b59373b625e9bcacaf3a63e409b21b1ef6212dfa
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
145 return 1;
146
147 return es->s_checksum == ext4_superblock_csum(sb, es);
148 }
149
150 void ext4_superblock_csum_set(struct super_block *sb)
151 {
152 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
153
154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
156 return;
157
158 es->s_checksum = ext4_superblock_csum(sb, es);
159 }
160
161 void *ext4_kvmalloc(size_t size, gfp_t flags)
162 {
163 void *ret;
164
165 ret = kmalloc(size, flags);
166 if (!ret)
167 ret = __vmalloc(size, flags, PAGE_KERNEL);
168 return ret;
169 }
170
171 void *ext4_kvzalloc(size_t size, gfp_t flags)
172 {
173 void *ret;
174
175 ret = kzalloc(size, flags);
176 if (!ret)
177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
178 return ret;
179 }
180
181 void ext4_kvfree(void *ptr)
182 {
183 if (is_vmalloc_addr(ptr))
184 vfree(ptr);
185 else
186 kfree(ptr);
187
188 }
189
190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le32_to_cpu(bg->bg_block_bitmap_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
196 }
197
198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
199 struct ext4_group_desc *bg)
200 {
201 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
204 }
205
206 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
207 struct ext4_group_desc *bg)
208 {
209 return le32_to_cpu(bg->bg_inode_table_lo) |
210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
212 }
213
214 __u32 ext4_free_group_clusters(struct super_block *sb,
215 struct ext4_group_desc *bg)
216 {
217 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
220 }
221
222 __u32 ext4_free_inodes_count(struct super_block *sb,
223 struct ext4_group_desc *bg)
224 {
225 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
228 }
229
230 __u32 ext4_used_dirs_count(struct super_block *sb,
231 struct ext4_group_desc *bg)
232 {
233 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
236 }
237
238 __u32 ext4_itable_unused_count(struct super_block *sb,
239 struct ext4_group_desc *bg)
240 {
241 return le16_to_cpu(bg->bg_itable_unused_lo) |
242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
244 }
245
246 void ext4_block_bitmap_set(struct super_block *sb,
247 struct ext4_group_desc *bg, ext4_fsblk_t blk)
248 {
249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
252 }
253
254 void ext4_inode_bitmap_set(struct super_block *sb,
255 struct ext4_group_desc *bg, ext4_fsblk_t blk)
256 {
257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
260 }
261
262 void ext4_inode_table_set(struct super_block *sb,
263 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 {
265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
268 }
269
270 void ext4_free_group_clusters_set(struct super_block *sb,
271 struct ext4_group_desc *bg, __u32 count)
272 {
273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
276 }
277
278 void ext4_free_inodes_set(struct super_block *sb,
279 struct ext4_group_desc *bg, __u32 count)
280 {
281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
284 }
285
286 void ext4_used_dirs_set(struct super_block *sb,
287 struct ext4_group_desc *bg, __u32 count)
288 {
289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
292 }
293
294 void ext4_itable_unused_set(struct super_block *sb,
295 struct ext4_group_desc *bg, __u32 count)
296 {
297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
300 }
301
302
303 static void __save_error_info(struct super_block *sb, const char *func,
304 unsigned int line)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 /*
403 * Make sure updated value of ->s_mount_flags will be visible
404 * before ->s_flags update
405 */
406 smp_wmb();
407 sb->s_flags |= MS_RDONLY;
408 }
409 if (test_opt(sb, ERRORS_PANIC))
410 panic("EXT4-fs (device %s): panic forced after error\n",
411 sb->s_id);
412 }
413
414 void __ext4_error(struct super_block *sb, const char *function,
415 unsigned int line, const char *fmt, ...)
416 {
417 struct va_format vaf;
418 va_list args;
419
420 va_start(args, fmt);
421 vaf.fmt = fmt;
422 vaf.va = &args;
423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
424 sb->s_id, function, line, current->comm, &vaf);
425 va_end(args);
426 save_error_info(sb, function, line);
427
428 ext4_handle_error(sb);
429 }
430
431 void __ext4_error_inode(struct inode *inode, const char *function,
432 unsigned int line, ext4_fsblk_t block,
433 const char *fmt, ...)
434 {
435 va_list args;
436 struct va_format vaf;
437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
438
439 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 es->s_last_error_block = cpu_to_le64(block);
441 save_error_info(inode->i_sb, function, line);
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 if (block)
446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 "inode #%lu: block %llu: comm %s: %pV\n",
448 inode->i_sb->s_id, function, line, inode->i_ino,
449 block, current->comm, &vaf);
450 else
451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
452 "inode #%lu: comm %s: %pV\n",
453 inode->i_sb->s_id, function, line, inode->i_ino,
454 current->comm, &vaf);
455 va_end(args);
456
457 ext4_handle_error(inode->i_sb);
458 }
459
460 void __ext4_error_file(struct file *file, const char *function,
461 unsigned int line, ext4_fsblk_t block,
462 const char *fmt, ...)
463 {
464 va_list args;
465 struct va_format vaf;
466 struct ext4_super_block *es;
467 struct inode *inode = file_inode(file);
468 char pathname[80], *path;
469
470 es = EXT4_SB(inode->i_sb)->s_es;
471 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
472 save_error_info(inode->i_sb, function, line);
473 path = d_path(&(file->f_path), pathname, sizeof(pathname));
474 if (IS_ERR(path))
475 path = "(unknown)";
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "block %llu: comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 block, current->comm, path, &vaf);
485 else
486 printk(KERN_CRIT
487 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
488 "comm %s: path %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, path, &vaf);
491 va_end(args);
492
493 ext4_handle_error(inode->i_sb);
494 }
495
496 const char *ext4_decode_error(struct super_block *sb, int errno,
497 char nbuf[16])
498 {
499 char *errstr = NULL;
500
501 switch (errno) {
502 case -EIO:
503 errstr = "IO failure";
504 break;
505 case -ENOMEM:
506 errstr = "Out of memory";
507 break;
508 case -EROFS:
509 if (!sb || (EXT4_SB(sb)->s_journal &&
510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
511 errstr = "Journal has aborted";
512 else
513 errstr = "Readonly filesystem";
514 break;
515 default:
516 /* If the caller passed in an extra buffer for unknown
517 * errors, textualise them now. Else we just return
518 * NULL. */
519 if (nbuf) {
520 /* Check for truncated error codes... */
521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
522 errstr = nbuf;
523 }
524 break;
525 }
526
527 return errstr;
528 }
529
530 /* __ext4_std_error decodes expected errors from journaling functions
531 * automatically and invokes the appropriate error response. */
532
533 void __ext4_std_error(struct super_block *sb, const char *function,
534 unsigned int line, int errno)
535 {
536 char nbuf[16];
537 const char *errstr;
538
539 /* Special case: if the error is EROFS, and we're not already
540 * inside a transaction, then there's really no point in logging
541 * an error. */
542 if (errno == -EROFS && journal_current_handle() == NULL &&
543 (sb->s_flags & MS_RDONLY))
544 return;
545
546 errstr = ext4_decode_error(sb, errno, nbuf);
547 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
548 sb->s_id, function, line, errstr);
549 save_error_info(sb, function, line);
550
551 ext4_handle_error(sb);
552 }
553
554 /*
555 * ext4_abort is a much stronger failure handler than ext4_error. The
556 * abort function may be used to deal with unrecoverable failures such
557 * as journal IO errors or ENOMEM at a critical moment in log management.
558 *
559 * We unconditionally force the filesystem into an ABORT|READONLY state,
560 * unless the error response on the fs has been set to panic in which
561 * case we take the easy way out and panic immediately.
562 */
563
564 void __ext4_abort(struct super_block *sb, const char *function,
565 unsigned int line, const char *fmt, ...)
566 {
567 va_list args;
568
569 save_error_info(sb, function, line);
570 va_start(args, fmt);
571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
572 function, line);
573 vprintk(fmt, args);
574 printk("\n");
575 va_end(args);
576
577 if ((sb->s_flags & MS_RDONLY) == 0) {
578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
580 /*
581 * Make sure updated value of ->s_mount_flags will be visible
582 * before ->s_flags update
583 */
584 smp_wmb();
585 sb->s_flags |= MS_RDONLY;
586 if (EXT4_SB(sb)->s_journal)
587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
588 save_error_info(sb, function, line);
589 }
590 if (test_opt(sb, ERRORS_PANIC))
591 panic("EXT4-fs panic from previous error\n");
592 }
593
594 void __ext4_msg(struct super_block *sb,
595 const char *prefix, const char *fmt, ...)
596 {
597 struct va_format vaf;
598 va_list args;
599
600 va_start(args, fmt);
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
604 va_end(args);
605 }
606
607 void __ext4_warning(struct super_block *sb, const char *function,
608 unsigned int line, const char *fmt, ...)
609 {
610 struct va_format vaf;
611 va_list args;
612
613 va_start(args, fmt);
614 vaf.fmt = fmt;
615 vaf.va = &args;
616 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
617 sb->s_id, function, line, &vaf);
618 va_end(args);
619 }
620
621 void __ext4_grp_locked_error(const char *function, unsigned int line,
622 struct super_block *sb, ext4_group_t grp,
623 unsigned long ino, ext4_fsblk_t block,
624 const char *fmt, ...)
625 __releases(bitlock)
626 __acquires(bitlock)
627 {
628 struct va_format vaf;
629 va_list args;
630 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
631
632 es->s_last_error_ino = cpu_to_le32(ino);
633 es->s_last_error_block = cpu_to_le64(block);
634 __save_error_info(sb, function, line);
635
636 va_start(args, fmt);
637
638 vaf.fmt = fmt;
639 vaf.va = &args;
640 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
641 sb->s_id, function, line, grp);
642 if (ino)
643 printk(KERN_CONT "inode %lu: ", ino);
644 if (block)
645 printk(KERN_CONT "block %llu:", (unsigned long long) block);
646 printk(KERN_CONT "%pV\n", &vaf);
647 va_end(args);
648
649 if (test_opt(sb, ERRORS_CONT)) {
650 ext4_commit_super(sb, 0);
651 return;
652 }
653
654 ext4_unlock_group(sb, grp);
655 ext4_handle_error(sb);
656 /*
657 * We only get here in the ERRORS_RO case; relocking the group
658 * may be dangerous, but nothing bad will happen since the
659 * filesystem will have already been marked read/only and the
660 * journal has been aborted. We return 1 as a hint to callers
661 * who might what to use the return value from
662 * ext4_grp_locked_error() to distinguish between the
663 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
664 * aggressively from the ext4 function in question, with a
665 * more appropriate error code.
666 */
667 ext4_lock_group(sb, grp);
668 return;
669 }
670
671 void ext4_update_dynamic_rev(struct super_block *sb)
672 {
673 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
674
675 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
676 return;
677
678 ext4_warning(sb,
679 "updating to rev %d because of new feature flag, "
680 "running e2fsck is recommended",
681 EXT4_DYNAMIC_REV);
682
683 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
684 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
685 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
686 /* leave es->s_feature_*compat flags alone */
687 /* es->s_uuid will be set by e2fsck if empty */
688
689 /*
690 * The rest of the superblock fields should be zero, and if not it
691 * means they are likely already in use, so leave them alone. We
692 * can leave it up to e2fsck to clean up any inconsistencies there.
693 */
694 }
695
696 /*
697 * Open the external journal device
698 */
699 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
700 {
701 struct block_device *bdev;
702 char b[BDEVNAME_SIZE];
703
704 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
705 if (IS_ERR(bdev))
706 goto fail;
707 return bdev;
708
709 fail:
710 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
711 __bdevname(dev, b), PTR_ERR(bdev));
712 return NULL;
713 }
714
715 /*
716 * Release the journal device
717 */
718 static void ext4_blkdev_put(struct block_device *bdev)
719 {
720 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
721 }
722
723 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
724 {
725 struct block_device *bdev;
726 bdev = sbi->journal_bdev;
727 if (bdev) {
728 ext4_blkdev_put(bdev);
729 sbi->journal_bdev = NULL;
730 }
731 }
732
733 static inline struct inode *orphan_list_entry(struct list_head *l)
734 {
735 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
736 }
737
738 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
739 {
740 struct list_head *l;
741
742 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
743 le32_to_cpu(sbi->s_es->s_last_orphan));
744
745 printk(KERN_ERR "sb_info orphan list:\n");
746 list_for_each(l, &sbi->s_orphan) {
747 struct inode *inode = orphan_list_entry(l);
748 printk(KERN_ERR " "
749 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
750 inode->i_sb->s_id, inode->i_ino, inode,
751 inode->i_mode, inode->i_nlink,
752 NEXT_ORPHAN(inode));
753 }
754 }
755
756 static void ext4_put_super(struct super_block *sb)
757 {
758 struct ext4_sb_info *sbi = EXT4_SB(sb);
759 struct ext4_super_block *es = sbi->s_es;
760 int i, err;
761
762 ext4_unregister_li_request(sb);
763 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
764
765 flush_workqueue(sbi->unrsv_conversion_wq);
766 flush_workqueue(sbi->rsv_conversion_wq);
767 destroy_workqueue(sbi->unrsv_conversion_wq);
768 destroy_workqueue(sbi->rsv_conversion_wq);
769
770 if (sbi->s_journal) {
771 err = jbd2_journal_destroy(sbi->s_journal);
772 sbi->s_journal = NULL;
773 if (err < 0)
774 ext4_abort(sb, "Couldn't clean up the journal");
775 }
776
777 ext4_es_unregister_shrinker(sbi);
778 del_timer(&sbi->s_err_report);
779 ext4_release_system_zone(sb);
780 ext4_mb_release(sb);
781 ext4_ext_release(sb);
782 ext4_xattr_put_super(sb);
783
784 if (!(sb->s_flags & MS_RDONLY)) {
785 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
786 es->s_state = cpu_to_le16(sbi->s_mount_state);
787 }
788 if (!(sb->s_flags & MS_RDONLY))
789 ext4_commit_super(sb, 1);
790
791 if (sbi->s_proc) {
792 remove_proc_entry("options", sbi->s_proc);
793 remove_proc_entry(sb->s_id, ext4_proc_root);
794 }
795 kobject_del(&sbi->s_kobj);
796
797 for (i = 0; i < sbi->s_gdb_count; i++)
798 brelse(sbi->s_group_desc[i]);
799 ext4_kvfree(sbi->s_group_desc);
800 ext4_kvfree(sbi->s_flex_groups);
801 percpu_counter_destroy(&sbi->s_freeclusters_counter);
802 percpu_counter_destroy(&sbi->s_freeinodes_counter);
803 percpu_counter_destroy(&sbi->s_dirs_counter);
804 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
805 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
806 brelse(sbi->s_sbh);
807 #ifdef CONFIG_QUOTA
808 for (i = 0; i < MAXQUOTAS; i++)
809 kfree(sbi->s_qf_names[i]);
810 #endif
811
812 /* Debugging code just in case the in-memory inode orphan list
813 * isn't empty. The on-disk one can be non-empty if we've
814 * detected an error and taken the fs readonly, but the
815 * in-memory list had better be clean by this point. */
816 if (!list_empty(&sbi->s_orphan))
817 dump_orphan_list(sb, sbi);
818 J_ASSERT(list_empty(&sbi->s_orphan));
819
820 invalidate_bdev(sb->s_bdev);
821 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
822 /*
823 * Invalidate the journal device's buffers. We don't want them
824 * floating about in memory - the physical journal device may
825 * hotswapped, and it breaks the `ro-after' testing code.
826 */
827 sync_blockdev(sbi->journal_bdev);
828 invalidate_bdev(sbi->journal_bdev);
829 ext4_blkdev_remove(sbi);
830 }
831 if (sbi->s_mmp_tsk)
832 kthread_stop(sbi->s_mmp_tsk);
833 sb->s_fs_info = NULL;
834 /*
835 * Now that we are completely done shutting down the
836 * superblock, we need to actually destroy the kobject.
