_flag = 0;
2143 ext4_group_t i, grp = sbi->s_groups_count;
2144
2145 if (ext4_has_feature_flex_bg(sb))
2146 flexbg_flag = 1;
2147
2148 ext4_debug("Checking group descriptors");
2149
2150 for (i = 0; i < sbi->s_groups_count; i++) {
2151 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2152
2153 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2154 last_block = ext4_blocks_count(sbi->s_es) - 1;
2155 else
2156 last_block = first_block +
2157 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2158
2159 if ((grp == sbi->s_groups_count) &&
2160 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2161 grp = i;
2162
2163 block_bitmap = ext4_block_bitmap(sb, gdp);
2164 if (block_bitmap < first_block || block_bitmap > last_block) {
2165 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2166 "Block bitmap for group %u not in group "
2167 "(block %llu)!", i, block_bitmap);
2168 return 0;
2169 }
2170 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2171 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2172 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2173 "Inode bitmap for group %u not in group "
2174 "(block %llu)!", i, inode_bitmap);
2175 return 0;
2176 }
2177 inode_table = ext4_inode_table(sb, gdp);
2178 if (inode_table < first_block ||
2179 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2180 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2181 "Inode table for group %u not in group "
2182 "(block %llu)!", i, inode_table);
2183 return 0;
2184 }
2185 ext4_lock_group(sb, i);
2186 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2187 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2188 "Checksum for group %u failed (%u!=%u)",
2189 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2190 gdp)), le16_to_cpu(gdp->bg_checksum));
2191 if (!(sb->s_flags & MS_RDONLY)) {
2192 ext4_unlock_group(sb, i);
2193 return 0;
2194 }
2195 }
2196 ext4_unlock_group(sb, i);
2197 if (!flexbg_flag)
2198 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2199 }
2200 if (NULL != first_not_zeroed)
2201 *first_not_zeroed = grp;
2202 return 1;
2203 }
2204
2205 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2206 * the superblock) which were deleted from all directories, but held open by
2207 * a process at the time of a crash. We walk the list and try to delete these
2208 * inodes at recovery time (only with a read-write filesystem).
2209 *
2210 * In order to keep the orphan inode chain consistent during traversal (in
2211 * case of crash during recovery), we link each inode into the superblock
2212 * orphan list_head and handle it the same way as an inode deletion during
2213 * normal operation (which journals the operations for us).
2214 *
2215 * We only do an iget() and an iput() on each inode, which is very safe if we
2216 * accidentally point at an in-use or already deleted inode. The worst that
2217 * can happen in this case is that we get a "bit already cleared" message from
2218 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2219 * e2fsck was run on this filesystem, and it must have already done the orphan
2220 * inode cleanup for us, so we can safely abort without any further action.
2221 */
2222 static void ext4_orphan_cleanup(struct super_block *sb,
2223 struct ext4_super_block *es)
2224 {
2225 unsigned int s_flags = sb->s_flags;
2226 int nr_orphans = 0, nr_truncates = 0;
2227 #ifdef CONFIG_QUOTA
2228 int i;
2229 #endif
2230 if (!es->s_last_orphan) {
2231 jbd_debug(4, "no orphan inodes to clean up\n");
2232 return;
2233 }
2234
2235 if (bdev_read_only(sb->s_bdev)) {
2236 ext4_msg(sb, KERN_ERR, "write access "
2237 "unavailable, skipping orphan cleanup");
2238 return;
2239 }
2240
2241 /* Check if feature set would not allow a r/w mount */
2242 if (!ext4_feature_set_ok(sb, 0)) {
2243 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2244 "unknown ROCOMPAT features");
2245 return;
2246 }
2247
2248 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2249 /* don't clear list on RO mount w/ errors */
2250 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2251 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2252 "clearing orphan list.\n");
2253 es->s_last_orphan = 0;
2254 }
2255 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2256 return;
2257 }
2258
2259 if (s_flags & MS_RDONLY) {
2260 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2261 sb->s_flags &= ~MS_RDONLY;
2262 }
2263 #ifdef CONFIG_QUOTA
2264 /* Needed for iput() to work correctly and not trash data */
2265 sb->s_flags |= MS_ACTIVE;
2266 /* Turn on quotas so that they are updated correctly */
2267 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2268 if (EXT4_SB(sb)->s_qf_names[i]) {
2269 int ret = ext4_quota_on_mount(sb, i);
2270 if (ret < 0)
2271 ext4_msg(sb, KERN_ERR,
2272 "Cannot turn on journaled "
2273 "quota: error %d", ret);
2274 }
2275 }
2276 #endif
2277
2278 while (es->s_last_orphan) {
2279 struct inode *inode;
2280
2281 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2282 if (IS_ERR(inode)) {
2283 es->s_last_orphan = 0;
2284 break;
2285 }
2286
2287 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2288 dquot_initialize(inode);
2289 if (inode->i_nlink) {
2290 if (test_opt(sb, DEBUG))
2291 ext4_msg(sb, KERN_DEBUG,
2292 "%s: truncating inode %lu to %lld bytes",
2293 __func__, inode->i_ino, inode->i_size);
2294 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2295 inode->i_ino, inode->i_size);
2296 inode_lock(inode);
2297 truncate_inode_pages(inode->i_mapping, inode->i_size);
2298 ext4_truncate(inode);
2299 inode_unlock(inode);
2300 nr_truncates++;
2301 } else {
2302 if (test_opt(sb, DEBUG))
2303 ext4_msg(sb, KERN_DEBUG,
2304 "%s: deleting unreferenced inode %lu",
2305 __func__, inode->i_ino);
2306 jbd_debug(2, "deleting unreferenced inode %lu\n",
2307 inode->i_ino);
2308 nr_orphans++;
2309 }
2310 iput(inode); /* The delete magic happens here! */
2311 }
2312
2313 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2314
2315 if (nr_orphans)
2316 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2317 PLURAL(nr_orphans));
2318 if (nr_truncates)
2319 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2320 PLURAL(nr_truncates));
2321 #ifdef CONFIG_QUOTA
2322 /* Turn quotas off */
2323 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2324 if (sb_dqopt(sb)->files[i])
2325 dquot_quota_off(sb, i);
2326 }
2327 #endif
2328 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2329 }
2330
2331 /*
2332 * Maximal extent format file size.
2333 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2334 * extent format containers, within a sector_t, and within i_blocks
2335 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2336 * so that won't be a limiting factor.
2337 *
2338 * However there is other limiting factor. We do store extents in the form
2339 * of starting block and length, hence the resulting length of the extent
2340 * covering maximum file size must fit into on-disk format containers as
2341 * well. Given that length is always by 1 unit bigger than max unit (because
2342 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2343 *
2344 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2345 */
2346 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2347 {
2348 loff_t res;
2349 loff_t upper_limit = MAX_LFS_FILESIZE;
2350
2351 /* small i_blocks in vfs inode? */
2352 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2353 /*
2354 * CONFIG_LBDAF is not enabled implies the inode
2355 * i_block represent total blocks in 512 bytes
2356 * 32 == size of vfs inode i_blocks * 8
2357 */
2358 upper_limit = (1LL << 32) - 1;
2359
2360 /* total blocks in file system block size */
2361 upper_limit >>= (blkbits - 9);
2362 upper_limit <<= blkbits;
2363 }
2364
2365 /*
2366 * 32-bit extent-start container, ee_block. We lower the maxbytes
2367 * by one fs block, so ee_len can cover the extent of maximum file
2368 * size
2369 */
2370 res = (1LL << 32) - 1;
2371 res <<= blkbits;
2372
2373 /* Sanity check against vm- & vfs- imposed limits */
2374 if (res > upper_limit)
2375 res = upper_limit;
2376
2377 return res;
2378 }
2379
2380 /*
2381 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2382 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2383 * We need to be 1 filesystem block less than the 2^48 sector limit.
2384 */
2385 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2386 {
2387 loff_t res = EXT4_NDIR_BLOCKS;
2388 int meta_blocks;
2389 loff_t upper_limit;
2390 /* This is calculated to be the largest file size for a dense, block
2391 * mapped file such that the file's total number of 512-byte sectors,
2392 * including data and all indirect blocks, does not exceed (2^48 - 1).
2393 *
2394 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2395 * number of 512-byte sectors of the file.
2396 */
2397
2398 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2399 /*
2400 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2401 * the inode i_block field represents total file blocks in
2402 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2403 */
2404 upper_limit = (1LL << 32) - 1;
2405
2406 /* total blocks in file system block size */
2407 upper_limit >>= (bits - 9);
2408
2409 } else {
2410 /*
2411 * We use 48 bit ext4_inode i_blocks
2412 * With EXT4_HUGE_FILE_FL set the i_blocks
2413 * represent total number of blocks in
2414 * file system block size
2415 */
2416 upper_limit = (1LL << 48) - 1;
2417
2418 }
2419
2420 /* indirect blocks */
2421 meta_blocks = 1;
2422 /* double indirect blocks */
2423 meta_blocks += 1 + (1LL << (bits-2));
2424 /* tripple indirect blocks */
2425 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2426
2427 upper_limit -= meta_blocks;
2428 upper_limit <<= bits;
2429
2430 res += 1LL << (bits-2);
2431 res += 1LL << (2*(bits-2));
2432 res += 1LL << (3*(bits-2));
2433 res <<= bits;
2434 if (res > upper_limit)
2435 res = upper_limit;
2436
2437 if (res > MAX_LFS_FILESIZE)
2438 res = MAX_LFS_FILESIZE;
2439
2440 return res;
2441 }
2442
2443 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2444 ext4_fsblk_t logical_sb_block, int nr)
2445 {
2446 struct ext4_sb_info *sbi = EXT4_SB(sb);
2447 ext4_group_t bg, first_meta_bg;
2448 int has_super = 0;
2449
2450 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2451
2452 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2453 return logical_sb_block + nr + 1;
2454 bg = sbi->s_desc_per_block * nr;
2455 if (ext4_bg_has_super(sb, bg))
2456 has_super = 1;
2457
2458 /*
2459 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2460 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2461 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2462 * compensate.
2463 */
2464 if (sb->s_blocksize == 1024 && nr == 0 &&
2465 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2466 has_super++;
2467
2468 return (has_super + ext4_group_first_block_no(sb, bg));
2469 }
2470
2471 /**
2472 * ext4_get_stripe_size: Get the stripe size.
2473 * @sbi: In memory super block info
2474 *
2475 * If we have specified it via mount option, then
2476 * use the mount option value. If the value specified at mount time is
2477 * greater than the blocks per group use the super block value.
2478 * If the super block value is greater than blocks per group return 0.
2479 * Allocator needs it be less than blocks per group.
2480 *
2481 */
2482 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2483 {
2484 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2485 unsigned long stripe_width =
2486 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2487 int ret;
2488
2489 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2490 ret = sbi->s_stripe;
2491 else if (stripe_width <= sbi->s_blocks_per_group)
2492 ret = stripe_width;
2493 else if (stride <= sbi->s_blocks_per_group)
2494 ret = stride;
2495 else
2496 ret = 0;
2497
2498 /*
2499 * If the stripe width is 1, this makes no sense and
2500 * we set it to 0 to turn off stripe handling code.
2501 */
2502 if (ret <= 1)
2503 ret = 0;
2504
2505 return ret;
2506 }
2507
2508 /*
2509 * Check whether this filesystem can be mounted based on
2510 * the features present and the RDONLY/RDWR mount requested.
2511 * Returns 1 if this filesystem can be mounted as requested,
2512 * 0 if it cannot be.
