b4253fb7bab6b7e094b24b0f4c7c616ebf9b3399
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52
53 struct proc_dir_entry *ext4_proc_root;
54 static struct kset *ext4_kset;
55
56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
57 unsigned long journal_devnum);
58 static int ext4_commit_super(struct super_block *sb, int sync);
59 static void ext4_mark_recovery_complete(struct super_block *sb,
60 struct ext4_super_block *es);
61 static void ext4_clear_journal_err(struct super_block *sb,
62 struct ext4_super_block *es);
63 static int ext4_sync_fs(struct super_block *sb, int wait);
64 static const char *ext4_decode_error(struct super_block *sb, int errno,
65 char nbuf[16]);
66 static int ext4_remount(struct super_block *sb, int *flags, char *data);
67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
68 static int ext4_unfreeze(struct super_block *sb);
69 static void ext4_write_super(struct super_block *sb);
70 static int ext4_freeze(struct super_block *sb);
71
72
73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
74 struct ext4_group_desc *bg)
75 {
76 return le32_to_cpu(bg->bg_block_bitmap_lo) |
77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
79 }
80
81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
82 struct ext4_group_desc *bg)
83 {
84 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
87 }
88
89 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
90 struct ext4_group_desc *bg)
91 {
92 return le32_to_cpu(bg->bg_inode_table_lo) |
93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
95 }
96
97 __u32 ext4_free_blks_count(struct super_block *sb,
98 struct ext4_group_desc *bg)
99 {
100 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
103 }
104
105 __u32 ext4_free_inodes_count(struct super_block *sb,
106 struct ext4_group_desc *bg)
107 {
108 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
111 }
112
113 __u32 ext4_used_dirs_count(struct super_block *sb,
114 struct ext4_group_desc *bg)
115 {
116 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
119 }
120
121 __u32 ext4_itable_unused_count(struct super_block *sb,
122 struct ext4_group_desc *bg)
123 {
124 return le16_to_cpu(bg->bg_itable_unused_lo) |
125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
127 }
128
129 void ext4_block_bitmap_set(struct super_block *sb,
130 struct ext4_group_desc *bg, ext4_fsblk_t blk)
131 {
132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
135 }
136
137 void ext4_inode_bitmap_set(struct super_block *sb,
138 struct ext4_group_desc *bg, ext4_fsblk_t blk)
139 {
140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
143 }
144
145 void ext4_inode_table_set(struct super_block *sb,
146 struct ext4_group_desc *bg, ext4_fsblk_t blk)
147 {
148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
151 }
152
153 void ext4_free_blks_set(struct super_block *sb,
154 struct ext4_group_desc *bg, __u32 count)
155 {
156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
159 }
160
161 void ext4_free_inodes_set(struct super_block *sb,
162 struct ext4_group_desc *bg, __u32 count)
163 {
164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
167 }
168
169 void ext4_used_dirs_set(struct super_block *sb,
170 struct ext4_group_desc *bg, __u32 count)
171 {
172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
175 }
176
177 void ext4_itable_unused_set(struct super_block *sb,
178 struct ext4_group_desc *bg, __u32 count)
179 {
180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
183 }
184
185
186 /* Just increment the non-pointer handle value */
187 static handle_t *ext4_get_nojournal(void)
188 {
189 handle_t *handle = current->journal_info;
190 unsigned long ref_cnt = (unsigned long)handle;
191
192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
193
194 ref_cnt++;
195 handle = (handle_t *)ref_cnt;
196
197 current->journal_info = handle;
198 return handle;
199 }
200
201
202 /* Decrement the non-pointer handle value */
203 static void ext4_put_nojournal(handle_t *handle)
204 {
205 unsigned long ref_cnt = (unsigned long)handle;
206
207 BUG_ON(ref_cnt == 0);
208
209 ref_cnt--;
210 handle = (handle_t *)ref_cnt;
211
212 current->journal_info = handle;
213 }
214
215 /*
216 * Wrappers for jbd2_journal_start/end.
217 *
218 * The only special thing we need to do here is to make sure that all
219 * journal_end calls result in the superblock being marked dirty, so
220 * that sync() will call the filesystem's write_super callback if
221 * appropriate.
222 */
223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
224 {
225 journal_t *journal;
226
227 if (sb->s_flags & MS_RDONLY)
228 return ERR_PTR(-EROFS);
229
230 /* Special case here: if the journal has aborted behind our
231 * backs (eg. EIO in the commit thread), then we still need to
232 * take the FS itself readonly cleanly. */
233 journal = EXT4_SB(sb)->s_journal;
234 if (journal) {
235 if (is_journal_aborted(journal)) {
236 ext4_abort(sb, __func__, "Detected aborted journal");
237 return ERR_PTR(-EROFS);
238 }
239 return jbd2_journal_start(journal, nblocks);
240 }
241 return ext4_get_nojournal();
242 }
243
244 /*
245 * The only special thing we need to do here is to make sure that all
246 * jbd2_journal_stop calls result in the superblock being marked dirty, so
247 * that sync() will call the filesystem's write_super callback if
248 * appropriate.
249 */
250 int __ext4_journal_stop(const char *where, handle_t *handle)
251 {
252 struct super_block *sb;
253 int err;
254 int rc;
255
256 if (!ext4_handle_valid(handle)) {
257 ext4_put_nojournal(handle);
258 return 0;
259 }
260 sb = handle->h_transaction->t_journal->j_private;
261 err = handle->h_err;
262 rc = jbd2_journal_stop(handle);
263
264 if (!err)
265 err = rc;
266 if (err)
267 __ext4_std_error(sb, where, err);
268 return err;
269 }
270
271 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
272 struct buffer_head *bh, handle_t *handle, int err)
273 {
274 char nbuf[16];
275 const char *errstr = ext4_decode_error(NULL, err, nbuf);
276
277 BUG_ON(!ext4_handle_valid(handle));
278
279 if (bh)
280 BUFFER_TRACE(bh, "abort");
281
282 if (!handle->h_err)
283 handle->h_err = err;
284
285 if (is_handle_aborted(handle))
286 return;
287
288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
289 caller, errstr, err_fn);
290
291 jbd2_journal_abort_handle(handle);
292 }
293
294 /* Deal with the reporting of failure conditions on a filesystem such as
295 * inconsistencies detected or read IO failures.
296 *
297 * On ext2, we can store the error state of the filesystem in the
298 * superblock. That is not possible on ext4, because we may have other
299 * write ordering constraints on the superblock which prevent us from
300 * writing it out straight away; and given that the journal is about to
301 * be aborted, we can't rely on the current, or future, transactions to
302 * write out the superblock safely.
303 *
304 * We'll just use the jbd2_journal_abort() error code to record an error in
305 * the journal instead. On recovery, the journal will compain about
306 * that error until we've noted it down and cleared it.
307 */
308
309 static void ext4_handle_error(struct super_block *sb)
310 {
311 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
312
313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
315
316 if (sb->s_flags & MS_RDONLY)
317 return;
318
319 if (!test_opt(sb, ERRORS_CONT)) {
320 journal_t *journal = EXT4_SB(sb)->s_journal;
321
322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
323 if (journal)
324 jbd2_journal_abort(journal, -EIO);
325 }
326 if (test_opt(sb, ERRORS_RO)) {
327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
328 sb->s_flags |= MS_RDONLY;
329 }
330 ext4_commit_super(sb, 1);
331 if (test_opt(sb, ERRORS_PANIC))
332 panic("EXT4-fs (device %s): panic forced after error\n",
333 sb->s_id);
334 }
335
336 void ext4_error(struct super_block *sb, const char *function,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 va_start(args, fmt);
342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
343 vprintk(fmt, args);
344 printk("\n");
345 va_end(args);
346
347 ext4_handle_error(sb);
348 }
349
350 static const char *ext4_decode_error(struct super_block *sb, int errno,
351 char nbuf[16])
352 {
353 char *errstr = NULL;
354
355 switch (errno) {
356 case -EIO:
357 errstr = "IO failure";
358 break;
359 case -ENOMEM:
360 errstr = "Out of memory";
361 break;
362 case -EROFS:
363 if (!sb || (EXT4_SB(sb)->s_journal &&
364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
365 errstr = "Journal has aborted";
366 else
367 errstr = "Readonly filesystem";
368 break;
369 default:
370 /* If the caller passed in an extra buffer for unknown
371 * errors, textualise them now. Else we just return
372 * NULL. */
373 if (nbuf) {
374 /* Check for truncated error codes... */
375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
376 errstr = nbuf;
377 }
378 break;
379 }
380
381 return errstr;
382 }
383
384 /* __ext4_std_error decodes expected errors from journaling functions
385 * automatically and invokes the appropriate error response. */
386
387 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
388 {
389 char nbuf[16];
390 const char *errstr;
391
392 /* Special case: if the error is EROFS, and we're not already
393 * inside a transaction, then there's really no point in logging
394 * an error. */
395 if (errno == -EROFS && journal_current_handle() == NULL &&
396 (sb->s_flags & MS_RDONLY))
397 return;
398
399 errstr = ext4_decode_error(sb, errno, nbuf);
400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
401 sb->s_id, function, errstr);
402
403 ext4_handle_error(sb);
404 }
405
406 /*
407 * ext4_abort is a much stronger failure handler than ext4_error. The
408 * abort function may be used to deal with unrecoverable failures such
409 * as journal IO errors or ENOMEM at a critical moment in log management.
410 *
411 * We unconditionally force the filesystem into an ABORT|READONLY state,
412 * unless the error response on the fs has been set to panic in which
413 * case we take the easy way out and panic immediately.
414 */
415
416 void ext4_abort(struct super_block *sb, const char *function,
417 const char *fmt, ...)
418 {
419 va_list args;
420
421 va_start(args, fmt);
422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
423 vprintk(fmt, args);
424 printk("\n");
425 va_end(args);
426
427 if (test_opt(sb, ERRORS_PANIC))
428 panic("EXT4-fs panic from previous error\n");
429
430 if (sb->s_flags & MS_RDONLY)
431 return;
432
433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
435 sb->s_flags |= MS_RDONLY;
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 if (EXT4_SB(sb)->s_journal)
438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
439 }
440
441 void ext4_msg (struct super_block * sb, const char *prefix,
442 const char *fmt, ...)
443 {
444 va_list args;
445
446 va_start(args, fmt);
447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
448 vprintk(fmt, args);
449 printk("\n");
450 va_end(args);
451 }
452
453 void ext4_warning(struct super_block *sb, const char *function,
454 const char *fmt, ...)
455 {
456 va_list args;
457
458 va_start(args, fmt);
459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
460 sb->s_id, function);
461 vprintk(fmt, args);
462 printk("\n");
463 va_end(args);
464 }
465
466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
467 const char *function, const char *fmt, ...)
468 __releases(bitlock)
469 __acquires(bitlock)
470 {
471 va_list args;
472 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
473
474 va_start(args, fmt);
475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
476 vprintk(fmt, args);
477 printk("\n");
478 va_end(args);
479
480 if (test_opt(sb, ERRORS_CONT)) {
481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
483 ext4_commit_super(sb, 0);
484 return;
485 }
486 ext4_unlock_group(sb, grp);
487 ext4_handle_error(sb);
488 /*
489 * We only get here in the ERRORS_RO case; relocking the group
490 * may be dangerous, but nothing bad will happen since the
491 * filesystem will have already been marked read/only and the
492 * journal has been aborted. We return 1 as a hint to callers
493 * who might what to use the return value from
494 * ext4_grp_locked_error() to distinguish beween the
495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
496 * aggressively from the ext4 function in question, with a
497 * more appropriate error code.
498 */
499 ext4_lock_group(sb, grp);
500 return;
501 }
502
503 void ext4_update_dynamic_rev(struct super_block *sb)
504 {
505 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
506
507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
508 return;
509
510 ext4_warning(sb, __func__,
511 "updating to rev %d because of new feature flag, "
512 "running e2fsck is recommended",
513 EXT4_DYNAMIC_REV);
514
515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
518 /* leave es->s_feature_*compat flags alone */
519 /* es->s_uuid will be set by e2fsck if empty */
520
521 /*
522 * The rest of the superblock fields should be zero, and if not it
523 * means they are likely already in use, so leave them alone. We
524 * can leave it up to e2fsck to clean up any inconsistencies there.
525 */
526 }
527
528 /*
529 * Open the external journal device
530 */
531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
532 {
533 struct block_device *bdev;
534 char b[BDEVNAME_SIZE];
535
536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
537 if (IS_ERR(bdev))
538 goto fail;
539 return bdev;
540
541 fail:
542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
543 __bdevname(dev, b), PTR_ERR(bdev));
544 return NULL;
545 }
546
547 /*
548 * Release the journal device
549 */
550 static int ext4_blkdev_put(struct block_device *bdev)
551 {
552 bd_release(bdev);
553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
554 }
555
556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
557 {
558 struct block_device *bdev;
559 int ret = -ENODEV;
560
561 bdev = sbi->journal_bdev;
562 if (bdev) {
563 ret = ext4_blkdev_put(bdev);
564 sbi->journal_bdev = NULL;
565 }
566 return ret;
567 }
568
569 static inline struct inode *orphan_list_entry(struct list_head *l)
570 {
571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
572 }
573
574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
575 {
576 struct list_head *l;
577
578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
579 le32_to_cpu(sbi->s_es->s_last_orphan));
580
581 printk(KERN_ERR "sb_info orphan list:\n");
582 list_for_each(l, &sbi->s_orphan) {
583 struct inode *inode = orphan_list_entry(l);
584 printk(KERN_ERR " "
585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
586 inode->i_sb->s_id, inode->i_ino, inode,
587 inode->i_mode, inode->i_nlink,
588 NEXT_ORPHAN(inode));
589 }
590 }
591
592 static void ext4_put_super(struct super_block *sb)
593 {
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
595 struct ext4_super_block *es = sbi->s_es;
596 int i, err;
597
598 flush_workqueue(sbi->dio_unwritten_wq);
599 destroy_workqueue(sbi->dio_unwritten_wq);
600
601 lock_super(sb);
602 lock_kernel();
603 if (sb->s_dirt)
604 ext4_commit_super(sb, 1);
605
606 if (sbi->s_journal) {
607 err = jbd2_journal_destroy(sbi->s_journal);
608 sbi->s_journal = NULL;
609 if (err < 0)
610 ext4_abort(sb, __func__,
611 "Couldn't clean up the journal");
612 }
613
614 ext4_release_system_zone(sb);
615 ext4_mb_release(sb);
616 ext4_ext_release(sb);
617 ext4_xattr_put_super(sb);
618
619 if (!(sb->s_flags & MS_RDONLY)) {
620 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
621 es->s_state = cpu_to_le16(sbi->s_mount_state);
622 ext4_commit_super(sb, 1);
623 }
624 if (sbi->s_proc) {
625 remove_proc_entry(sb->s_id, ext4_proc_root);
626 }
627 kobject_del(&sbi->s_kobj);
628
629 for (i = 0; i < sbi->s_gdb_count; i++)
630 brelse(sbi->s_group_desc[i]);
631 kfree(sbi->s_group_desc);
632 if (is_vmalloc_addr(sbi->s_flex_groups))
633 vfree(sbi->s_flex_groups);
634 else
635 kfree(sbi->s_flex_groups);
636 percpu_counter_destroy(&sbi->s_freeblocks_counter);
637 percpu_counter_destroy(&sbi->s_freeinodes_counter);
638 percpu_counter_destroy(&sbi->s_dirs_counter);
639 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
640 brelse(sbi->s_sbh);
641 #ifdef CONFIG_QUOTA
642 for (i = 0; i < MAXQUOTAS; i++)
643 kfree(sbi->s_qf_names[i]);
644 #endif
645
646 /* Debugging code just in case the in-memory inode orphan list
647 * isn't empty. The on-disk one can be non-empty if we've
648 * detected an error and taken the fs readonly, but the
649 * in-memory list had better be clean by this point. */
650 if (!list_empty(&sbi->s_orphan))
651 dump_orphan_list(sb, sbi);
652 J_ASSERT(list_empty(&sbi->s_orphan));
653
654 invalidate_bdev(sb->s_bdev);
655 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
656 /*
657 * Invalidate the journal device's buffers. We don't want them
658 * floating about in memory - the physical journal device may
659 * hotswapped, and it breaks the `ro-after' testing code.