837 */
838 kobject_put(&sbi->s_kobj);
839 wait_for_completion(&sbi->s_kobj_unregister);
840 if (sbi->s_chksum_driver)
841 crypto_free_shash(sbi->s_chksum_driver);
842 kfree(sbi->s_blockgroup_lock);
843 kfree(sbi);
844 }
845
846 static struct kmem_cache *ext4_inode_cachep;
847
848 /*
849 * Called inside transaction, so use GFP_NOFS
850 */
851 static struct inode *ext4_alloc_inode(struct super_block *sb)
852 {
853 struct ext4_inode_info *ei;
854
855 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
856 if (!ei)
857 return NULL;
858
859 ei->vfs_inode.i_version = 1;
860 INIT_LIST_HEAD(&ei->i_prealloc_list);
861 spin_lock_init(&ei->i_prealloc_lock);
862 ext4_es_init_tree(&ei->i_es_tree);
863 rwlock_init(&ei->i_es_lock);
864 INIT_LIST_HEAD(&ei->i_es_lru);
865 ei->i_es_lru_nr = 0;
866 ei->i_touch_when = 0;
867 ei->i_reserved_data_blocks = 0;
868 ei->i_reserved_meta_blocks = 0;
869 ei->i_allocated_meta_blocks = 0;
870 ei->i_da_metadata_calc_len = 0;
871 ei->i_da_metadata_calc_last_lblock = 0;
872 spin_lock_init(&(ei->i_block_reservation_lock));
873 #ifdef CONFIG_QUOTA
874 ei->i_reserved_quota = 0;
875 #endif
876 ei->jinode = NULL;
877 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
878 INIT_LIST_HEAD(&ei->i_unrsv_conversion_list);
879 spin_lock_init(&ei->i_completed_io_lock);
880 ei->i_sync_tid = 0;
881 ei->i_datasync_tid = 0;
882 atomic_set(&ei->i_ioend_count, 0);
883 atomic_set(&ei->i_unwritten, 0);
884 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
885 INIT_WORK(&ei->i_unrsv_conversion_work, ext4_end_io_unrsv_work);
886
887 return &ei->vfs_inode;
888 }
889
890 static int ext4_drop_inode(struct inode *inode)
891 {
892 int drop = generic_drop_inode(inode);
893
894 trace_ext4_drop_inode(inode, drop);
895 return drop;
896 }
897
898 static void ext4_i_callback(struct rcu_head *head)
899 {
900 struct inode *inode = container_of(head, struct inode, i_rcu);
901 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
902 }
903
904 static void ext4_destroy_inode(struct inode *inode)
905 {
906 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
907 ext4_msg(inode->i_sb, KERN_ERR,
908 "Inode %lu (%p): orphan list check failed!",
909 inode->i_ino, EXT4_I(inode));
910 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
911 EXT4_I(inode), sizeof(struct ext4_inode_info),
912 true);
913 dump_stack();
914 }
915 call_rcu(&inode->i_rcu, ext4_i_callback);
916 }
917
918 static void init_once(void *foo)
919 {
920 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
921
922 INIT_LIST_HEAD(&ei->i_orphan);
923 init_rwsem(&ei->xattr_sem);
924 init_rwsem(&ei->i_data_sem);
925 inode_init_once(&ei->vfs_inode);
926 }
927
928 static int init_inodecache(void)
929 {
930 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
931 sizeof(struct ext4_inode_info),
932 0, (SLAB_RECLAIM_ACCOUNT|
933 SLAB_MEM_SPREAD),
934 init_once);
935 if (ext4_inode_cachep == NULL)
936 return -ENOMEM;
937 return 0;
938 }
939
940 static void destroy_inodecache(void)
941 {
942 /*
943 * Make sure all delayed rcu free inodes are flushed before we
944 * destroy cache.
945 */
946 rcu_barrier();
947 kmem_cache_destroy(ext4_inode_cachep);
948 }
949
950 void ext4_clear_inode(struct inode *inode)
951 {
952 invalidate_inode_buffers(inode);
953 clear_inode(inode);
954 dquot_drop(inode);
955 ext4_discard_preallocations(inode);
956 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
957 ext4_es_lru_del(inode);
958 if (EXT4_I(inode)->jinode) {
959 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
960 EXT4_I(inode)->jinode);
961 jbd2_free_inode(EXT4_I(inode)->jinode);
962 EXT4_I(inode)->jinode = NULL;
963 }
964 }
965
966 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
967 u64 ino, u32 generation)
968 {
969 struct inode *inode;
970
971 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
972 return ERR_PTR(-ESTALE);
973 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
974 return ERR_PTR(-ESTALE);
975
976 /* iget isn't really right if the inode is currently unallocated!!
977 *
978 * ext4_read_inode will return a bad_inode if the inode had been
979 * deleted, so we should be safe.
980 *
981 * Currently we don't know the generation for parent directory, so
982 * a generation of 0 means "accept any"
983 */
984 inode = ext4_iget(sb, ino);
985 if (IS_ERR(inode))
986 return ERR_CAST(inode);
987 if (generation && inode->i_generation != generation) {
988 iput(inode);
989 return ERR_PTR(-ESTALE);
990 }
991
992 return inode;
993 }
994
995 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
996 int fh_len, int fh_type)
997 {
998 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
999 ext4_nfs_get_inode);
1000 }
1001
1002 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1003 int fh_len, int fh_type)
1004 {
1005 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1006 ext4_nfs_get_inode);
1007 }
1008
1009 /*
1010 * Try to release metadata pages (indirect blocks, directories) which are
1011 * mapped via the block device. Since these pages could have journal heads
1012 * which would prevent try_to_free_buffers() from freeing them, we must use
1013 * jbd2 layer's try_to_free_buffers() function to release them.
1014 */
1015 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1016 gfp_t wait)
1017 {
1018 journal_t *journal = EXT4_SB(sb)->s_journal;
1019
1020 WARN_ON(PageChecked(page));
1021 if (!page_has_buffers(page))
1022 return 0;
1023 if (journal)
1024 return jbd2_journal_try_to_free_buffers(journal, page,
1025 wait & ~__GFP_WAIT);
1026 return try_to_free_buffers(page);
1027 }
1028
1029 #ifdef CONFIG_QUOTA
1030 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1031 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1032
1033 static int ext4_write_dquot(struct dquot *dquot);
1034 static int ext4_acquire_dquot(struct dquot *dquot);
1035 static int ext4_release_dquot(struct dquot *dquot);
1036 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1037 static int ext4_write_info(struct super_block *sb, int type);
1038 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1039 struct path *path);
1040 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1041 int format_id);
1042 static int ext4_quota_off(struct super_block *sb, int type);
1043 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1044 static int ext4_quota_on_mount(struct super_block *sb, int type);
1045 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1046 size_t len, loff_t off);
1047 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1048 const char *data, size_t len, loff_t off);
1049 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1050 unsigned int flags);
1051 static int ext4_enable_quotas(struct super_block *sb);
1052
1053 static const struct dquot_operations ext4_quota_operations = {
1054 .get_reserved_space = ext4_get_reserved_space,
1055 .write_dquot = ext4_write_dquot,
1056 .acquire_dquot = ext4_acquire_dquot,
1057 .release_dquot = ext4_release_dquot,
1058 .mark_dirty = ext4_mark_dquot_dirty,
1059 .write_info = ext4_write_info,
1060 .alloc_dquot = dquot_alloc,
1061 .destroy_dquot = dquot_destroy,
1062 };
1063
1064 static const struct quotactl_ops ext4_qctl_operations = {
1065 .quota_on = ext4_quota_on,
1066 .quota_off = ext4_quota_off,
1067 .quota_sync = dquot_quota_sync,
1068 .get_info = dquot_get_dqinfo,
1069 .set_info = dquot_set_dqinfo,
1070 .get_dqblk = dquot_get_dqblk,
1071 .set_dqblk = dquot_set_dqblk
1072 };
1073
1074 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1075 .quota_on_meta = ext4_quota_on_sysfile,
1076 .quota_off = ext4_quota_off_sysfile,
1077 .quota_sync = dquot_quota_sync,
1078 .get_info = dquot_get_dqinfo,
1079 .set_info = dquot_set_dqinfo,
1080 .get_dqblk = dquot_get_dqblk,
1081 .set_dqblk = dquot_set_dqblk
1082 };
1083 #endif
1084
1085 static const struct super_operations ext4_sops = {
1086 .alloc_inode = ext4_alloc_inode,
1087 .destroy_inode = ext4_destroy_inode,
1088 .write_inode = ext4_write_inode,
1089 .dirty_inode = ext4_dirty_inode,
1090 .drop_inode = ext4_drop_inode,
1091 .evict_inode = ext4_evict_inode,
1092 .put_super = ext4_put_super,
1093 .sync_fs = ext4_sync_fs,
1094 .freeze_fs = ext4_freeze,
1095 .unfreeze_fs = ext4_unfreeze,
1096 .statfs = ext4_statfs,
1097 .remount_fs = ext4_remount,
1098 .show_options = ext4_show_options,
1099 #ifdef CONFIG_QUOTA
1100 .quota_read = ext4_quota_read,
1101 .quota_write = ext4_quota_write,
1102 #endif
1103 .bdev_try_to_free_page = bdev_try_to_free_page,
1104 };
1105
1106 static const struct super_operations ext4_nojournal_sops = {
1107 .alloc_inode = ext4_alloc_inode,
1108 .destroy_inode = ext4_destroy_inode,
1109 .write_inode = ext4_write_inode,
1110 .dirty_inode = ext4_dirty_inode,
1111 .drop_inode = ext4_drop_inode,
1112 .evict_inode = ext4_evict_inode,
1113 .sync_fs = ext4_sync_fs_nojournal,
1114 .put_super = ext4_put_super,
1115 .statfs = ext4_statfs,
1116 .remount_fs = ext4_remount,
1117 .show_options = ext4_show_options,
1118 #ifdef CONFIG_QUOTA
1119 .quota_read = ext4_quota_read,
1120 .quota_write = ext4_quota_write,
1121 #endif
1122 .bdev_try_to_free_page = bdev_try_to_free_page,
1123 };
1124
1125 static const struct export_operations ext4_export_ops = {
1126 .fh_to_dentry = ext4_fh_to_dentry,
1127 .fh_to_parent = ext4_fh_to_parent,
1128 .get_parent = ext4_get_parent,
1129 };
1130
1131 enum {
1132 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1133 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1134 Opt_nouid32, Opt_debug, Opt_removed,
1135 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1136 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1137 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1138 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1139 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1140 Opt_data_err_abort, Opt_data_err_ignore,
1141 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1142 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1143 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1144 Opt_usrquota, Opt_grpquota, Opt_i_version,
1145 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1146 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1147 Opt_inode_readahead_blks, Opt_journal_ioprio,
1148 Opt_dioread_nolock, Opt_dioread_lock,
1149 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1150 Opt_max_dir_size_kb,
1151 };
1152
1153 static const match_table_t tokens = {
1154 {Opt_bsd_df, "bsddf"},
1155 {Opt_minix_df, "minixdf"},
1156 {Opt_grpid, "grpid"},
1157 {Opt_grpid, "bsdgroups"},
1158 {Opt_nogrpid, "nogrpid"},
1159 {Opt_nogrpid, "sysvgroups"},
1160 {Opt_resgid, "resgid=%u"},
1161 {Opt_resuid, "resuid=%u"},
1162 {Opt_sb, "sb=%u"},
1163 {Opt_err_cont, "errors=continue"},
1164 {Opt_err_panic, "errors=panic"},
1165 {Opt_err_ro, "errors=remount-ro"},
1166 {Opt_nouid32, "nouid32"},
1167 {Opt_debug, "debug"},
1168 {Opt_removed, "oldalloc"},
1169 {Opt_removed, "orlov"},
1170 {Opt_user_xattr, "user_xattr"},
1171 {Opt_nouser_xattr, "nouser_xattr"},
1172 {Opt_acl, "acl"},
1173 {Opt_noacl, "noacl"},
1174 {Opt_noload, "norecovery"},
1175 {Opt_noload, "noload"},
1176 {Opt_removed, "nobh"},
1177 {Opt_removed, "bh"},
1178 {Opt_commit, "commit=%u"},
1179 {Opt_min_batch_time, "min_batch_time=%u"},
1180 {Opt_max_batch_time, "max_batch_time=%u"},
1181 {Opt_journal_dev, "journal_dev=%u"},
1182 {Opt_journal_checksum, "journal_checksum"},
1183 {Opt_journal_async_commit, "journal_async_commit"},
1184 {Opt_abort, "abort"},
1185 {Opt_data_journal, "data=journal"},
1186 {Opt_data_ordered, "data=ordered"},
1187 {Opt_data_writeback, "data=writeback"},
1188 {Opt_data_err_abort, "data_err=abort"},
1189 {Opt_data_err_ignore, "data_err=ignore"},
1190 {Opt_offusrjquota, "usrjquota="},
1191 {Opt_usrjquota, "usrjquota=%s"},
1192 {Opt_offgrpjquota, "grpjquota="},
1193 {Opt_grpjquota, "grpjquota=%s"},
1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1197 {Opt_grpquota, "grpquota"},
1198 {Opt_noquota, "noquota"},
1199 {Opt_quota, "quota"},
1200 {Opt_usrquota, "usrquota"},
1201 {Opt_barrier, "barrier=%u"},
1202 {Opt_barrier, "barrier"},
1203 {Opt_nobarrier, "nobarrier"},
1204 {Opt_i_version, "i_version"},
1205 {Opt_stripe, "stripe=%u"},
1206 {Opt_delalloc, "delalloc"},
1207 {Opt_nodelalloc, "nodelalloc"},
1208 {Opt_removed, "mblk_io_submit"},
1209 {Opt_removed, "nomblk_io_submit"},
1210 {Opt_block_validity, "block_validity"},
1211 {Opt_noblock_validity, "noblock_validity"},
1212 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1213 {Opt_journal_ioprio, "journal_ioprio=%u"},
1214 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1215 {Opt_auto_da_alloc, "auto_da_alloc"},
1216 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1217 {Opt_dioread_nolock, "dioread_nolock"},
1218 {Opt_dioread_lock, "dioread_lock"},
1219 {Opt_discard, "discard"},
1220 {Opt_nodiscard, "nodiscard"},
1221 {Opt_init_itable, "init_itable=%u"},
1222 {Opt_init_itable, "init_itable"},
1223 {Opt_noinit_itable, "noinit_itable"},