2513 */
2514 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2515 {
2516 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2517 ext4_msg(sb, KERN_ERR,
2518 "Couldn't mount because of "
2519 "unsupported optional features (%x)",
2520 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2521 ~EXT4_FEATURE_INCOMPAT_SUPP));
2522 return 0;
2523 }
2524
2525 if (readonly)
2526 return 1;
2527
2528 if (ext4_has_feature_readonly(sb)) {
2529 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2530 sb->s_flags |= MS_RDONLY;
2531 return 1;
2532 }
2533
2534 /* Check that feature set is OK for a read-write mount */
2535 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2536 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2537 "unsupported optional features (%x)",
2538 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2539 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2540 return 0;
2541 }
2542 /*
2543 * Large file size enabled file system can only be mounted
2544 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2545 */
2546 if (ext4_has_feature_huge_file(sb)) {
2547 if (sizeof(blkcnt_t) < sizeof(u64)) {
2548 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2549 "cannot be mounted RDWR without "
2550 "CONFIG_LBDAF");
2551 return 0;
2552 }
2553 }
2554 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2555 ext4_msg(sb, KERN_ERR,
2556 "Can't support bigalloc feature without "
2557 "extents feature\n");
2558 return 0;
2559 }
2560
2561 #ifndef CONFIG_QUOTA
2562 if (ext4_has_feature_quota(sb) && !readonly) {
2563 ext4_msg(sb, KERN_ERR,
2564 "Filesystem with quota feature cannot be mounted RDWR "
2565 "without CONFIG_QUOTA");
2566 return 0;
2567 }
2568 if (ext4_has_feature_project(sb) && !readonly) {
2569 ext4_msg(sb, KERN_ERR,
2570 "Filesystem with project quota feature cannot be mounted RDWR "
2571 "without CONFIG_QUOTA");
2572 return 0;
2573 }
2574 #endif /* CONFIG_QUOTA */
2575 return 1;
2576 }
2577
2578 /*
2579 * This function is called once a day if we have errors logged
2580 * on the file system
2581 */
2582 static void print_daily_error_info(unsigned long arg)
2583 {
2584 struct super_block *sb = (struct super_block *) arg;
2585 struct ext4_sb_info *sbi;
2586 struct ext4_super_block *es;
2587
2588 sbi = EXT4_SB(sb);
2589 es = sbi->s_es;
2590
2591 if (es->s_error_count)
2592 /* fsck newer than v1.41.13 is needed to clean this condition. */
2593 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2594 le32_to_cpu(es->s_error_count));
2595 if (es->s_first_error_time) {
2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2597 sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 (int) sizeof(es->s_first_error_func),
2599 es->s_first_error_func,
2600 le32_to_cpu(es->s_first_error_line));
2601 if (es->s_first_error_ino)
2602 printk(": inode %u",
2603 le32_to_cpu(es->s_first_error_ino));
2604 if (es->s_first_error_block)
2605 printk(": block %llu", (unsigned long long)
2606 le64_to_cpu(es->s_first_error_block));
2607 printk("\n");
2608 }
2609 if (es->s_last_error_time) {
2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2611 sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 (int) sizeof(es->s_last_error_func),
2613 es->s_last_error_func,
2614 le32_to_cpu(es->s_last_error_line));
2615 if (es->s_last_error_ino)
2616 printk(": inode %u",
2617 le32_to_cpu(es->s_last_error_ino));
2618 if (es->s_last_error_block)
2619 printk(": block %llu", (unsigned long long)
2620 le64_to_cpu(es->s_last_error_block));
2621 printk("\n");
2622 }
2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2624 }
2625
2626 /* Find next suitable group and run ext4_init_inode_table */
2627 static int ext4_run_li_request(struct ext4_li_request *elr)
2628 {
2629 struct ext4_group_desc *gdp = NULL;
2630 ext4_group_t group, ngroups;
2631 struct super_block *sb;
2632 unsigned long timeout = 0;
2633 int ret = 0;
2634
2635 sb = elr->lr_super;
2636 ngroups = EXT4_SB(sb)->s_groups_count;
2637
2638 sb_start_write(sb);
2639 for (group = elr->lr_next_group; group < ngroups; group++) {
2640 gdp = ext4_get_group_desc(sb, group, NULL);
2641 if (!gdp) {
2642 ret = 1;
2643 break;
2644 }
2645
2646 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2647 break;
2648 }
2649
2650 if (group >= ngroups)
2651 ret = 1;
2652
2653 if (!ret) {
2654 timeout = jiffies;
2655 ret = ext4_init_inode_table(sb, group,
2656 elr->lr_timeout ? 0 : 1);
2657 if (elr->lr_timeout == 0) {
2658 timeout = (jiffies - timeout) *
2659 elr->lr_sbi->s_li_wait_mult;
2660 elr->lr_timeout = timeout;
2661 }
2662 elr->lr_next_sched = jiffies + elr->lr_timeout;
2663 elr->lr_next_group = group + 1;
2664 }
2665 sb_end_write(sb);
2666
2667 return ret;
2668 }
2669
2670 /*
2671 * Remove lr_request from the list_request and free the
2672 * request structure. Should be called with li_list_mtx held
2673 */
2674 static void ext4_remove_li_request(struct ext4_li_request *elr)
2675 {
2676 struct ext4_sb_info *sbi;
2677
2678 if (!elr)
2679 return;
2680
2681 sbi = elr->lr_sbi;
2682
2683 list_del(&elr->lr_request);
2684 sbi->s_li_request = NULL;
2685 kfree(elr);
2686 }
2687
2688 static void ext4_unregister_li_request(struct super_block *sb)
2689 {
2690 mutex_lock(&ext4_li_mtx);
2691 if (!ext4_li_info) {
2692 mutex_unlock(&ext4_li_mtx);
2693 return;
2694 }
2695
2696 mutex_lock(&ext4_li_info->li_list_mtx);
2697 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2698 mutex_unlock(&ext4_li_info->li_list_mtx);
2699 mutex_unlock(&ext4_li_mtx);
2700 }
2701
2702 static struct task_struct *ext4_lazyinit_task;
2703
2704 /*
2705 * This is the function where ext4lazyinit thread lives. It walks
2706 * through the request list searching for next scheduled filesystem.
2707 * When such a fs is found, run the lazy initialization request
2708 * (ext4_rn_li_request) and keep track of the time spend in this
2709 * function. Based on that time we compute next schedule time of
2710 * the request. When walking through the list is complete, compute
2711 * next waking time and put itself into sleep.
2712 */
2713 static int ext4_lazyinit_thread(void *arg)
2714 {
2715 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2716 struct list_head *pos, *n;
2717 struct ext4_li_request *elr;
2718 unsigned long next_wakeup, cur;
2719
2720 BUG_ON(NULL == eli);
2721
2722 cont_thread:
2723 while (true) {
2724 next_wakeup = MAX_JIFFY_OFFSET;
2725
2726 mutex_lock(&eli->li_list_mtx);
2727 if (list_empty(&eli->li_request_list)) {
2728 mutex_unlock(&eli->li_list_mtx);
2729 goto exit_thread;
2730 }
2731
2732 list_for_each_safe(pos, n, &eli->li_request_list) {
2733 elr = list_entry(pos, struct ext4_li_request,
2734 lr_request);
2735
2736 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2737 if (ext4_run_li_request(elr) != 0) {
2738 /* error, remove the lazy_init job */
2739 ext4_remove_li_request(elr);
2740 continue;
2741 }
2742 }
2743
2744 if (time_before(elr->lr_next_sched, next_wakeup))
2745 next_wakeup = elr->lr_next_sched;
2746 }
2747 mutex_unlock(&eli->li_list_mtx);
2748
2749 try_to_freeze();
2750
2751 cur = jiffies;
2752 if ((time_after_eq(cur, next_wakeup)) ||
2753 (MAX_JIFFY_OFFSET == next_wakeup)) {
2754 cond_resched();
2755 continue;
2756 }
2757
2758 schedule_timeout_interruptible(next_wakeup - cur);
2759
2760 if (kthread_should_stop()) {
2761 ext4_clear_request_list();
2762 goto exit_thread;
2763 }
2764 }
2765
2766 exit_thread:
2767 /*
2768 * It looks like the request list is empty, but we need
2769 * to check it under the li_list_mtx lock, to prevent any
2770 * additions into it, and of course we should lock ext4_li_mtx
2771 * to atomically free the list and ext4_li_info, because at
2772 * this point another ext4 filesystem could be registering
2773 * new one.
2774 */
2775 mutex_lock(&ext4_li_mtx);
2776 mutex_lock(&eli->li_list_mtx);
2777 if (!list_empty(&eli->li_request_list)) {
2778 mutex_unlock(&eli->li_list_mtx);
2779 mutex_unlock(&ext4_li_mtx);
2780 goto cont_thread;
2781 }
2782 mutex_unlock(&eli->li_list_mtx);
2783 kfree(ext4_li_info);
2784 ext4_li_info = NULL;
2785 mutex_unlock(&ext4_li_mtx);
2786
2787 return 0;
2788 }
2789
2790 static void ext4_clear_request_list(void)
2791 {
2792 struct list_head *pos, *n;
2793 struct ext4_li_request *elr;
2794
2795 mutex_lock(&ext4_li_info->li_list_mtx);
2796 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2797 elr = list_entry(pos, struct ext4_li_request,
2798 lr_request);
2799 ext4_remove_li_request(elr);
2800 }
2801 mutex_unlock(&ext4_li_info->li_list_mtx);
2802 }
2803
2804 static int ext4_run_lazyinit_thread(void)
2805 {
2806 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2807 ext4_li_info, "ext4lazyinit");
2808 if (IS_ERR(ext4_lazyinit_task)) {
2809 int err = PTR_ERR(ext4_lazyinit_task);
2810 ext4_clear_request_list();
2811 kfree(ext4_li_info);
2812 ext4_li_info = NULL;
2813 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2814 "initialization thread\n",
2815 err);
2816 return err;
2817 }
2818 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2819 return 0;
2820 }
2821
2822 /*
2823 * Check whether it make sense to run itable init. thread or not.
2824 * If there is at least one uninitialized inode table, return
2825 * corresponding group number, else the loop goes through all
2826 * groups and return total number of groups.
2827 */
2828 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2829 {
2830 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2831 struct ext4_group_desc *gdp = NULL;
2832
2833 for (group = 0; group < ngroups; group++) {
2834 gdp = ext4_get_group_desc(sb, group, NULL);
2835 if (!gdp)
2836 continue;
2837
2838 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2839 break;
2840 }
2841
2842 return group;
2843 }
2844
2845 static int ext4_li_info_new(void)
2846 {
2847 struct ext4_lazy_init *eli = NULL;
2848
2849 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2850 if (!eli)
2851 return -ENOMEM;
2852
2853 INIT_LIST_HEAD(&eli->li_request_list);
2854 mutex_init(&eli->li_list_mtx);
2855
2856 eli->li_state |= EXT4_LAZYINIT_QUIT;
2857
2858 ext4_li_info = eli;
2859
2860 return 0;
2861 }
2862
2863 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2864 ext4_group_t start)
2865 {
2866 struct ext4_sb_info *sbi = EXT4_SB(sb);
2867 struct ext4_li_request *elr;
2868
2869 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2870 if (!elr)
2871 return NULL;
2872
2873 elr->lr_super = sb;
2874 elr->lr_sbi = sbi;
2875 elr->lr_next_group = start;
2876
2877 /*
2878 * Randomize first schedule time of the request to
2879 * spread the inode table initialization requests
2880 * better.
2881 */
2882 elr->lr_next_sched = jiffies + (prandom_u32() %
2883 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2884 return elr;
2885 }
2886
2887 int ext4_register_li_request(struct super_block *sb,
2888 ext4_group_t first_not_zeroed)
2889 {
2890 struct ext4_sb_info *sbi = EXT4_SB(sb);
2891 struct ext4_li_request *elr = NULL;
2892 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2893 int ret = 0;
2894
2895 mutex_lock(&ext4_li_mtx);
2896 if (sbi->s_li_request != NULL) {
2897 /*
2898 * Reset timeout so it can be computed again, because
2899 * s_li_wait_mult might have changed.
2900 */
2901 sbi->s_li_request->lr_timeout = 0;
2902 goto out;
2903 }
2904
2905 if (first_not_zeroed == ngroups ||
2906 (sb->s_flags & MS_RDONLY) ||
2907 !test_opt(sb, INIT_INODE_TABLE))
2908 goto out;
2909
2910 elr = ext4_li_request_new(sb, first_not_zeroed);
2911 if (!elr) {
2912 ret = -ENOMEM;
2913 goto out;
2914 }
2915
2916 if (NULL == ext4_li_info) {
2917 ret = ext4_li_info_new();
2918 if (ret)
2919 goto out;
2920 }
2921
2922 mutex_lock(&ext4_li_info->li_list_mtx);
2923 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2924 mutex_unlock(&ext4_li_info->li_list_mtx);
2925
2926 sbi->s_li_request = elr;
2927 /*
2928 * set elr to NULL here since it has been inserted to
2929 * the request_list and the removal and free of it is
2930 * handled by ext4_clear_request_list from now on.
2931 */
2932 elr = NULL;
2933
2934 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2935 ret = ext4_run_lazyinit_thread();
2936 if (ret)
2937 goto out;
2938 }
2939 out:
2940 mutex_unlock(&ext4_li_mtx);
2941 if (ret)
2942 kfree(elr);
2943 return ret;
2944 }
2945
2946 /*
2947 * We do not need to lock anything since this is called on
2948 * module unload.
2949 */
2950 static void ext4_destroy_lazyinit_thread(void)
2951 {
2952 /*
2953 * If thread exited earlier
2954 * there's nothing to be done.