660 */
661 sync_blockdev(sbi->journal_bdev);
662 invalidate_bdev(sbi->journal_bdev);
663 ext4_blkdev_remove(sbi);
664 }
665 sb->s_fs_info = NULL;
666 /*
667 * Now that we are completely done shutting down the
668 * superblock, we need to actually destroy the kobject.
669 */
670 unlock_kernel();
671 unlock_super(sb);
672 kobject_put(&sbi->s_kobj);
673 wait_for_completion(&sbi->s_kobj_unregister);
674 kfree(sbi->s_blockgroup_lock);
675 kfree(sbi);
676 }
677
678 static struct kmem_cache *ext4_inode_cachep;
679
680 /*
681 * Called inside transaction, so use GFP_NOFS
682 */
683 static struct inode *ext4_alloc_inode(struct super_block *sb)
684 {
685 struct ext4_inode_info *ei;
686
687 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
688 if (!ei)
689 return NULL;
690
691 ei->vfs_inode.i_version = 1;
692 ei->vfs_inode.i_data.writeback_index = 0;
693 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
694 INIT_LIST_HEAD(&ei->i_prealloc_list);
695 spin_lock_init(&ei->i_prealloc_lock);
696 /*
697 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
698 * therefore it can be null here. Don't check it, just initialize
699 * jinode.
700 */
701 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
702 ei->i_reserved_data_blocks = 0;
703 ei->i_reserved_meta_blocks = 0;
704 ei->i_allocated_meta_blocks = 0;
705 ei->i_da_metadata_calc_len = 0;
706 ei->i_delalloc_reserved_flag = 0;
707 spin_lock_init(&(ei->i_block_reservation_lock));
708 #ifdef CONFIG_QUOTA
709 ei->i_reserved_quota = 0;
710 #endif
711 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list);
712 ei->cur_aio_dio = NULL;
713 ei->i_sync_tid = 0;
714 ei->i_datasync_tid = 0;
715
716 return &ei->vfs_inode;
717 }
718
719 static void ext4_destroy_inode(struct inode *inode)
720 {
721 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
722 ext4_msg(inode->i_sb, KERN_ERR,
723 "Inode %lu (%p): orphan list check failed!",
724 inode->i_ino, EXT4_I(inode));
725 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
726 EXT4_I(inode), sizeof(struct ext4_inode_info),
727 true);
728 dump_stack();
729 }
730 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
731 }
732
733 static void init_once(void *foo)
734 {
735 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
736
737 INIT_LIST_HEAD(&ei->i_orphan);
738 #ifdef CONFIG_EXT4_FS_XATTR
739 init_rwsem(&ei->xattr_sem);
740 #endif
741 init_rwsem(&ei->i_data_sem);
742 inode_init_once(&ei->vfs_inode);
743 }
744
745 static int init_inodecache(void)
746 {
747 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
748 sizeof(struct ext4_inode_info),
749 0, (SLAB_RECLAIM_ACCOUNT|
750 SLAB_MEM_SPREAD),
751 init_once);
752 if (ext4_inode_cachep == NULL)
753 return -ENOMEM;
754 return 0;
755 }
756
757 static void destroy_inodecache(void)
758 {
759 kmem_cache_destroy(ext4_inode_cachep);
760 }
761
762 static void ext4_clear_inode(struct inode *inode)
763 {
764 ext4_discard_preallocations(inode);
765 if (EXT4_JOURNAL(inode))
766 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
767 &EXT4_I(inode)->jinode);
768 }
769
770 static inline void ext4_show_quota_options(struct seq_file *seq,
771 struct super_block *sb)
772 {
773 #if defined(CONFIG_QUOTA)
774 struct ext4_sb_info *sbi = EXT4_SB(sb);
775
776 if (sbi->s_jquota_fmt) {
777 char *fmtname = "";
778
779 switch (sbi->s_jquota_fmt) {
780 case QFMT_VFS_OLD:
781 fmtname = "vfsold";
782 break;
783 case QFMT_VFS_V0:
784 fmtname = "vfsv0";
785 break;
786 case QFMT_VFS_V1:
787 fmtname = "vfsv1";
788 break;
789 }
790 seq_printf(seq, ",jqfmt=%s", fmtname);
791 }
792
793 if (sbi->s_qf_names[USRQUOTA])
794 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
795
796 if (sbi->s_qf_names[GRPQUOTA])
797 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
798
799 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
800 seq_puts(seq, ",usrquota");
801
802 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
803 seq_puts(seq, ",grpquota");
804 #endif
805 }
806
807 /*
808 * Show an option if
809 * - it's set to a non-default value OR
810 * - if the per-sb default is different from the global default
811 */
812 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
813 {
814 int def_errors;
815 unsigned long def_mount_opts;
816 struct super_block *sb = vfs->mnt_sb;
817 struct ext4_sb_info *sbi = EXT4_SB(sb);
818 struct ext4_super_block *es = sbi->s_es;
819
820 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
821 def_errors = le16_to_cpu(es->s_errors);
822
823 if (sbi->s_sb_block != 1)
824 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
825 if (test_opt(sb, MINIX_DF))
826 seq_puts(seq, ",minixdf");
827 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
828 seq_puts(seq, ",grpid");
829 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
830 seq_puts(seq, ",nogrpid");
831 if (sbi->s_resuid != EXT4_DEF_RESUID ||
832 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
833 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
834 }
835 if (sbi->s_resgid != EXT4_DEF_RESGID ||
836 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
837 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
838 }
839 if (test_opt(sb, ERRORS_RO)) {
840 if (def_errors == EXT4_ERRORS_PANIC ||
841 def_errors == EXT4_ERRORS_CONTINUE) {
842 seq_puts(seq, ",errors=remount-ro");
843 }
844 }
845 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
846 seq_puts(seq, ",errors=continue");
847 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
848 seq_puts(seq, ",errors=panic");
849 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
850 seq_puts(seq, ",nouid32");
851 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
852 seq_puts(seq, ",debug");
853 if (test_opt(sb, OLDALLOC))
854 seq_puts(seq, ",oldalloc");
855 #ifdef CONFIG_EXT4_FS_XATTR
856 if (test_opt(sb, XATTR_USER) &&
857 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
858 seq_puts(seq, ",user_xattr");
859 if (!test_opt(sb, XATTR_USER) &&
860 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
861 seq_puts(seq, ",nouser_xattr");
862 }
863 #endif
864 #ifdef CONFIG_EXT4_FS_POSIX_ACL
865 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
866 seq_puts(seq, ",acl");
867 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
868 seq_puts(seq, ",noacl");
869 #endif
870 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
871 seq_printf(seq, ",commit=%u",
872 (unsigned) (sbi->s_commit_interval / HZ));
873 }
874 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
875 seq_printf(seq, ",min_batch_time=%u",
876 (unsigned) sbi->s_min_batch_time);
877 }
878 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
879 seq_printf(seq, ",max_batch_time=%u",
880 (unsigned) sbi->s_min_batch_time);
881 }
882
883 /*
884 * We're changing the default of barrier mount option, so
885 * let's always display its mount state so it's clear what its
886 * status is.
887 */
888 seq_puts(seq, ",barrier=");
889 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
890 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
891 seq_puts(seq, ",journal_async_commit");
892 if (test_opt(sb, NOBH))
893 seq_puts(seq, ",nobh");
894 if (test_opt(sb, I_VERSION))
895 seq_puts(seq, ",i_version");
896 if (!test_opt(sb, DELALLOC))
897 seq_puts(seq, ",nodelalloc");
898
899
900 if (sbi->s_stripe)
901 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
902 /*
903 * journal mode get enabled in different ways
904 * So just print the value even if we didn't specify it
905 */
906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
907 seq_puts(seq, ",data=journal");
908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
909 seq_puts(seq, ",data=ordered");
910 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
911 seq_puts(seq, ",data=writeback");
912
913 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
914 seq_printf(seq, ",inode_readahead_blks=%u",
915 sbi->s_inode_readahead_blks);
916
917 if (test_opt(sb, DATA_ERR_ABORT))
918 seq_puts(seq, ",data_err=abort");
919
920 if (test_opt(sb, NO_AUTO_DA_ALLOC))
921 seq_puts(seq, ",noauto_da_alloc");
922
923 if (test_opt(sb, DISCARD))
924 seq_puts(seq, ",discard");
925
926 if (test_opt(sb, NOLOAD))
927 seq_puts(seq, ",norecovery");
928
929 ext4_show_quota_options(seq, sb);
930
931 return 0;
932 }
933
934 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
935 u64 ino, u32 generation)
936 {
937 struct inode *inode;
938
939 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
940 return ERR_PTR(-ESTALE);
941 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
942 return ERR_PTR(-ESTALE);
943
944 /* iget isn't really right if the inode is currently unallocated!!
945 *
946 * ext4_read_inode will return a bad_inode if the inode had been
947 * deleted, so we should be safe.
948 *
949 * Currently we don't know the generation for parent directory, so
950 * a generation of 0 means "accept any"
951 */
952 inode = ext4_iget(sb, ino);
953 if (IS_ERR(inode))
954 return ERR_CAST(inode);
955 if (generation && inode->i_generation != generation) {
956 iput(inode);
957 return ERR_PTR(-ESTALE);
958 }
959
960 return inode;
961 }
962
963 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
964 int fh_len, int fh_type)
965 {
966 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
967 ext4_nfs_get_inode);
968 }
969
970 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
971 int fh_len, int fh_type)
972 {
973 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
974 ext4_nfs_get_inode);
975 }
976
977 /*
978 * Try to release metadata pages (indirect blocks, directories) which are
979 * mapped via the block device. Since these pages could have journal heads
980 * which would prevent try_to_free_buffers() from freeing them, we must use
981 * jbd2 layer's try_to_free_buffers() function to release them.
982 */
983 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
984 gfp_t wait)
985 {
986 journal_t *journal = EXT4_SB(sb)->s_journal;
987
988 WARN_ON(PageChecked(page));
989 if (!page_has_buffers(page))
990 return 0;
991 if (journal)
992 return jbd2_journal_try_to_free_buffers(journal, page,
993 wait & ~__GFP_WAIT);
994 return try_to_free_buffers(page);
995 }
996
997 #ifdef CONFIG_QUOTA
998 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
999 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1000
1001 static int ext4_write_dquot(struct dquot *dquot);
1002 static int ext4_acquire_dquot(struct dquot *dquot);
1003 static int ext4_release_dquot(struct dquot *dquot);
1004 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1005 static int ext4_write_info(struct super_block *sb, int type);
1006 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1007 char *path, int remount);
1008 static int ext4_quota_on_mount(struct super_block *sb, int type);
1009 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1010 size_t len, loff_t off);
1011 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1012 const char *data, size_t len, loff_t off);
1013
1014 static const struct dquot_operations ext4_quota_operations = {
1015 .initialize = dquot_initialize,
1016 .drop = dquot_drop,
1017 #ifdef CONFIG_QUOTA
1018 .get_reserved_space = ext4_get_reserved_space,
1019 #endif
1020 .write_dquot = ext4_write_dquot,
1021 .acquire_dquot = ext4_acquire_dquot,
1022 .release_dquot = ext4_release_dquot,
1023 .mark_dirty = ext4_mark_dquot_dirty,
1024 .write_info = ext4_write_info,
1025 .alloc_dquot = dquot_alloc,
1026 .destroy_dquot = dquot_destroy,
1027 };
1028
1029 static const struct quotactl_ops ext4_qctl_operations = {
1030 .quota_on = ext4_quota_on,
1031 .quota_off = vfs_quota_off,
1032 .quota_sync = vfs_quota_sync,
1033 .get_info = vfs_get_dqinfo,
1034 .set_info = vfs_set_dqinfo,
1035 .get_dqblk = vfs_get_dqblk,
1036 .set_dqblk = vfs_set_dqblk
1037 };
1038 #endif
1039
1040 static const struct super_operations ext4_sops = {
1041 .alloc_inode = ext4_alloc_inode,
1042 .destroy_inode = ext4_destroy_inode,
1043 .write_inode = ext4_write_inode,
1044 .dirty_inode = ext4_dirty_inode,
1045 .delete_inode = ext4_delete_inode,
1046 .put_super = ext4_put_super,
1047 .sync_fs = ext4_sync_fs,
1048 .freeze_fs = ext4_freeze,
1049 .unfreeze_fs = ext4_unfreeze,
1050 .statfs = ext4_statfs,
1051 .remount_fs = ext4_remount,
1052 .clear_inode = ext4_clear_inode,
1053 .show_options = ext4_show_options,
1054 #ifdef CONFIG_QUOTA
1055 .quota_read = ext4_quota_read,
1056 .quota_write = ext4_quota_write,
1057 #endif
1058 .bdev_try_to_free_page = bdev_try_to_free_page,
1059 };
1060
1061 static const struct super_operations ext4_nojournal_sops = {
1062 .alloc_inode = ext4_alloc_inode,
1063 .destroy_inode = ext4_destroy_inode,
1064 .write_inode = ext4_write_inode,
1065 .dirty_inode = ext4_dirty_inode,
1066 .delete_inode = ext4_delete_inode,
1067 .write_super = ext4_write_super,
1068 .put_super = ext4_put_super,
1069 .statfs = ext4_statfs,
1070 .remount_fs = ext4_remount,
1071 .clear_inode = ext4_clear_inode,
1072 .show_options = ext4_show_options,
1073 #ifdef CONFIG_QUOTA
1074 .quota_read = ext4_quota_read,
1075 .quota_write = ext4_quota_write,
1076 #endif
1077 .bdev_try_to_free_page = bdev_try_to_free_page,
1078 };
1079
1080 static const struct export_operations ext4_export_ops = {
1081 .fh_to_dentry = ext4_fh_to_dentry,
1082 .fh_to_parent = ext4_fh_to_parent,
1083 .get_parent = ext4_get_parent,
1084 };
1085
1086 enum {
1087 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1088 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1089 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1090 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1091 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1092 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1093 Opt_journal_update, Opt_journal_dev,
1094 Opt_journal_checksum, Opt_journal_async_commit,
1095 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1096 Opt_data_err_abort, Opt_data_err_ignore,
1097 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1098 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1099 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1100 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1101 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1102 Opt_block_validity, Opt_noblock_validity,
1103 Opt_inode_readahead_blks, Opt_journal_ioprio,