1224 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1225 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1226 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1227 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1228 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1229 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1230 {Opt_err, NULL},
1231 };
1232
1233 static ext4_fsblk_t get_sb_block(void **data)
1234 {
1235 ext4_fsblk_t sb_block;
1236 char *options = (char *) *data;
1237
1238 if (!options || strncmp(options, "sb=", 3) != 0)
1239 return 1; /* Default location */
1240
1241 options += 3;
1242 /* TODO: use simple_strtoll with >32bit ext4 */
1243 sb_block = simple_strtoul(options, &options, 0);
1244 if (*options && *options != ',') {
1245 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1246 (char *) *data);
1247 return 1;
1248 }
1249 if (*options == ',')
1250 options++;
1251 *data = (void *) options;
1252
1253 return sb_block;
1254 }
1255
1256 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1257 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1258 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1259
1260 #ifdef CONFIG_QUOTA
1261 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1262 {
1263 struct ext4_sb_info *sbi = EXT4_SB(sb);
1264 char *qname;
1265 int ret = -1;
1266
1267 if (sb_any_quota_loaded(sb) &&
1268 !sbi->s_qf_names[qtype]) {
1269 ext4_msg(sb, KERN_ERR,
1270 "Cannot change journaled "
1271 "quota options when quota turned on");
1272 return -1;
1273 }
1274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1275 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1276 "when QUOTA feature is enabled");
1277 return -1;
1278 }
1279 qname = match_strdup(args);
1280 if (!qname) {
1281 ext4_msg(sb, KERN_ERR,
1282 "Not enough memory for storing quotafile name");
1283 return -1;
1284 }
1285 if (sbi->s_qf_names[qtype]) {
1286 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1287 ret = 1;
1288 else
1289 ext4_msg(sb, KERN_ERR,
1290 "%s quota file already specified",
1291 QTYPE2NAME(qtype));
1292 goto errout;
1293 }
1294 if (strchr(qname, '/')) {
1295 ext4_msg(sb, KERN_ERR,
1296 "quotafile must be on filesystem root");
1297 goto errout;
1298 }
1299 sbi->s_qf_names[qtype] = qname;
1300 set_opt(sb, QUOTA);
1301 return 1;
1302 errout:
1303 kfree(qname);
1304 return ret;
1305 }
1306
1307 static int clear_qf_name(struct super_block *sb, int qtype)
1308 {
1309
1310 struct ext4_sb_info *sbi = EXT4_SB(sb);
1311
1312 if (sb_any_quota_loaded(sb) &&
1313 sbi->s_qf_names[qtype]) {
1314 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1315 " when quota turned on");
1316 return -1;
1317 }
1318 kfree(sbi->s_qf_names[qtype]);
1319 sbi->s_qf_names[qtype] = NULL;
1320 return 1;
1321 }
1322 #endif
1323
1324 #define MOPT_SET 0x0001
1325 #define MOPT_CLEAR 0x0002
1326 #define MOPT_NOSUPPORT 0x0004
1327 #define MOPT_EXPLICIT 0x0008
1328 #define MOPT_CLEAR_ERR 0x0010
1329 #define MOPT_GTE0 0x0020
1330 #ifdef CONFIG_QUOTA
1331 #define MOPT_Q 0
1332 #define MOPT_QFMT 0x0040
1333 #else
1334 #define MOPT_Q MOPT_NOSUPPORT
1335 #define MOPT_QFMT MOPT_NOSUPPORT
1336 #endif
1337 #define MOPT_DATAJ 0x0080
1338 #define MOPT_NO_EXT2 0x0100
1339 #define MOPT_NO_EXT3 0x0200
1340 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1341
1342 static const struct mount_opts {
1343 int token;
1344 int mount_opt;
1345 int flags;
1346 } ext4_mount_opts[] = {
1347 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1348 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1349 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1350 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1351 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1352 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1353 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1354 MOPT_EXT4_ONLY | MOPT_SET},
1355 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1356 MOPT_EXT4_ONLY | MOPT_CLEAR},
1357 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1358 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1359 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1360 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1361 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1362 MOPT_EXT4_ONLY | MOPT_CLEAR},
1363 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1364 MOPT_EXT4_ONLY | MOPT_SET},
1365 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1366 EXT4_MOUNT_JOURNAL_CHECKSUM),
1367 MOPT_EXT4_ONLY | MOPT_SET},
1368 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1369 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1370 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1371 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1372 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1373 MOPT_NO_EXT2 | MOPT_SET},
1374 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1375 MOPT_NO_EXT2 | MOPT_CLEAR},
1376 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1377 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1378 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1379 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1380 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1381 {Opt_commit, 0, MOPT_GTE0},
1382 {Opt_max_batch_time, 0, MOPT_GTE0},
1383 {Opt_min_batch_time, 0, MOPT_GTE0},
1384 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1385 {Opt_init_itable, 0, MOPT_GTE0},
1386 {Opt_stripe, 0, MOPT_GTE0},
1387 {Opt_resuid, 0, MOPT_GTE0},
1388 {Opt_resgid, 0, MOPT_GTE0},
1389 {Opt_journal_dev, 0, MOPT_GTE0},
1390 {Opt_journal_ioprio, 0, MOPT_GTE0},
1391 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1392 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1393 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1394 MOPT_NO_EXT2 | MOPT_DATAJ},
1395 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1396 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1397 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1398 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1399 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1400 #else
1401 {Opt_acl, 0, MOPT_NOSUPPORT},
1402 {Opt_noacl, 0, MOPT_NOSUPPORT},
1403 #endif
1404 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1405 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1406 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1407 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1408 MOPT_SET | MOPT_Q},
1409 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1410 MOPT_SET | MOPT_Q},
1411 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1412 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1413 {Opt_usrjquota, 0, MOPT_Q},
1414 {Opt_grpjquota, 0, MOPT_Q},
1415 {Opt_offusrjquota, 0, MOPT_Q},
1416 {Opt_offgrpjquota, 0, MOPT_Q},
1417 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1418 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1419 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1420 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1421 {Opt_err, 0, 0}
1422 };
1423
1424 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1425 substring_t *args, unsigned long *journal_devnum,
1426 unsigned int *journal_ioprio, int is_remount)
1427 {
1428 struct ext4_sb_info *sbi = EXT4_SB(sb);
1429 const struct mount_opts *m;
1430 kuid_t uid;
1431 kgid_t gid;
1432 int arg = 0;
1433
1434 #ifdef CONFIG_QUOTA
1435 if (token == Opt_usrjquota)
1436 return set_qf_name(sb, USRQUOTA, &args[0]);
1437 else if (token == Opt_grpjquota)
1438 return set_qf_name(sb, GRPQUOTA, &args[0]);
1439 else if (token == Opt_offusrjquota)
1440 return clear_qf_name(sb, USRQUOTA);
1441 else if (token == Opt_offgrpjquota)
1442 return clear_qf_name(sb, GRPQUOTA);
1443 #endif
1444 switch (token) {
1445 case Opt_noacl:
1446 case Opt_nouser_xattr:
1447 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1448 break;
1449 case Opt_sb:
1450 return 1; /* handled by get_sb_block() */
1451 case Opt_removed:
1452 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1453 return 1;
1454 case Opt_abort:
1455 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1456 return 1;
1457 case Opt_i_version:
1458 sb->s_flags |= MS_I_VERSION;
1459 return 1;
1460 }
1461
1462 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1463 if (token == m->token)
1464 break;
1465
1466 if (m->token == Opt_err) {
1467 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1468 "or missing value", opt);
1469 return -1;
1470 }
1471
1472 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1473 ext4_msg(sb, KERN_ERR,
1474 "Mount option \"%s\" incompatible with ext2", opt);
1475 return -1;
1476 }
1477 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1478 ext4_msg(sb, KERN_ERR,
1479 "Mount option \"%s\" incompatible with ext3", opt);
1480 return -1;
1481 }
1482
1483 if (args->from && match_int(args, &arg))
1484 return -1;
1485 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1486 return -1;
1487 if (m->flags & MOPT_EXPLICIT)
1488 set_opt2(sb, EXPLICIT_DELALLOC);
1489 if (m->flags & MOPT_CLEAR_ERR)
1490 clear_opt(sb, ERRORS_MASK);
1491 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1492 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1493 "options when quota turned on");
1494 return -1;
1495 }
1496
1497 if (m->flags & MOPT_NOSUPPORT) {
1498 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1499 } else if (token == Opt_commit) {
1500 if (arg == 0)
1501 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1502 sbi->s_commit_interval = HZ * arg;
1503 } else if (token == Opt_max_batch_time) {
1504 if (arg == 0)
1505 arg = EXT4_DEF_MAX_BATCH_TIME;
1506 sbi->s_max_batch_time = arg;
1507 } else if (token == Opt_min_batch_time) {
1508 sbi->s_min_batch_time = arg;
1509 } else if (token == Opt_inode_readahead_blks) {
1510 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1511 ext4_msg(sb, KERN_ERR,
1512 "EXT4-fs: inode_readahead_blks must be "
1513 "0 or a power of 2 smaller than 2^31");
1514 return -1;
1515 }
1516 sbi->s_inode_readahead_blks = arg;
1517 } else if (token == Opt_init_itable) {
1518 set_opt(sb, INIT_INODE_TABLE);
1519 if (!args->from)
1520 arg = EXT4_DEF_LI_WAIT_MULT;
1521 sbi->s_li_wait_mult = arg;
1522 } else if (token == Opt_max_dir_size_kb) {
1523 sbi->s_max_dir_size_kb = arg;
1524 } else if (token == Opt_stripe) {
1525 sbi->s_stripe = arg;
1526 } else if (token == Opt_resuid) {
1527 uid = make_kuid(current_user_ns(), arg);
1528 if (!uid_valid(uid)) {
1529 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1530 return -1;
1531 }
1532 sbi->s_resuid = uid;
1533 } else if (token == Opt_resgid) {
1534 gid = make_kgid(current_user_ns(), arg);
1535 if (!gid_valid(gid)) {
1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1537 return -1;
1538 }
1539 sbi->s_resgid = gid;
1540 } else if (token == Opt_journal_dev) {
1541 if (is_remount) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot specify journal on remount");
1544 return -1;
1545 }
1546 *journal_devnum = arg;
1547 } else if (token == Opt_journal_ioprio) {
1548 if (arg > 7) {
1549 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1550 " (must be 0-7)");
1551 return -1;
1552 }
1553 *journal_ioprio =
1554 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1555 } else if (m->flags & MOPT_DATAJ) {
1556 if (is_remount) {
1557 if (!sbi->s_journal)
1558 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1559 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1560 ext4_msg(sb, KERN_ERR,
1561 "Cannot change data mode on remount");
1562 return -1;
1563 }
1564 } else {
1565 clear_opt(sb, DATA_FLAGS);
1566 sbi->s_mount_opt |= m->mount_opt;
1567 }
1568 #ifdef CONFIG_QUOTA
1569 } else if (m->flags & MOPT_QFMT) {
1570 if (sb_any_quota_loaded(sb) &&
1571 sbi->s_jquota_fmt != m->mount_opt) {
1572 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1573 "quota options when quota turned on");
1574 return -1;
1575 }
1576 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1577 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1578 ext4_msg(sb, KERN_ERR,
1579 "Cannot set journaled quota options "
1580 "when QUOTA feature is enabled");
1581 return -1;
1582 }
1583 sbi->s_jquota_fmt = m->mount_opt;
1584 #endif
1585 } else {
1586 if (!args->from)
1587 arg = 1;
1588 if (m->flags & MOPT_CLEAR)
1589 arg = !arg;
1590 else if (unlikely(!(m->flags & MOPT_SET))) {
1591 ext4_msg(sb, KERN_WARNING,
1592 "buggy handling of option %s", opt);
1593 WARN_ON(1);
1594 return -1;
1595 }
1596 if (arg != 0)
1597 sbi->s_mount_opt |= m->mount_opt;
1598 else
1599 sbi->s_mount_opt &= ~m->mount_opt;
1600 }
1601 return 1;
1602 }
1603
1604 static int parse_options(char *options, struct super_block *sb,
1605 unsigned long *journal_devnum,
1606 unsigned int *journal_ioprio,
1607 int is_remount)
1608 {
1609 struct ext4_sb_info *sbi = EXT4_SB(sb);
1610 char *p;
1611 substring_t args[MAX_OPT_ARGS];
1612 int token;
1613
1614 if (!options)
1615 return 1;
1616
1617 while ((p = strsep(&options, ",")) != NULL) {
1618 if (!*p)
1619 continue;
1620 /*
1621 * Initialize args struct so we know whether arg was
1622 * found; some options take optional arguments.