2955 */
2956 if (!ext4_li_info || !ext4_lazyinit_task)
2957 return;
2958
2959 kthread_stop(ext4_lazyinit_task);
2960 }
2961
2962 static int set_journal_csum_feature_set(struct super_block *sb)
2963 {
2964 int ret = 1;
2965 int compat, incompat;
2966 struct ext4_sb_info *sbi = EXT4_SB(sb);
2967
2968 if (ext4_has_metadata_csum(sb)) {
2969 /* journal checksum v3 */
2970 compat = 0;
2971 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2972 } else {
2973 /* journal checksum v1 */
2974 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2975 incompat = 0;
2976 }
2977
2978 jbd2_journal_clear_features(sbi->s_journal,
2979 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2980 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2981 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2982 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2983 ret = jbd2_journal_set_features(sbi->s_journal,
2984 compat, 0,
2985 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2986 incompat);
2987 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2988 ret = jbd2_journal_set_features(sbi->s_journal,
2989 compat, 0,
2990 incompat);
2991 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2992 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2993 } else {
2994 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2995 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2996 }
2997
2998 return ret;
2999 }
3000
3001 /*
3002 * Note: calculating the overhead so we can be compatible with
3003 * historical BSD practice is quite difficult in the face of
3004 * clusters/bigalloc. This is because multiple metadata blocks from
3005 * different block group can end up in the same allocation cluster.
3006 * Calculating the exact overhead in the face of clustered allocation
3007 * requires either O(all block bitmaps) in memory or O(number of block
3008 * groups**2) in time. We will still calculate the superblock for
3009 * older file systems --- and if we come across with a bigalloc file
3010 * system with zero in s_overhead_clusters the estimate will be close to
3011 * correct especially for very large cluster sizes --- but for newer
3012 * file systems, it's better to calculate this figure once at mkfs
3013 * time, and store it in the superblock. If the superblock value is
3014 * present (even for non-bigalloc file systems), we will use it.
3015 */
3016 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3017 char *buf)
3018 {
3019 struct ext4_sb_info *sbi = EXT4_SB(sb);
3020 struct ext4_group_desc *gdp;
3021 ext4_fsblk_t first_block, last_block, b;
3022 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3023 int s, j, count = 0;
3024
3025 if (!ext4_has_feature_bigalloc(sb))
3026 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3027 sbi->s_itb_per_group + 2);
3028
3029 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3030 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3031 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3032 for (i = 0; i < ngroups; i++) {
3033 gdp = ext4_get_group_desc(sb, i, NULL);
3034 b = ext4_block_bitmap(sb, gdp);
3035 if (b >= first_block && b <= last_block) {
3036 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3037 count++;
3038 }
3039 b = ext4_inode_bitmap(sb, gdp);
3040 if (b >= first_block && b <= last_block) {
3041 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3042 count++;
3043 }
3044 b = ext4_inode_table(sb, gdp);
3045 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3046 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3047 int c = EXT4_B2C(sbi, b - first_block);
3048 ext4_set_bit(c, buf);
3049 count++;
3050 }
3051 if (i != grp)
3052 continue;
3053 s = 0;
3054 if (ext4_bg_has_super(sb, grp)) {
3055 ext4_set_bit(s++, buf);
3056 count++;
3057 }
3058 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3059 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3060 count++;
3061 }
3062 }
3063 if (!count)
3064 return 0;
3065 return EXT4_CLUSTERS_PER_GROUP(sb) -
3066 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3067 }
3068
3069 /*
3070 * Compute the overhead and stash it in sbi->s_overhead
3071 */
3072 int ext4_calculate_overhead(struct super_block *sb)
3073 {
3074 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 struct ext4_super_block *es = sbi->s_es;
3076 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3077 ext4_fsblk_t overhead = 0;
3078 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3079
3080 if (!buf)
3081 return -ENOMEM;
3082
3083 /*
3084 * Compute the overhead (FS structures). This is constant
3085 * for a given filesystem unless the number of block groups
3086 * changes so we cache the previous value until it does.
3087 */
3088
3089 /*
3090 * All of the blocks before first_data_block are overhead
3091 */
3092 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3093
3094 /*
3095 * Add the overhead found in each block group
3096 */
3097 for (i = 0; i < ngroups; i++) {
3098 int blks;
3099
3100 blks = count_overhead(sb, i, buf);
3101 overhead += blks;
3102 if (blks)
3103 memset(buf, 0, PAGE_SIZE);
3104 cond_resched();
3105 }
3106 /* Add the internal journal blocks as well */
3107 if (sbi->s_journal && !sbi->journal_bdev)
3108 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3109
3110 sbi->s_overhead = overhead;
3111 smp_wmb();
3112 free_page((unsigned long) buf);
3113 return 0;
3114 }
3115
3116 static void ext4_set_resv_clusters(struct super_block *sb)
3117 {
3118 ext4_fsblk_t resv_clusters;
3119 struct ext4_sb_info *sbi = EXT4_SB(sb);
3120
3121 /*
3122 * There's no need to reserve anything when we aren't using extents.
3123 * The space estimates are exact, there are no unwritten extents,
3124 * hole punching doesn't need new metadata... This is needed especially
3125 * to keep ext2/3 backward compatibility.
3126 */
3127 if (!ext4_has_feature_extents(sb))
3128 return;
3129 /*
3130 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3131 * This should cover the situations where we can not afford to run
3132 * out of space like for example punch hole, or converting
3133 * unwritten extents in delalloc path. In most cases such
3134 * allocation would require 1, or 2 blocks, higher numbers are
3135 * very rare.
3136 */
3137 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3138 sbi->s_cluster_bits);
3139
3140 do_div(resv_clusters, 50);
3141 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3142
3143 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3144 }
3145
3146 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3147 {
3148 char *orig_data = kstrdup(data, GFP_KERNEL);
3149 struct buffer_head *bh;
3150 struct ext4_super_block *es = NULL;
3151 struct ext4_sb_info *sbi;
3152 ext4_fsblk_t block;
3153 ext4_fsblk_t sb_block = get_sb_block(&data);
3154 ext4_fsblk_t logical_sb_block;
3155 unsigned long offset = 0;
3156 unsigned long journal_devnum = 0;
3157 unsigned long def_mount_opts;
3158 struct inode *root;
3159 const char *descr;
3160 int ret = -ENOMEM;
3161 int blocksize, clustersize;
3162 unsigned int db_count;
3163 unsigned int i;
3164 int needs_recovery, has_huge_files, has_bigalloc;
3165 __u64 blocks_count;
3166 int err = 0;
3167 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3168 ext4_group_t first_not_zeroed;
3169
3170 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3171 if (!sbi)
3172 goto out_free_orig;
3173
3174 sbi->s_blockgroup_lock =
3175 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3176 if (!sbi->s_blockgroup_lock) {
3177 kfree(sbi);
3178 goto out_free_orig;
3179 }
3180 sb->s_fs_info = sbi;
3181 sbi->s_sb = sb;
3182 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3183 sbi->s_sb_block = sb_block;
3184 if (sb->s_bdev->bd_part)
3185 sbi->s_sectors_written_start =
3186 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3187
3188 /* Cleanup superblock name */
3189 strreplace(sb->s_id, '/', '!');
3190
3191 /* -EINVAL is default */
3192 ret = -EINVAL;
3193 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3194 if (!blocksize) {
3195 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3196 goto out_fail;
3197 }
3198
3199 /*
3200 * The ext4 superblock will not be buffer aligned for other than 1kB
3201 * block sizes. We need to calculate the offset from buffer start.
3202 */
3203 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3204 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3205 offset = do_div(logical_sb_block, blocksize);
3206 } else {
3207 logical_sb_block = sb_block;
3208 }
3209
3210 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3211 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3212 goto out_fail;
3213 }
3214 /*
3215 * Note: s_es must be initialized as soon as possible because
3216 * some ext4 macro-instructions depend on its value
3217 */
3218 es = (struct ext4_super_block *) (bh->b_data + offset);
3219 sbi->s_es = es;
3220 sb->s_magic = le16_to_cpu(es->s_magic);
3221 if (sb->s_magic != EXT4_SUPER_MAGIC)
3222 goto cantfind_ext4;
3223 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3224
3225 /* Warn if metadata_csum and gdt_csum are both set. */
3226 if (ext4_has_feature_metadata_csum(sb) &&
3227 ext4_has_feature_gdt_csum(sb))
3228 ext4_warning(sb, "metadata_csum and uninit_bg are "
3229 "redundant flags; please run fsck.");
3230
3231 /* Check for a known checksum algorithm */
3232 if (!ext4_verify_csum_type(sb, es)) {
3233 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3234 "unknown checksum algorithm.");
3235 silent = 1;
3236 goto cantfind_ext4;
3237 }
3238
3239 /* Load the checksum driver */
3240 if (ext4_has_feature_metadata_csum(sb)) {
3241 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3242 if (IS_ERR(sbi->s_chksum_driver)) {
3243 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3244 ret = PTR_ERR(sbi->s_chksum_driver);
3245 sbi->s_chksum_driver = NULL;
3246 goto failed_mount;
3247 }
3248 }
3249
3250 /* Check superblock checksum */
3251 if (!ext4_superblock_csum_verify(sb, es)) {
3252 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3253 "invalid superblock checksum. Run e2fsck?");
3254 silent = 1;
3255 ret = -EFSBADCRC;
3256 goto cantfind_ext4;
3257 }
3258
3259 /* Precompute checksum seed for all metadata */
3260 if (ext4_has_feature_csum_seed(sb))
3261 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3262 else if (ext4_has_metadata_csum(sb))
3263 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3264 sizeof(es->s_uuid));
3265
3266 /* Set defaults before we parse the mount options */
3267 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3268 set_opt(sb, INIT_INODE_TABLE);
3269 if (def_mount_opts & EXT4_DEFM_DEBUG)
3270 set_opt(sb, DEBUG);
3271 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3272 set_opt(sb, GRPID);
3273 if (def_mount_opts & EXT4_DEFM_UID16)
3274 set_opt(sb, NO_UID32);
3275 /* xattr user namespace & acls are now defaulted on */
3276 set_opt(sb, XATTR_USER);
3277 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3278 set_opt(sb, POSIX_ACL);
3279 #endif
3280 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3281 if (ext4_has_metadata_csum(sb))
3282 set_opt(sb, JOURNAL_CHECKSUM);
3283
3284 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3285 set_opt(sb, JOURNAL_DATA);
3286 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3287 set_opt(sb, ORDERED_DATA);
3288 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3289 set_opt(sb, WRITEBACK_DATA);
3290
3291 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3292 set_opt(sb, ERRORS_PANIC);
3293 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3294 set_opt(sb, ERRORS_CONT);
3295 else
3296 set_opt(sb, ERRORS_RO);
3297 /* block_validity enabled by default; disable with noblock_validity */
3298 set_opt(sb, BLOCK_VALIDITY);
3299 if (def_mount_opts & EXT4_DEFM_DISCARD)
3300 set_opt(sb, DISCARD);
3301
3302 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3303 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3304 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3305 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3306 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3307
3308 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3309 set_opt(sb, BARRIER);
3310
3311 /*
3312 * enable delayed allocation by default
3313 * Use -o nodelalloc to turn it off
3314 */
3315 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3316 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3317 set_opt(sb, DELALLOC);
3318
3319 /*
3320 * set default s_li_wait_mult for lazyinit, for the case there is
3321 * no mount option specified.
3322 */
3323 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3324
3325 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3326 &journal_devnum, &journal_ioprio, 0)) {
3327 ext4_msg(sb, KERN_WARNING,
3328 "failed to parse options in superblock: %s",
3329 sbi->s_es->s_mount_opts);
3330 }
3331 sbi->s_def_mount_opt = sbi->s_mount_opt;
3332 if (!parse_options((char *) data, sb, &journal_devnum,
3333 &journal_ioprio, 0))
3334 goto failed_mount;
3335
3336 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3337 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3338 "with data=journal disables delayed "
3339 "allocation and O_DIRECT support!\n");
3340 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3341 ext4_msg(sb, KERN_ERR, "can't mount with "
3342 "both data=journal and delalloc");
3343 goto failed_mount;
3344 }
3345 if (test_opt(sb, DIOREAD_NOLOCK)) {
3346 ext4_msg(sb, KERN_ERR, "can't mount with "
3347 "both data=journal and dioread_nolock");
3348 goto failed_mount;
3349 }
3350 if (test_opt(sb, DAX)) {
3351 ext4_msg(sb, KERN_ERR, "can't mount with "
3352 "both data=journal and dax");
3353 goto failed_mount;
3354 }
3355 if (test_opt(sb, DELALLOC))
3356 clear_opt(sb, DELALLOC);
3357 } else {
3358 sb->s_iflags |= SB_I_CGROUPWB;
3359 }
3360
3361 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3362 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3363
3364 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3365 (ext4_has_compat_features(sb) ||
3366 ext4_has_ro_compat_features(sb) ||
3367 ext4_has_incompat_features(sb)))
3368 ext4_msg(sb, KERN_WARNING,
3369 "feature flags set on rev 0 fs, "
3370 "running e2fsck is recommended");
3371
3372 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3373 set_opt2(sb, HURD_COMPAT);
3374 if (ext4_has_feature_64bit(sb)) {
3375 ext4_msg(sb, KERN_ERR,
3376 "The Hurd can't support 64-bit file systems");
3377 goto failed_mount;
3378 }
3379 }
3380
3381 if (IS_EXT2_SB(sb)) {
3382 if (ext2_feature_set_ok(sb))
3383 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3384 "using the ext4 subsystem");
3385 else {
3386 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3387 "to feature incompatibilities");
3388 goto failed_mount;
3389 }
3390 }
3391
3392 if (IS_EXT3_SB(sb)) {
3393 if (ext3_feature_set_ok(sb))
3394 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3395 "using the ext4 subsystem");
3396 else {
3397 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3398 "to feature incompatibilities");
3399 goto failed_mount;
3400 }
3401 }
3402
3403 /*
3404 * Check feature flags regardless of the revision level, since we
3405 * previously didn't change the revision level when setting the flags,
3406 * so there is a chance incompat flags are set on a rev 0 filesystem.