1104 Opt_discard, Opt_nodiscard,
1105 };
1106
1107 static const match_table_t tokens = {
1108 {Opt_bsd_df, "bsddf"},
1109 {Opt_minix_df, "minixdf"},
1110 {Opt_grpid, "grpid"},
1111 {Opt_grpid, "bsdgroups"},
1112 {Opt_nogrpid, "nogrpid"},
1113 {Opt_nogrpid, "sysvgroups"},
1114 {Opt_resgid, "resgid=%u"},
1115 {Opt_resuid, "resuid=%u"},
1116 {Opt_sb, "sb=%u"},
1117 {Opt_err_cont, "errors=continue"},
1118 {Opt_err_panic, "errors=panic"},
1119 {Opt_err_ro, "errors=remount-ro"},
1120 {Opt_nouid32, "nouid32"},
1121 {Opt_debug, "debug"},
1122 {Opt_oldalloc, "oldalloc"},
1123 {Opt_orlov, "orlov"},
1124 {Opt_user_xattr, "user_xattr"},
1125 {Opt_nouser_xattr, "nouser_xattr"},
1126 {Opt_acl, "acl"},
1127 {Opt_noacl, "noacl"},
1128 {Opt_noload, "noload"},
1129 {Opt_noload, "norecovery"},
1130 {Opt_nobh, "nobh"},
1131 {Opt_bh, "bh"},
1132 {Opt_commit, "commit=%u"},
1133 {Opt_min_batch_time, "min_batch_time=%u"},
1134 {Opt_max_batch_time, "max_batch_time=%u"},
1135 {Opt_journal_update, "journal=update"},
1136 {Opt_journal_dev, "journal_dev=%u"},
1137 {Opt_journal_checksum, "journal_checksum"},
1138 {Opt_journal_async_commit, "journal_async_commit"},
1139 {Opt_abort, "abort"},
1140 {Opt_data_journal, "data=journal"},
1141 {Opt_data_ordered, "data=ordered"},
1142 {Opt_data_writeback, "data=writeback"},
1143 {Opt_data_err_abort, "data_err=abort"},
1144 {Opt_data_err_ignore, "data_err=ignore"},
1145 {Opt_offusrjquota, "usrjquota="},
1146 {Opt_usrjquota, "usrjquota=%s"},
1147 {Opt_offgrpjquota, "grpjquota="},
1148 {Opt_grpjquota, "grpjquota=%s"},
1149 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1150 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1151 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1152 {Opt_grpquota, "grpquota"},
1153 {Opt_noquota, "noquota"},
1154 {Opt_quota, "quota"},
1155 {Opt_usrquota, "usrquota"},
1156 {Opt_barrier, "barrier=%u"},
1157 {Opt_barrier, "barrier"},
1158 {Opt_nobarrier, "nobarrier"},
1159 {Opt_i_version, "i_version"},
1160 {Opt_stripe, "stripe=%u"},
1161 {Opt_resize, "resize"},
1162 {Opt_delalloc, "delalloc"},
1163 {Opt_nodelalloc, "nodelalloc"},
1164 {Opt_block_validity, "block_validity"},
1165 {Opt_noblock_validity, "noblock_validity"},
1166 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1167 {Opt_journal_ioprio, "journal_ioprio=%u"},
1168 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1169 {Opt_auto_da_alloc, "auto_da_alloc"},
1170 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1171 {Opt_discard, "discard"},
1172 {Opt_nodiscard, "nodiscard"},
1173 {Opt_err, NULL},
1174 };
1175
1176 static ext4_fsblk_t get_sb_block(void **data)
1177 {
1178 ext4_fsblk_t sb_block;
1179 char *options = (char *) *data;
1180
1181 if (!options || strncmp(options, "sb=", 3) != 0)
1182 return 1; /* Default location */
1183
1184 options += 3;
1185 /* TODO: use simple_strtoll with >32bit ext4 */
1186 sb_block = simple_strtoul(options, &options, 0);
1187 if (*options && *options != ',') {
1188 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1189 (char *) *data);
1190 return 1;
1191 }
1192 if (*options == ',')
1193 options++;
1194 *data = (void *) options;
1195
1196 return sb_block;
1197 }
1198
1199 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1200
1201 static int parse_options(char *options, struct super_block *sb,
1202 unsigned long *journal_devnum,
1203 unsigned int *journal_ioprio,
1204 ext4_fsblk_t *n_blocks_count, int is_remount)
1205 {
1206 struct ext4_sb_info *sbi = EXT4_SB(sb);
1207 char *p;
1208 substring_t args[MAX_OPT_ARGS];
1209 int data_opt = 0;
1210 int option;
1211 #ifdef CONFIG_QUOTA
1212 int qtype, qfmt;
1213 char *qname;
1214 #endif
1215
1216 if (!options)
1217 return 1;
1218
1219 while ((p = strsep(&options, ",")) != NULL) {
1220 int token;
1221 if (!*p)
1222 continue;
1223
1224 token = match_token(p, tokens, args);
1225 switch (token) {
1226 case Opt_bsd_df:
1227 clear_opt(sbi->s_mount_opt, MINIX_DF);
1228 break;
1229 case Opt_minix_df:
1230 set_opt(sbi->s_mount_opt, MINIX_DF);
1231 break;
1232 case Opt_grpid:
1233 set_opt(sbi->s_mount_opt, GRPID);
1234 break;
1235 case Opt_nogrpid:
1236 clear_opt(sbi->s_mount_opt, GRPID);
1237 break;
1238 case Opt_resuid:
1239 if (match_int(&args[0], &option))
1240 return 0;
1241 sbi->s_resuid = option;
1242 break;
1243 case Opt_resgid:
1244 if (match_int(&args[0], &option))
1245 return 0;
1246 sbi->s_resgid = option;
1247 break;
1248 case Opt_sb:
1249 /* handled by get_sb_block() instead of here */
1250 /* *sb_block = match_int(&args[0]); */
1251 break;
1252 case Opt_err_panic:
1253 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1254 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1255 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1256 break;
1257 case Opt_err_ro:
1258 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1259 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1260 set_opt(sbi->s_mount_opt, ERRORS_RO);
1261 break;
1262 case Opt_err_cont:
1263 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1264 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1265 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1266 break;
1267 case Opt_nouid32:
1268 set_opt(sbi->s_mount_opt, NO_UID32);
1269 break;
1270 case Opt_debug:
1271 set_opt(sbi->s_mount_opt, DEBUG);
1272 break;
1273 case Opt_oldalloc:
1274 set_opt(sbi->s_mount_opt, OLDALLOC);
1275 break;
1276 case Opt_orlov:
1277 clear_opt(sbi->s_mount_opt, OLDALLOC);
1278 break;
1279 #ifdef CONFIG_EXT4_FS_XATTR
1280 case Opt_user_xattr:
1281 set_opt(sbi->s_mount_opt, XATTR_USER);
1282 break;
1283 case Opt_nouser_xattr:
1284 clear_opt(sbi->s_mount_opt, XATTR_USER);
1285 break;
1286 #else
1287 case Opt_user_xattr:
1288 case Opt_nouser_xattr:
1289 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1290 break;
1291 #endif
1292 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1293 case Opt_acl:
1294 set_opt(sbi->s_mount_opt, POSIX_ACL);
1295 break;
1296 case Opt_noacl:
1297 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1298 break;
1299 #else
1300 case Opt_acl:
1301 case Opt_noacl:
1302 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1303 break;
1304 #endif
1305 case Opt_journal_update:
1306 /* @@@ FIXME */
1307 /* Eventually we will want to be able to create
1308 a journal file here. For now, only allow the
1309 user to specify an existing inode to be the
1310 journal file. */
1311 if (is_remount) {
1312 ext4_msg(sb, KERN_ERR,
1313 "Cannot specify journal on remount");
1314 return 0;
1315 }
1316 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1317 break;
1318 case Opt_journal_dev:
1319 if (is_remount) {
1320 ext4_msg(sb, KERN_ERR,
1321 "Cannot specify journal on remount");
1322 return 0;
1323 }
1324 if (match_int(&args[0], &option))
1325 return 0;
1326 *journal_devnum = option;
1327 break;
1328 case Opt_journal_checksum:
1329 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1330 break;
1331 case Opt_journal_async_commit:
1332 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1333 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1334 break;
1335 case Opt_noload:
1336 set_opt(sbi->s_mount_opt, NOLOAD);
1337 break;
1338 case Opt_commit:
1339 if (match_int(&args[0], &option))
1340 return 0;
1341 if (option < 0)
1342 return 0;
1343 if (option == 0)
1344 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1345 sbi->s_commit_interval = HZ * option;
1346 break;
1347 case Opt_max_batch_time:
1348 if (match_int(&args[0], &option))
1349 return 0;
1350 if (option < 0)
1351 return 0;
1352 if (option == 0)
1353 option = EXT4_DEF_MAX_BATCH_TIME;
1354 sbi->s_max_batch_time = option;
1355 break;
1356 case Opt_min_batch_time:
1357 if (match_int(&args[0], &option))
1358 return 0;
1359 if (option < 0)
1360 return 0;
1361 sbi->s_min_batch_time = option;
1362 break;
1363 case Opt_data_journal:
1364 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1365 goto datacheck;
1366 case Opt_data_ordered:
1367 data_opt = EXT4_MOUNT_ORDERED_DATA;
1368 goto datacheck;
1369 case Opt_data_writeback:
1370 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1371 datacheck:
1372 if (is_remount) {
1373 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1374 != data_opt) {
1375 ext4_msg(sb, KERN_ERR,
1376 "Cannot change data mode on remount");
1377 return 0;
1378 }
1379 } else {
1380 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1381 sbi->s_mount_opt |= data_opt;
1382 }
1383 break;
1384 case Opt_data_err_abort:
1385 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1386 break;
1387 case Opt_data_err_ignore:
1388 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1389 break;
1390 #ifdef CONFIG_QUOTA
1391 case Opt_usrjquota:
1392 qtype = USRQUOTA;
1393 goto set_qf_name;
1394 case Opt_grpjquota:
1395 qtype = GRPQUOTA;
1396 set_qf_name:
1397 if (sb_any_quota_loaded(sb) &&
1398 !sbi->s_qf_names[qtype]) {
1399 ext4_msg(sb, KERN_ERR,
1400 "Cannot change journaled "
1401 "quota options when quota turned on");
1402 return 0;
1403 }
1404 qname = match_strdup(&args[0]);
1405 if (!qname) {
1406 ext4_msg(sb, KERN_ERR,
1407 "Not enough memory for "
1408 "storing quotafile name");
1409 return 0;
1410 }
1411 if (sbi->s_qf_names[qtype] &&
1412 strcmp(sbi->s_qf_names[qtype], qname)) {
1413 ext4_msg(sb, KERN_ERR,
1414 "%s quota file already "
1415 "specified", QTYPE2NAME(qtype));
1416 kfree(qname);
1417 return 0;
1418 }
1419 sbi->s_qf_names[qtype] = qname;
1420 if (strchr(sbi->s_qf_names[qtype], '/')) {
1421 ext4_msg(sb, KERN_ERR,
1422 "quotafile must be on "
1423 "filesystem root");
1424 kfree(sbi->s_qf_names[qtype]);
1425 sbi->s_qf_names[qtype] = NULL;
1426 return 0;
1427 }
1428 set_opt(sbi->s_mount_opt, QUOTA);
1429 break;
1430 case Opt_offusrjquota:
1431 qtype = USRQUOTA;
1432 goto clear_qf_name;
1433 case Opt_offgrpjquota:
1434 qtype = GRPQUOTA;
1435 clear_qf_name:
1436 if (sb_any_quota_loaded(sb) &&
1437 sbi->s_qf_names[qtype]) {
1438 ext4_msg(sb, KERN_ERR, "Cannot change "
1439 "journaled quota options when "
1440 "quota turned on");
1441 return 0;
1442 }
1443 /*
1444 * The space will be released later when all options
1445 * are confirmed to be correct
1446 */
1447 sbi->s_qf_names[qtype] = NULL;
1448 break;
1449 case Opt_jqfmt_vfsold:
1450 qfmt = QFMT_VFS_OLD;
1451 goto set_qf_format;
1452 case Opt_jqfmt_vfsv0:
1453 qfmt = QFMT_VFS_V0;
1454 goto set_qf_format;
1455 case Opt_jqfmt_vfsv1:
1456 qfmt = QFMT_VFS_V1;
1457 set_qf_format:
1458 if (sb_any_quota_loaded(sb) &&
1459 sbi->s_jquota_fmt != qfmt) {
1460 ext4_msg(sb, KERN_ERR, "Cannot change "
1461 "journaled quota options when "
1462 "quota turned on");
1463 return 0;
1464 }
1465 sbi->s_jquota_fmt = qfmt;
1466 break;
1467 case Opt_quota:
1468 case Opt_usrquota:
1469 set_opt(sbi->s_mount_opt, QUOTA);
1470 set_opt(sbi->s_mount_opt, USRQUOTA);
1471 break;
1472 case Opt_grpquota:
1473 set_opt(sbi->s_mount_opt, QUOTA);
1474 set_opt(sbi->s_mount_opt, GRPQUOTA);
1475 break;
1476 case Opt_noquota:
1477 if (sb_any_quota_loaded(sb)) {
1478 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1479 "options when quota turned on");
1480 return 0;
1481 }
1482 clear_opt(sbi->s_mount_opt, QUOTA);
1483 clear_opt(sbi->s_mount_opt, USRQUOTA);
1484 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1485 break;
1486 #else
1487 case Opt_quota:
1488 case Opt_usrquota:
1489 case Opt_grpquota:
1490 ext4_msg(sb, KERN_ERR,
1491 "quota options not supported");
1492 break;
1493 case Opt_usrjquota:
1494 case Opt_grpjquota:
1495 case Opt_offusrjquota:
1496 case Opt_offgrpjquota:
1497 case Opt_jqfmt_vfsold:
1498 case Opt_jqfmt_vfsv0:
1499 case Opt_jqfmt_vfsv1:
1500 ext4_msg(sb, KERN_ERR,
1501 "journaled quota options not supported");
1502 break;
1503 case Opt_noquota:
1504 break;
1505 #endif
1506 case Opt_abort:
1507 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1508 break;
1509 case Opt_nobarrier:
1510 clear_opt(sbi->s_mount_opt, BARRIER);
1511 break;
1512 case Opt_barrier:
1513 if (match_int(&args[0], &option)) {
1514 set_opt(sbi->s_mount_opt, BARRIER);
1515 break;
1516 }
1517 if (option)
1518 set_opt(sbi->s_mount_opt, BARRIER);
1519 else
1520 clear_opt(sbi->s_mount_opt, BARRIER);
1521 break;
1522 case Opt_ignore:
1523 break;
1524 case Opt_resize:
1525 if (!is_remount) {
1526 ext4_msg(sb, KERN_ERR,
1527 "resize option only available "
1528 "for remount");
1529 return 0;
1530 }
1531 if (match_int(&args[0], &option) != 0)
1532 return 0;
1533 *n_blocks_count = option;
1534 break;
1535 case Opt_nobh:
1536 set_opt(sbi->s_mount_opt, NOBH);
1537 break;
1538 case Opt_bh:
1539 clear_opt(sbi->s_mount_opt, NOBH);
1540 break;
1541 case Opt_i_version:
1542 set_opt(sbi->s_mount_opt, I_VERSION);
1543 sb->s_flags |= MS_I_VERSION;
1544 break;
1545 case Opt_nodelalloc:
1546 clear_opt(sbi->s_mount_opt, DELALLOC);
1547 break;
1548 case Opt_stripe:
1549 if (match_int(&args[0], &option))
1550 return 0;
1551 if (option < 0)
1552 return 0;
1553 sbi->s_stripe = option;
1554 break;
1555 case Opt_delalloc:
1556 set_opt(sbi->s_mount_opt, DELALLOC);
1557 break;
1558 case Opt_block_validity:
1559 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1560 break;
1561 case Opt_noblock_validity:
1562 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1563 break;
1564 case Opt_inode_readahead_blks:
1565 if (match_int(&args[0], &option))
1566 return 0;
1567 if (option < 0 || option > (1 << 30))
1568 return 0;
1569 if (!is_power_of_2(option)) {
1570 ext4_msg(sb, KERN_ERR,
1571 "EXT4-fs: inode_readahead_blks"
1572 " must be a power of 2");
1573 return 0;
1574 }
1575 sbi->s_inode_readahead_blks = option;
1576 break;
1577 case Opt_journal_ioprio:
1578 if (match_int(&args[0], &option))
1579 return 0;
1580 if (option < 0 || option > 7)
1581 break;
1582 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1583 option);
1584 break;
1585 case Opt_noauto_da_alloc:
1586 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1587 break;
1588 case Opt_auto_da_alloc:
1589 if (match_int(&args[0], &option)) {
1590 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1591 break;
1592 }
1593 if (option)
1594 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1595 else
1596 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1597 break;
1598 case Opt_discard:
1599 set_opt(sbi->s_mount_opt, DISCARD);