1623 */
1624 args[0].to = args[0].from = NULL;
1625 token = match_token(p, tokens, args);
1626 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1627 journal_ioprio, is_remount) < 0)
1628 return 0;
1629 }
1630 #ifdef CONFIG_QUOTA
1631 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1632 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1633 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1634 "feature is enabled");
1635 return 0;
1636 }
1637 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1638 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1639 clear_opt(sb, USRQUOTA);
1640
1641 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1642 clear_opt(sb, GRPQUOTA);
1643
1644 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1645 ext4_msg(sb, KERN_ERR, "old and new quota "
1646 "format mixing");
1647 return 0;
1648 }
1649
1650 if (!sbi->s_jquota_fmt) {
1651 ext4_msg(sb, KERN_ERR, "journaled quota format "
1652 "not specified");
1653 return 0;
1654 }
1655 } else {
1656 if (sbi->s_jquota_fmt) {
1657 ext4_msg(sb, KERN_ERR, "journaled quota format "
1658 "specified with no journaling "
1659 "enabled");
1660 return 0;
1661 }
1662 }
1663 #endif
1664 if (test_opt(sb, DIOREAD_NOLOCK)) {
1665 int blocksize =
1666 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1667
1668 if (blocksize < PAGE_CACHE_SIZE) {
1669 ext4_msg(sb, KERN_ERR, "can't mount with "
1670 "dioread_nolock if block size != PAGE_SIZE");
1671 return 0;
1672 }
1673 }
1674 return 1;
1675 }
1676
1677 static inline void ext4_show_quota_options(struct seq_file *seq,
1678 struct super_block *sb)
1679 {
1680 #if defined(CONFIG_QUOTA)
1681 struct ext4_sb_info *sbi = EXT4_SB(sb);
1682
1683 if (sbi->s_jquota_fmt) {
1684 char *fmtname = "";
1685
1686 switch (sbi->s_jquota_fmt) {
1687 case QFMT_VFS_OLD:
1688 fmtname = "vfsold";
1689 break;
1690 case QFMT_VFS_V0:
1691 fmtname = "vfsv0";
1692 break;
1693 case QFMT_VFS_V1:
1694 fmtname = "vfsv1";
1695 break;
1696 }
1697 seq_printf(seq, ",jqfmt=%s", fmtname);
1698 }
1699
1700 if (sbi->s_qf_names[USRQUOTA])
1701 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1702
1703 if (sbi->s_qf_names[GRPQUOTA])
1704 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1705 #endif
1706 }
1707
1708 static const char *token2str(int token)
1709 {
1710 const struct match_token *t;
1711
1712 for (t = tokens; t->token != Opt_err; t++)
1713 if (t->token == token && !strchr(t->pattern, '='))
1714 break;
1715 return t->pattern;
1716 }
1717
1718 /*
1719 * Show an option if
1720 * - it's set to a non-default value OR
1721 * - if the per-sb default is different from the global default
1722 */
1723 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1724 int nodefs)
1725 {
1726 struct ext4_sb_info *sbi = EXT4_SB(sb);
1727 struct ext4_super_block *es = sbi->s_es;
1728 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1729 const struct mount_opts *m;
1730 char sep = nodefs ? '\n' : ',';
1731
1732 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1733 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1734
1735 if (sbi->s_sb_block != 1)
1736 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1737
1738 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1739 int want_set = m->flags & MOPT_SET;
1740 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1741 (m->flags & MOPT_CLEAR_ERR))
1742 continue;
1743 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1744 continue; /* skip if same as the default */
1745 if ((want_set &&
1746 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1747 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1748 continue; /* select Opt_noFoo vs Opt_Foo */
1749 SEQ_OPTS_PRINT("%s", token2str(m->token));
1750 }
1751
1752 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1753 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1754 SEQ_OPTS_PRINT("resuid=%u",
1755 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1756 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1757 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1758 SEQ_OPTS_PRINT("resgid=%u",
1759 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1760 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1761 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1762 SEQ_OPTS_PUTS("errors=remount-ro");
1763 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1764 SEQ_OPTS_PUTS("errors=continue");
1765 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1766 SEQ_OPTS_PUTS("errors=panic");
1767 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1768 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1769 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1770 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1771 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1772 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1773 if (sb->s_flags & MS_I_VERSION)
1774 SEQ_OPTS_PUTS("i_version");
1775 if (nodefs || sbi->s_stripe)
1776 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1777 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1778 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1779 SEQ_OPTS_PUTS("data=journal");
1780 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1781 SEQ_OPTS_PUTS("data=ordered");
1782 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1783 SEQ_OPTS_PUTS("data=writeback");
1784 }
1785 if (nodefs ||
1786 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1787 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1788 sbi->s_inode_readahead_blks);
1789
1790 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1791 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1792 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1793 if (nodefs || sbi->s_max_dir_size_kb)
1794 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1795
1796 ext4_show_quota_options(seq, sb);
1797 return 0;
1798 }
1799
1800 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1801 {
1802 return _ext4_show_options(seq, root->d_sb, 0);
1803 }
1804
1805 static int options_seq_show(struct seq_file *seq, void *offset)
1806 {
1807 struct super_block *sb = seq->private;
1808 int rc;
1809
1810 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1811 rc = _ext4_show_options(seq, sb, 1);
1812 seq_puts(seq, "\n");
1813 return rc;
1814 }
1815
1816 static int options_open_fs(struct inode *inode, struct file *file)
1817 {
1818 return single_open(file, options_seq_show, PDE_DATA(inode));
1819 }
1820
1821 static const struct file_operations ext4_seq_options_fops = {
1822 .owner = THIS_MODULE,
1823 .open = options_open_fs,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = single_release,
1827 };
1828
1829 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1830 int read_only)
1831 {
1832 struct ext4_sb_info *sbi = EXT4_SB(sb);
1833 int res = 0;
1834
1835 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1836 ext4_msg(sb, KERN_ERR, "revision level too high, "
1837 "forcing read-only mode");
1838 res = MS_RDONLY;
1839 }
1840 if (read_only)
1841 goto done;
1842 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1843 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1844 "running e2fsck is recommended");
1845 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1846 ext4_msg(sb, KERN_WARNING,
1847 "warning: mounting fs with errors, "
1848 "running e2fsck is recommended");
1849 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1850 le16_to_cpu(es->s_mnt_count) >=
1851 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1852 ext4_msg(sb, KERN_WARNING,
1853 "warning: maximal mount count reached, "
1854 "running e2fsck is recommended");
1855 else if (le32_to_cpu(es->s_checkinterval) &&
1856 (le32_to_cpu(es->s_lastcheck) +
1857 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1858 ext4_msg(sb, KERN_WARNING,
1859 "warning: checktime reached, "
1860 "running e2fsck is recommended");
1861 if (!sbi->s_journal)
1862 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1863 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1864 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1865 le16_add_cpu(&es->s_mnt_count, 1);
1866 es->s_mtime = cpu_to_le32(get_seconds());
1867 ext4_update_dynamic_rev(sb);
1868 if (sbi->s_journal)
1869 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1870
1871 ext4_commit_super(sb, 1);
1872 done:
1873 if (test_opt(sb, DEBUG))
1874 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1875 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1876 sb->s_blocksize,
1877 sbi->s_groups_count,
1878 EXT4_BLOCKS_PER_GROUP(sb),
1879 EXT4_INODES_PER_GROUP(sb),
1880 sbi->s_mount_opt, sbi->s_mount_opt2);
1881
1882 cleancache_init_fs(sb);
1883 return res;
1884 }
1885
1886 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1887 {
1888 struct ext4_sb_info *sbi = EXT4_SB(sb);
1889 struct flex_groups *new_groups;
1890 int size;
1891
1892 if (!sbi->s_log_groups_per_flex)
1893 return 0;
1894
1895 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1896 if (size <= sbi->s_flex_groups_allocated)
1897 return 0;
1898
1899 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1900 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1901 if (!new_groups) {
1902 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1903 size / (int) sizeof(struct flex_groups));
1904 return -ENOMEM;
1905 }
1906
1907 if (sbi->s_flex_groups) {
1908 memcpy(new_groups, sbi->s_flex_groups,
1909 (sbi->s_flex_groups_allocated *
1910 sizeof(struct flex_groups)));
1911 ext4_kvfree(sbi->s_flex_groups);
1912 }
1913 sbi->s_flex_groups = new_groups;
1914 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1915 return 0;
1916 }
1917
1918 static int ext4_fill_flex_info(struct super_block *sb)
1919 {
1920 struct ext4_sb_info *sbi = EXT4_SB(sb);
1921 struct ext4_group_desc *gdp = NULL;
1922 ext4_group_t flex_group;
1923 int i, err;
1924
1925 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1926 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1927 sbi->s_log_groups_per_flex = 0;
1928 return 1;
1929 }
1930
1931 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1932 if (err)
1933 goto failed;
1934
1935 for (i = 0; i < sbi->s_groups_count; i++) {
1936 gdp = ext4_get_group_desc(sb, i, NULL);
1937
1938 flex_group = ext4_flex_group(sbi, i);
1939 atomic_add(ext4_free_inodes_count(sb, gdp),
1940 &sbi->s_flex_groups[flex_group].free_inodes);
1941 atomic64_add(ext4_free_group_clusters(sb, gdp),
1942 &sbi->s_flex_groups[flex_group].free_clusters);
1943 atomic_add(ext4_used_dirs_count(sb, gdp),
1944 &sbi->s_flex_groups[flex_group].used_dirs);
1945 }
1946
1947 return 1;
1948 failed:
1949 return 0;
1950 }
1951
1952 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1953 struct ext4_group_desc *gdp)
1954 {
1955 int offset;
1956 __u16 crc = 0;
1957 __le32 le_group = cpu_to_le32(block_group);
1958
1959 if ((sbi->s_es->s_feature_ro_compat &
1960 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1961 /* Use new metadata_csum algorithm */
1962 __le16 save_csum;
1963 __u32 csum32;
1964
1965 save_csum = gdp->bg_checksum;
1966 gdp->bg_checksum = 0;
1967 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1968 sizeof(le_group));
1969 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1970 sbi->s_desc_size);
1971 gdp->bg_checksum = save_csum;
1972
1973 crc = csum32 & 0xFFFF;
1974 goto out;
1975 }
1976
1977 /* old crc16 code */
1978 offset = offsetof(struct ext4_group_desc, bg_checksum);
1979
1980 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1981 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1982 crc = crc16(crc, (__u8 *)gdp, offset);
1983 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1984 /* for checksum of struct ext4_group_desc do the rest...*/
1985 if ((sbi->s_es->s_feature_incompat &
1986 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1987 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1988 crc = crc16(crc, (__u8 *)gdp + offset,
1989 le16_to_cpu(sbi->s_es->s_desc_size) -
1990 offset);
1991
1992 out:
1993 return cpu_to_le16(crc);
1994 }
1995
1996 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1997 struct ext4_group_desc *gdp)
1998 {
1999 if (ext4_has_group_desc_csum(sb) &&
2000 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2001 block_group, gdp)))
2002 return 0;
2003
2004 return 1;
2005 }
2006
2007 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2008 struct ext4_group_desc *gdp)
2009 {
2010 if (!ext4_has_group_desc_csum(sb))
2011 return;
2012 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2013 }
2014
2015 /* Called at mount-time, super-block is locked */
2016 static int ext4_check_descriptors(struct super_block *sb,
2017 ext4_group_t *first_not_zeroed)
2018 {
2019 struct ext4_sb_info *sbi = EXT4_SB(sb);
2020 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2021 ext4_fsblk_t last_block;
2022 ext4_fsblk_t block_bitmap;
2023 ext4_fsblk_t inode_bitmap;
2024 ext4_fsblk_t inode_table;
2025 int flexbg_flag = 0;
2026 ext4_group_t i, grp = sbi->s_groups_count;
2027
2028 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2029 flexbg_flag = 1;
2030
2031 ext4_debug("Checking group descriptors");
2032
2033 for (i = 0; i < sbi->s_groups_count; i++) {
2034 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2035
2036 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2037 last_block = ext4_blocks_count(sbi->s_es) - 1;
2038 else
2039 last_block = first_block +
2040 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2041
2042 if ((grp == sbi->s_groups_count) &&
2043 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2044 grp = i;
2045
2046 block_bitmap = ext4_block_bitmap(sb, gdp);
2047 if (block_bitmap < first_block || block_bitmap > last_block) {
2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2049 "Block bitmap for group %u not in group "
2050 "(block %llu)!", i, block_bitmap);
2051 return 0;
2052 }
2053 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2054 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2055 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2056 "Inode bitmap for group %u not in group "
2057 "(block %llu)!", i, inode_bitmap);
2058 return 0;
2059 }
2060 inode_table = ext4_inode_table(sb, gdp);
2061 if (inode_table < first_block ||
2062 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2063 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2064 "Inode table for group %u not in group "
2065 "(block %llu)!", i, inode_table);
2066 return 0;
2067 }
2068 ext4_lock_group(sb, i);
2069 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2070 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2071 "Checksum for group %u failed (%u!=%u)",
2072 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2073 gdp)), le16_to_cpu(gdp->bg_checksum));
2074 if (!(sb->s_flags & MS_RDONLY)) {
2075 ext4_unlock_group(sb, i);
2076 return 0;
2077 }
2078 }
2079 ext4_unlock_group(sb, i);
2080 if (!flexbg_flag)
2081 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2082 }
2083 if (NULL != first_not_zeroed)
2084 *first_not_zeroed = grp;
2085
2086 ext4_free_blocks_count_set(sbi->s_es,
2087 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2088 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2089 return 1;
2090 }
2091
2092 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2093 * the superblock) which were deleted from all directories, but held open by
2094 * a process at the time of a crash. We walk the list and try to delete these
2095 * inodes at recovery time (only with a read-write filesystem).
2096 *
2097 * In order to keep the orphan inode chain consistent during traversal (in
2098 * case of crash during recovery), we link each inode into the superblock
2099 * orphan list_head and handle it the same way as an inode deletion during
2100 * normal operation (which journals the operations for us).
2101 *
2102 * We only do an iget() and an iput() on each inode, which is very safe if we
2103 * accidentally point at an in-use or already deleted inode. The worst that
2104 * can happen in this case is that we get a "bit already cleared" message from
2105 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2106 * e2fsck was run on this filesystem, and it must have already done the orphan
2107 * inode cleanup for us, so we can safely abort without any further action.
2108 */
2109 static void ext4_orphan_cleanup(struct super_block *sb,
2110 struct ext4_super_block *es)
2111 {
2112 unsigned int s_flags = sb->s_flags;
2113 int nr_orphans = 0, nr_truncates = 0;
2114 #ifdef CONFIG_QUOTA
2115 int i;
2116 #endif
2117 if (!es->s_last_orphan) {
2118 jbd_debug(4, "no orphan inodes to clean up\n");
2119 return;
2120 }
2121
2122 if (bdev_read_only(sb->s_bdev)) {
2123 ext4_msg(sb, KERN_ERR, "write access "
2124 "unavailable, skipping orphan cleanup");
2125 return;
2126 }
2127
2128 /* Check if feature set would not allow a r/w mount */
2129 if (!ext4_feature_set_ok(sb, 0)) {
2130 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2131 "unknown ROCOMPAT features");
2132 return;
2133 }
2134
2135 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2136 /* don't clear list on RO mount w/ errors */
2137 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2138 jbd_debug(1, "Errors on filesystem, "
2139 "clearing orphan list.\n");
2140 es->s_last_orphan = 0;
2141 }
2142 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2143 return;
2144 }
2145
2146 if (s_flags & MS_RDONLY) {
2147 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2148 sb->s_flags &= ~MS_RDONLY;
2149 }
2150 #ifdef CONFIG_QUOTA
2151 /* Needed for iput() to work correctly and not trash data */
2152 sb->s_flags |= MS_ACTIVE;
2153 /* Turn on quotas so that they are updated correctly */
2154 for (i = 0; i < MAXQUOTAS; i++) {
2155 if (EXT4_SB(sb)->s_qf_names[i]) {
2156 int ret = ext4_quota_on_mount(sb, i);
2157 if (ret < 0)
2158 ext4_msg(sb, KERN_ERR,
2159 "Cannot turn on journaled "
2160 "quota: error %d", ret);
2161 }
2162 }
2163 #endif
2164
2165 while (es->s_last_orphan) {
2166 struct inode *inode;
2167
2168 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2169 if (IS_ERR(inode)) {
2170 es->s_last_orphan = 0;
2171 break;
2172 }
2173
2174 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2175 dquot_initialize(inode);
2176 if (inode->i_nlink) {
2177 if (test_opt(sb, DEBUG))
2178 ext4_msg(sb, KERN_DEBUG,
2179 "%s: truncating inode %lu to %lld bytes",
2180 __func__, inode->i_ino, inode->i_size);
2181 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2182 inode->i_ino, inode->i_size);
2183 mutex_lock(&inode->i_mutex);
2184 truncate_inode_pages(inode->i_mapping, inode->i_size);
2185 ext4_truncate(inode);
2186 mutex_unlock(&inode->i_mutex);
2187 nr_truncates++;
2188 } else {
2189 if (test_opt(sb, DEBUG))
2190 ext4_msg(sb, KERN_DEBUG,
2191 "%s: deleting unreferenced inode %lu",
2192 __func__, inode->i_ino);
2193 jbd_debug(2, "deleting unreferenced inode %lu\n",
2194 inode->i_ino);
2195 nr_orphans++;
2196 }
2197 iput(inode); /* The delete magic happens here! */
2198 }
2199
2200 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2201
2202 if (nr_orphans)
2203 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2204 PLURAL(nr_orphans));
2205 if (nr_truncates)
2206 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2207 PLURAL(nr_truncates));
2208 #ifdef CONFIG_QUOTA
2209 /* Turn quotas off */
2210 for (i = 0; i < MAXQUOTAS; i++) {
2211 if (sb_dqopt(sb)->files[i])
2212 dquot_quota_off(sb, i);
2213 }
2214 #endif
2215 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2216 }
2217
2218 /*
2219 * Maximal extent format file size.
2220 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2221 * extent format containers, within a sector_t, and within i_blocks
2222 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2223 * so that won't be a limiting factor.
2224 *
2225 * However there is other limiting factor. We do store extents in the form
2226 * of starting block and length, hence the resulting length of the extent
2227 * covering maximum file size must fit into on-disk format containers as
2228 * well. Given that length is always by 1 unit bigger than max unit (because
2229 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2230 *
2231 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2232 */
2233 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2234 {
2235 loff_t res;
2236 loff_t upper_limit = MAX_LFS_FILESIZE;
2237
2238 /* small i_blocks in vfs inode? */
2239 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2240 /*
2241 * CONFIG_LBDAF is not enabled implies the inode
2242 * i_block represent total blocks in 512 bytes
2243 * 32 == size of vfs inode i_blocks * 8
2244 */
2245 upper_limit = (1LL << 32) - 1;
2246
2247 /* total blocks in file system block size */
2248 upper_limit >>= (blkbits - 9);
2249 upper_limit <<= blkbits;
2250 }
2251
2252 /*
2253 * 32-bit extent-start container, ee_block. We lower the maxbytes
2254 * by one fs block, so ee_len can cover the extent of maximum file
2255 * size
2256 */
2257 res = (1LL << 32) - 1;
2258 res <<= blkbits;
2259
2260 /* Sanity check against vm- & vfs- imposed limits */
2261 if (res > upper_limit)
2262 res = upper_limit;
2263
2264 return res;
2265 }
2266
2267 /*
2268 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2269 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2270 * We need to be 1 filesystem block less than the 2^48 sector limit.
2271 */
2272 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2273 {
2274 loff_t res = EXT4_NDIR_BLOCKS;
2275 int meta_blocks;
2276 loff_t upper_limit;
2277 /* This is calculated to be the largest file size for a dense, block
2278 * mapped file such that the file's total number of 512-byte sectors,
2279 * including data and all indirect blocks, does not exceed (2^48 - 1).
2280 *
2281 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2282 * number of 512-byte sectors of the file.