3407 */
3408 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3409 goto failed_mount;
3410
3411 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3412 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3413 blocksize > EXT4_MAX_BLOCK_SIZE) {
3414 ext4_msg(sb, KERN_ERR,
3415 "Unsupported filesystem blocksize %d", blocksize);
3416 goto failed_mount;
3417 }
3418
3419 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3420 err = bdev_dax_supported(sb, blocksize);
3421 if (err)
3422 goto failed_mount;
3423 }
3424
3425 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3426 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3427 es->s_encryption_level);
3428 goto failed_mount;
3429 }
3430
3431 if (sb->s_blocksize != blocksize) {
3432 /* Validate the filesystem blocksize */
3433 if (!sb_set_blocksize(sb, blocksize)) {
3434 ext4_msg(sb, KERN_ERR, "bad block size %d",
3435 blocksize);
3436 goto failed_mount;
3437 }
3438
3439 brelse(bh);
3440 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3441 offset = do_div(logical_sb_block, blocksize);
3442 bh = sb_bread_unmovable(sb, logical_sb_block);
3443 if (!bh) {
3444 ext4_msg(sb, KERN_ERR,
3445 "Can't read superblock on 2nd try");
3446 goto failed_mount;
3447 }
3448 es = (struct ext4_super_block *)(bh->b_data + offset);
3449 sbi->s_es = es;
3450 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3451 ext4_msg(sb, KERN_ERR,
3452 "Magic mismatch, very weird!");
3453 goto failed_mount;
3454 }
3455 }
3456
3457 has_huge_files = ext4_has_feature_huge_file(sb);
3458 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3459 has_huge_files);
3460 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3461
3462 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3463 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3464 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3465 } else {
3466 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3467 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3468 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3469 (!is_power_of_2(sbi->s_inode_size)) ||
3470 (sbi->s_inode_size > blocksize)) {
3471 ext4_msg(sb, KERN_ERR,
3472 "unsupported inode size: %d",
3473 sbi->s_inode_size);
3474 goto failed_mount;
3475 }
3476 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3477 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3478 }
3479
3480 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3481 if (ext4_has_feature_64bit(sb)) {
3482 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3483 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3484 !is_power_of_2(sbi->s_desc_size)) {
3485 ext4_msg(sb, KERN_ERR,
3486 "unsupported descriptor size %lu",
3487 sbi->s_desc_size);
3488 goto failed_mount;
3489 }
3490 } else
3491 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3492
3493 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3494 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3495 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3496 goto cantfind_ext4;
3497
3498 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3499 if (sbi->s_inodes_per_block == 0)
3500 goto cantfind_ext4;
3501 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3502 sbi->s_inodes_per_block;
3503 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3504 sbi->s_sbh = bh;
3505 sbi->s_mount_state = le16_to_cpu(es->s_state);
3506 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3507 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3508
3509 for (i = 0; i < 4; i++)
3510 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3511 sbi->s_def_hash_version = es->s_def_hash_version;
3512 if (ext4_has_feature_dir_index(sb)) {
3513 i = le32_to_cpu(es->s_flags);
3514 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3515 sbi->s_hash_unsigned = 3;
3516 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3517 #ifdef __CHAR_UNSIGNED__
3518 if (!(sb->s_flags & MS_RDONLY))
3519 es->s_flags |=
3520 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3521 sbi->s_hash_unsigned = 3;
3522 #else
3523 if (!(sb->s_flags & MS_RDONLY))
3524 es->s_flags |=
3525 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3526 #endif
3527 }
3528 }
3529
3530 /* Handle clustersize */
3531 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3532 has_bigalloc = ext4_has_feature_bigalloc(sb);
3533 if (has_bigalloc) {
3534 if (clustersize < blocksize) {
3535 ext4_msg(sb, KERN_ERR,
3536 "cluster size (%d) smaller than "
3537 "block size (%d)", clustersize, blocksize);
3538 goto failed_mount;
3539 }
3540 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3541 le32_to_cpu(es->s_log_block_size);
3542 sbi->s_clusters_per_group =
3543 le32_to_cpu(es->s_clusters_per_group);
3544 if (sbi->s_clusters_per_group > blocksize * 8) {
3545 ext4_msg(sb, KERN_ERR,
3546 "#clusters per group too big: %lu",
3547 sbi->s_clusters_per_group);
3548 goto failed_mount;
3549 }
3550 if (sbi->s_blocks_per_group !=
3551 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3552 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3553 "clusters per group (%lu) inconsistent",
3554 sbi->s_blocks_per_group,
3555 sbi->s_clusters_per_group);
3556 goto failed_mount;
3557 }
3558 } else {
3559 if (clustersize != blocksize) {
3560 ext4_warning(sb, "fragment/cluster size (%d) != "
3561 "block size (%d)", clustersize,
3562 blocksize);
3563 clustersize = blocksize;
3564 }
3565 if (sbi->s_blocks_per_group > blocksize * 8) {
3566 ext4_msg(sb, KERN_ERR,
3567 "#blocks per group too big: %lu",
3568 sbi->s_blocks_per_group);
3569 goto failed_mount;
3570 }
3571 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3572 sbi->s_cluster_bits = 0;
3573 }
3574 sbi->s_cluster_ratio = clustersize / blocksize;
3575
3576 if (sbi->s_inodes_per_group > blocksize * 8) {
3577 ext4_msg(sb, KERN_ERR,
3578 "#inodes per group too big: %lu",
3579 sbi->s_inodes_per_group);
3580 goto failed_mount;
3581 }
3582
3583 /* Do we have standard group size of clustersize * 8 blocks ? */
3584 if (sbi->s_blocks_per_group == clustersize << 3)
3585 set_opt2(sb, STD_GROUP_SIZE);
3586
3587 /*
3588 * Test whether we have more sectors than will fit in sector_t,
3589 * and whether the max offset is addressable by the page cache.
3590 */
3591 err = generic_check_addressable(sb->s_blocksize_bits,
3592 ext4_blocks_count(es));
3593 if (err) {
3594 ext4_msg(sb, KERN_ERR, "filesystem"
3595 " too large to mount safely on this system");
3596 if (sizeof(sector_t) < 8)
3597 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3598 goto failed_mount;
3599 }
3600
3601 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3602 goto cantfind_ext4;
3603
3604 /* check blocks count against device size */
3605 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3606 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3607 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3608 "exceeds size of device (%llu blocks)",
3609 ext4_blocks_count(es), blocks_count);
3610 goto failed_mount;
3611 }
3612
3613 /*
3614 * It makes no sense for the first data block to be beyond the end
3615 * of the filesystem.
3616 */
3617 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3618 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3619 "block %u is beyond end of filesystem (%llu)",
3620 le32_to_cpu(es->s_first_data_block),
3621 ext4_blocks_count(es));
3622 goto failed_mount;
3623 }
3624 blocks_count = (ext4_blocks_count(es) -
3625 le32_to_cpu(es->s_first_data_block) +
3626 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3627 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3628 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3629 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3630 "(block count %llu, first data block %u, "
3631 "blocks per group %lu)", sbi->s_groups_count,
3632 ext4_blocks_count(es),
3633 le32_to_cpu(es->s_first_data_block),
3634 EXT4_BLOCKS_PER_GROUP(sb));
3635 goto failed_mount;
3636 }
3637 sbi->s_groups_count = blocks_count;
3638 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3639 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3640 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3641 EXT4_DESC_PER_BLOCK(sb);
3642 sbi->s_group_desc = ext4_kvmalloc(db_count *
3643 sizeof(struct buffer_head *),
3644 GFP_KERNEL);
3645 if (sbi->s_group_desc == NULL) {
3646 ext4_msg(sb, KERN_ERR, "not enough memory");
3647 ret = -ENOMEM;
3648 goto failed_mount;
3649 }
3650
3651 bgl_lock_init(sbi->s_blockgroup_lock);
3652
3653 for (i = 0; i < db_count; i++) {
3654 block = descriptor_loc(sb, logical_sb_block, i);
3655 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3656 if (!sbi->s_group_desc[i]) {
3657 ext4_msg(sb, KERN_ERR,
3658 "can't read group descriptor %d", i);
3659 db_count = i;
3660 goto failed_mount2;
3661 }
3662 }
3663 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3664 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3665 ret = -EFSCORRUPTED;
3666 goto failed_mount2;
3667 }
3668
3669 sbi->s_gdb_count = db_count;
3670 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3671 spin_lock_init(&sbi->s_next_gen_lock);
3672
3673 setup_timer(&sbi->s_err_report, print_daily_error_info,
3674 (unsigned long) sb);
3675
3676 /* Register extent status tree shrinker */
3677 if (ext4_es_register_shrinker(sbi))
3678 goto failed_mount3;
3679
3680 sbi->s_stripe = ext4_get_stripe_size(sbi);
3681 sbi->s_extent_max_zeroout_kb = 32;
3682
3683 /*
3684 * set up enough so that it can read an inode
3685 */
3686 sb->s_op = &ext4_sops;
3687 sb->s_export_op = &ext4_export_ops;
3688 sb->s_xattr = ext4_xattr_handlers;
3689 #ifdef CONFIG_QUOTA
3690 sb->dq_op = &ext4_quota_operations;
3691 if (ext4_has_feature_quota(sb))
3692 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3693 else
3694 sb->s_qcop = &ext4_qctl_operations;
3695 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3696 #endif
3697 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3698
3699 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3700 mutex_init(&sbi->s_orphan_lock);
3701
3702 sb->s_root = NULL;
3703
3704 needs_recovery = (es->s_last_orphan != 0 ||
3705 ext4_has_feature_journal_needs_recovery(sb));
3706
3707 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3708 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3709 goto failed_mount3a;
3710
3711 /*
3712 * The first inode we look at is the journal inode. Don't try
3713 * root first: it may be modified in the journal!
3714 */
3715 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3716 if (ext4_load_journal(sb, es, journal_devnum))
3717 goto failed_mount3a;
3718 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3719 ext4_has_feature_journal_needs_recovery(sb)) {
3720 ext4_msg(sb, KERN_ERR, "required journal recovery "
3721 "suppressed and not mounted read-only");
3722 goto failed_mount_wq;
3723 } else {
3724 /* Nojournal mode, all journal mount options are illegal */
3725 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3726 ext4_msg(sb, KERN_ERR, "can't mount with "
3727 "journal_checksum, fs mounted w/o journal");
3728 goto failed_mount_wq;
3729 }
3730 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3731 ext4_msg(sb, KERN_ERR, "can't mount with "
3732 "journal_async_commit, fs mounted w/o journal");
3733 goto failed_mount_wq;
3734 }
3735 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3736 ext4_msg(sb, KERN_ERR, "can't mount with "
3737 "commit=%lu, fs mounted w/o journal",
3738 sbi->s_commit_interval / HZ);
3739 goto failed_mount_wq;
3740 }
3741 if (EXT4_MOUNT_DATA_FLAGS &
3742 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3743 ext4_msg(sb, KERN_ERR, "can't mount with "
3744 "data=, fs mounted w/o journal");
3745 goto failed_mount_wq;
3746 }
3747 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3748 clear_opt(sb, JOURNAL_CHECKSUM);
3749 clear_opt(sb, DATA_FLAGS);
3750 sbi->s_journal = NULL;
3751 needs_recovery = 0;
3752 goto no_journal;
3753 }
3754
3755 if (ext4_has_feature_64bit(sb) &&
3756 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3757 JBD2_FEATURE_INCOMPAT_64BIT)) {
3758 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3759 goto failed_mount_wq;
3760 }
3761
3762 if (!set_journal_csum_feature_set(sb)) {
3763 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3764 "feature set");
3765 goto failed_mount_wq;
3766 }
3767
3768 /* We have now updated the journal if required, so we can
3769 * validate the data journaling mode. */
3770 switch (test_opt(sb, DATA_FLAGS)) {
3771 case 0:
3772 /* No mode set, assume a default based on the journal
3773 * capabilities: ORDERED_DATA if the journal can
3774 * cope, else JOURNAL_DATA
3775 */
3776 if (jbd2_journal_check_available_features
3777 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3778 set_opt(sb, ORDERED_DATA);
3779 else
3780 set_opt(sb, JOURNAL_DATA);
3781 break;
3782
3783 case EXT4_MOUNT_ORDERED_DATA:
3784 case EXT4_MOUNT_WRITEBACK_DATA:
3785 if (!jbd2_journal_check_available_features
3786 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3787 ext4_msg(sb, KERN_ERR, "Journal does not support "
3788 "requested data journaling mode");
3789 goto failed_mount_wq;
3790 }
3791 default:
3792 break;
3793 }
3794 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3795
3796 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3797
3798 no_journal:
3799 sbi->s_mb_cache = ext4_xattr_create_cache();
3800 if (!sbi->s_mb_cache) {
3801 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3802 goto failed_mount_wq;
3803 }
3804
3805 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3806 (blocksize != PAGE_SIZE)) {
3807 ext4_msg(sb, KERN_ERR,
3808 "Unsupported blocksize for fs encryption");
3809 goto failed_mount_wq;
3810 }
3811
3812 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3813 !ext4_has_feature_encrypt(sb)) {
3814 ext4_set_feature_encrypt(sb);
3815 ext4_commit_super(sb, 1);
3816 }
3817
3818 /*
3819 * Get the # of file system overhead blocks from the
3820 * superblock if present.