1600 break;
1601 case Opt_nodiscard:
1602 clear_opt(sbi->s_mount_opt, DISCARD);
1603 break;
1604 default:
1605 ext4_msg(sb, KERN_ERR,
1606 "Unrecognized mount option \"%s\" "
1607 "or missing value", p);
1608 return 0;
1609 }
1610 }
1611 #ifdef CONFIG_QUOTA
1612 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1613 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1614 sbi->s_qf_names[USRQUOTA])
1615 clear_opt(sbi->s_mount_opt, USRQUOTA);
1616
1617 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1618 sbi->s_qf_names[GRPQUOTA])
1619 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1620
1621 if ((sbi->s_qf_names[USRQUOTA] &&
1622 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1623 (sbi->s_qf_names[GRPQUOTA] &&
1624 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1625 ext4_msg(sb, KERN_ERR, "old and new quota "
1626 "format mixing");
1627 return 0;
1628 }
1629
1630 if (!sbi->s_jquota_fmt) {
1631 ext4_msg(sb, KERN_ERR, "journaled quota format "
1632 "not specified");
1633 return 0;
1634 }
1635 } else {
1636 if (sbi->s_jquota_fmt) {
1637 ext4_msg(sb, KERN_ERR, "journaled quota format "
1638 "specified with no journaling "
1639 "enabled");
1640 return 0;
1641 }
1642 }
1643 #endif
1644 return 1;
1645 }
1646
1647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1648 int read_only)
1649 {
1650 struct ext4_sb_info *sbi = EXT4_SB(sb);
1651 int res = 0;
1652
1653 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1654 ext4_msg(sb, KERN_ERR, "revision level too high, "
1655 "forcing read-only mode");
1656 res = MS_RDONLY;
1657 }
1658 if (read_only)
1659 return res;
1660 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1661 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1662 "running e2fsck is recommended");
1663 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1664 ext4_msg(sb, KERN_WARNING,
1665 "warning: mounting fs with errors, "
1666 "running e2fsck is recommended");
1667 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1668 le16_to_cpu(es->s_mnt_count) >=
1669 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1670 ext4_msg(sb, KERN_WARNING,
1671 "warning: maximal mount count reached, "
1672 "running e2fsck is recommended");
1673 else if (le32_to_cpu(es->s_checkinterval) &&
1674 (le32_to_cpu(es->s_lastcheck) +
1675 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1676 ext4_msg(sb, KERN_WARNING,
1677 "warning: checktime reached, "
1678 "running e2fsck is recommended");
1679 if (!sbi->s_journal)
1680 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1681 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1682 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1683 le16_add_cpu(&es->s_mnt_count, 1);
1684 es->s_mtime = cpu_to_le32(get_seconds());
1685 ext4_update_dynamic_rev(sb);
1686 if (sbi->s_journal)
1687 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1688
1689 ext4_commit_super(sb, 1);
1690 if (test_opt(sb, DEBUG))
1691 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1692 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1693 sb->s_blocksize,
1694 sbi->s_groups_count,
1695 EXT4_BLOCKS_PER_GROUP(sb),
1696 EXT4_INODES_PER_GROUP(sb),
1697 sbi->s_mount_opt);
1698
1699 return res;
1700 }
1701
1702 static int ext4_fill_flex_info(struct super_block *sb)
1703 {
1704 struct ext4_sb_info *sbi = EXT4_SB(sb);
1705 struct ext4_group_desc *gdp = NULL;
1706 ext4_group_t flex_group_count;
1707 ext4_group_t flex_group;
1708 int groups_per_flex = 0;
1709 size_t size;
1710 int i;
1711
1712 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1713 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1714
1715 if (groups_per_flex < 2) {
1716 sbi->s_log_groups_per_flex = 0;
1717 return 1;
1718 }
1719
1720 /* We allocate both existing and potentially added groups */
1721 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1722 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1723 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1724 size = flex_group_count * sizeof(struct flex_groups);
1725 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1726 if (sbi->s_flex_groups == NULL) {
1727 sbi->s_flex_groups = vmalloc(size);
1728 if (sbi->s_flex_groups)
1729 memset(sbi->s_flex_groups, 0, size);
1730 }
1731 if (sbi->s_flex_groups == NULL) {
1732 ext4_msg(sb, KERN_ERR, "not enough memory for "
1733 "%u flex groups", flex_group_count);
1734 goto failed;
1735 }
1736
1737 for (i = 0; i < sbi->s_groups_count; i++) {
1738 gdp = ext4_get_group_desc(sb, i, NULL);
1739
1740 flex_group = ext4_flex_group(sbi, i);
1741 atomic_add(ext4_free_inodes_count(sb, gdp),
1742 &sbi->s_flex_groups[flex_group].free_inodes);
1743 atomic_add(ext4_free_blks_count(sb, gdp),
1744 &sbi->s_flex_groups[flex_group].free_blocks);
1745 atomic_add(ext4_used_dirs_count(sb, gdp),
1746 &sbi->s_flex_groups[flex_group].used_dirs);
1747 }
1748
1749 return 1;
1750 failed:
1751 return 0;
1752 }
1753
1754 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1755 struct ext4_group_desc *gdp)
1756 {
1757 __u16 crc = 0;
1758
1759 if (sbi->s_es->s_feature_ro_compat &
1760 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1761 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1762 __le32 le_group = cpu_to_le32(block_group);
1763
1764 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1765 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1766 crc = crc16(crc, (__u8 *)gdp, offset);
1767 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1768 /* for checksum of struct ext4_group_desc do the rest...*/
1769 if ((sbi->s_es->s_feature_incompat &
1770 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1771 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1772 crc = crc16(crc, (__u8 *)gdp + offset,
1773 le16_to_cpu(sbi->s_es->s_desc_size) -
1774 offset);
1775 }
1776
1777 return cpu_to_le16(crc);
1778 }
1779
1780 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1781 struct ext4_group_desc *gdp)
1782 {
1783 if ((sbi->s_es->s_feature_ro_compat &
1784 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1785 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1786 return 0;
1787
1788 return 1;
1789 }
1790
1791 /* Called at mount-time, super-block is locked */
1792 static int ext4_check_descriptors(struct super_block *sb)
1793 {
1794 struct ext4_sb_info *sbi = EXT4_SB(sb);
1795 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1796 ext4_fsblk_t last_block;
1797 ext4_fsblk_t block_bitmap;
1798 ext4_fsblk_t inode_bitmap;
1799 ext4_fsblk_t inode_table;
1800 int flexbg_flag = 0;
1801 ext4_group_t i;
1802
1803 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1804 flexbg_flag = 1;
1805
1806 ext4_debug("Checking group descriptors");
1807
1808 for (i = 0; i < sbi->s_groups_count; i++) {
1809 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1810
1811 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1812 last_block = ext4_blocks_count(sbi->s_es) - 1;
1813 else
1814 last_block = first_block +
1815 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1816
1817 block_bitmap = ext4_block_bitmap(sb, gdp);
1818 if (block_bitmap < first_block || block_bitmap > last_block) {
1819 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1820 "Block bitmap for group %u not in group "
1821 "(block %llu)!", i, block_bitmap);
1822 return 0;
1823 }
1824 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1825 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1826 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1827 "Inode bitmap for group %u not in group "
1828 "(block %llu)!", i, inode_bitmap);
1829 return 0;
1830 }
1831 inode_table = ext4_inode_table(sb, gdp);
1832 if (inode_table < first_block ||
1833 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1834 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1835 "Inode table for group %u not in group "
1836 "(block %llu)!", i, inode_table);
1837 return 0;
1838 }
1839 ext4_lock_group(sb, i);
1840 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1841 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1842 "Checksum for group %u failed (%u!=%u)",
1843 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1844 gdp)), le16_to_cpu(gdp->bg_checksum));
1845 if (!(sb->s_flags & MS_RDONLY)) {
1846 ext4_unlock_group(sb, i);
1847 return 0;
1848 }
1849 }
1850 ext4_unlock_group(sb, i);
1851 if (!flexbg_flag)
1852 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1853 }
1854
1855 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1856 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1857 return 1;
1858 }
1859
1860 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1861 * the superblock) which were deleted from all directories, but held open by
1862 * a process at the time of a crash. We walk the list and try to delete these
1863 * inodes at recovery time (only with a read-write filesystem).
1864 *
1865 * In order to keep the orphan inode chain consistent during traversal (in
1866 * case of crash during recovery), we link each inode into the superblock
1867 * orphan list_head and handle it the same way as an inode deletion during
1868 * normal operation (which journals the operations for us).
1869 *
1870 * We only do an iget() and an iput() on each inode, which is very safe if we
1871 * accidentally point at an in-use or already deleted inode. The worst that
1872 * can happen in this case is that we get a "bit already cleared" message from
1873 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1874 * e2fsck was run on this filesystem, and it must have already done the orphan
1875 * inode cleanup for us, so we can safely abort without any further action.
1876 */
1877 static void ext4_orphan_cleanup(struct super_block *sb,
1878 struct ext4_super_block *es)
1879 {
1880 unsigned int s_flags = sb->s_flags;
1881 int nr_orphans = 0, nr_truncates = 0;
1882 #ifdef CONFIG_QUOTA
1883 int i;
1884 #endif
1885 if (!es->s_last_orphan) {
1886 jbd_debug(4, "no orphan inodes to clean up\n");
1887 return;
1888 }
1889
1890 if (bdev_read_only(sb->s_bdev)) {
1891 ext4_msg(sb, KERN_ERR, "write access "
1892 "unavailable, skipping orphan cleanup");
1893 return;
1894 }
1895
1896 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1897 if (es->s_last_orphan)
1898 jbd_debug(1, "Errors on filesystem, "
1899 "clearing orphan list.\n");
1900 es->s_last_orphan = 0;
1901 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1902 return;
1903 }
1904
1905 if (s_flags & MS_RDONLY) {
1906 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1907 sb->s_flags &= ~MS_RDONLY;
1908 }
1909 #ifdef CONFIG_QUOTA
1910 /* Needed for iput() to work correctly and not trash data */
1911 sb->s_flags |= MS_ACTIVE;
1912 /* Turn on quotas so that they are updated correctly */
1913 for (i = 0; i < MAXQUOTAS; i++) {
1914 if (EXT4_SB(sb)->s_qf_names[i]) {
1915 int ret = ext4_quota_on_mount(sb, i);
1916 if (ret < 0)
1917 ext4_msg(sb, KERN_ERR,
1918 "Cannot turn on journaled "
1919 "quota: error %d", ret);
1920 }
1921 }
1922 #endif
1923
1924 while (es->s_last_orphan) {
1925 struct inode *inode;
1926
1927 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1928 if (IS_ERR(inode)) {
1929 es->s_last_orphan = 0;
1930 break;
1931 }
1932
1933 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1934 vfs_dq_init(inode);
1935 if (inode->i_nlink) {
1936 ext4_msg(sb, KERN_DEBUG,
1937 "%s: truncating inode %lu to %lld bytes",
1938 __func__, inode->i_ino, inode->i_size);
1939 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1940 inode->i_ino, inode->i_size);
1941 ext4_truncate(inode);
1942 nr_truncates++;
1943 } else {
1944 ext4_msg(sb, KERN_DEBUG,
1945 "%s: deleting unreferenced inode %lu",
1946 __func__, inode->i_ino);
1947 jbd_debug(2, "deleting unreferenced inode %lu\n",
1948 inode->i_ino);
1949 nr_orphans++;
1950 }
1951 iput(inode); /* The delete magic happens here! */
1952 }
1953
1954 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1955
1956 if (nr_orphans)
1957 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1958 PLURAL(nr_orphans));
1959 if (nr_truncates)
1960 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1961 PLURAL(nr_truncates));
1962 #ifdef CONFIG_QUOTA
1963 /* Turn quotas off */
1964 for (i = 0; i < MAXQUOTAS; i++) {
1965 if (sb_dqopt(sb)->files[i])
1966 vfs_quota_off(sb, i, 0);
1967 }
1968 #endif
1969 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1970 }
1971
1972 /*
1973 * Maximal extent format file size.
1974 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1975 * extent format containers, within a sector_t, and within i_blocks
1976 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1977 * so that won't be a limiting factor.
1978 *
1979 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1980 */
1981 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1982 {
1983 loff_t res;
1984 loff_t upper_limit = MAX_LFS_FILESIZE;
1985
1986 /* small i_blocks in vfs inode? */
1987 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1988 /*
1989 * CONFIG_LBDAF is not enabled implies the inode
1990 * i_block represent total blocks in 512 bytes
1991 * 32 == size of vfs inode i_blocks * 8
1992 */
1993 upper_limit = (1LL << 32) - 1;
1994
1995 /* total blocks in file system block size */
1996 upper_limit >>= (blkbits - 9);
1997 upper_limit <<= blkbits;
1998 }
1999
2000 /* 32-bit extent-start container, ee_block */
2001 res = 1LL << 32;
2002 res <<= blkbits;
2003 res -= 1;
2004
2005 /* Sanity check against vm- & vfs- imposed limits */
2006 if (res > upper_limit)
2007 res = upper_limit;
2008
2009 return res;
2010 }
2011
2012 /*
2013 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2014 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2015 * We need to be 1 filesystem block less than the 2^48 sector limit.
2016 */
2017 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2018 {
2019 loff_t res = EXT4_NDIR_BLOCKS;
2020 int meta_blocks;
2021 loff_t upper_limit;
2022 /* This is calculated to be the largest file size for a dense, block
2023 * mapped file such that the file's total number of 512-byte sectors,
2024 * including data and all indirect blocks, does not exceed (2^48 - 1).
2025 *
2026 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2027 * number of 512-byte sectors of the file.