2283 */
2284
2285 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2286 /*
2287 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2288 * the inode i_block field represents total file blocks in
2289 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2290 */
2291 upper_limit = (1LL << 32) - 1;
2292
2293 /* total blocks in file system block size */
2294 upper_limit >>= (bits - 9);
2295
2296 } else {
2297 /*
2298 * We use 48 bit ext4_inode i_blocks
2299 * With EXT4_HUGE_FILE_FL set the i_blocks
2300 * represent total number of blocks in
2301 * file system block size
2302 */
2303 upper_limit = (1LL << 48) - 1;
2304
2305 }
2306
2307 /* indirect blocks */
2308 meta_blocks = 1;
2309 /* double indirect blocks */
2310 meta_blocks += 1 + (1LL << (bits-2));
2311 /* tripple indirect blocks */
2312 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2313
2314 upper_limit -= meta_blocks;
2315 upper_limit <<= bits;
2316
2317 res += 1LL << (bits-2);
2318 res += 1LL << (2*(bits-2));
2319 res += 1LL << (3*(bits-2));
2320 res <<= bits;
2321 if (res > upper_limit)
2322 res = upper_limit;
2323
2324 if (res > MAX_LFS_FILESIZE)
2325 res = MAX_LFS_FILESIZE;
2326
2327 return res;
2328 }
2329
2330 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2331 ext4_fsblk_t logical_sb_block, int nr)
2332 {
2333 struct ext4_sb_info *sbi = EXT4_SB(sb);
2334 ext4_group_t bg, first_meta_bg;
2335 int has_super = 0;
2336
2337 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2338
2339 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2340 nr < first_meta_bg)
2341 return logical_sb_block + nr + 1;
2342 bg = sbi->s_desc_per_block * nr;
2343 if (ext4_bg_has_super(sb, bg))
2344 has_super = 1;
2345
2346 return (has_super + ext4_group_first_block_no(sb, bg));
2347 }
2348
2349 /**
2350 * ext4_get_stripe_size: Get the stripe size.
2351 * @sbi: In memory super block info
2352 *
2353 * If we have specified it via mount option, then
2354 * use the mount option value. If the value specified at mount time is
2355 * greater than the blocks per group use the super block value.
2356 * If the super block value is greater than blocks per group return 0.
2357 * Allocator needs it be less than blocks per group.
2358 *
2359 */
2360 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2361 {
2362 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2363 unsigned long stripe_width =
2364 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2365 int ret;
2366
2367 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2368 ret = sbi->s_stripe;
2369 else if (stripe_width <= sbi->s_blocks_per_group)
2370 ret = stripe_width;
2371 else if (stride <= sbi->s_blocks_per_group)
2372 ret = stride;
2373 else
2374 ret = 0;
2375
2376 /*
2377 * If the stripe width is 1, this makes no sense and
2378 * we set it to 0 to turn off stripe handling code.
2379 */
2380 if (ret <= 1)
2381 ret = 0;
2382
2383 return ret;
2384 }
2385
2386 /* sysfs supprt */
2387
2388 struct ext4_attr {
2389 struct attribute attr;
2390 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2391 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2392 const char *, size_t);
2393 union {
2394 int offset;
2395 int deprecated_val;
2396 } u;
2397 };
2398
2399 static int parse_strtoull(const char *buf,
2400 unsigned long long max, unsigned long long *value)
2401 {
2402 int ret;
2403
2404 ret = kstrtoull(skip_spaces(buf), 0, value);
2405 if (!ret && *value > max)
2406 ret = -EINVAL;
2407 return ret;
2408 }
2409
2410 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2411 struct ext4_sb_info *sbi,
2412 char *buf)
2413 {
2414 return snprintf(buf, PAGE_SIZE, "%llu\n",
2415 (s64) EXT4_C2B(sbi,
2416 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2417 }
2418
2419 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2420 struct ext4_sb_info *sbi, char *buf)
2421 {
2422 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2423
2424 if (!sb->s_bdev->bd_part)
2425 return snprintf(buf, PAGE_SIZE, "0\n");
2426 return snprintf(buf, PAGE_SIZE, "%lu\n",
2427 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2428 sbi->s_sectors_written_start) >> 1);
2429 }
2430
2431 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2432 struct ext4_sb_info *sbi, char *buf)
2433 {
2434 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2435
2436 if (!sb->s_bdev->bd_part)
2437 return snprintf(buf, PAGE_SIZE, "0\n");
2438 return snprintf(buf, PAGE_SIZE, "%llu\n",
2439 (unsigned long long)(sbi->s_kbytes_written +
2440 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2441 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2442 }
2443
2444 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2445 struct ext4_sb_info *sbi,
2446 const char *buf, size_t count)
2447 {
2448 unsigned long t;
2449 int ret;
2450
2451 ret = kstrtoul(skip_spaces(buf), 0, &t);
2452 if (ret)
2453 return ret;
2454
2455 if (t && (!is_power_of_2(t) || t > 0x40000000))
2456 return -EINVAL;
2457
2458 sbi->s_inode_readahead_blks = t;
2459 return count;
2460 }
2461
2462 static ssize_t sbi_ui_show(struct ext4_attr *a,
2463 struct ext4_sb_info *sbi, char *buf)
2464 {
2465 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2466
2467 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2468 }
2469
2470 static ssize_t sbi_ui_store(struct ext4_attr *a,
2471 struct ext4_sb_info *sbi,
2472 const char *buf, size_t count)
2473 {
2474 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2475 unsigned long t;
2476 int ret;
2477
2478 ret = kstrtoul(skip_spaces(buf), 0, &t);
2479 if (ret)
2480 return ret;
2481 *ui = t;
2482 return count;
2483 }
2484
2485 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2486 struct ext4_sb_info *sbi, char *buf)
2487 {
2488 return snprintf(buf, PAGE_SIZE, "%llu\n",
2489 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2490 }
2491
2492 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi,
2494 const char *buf, size_t count)
2495 {
2496 unsigned long long val;
2497 int ret;
2498
2499 if (parse_strtoull(buf, -1ULL, &val))
2500 return -EINVAL;
2501 ret = ext4_reserve_clusters(sbi, val);
2502
2503 return ret ? ret : count;
2504 }
2505
2506 static ssize_t trigger_test_error(struct ext4_attr *a,
2507 struct ext4_sb_info *sbi,
2508 const char *buf, size_t count)
2509 {
2510 int len = count;
2511
2512 if (!capable(CAP_SYS_ADMIN))
2513 return -EPERM;
2514
2515 if (len && buf[len-1] == '\n')
2516 len--;
2517
2518 if (len)
2519 ext4_error(sbi->s_sb, "%.*s", len, buf);
2520 return count;
2521 }
2522
2523 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2524 struct ext4_sb_info *sbi, char *buf)
2525 {
2526 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2527 }
2528
2529 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2530 static struct ext4_attr ext4_attr_##_name = { \
2531 .attr = {.name = __stringify(_name), .mode = _mode }, \
2532 .show = _show, \
2533 .store = _store, \
2534 .u = { \
2535 .offset = offsetof(struct ext4_sb_info, _elname),\
2536 }, \
2537 }
2538 #define EXT4_ATTR(name, mode, show, store) \
2539 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2540
2541 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2542 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2543 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2544 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2545 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2546 #define ATTR_LIST(name) &ext4_attr_##name.attr
2547 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2548 static struct ext4_attr ext4_attr_##_name = { \
2549 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2550 .show = sbi_deprecated_show, \
2551 .u = { \
2552 .deprecated_val = _val, \
2553 }, \
2554 }
2555
2556 EXT4_RO_ATTR(delayed_allocation_blocks);
2557 EXT4_RO_ATTR(session_write_kbytes);
2558 EXT4_RO_ATTR(lifetime_write_kbytes);
2559 EXT4_RW_ATTR(reserved_clusters);
2560 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2561 inode_readahead_blks_store, s_inode_readahead_blks);
2562 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2563 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2564 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2565 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2566 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2567 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2568 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2569 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2570 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2571 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2572
2573 static struct attribute *ext4_attrs[] = {
2574 ATTR_LIST(delayed_allocation_blocks),
2575 ATTR_LIST(session_write_kbytes),
2576 ATTR_LIST(lifetime_write_kbytes),
2577 ATTR_LIST(reserved_clusters),
2578 ATTR_LIST(inode_readahead_blks),
2579 ATTR_LIST(inode_goal),
2580 ATTR_LIST(mb_stats),
2581 ATTR_LIST(mb_max_to_scan),
2582 ATTR_LIST(mb_min_to_scan),
2583 ATTR_LIST(mb_order2_req),
2584 ATTR_LIST(mb_stream_req),
2585 ATTR_LIST(mb_group_prealloc),
2586 ATTR_LIST(max_writeback_mb_bump),
2587 ATTR_LIST(extent_max_zeroout_kb),
2588 ATTR_LIST(trigger_fs_error),
2589 NULL,
2590 };
2591
2592 /* Features this copy of ext4 supports */
2593 EXT4_INFO_ATTR(lazy_itable_init);
2594 EXT4_INFO_ATTR(batched_discard);
2595 EXT4_INFO_ATTR(meta_bg_resize);
2596
2597 static struct attribute *ext4_feat_attrs[] = {
2598 ATTR_LIST(lazy_itable_init),
2599 ATTR_LIST(batched_discard),
2600 ATTR_LIST(meta_bg_resize),
2601 NULL,
2602 };
2603
2604 static ssize_t ext4_attr_show(struct kobject *kobj,
2605 struct attribute *attr, char *buf)
2606 {
2607 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2608 s_kobj);
2609 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2610
2611 return a->show ? a->show(a, sbi, buf) : 0;
2612 }
2613
2614 static ssize_t ext4_attr_store(struct kobject *kobj,
2615 struct attribute *attr,
2616 const char *buf, size_t len)
2617 {
2618 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2619 s_kobj);
2620 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2621
2622 return a->store ? a->store(a, sbi, buf, len) : 0;
2623 }
2624
2625 static void ext4_sb_release(struct kobject *kobj)
2626 {
2627 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2628 s_kobj);
2629 complete(&sbi->s_kobj_unregister);
2630 }
2631
2632 static const struct sysfs_ops ext4_attr_ops = {
2633 .show = ext4_attr_show,
2634 .store = ext4_attr_store,
2635 };
2636
2637 static struct kobj_type ext4_ktype = {
2638 .default_attrs = ext4_attrs,
2639 .sysfs_ops = &ext4_attr_ops,
2640 .release = ext4_sb_release,
2641 };
2642
2643 static void ext4_feat_release(struct kobject *kobj)
2644 {
2645 complete(&ext4_feat->f_kobj_unregister);
2646 }
2647
2648 static struct kobj_type ext4_feat_ktype = {
2649 .default_attrs = ext4_feat_attrs,
2650 .sysfs_ops = &ext4_attr_ops,
2651 .release = ext4_feat_release,
2652 };
2653
2654 /*
2655 * Check whether this filesystem can be mounted based on
2656 * the features present and the RDONLY/RDWR mount requested.
2657 * Returns 1 if this filesystem can be mounted as requested,
2658 * 0 if it cannot be.
2659 */
2660 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2661 {
2662 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2663 ext4_msg(sb, KERN_ERR,
2664 "Couldn't mount because of "
2665 "unsupported optional features (%x)",
2666 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2667 ~EXT4_FEATURE_INCOMPAT_SUPP));
2668 return 0;
2669 }
2670
2671 if (readonly)
2672 return 1;
2673
2674 /* Check that feature set is OK for a read-write mount */
2675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2676 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2677 "unsupported optional features (%x)",
2678 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2679 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2680 return 0;
2681 }
2682 /*
2683 * Large file size enabled file system can only be mounted
2684 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2685 */
2686 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2687 if (sizeof(blkcnt_t) < sizeof(u64)) {
2688 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2689 "cannot be mounted RDWR without "
2690 "CONFIG_LBDAF");
2691 return 0;
2692 }
2693 }
2694 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2695 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2696 ext4_msg(sb, KERN_ERR,
2697 "Can't support bigalloc feature without "
2698 "extents feature\n");
2699 return 0;
2700 }
2701
2702 #ifndef CONFIG_QUOTA
2703 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2704 !readonly) {
2705 ext4_msg(sb, KERN_ERR,
2706 "Filesystem with quota feature cannot be mounted RDWR "
2707 "without CONFIG_QUOTA");
2708 return 0;
2709 }
2710 #endif /* CONFIG_QUOTA */
2711 return 1;
2712 }
2713
2714 /*
2715 * This function is called once a day if we have errors logged
2716 * on the file system
2717 */
2718 static void print_daily_error_info(unsigned long arg)
2719 {
2720 struct super_block *sb = (struct super_block *) arg;
2721 struct ext4_sb_info *sbi;
2722 struct ext4_super_block *es;
2723
2724 sbi = EXT4_SB(sb);
2725 es = sbi->s_es;
2726
2727 if (es->s_error_count)
2728 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2729 le32_to_cpu(es->s_error_count));
2730 if (es->s_first_error_time) {
2731 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2732 sb->s_id, le32_to_cpu(es->s_first_error_time),
2733 (int) sizeof(es->s_first_error_func),
2734 es->s_first_error_func,
2735 le32_to_cpu(es->s_first_error_line));
2736 if (es->s_first_error_ino)
2737 printk(": inode %u",
2738 le32_to_cpu(es->s_first_error_ino));
2739 if (es->s_first_error_block)
2740 printk(": block %llu", (unsigned long long)
2741 le64_to_cpu(es->s_first_error_block));
2742 printk("\n");
2743 }
2744 if (es->s_last_error_time) {
2745 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2746 sb->s_id, le32_to_cpu(es->s_last_error_time),
2747 (int) sizeof(es->s_last_error_func),
2748 es->s_last_error_func,
2749 le32_to_cpu(es->s_last_error_line));
2750 if (es->s_last_error_ino)
2751 printk(": inode %u",
2752 le32_to_cpu(es->s_last_error_ino));
2753 if (es->s_last_error_block)
2754 printk(": block %llu", (unsigned long long)
2755 le64_to_cpu(es->s_last_error_block));
2756 printk("\n");
2757 }
2758 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2759 }
2760
2761 /* Find next suitable group and run ext4_init_inode_table */
2762 static int ext4_run_li_request(struct ext4_li_request *elr)
2763 {
2764 struct ext4_group_desc *gdp = NULL;
2765 ext4_group_t group, ngroups;
2766 struct super_block *sb;
2767 unsigned long timeout = 0;
2768 int ret = 0;
2769
2770 sb = elr->lr_super;
2771 ngroups = EXT4_SB(sb)->s_groups_count;
2772
2773 sb_start_write(sb);
2774 for (group = elr->lr_next_group; group < ngroups; group++) {
2775 gdp = ext4_get_group_desc(sb, group, NULL);
2776 if (!gdp) {
2777 ret = 1;
2778 break;
2779 }
2780
2781 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2782 break;
2783 }
2784
2785 if (group >= ngroups)
2786 ret = 1;
2787
2788 if (!ret) {
2789 timeout = jiffies;
2790 ret = ext4_init_inode_table(sb, group,
2791 elr->lr_timeout ? 0 : 1);
2792 if (elr->lr_timeout == 0) {
2793 timeout = (jiffies - timeout) *
2794 elr->lr_sbi->s_li_wait_mult;
2795 elr->lr_timeout = timeout;
2796 }
2797 elr->lr_next_sched = jiffies + elr->lr_timeout;
2798 elr->lr_next_group = group + 1;
2799 }
2800 sb_end_write(sb);
2801
2802 return ret;
2803 }
2804
2805 /*
2806 * Remove lr_request from the list_request and free the
2807 * request structure. Should be called with li_list_mtx held
2808 */
2809 static void ext4_remove_li_request(struct ext4_li_request *elr)
2810 {
2811 struct ext4_sb_info *sbi;
2812
2813 if (!elr)
2814 return;
2815
2816 sbi = elr->lr_sbi;
2817
2818 list_del(&elr->lr_request);
2819 sbi->s_li_request = NULL;
2820 kfree(elr);
2821 }
2822
2823 static void ext4_unregister_li_request(struct super_block *sb)
2824 {
2825 mutex_lock(&ext4_li_mtx);
2826 if (!ext4_li_info) {
2827 mutex_unlock(&ext4_li_mtx);
2828 return;
2829 }
2830
2831 mutex_lock(&ext4_li_info->li_list_mtx);
2832 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2833 mutex_unlock(&ext4_li_info->li_list_mtx);
2834 mutex_unlock(&ext4_li_mtx);
2835 }
2836
2837 static struct task_struct *ext4_lazyinit_task;
2838
2839 /*
2840 * This is the function where ext4lazyinit thread lives. It walks
2841 * through the request list searching for next scheduled filesystem.