3821 */
3822 if (es->s_overhead_clusters)
3823 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3824 else {
3825 err = ext4_calculate_overhead(sb);
3826 if (err)
3827 goto failed_mount_wq;
3828 }
3829
3830 /*
3831 * The maximum number of concurrent works can be high and
3832 * concurrency isn't really necessary. Limit it to 1.
3833 */
3834 EXT4_SB(sb)->rsv_conversion_wq =
3835 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3836 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3837 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3838 ret = -ENOMEM;
3839 goto failed_mount4;
3840 }
3841
3842 /*
3843 * The jbd2_journal_load will have done any necessary log recovery,
3844 * so we can safely mount the rest of the filesystem now.
3845 */
3846
3847 root = ext4_iget(sb, EXT4_ROOT_INO);
3848 if (IS_ERR(root)) {
3849 ext4_msg(sb, KERN_ERR, "get root inode failed");
3850 ret = PTR_ERR(root);
3851 root = NULL;
3852 goto failed_mount4;
3853 }
3854 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3855 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3856 iput(root);
3857 goto failed_mount4;
3858 }
3859 sb->s_root = d_make_root(root);
3860 if (!sb->s_root) {
3861 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3862 ret = -ENOMEM;
3863 goto failed_mount4;
3864 }
3865
3866 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3867 sb->s_flags |= MS_RDONLY;
3868
3869 /* determine the minimum size of new large inodes, if present */
3870 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3871 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3872 EXT4_GOOD_OLD_INODE_SIZE;
3873 if (ext4_has_feature_extra_isize(sb)) {
3874 if (sbi->s_want_extra_isize <
3875 le16_to_cpu(es->s_want_extra_isize))
3876 sbi->s_want_extra_isize =
3877 le16_to_cpu(es->s_want_extra_isize);
3878 if (sbi->s_want_extra_isize <
3879 le16_to_cpu(es->s_min_extra_isize))
3880 sbi->s_want_extra_isize =
3881 le16_to_cpu(es->s_min_extra_isize);
3882 }
3883 }
3884 /* Check if enough inode space is available */
3885 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3886 sbi->s_inode_size) {
3887 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3888 EXT4_GOOD_OLD_INODE_SIZE;
3889 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3890 "available");
3891 }
3892
3893 ext4_set_resv_clusters(sb);
3894
3895 err = ext4_setup_system_zone(sb);
3896 if (err) {
3897 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3898 "zone (%d)", err);
3899 goto failed_mount4a;
3900 }
3901
3902 ext4_ext_init(sb);
3903 err = ext4_mb_init(sb);
3904 if (err) {
3905 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3906 err);
3907 goto failed_mount5;
3908 }
3909
3910 block = ext4_count_free_clusters(sb);
3911 ext4_free_blocks_count_set(sbi->s_es,
3912 EXT4_C2B(sbi, block));
3913 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3914 GFP_KERNEL);
3915 if (!err) {
3916 unsigned long freei = ext4_count_free_inodes(sb);
3917 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3918 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3919 GFP_KERNEL);
3920 }
3921 if (!err)
3922 err = percpu_counter_init(&sbi->s_dirs_counter,
3923 ext4_count_dirs(sb), GFP_KERNEL);
3924 if (!err)
3925 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3926 GFP_KERNEL);
3927 if (!err)
3928 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
3929
3930 if (err) {
3931 ext4_msg(sb, KERN_ERR, "insufficient memory");
3932 goto failed_mount6;
3933 }
3934
3935 if (ext4_has_feature_flex_bg(sb))
3936 if (!ext4_fill_flex_info(sb)) {
3937 ext4_msg(sb, KERN_ERR,
3938 "unable to initialize "
3939 "flex_bg meta info!");
3940 goto failed_mount6;
3941 }
3942
3943 err = ext4_register_li_request(sb, first_not_zeroed);
3944 if (err)
3945 goto failed_mount6;
3946
3947 err = ext4_register_sysfs(sb);
3948 if (err)
3949 goto failed_mount7;
3950
3951 #ifdef CONFIG_QUOTA
3952 /* Enable quota usage during mount. */
3953 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3954 err = ext4_enable_quotas(sb);
3955 if (err)
3956 goto failed_mount8;
3957 }
3958 #endif /* CONFIG_QUOTA */
3959
3960 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3961 ext4_orphan_cleanup(sb, es);
3962 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3963 if (needs_recovery) {
3964 ext4_msg(sb, KERN_INFO, "recovery complete");
3965 ext4_mark_recovery_complete(sb, es);
3966 }
3967 if (EXT4_SB(sb)->s_journal) {
3968 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3969 descr = " journalled data mode";
3970 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3971 descr = " ordered data mode";
3972 else
3973 descr = " writeback data mode";
3974 } else
3975 descr = "out journal";
3976
3977 if (test_opt(sb, DISCARD)) {
3978 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3979 if (!blk_queue_discard(q))
3980 ext4_msg(sb, KERN_WARNING,
3981 "mounting with \"discard\" option, but "
3982 "the device does not support discard");
3983 }
3984
3985 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3986 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3987 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3988 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3989
3990 if (es->s_error_count)
3991 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3992
3993 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3994 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3995 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3996 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3997
3998 kfree(orig_data);
3999 return 0;
4000
4001 cantfind_ext4:
4002 if (!silent)
4003 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4004 goto failed_mount;
4005
4006 #ifdef CONFIG_QUOTA
4007 failed_mount8:
4008 ext4_unregister_sysfs(sb);
4009 #endif
4010 failed_mount7:
4011 ext4_unregister_li_request(sb);
4012 failed_mount6:
4013 ext4_mb_release(sb);
4014 if (sbi->s_flex_groups)
4015 kvfree(sbi->s_flex_groups);
4016 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4017 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4018 percpu_counter_destroy(&sbi->s_dirs_counter);
4019 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4020 failed_mount5:
4021 ext4_ext_release(sb);
4022 ext4_release_system_zone(sb);
4023 failed_mount4a:
4024 dput(sb->s_root);
4025 sb->s_root = NULL;
4026 failed_mount4:
4027 ext4_msg(sb, KERN_ERR, "mount failed");
4028 if (EXT4_SB(sb)->rsv_conversion_wq)
4029 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4030 failed_mount_wq:
4031 if (sbi->s_mb_cache) {
4032 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4033 sbi->s_mb_cache = NULL;
4034 }
4035 if (sbi->s_journal) {
4036 jbd2_journal_destroy(sbi->s_journal);
4037 sbi->s_journal = NULL;
4038 }
4039 failed_mount3a:
4040 ext4_es_unregister_shrinker(sbi);
4041 failed_mount3:
4042 del_timer_sync(&sbi->s_err_report);
4043 if (sbi->s_mmp_tsk)
4044 kthread_stop(sbi->s_mmp_tsk);
4045 failed_mount2:
4046 for (i = 0; i < db_count; i++)
4047 brelse(sbi->s_group_desc[i]);
4048 kvfree(sbi->s_group_desc);
4049 failed_mount:
4050 if (sbi->s_chksum_driver)
4051 crypto_free_shash(sbi->s_chksum_driver);
4052 #ifdef CONFIG_QUOTA
4053 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4054 kfree(sbi->s_qf_names[i]);
4055 #endif
4056 ext4_blkdev_remove(sbi);
4057 brelse(bh);
4058 out_fail:
4059 sb->s_fs_info = NULL;
4060 kfree(sbi->s_blockgroup_lock);
4061 kfree(sbi);
4062 out_free_orig:
4063 kfree(orig_data);
4064 return err ? err : ret;
4065 }
4066
4067 /*
4068 * Setup any per-fs journal parameters now. We'll do this both on
4069 * initial mount, once the journal has been initialised but before we've
4070 * done any recovery; and again on any subsequent remount.
4071 */
4072 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4073 {
4074 struct ext4_sb_info *sbi = EXT4_SB(sb);
4075
4076 journal->j_commit_interval = sbi->s_commit_interval;
4077 journal->j_min_batch_time = sbi->s_min_batch_time;
4078 journal->j_max_batch_time = sbi->s_max_batch_time;
4079
4080 write_lock(&journal->j_state_lock);
4081 if (test_opt(sb, BARRIER))
4082 journal->j_flags |= JBD2_BARRIER;
4083 else
4084 journal->j_flags &= ~JBD2_BARRIER;
4085 if (test_opt(sb, DATA_ERR_ABORT))
4086 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4087 else
4088 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4089 write_unlock(&journal->j_state_lock);
4090 }
4091
4092 static journal_t *ext4_get_journal(struct super_block *sb,
4093 unsigned int journal_inum)
4094 {
4095 struct inode *journal_inode;
4096 journal_t *journal;
4097
4098 BUG_ON(!ext4_has_feature_journal(sb));
4099
4100 /* First, test for the existence of a valid inode on disk. Bad
4101 * things happen if we iget() an unused inode, as the subsequent
4102 * iput() will try to delete it. */
4103
4104 journal_inode = ext4_iget(sb, journal_inum);
4105 if (IS_ERR(journal_inode)) {
4106 ext4_msg(sb, KERN_ERR, "no journal found");
4107 return NULL;
4108 }
4109 if (!journal_inode->i_nlink) {
4110 make_bad_inode(journal_inode);
4111 iput(journal_inode);
4112 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4113 return NULL;
4114 }
4115
4116 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4117 journal_inode, journal_inode->i_size);
4118 if (!S_ISREG(journal_inode->i_mode)) {
4119 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4120 iput(journal_inode);
4121 return NULL;
4122 }
4123
4124 journal = jbd2_journal_init_inode(journal_inode);
4125 if (!journal) {
4126 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4127 iput(journal_inode);
4128 return NULL;
4129 }
4130 journal->j_private = sb;
4131 ext4_init_journal_params(sb, journal);
4132 return journal;
4133 }
4134
4135 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4136 dev_t j_dev)
4137 {
4138 struct buffer_head *bh;
4139 journal_t *journal;
4140 ext4_fsblk_t start;
4141 ext4_fsblk_t len;
4142 int hblock, blocksize;
4143 ext4_fsblk_t sb_block;
4144 unsigned long offset;
4145 struct ext4_super_block *es;
4146 struct block_device *bdev;
4147
4148 BUG_ON(!ext4_has_feature_journal(sb));
4149
4150 bdev = ext4_blkdev_get(j_dev, sb);
4151 if (bdev == NULL)
4152 return NULL;
4153
4154 blocksize = sb->s_blocksize;
4155 hblock = bdev_logical_block_size(bdev);
4156 if (blocksize < hblock) {
4157 ext4_msg(sb, KERN_ERR,
4158 "blocksize too small for journal device");
4159 goto out_bdev;
4160 }
4161
4162 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4163 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4164 set_blocksize(bdev, blocksize);
4165 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4166 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4167 "external journal");
4168 goto out_bdev;
4169 }
4170
4171 es = (struct ext4_super_block *) (bh->b_data + offset);
4172 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4173 !(le32_to_cpu(es->s_feature_incompat) &
4174 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4175 ext4_msg(sb, KERN_ERR, "external journal has "
4176 "bad superblock");
4177 brelse(bh);
4178 goto out_bdev;
4179 }
4180
4181 if ((le32_to_cpu(es->s_feature_ro_compat) &
4182 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4183 es->s_checksum != ext4_superblock_csum(sb, es)) {
4184 ext4_msg(sb, KERN_ERR, "external journal has "
4185 "corrupt superblock");
4186 brelse(bh);
4187 goto out_bdev;
4188 }
4189
4190 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4191 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4192 brelse(bh);
4193 goto out_bdev;
4194 }
4195
4196 len = ext4_blocks_count(es);
4197 start = sb_block + 1;
4198 brelse(bh); /* we're done with the superblock */
4199
4200 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4201 start, len, blocksize);
4202 if (!journal) {
4203 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4204 goto out_bdev;
4205 }
4206 journal->j_private = sb;
4207 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4208 wait_on_buffer(journal->j_sb_buffer);
4209 if (!buffer_uptodate(journal->j_sb_buffer)) {
4210 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4211 goto out_journal;
4212 }
4213 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4214 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4215 "user (unsupported) - %d",
4216 be32_to_cpu(journal->j_superblock->s_nr_users));
4217 goto out_journal;
4218 }
4219 EXT4_SB(sb)->journal_bdev = bdev;
4220 ext4_init_journal_params(sb, journal);
4221 return journal;
4222
4223 out_journal:
4224 jbd2_journal_destroy(journal);
4225 out_bdev:
4226 ext4_blkdev_put(bdev);
4227 return NULL;
4228 }
4229
4230 static int ext4_load_journal(struct super_block *sb,
4231 struct ext4_super_block *es,
4232 unsigned long journal_devnum)
4233 {
4234 journal_t *journal;
4235 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4236 dev_t journal_dev;
4237 int err = 0;
4238 int really_read_only;
4239
4240 BUG_ON(!ext4_has_feature_journal(sb));
4241
4242 if (journal_devnum &&
4243 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4244 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4245 "numbers have changed");
4246 journal_dev = new_decode_dev(journal_devnum);
4247 } else
4248 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4249
4250 really_read_only = bdev_read_only(sb->s_bdev);
4251
4252 /*
4253 * Are we loading a blank journal or performing recovery after a
4254 * crash? For recovery, we need to check in advance whether we
4255 * can get read-write access to the device.