2028 */
2029
2030 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2031 /*
2032 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2033 * the inode i_block field represents total file blocks in
2034 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2035 */
2036 upper_limit = (1LL << 32) - 1;
2037
2038 /* total blocks in file system block size */
2039 upper_limit >>= (bits - 9);
2040
2041 } else {
2042 /*
2043 * We use 48 bit ext4_inode i_blocks
2044 * With EXT4_HUGE_FILE_FL set the i_blocks
2045 * represent total number of blocks in
2046 * file system block size
2047 */
2048 upper_limit = (1LL << 48) - 1;
2049
2050 }
2051
2052 /* indirect blocks */
2053 meta_blocks = 1;
2054 /* double indirect blocks */
2055 meta_blocks += 1 + (1LL << (bits-2));
2056 /* tripple indirect blocks */
2057 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2058
2059 upper_limit -= meta_blocks;
2060 upper_limit <<= bits;
2061
2062 res += 1LL << (bits-2);
2063 res += 1LL << (2*(bits-2));
2064 res += 1LL << (3*(bits-2));
2065 res <<= bits;
2066 if (res > upper_limit)
2067 res = upper_limit;
2068
2069 if (res > MAX_LFS_FILESIZE)
2070 res = MAX_LFS_FILESIZE;
2071
2072 return res;
2073 }
2074
2075 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2076 ext4_fsblk_t logical_sb_block, int nr)
2077 {
2078 struct ext4_sb_info *sbi = EXT4_SB(sb);
2079 ext4_group_t bg, first_meta_bg;
2080 int has_super = 0;
2081
2082 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2083
2084 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2085 nr < first_meta_bg)
2086 return logical_sb_block + nr + 1;
2087 bg = sbi->s_desc_per_block * nr;
2088 if (ext4_bg_has_super(sb, bg))
2089 has_super = 1;
2090
2091 return (has_super + ext4_group_first_block_no(sb, bg));
2092 }
2093
2094 /**
2095 * ext4_get_stripe_size: Get the stripe size.
2096 * @sbi: In memory super block info
2097 *
2098 * If we have specified it via mount option, then
2099 * use the mount option value. If the value specified at mount time is
2100 * greater than the blocks per group use the super block value.
2101 * If the super block value is greater than blocks per group return 0.
2102 * Allocator needs it be less than blocks per group.
2103 *
2104 */
2105 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2106 {
2107 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2108 unsigned long stripe_width =
2109 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2110
2111 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2112 return sbi->s_stripe;
2113
2114 if (stripe_width <= sbi->s_blocks_per_group)
2115 return stripe_width;
2116
2117 if (stride <= sbi->s_blocks_per_group)
2118 return stride;
2119
2120 return 0;
2121 }
2122
2123 /* sysfs supprt */
2124
2125 struct ext4_attr {
2126 struct attribute attr;
2127 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2128 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2129 const char *, size_t);
2130 int offset;
2131 };
2132
2133 static int parse_strtoul(const char *buf,
2134 unsigned long max, unsigned long *value)
2135 {
2136 char *endp;
2137
2138 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2139 endp = skip_spaces(endp);
2140 if (*endp || *value > max)
2141 return -EINVAL;
2142
2143 return 0;
2144 }
2145
2146 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2147 struct ext4_sb_info *sbi,
2148 char *buf)
2149 {
2150 return snprintf(buf, PAGE_SIZE, "%llu\n",
2151 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2152 }
2153
2154 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2155 struct ext4_sb_info *sbi, char *buf)
2156 {
2157 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2158
2159 return snprintf(buf, PAGE_SIZE, "%lu\n",
2160 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2161 sbi->s_sectors_written_start) >> 1);
2162 }
2163
2164 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2165 struct ext4_sb_info *sbi, char *buf)
2166 {
2167 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2168
2169 return snprintf(buf, PAGE_SIZE, "%llu\n",
2170 (unsigned long long)(sbi->s_kbytes_written +
2171 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2172 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2173 }
2174
2175 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2176 struct ext4_sb_info *sbi,
2177 const char *buf, size_t count)
2178 {
2179 unsigned long t;
2180
2181 if (parse_strtoul(buf, 0x40000000, &t))
2182 return -EINVAL;
2183
2184 if (!is_power_of_2(t))
2185 return -EINVAL;
2186
2187 sbi->s_inode_readahead_blks = t;
2188 return count;
2189 }
2190
2191 static ssize_t sbi_ui_show(struct ext4_attr *a,
2192 struct ext4_sb_info *sbi, char *buf)
2193 {
2194 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2195
2196 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2197 }
2198
2199 static ssize_t sbi_ui_store(struct ext4_attr *a,
2200 struct ext4_sb_info *sbi,
2201 const char *buf, size_t count)
2202 {
2203 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2204 unsigned long t;
2205
2206 if (parse_strtoul(buf, 0xffffffff, &t))
2207 return -EINVAL;
2208 *ui = t;
2209 return count;
2210 }
2211
2212 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2213 static struct ext4_attr ext4_attr_##_name = { \
2214 .attr = {.name = __stringify(_name), .mode = _mode }, \
2215 .show = _show, \
2216 .store = _store, \
2217 .offset = offsetof(struct ext4_sb_info, _elname), \
2218 }
2219 #define EXT4_ATTR(name, mode, show, store) \
2220 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2221
2222 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2223 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2224 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2225 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2226 #define ATTR_LIST(name) &ext4_attr_##name.attr
2227
2228 EXT4_RO_ATTR(delayed_allocation_blocks);
2229 EXT4_RO_ATTR(session_write_kbytes);
2230 EXT4_RO_ATTR(lifetime_write_kbytes);
2231 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2232 inode_readahead_blks_store, s_inode_readahead_blks);
2233 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2234 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2235 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2236 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2237 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2238 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2239 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2240 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2241
2242 static struct attribute *ext4_attrs[] = {
2243 ATTR_LIST(delayed_allocation_blocks),
2244 ATTR_LIST(session_write_kbytes),
2245 ATTR_LIST(lifetime_write_kbytes),
2246 ATTR_LIST(inode_readahead_blks),
2247 ATTR_LIST(inode_goal),
2248 ATTR_LIST(mb_stats),
2249 ATTR_LIST(mb_max_to_scan),
2250 ATTR_LIST(mb_min_to_scan),
2251 ATTR_LIST(mb_order2_req),
2252 ATTR_LIST(mb_stream_req),
2253 ATTR_LIST(mb_group_prealloc),
2254 ATTR_LIST(max_writeback_mb_bump),
2255 NULL,
2256 };
2257
2258 static ssize_t ext4_attr_show(struct kobject *kobj,
2259 struct attribute *attr, char *buf)
2260 {
2261 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2262 s_kobj);
2263 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2264
2265 return a->show ? a->show(a, sbi, buf) : 0;
2266 }
2267
2268 static ssize_t ext4_attr_store(struct kobject *kobj,
2269 struct attribute *attr,
2270 const char *buf, size_t len)
2271 {
2272 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2273 s_kobj);
2274 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2275
2276 return a->store ? a->store(a, sbi, buf, len) : 0;
2277 }
2278
2279 static void ext4_sb_release(struct kobject *kobj)
2280 {
2281 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2282 s_kobj);
2283 complete(&sbi->s_kobj_unregister);
2284 }
2285
2286
2287 static struct sysfs_ops ext4_attr_ops = {
2288 .show = ext4_attr_show,
2289 .store = ext4_attr_store,
2290 };
2291
2292 static struct kobj_type ext4_ktype = {
2293 .default_attrs = ext4_attrs,
2294 .sysfs_ops = &ext4_attr_ops,
2295 .release = ext4_sb_release,
2296 };
2297
2298 /*
2299 * Check whether this filesystem can be mounted based on
2300 * the features present and the RDONLY/RDWR mount requested.
2301 * Returns 1 if this filesystem can be mounted as requested,
2302 * 0 if it cannot be.
2303 */
2304 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2305 {
2306 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2307 ext4_msg(sb, KERN_ERR,
2308 "Couldn't mount because of "
2309 "unsupported optional features (%x)",
2310 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2311 ~EXT4_FEATURE_INCOMPAT_SUPP));
2312 return 0;
2313 }
2314
2315 if (readonly)
2316 return 1;
2317
2318 /* Check that feature set is OK for a read-write mount */
2319 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2320 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2321 "unsupported optional features (%x)",
2322 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2323 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2324 return 0;
2325 }
2326 /*
2327 * Large file size enabled file system can only be mounted
2328 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2329 */
2330 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2331 if (sizeof(blkcnt_t) < sizeof(u64)) {
2332 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2333 "cannot be mounted RDWR without "
2334 "CONFIG_LBDAF");
2335 return 0;
2336 }
2337 }
2338 return 1;
2339 }
2340
2341 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2342 __releases(kernel_lock)
2343 __acquires(kernel_lock)
2344 {
2345 struct buffer_head *bh;
2346 struct ext4_super_block *es = NULL;
2347 struct ext4_sb_info *sbi;
2348 ext4_fsblk_t block;
2349 ext4_fsblk_t sb_block = get_sb_block(&data);
2350 ext4_fsblk_t logical_sb_block;
2351 unsigned long offset = 0;
2352 unsigned long journal_devnum = 0;
2353 unsigned long def_mount_opts;
2354 struct inode *root;
2355 char *cp;
2356 const char *descr;
2357 int ret = -EINVAL;
2358 int blocksize;
2359 unsigned int db_count;
2360 unsigned int i;
2361 int needs_recovery, has_huge_files;
2362 __u64 blocks_count;
2363 int err;
2364 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2365
2366 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2367 if (!sbi)
2368 return -ENOMEM;
2369
2370 sbi->s_blockgroup_lock =
2371 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2372 if (!sbi->s_blockgroup_lock) {
2373 kfree(sbi);
2374 return -ENOMEM;
2375 }
2376 sb->s_fs_info = sbi;
2377 sbi->s_mount_opt = 0;
2378 sbi->s_resuid = EXT4_DEF_RESUID;
2379 sbi->s_resgid = EXT4_DEF_RESGID;
2380 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2381 sbi->s_sb_block = sb_block;
2382 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2383 sectors[1]);
2384
2385 unlock_kernel();
2386
2387 /* Cleanup superblock name */
2388 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2389 *cp = '!';
2390
2391 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2392 if (!blocksize) {
2393 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2394 goto out_fail;
2395 }
2396
2397 /*
2398 * The ext4 superblock will not be buffer aligned for other than 1kB
2399 * block sizes. We need to calculate the offset from buffer start.
2400 */
2401 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2402 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2403 offset = do_div(logical_sb_block, blocksize);
2404 } else {
2405 logical_sb_block = sb_block;
2406 }
2407
2408 if (!(bh = sb_bread(sb, logical_sb_block))) {
2409 ext4_msg(sb, KERN_ERR, "unable to read superblock");
2410 goto out_fail;
2411 }
2412 /*
2413 * Note: s_es must be initialized as soon as possible because
2414 * some ext4 macro-instructions depend on its value
2415 */
2416 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2417 sbi->s_es = es;
2418 sb->s_magic = le16_to_cpu(es->s_magic);
2419 if (sb->s_magic != EXT4_SUPER_MAGIC)
2420 goto cantfind_ext4;
2421 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2422
2423 /* Set defaults before we parse the mount options */
2424 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2425 if (def_mount_opts & EXT4_DEFM_DEBUG)
2426 set_opt(sbi->s_mount_opt, DEBUG);
2427 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2428 set_opt(sbi->s_mount_opt, GRPID);
2429 if (def_mount_opts & EXT4_DEFM_UID16)
2430 set_opt(sbi->s_mount_opt, NO_UID32);
2431 #ifdef CONFIG_EXT4_FS_XATTR
2432 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2433 set_opt(sbi->s_mount_opt, XATTR_USER);
2434 #endif
2435 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2436 if (def_mount_opts & EXT4_DEFM_ACL)
2437 set_opt(sbi->s_mount_opt, POSIX_ACL);
2438 #endif
2439 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2440 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2441 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2442 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2443 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2444 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2445
2446 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2447 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2448 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2449 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2450 else
2451 set_opt(sbi->s_mount_opt, ERRORS_RO);
2452
2453 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2454 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2455 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2456 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2457 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2458
2459 set_opt(sbi->s_mount_opt, BARRIER);
2460
2461 /*
2462 * enable delayed allocation by default
2463 * Use -o nodelalloc to turn it off
2464 */
2465 set_opt(sbi->s_mount_opt, DELALLOC);
2466
2467 if (!parse_options((char *) data, sb, &journal_devnum,
2468 &journal_ioprio, NULL, 0))
2469 goto failed_mount;
2470
2471 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2472 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2473
2474 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2475 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2476 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2477 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2478 ext4_msg(sb, KERN_WARNING,
2479 "feature flags set on rev 0 fs, "
2480 "running e2fsck is recommended");
2481
2482 /*
2483 * Check feature flags regardless of the revision level, since we
2484 * previously didn't change the revision level when setting the flags,
2485 * so there is a chance incompat flags are set on a rev 0 filesystem.
2486 */
2487 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2488 goto failed_mount;
2489
2490 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2491
2492 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2493 blocksize > EXT4_MAX_BLOCK_SIZE) {
2494 ext4_msg(sb, KERN_ERR,
2495 "Unsupported filesystem blocksize %d", blocksize);
2496 goto failed_mount;
2497 }
2498
2499 if (sb->s_blocksize != blocksize) {
2500 /* Validate the filesystem blocksize */
2501 if (!sb_set_blocksize(sb, blocksize)) {
2502 ext4_msg(sb, KERN_ERR, "bad block size %d",
2503 blocksize);
2504 goto failed_mount;
2505 }
2506
2507 brelse(bh);
2508 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2509 offset = do_div(logical_sb_block, blocksize);
2510 bh = sb_bread(sb, logical_sb_block);
2511 if (!bh) {
2512 ext4_msg(sb, KERN_ERR,
2513 "Can't read superblock on 2nd try");
2514 goto failed_mount;
2515 }
2516 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2517 sbi->s_es = es;
2518 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2519 ext4_msg(sb, KERN_ERR,
2520 "Magic mismatch, very weird!");
2521 goto failed_mount;
2522 }
2523 }
2524
2525 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2526 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2527 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2528 has_huge_files);
2529 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2530
2531 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2532 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2533 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2534 } else {
2535 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2536 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2537 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2538 (!is_power_of_2(sbi->s_inode_size)) ||
2539 (sbi->s_inode_size > blocksize)) {
2540 ext4_msg(sb, KERN_ERR,
2541 "unsupported inode size: %d",
2542 sbi->s_inode_size);
2543 goto failed_mount;
2544 }
2545 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2546 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2547 }
2548
2549 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2550 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2551 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2552 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2553 !is_power_of_2(sbi->s_desc_size)) {
2554 ext4_msg(sb, KERN_ERR,
2555 "unsupported descriptor size %lu",
2556 sbi->s_desc_size);
2557 goto failed_mount;
2558 }
2559 } else
2560 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2561
2562 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2563 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2564 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2565 goto cantfind_ext4;
2566
2567 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2568 if (sbi->s_inodes_per_block == 0)
2569 goto cantfind_ext4;
2570 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2571 sbi->s_inodes_per_block;
2572 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2573 sbi->s_sbh = bh;
2574 sbi->s_mount_state = le16_to_cpu(es->s_state);
2575 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2576 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2577
2578 for (i = 0; i < 4; i++)
2579 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2580 sbi->s_def_hash_version = es->s_def_hash_version;
2581 i = le32_to_cpu(es->s_flags);
2582 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2583 sbi->s_hash_unsigned = 3;
2584 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2585 #ifdef __CHAR_UNSIGNED__
2586 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2587 sbi->s_hash_unsigned = 3;
2588 #else
2589 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2590 #endif
2591 sb->s_dirt = 1;
2592 }
2593
2594 if (sbi->s_blocks_per_group > blocksize * 8) {
2595 ext4_msg(sb, KERN_ERR,
2596 "#blocks per group too big: %lu",
2597 sbi->s_blocks_per_group);
2598 goto failed_mount;
2599 }
2600 if (sbi->s_inodes_per_group > blocksize * 8) {
2601 ext4_msg(sb, KERN_ERR,
2602 "#inodes per group too big: %lu",
2603 sbi->s_inodes_per_group);
2604 goto failed_mount;
2605 }
2606
2607 /*
2608 * Test whether we have more sectors than will fit in sector_t,
2609 * and whether the max offset is addressable by the page cache.