2842 * When such a fs is found, run the lazy initialization request
2843 * (ext4_rn_li_request) and keep track of the time spend in this
2844 * function. Based on that time we compute next schedule time of
2845 * the request. When walking through the list is complete, compute
2846 * next waking time and put itself into sleep.
2847 */
2848 static int ext4_lazyinit_thread(void *arg)
2849 {
2850 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2851 struct list_head *pos, *n;
2852 struct ext4_li_request *elr;
2853 unsigned long next_wakeup, cur;
2854
2855 BUG_ON(NULL == eli);
2856
2857 cont_thread:
2858 while (true) {
2859 next_wakeup = MAX_JIFFY_OFFSET;
2860
2861 mutex_lock(&eli->li_list_mtx);
2862 if (list_empty(&eli->li_request_list)) {
2863 mutex_unlock(&eli->li_list_mtx);
2864 goto exit_thread;
2865 }
2866
2867 list_for_each_safe(pos, n, &eli->li_request_list) {
2868 elr = list_entry(pos, struct ext4_li_request,
2869 lr_request);
2870
2871 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2872 if (ext4_run_li_request(elr) != 0) {
2873 /* error, remove the lazy_init job */
2874 ext4_remove_li_request(elr);
2875 continue;
2876 }
2877 }
2878
2879 if (time_before(elr->lr_next_sched, next_wakeup))
2880 next_wakeup = elr->lr_next_sched;
2881 }
2882 mutex_unlock(&eli->li_list_mtx);
2883
2884 try_to_freeze();
2885
2886 cur = jiffies;
2887 if ((time_after_eq(cur, next_wakeup)) ||
2888 (MAX_JIFFY_OFFSET == next_wakeup)) {
2889 cond_resched();
2890 continue;
2891 }
2892
2893 schedule_timeout_interruptible(next_wakeup - cur);
2894
2895 if (kthread_should_stop()) {
2896 ext4_clear_request_list();
2897 goto exit_thread;
2898 }
2899 }
2900
2901 exit_thread:
2902 /*
2903 * It looks like the request list is empty, but we need
2904 * to check it under the li_list_mtx lock, to prevent any
2905 * additions into it, and of course we should lock ext4_li_mtx
2906 * to atomically free the list and ext4_li_info, because at
2907 * this point another ext4 filesystem could be registering
2908 * new one.
2909 */
2910 mutex_lock(&ext4_li_mtx);
2911 mutex_lock(&eli->li_list_mtx);
2912 if (!list_empty(&eli->li_request_list)) {
2913 mutex_unlock(&eli->li_list_mtx);
2914 mutex_unlock(&ext4_li_mtx);
2915 goto cont_thread;
2916 }
2917 mutex_unlock(&eli->li_list_mtx);
2918 kfree(ext4_li_info);
2919 ext4_li_info = NULL;
2920 mutex_unlock(&ext4_li_mtx);
2921
2922 return 0;
2923 }
2924
2925 static void ext4_clear_request_list(void)
2926 {
2927 struct list_head *pos, *n;
2928 struct ext4_li_request *elr;
2929
2930 mutex_lock(&ext4_li_info->li_list_mtx);
2931 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2932 elr = list_entry(pos, struct ext4_li_request,
2933 lr_request);
2934 ext4_remove_li_request(elr);
2935 }
2936 mutex_unlock(&ext4_li_info->li_list_mtx);
2937 }
2938
2939 static int ext4_run_lazyinit_thread(void)
2940 {
2941 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2942 ext4_li_info, "ext4lazyinit");
2943 if (IS_ERR(ext4_lazyinit_task)) {
2944 int err = PTR_ERR(ext4_lazyinit_task);
2945 ext4_clear_request_list();
2946 kfree(ext4_li_info);
2947 ext4_li_info = NULL;
2948 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2949 "initialization thread\n",
2950 err);
2951 return err;
2952 }
2953 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2954 return 0;
2955 }
2956
2957 /*
2958 * Check whether it make sense to run itable init. thread or not.
2959 * If there is at least one uninitialized inode table, return
2960 * corresponding group number, else the loop goes through all
2961 * groups and return total number of groups.
2962 */
2963 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2964 {
2965 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2966 struct ext4_group_desc *gdp = NULL;
2967
2968 for (group = 0; group < ngroups; group++) {
2969 gdp = ext4_get_group_desc(sb, group, NULL);
2970 if (!gdp)
2971 continue;
2972
2973 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2974 break;
2975 }
2976
2977 return group;
2978 }
2979
2980 static int ext4_li_info_new(void)
2981 {
2982 struct ext4_lazy_init *eli = NULL;
2983
2984 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2985 if (!eli)
2986 return -ENOMEM;
2987
2988 INIT_LIST_HEAD(&eli->li_request_list);
2989 mutex_init(&eli->li_list_mtx);
2990
2991 eli->li_state |= EXT4_LAZYINIT_QUIT;
2992
2993 ext4_li_info = eli;
2994
2995 return 0;
2996 }
2997
2998 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2999 ext4_group_t start)
3000 {
3001 struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 struct ext4_li_request *elr;
3003 unsigned long rnd;
3004
3005 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3006 if (!elr)
3007 return NULL;
3008
3009 elr->lr_super = sb;
3010 elr->lr_sbi = sbi;
3011 elr->lr_next_group = start;
3012
3013 /*
3014 * Randomize first schedule time of the request to
3015 * spread the inode table initialization requests
3016 * better.
3017 */
3018 get_random_bytes(&rnd, sizeof(rnd));
3019 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3020 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3021
3022 return elr;
3023 }
3024
3025 int ext4_register_li_request(struct super_block *sb,
3026 ext4_group_t first_not_zeroed)
3027 {
3028 struct ext4_sb_info *sbi = EXT4_SB(sb);
3029 struct ext4_li_request *elr = NULL;
3030 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3031 int ret = 0;
3032
3033 mutex_lock(&ext4_li_mtx);
3034 if (sbi->s_li_request != NULL) {
3035 /*
3036 * Reset timeout so it can be computed again, because
3037 * s_li_wait_mult might have changed.
3038 */
3039 sbi->s_li_request->lr_timeout = 0;
3040 goto out;
3041 }
3042
3043 if (first_not_zeroed == ngroups ||
3044 (sb->s_flags & MS_RDONLY) ||
3045 !test_opt(sb, INIT_INODE_TABLE))
3046 goto out;
3047
3048 elr = ext4_li_request_new(sb, first_not_zeroed);
3049 if (!elr) {
3050 ret = -ENOMEM;
3051 goto out;
3052 }
3053
3054 if (NULL == ext4_li_info) {
3055 ret = ext4_li_info_new();
3056 if (ret)
3057 goto out;
3058 }
3059
3060 mutex_lock(&ext4_li_info->li_list_mtx);
3061 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3062 mutex_unlock(&ext4_li_info->li_list_mtx);
3063
3064 sbi->s_li_request = elr;
3065 /*
3066 * set elr to NULL here since it has been inserted to
3067 * the request_list and the removal and free of it is
3068 * handled by ext4_clear_request_list from now on.
3069 */
3070 elr = NULL;
3071
3072 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3073 ret = ext4_run_lazyinit_thread();
3074 if (ret)
3075 goto out;
3076 }
3077 out:
3078 mutex_unlock(&ext4_li_mtx);
3079 if (ret)
3080 kfree(elr);
3081 return ret;
3082 }
3083
3084 /*
3085 * We do not need to lock anything since this is called on
3086 * module unload.
3087 */
3088 static void ext4_destroy_lazyinit_thread(void)
3089 {
3090 /*
3091 * If thread exited earlier
3092 * there's nothing to be done.
3093 */
3094 if (!ext4_li_info || !ext4_lazyinit_task)
3095 return;
3096
3097 kthread_stop(ext4_lazyinit_task);
3098 }
3099
3100 static int set_journal_csum_feature_set(struct super_block *sb)
3101 {
3102 int ret = 1;
3103 int compat, incompat;
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105
3106 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3108 /* journal checksum v2 */
3109 compat = 0;
3110 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3111 } else {
3112 /* journal checksum v1 */
3113 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3114 incompat = 0;
3115 }
3116
3117 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3118 ret = jbd2_journal_set_features(sbi->s_journal,
3119 compat, 0,
3120 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3121 incompat);
3122 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3123 ret = jbd2_journal_set_features(sbi->s_journal,
3124 compat, 0,
3125 incompat);
3126 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3127 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3128 } else {
3129 jbd2_journal_clear_features(sbi->s_journal,
3130 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3131 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3132 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3133 }
3134
3135 return ret;
3136 }
3137
3138 /*
3139 * Note: calculating the overhead so we can be compatible with
3140 * historical BSD practice is quite difficult in the face of
3141 * clusters/bigalloc. This is because multiple metadata blocks from
3142 * different block group can end up in the same allocation cluster.
3143 * Calculating the exact overhead in the face of clustered allocation
3144 * requires either O(all block bitmaps) in memory or O(number of block
3145 * groups**2) in time. We will still calculate the superblock for
3146 * older file systems --- and if we come across with a bigalloc file
3147 * system with zero in s_overhead_clusters the estimate will be close to
3148 * correct especially for very large cluster sizes --- but for newer
3149 * file systems, it's better to calculate this figure once at mkfs
3150 * time, and store it in the superblock. If the superblock value is
3151 * present (even for non-bigalloc file systems), we will use it.
3152 */
3153 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3154 char *buf)
3155 {
3156 struct ext4_sb_info *sbi = EXT4_SB(sb);
3157 struct ext4_group_desc *gdp;
3158 ext4_fsblk_t first_block, last_block, b;
3159 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3160 int s, j, count = 0;
3161
3162 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3163 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3164 sbi->s_itb_per_group + 2);
3165
3166 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3167 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3168 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3169 for (i = 0; i < ngroups; i++) {
3170 gdp = ext4_get_group_desc(sb, i, NULL);
3171 b = ext4_block_bitmap(sb, gdp);
3172 if (b >= first_block && b <= last_block) {
3173 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3174 count++;
3175 }
3176 b = ext4_inode_bitmap(sb, gdp);
3177 if (b >= first_block && b <= last_block) {
3178 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3179 count++;
3180 }
3181 b = ext4_inode_table(sb, gdp);
3182 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3183 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3184 int c = EXT4_B2C(sbi, b - first_block);
3185 ext4_set_bit(c, buf);
3186 count++;
3187 }
3188 if (i != grp)
3189 continue;
3190 s = 0;
3191 if (ext4_bg_has_super(sb, grp)) {
3192 ext4_set_bit(s++, buf);
3193 count++;
3194 }
3195 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3196 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3197 count++;
3198 }
3199 }
3200 if (!count)
3201 return 0;
3202 return EXT4_CLUSTERS_PER_GROUP(sb) -
3203 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3204 }
3205
3206 /*
3207 * Compute the overhead and stash it in sbi->s_overhead
3208 */
3209 int ext4_calculate_overhead(struct super_block *sb)
3210 {
3211 struct ext4_sb_info *sbi = EXT4_SB(sb);
3212 struct ext4_super_block *es = sbi->s_es;
3213 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3214 ext4_fsblk_t overhead = 0;
3215 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3216
3217 if (!buf)
3218 return -ENOMEM;
3219
3220 /*
3221 * Compute the overhead (FS structures). This is constant
3222 * for a given filesystem unless the number of block groups
3223 * changes so we cache the previous value until it does.
3224 */
3225
3226 /*
3227 * All of the blocks before first_data_block are overhead
3228 */
3229 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3230
3231 /*
3232 * Add the overhead found in each block group
3233 */
3234 for (i = 0; i < ngroups; i++) {
3235 int blks;
3236
3237 blks = count_overhead(sb, i, buf);
3238 overhead += blks;
3239 if (blks)
3240 memset(buf, 0, PAGE_SIZE);
3241 cond_resched();
3242 }
3243 /* Add the journal blocks as well */
3244 if (sbi->s_journal)
3245 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3246
3247 sbi->s_overhead = overhead;
3248 smp_wmb();
3249 free_page((unsigned long) buf);
3250 return 0;
3251 }
3252
3253
3254 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3255 {
3256 ext4_fsblk_t resv_clusters;
3257
3258 /*
3259 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3260 * This should cover the situations where we can not afford to run
3261 * out of space like for example punch hole, or converting
3262 * uninitialized extents in delalloc path. In most cases such
3263 * allocation would require 1, or 2 blocks, higher numbers are
3264 * very rare.
3265 */
3266 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3267
3268 do_div(resv_clusters, 50);
3269 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3270
3271 return resv_clusters;
3272 }
3273
3274
3275 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3276 {
3277 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3278 sbi->s_cluster_bits;
3279
3280 if (count >= clusters)
3281 return -EINVAL;
3282
3283 atomic64_set(&sbi->s_resv_clusters, count);
3284 return 0;
3285 }
3286
3287 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3288 {
3289 char *orig_data = kstrdup(data, GFP_KERNEL);
3290 struct buffer_head *bh;
3291 struct ext4_super_block *es = NULL;
3292 struct ext4_sb_info *sbi;
3293 ext4_fsblk_t block;
3294 ext4_fsblk_t sb_block = get_sb_block(&data);
3295 ext4_fsblk_t logical_sb_block;
3296 unsigned long offset = 0;
3297 unsigned long journal_devnum = 0;
3298 unsigned long def_mount_opts;
3299 struct inode *root;
3300 char *cp;
3301 const char *descr;
3302 int ret = -ENOMEM;
3303 int blocksize, clustersize;
3304 unsigned int db_count;
3305 unsigned int i;
3306 int needs_recovery, has_huge_files, has_bigalloc;
3307 __u64 blocks_count;
3308 int err = 0;
3309 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3310 ext4_group_t first_not_zeroed;
3311
3312 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3313 if (!sbi)
3314 goto out_free_orig;
3315
3316 sbi->s_blockgroup_lock =
3317 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3318 if (!sbi->s_blockgroup_lock) {
3319 kfree(sbi);
3320 goto out_free_orig;
3321 }
3322 sb->s_fs_info = sbi;
3323 sbi->s_sb = sb;
3324 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3325 sbi->s_sb_block = sb_block;
3326 if (sb->s_bdev->bd_part)
3327 sbi->s_sectors_written_start =
3328 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3329
3330 /* Cleanup superblock name */
3331 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3332 *cp = '!';
3333
3334 /* -EINVAL is default */
3335 ret = -EINVAL;
3336 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3337 if (!blocksize) {
3338 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3339 goto out_fail;
3340 }
3341
3342 /*
3343 * The ext4 superblock will not be buffer aligned for other than 1kB
3344 * block sizes. We need to calculate the offset from buffer start.