4256 */
4257 if (ext4_has_feature_journal_needs_recovery(sb)) {
4258 if (sb->s_flags & MS_RDONLY) {
4259 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4260 "required on readonly filesystem");
4261 if (really_read_only) {
4262 ext4_msg(sb, KERN_ERR, "write access "
4263 "unavailable, cannot proceed");
4264 return -EROFS;
4265 }
4266 ext4_msg(sb, KERN_INFO, "write access will "
4267 "be enabled during recovery");
4268 }
4269 }
4270
4271 if (journal_inum && journal_dev) {
4272 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4273 "and inode journals!");
4274 return -EINVAL;
4275 }
4276
4277 if (journal_inum) {
4278 if (!(journal = ext4_get_journal(sb, journal_inum)))
4279 return -EINVAL;
4280 } else {
4281 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4282 return -EINVAL;
4283 }
4284
4285 if (!(journal->j_flags & JBD2_BARRIER))
4286 ext4_msg(sb, KERN_INFO, "barriers disabled");
4287
4288 if (!ext4_has_feature_journal_needs_recovery(sb))
4289 err = jbd2_journal_wipe(journal, !really_read_only);
4290 if (!err) {
4291 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4292 if (save)
4293 memcpy(save, ((char *) es) +
4294 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4295 err = jbd2_journal_load(journal);
4296 if (save)
4297 memcpy(((char *) es) + EXT4_S_ERR_START,
4298 save, EXT4_S_ERR_LEN);
4299 kfree(save);
4300 }
4301
4302 if (err) {
4303 ext4_msg(sb, KERN_ERR, "error loading journal");
4304 jbd2_journal_destroy(journal);
4305 return err;
4306 }
4307
4308 EXT4_SB(sb)->s_journal = journal;
4309 ext4_clear_journal_err(sb, es);
4310
4311 if (!really_read_only && journal_devnum &&
4312 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4313 es->s_journal_dev = cpu_to_le32(journal_devnum);
4314
4315 /* Make sure we flush the recovery flag to disk. */
4316 ext4_commit_super(sb, 1);
4317 }
4318
4319 return 0;
4320 }
4321
4322 static int ext4_commit_super(struct super_block *sb, int sync)
4323 {
4324 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4325 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4326 int error = 0;
4327
4328 if (!sbh || block_device_ejected(sb))
4329 return error;
4330 if (buffer_write_io_error(sbh)) {
4331 /*
4332 * Oh, dear. A previous attempt to write the
4333 * superblock failed. This could happen because the
4334 * USB device was yanked out. Or it could happen to
4335 * be a transient write error and maybe the block will
4336 * be remapped. Nothing we can do but to retry the
4337 * write and hope for the best.
4338 */
4339 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4340 "superblock detected");
4341 clear_buffer_write_io_error(sbh);
4342 set_buffer_uptodate(sbh);
4343 }
4344 /*
4345 * If the file system is mounted read-only, don't update the
4346 * superblock write time. This avoids updating the superblock
4347 * write time when we are mounting the root file system
4348 * read/only but we need to replay the journal; at that point,
4349 * for people who are east of GMT and who make their clock
4350 * tick in localtime for Windows bug-for-bug compatibility,
4351 * the clock is set in the future, and this will cause e2fsck
4352 * to complain and force a full file system check.
4353 */
4354 if (!(sb->s_flags & MS_RDONLY))
4355 es->s_wtime = cpu_to_le32(get_seconds());
4356 if (sb->s_bdev->bd_part)
4357 es->s_kbytes_written =
4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4359 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4360 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4361 else
4362 es->s_kbytes_written =
4363 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4364 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4365 ext4_free_blocks_count_set(es,
4366 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4367 &EXT4_SB(sb)->s_freeclusters_counter)));
4368 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4369 es->s_free_inodes_count =
4370 cpu_to_le32(percpu_counter_sum_positive(
4371 &EXT4_SB(sb)->s_freeinodes_counter));
4372 BUFFER_TRACE(sbh, "marking dirty");
4373 ext4_superblock_csum_set(sb);
4374 mark_buffer_dirty(sbh);
4375 if (sync) {
4376 error = __sync_dirty_buffer(sbh,
4377 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4378 if (error)
4379 return error;
4380
4381 error = buffer_write_io_error(sbh);
4382 if (error) {
4383 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4384 "superblock");
4385 clear_buffer_write_io_error(sbh);
4386 set_buffer_uptodate(sbh);
4387 }
4388 }
4389 return error;
4390 }
4391
4392 /*
4393 * Have we just finished recovery? If so, and if we are mounting (or
4394 * remounting) the filesystem readonly, then we will end up with a
4395 * consistent fs on disk. Record that fact.
4396 */
4397 static void ext4_mark_recovery_complete(struct super_block *sb,
4398 struct ext4_super_block *es)
4399 {
4400 journal_t *journal = EXT4_SB(sb)->s_journal;
4401
4402 if (!ext4_has_feature_journal(sb)) {
4403 BUG_ON(journal != NULL);
4404 return;
4405 }
4406 jbd2_journal_lock_updates(journal);
4407 if (jbd2_journal_flush(journal) < 0)
4408 goto out;
4409
4410 if (ext4_has_feature_journal_needs_recovery(sb) &&
4411 sb->s_flags & MS_RDONLY) {
4412 ext4_clear_feature_journal_needs_recovery(sb);
4413 ext4_commit_super(sb, 1);
4414 }
4415
4416 out:
4417 jbd2_journal_unlock_updates(journal);
4418 }
4419
4420 /*
4421 * If we are mounting (or read-write remounting) a filesystem whose journal
4422 * has recorded an error from a previous lifetime, move that error to the
4423 * main filesystem now.
4424 */
4425 static void ext4_clear_journal_err(struct super_block *sb,
4426 struct ext4_super_block *es)
4427 {
4428 journal_t *journal;
4429 int j_errno;
4430 const char *errstr;
4431
4432 BUG_ON(!ext4_has_feature_journal(sb));
4433
4434 journal = EXT4_SB(sb)->s_journal;
4435
4436 /*
4437 * Now check for any error status which may have been recorded in the
4438 * journal by a prior ext4_error() or ext4_abort()
4439 */
4440
4441 j_errno = jbd2_journal_errno(journal);
4442 if (j_errno) {
4443 char nbuf[16];
4444
4445 errstr = ext4_decode_error(sb, j_errno, nbuf);
4446 ext4_warning(sb, "Filesystem error recorded "
4447 "from previous mount: %s", errstr);
4448 ext4_warning(sb, "Marking fs in need of filesystem check.");
4449
4450 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4451 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4452 ext4_commit_super(sb, 1);
4453
4454 jbd2_journal_clear_err(journal);
4455 jbd2_journal_update_sb_errno(journal);
4456 }
4457 }
4458
4459 /*
4460 * Force the running and committing transactions to commit,
4461 * and wait on the commit.
4462 */
4463 int ext4_force_commit(struct super_block *sb)
4464 {
4465 journal_t *journal;
4466
4467 if (sb->s_flags & MS_RDONLY)
4468 return 0;
4469
4470 journal = EXT4_SB(sb)->s_journal;
4471 return ext4_journal_force_commit(journal);
4472 }
4473
4474 static int ext4_sync_fs(struct super_block *sb, int wait)
4475 {
4476 int ret = 0;
4477 tid_t target;
4478 bool needs_barrier = false;
4479 struct ext4_sb_info *sbi = EXT4_SB(sb);
4480
4481 trace_ext4_sync_fs(sb, wait);
4482 flush_workqueue(sbi->rsv_conversion_wq);
4483 /*
4484 * Writeback quota in non-journalled quota case - journalled quota has
4485 * no dirty dquots
4486 */
4487 dquot_writeback_dquots(sb, -1);
4488 /*
4489 * Data writeback is possible w/o journal transaction, so barrier must
4490 * being sent at the end of the function. But we can skip it if
4491 * transaction_commit will do it for us.
4492 */
4493 if (sbi->s_journal) {
4494 target = jbd2_get_latest_transaction(sbi->s_journal);
4495 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4496 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4497 needs_barrier = true;
4498
4499 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4500 if (wait)
4501 ret = jbd2_log_wait_commit(sbi->s_journal,
4502 target);
4503 }
4504 } else if (wait && test_opt(sb, BARRIER))
4505 needs_barrier = true;
4506 if (needs_barrier) {
4507 int err;
4508 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4509 if (!ret)
4510 ret = err;
4511 }
4512
4513 return ret;
4514 }
4515
4516 /*
4517 * LVM calls this function before a (read-only) snapshot is created. This
4518 * gives us a chance to flush the journal completely and mark the fs clean.
4519 *
4520 * Note that only this function cannot bring a filesystem to be in a clean
4521 * state independently. It relies on upper layer to stop all data & metadata
4522 * modifications.
4523 */
4524 static int ext4_freeze(struct super_block *sb)
4525 {
4526 int error = 0;
4527 journal_t *journal;
4528
4529 if (sb->s_flags & MS_RDONLY)
4530 return 0;
4531
4532 journal = EXT4_SB(sb)->s_journal;
4533
4534 if (journal) {
4535 /* Now we set up the journal barrier. */
4536 jbd2_journal_lock_updates(journal);
4537
4538 /*
4539 * Don't clear the needs_recovery flag if we failed to
4540 * flush the journal.
4541 */
4542 error = jbd2_journal_flush(journal);
4543 if (error < 0)
4544 goto out;
4545
4546 /* Journal blocked and flushed, clear needs_recovery flag. */
4547 ext4_clear_feature_journal_needs_recovery(sb);
4548 }
4549
4550 error = ext4_commit_super(sb, 1);
4551 out:
4552 if (journal)
4553 /* we rely on upper layer to stop further updates */
4554 jbd2_journal_unlock_updates(journal);
4555 return error;
4556 }
4557
4558 /*
4559 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4560 * flag here, even though the filesystem is not technically dirty yet.