2610 */
2611 if ((ext4_blocks_count(es) >
2612 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2613 (ext4_blocks_count(es) >
2614 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2615 ext4_msg(sb, KERN_ERR, "filesystem"
2616 " too large to mount safely on this system");
2617 if (sizeof(sector_t) < 8)
2618 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2619 ret = -EFBIG;
2620 goto failed_mount;
2621 }
2622
2623 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2624 goto cantfind_ext4;
2625
2626 /* check blocks count against device size */
2627 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2628 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2629 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2630 "exceeds size of device (%llu blocks)",
2631 ext4_blocks_count(es), blocks_count);
2632 goto failed_mount;
2633 }
2634
2635 /*
2636 * It makes no sense for the first data block to be beyond the end
2637 * of the filesystem.
2638 */
2639 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2640 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2641 "block %u is beyond end of filesystem (%llu)",
2642 le32_to_cpu(es->s_first_data_block),
2643 ext4_blocks_count(es));
2644 goto failed_mount;
2645 }
2646 blocks_count = (ext4_blocks_count(es) -
2647 le32_to_cpu(es->s_first_data_block) +
2648 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2649 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2650 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2651 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2652 "(block count %llu, first data block %u, "
2653 "blocks per group %lu)", sbi->s_groups_count,
2654 ext4_blocks_count(es),
2655 le32_to_cpu(es->s_first_data_block),
2656 EXT4_BLOCKS_PER_GROUP(sb));
2657 goto failed_mount;
2658 }
2659 sbi->s_groups_count = blocks_count;
2660 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2661 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2662 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2663 EXT4_DESC_PER_BLOCK(sb);
2664 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2665 GFP_KERNEL);
2666 if (sbi->s_group_desc == NULL) {
2667 ext4_msg(sb, KERN_ERR, "not enough memory");
2668 goto failed_mount;
2669 }
2670
2671 #ifdef CONFIG_PROC_FS
2672 if (ext4_proc_root)
2673 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2674 #endif
2675
2676 bgl_lock_init(sbi->s_blockgroup_lock);
2677
2678 for (i = 0; i < db_count; i++) {
2679 block = descriptor_loc(sb, logical_sb_block, i);
2680 sbi->s_group_desc[i] = sb_bread(sb, block);
2681 if (!sbi->s_group_desc[i]) {
2682 ext4_msg(sb, KERN_ERR,
2683 "can't read group descriptor %d", i);
2684 db_count = i;
2685 goto failed_mount2;
2686 }
2687 }
2688 if (!ext4_check_descriptors(sb)) {
2689 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2690 goto failed_mount2;
2691 }
2692 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2693 if (!ext4_fill_flex_info(sb)) {
2694 ext4_msg(sb, KERN_ERR,
2695 "unable to initialize "
2696 "flex_bg meta info!");
2697 goto failed_mount2;
2698 }
2699
2700 sbi->s_gdb_count = db_count;
2701 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2702 spin_lock_init(&sbi->s_next_gen_lock);
2703
2704 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2705 ext4_count_free_blocks(sb));
2706 if (!err) {
2707 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2708 ext4_count_free_inodes(sb));
2709 }
2710 if (!err) {
2711 err = percpu_counter_init(&sbi->s_dirs_counter,
2712 ext4_count_dirs(sb));
2713 }
2714 if (!err) {
2715 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2716 }
2717 if (err) {
2718 ext4_msg(sb, KERN_ERR, "insufficient memory");
2719 goto failed_mount3;
2720 }
2721
2722 sbi->s_stripe = ext4_get_stripe_size(sbi);
2723 sbi->s_max_writeback_mb_bump = 128;
2724
2725 /*
2726 * set up enough so that it can read an inode
2727 */
2728 if (!test_opt(sb, NOLOAD) &&
2729 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2730 sb->s_op = &ext4_sops;
2731 else
2732 sb->s_op = &ext4_nojournal_sops;
2733 sb->s_export_op = &ext4_export_ops;
2734 sb->s_xattr = ext4_xattr_handlers;
2735 #ifdef CONFIG_QUOTA
2736 sb->s_qcop = &ext4_qctl_operations;
2737 sb->dq_op = &ext4_quota_operations;
2738 #endif
2739 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2740 mutex_init(&sbi->s_orphan_lock);
2741 mutex_init(&sbi->s_resize_lock);
2742
2743 sb->s_root = NULL;
2744
2745 needs_recovery = (es->s_last_orphan != 0 ||
2746 EXT4_HAS_INCOMPAT_FEATURE(sb,
2747 EXT4_FEATURE_INCOMPAT_RECOVER));
2748
2749 /*
2750 * The first inode we look at is the journal inode. Don't try
2751 * root first: it may be modified in the journal!
2752 */
2753 if (!test_opt(sb, NOLOAD) &&
2754 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2755 if (ext4_load_journal(sb, es, journal_devnum))
2756 goto failed_mount3;
2757 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2758 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2759 ext4_msg(sb, KERN_ERR, "required journal recovery "
2760 "suppressed and not mounted read-only");
2761 goto failed_mount4;
2762 } else {
2763 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2764 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2765 sbi->s_journal = NULL;
2766 needs_recovery = 0;
2767 goto no_journal;
2768 }
2769
2770 if (ext4_blocks_count(es) > 0xffffffffULL &&
2771 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2772 JBD2_FEATURE_INCOMPAT_64BIT)) {
2773 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2774 goto failed_mount4;
2775 }
2776
2777 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2778 jbd2_journal_set_features(sbi->s_journal,
2779 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2780 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2781 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2782 jbd2_journal_set_features(sbi->s_journal,
2783 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2784 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2785 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2786 } else {
2787 jbd2_journal_clear_features(sbi->s_journal,
2788 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2789 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2790 }
2791
2792 /* We have now updated the journal if required, so we can
2793 * validate the data journaling mode. */
2794 switch (test_opt(sb, DATA_FLAGS)) {
2795 case 0:
2796 /* No mode set, assume a default based on the journal
2797 * capabilities: ORDERED_DATA if the journal can
2798 * cope, else JOURNAL_DATA
2799 */
2800 if (jbd2_journal_check_available_features
2801 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2802 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2803 else
2804 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2805 break;
2806
2807 case EXT4_MOUNT_ORDERED_DATA:
2808 case EXT4_MOUNT_WRITEBACK_DATA:
2809 if (!jbd2_journal_check_available_features
2810 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2811 ext4_msg(sb, KERN_ERR, "Journal does not support "
2812 "requested data journaling mode");
2813 goto failed_mount4;
2814 }
2815 default:
2816 break;
2817 }
2818 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2819
2820 no_journal:
2821
2822 if (test_opt(sb, NOBH)) {
2823 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2824 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2825 "its supported only with writeback mode");
2826 clear_opt(sbi->s_mount_opt, NOBH);
2827 }
2828 }
2829 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
2830 if (!EXT4_SB(sb)->dio_unwritten_wq) {
2831 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
2832 goto failed_mount_wq;
2833 }
2834
2835 /*
2836 * The jbd2_journal_load will have done any necessary log recovery,
2837 * so we can safely mount the rest of the filesystem now.
2838 */
2839
2840 root = ext4_iget(sb, EXT4_ROOT_INO);
2841 if (IS_ERR(root)) {
2842 ext4_msg(sb, KERN_ERR, "get root inode failed");
2843 ret = PTR_ERR(root);
2844 goto failed_mount4;
2845 }
2846 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2847 iput(root);
2848 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2849 goto failed_mount4;
2850 }
2851 sb->s_root = d_alloc_root(root);
2852 if (!sb->s_root) {
2853 ext4_msg(sb, KERN_ERR, "get root dentry failed");
2854 iput(root);
2855 ret = -ENOMEM;
2856 goto failed_mount4;
2857 }
2858
2859 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2860
2861 /* determine the minimum size of new large inodes, if present */
2862 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2863 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2864 EXT4_GOOD_OLD_INODE_SIZE;
2865 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2866 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2867 if (sbi->s_want_extra_isize <
2868 le16_to_cpu(es->s_want_extra_isize))
2869 sbi->s_want_extra_isize =
2870 le16_to_cpu(es->s_want_extra_isize);
2871 if (sbi->s_want_extra_isize <
2872 le16_to_cpu(es->s_min_extra_isize))
2873 sbi->s_want_extra_isize =
2874 le16_to_cpu(es->s_min_extra_isize);
2875 }
2876 }
2877 /* Check if enough inode space is available */
2878 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2879 sbi->s_inode_size) {
2880 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2881 EXT4_GOOD_OLD_INODE_SIZE;
2882 ext4_msg(sb, KERN_INFO, "required extra inode space not"
2883 "available");
2884 }
2885
2886 if (test_opt(sb, DELALLOC) &&
2887 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2888 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2889 "requested data journaling mode");
2890 clear_opt(sbi->s_mount_opt, DELALLOC);
2891 }
2892
2893 err = ext4_setup_system_zone(sb);
2894 if (err) {
2895 ext4_msg(sb, KERN_ERR, "failed to initialize system "
2896 "zone (%d)\n", err);
2897 goto failed_mount4;
2898 }
2899
2900 ext4_ext_init(sb);
2901 err = ext4_mb_init(sb, needs_recovery);
2902 if (err) {
2903 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2904 err);
2905 goto failed_mount4;
2906 }
2907
2908 sbi->s_kobj.kset = ext4_kset;
2909 init_completion(&sbi->s_kobj_unregister);
2910 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2911 "%s", sb->s_id);
2912 if (err) {
2913 ext4_mb_release(sb);
2914 ext4_ext_release(sb);
2915 goto failed_mount4;
2916 };
2917
2918 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2919 ext4_orphan_cleanup(sb, es);
2920 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2921 if (needs_recovery) {
2922 ext4_msg(sb, KERN_INFO, "recovery complete");
2923 ext4_mark_recovery_complete(sb, es);
2924 }
2925 if (EXT4_SB(sb)->s_journal) {
2926 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2927 descr = " journalled data mode";
2928 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2929 descr = " ordered data mode";
2930 else
2931 descr = " writeback data mode";
2932 } else
2933 descr = "out journal";
2934
2935 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2936
2937 lock_kernel();
2938 return 0;
2939
2940 cantfind_ext4:
2941 if (!silent)
2942 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2943 goto failed_mount;
2944
2945 failed_mount4:
2946 ext4_msg(sb, KERN_ERR, "mount failed");
2947 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
2948 failed_mount_wq:
2949 ext4_release_system_zone(sb);
2950 if (sbi->s_journal) {
2951 jbd2_journal_destroy(sbi->s_journal);
2952 sbi->s_journal = NULL;
2953 }
2954 failed_mount3:
2955 if (sbi->s_flex_groups) {
2956 if (is_vmalloc_addr(sbi->s_flex_groups))
2957 vfree(sbi->s_flex_groups);
2958 else
2959 kfree(sbi->s_flex_groups);
2960 }
2961 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2962 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2963 percpu_counter_destroy(&sbi->s_dirs_counter);
2964 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2965 failed_mount2:
2966 for (i = 0; i < db_count; i++)
2967 brelse(sbi->s_group_desc[i]);
2968 kfree(sbi->s_group_desc);
2969 failed_mount:
2970 if (sbi->s_proc) {
2971 remove_proc_entry(sb->s_id, ext4_proc_root);
2972 }
2973 #ifdef CONFIG_QUOTA
2974 for (i = 0; i < MAXQUOTAS; i++)
2975 kfree(sbi->s_qf_names[i]);
2976 #endif
2977 ext4_blkdev_remove(sbi);
2978 brelse(bh);
2979 out_fail:
2980 sb->s_fs_info = NULL;
2981 kfree(sbi->s_blockgroup_lock);
2982 kfree(sbi);
2983 lock_kernel();
2984 return ret;
2985 }
2986
2987 /*
2988 * Setup any per-fs journal parameters now. We'll do this both on
2989 * initial mount, once the journal has been initialised but before we've
2990 * done any recovery; and again on any subsequent remount.
2991 */
2992 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2993 {
2994 struct ext4_sb_info *sbi = EXT4_SB(sb);
2995
2996 journal->j_commit_interval = sbi->s_commit_interval;
2997 journal->j_min_batch_time = sbi->s_min_batch_time;
2998 journal->j_max_batch_time = sbi->s_max_batch_time;
2999
3000 spin_lock(&journal->j_state_lock);
3001 if (test_opt(sb, BARRIER))
3002 journal->j_flags |= JBD2_BARRIER;
3003 else
3004 journal->j_flags &= ~JBD2_BARRIER;
3005 if (test_opt(sb, DATA_ERR_ABORT))
3006 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3007 else
3008 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3009 spin_unlock(&journal->j_state_lock);
3010 }
3011
3012 static journal_t *ext4_get_journal(struct super_block *sb,
3013 unsigned int journal_inum)
3014 {
3015 struct inode *journal_inode;
3016 journal_t *journal;
3017
3018 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3019
3020 /* First, test for the existence of a valid inode on disk. Bad
3021 * things happen if we iget() an unused inode, as the subsequent
3022 * iput() will try to delete it. */
3023
3024 journal_inode = ext4_iget(sb, journal_inum);
3025 if (IS_ERR(journal_inode)) {
3026 ext4_msg(sb, KERN_ERR, "no journal found");
3027 return NULL;
3028 }
3029 if (!journal_inode->i_nlink) {
3030 make_bad_inode(journal_inode);
3031 iput(journal_inode);
3032 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3033 return NULL;
3034 }
3035
3036 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3037 journal_inode, journal_inode->i_size);
3038 if (!S_ISREG(journal_inode->i_mode)) {
3039 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3040 iput(journal_inode);
3041 return NULL;
3042 }
3043
3044 journal = jbd2_journal_init_inode(journal_inode);
3045 if (!journal) {
3046 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3047 iput(journal_inode);
3048 return NULL;
3049 }
3050 journal->j_private = sb;
3051 ext4_init_journal_params(sb, journal);
3052 return journal;
3053 }
3054
3055 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3056 dev_t j_dev)
3057 {
3058 struct buffer_head *bh;
3059 journal_t *journal;
3060 ext4_fsblk_t start;
3061 ext4_fsblk_t len;
3062 int hblock, blocksize;
3063 ext4_fsblk_t sb_block;
3064 unsigned long offset;
3065 struct ext4_super_block *es;
3066 struct block_device *bdev;
3067
3068 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3069
3070 bdev = ext4_blkdev_get(j_dev, sb);
3071 if (bdev == NULL)
3072 return NULL;
3073
3074 if (bd_claim(bdev, sb)) {
3075 ext4_msg(sb, KERN_ERR,
3076 "failed to claim external journal device");
3077 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3078 return NULL;
3079 }
3080
3081 blocksize = sb->s_blocksize;
3082 hblock = bdev_logical_block_size(bdev);
3083 if (blocksize < hblock) {
3084 ext4_msg(sb, KERN_ERR,
3085 "blocksize too small for journal device");
3086 goto out_bdev;
3087 }
3088
3089 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3090 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3091 set_blocksize(bdev, blocksize);
3092 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3093 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3094 "external journal");
3095 goto out_bdev;
3096 }
3097
3098 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3099 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3100 !(le32_to_cpu(es->s_feature_incompat) &
3101 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3102 ext4_msg(sb, KERN_ERR, "external journal has "
3103 "bad superblock");
3104 brelse(bh);
3105 goto out_bdev;
3106 }
3107
3108 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3109 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3110 brelse(bh);
3111 goto out_bdev;
3112 }
3113
3114 len = ext4_blocks_count(es);
3115 start = sb_block + 1;
3116 brelse(bh); /* we're done with the superblock */
3117
3118 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3119 start, len, blocksize);
3120 if (!journal) {
3121 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3122 goto out_bdev;
3123 }
3124 journal->j_private = sb;
3125 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3126 wait_on_buffer(journal->j_sb_buffer);
3127 if (!buffer_uptodate(journal->j_sb_buffer)) {
3128 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3129 goto out_journal;
3130 }
3131 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3132 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3133 "user (unsupported) - %d",
3134 be32_to_cpu(journal->j_superblock->s_nr_users));
3135 goto out_journal;
3136 }
3137 EXT4_SB(sb)->journal_bdev = bdev;
3138 ext4_init_journal_params(sb, journal);
3139 return journal;
3140
3141 out_journal:
3142 jbd2_journal_destroy(journal);
3143 out_bdev:
3144 ext4_blkdev_put(bdev);
3145 return NULL;
3146 }
3147
3148 static int ext4_load_journal(struct super_block *sb,
3149 struct ext4_super_block *es,
3150 unsigned long journal_devnum)
3151 {
3152 journal_t *journal;
3153 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3154 dev_t journal_dev;
3155 int err = 0;
3156 int really_read_only;
3157
3158 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3159
3160 if (journal_devnum &&
3161 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3162 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3163 "numbers have changed");
3164 journal_dev = new_decode_dev(journal_devnum);
3165 } else
3166 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3167
3168 really_read_only = bdev_read_only(sb->s_bdev);
3169
3170 /*
3171 * Are we loading a blank journal or performing recovery after a
3172 * crash? For recovery, we need to check in advance whether we
3173 * can get read-write access to the device.