3345 */
3346 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3347 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3348 offset = do_div(logical_sb_block, blocksize);
3349 } else {
3350 logical_sb_block = sb_block;
3351 }
3352
3353 if (!(bh = sb_bread(sb, logical_sb_block))) {
3354 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3355 goto out_fail;
3356 }
3357 /*
3358 * Note: s_es must be initialized as soon as possible because
3359 * some ext4 macro-instructions depend on its value
3360 */
3361 es = (struct ext4_super_block *) (bh->b_data + offset);
3362 sbi->s_es = es;
3363 sb->s_magic = le16_to_cpu(es->s_magic);
3364 if (sb->s_magic != EXT4_SUPER_MAGIC)
3365 goto cantfind_ext4;
3366 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3367
3368 /* Warn if metadata_csum and gdt_csum are both set. */
3369 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3370 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3371 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3372 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3373 "redundant flags; please run fsck.");
3374
3375 /* Check for a known checksum algorithm */
3376 if (!ext4_verify_csum_type(sb, es)) {
3377 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3378 "unknown checksum algorithm.");
3379 silent = 1;
3380 goto cantfind_ext4;
3381 }
3382
3383 /* Load the checksum driver */
3384 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3385 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3386 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3387 if (IS_ERR(sbi->s_chksum_driver)) {
3388 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3389 ret = PTR_ERR(sbi->s_chksum_driver);
3390 sbi->s_chksum_driver = NULL;
3391 goto failed_mount;
3392 }
3393 }
3394
3395 /* Check superblock checksum */
3396 if (!ext4_superblock_csum_verify(sb, es)) {
3397 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3398 "invalid superblock checksum. Run e2fsck?");
3399 silent = 1;
3400 goto cantfind_ext4;
3401 }
3402
3403 /* Precompute checksum seed for all metadata */
3404 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3405 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3406 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3407 sizeof(es->s_uuid));
3408
3409 /* Set defaults before we parse the mount options */
3410 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3411 set_opt(sb, INIT_INODE_TABLE);
3412 if (def_mount_opts & EXT4_DEFM_DEBUG)
3413 set_opt(sb, DEBUG);
3414 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3415 set_opt(sb, GRPID);
3416 if (def_mount_opts & EXT4_DEFM_UID16)
3417 set_opt(sb, NO_UID32);
3418 /* xattr user namespace & acls are now defaulted on */
3419 set_opt(sb, XATTR_USER);
3420 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3421 set_opt(sb, POSIX_ACL);
3422 #endif
3423 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3424 set_opt(sb, JOURNAL_DATA);
3425 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3426 set_opt(sb, ORDERED_DATA);
3427 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3428 set_opt(sb, WRITEBACK_DATA);
3429
3430 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3431 set_opt(sb, ERRORS_PANIC);
3432 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3433 set_opt(sb, ERRORS_CONT);
3434 else
3435 set_opt(sb, ERRORS_RO);
3436 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3437 set_opt(sb, BLOCK_VALIDITY);
3438 if (def_mount_opts & EXT4_DEFM_DISCARD)
3439 set_opt(sb, DISCARD);
3440
3441 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3442 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3443 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3444 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3445 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3446
3447 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3448 set_opt(sb, BARRIER);
3449
3450 /*
3451 * enable delayed allocation by default
3452 * Use -o nodelalloc to turn it off
3453 */
3454 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3455 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3456 set_opt(sb, DELALLOC);
3457
3458 /*
3459 * set default s_li_wait_mult for lazyinit, for the case there is
3460 * no mount option specified.
3461 */
3462 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3463
3464 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3465 &journal_devnum, &journal_ioprio, 0)) {
3466 ext4_msg(sb, KERN_WARNING,
3467 "failed to parse options in superblock: %s",
3468 sbi->s_es->s_mount_opts);
3469 }
3470 sbi->s_def_mount_opt = sbi->s_mount_opt;
3471 if (!parse_options((char *) data, sb, &journal_devnum,
3472 &journal_ioprio, 0))
3473 goto failed_mount;
3474
3475 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3476 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3477 "with data=journal disables delayed "
3478 "allocation and O_DIRECT support!\n");
3479 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3480 ext4_msg(sb, KERN_ERR, "can't mount with "
3481 "both data=journal and delalloc");
3482 goto failed_mount;
3483 }
3484 if (test_opt(sb, DIOREAD_NOLOCK)) {
3485 ext4_msg(sb, KERN_ERR, "can't mount with "
3486 "both data=journal and dioread_nolock");
3487 goto failed_mount;
3488 }
3489 if (test_opt(sb, DELALLOC))
3490 clear_opt(sb, DELALLOC);
3491 }
3492
3493 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3494 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3495
3496 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3497 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3498 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3499 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3500 ext4_msg(sb, KERN_WARNING,
3501 "feature flags set on rev 0 fs, "
3502 "running e2fsck is recommended");
3503
3504 if (IS_EXT2_SB(sb)) {
3505 if (ext2_feature_set_ok(sb))
3506 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3507 "using the ext4 subsystem");
3508 else {
3509 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3510 "to feature incompatibilities");
3511 goto failed_mount;
3512 }
3513 }
3514
3515 if (IS_EXT3_SB(sb)) {
3516 if (ext3_feature_set_ok(sb))
3517 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3518 "using the ext4 subsystem");
3519 else {
3520 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3521 "to feature incompatibilities");
3522 goto failed_mount;
3523 }
3524 }
3525
3526 /*
3527 * Check feature flags regardless of the revision level, since we
3528 * previously didn't change the revision level when setting the flags,
3529 * so there is a chance incompat flags are set on a rev 0 filesystem.
3530 */
3531 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3532 goto failed_mount;
3533
3534 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3535 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3536 blocksize > EXT4_MAX_BLOCK_SIZE) {
3537 ext4_msg(sb, KERN_ERR,
3538 "Unsupported filesystem blocksize %d", blocksize);
3539 goto failed_mount;
3540 }
3541
3542 if (sb->s_blocksize != blocksize) {
3543 /* Validate the filesystem blocksize */
3544 if (!sb_set_blocksize(sb, blocksize)) {
3545 ext4_msg(sb, KERN_ERR, "bad block size %d",
3546 blocksize);
3547 goto failed_mount;
3548 }
3549
3550 brelse(bh);
3551 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3552 offset = do_div(logical_sb_block, blocksize);
3553 bh = sb_bread(sb, logical_sb_block);
3554 if (!bh) {
3555 ext4_msg(sb, KERN_ERR,
3556 "Can't read superblock on 2nd try");
3557 goto failed_mount;
3558 }
3559 es = (struct ext4_super_block *)(bh->b_data + offset);
3560 sbi->s_es = es;
3561 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3562 ext4_msg(sb, KERN_ERR,
3563 "Magic mismatch, very weird!");
3564 goto failed_mount;
3565 }
3566 }
3567
3568 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3569 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3570 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3571 has_huge_files);
3572 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3573
3574 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3575 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3576 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3577 } else {
3578 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3579 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3580 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3581 (!is_power_of_2(sbi->s_inode_size)) ||
3582 (sbi->s_inode_size > blocksize)) {
3583 ext4_msg(sb, KERN_ERR,
3584 "unsupported inode size: %d",
3585 sbi->s_inode_size);
3586 goto failed_mount;
3587 }
3588 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3589 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3590 }
3591
3592 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3593 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3594 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3595 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3596 !is_power_of_2(sbi->s_desc_size)) {
3597 ext4_msg(sb, KERN_ERR,
3598 "unsupported descriptor size %lu",
3599 sbi->s_desc_size);
3600 goto failed_mount;
3601 }
3602 } else
3603 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3604
3605 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3606 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3607 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3608 goto cantfind_ext4;
3609
3610 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3611 if (sbi->s_inodes_per_block == 0)
3612 goto cantfind_ext4;
3613 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3614 sbi->s_inodes_per_block;
3615 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3616 sbi->s_sbh = bh;
3617 sbi->s_mount_state = le16_to_cpu(es->s_state);
3618 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3619 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3620
3621 for (i = 0; i < 4; i++)
3622 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3623 sbi->s_def_hash_version = es->s_def_hash_version;
3624 i = le32_to_cpu(es->s_flags);
3625 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3626 sbi->s_hash_unsigned = 3;
3627 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3628 #ifdef __CHAR_UNSIGNED__
3629 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3630 sbi->s_hash_unsigned = 3;
3631 #else
3632 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3633 #endif
3634 }
3635
3636 /* Handle clustersize */
3637 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3638 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3639 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3640 if (has_bigalloc) {
3641 if (clustersize < blocksize) {
3642 ext4_msg(sb, KERN_ERR,
3643 "cluster size (%d) smaller than "
3644 "block size (%d)", clustersize, blocksize);
3645 goto failed_mount;
3646 }
3647 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3648 le32_to_cpu(es->s_log_block_size);
3649 sbi->s_clusters_per_group =
3650 le32_to_cpu(es->s_clusters_per_group);
3651 if (sbi->s_clusters_per_group > blocksize * 8) {
3652 ext4_msg(sb, KERN_ERR,
3653 "#clusters per group too big: %lu",
3654 sbi->s_clusters_per_group);
3655 goto failed_mount;
3656 }
3657 if (sbi->s_blocks_per_group !=
3658 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3659 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3660 "clusters per group (%lu) inconsistent",
3661 sbi->s_blocks_per_group,
3662 sbi->s_clusters_per_group);
3663 goto failed_mount;
3664 }
3665 } else {
3666 if (clustersize != blocksize) {
3667 ext4_warning(sb, "fragment/cluster size (%d) != "
3668 "block size (%d)", clustersize,
3669 blocksize);
3670 clustersize = blocksize;
3671 }
3672 if (sbi->s_blocks_per_group > blocksize * 8) {
3673 ext4_msg(sb, KERN_ERR,
3674 "#blocks per group too big: %lu",
3675 sbi->s_blocks_per_group);
3676 goto failed_mount;
3677 }
3678 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3679 sbi->s_cluster_bits = 0;
3680 }
3681 sbi->s_cluster_ratio = clustersize / blocksize;
3682
3683 if (sbi->s_inodes_per_group > blocksize * 8) {
3684 ext4_msg(sb, KERN_ERR,
3685 "#inodes per group too big: %lu",
3686 sbi->s_inodes_per_group);
3687 goto failed_mount;
3688 }
3689
3690 /* Do we have standard group size of clustersize * 8 blocks ? */
3691 if (sbi->s_blocks_per_group == clustersize << 3)
3692 set_opt2(sb, STD_GROUP_SIZE);
3693
3694 /*
3695 * Test whether we have more sectors than will fit in sector_t,
3696 * and whether the max offset is addressable by the page cache.
3697 */
3698 err = generic_check_addressable(sb->s_blocksize_bits,
3699 ext4_blocks_count(es));
3700 if (err) {
3701 ext4_msg(sb, KERN_ERR, "filesystem"
3702 " too large to mount safely on this system");
3703 if (sizeof(sector_t) < 8)
3704 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3705 goto failed_mount;
3706 }
3707
3708 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3709 goto cantfind_ext4;
3710
3711 /* check blocks count against device size */
3712 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3713 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3714 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3715 "exceeds size of device (%llu blocks)",
3716 ext4_blocks_count(es), blocks_count);
3717 goto failed_mount;
3718 }
3719
3720 /*
3721 * It makes no sense for the first data block to be beyond the end
3722 * of the filesystem.
3723 */
3724 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3725 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3726 "block %u is beyond end of filesystem (%llu)",
3727 le32_to_cpu(es->s_first_data_block),
3728 ext4_blocks_count(es));
3729 goto failed_mount;
3730 }
3731 blocks_count = (ext4_blocks_count(es) -
3732 le32_to_cpu(es->s_first_data_block) +
3733 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3734 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3735 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3736 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3737 "(block count %llu, first data block %u, "
3738 "blocks per group %lu)", sbi->s_groups_count,
3739 ext4_blocks_count(es),
3740 le32_to_cpu(es->s_first_data_block),
3741 EXT4_BLOCKS_PER_GROUP(sb));
3742 goto failed_mount;
3743 }
3744 sbi->s_groups_count = blocks_count;
3745 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3746 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3747 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3748 EXT4_DESC_PER_BLOCK(sb);
3749 sbi->s_group_desc = ext4_kvmalloc(db_count *
3750 sizeof(struct buffer_head *),
3751 GFP_KERNEL);
3752 if (sbi->s_group_desc == NULL) {
3753 ext4_msg(sb, KERN_ERR, "not enough memory");
3754 ret = -ENOMEM;
3755 goto failed_mount;
3756 }
3757
3758 if (ext4_proc_root)
3759 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3760
3761 if (sbi->s_proc)
3762 proc_create_data("options", S_IRUGO, sbi->s_proc,
3763 &ext4_seq_options_fops, sb);
3764
3765 bgl_lock_init(sbi->s_blockgroup_lock);
3766
3767 for (i = 0; i < db_count; i++) {
3768 block = descriptor_loc(sb, logical_sb_block, i);
3769 sbi->s_group_desc[i] = sb_bread(sb, block);
3770 if (!sbi->s_group_desc[i]) {
3771 ext4_msg(sb, KERN_ERR,
3772 "can't read group descriptor %d", i);
3773 db_count = i;
3774 goto failed_mount2;
3775 }
3776 }
3777 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3778 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3779 goto failed_mount2;
3780 }
3781 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3782 if (!ext4_fill_flex_info(sb)) {
3783 ext4_msg(sb, KERN_ERR,
3784 "unable to initialize "
3785 "flex_bg meta info!");
3786 goto failed_mount2;
3787 }
3788
3789 sbi->s_gdb_count = db_count;
3790 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3791 spin_lock_init(&sbi->s_next_gen_lock);
3792
3793 init_timer(&sbi->s_err_report);
3794 sbi->s_err_report.function = print_daily_error_info;
3795 sbi->s_err_report.data = (unsigned long) sb;
3796
3797 /* Register extent status tree shrinker */
3798 ext4_es_register_shrinker(sbi);
3799
3800 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3801 ext4_count_free_clusters(sb));
3802 if (!err) {
3803 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3804 ext4_count_free_inodes(sb));
3805 }
3806 if (!err) {
3807 err = percpu_counter_init(&sbi->s_dirs_counter,
3808 ext4_count_dirs(sb));
3809 }
3810 if (!err) {
3811 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3812 }
3813 if (!err) {
3814 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3815 }
3816 if (err) {
3817 ext4_msg(sb, KERN_ERR, "insufficient memory");
3818 goto failed_mount3;
3819 }
3820
3821 sbi->s_stripe = ext4_get_stripe_size(sbi);
3822 sbi->s_extent_max_zeroout_kb = 32;
3823
3824 /*
3825 * set up enough so that it can read an inode
3826 */
3827 if (!test_opt(sb, NOLOAD) &&
3828 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3829 sb->s_op = &ext4_sops;
3830 else
3831 sb->s_op = &ext4_nojournal_sops;
3832 sb->s_export_op = &ext4_export_ops;
3833 sb->s_xattr = ext4_xattr_handlers;
3834 #ifdef CONFIG_QUOTA
3835 sb->dq_op = &ext4_quota_operations;
3836 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3837 sb->s_qcop = &ext4_qctl_sysfile_operations;
3838 else
3839 sb->s_qcop = &ext4_qctl_operations;
3840 #endif
3841 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3842
3843 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3844 mutex_init(&sbi->s_orphan_lock);
3845
3846 sb->s_root = NULL;
3847
3848 needs_recovery = (es->s_last_orphan != 0 ||
3849 EXT4_HAS_INCOMPAT_FEATURE(sb,
3850 EXT4_FEATURE_INCOMPAT_RECOVER));
3851
3852 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3853 !(sb->s_flags & MS_RDONLY))
3854 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3855 goto failed_mount3;
3856
3857 /*
3858 * The first inode we look at is the journal inode. Don't try
3859 * root first: it may be modified in the journal!