4561 */
4562 static int ext4_unfreeze(struct super_block *sb)
4563 {
4564 if (sb->s_flags & MS_RDONLY)
4565 return 0;
4566
4567 if (EXT4_SB(sb)->s_journal) {
4568 /* Reset the needs_recovery flag before the fs is unlocked. */
4569 ext4_set_feature_journal_needs_recovery(sb);
4570 }
4571
4572 ext4_commit_super(sb, 1);
4573 return 0;
4574 }
4575
4576 /*
4577 * Structure to save mount options for ext4_remount's benefit
4578 */
4579 struct ext4_mount_options {
4580 unsigned long s_mount_opt;
4581 unsigned long s_mount_opt2;
4582 kuid_t s_resuid;
4583 kgid_t s_resgid;
4584 unsigned long s_commit_interval;
4585 u32 s_min_batch_time, s_max_batch_time;
4586 #ifdef CONFIG_QUOTA
4587 int s_jquota_fmt;
4588 char *s_qf_names[EXT4_MAXQUOTAS];
4589 #endif
4590 };
4591
4592 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4593 {
4594 struct ext4_super_block *es;
4595 struct ext4_sb_info *sbi = EXT4_SB(sb);
4596 unsigned long old_sb_flags;
4597 struct ext4_mount_options old_opts;
4598 int enable_quota = 0;
4599 ext4_group_t g;
4600 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4601 int err = 0;
4602 #ifdef CONFIG_QUOTA
4603 int i, j;
4604 #endif
4605 char *orig_data = kstrdup(data, GFP_KERNEL);
4606
4607 /* Store the original options */
4608 old_sb_flags = sb->s_flags;
4609 old_opts.s_mount_opt = sbi->s_mount_opt;
4610 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4611 old_opts.s_resuid = sbi->s_resuid;
4612 old_opts.s_resgid = sbi->s_resgid;
4613 old_opts.s_commit_interval = sbi->s_commit_interval;
4614 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4615 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4616 #ifdef CONFIG_QUOTA
4617 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4618 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4619 if (sbi->s_qf_names[i]) {
4620 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4621 GFP_KERNEL);
4622 if (!old_opts.s_qf_names[i]) {
4623 for (j = 0; j < i; j++)
4624 kfree(old_opts.s_qf_names[j]);
4625 kfree(orig_data);
4626 return -ENOMEM;
4627 }
4628 } else
4629 old_opts.s_qf_names[i] = NULL;
4630 #endif
4631 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4632 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4633
4634 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4635 err = -EINVAL;
4636 goto restore_opts;
4637 }
4638
4639 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4640 test_opt(sb, JOURNAL_CHECKSUM)) {
4641 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4642 "during remount not supported; ignoring");
4643 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4644 }
4645
4646 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4647 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4648 ext4_msg(sb, KERN_ERR, "can't mount with "
4649 "both data=journal and delalloc");
4650 err = -EINVAL;
4651 goto restore_opts;
4652 }
4653 if (test_opt(sb, DIOREAD_NOLOCK)) {
4654 ext4_msg(sb, KERN_ERR, "can't mount with "
4655 "both data=journal and dioread_nolock");
4656 err = -EINVAL;
4657 goto restore_opts;
4658 }
4659 if (test_opt(sb, DAX)) {
4660 ext4_msg(sb, KERN_ERR, "can't mount with "
4661 "both data=journal and dax");
4662 err = -EINVAL;
4663 goto restore_opts;
4664 }
4665 }
4666
4667 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4668 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4669 "dax flag with busy inodes while remounting");
4670 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4671 }
4672
4673 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4674 ext4_abort(sb, "Abort forced by user");
4675
4676 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4677 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4678
4679 es = sbi->s_es;
4680
4681 if (sbi->s_journal) {
4682 ext4_init_journal_params(sb, sbi->s_journal);
4683 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4684 }
4685
4686 if (*flags & MS_LAZYTIME)
4687 sb->s_flags |= MS_LAZYTIME;
4688
4689 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4690 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4691 err = -EROFS;
4692 goto restore_opts;
4693 }
4694
4695 if (*flags & MS_RDONLY) {
4696 err = sync_filesystem(sb);
4697 if (err < 0)
4698 goto restore_opts;
4699 err = dquot_suspend(sb, -1);
4700 if (err < 0)
4701 goto restore_opts;
4702
4703 /*
4704 * First of all, the unconditional stuff we have to do
4705 * to disable replay of the journal when we next remount
4706 */
4707 sb->s_flags |= MS_RDONLY;
4708
4709 /*
4710 * OK, test if we are remounting a valid rw partition
4711 * readonly, and if so set the rdonly flag and then
4712 * mark the partition as valid again.
4713 */
4714 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4715 (sbi->s_mount_state & EXT4_VALID_FS))
4716 es->s_state = cpu_to_le16(sbi->s_mount_state);
4717
4718 if (sbi->s_journal)
4719 ext4_mark_recovery_complete(sb, es);
4720 } else {
4721 /* Make sure we can mount this feature set readwrite */
4722 if (ext4_has_feature_readonly(sb) ||
4723 !ext4_feature_set_ok(sb, 0)) {
4724 err = -EROFS;
4725 goto restore_opts;
4726 }
4727 /*
4728 * Make sure the group descriptor checksums
4729 * are sane. If they aren't, refuse to remount r/w.
4730 */
4731 for (g = 0; g < sbi->s_groups_count; g++) {
4732 struct ext4_group_desc *gdp =
4733 ext4_get_group_desc(sb, g, NULL);
4734
4735 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4736 ext4_msg(sb, KERN_ERR,
4737 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4738 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4739 le16_to_cpu(gdp->bg_checksum));
4740 err = -EFSBADCRC;
4741 goto restore_opts;
4742 }
4743 }
4744
4745 /*
4746 * If we have an unprocessed orphan list hanging
4747 * around from a previously readonly bdev mount,
4748 * require a full umount/remount for now.
4749 */
4750 if (es->s_last_orphan) {
4751 ext4_msg(sb, KERN_WARNING, "Couldn't "
4752 "remount RDWR because of unprocessed "
4753 "orphan inode list. Please "
4754 "umount/remount instead");
4755 err = -EINVAL;
4756 goto restore_opts;
4757 }
4758
4759 /*
4760 * Mounting a RDONLY partition read-write, so reread
4761 * and store the current valid flag. (It may have
4762 * been changed by e2fsck since we originally mounted
4763 * the partition.)
4764 */
4765 if (sbi->s_journal)
4766 ext4_clear_journal_err(sb, es);
4767 sbi->s_mount_state = le16_to_cpu(es->s_state);
4768 if (!ext4_setup_super(sb, es, 0))
4769 sb->s_flags &= ~MS_RDONLY;
4770 if (ext4_has_feature_mmp(sb))
4771 if (ext4_multi_mount_protect(sb,
4772 le64_to_cpu(es->s_mmp_block))) {
4773 err = -EROFS;
4774 goto restore_opts;
4775 }
4776 enable_quota = 1;
4777 }
4778 }
4779
4780 /*
4781 * Reinitialize lazy itable initialization thread based on
4782 * current settings
4783 */
4784 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4785 ext4_unregister_li_request(sb);
4786 else {
4787 ext4_group_t first_not_zeroed;
4788 first_not_zeroed = ext4_has_uninit_itable(sb);
4789 ext4_register_li_request(sb, first_not_zeroed);
4790 }
4791
4792 ext4_setup_system_zone(sb);
4793 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4794 ext4_commit_super(sb, 1);
4795
4796 #ifdef CONFIG_QUOTA
4797 /* Release old quota file names */
4798 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4799 kfree(old_opts.s_qf_names[i]);
4800 if (enable_quota) {
4801 if (sb_any_quota_suspended(sb))
4802 dquot_resume(sb, -1);
4803 else if (ext4_has_feature_quota(sb)) {
4804 err = ext4_enable_quotas(sb);
4805 if (err)
4806 goto restore_opts;
4807 }
4808 }
4809 #endif
4810
4811 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4812 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4813 kfree(orig_data);
4814 return 0;
4815
4816 restore_opts:
4817 sb->s_flags = old_sb_flags;
4818 sbi->s_mount_opt = old_opts.s_mount_opt;
4819 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4820 sbi->s_resuid = old_opts.s_resuid;
4821 sbi->s_resgid = old_opts.s_resgid;
4822 sbi->s_commit_interval = old_opts.s_commit_interval;
4823 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4824 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4825 #ifdef CONFIG_QUOTA
4826 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4827 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4828 kfree(sbi->s_qf_names[i]);
4829 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4830 }
4831 #endif
4832 kfree(orig_data);
4833 return err;
4834 }
4835
4836 #ifdef CONFIG_QUOTA
4837 static int ext4_statfs_project(struct super_block *sb,
4838 kprojid_t projid, struct kstatfs *buf)
4839 {
4840 struct kqid qid;
4841 struct dquot *dquot;
4842 u64 limit;
4843 u64 curblock;
4844
4845 qid = make_kqid_projid(projid);
4846 dquot = dqget(sb, qid);
4847 if (IS_ERR(dquot))
4848 return PTR_ERR(dquot);
4849 spin_lock(&dq_data_lock);
4850
4851 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4852 dquot->dq_dqb.dqb_bsoftlimit :
4853 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4854 if (limit && buf->f_blocks > limit) {
4855 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4856 buf->f_blocks = limit;
4857 buf->f_bfree = buf->f_bavail =
4858 (buf->f_blocks > curblock) ?
4859 (buf->f_blocks - curblock) : 0;
4860 }
4861
4862 limit = dquot->dq_dqb.dqb_isoftlimit ?
4863 dquot->dq_dqb.dqb_isoftlimit :
4864 dquot->dq_dqb.dqb_ihardlimit;
4865 if (limit && buf->f_files > limit) {
4866 buf->f_files = limit;
4867 buf->f_ffree =
4868 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4869 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4870 }
4871
4872 spin_unlock(&dq_data_lock);
4873 dqput(dquot);
4874 return 0;
4875 }
4876 #endif
4877
4878 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4879 {
4880 struct super_block *sb = dentry->d_sb;
4881 struct ext4_sb_info *sbi = EXT4_SB(sb);
4882 struct ext4_super_block *es = sbi->s_es;
4883 ext4_fsblk_t overhead = 0, resv_blocks;
4884 u64 fsid;
4885 s64 bfree;
4886 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4887
4888 if (!test_opt(sb, MINIX_DF))
4889 overhead = sbi->s_overhead;
4890
4891 buf->f_type = EXT4_SUPER_MAGIC;
4892 buf->f_bsize = sb->s_blocksize;
4893 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4894 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4895 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4896 /* prevent underflow in case that few free space is available */
4897 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4898 buf->f_bavail = buf->f_bfree -
4899 (ext4_r_blocks_count(es) + resv_blocks);
4900 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4901 buf->f_bavail = 0;
4902 buf->f_files = le32_to_cpu(es->s_inodes_count);
4903 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4904 buf->f_namelen = EXT4_NAME_LEN;
4905 fsid = le64_to_cpup((void *)es->s_uuid) ^
4906 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4907 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4908 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4909
4910 #ifdef CONFIG_QUOTA
4911 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4912 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4913 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4914 #endif
4915 return 0;
4916 }
4917
4918 /* Helper function for writing quotas on sync - we need to start transaction
4919 * before quota file is locked for write. Otherwise the are possible deadlocks:
4920 * Process 1 Process 2
4921 * ext4_create() quota_sync()
4922 * jbd2_journal_start() write_dquot()
4923 * dquot_initialize() down(dqio_mutex)
4924 * down(dqio_mutex) jbd2_journal_start()
4925 *
4926 */
4927
4928 #ifdef CONFIG_QUOTA
4929
4930 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4931 {
4932 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4933 }
4934
4935 static int ext4_write_dquot(struct dquot *dquot)
4936 {
4937 int ret, err;
4938 handle_t *handle;
4939 struct inode *inode;
4940
4941 inode = dquot_to_inode(dquot);
4942 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4943 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4944 if (IS_ERR(handle))
4945 return PTR_ERR(handle);
4946 ret = dquot_commit(dquot);
4947 err = ext4_journal_stop(handle);
4948 if (!ret)
4949 ret = err;
4950 return ret;
4951 }
4952
4953 static int ext4_acquire_dquot(struct dquot *dquot)
4954 {
4955 int ret, err;
4956 handle_t *handle;
4957
4958 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4959 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4960 if (IS_ERR(handle))
4961 return PTR_ERR(handle);
4962 ret = dquot_acquire(dquot);
4963 err = ext4_journal_stop(handle);
4964 if (!ret)
4965 ret = err;
4966 return ret;
4967 }
4968
4969 static int ext4_release_dquot(struct dquot *dquot)
4970 {
4971 int ret, err;
4972 handle_t *handle;
4973
4974 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4975 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4976 if (IS_ERR(handle)) {
4977 /* Release dquot anyway to avoid endless cycle in dqput() */
4978 dquot_release(dquot);
4979 return PTR_ERR(handle);
4980 }
4981 ret = dquot_release(dquot);
4982 err = ext4_journal_stop(handle);
4983 if (!ret)
4984 ret = err;
4985 return ret;
4986 }
4987
4988 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4989 {
4990 struct super_block *sb = dquot->dq_sb;
4991 struct ext4_sb_info *sbi = EXT4_SB(sb);
4992
4993 /* Are we journaling quotas? */
4994 if (ext4_has_feature_quota(sb) ||
4995 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4996 dquot_mark_dquot_dirty(dquot);
4997 return ext4_write_dquot(dquot);
4998 } else {
4999 return dquot_mark_dquot_dirty(dquot);
5000 }
5001 }
5002
5003 static int ext4_write_info(struct super_block *sb, int type)
5004 {
5005 int ret, err;
5006 handle_t *handle;
5007
5008 /* Data block + inode block */
5009 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5010 if (IS_ERR(handle))
5011 return PTR_ERR(handle);
5012 ret = dquot_commit_info(sb, type);
5013 err = ext4_journal_stop(handle);
5014 if (!ret)
5015 ret = err;
5016 return ret;
5017 }
5018
5019 /*
5020 * Turn on quotas during mount time - we need to find
5021 * the quota file and such...