3174 */
3175 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3176 if (sb->s_flags & MS_RDONLY) {
3177 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3178 "required on readonly filesystem");
3179 if (really_read_only) {
3180 ext4_msg(sb, KERN_ERR, "write access "
3181 "unavailable, cannot proceed");
3182 return -EROFS;
3183 }
3184 ext4_msg(sb, KERN_INFO, "write access will "
3185 "be enabled during recovery");
3186 }
3187 }
3188
3189 if (journal_inum && journal_dev) {
3190 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3191 "and inode journals!");
3192 return -EINVAL;
3193 }
3194
3195 if (journal_inum) {
3196 if (!(journal = ext4_get_journal(sb, journal_inum)))
3197 return -EINVAL;
3198 } else {
3199 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3200 return -EINVAL;
3201 }
3202
3203 if (!(journal->j_flags & JBD2_BARRIER))
3204 ext4_msg(sb, KERN_INFO, "barriers disabled");
3205
3206 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3207 err = jbd2_journal_update_format(journal);
3208 if (err) {
3209 ext4_msg(sb, KERN_ERR, "error updating journal");
3210 jbd2_journal_destroy(journal);
3211 return err;
3212 }
3213 }
3214
3215 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3216 err = jbd2_journal_wipe(journal, !really_read_only);
3217 if (!err)
3218 err = jbd2_journal_load(journal);
3219
3220 if (err) {
3221 ext4_msg(sb, KERN_ERR, "error loading journal");
3222 jbd2_journal_destroy(journal);
3223 return err;
3224 }
3225
3226 EXT4_SB(sb)->s_journal = journal;
3227 ext4_clear_journal_err(sb, es);
3228
3229 if (journal_devnum &&
3230 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3231 es->s_journal_dev = cpu_to_le32(journal_devnum);
3232
3233 /* Make sure we flush the recovery flag to disk. */
3234 ext4_commit_super(sb, 1);
3235 }
3236
3237 return 0;
3238 }
3239
3240 static int ext4_commit_super(struct super_block *sb, int sync)
3241 {
3242 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3243 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3244 int error = 0;
3245
3246 if (!sbh)
3247 return error;
3248 if (buffer_write_io_error(sbh)) {
3249 /*
3250 * Oh, dear. A previous attempt to write the
3251 * superblock failed. This could happen because the
3252 * USB device was yanked out. Or it could happen to
3253 * be a transient write error and maybe the block will
3254 * be remapped. Nothing we can do but to retry the
3255 * write and hope for the best.
3256 */
3257 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3258 "superblock detected");
3259 clear_buffer_write_io_error(sbh);
3260 set_buffer_uptodate(sbh);
3261 }
3262 /*
3263 * If the file system is mounted read-only, don't update the
3264 * superblock write time. This avoids updating the superblock
3265 * write time when we are mounting the root file system
3266 * read/only but we need to replay the journal; at that point,
3267 * for people who are east of GMT and who make their clock
3268 * tick in localtime for Windows bug-for-bug compatibility,
3269 * the clock is set in the future, and this will cause e2fsck
3270 * to complain and force a full file system check.
3271 */
3272 if (!(sb->s_flags & MS_RDONLY))
3273 es->s_wtime = cpu_to_le32(get_seconds());
3274 es->s_kbytes_written =
3275 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3276 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3277 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3278 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3279 &EXT4_SB(sb)->s_freeblocks_counter));
3280 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3281 &EXT4_SB(sb)->s_freeinodes_counter));
3282 sb->s_dirt = 0;
3283 BUFFER_TRACE(sbh, "marking dirty");
3284 mark_buffer_dirty(sbh);
3285 if (sync) {
3286 error = sync_dirty_buffer(sbh);
3287 if (error)
3288 return error;
3289
3290 error = buffer_write_io_error(sbh);
3291 if (error) {
3292 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3293 "superblock");
3294 clear_buffer_write_io_error(sbh);
3295 set_buffer_uptodate(sbh);
3296 }
3297 }
3298 return error;
3299 }
3300
3301 /*
3302 * Have we just finished recovery? If so, and if we are mounting (or
3303 * remounting) the filesystem readonly, then we will end up with a
3304 * consistent fs on disk. Record that fact.
3305 */
3306 static void ext4_mark_recovery_complete(struct super_block *sb,
3307 struct ext4_super_block *es)
3308 {
3309 journal_t *journal = EXT4_SB(sb)->s_journal;
3310
3311 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3312 BUG_ON(journal != NULL);
3313 return;
3314 }
3315 jbd2_journal_lock_updates(journal);
3316 if (jbd2_journal_flush(journal) < 0)
3317 goto out;
3318
3319 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3320 sb->s_flags & MS_RDONLY) {
3321 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3322 ext4_commit_super(sb, 1);
3323 }
3324
3325 out:
3326 jbd2_journal_unlock_updates(journal);
3327 }
3328
3329 /*
3330 * If we are mounting (or read-write remounting) a filesystem whose journal
3331 * has recorded an error from a previous lifetime, move that error to the
3332 * main filesystem now.
3333 */
3334 static void ext4_clear_journal_err(struct super_block *sb,
3335 struct ext4_super_block *es)
3336 {
3337 journal_t *journal;
3338 int j_errno;
3339 const char *errstr;
3340
3341 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3342
3343 journal = EXT4_SB(sb)->s_journal;
3344
3345 /*
3346 * Now check for any error status which may have been recorded in the
3347 * journal by a prior ext4_error() or ext4_abort()
3348 */
3349
3350 j_errno = jbd2_journal_errno(journal);
3351 if (j_errno) {
3352 char nbuf[16];
3353
3354 errstr = ext4_decode_error(sb, j_errno, nbuf);
3355 ext4_warning(sb, __func__, "Filesystem error recorded "
3356 "from previous mount: %s", errstr);
3357 ext4_warning(sb, __func__, "Marking fs in need of "
3358 "filesystem check.");
3359
3360 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3361 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3362 ext4_commit_super(sb, 1);
3363
3364 jbd2_journal_clear_err(journal);
3365 }
3366 }
3367
3368 /*
3369 * Force the running and committing transactions to commit,
3370 * and wait on the commit.
3371 */
3372 int ext4_force_commit(struct super_block *sb)
3373 {
3374 journal_t *journal;
3375 int ret = 0;
3376
3377 if (sb->s_flags & MS_RDONLY)
3378 return 0;
3379
3380 journal = EXT4_SB(sb)->s_journal;
3381 if (journal)
3382 ret = ext4_journal_force_commit(journal);
3383
3384 return ret;
3385 }
3386
3387 static void ext4_write_super(struct super_block *sb)
3388 {
3389 lock_super(sb);
3390 ext4_commit_super(sb, 1);
3391 unlock_super(sb);
3392 }
3393
3394 static int ext4_sync_fs(struct super_block *sb, int wait)
3395 {
3396 int ret = 0;
3397 tid_t target;
3398 struct ext4_sb_info *sbi = EXT4_SB(sb);
3399
3400 trace_ext4_sync_fs(sb, wait);
3401 flush_workqueue(sbi->dio_unwritten_wq);
3402 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
3403 if (wait)
3404 jbd2_log_wait_commit(sbi->s_journal, target);
3405 }
3406 return ret;
3407 }
3408
3409 /*
3410 * LVM calls this function before a (read-only) snapshot is created. This
3411 * gives us a chance to flush the journal completely and mark the fs clean.
3412 */
3413 static int ext4_freeze(struct super_block *sb)
3414 {
3415 int error = 0;
3416 journal_t *journal;
3417
3418 if (sb->s_flags & MS_RDONLY)
3419 return 0;
3420
3421 journal = EXT4_SB(sb)->s_journal;
3422
3423 /* Now we set up the journal barrier. */
3424 jbd2_journal_lock_updates(journal);
3425
3426 /*
3427 * Don't clear the needs_recovery flag if we failed to flush
3428 * the journal.
3429 */
3430 error = jbd2_journal_flush(journal);
3431 if (error < 0) {
3432 out:
3433 jbd2_journal_unlock_updates(journal);
3434 return error;
3435 }
3436
3437 /* Journal blocked and flushed, clear needs_recovery flag. */
3438 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3439 error = ext4_commit_super(sb, 1);
3440 if (error)
3441 goto out;
3442 return 0;
3443 }
3444
3445 /*
3446 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3447 * flag here, even though the filesystem is not technically dirty yet.
3448 */
3449 static int ext4_unfreeze(struct super_block *sb)
3450 {
3451 if (sb->s_flags & MS_RDONLY)
3452 return 0;
3453
3454 lock_super(sb);
3455 /* Reset the needs_recovery flag before the fs is unlocked. */
3456 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3457 ext4_commit_super(sb, 1);
3458 unlock_super(sb);
3459 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3460 return 0;
3461 }
3462
3463 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3464 {
3465 struct ext4_super_block *es;
3466 struct ext4_sb_info *sbi = EXT4_SB(sb);
3467 ext4_fsblk_t n_blocks_count = 0;
3468 unsigned long old_sb_flags;
3469 struct ext4_mount_options old_opts;
3470 ext4_group_t g;
3471 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3472 int err;
3473 #ifdef CONFIG_QUOTA
3474 int i;
3475 #endif
3476
3477 lock_kernel();
3478
3479 /* Store the original options */
3480 lock_super(sb);
3481 old_sb_flags = sb->s_flags;
3482 old_opts.s_mount_opt = sbi->s_mount_opt;
3483 old_opts.s_resuid = sbi->s_resuid;
3484 old_opts.s_resgid = sbi->s_resgid;
3485 old_opts.s_commit_interval = sbi->s_commit_interval;
3486 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3487 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3488 #ifdef CONFIG_QUOTA
3489 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3490 for (i = 0; i < MAXQUOTAS; i++)
3491 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3492 #endif
3493 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3494 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3495
3496 /*
3497 * Allow the "check" option to be passed as a remount option.
3498 */
3499 if (!parse_options(data, sb, NULL, &journal_ioprio,
3500 &n_blocks_count, 1)) {
3501 err = -EINVAL;
3502 goto restore_opts;
3503 }
3504
3505 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3506 ext4_abort(sb, __func__, "Abort forced by user");
3507
3508 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3509 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3510
3511 es = sbi->s_es;
3512
3513 if (sbi->s_journal) {
3514 ext4_init_journal_params(sb, sbi->s_journal);
3515 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3516 }
3517
3518 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3519 n_blocks_count > ext4_blocks_count(es)) {
3520 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3521 err = -EROFS;
3522 goto restore_opts;
3523 }
3524
3525 if (*flags & MS_RDONLY) {
3526 /*
3527 * First of all, the unconditional stuff we have to do
3528 * to disable replay of the journal when we next remount
3529 */
3530 sb->s_flags |= MS_RDONLY;
3531
3532 /*
3533 * OK, test if we are remounting a valid rw partition
3534 * readonly, and if so set the rdonly flag and then
3535 * mark the partition as valid again.
3536 */
3537 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3538 (sbi->s_mount_state & EXT4_VALID_FS))
3539 es->s_state = cpu_to_le16(sbi->s_mount_state);
3540
3541 if (sbi->s_journal)
3542 ext4_mark_recovery_complete(sb, es);
3543 } else {
3544 /* Make sure we can mount this feature set readwrite */
3545 if (!ext4_feature_set_ok(sb, 0)) {
3546 err = -EROFS;
3547 goto restore_opts;
3548 }
3549 /*
3550 * Make sure the group descriptor checksums
3551 * are sane. If they aren't, refuse to remount r/w.
3552 */
3553 for (g = 0; g < sbi->s_groups_count; g++) {
3554 struct ext4_group_desc *gdp =
3555 ext4_get_group_desc(sb, g, NULL);
3556
3557 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3558 ext4_msg(sb, KERN_ERR,
3559 "ext4_remount: Checksum for group %u failed (%u!=%u)",
3560 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3561 le16_to_cpu(gdp->bg_checksum));
3562 err = -EINVAL;
3563 goto restore_opts;
3564 }
3565 }
3566
3567 /*
3568 * If we have an unprocessed orphan list hanging
3569 * around from a previously readonly bdev mount,
3570 * require a full umount/remount for now.
3571 */
3572 if (es->s_last_orphan) {
3573 ext4_msg(sb, KERN_WARNING, "Couldn't "
3574 "remount RDWR because of unprocessed "
3575 "orphan inode list. Please "
3576 "umount/remount instead");
3577 err = -EINVAL;
3578 goto restore_opts;
3579 }
3580
3581 /*
3582 * Mounting a RDONLY partition read-write, so reread
3583 * and store the current valid flag. (It may have
3584 * been changed by e2fsck since we originally mounted
3585 * the partition.)
3586 */
3587 if (sbi->s_journal)
3588 ext4_clear_journal_err(sb, es);
3589 sbi->s_mount_state = le16_to_cpu(es->s_state);
3590 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3591 goto restore_opts;
3592 if (!ext4_setup_super(sb, es, 0))
3593 sb->s_flags &= ~MS_RDONLY;
3594 }
3595 }
3596 ext4_setup_system_zone(sb);
3597 if (sbi->s_journal == NULL)
3598 ext4_commit_super(sb, 1);
3599
3600 #ifdef CONFIG_QUOTA
3601 /* Release old quota file names */
3602 for (i = 0; i < MAXQUOTAS; i++)
3603 if (old_opts.s_qf_names[i] &&
3604 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3605 kfree(old_opts.s_qf_names[i]);
3606 #endif
3607 unlock_super(sb);
3608 unlock_kernel();
3609 return 0;
3610
3611 restore_opts:
3612 sb->s_flags = old_sb_flags;
3613 sbi->s_mount_opt = old_opts.s_mount_opt;
3614 sbi->s_resuid = old_opts.s_resuid;
3615 sbi->s_resgid = old_opts.s_resgid;
3616 sbi->s_commit_interval = old_opts.s_commit_interval;
3617 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3618 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3619 #ifdef CONFIG_QUOTA
3620 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3621 for (i = 0; i < MAXQUOTAS; i++) {
3622 if (sbi->s_qf_names[i] &&
3623 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3624 kfree(sbi->s_qf_names[i]);
3625 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3626 }
3627 #endif
3628 unlock_super(sb);
3629 unlock_kernel();
3630 return err;
3631 }
3632
3633 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3634 {
3635 struct super_block *sb = dentry->d_sb;
3636 struct ext4_sb_info *sbi = EXT4_SB(sb);
3637 struct ext4_super_block *es = sbi->s_es;
3638 u64 fsid;
3639
3640 if (test_opt(sb, MINIX_DF)) {
3641 sbi->s_overhead_last = 0;
3642 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3643 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3644 ext4_fsblk_t overhead = 0;
3645
3646 /*
3647 * Compute the overhead (FS structures). This is constant
3648 * for a given filesystem unless the number of block groups
3649 * changes so we cache the previous value until it does.
3650 */
3651
3652 /*
3653 * All of the blocks before first_data_block are
3654 * overhead
3655 */
3656 overhead = le32_to_cpu(es->s_first_data_block);
3657
3658 /*
3659 * Add the overhead attributed to the superblock and
3660 * block group descriptors. If the sparse superblocks
3661 * feature is turned on, then not all groups have this.
3662 */
3663 for (i = 0; i < ngroups; i++) {
3664 overhead += ext4_bg_has_super(sb, i) +
3665 ext4_bg_num_gdb(sb, i);
3666 cond_resched();
3667 }
3668
3669 /*
3670 * Every block group has an inode bitmap, a block
3671 * bitmap, and an inode table.
3672 */
3673 overhead += ngroups * (2 + sbi->s_itb_per_group);
3674 sbi->s_overhead_last = overhead;
3675 smp_wmb();
3676 sbi->s_blocks_last = ext4_blocks_count(es);
3677 }
3678
3679 buf->f_type = EXT4_SUPER_MAGIC;
3680 buf->f_bsize = sb->s_blocksize;
3681 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3682 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3683 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3684 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3685 if (buf->f_bfree < ext4_r_blocks_count(es))
3686 buf->f_bavail = 0;
3687 buf->f_files = le32_to_cpu(es->s_inodes_count);
3688 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3689 buf->f_namelen = EXT4_NAME_LEN;
3690 fsid = le64_to_cpup((void *)es->s_uuid) ^
3691 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3692 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3693 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3694
3695 return 0;
3696 }
3697
3698 /* Helper function for writing quotas on sync - we need to start transaction
3699 * before quota file is locked for write. Otherwise the are possible deadlocks:
3700 * Process 1 Process 2
3701 * ext4_create() quota_sync()
3702 * jbd2_journal_start() write_dquot()
3703 * vfs_dq_init() down(dqio_mutex)
3704 * down(dqio_mutex) jbd2_journal_start()
3705 *
3706 */
3707
3708 #ifdef CONFIG_QUOTA
3709
3710 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3711 {
3712 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3713 }
3714
3715 static int ext4_write_dquot(struct dquot *dquot)
3716 {
3717 int ret, err;
3718 handle_t *handle;
3719 struct inode *inode;
3720
3721 inode = dquot_to_inode(dquot);
3722 handle = ext4_journal_start(inode,
3723 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3724 if (IS_ERR(handle))
3725 return PTR_ERR(handle);
3726 ret = dquot_commit(dquot);
3727 err = ext4_journal_stop(handle);
3728 if (!ret)
3729 ret = err;
3730 return ret;
3731 }
3732
3733 static int ext4_acquire_dquot(struct dquot *dquot)
3734 {
3735 int ret, err;
3736 handle_t *handle;
3737
3738 handle = ext4_journal_start(dquot_to_inode(dquot),
3739 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3740 if (IS_ERR(handle))
3741 return PTR_ERR(handle);
3742 ret = dquot_acquire(dquot);
3743 err = ext4_journal_stop(handle);
3744 if (!ret)
3745 ret = err;
3746 return ret;
3747 }
3748
3749 static int ext4_release_dquot(struct dquot *dquot)
3750 {
3751 int ret, err;
3752 handle_t *handle;
3753
3754 handle = ext4_journal_start(dquot_to_inode(dquot),
3755 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3756 if (IS_ERR(handle)) {
3757 /* Release dquot anyway to avoid endless cycle in dqput() */
3758 dquot_release(dquot);
3759 return PTR_ERR(handle);
3760 }
3761 ret = dquot_release(dquot);
3762 err = ext4_journal_stop(handle);
3763 if (!ret)
3764 ret = err;
3765 return ret;
3766 }
3767
3768 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3769 {
3770 /* Are we journaling quotas? */
3771 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3772 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3773 dquot_mark_dquot_dirty(dquot);
3774 return ext4_write_dquot(dquot);
3775 } else {
3776 return dquot_mark_dquot_dirty(dquot);
3777 }
3778 }
3779
3780 static int ext4_write_info(struct super_block *sb, int type)
3781 {
3782 int ret, err;
3783 handle_t *handle;
3784
3785 /* Data block + inode block */
3786 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3787 if (IS_ERR(handle))
3788 return PTR_ERR(handle);
3789 ret = dquot_commit_info(sb, type);
3790 err = ext4_journal_stop(handle);
3791 if (!ret)
3792 ret = err;
3793 return ret;
3794 }
3795
3796 /*
3797 * Turn on quotas during mount time - we need to find
3798 * the quota file and such...
3799 */
3800 static int ext4_quota_on_mount(struct super_block *sb, int type)
3801 {
3802 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3803 EXT4_SB(sb)->s_jquota_fmt, type);
3804 }
3805
3806 /*
3807 * Standard function to be called on quota_on
3808 */
3809 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3810 char *name, int remount)
3811 {
3812 int err;
3813 struct path path;
3814
3815 if (!test_opt(sb, QUOTA))
3816 return -EINVAL;
3817 /* When remounting, no checks are needed and in fact, name is NULL */
3818 if (remount)
3819 return vfs_quota_on(sb, type, format_id, name, remount);
3820
3821 err = kern_path(name, LOOKUP_FOLLOW, &path);
3822 if (err)
3823 return err;
3824
3825 /* Quotafile not on the same filesystem? */
3826 if (path.mnt->mnt_sb != sb) {
3827 path_put(&path);
3828 return -EXDEV;
3829 }
3830 /* Journaling quota? */
3831 if (EXT4_SB(sb)->s_qf_names[type]) {
3832 /* Quotafile not in fs root? */
3833 if (path.dentry->d_parent != sb->s_root)
3834 ext4_msg(sb, KERN_WARNING,
3835 "Quota file not on filesystem root. "
3836 "Journaled quota will not work");
3837 }
3838
3839 /*
3840 * When we journal data on quota file, we have to flush journal to see
3841 * all updates to the file when we bypass pagecache...
3842 */
3843 if (EXT4_SB(sb)->s_journal &&
3844 ext4_should_journal_data(path.dentry->d_inode)) {
3845 /*
3846 * We don't need to lock updates but journal_flush() could
3847 * otherwise be livelocked...
3848 */
3849 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3850 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3851 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3852 if (err) {
3853 path_put(&path);
3854 return err;
3855 }
3856 }
3857
3858 err = vfs_quota_on_path(sb, type, format_id, &path);
3859 path_put(&path);
3860 return err;
3861 }
3862
3863 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3864 * acquiring the locks... As quota files are never truncated and quota code
3865 * itself serializes the operations (and noone else should touch the files)
3866 * we don't have to be afraid of races */
3867 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3868 size_t len, loff_t off)
3869 {
3870 struct inode *inode = sb_dqopt(sb)->files[type];
3871 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3872 int err = 0;
3873 int offset = off & (sb->s_blocksize - 1);
3874 int tocopy;
3875 size_t toread;
3876 struct buffer_head *bh;
3877 loff_t i_size = i_size_read(inode);
3878
3879 if (off > i_size)
3880 return 0;
3881 if (off+len > i_size)
3882 len = i_size-off;
3883 toread = len;
3884 while (toread > 0) {
3885 tocopy = sb->s_blocksize - offset < toread ?
3886 sb->s_blocksize - offset : toread;
3887 bh = ext4_bread(NULL, inode, blk, 0, &err);
3888 if (err)
3889 return err;
3890 if (!bh) /* A hole? */
3891 memset(data, 0, tocopy);
3892 else
3893 memcpy(data, bh->b_data+offset, tocopy);
3894 brelse(bh);
3895 offset = 0;
3896 toread -= tocopy;
3897 data += tocopy;
3898 blk++;
3899 }
3900 return len;
3901 }
3902
3903 /* Write to quotafile (we know the transaction is already started and has
3904 * enough credits) */
3905 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3906 const char *data, size_t len, loff_t off)
3907 {
3908 struct inode *inode = sb_dqopt(sb)->files[type];
3909 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3910 int err = 0;
3911 int offset = off & (sb->s_blocksize - 1);
3912 int tocopy;
3913 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3914 size_t towrite = len;
3915 struct buffer_head *bh;
3916 handle_t *handle = journal_current_handle();
3917
3918 if (EXT4_SB(sb)->s_journal && !handle) {
3919 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3920 " cancelled because transaction is not started",
3921 (unsigned long long)off, (unsigned long long)len);
3922 return -EIO;
3923 }
3924 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3925 while (towrite > 0) {
3926 tocopy = sb->s_blocksize - offset < towrite ?
3927 sb->s_blocksize - offset : towrite;
3928 bh = ext4_bread(handle, inode, blk, 1, &err);
3929 if (!bh)
3930 goto out;
3931 if (journal_quota) {
3932 err = ext4_journal_get_write_access(handle, bh);
3933 if (err) {
3934 brelse(bh);
3935 goto out;
3936 }
3937 }
3938 lock_buffer(bh);
3939 memcpy(bh->b_data+offset, data, tocopy);
3940 flush_dcache_page(bh->b_page);
3941 unlock_buffer(bh);
3942 if (journal_quota)
3943 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3944 else {
3945 /* Always do at least ordered writes for quotas */
3946 err = ext4_jbd2_file_inode(handle, inode);
3947 mark_buffer_dirty(bh);
3948 }
3949 brelse(bh);
3950 if (err)
3951 goto out;
3952 offset = 0;
3953 towrite -= tocopy;
3954 data += tocopy;
3955 blk++;
3956 }
3957 out:
3958 if (len == towrite) {
3959 mutex_unlock(&inode->i_mutex);
3960 return err;
3961 }
3962 if (inode->i_size < off+len-towrite) {
3963 i_size_write(inode, off+len-towrite);
3964 EXT4_I(inode)->i_disksize = inode->i_size;
3965 }
3966 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3967 ext4_mark_inode_dirty(handle, inode);
3968 mutex_unlock(&inode->i_mutex);
3969 return len - towrite;
3970 }
3971
3972 #endif
3973
3974 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3975 const char *dev_name, void *data, struct vfsmount *mnt)
3976 {
3977 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3978 }
3979
3980 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
3981 static struct file_system_type ext2_fs_type = {
3982 .owner = THIS_MODULE,
3983 .name = "ext2",
3984 .get_sb = ext4_get_sb,
3985 .kill_sb = kill_block_super,
3986 .fs_flags = FS_REQUIRES_DEV,
3987 };
3988
3989 static inline void register_as_ext2(void)
3990 {
3991 int err = register_filesystem(&ext2_fs_type);
3992 if (err)
3993 printk(KERN_WARNING
3994 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
3995 }
3996
3997 static inline void unregister_as_ext2(void)
3998 {
3999 unregister_filesystem(&ext2_fs_type);
4000 }
4001 MODULE_ALIAS("ext2");
4002 #else
4003 static inline void register_as_ext2(void) { }
4004 static inline void unregister_as_ext2(void) { }
4005 #endif
4006
4007 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4008 static struct file_system_type ext3_fs_type = {
4009 .owner = THIS_MODULE,
4010 .name = "ext3",
4011 .get_sb = ext4_get_sb,
4012 .kill_sb = kill_block_super,
4013 .fs_flags = FS_REQUIRES_DEV,
4014 };
4015
4016 static inline void register_as_ext3(void)
4017 {
4018 int err = register_filesystem(&ext3_fs_type);
4019 if (err)
4020 printk(KERN_WARNING
4021 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4022 }
4023
4024 static inline void unregister_as_ext3(void)
4025 {
4026 unregister_filesystem(&ext3_fs_type);
4027 }
4028 MODULE_ALIAS("ext3");
4029 #else
4030 static inline void register_as_ext3(void) { }
4031 static inline void unregister_as_ext3(void) { }
4032 #endif
4033
4034 static struct file_system_type ext4_fs_type = {
4035 .owner = THIS_MODULE,
4036 .name = "ext4",
4037 .get_sb = ext4_get_sb,
4038 .kill_sb = kill_block_super,
4039 .fs_flags = FS_REQUIRES_DEV,
4040 };
4041
4042 static int __init init_ext4_fs(void)
4043 {
4044 int err;
4045
4046 err = init_ext4_system_zone();
4047 if (err)
4048 return err;
4049 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4050 if (!ext4_kset)
4051 goto out4;
4052 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4053 err = init_ext4_mballoc();
4054 if (err)
4055 goto out3;
4056
4057 err = init_ext4_xattr();
4058 if (err)
4059 goto out2;
4060 err = init_inodecache();
4061 if (err)
4062 goto out1;
4063 register_as_ext2();
4064 register_as_ext3();
4065 err = register_filesystem(&ext4_fs_type);
4066 if (err)
4067 goto out;
4068 return 0;
4069 out:
4070 unregister_as_ext2();
4071 unregister_as_ext3();
4072 destroy_inodecache();
4073 out1:
4074 exit_ext4_xattr();
4075 out2:
4076 exit_ext4_mballoc();
4077 out3:
4078 remove_proc_entry("fs/ext4", NULL);
4079 kset_unregister(ext4_kset);
4080 out4:
4081 exit_ext4_system_zone();
4082 return err;
4083 }
4084
4085 static void __exit exit_ext4_fs(void)
4086 {
4087 unregister_as_ext2();
4088 unregister_as_ext3();
4089 unregister_filesystem(&ext4_fs_type);
4090 destroy_inodecache();
4091 exit_ext4_xattr();
4092 exit_ext4_mballoc();
4093 remove_proc_entry("fs/ext4", NULL);
4094 kset_unregister(ext4_kset);
4095 exit_ext4_system_zone();
4096 }
4097
4098 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4099 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4100 MODULE_LICENSE("GPL");
4101 module_init(init_ext4_fs)
4102 module_exit(exit_ext4_fs)
This page took 0.10609 seconds and 4 git commands to generate.