5022 */
5023 static int ext4_quota_on_mount(struct super_block *sb, int type)
5024 {
5025 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5026 EXT4_SB(sb)->s_jquota_fmt, type);
5027 }
5028
5029 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5030 {
5031 struct ext4_inode_info *ei = EXT4_I(inode);
5032
5033 /* The first argument of lockdep_set_subclass has to be
5034 * *exactly* the same as the argument to init_rwsem() --- in
5035 * this case, in init_once() --- or lockdep gets unhappy
5036 * because the name of the lock is set using the
5037 * stringification of the argument to init_rwsem().
5038 */
5039 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5040 lockdep_set_subclass(&ei->i_data_sem, subclass);
5041 }
5042
5043 /*
5044 * Standard function to be called on quota_on
5045 */
5046 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5047 struct path *path)
5048 {
5049 int err;
5050
5051 if (!test_opt(sb, QUOTA))
5052 return -EINVAL;
5053
5054 /* Quotafile not on the same filesystem? */
5055 if (path->dentry->d_sb != sb)
5056 return -EXDEV;
5057 /* Journaling quota? */
5058 if (EXT4_SB(sb)->s_qf_names[type]) {
5059 /* Quotafile not in fs root? */
5060 if (path->dentry->d_parent != sb->s_root)
5061 ext4_msg(sb, KERN_WARNING,
5062 "Quota file not on filesystem root. "
5063 "Journaled quota will not work");
5064 }
5065
5066 /*
5067 * When we journal data on quota file, we have to flush journal to see
5068 * all updates to the file when we bypass pagecache...
5069 */
5070 if (EXT4_SB(sb)->s_journal &&
5071 ext4_should_journal_data(d_inode(path->dentry))) {
5072 /*
5073 * We don't need to lock updates but journal_flush() could
5074 * otherwise be livelocked...
5075 */
5076 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5077 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5078 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5079 if (err)
5080 return err;
5081 }
5082 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5083 err = dquot_quota_on(sb, type, format_id, path);
5084 if (err)
5085 lockdep_set_quota_inode(path->dentry->d_inode,
5086 I_DATA_SEM_NORMAL);
5087 return err;
5088 }
5089
5090 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5091 unsigned int flags)
5092 {
5093 int err;
5094 struct inode *qf_inode;
5095 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5096 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5097 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5098 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5099 };
5100
5101 BUG_ON(!ext4_has_feature_quota(sb));
5102
5103 if (!qf_inums[type])
5104 return -EPERM;
5105
5106 qf_inode = ext4_iget(sb, qf_inums[type]);
5107 if (IS_ERR(qf_inode)) {
5108 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5109 return PTR_ERR(qf_inode);
5110 }
5111
5112 /* Don't account quota for quota files to avoid recursion */
5113 qf_inode->i_flags |= S_NOQUOTA;
5114 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5115 err = dquot_enable(qf_inode, type, format_id, flags);
5116 iput(qf_inode);
5117 if (err)
5118 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5119
5120 return err;
5121 }
5122
5123 /* Enable usage tracking for all quota types. */
5124 static int ext4_enable_quotas(struct super_block *sb)
5125 {
5126 int type, err = 0;
5127 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5128 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5129 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5130 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5131 };
5132
5133 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5134 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5135 if (qf_inums[type]) {
5136 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5137 DQUOT_USAGE_ENABLED);
5138 if (err) {
5139 ext4_warning(sb,
5140 "Failed to enable quota tracking "
5141 "(type=%d, err=%d). Please run "
5142 "e2fsck to fix.", type, err);
5143 return err;
5144 }
5145 }
5146 }
5147 return 0;
5148 }
5149
5150 static int ext4_quota_off(struct super_block *sb, int type)
5151 {
5152 struct inode *inode = sb_dqopt(sb)->files[type];
5153 handle_t *handle;
5154
5155 /* Force all delayed allocation blocks to be allocated.
5156 * Caller already holds s_umount sem */
5157 if (test_opt(sb, DELALLOC))
5158 sync_filesystem(sb);
5159
5160 if (!inode)
5161 goto out;
5162
5163 /* Update modification times of quota files when userspace can
5164 * start looking at them */
5165 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5166 if (IS_ERR(handle))
5167 goto out;
5168 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5169 ext4_mark_inode_dirty(handle, inode);
5170 ext4_journal_stop(handle);
5171
5172 out:
5173 return dquot_quota_off(sb, type);
5174 }
5175
5176 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5177 * acquiring the locks... As quota files are never truncated and quota code
5178 * itself serializes the operations (and no one else should touch the files)
5179 * we don't have to be afraid of races */
5180 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5181 size_t len, loff_t off)
5182 {
5183 struct inode *inode = sb_dqopt(sb)->files[type];
5184 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5185 int offset = off & (sb->s_blocksize - 1);
5186 int tocopy;
5187 size_t toread;
5188 struct buffer_head *bh;
5189 loff_t i_size = i_size_read(inode);
5190
5191 if (off > i_size)
5192 return 0;
5193 if (off+len > i_size)
5194 len = i_size-off;
5195 toread = len;
5196 while (toread > 0) {
5197 tocopy = sb->s_blocksize - offset < toread ?
5198 sb->s_blocksize - offset : toread;
5199 bh = ext4_bread(NULL, inode, blk, 0);
5200 if (IS_ERR(bh))
5201 return PTR_ERR(bh);
5202 if (!bh) /* A hole? */
5203 memset(data, 0, tocopy);
5204 else
5205 memcpy(data, bh->b_data+offset, tocopy);
5206 brelse(bh);
5207 offset = 0;
5208 toread -= tocopy;
5209 data += tocopy;
5210 blk++;
5211 }
5212 return len;
5213 }
5214
5215 /* Write to quotafile (we know the transaction is already started and has
5216 * enough credits) */
5217 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5218 const char *data, size_t len, loff_t off)
5219 {
5220 struct inode *inode = sb_dqopt(sb)->files[type];
5221 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5222 int err, offset = off & (sb->s_blocksize - 1);
5223 int retries = 0;
5224 struct buffer_head *bh;
5225 handle_t *handle = journal_current_handle();
5226
5227 if (EXT4_SB(sb)->s_journal && !handle) {
5228 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5229 " cancelled because transaction is not started",
5230 (unsigned long long)off, (unsigned long long)len);
5231 return -EIO;
5232 }
5233 /*
5234 * Since we account only one data block in transaction credits,
5235 * then it is impossible to cross a block boundary.
5236 */
5237 if (sb->s_blocksize - offset < len) {
5238 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5239 " cancelled because not block aligned",
5240 (unsigned long long)off, (unsigned long long)len);
5241 return -EIO;
5242 }
5243
5244 do {
5245 bh = ext4_bread(handle, inode, blk,
5246 EXT4_GET_BLOCKS_CREATE |
5247 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5248 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5249 ext4_should_retry_alloc(inode->i_sb, &retries));
5250 if (IS_ERR(bh))
5251 return PTR_ERR(bh);
5252 if (!bh)
5253 goto out;
5254 BUFFER_TRACE(bh, "get write access");
5255 err = ext4_journal_get_write_access(handle, bh);
5256 if (err) {
5257 brelse(bh);
5258 return err;
5259 }
5260 lock_buffer(bh);
5261 memcpy(bh->b_data+offset, data, len);
5262 flush_dcache_page(bh->b_page);
5263 unlock_buffer(bh);
5264 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5265 brelse(bh);
5266 out:
5267 if (inode->i_size < off + len) {
5268 i_size_write(inode, off + len);
5269 EXT4_I(inode)->i_disksize = inode->i_size;
5270 ext4_mark_inode_dirty(handle, inode);
5271 }
5272 return len;
5273 }
5274
5275 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5276 {
5277 const struct quota_format_ops *ops;
5278
5279 if (!sb_has_quota_loaded(sb, qid->type))
5280 return -ESRCH;
5281 ops = sb_dqopt(sb)->ops[qid->type];
5282 if (!ops || !ops->get_next_id)
5283 return -ENOSYS;
5284 return dquot_get_next_id(sb, qid);
5285 }
5286 #endif
5287
5288 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5289 const char *dev_name, void *data)
5290 {
5291 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5292 }
5293
5294 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5295 static inline void register_as_ext2(void)
5296 {
5297 int err = register_filesystem(&ext2_fs_type);
5298 if (err)
5299 printk(KERN_WARNING
5300 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5301 }
5302
5303 static inline void unregister_as_ext2(void)
5304 {
5305 unregister_filesystem(&ext2_fs_type);
5306 }
5307
5308 static inline int ext2_feature_set_ok(struct super_block *sb)
5309 {
5310 if (ext4_has_unknown_ext2_incompat_features(sb))
5311 return 0;
5312 if (sb->s_flags & MS_RDONLY)
5313 return 1;
5314 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5315 return 0;
5316 return 1;
5317 }
5318 #else
5319 static inline void register_as_ext2(void) { }
5320 static inline void unregister_as_ext2(void) { }
5321 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5322 #endif
5323
5324 static inline void register_as_ext3(void)
5325 {
5326 int err = register_filesystem(&ext3_fs_type);
5327 if (err)
5328 printk(KERN_WARNING
5329 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5330 }
5331
5332 static inline void unregister_as_ext3(void)
5333 {
5334 unregister_filesystem(&ext3_fs_type);
5335 }
5336
5337 static inline int ext3_feature_set_ok(struct super_block *sb)
5338 {
5339 if (ext4_has_unknown_ext3_incompat_features(sb))
5340 return 0;
5341 if (!ext4_has_feature_journal(sb))
5342 return 0;
5343 if (sb->s_flags & MS_RDONLY)
5344 return 1;
5345 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5346 return 0;
5347 return 1;
5348 }
5349
5350 static struct file_system_type ext4_fs_type = {
5351 .owner = THIS_MODULE,
5352 .name = "ext4",
5353 .mount = ext4_mount,
5354 .kill_sb = kill_block_super,
5355 .fs_flags = FS_REQUIRES_DEV,
5356 };
5357 MODULE_ALIAS_FS("ext4");
5358
5359 /* Shared across all ext4 file systems */
5360 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5361
5362 static int __init ext4_init_fs(void)
5363 {
5364 int i, err;
5365
5366 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5367 ext4_li_info = NULL;
5368 mutex_init(&ext4_li_mtx);
5369
5370 /* Build-time check for flags consistency */
5371 ext4_check_flag_values();
5372
5373 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5374 init_waitqueue_head(&ext4__ioend_wq[i]);
5375
5376 err = ext4_init_es();
5377 if (err)
5378 return err;
5379
5380 err = ext4_init_pageio();
5381 if (err)
5382 goto out5;
5383
5384 err = ext4_init_system_zone();
5385 if (err)
5386 goto out4;
5387
5388 err = ext4_init_sysfs();
5389 if (err)
5390 goto out3;
5391
5392 err = ext4_init_mballoc();
5393 if (err)
5394 goto out2;
5395 err = init_inodecache();
5396 if (err)
5397 goto out1;
5398 register_as_ext3();
5399 register_as_ext2();
5400 err = register_filesystem(&ext4_fs_type);
5401 if (err)
5402 goto out;
5403
5404 return 0;
5405 out:
5406 unregister_as_ext2();
5407 unregister_as_ext3();
5408 destroy_inodecache();
5409 out1:
5410 ext4_exit_mballoc();
5411 out2:
5412 ext4_exit_sysfs();
5413 out3:
5414 ext4_exit_system_zone();
5415 out4:
5416 ext4_exit_pageio();
5417 out5:
5418 ext4_exit_es();
5419
5420 return err;
5421 }
5422
5423 static void __exit ext4_exit_fs(void)
5424 {
5425 ext4_exit_crypto();
5426 ext4_destroy_lazyinit_thread();
5427 unregister_as_ext2();
5428 unregister_as_ext3();
5429 unregister_filesystem(&ext4_fs_type);
5430 destroy_inodecache();
5431 ext4_exit_mballoc();
5432 ext4_exit_sysfs();
5433 ext4_exit_system_zone();
5434 ext4_exit_pageio();
5435 ext4_exit_es();
5436 }
5437
5438 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5439 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5440 MODULE_LICENSE("GPL");
5441 module_init(ext4_init_fs)
5442 module_exit(ext4_exit_fs)
This page took 0.204978 seconds and 5 git commands to generate.