3860 */
3861 if (!test_opt(sb, NOLOAD) &&
3862 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3863 if (ext4_load_journal(sb, es, journal_devnum))
3864 goto failed_mount3;
3865 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3866 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3867 ext4_msg(sb, KERN_ERR, "required journal recovery "
3868 "suppressed and not mounted read-only");
3869 goto failed_mount_wq;
3870 } else {
3871 clear_opt(sb, DATA_FLAGS);
3872 sbi->s_journal = NULL;
3873 needs_recovery = 0;
3874 goto no_journal;
3875 }
3876
3877 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3878 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3879 JBD2_FEATURE_INCOMPAT_64BIT)) {
3880 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3881 goto failed_mount_wq;
3882 }
3883
3884 if (!set_journal_csum_feature_set(sb)) {
3885 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3886 "feature set");
3887 goto failed_mount_wq;
3888 }
3889
3890 /* We have now updated the journal if required, so we can
3891 * validate the data journaling mode. */
3892 switch (test_opt(sb, DATA_FLAGS)) {
3893 case 0:
3894 /* No mode set, assume a default based on the journal
3895 * capabilities: ORDERED_DATA if the journal can
3896 * cope, else JOURNAL_DATA
3897 */
3898 if (jbd2_journal_check_available_features
3899 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3900 set_opt(sb, ORDERED_DATA);
3901 else
3902 set_opt(sb, JOURNAL_DATA);
3903 break;
3904
3905 case EXT4_MOUNT_ORDERED_DATA:
3906 case EXT4_MOUNT_WRITEBACK_DATA:
3907 if (!jbd2_journal_check_available_features
3908 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3909 ext4_msg(sb, KERN_ERR, "Journal does not support "
3910 "requested data journaling mode");
3911 goto failed_mount_wq;
3912 }
3913 default:
3914 break;
3915 }
3916 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3917
3918 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3919
3920 /*
3921 * The journal may have updated the bg summary counts, so we
3922 * need to update the global counters.
3923 */
3924 percpu_counter_set(&sbi->s_freeclusters_counter,
3925 ext4_count_free_clusters(sb));
3926 percpu_counter_set(&sbi->s_freeinodes_counter,
3927 ext4_count_free_inodes(sb));
3928 percpu_counter_set(&sbi->s_dirs_counter,
3929 ext4_count_dirs(sb));
3930 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3931
3932 no_journal:
3933 /*
3934 * Get the # of file system overhead blocks from the
3935 * superblock if present.
3936 */
3937 if (es->s_overhead_clusters)
3938 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3939 else {
3940 err = ext4_calculate_overhead(sb);
3941 if (err)
3942 goto failed_mount_wq;
3943 }
3944
3945 /*
3946 * The maximum number of concurrent works can be high and
3947 * concurrency isn't really necessary. Limit it to 1.
3948 */
3949 EXT4_SB(sb)->rsv_conversion_wq =
3950 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3951 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3952 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3953 ret = -ENOMEM;
3954 goto failed_mount4;
3955 }
3956
3957 EXT4_SB(sb)->unrsv_conversion_wq =
3958 alloc_workqueue("ext4-unrsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3959 if (!EXT4_SB(sb)->unrsv_conversion_wq) {
3960 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3961 ret = -ENOMEM;
3962 goto failed_mount4;
3963 }
3964
3965 /*
3966 * The jbd2_journal_load will have done any necessary log recovery,
3967 * so we can safely mount the rest of the filesystem now.
3968 */
3969
3970 root = ext4_iget(sb, EXT4_ROOT_INO);
3971 if (IS_ERR(root)) {
3972 ext4_msg(sb, KERN_ERR, "get root inode failed");
3973 ret = PTR_ERR(root);
3974 root = NULL;
3975 goto failed_mount4;
3976 }
3977 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3978 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3979 iput(root);
3980 goto failed_mount4;
3981 }
3982 sb->s_root = d_make_root(root);
3983 if (!sb->s_root) {
3984 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3985 ret = -ENOMEM;
3986 goto failed_mount4;
3987 }
3988
3989 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3990 sb->s_flags |= MS_RDONLY;
3991
3992 /* determine the minimum size of new large inodes, if present */
3993 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3994 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3995 EXT4_GOOD_OLD_INODE_SIZE;
3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3998 if (sbi->s_want_extra_isize <
3999 le16_to_cpu(es->s_want_extra_isize))
4000 sbi->s_want_extra_isize =
4001 le16_to_cpu(es->s_want_extra_isize);
4002 if (sbi->s_want_extra_isize <
4003 le16_to_cpu(es->s_min_extra_isize))
4004 sbi->s_want_extra_isize =
4005 le16_to_cpu(es->s_min_extra_isize);
4006 }
4007 }
4008 /* Check if enough inode space is available */
4009 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4010 sbi->s_inode_size) {
4011 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4012 EXT4_GOOD_OLD_INODE_SIZE;
4013 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4014 "available");
4015 }
4016
4017 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
4018 if (err) {
4019 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4020 "reserved pool", ext4_calculate_resv_clusters(sbi));
4021 goto failed_mount4a;
4022 }
4023
4024 err = ext4_setup_system_zone(sb);
4025 if (err) {
4026 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4027 "zone (%d)", err);
4028 goto failed_mount4a;
4029 }
4030
4031 ext4_ext_init(sb);
4032 err = ext4_mb_init(sb);
4033 if (err) {
4034 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4035 err);
4036 goto failed_mount5;
4037 }
4038
4039 err = ext4_register_li_request(sb, first_not_zeroed);
4040 if (err)
4041 goto failed_mount6;
4042
4043 sbi->s_kobj.kset = ext4_kset;
4044 init_completion(&sbi->s_kobj_unregister);
4045 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4046 "%s", sb->s_id);
4047 if (err)
4048 goto failed_mount7;
4049
4050 #ifdef CONFIG_QUOTA
4051 /* Enable quota usage during mount. */
4052 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4053 !(sb->s_flags & MS_RDONLY)) {
4054 err = ext4_enable_quotas(sb);
4055 if (err)
4056 goto failed_mount8;
4057 }
4058 #endif /* CONFIG_QUOTA */
4059
4060 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4061 ext4_orphan_cleanup(sb, es);
4062 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4063 if (needs_recovery) {
4064 ext4_msg(sb, KERN_INFO, "recovery complete");
4065 ext4_mark_recovery_complete(sb, es);
4066 }
4067 if (EXT4_SB(sb)->s_journal) {
4068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4069 descr = " journalled data mode";
4070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4071 descr = " ordered data mode";
4072 else
4073 descr = " writeback data mode";
4074 } else
4075 descr = "out journal";
4076
4077 if (test_opt(sb, DISCARD)) {
4078 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4079 if (!blk_queue_discard(q))
4080 ext4_msg(sb, KERN_WARNING,
4081 "mounting with \"discard\" option, but "
4082 "the device does not support discard");
4083 }
4084
4085 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4086 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4087 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4088
4089 if (es->s_error_count)
4090 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4091
4092 kfree(orig_data);
4093 return 0;
4094
4095 cantfind_ext4:
4096 if (!silent)
4097 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4098 goto failed_mount;
4099
4100 #ifdef CONFIG_QUOTA
4101 failed_mount8:
4102 kobject_del(&sbi->s_kobj);
4103 #endif
4104 failed_mount7:
4105 ext4_unregister_li_request(sb);
4106 failed_mount6:
4107 ext4_mb_release(sb);
4108 failed_mount5:
4109 ext4_ext_release(sb);
4110 ext4_release_system_zone(sb);
4111 failed_mount4a:
4112 dput(sb->s_root);
4113 sb->s_root = NULL;
4114 failed_mount4:
4115 ext4_msg(sb, KERN_ERR, "mount failed");
4116 if (EXT4_SB(sb)->rsv_conversion_wq)
4117 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4118 if (EXT4_SB(sb)->unrsv_conversion_wq)
4119 destroy_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4120 failed_mount_wq:
4121 if (sbi->s_journal) {
4122 jbd2_journal_destroy(sbi->s_journal);
4123 sbi->s_journal = NULL;
4124 }
4125 failed_mount3:
4126 ext4_es_unregister_shrinker(sbi);
4127 del_timer(&sbi->s_err_report);
4128 if (sbi->s_flex_groups)
4129 ext4_kvfree(sbi->s_flex_groups);
4130 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4131 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4132 percpu_counter_destroy(&sbi->s_dirs_counter);
4133 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4134 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4135 if (sbi->s_mmp_tsk)
4136 kthread_stop(sbi->s_mmp_tsk);
4137 failed_mount2:
4138 for (i = 0; i < db_count; i++)
4139 brelse(sbi->s_group_desc[i]);
4140 ext4_kvfree(sbi->s_group_desc);
4141 failed_mount:
4142 if (sbi->s_chksum_driver)
4143 crypto_free_shash(sbi->s_chksum_driver);
4144 if (sbi->s_proc) {
4145 remove_proc_entry("options", sbi->s_proc);
4146 remove_proc_entry(sb->s_id, ext4_proc_root);
4147 }
4148 #ifdef CONFIG_QUOTA
4149 for (i = 0; i < MAXQUOTAS; i++)
4150 kfree(sbi->s_qf_names[i]);
4151 #endif
4152 ext4_blkdev_remove(sbi);
4153 brelse(bh);
4154 out_fail:
4155 sb->s_fs_info = NULL;
4156 kfree(sbi->s_blockgroup_lock);
4157 kfree(sbi);
4158 out_free_orig:
4159 kfree(orig_data);
4160 return err ? err : ret;
4161 }
4162
4163 /*
4164 * Setup any per-fs journal parameters now. We'll do this both on
4165 * initial mount, once the journal has been initialised but before we've
4166 * done any recovery; and again on any subsequent remount.
4167 */
4168 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4169 {
4170 struct ext4_sb_info *sbi = EXT4_SB(sb);
4171
4172 journal->j_commit_interval = sbi->s_commit_interval;
4173 journal->j_min_batch_time = sbi->s_min_batch_time;
4174 journal->j_max_batch_time = sbi->s_max_batch_time;
4175
4176 write_lock(&journal->j_state_lock);
4177 if (test_opt(sb, BARRIER))
4178 journal->j_flags |= JBD2_BARRIER;
4179 else
4180 journal->j_flags &= ~JBD2_BARRIER;
4181 if (test_opt(sb, DATA_ERR_ABORT))
4182 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4183 else
4184 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4185 write_unlock(&journal->j_state_lock);
4186 }
4187
4188 static journal_t *ext4_get_journal(struct super_block *sb,
4189 unsigned int journal_inum)
4190 {
4191 struct inode *journal_inode;
4192 journal_t *journal;
4193
4194 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4195
4196 /* First, test for the existence of a valid inode on disk. Bad
4197 * things happen if we iget() an unused inode, as the subsequent
4198 * iput() will try to delete it. */
4199
4200 journal_inode = ext4_iget(sb, journal_inum);
4201 if (IS_ERR(journal_inode)) {
4202 ext4_msg(sb, KERN_ERR, "no journal found");
4203 return NULL;
4204 }
4205 if (!journal_inode->i_nlink) {
4206 make_bad_inode(journal_inode);
4207 iput(journal_inode);
4208 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4209 return NULL;
4210 }
4211
4212 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4213 journal_inode, journal_inode->i_size);
4214 if (!S_ISREG(journal_inode->i_mode)) {
4215 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4216 iput(journal_inode);
4217 return NULL;
4218 }
4219
4220 journal = jbd2_journal_init_inode(journal_inode);
4221 if (!journal) {
4222 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4223 iput(journal_inode);
4224 return NULL;
4225 }
4226 journal->j_private = sb;
4227 ext4_init_journal_params(sb, journal);
4228 return journal;
4229 }
4230
4231 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4232 dev_t j_dev)
4233 {
4234 struct buffer_head *bh;
4235 journal_t *journal;
4236 ext4_fsblk_t start;
4237 ext4_fsblk_t len;
4238 int hblock, blocksize;
4239 ext4_fsblk_t sb_block;
4240 unsigned long offset;
4241 struct ext4_super_block *es;
4242 struct block_device *bdev;
4243
4244 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4245
4246 bdev = ext4_blkdev_get(j_dev, sb);
4247 if (bdev == NULL)
4248 return NULL;
4249
4250 blocksize = sb->s_blocksize;
4251 hblock = bdev_logical_block_size(bdev);
4252 if (blocksize < hblock) {
4253 ext4_msg(sb, KERN_ERR,
4254 "blocksize too small for journal device");
4255 goto out_bdev;
4256 }
4257
4258 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4259 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4260 set_blocksize(bdev, blocksize);
4261 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4262 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4263 "external journal");
4264 goto out_bdev;
4265 }
4266
4267 es = (struct ext4_super_block *) (bh->b_data + offset);
4268 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4269 !(le32_to_cpu(es->s_feature_incompat) &
4270 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4271 ext4_msg(sb, KERN_ERR, "external journal has "
4272 "bad superblock");
4273 brelse(bh);
4274 goto out_bdev;
4275 }
4276
4277 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4278 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4279 brelse(bh);
4280 goto out_bdev;
4281 }
4282
4283 len = ext4_blocks_count(es);
4284 start = sb_block + 1;
4285 brelse(bh); /* we're done with the superblock */
4286
4287 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4288 start, len, blocksize);
4289 if (!journal) {
4290 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4291 goto out_bdev;
4292 }
4293 journal->j_private = sb;
4294 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4295 wait_on_buffer(journal->j_sb_buffer);
4296 if (!buffer_uptodate(journal->j_sb_buffer)) {
4297 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4298 goto out_journal;
4299 }
4300 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4301 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4302 "user (unsupported) - %d",
4303 be32_to_cpu(journal->j_superblock->s_nr_users));
4304 goto out_journal;
4305 }
4306 EXT4_SB(sb)->journal_bdev = bdev;
4307 ext4_init_journal_params(sb, journal);
4308 return journal;
4309
4310 out_journal:
4311 jbd2_journal_destroy(journal);
4312 out_bdev:
4313 ext4_blkdev_put(bdev);
4314 return NULL;
4315 }
4316
4317 static int ext4_load_journal(struct super_block *sb,
4318 struct ext4_super_block *es,
4319 unsigned long journal_devnum)
4320 {
4321 journal_t *journal;
4322 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4323 dev_t journal_dev;
4324 int err = 0;
4325 int really_read_only;
4326
4327 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4328
4329 if (journal_devnum &&
4330 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4331 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4332 "numbers have changed");
4333 journal_dev = new_decode_dev(journal_devnum);
4334 } else
4335 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4336
4337 really_read_only = bdev_read_only(sb->s_bdev);
4338
4339 /*
4340 * Are we loading a blank journal or performing recovery after a
4341 * crash? For recovery, we need to check in advance whether we
4342 * can get read-write access to the device.
4343 */
4344 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4345 if (sb->s_flags & MS_RDONLY) {
4346 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4347 "required on readonly filesystem");
4348 if (really_read_only) {
4349 ext4_msg(sb, KERN_ERR, "write access "
4350 "unavailable, cannot proceed");
4351 return -EROFS;
4352 }
4353 ext4_msg(sb, KERN_INFO, "write access will "
4354 "be enabled during recovery");
4355 }
4356 }
4357
4358 if (journal_inum && journal_dev) {
4359 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4360 "and inode journals!");
4361 return -EINVAL;
4362 }
4363
4364 if (journal_inum) {
4365 if (!(journal = ext4_get_journal(sb, journal_inum)))
4366 return -EINVAL;
4367 } else {
4368 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4369 return -EINVAL;
4370 }
4371
4372 if (!(journal->j_flags & JBD2_BARRIER))
4373 ext4_msg(sb, KERN_INFO, "barriers disabled");
4374
4375 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4376 err = jbd2_journal_wipe(journal, !really_read_only);
4377 if (!err) {
4378 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4379 if (save)
4380 memcpy(save, ((char *) es) +
4381 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4382 err = jbd2_journal_load(journal);
4383 if (save)
4384 memcpy(((char *) es) + EXT4_S_ERR_START,
4385 save, EXT4_S_ERR_LEN);
4386 kfree(save);
4387 }
4388
4389 if (err) {
4390 ext4_msg(sb, KERN_ERR, "error loading journal");
4391 jbd2_journal_destroy(journal);
4392 return err;
4393 }
4394
4395 EXT4_SB(sb)->s_journal = journal;
4396 ext4_clear_journal_err(sb, es);
4397
4398 if (!really_read_only && journal_devnum &&
4399 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4400 es->s_journal_dev = cpu_to_le32(journal_devnum);
4401
4402 /* Make sure we flush the recovery flag to disk. */
4403 ext4_commit_super(sb, 1);
4404 }
4405
4406 return 0;
4407 }
4408
4409 static int ext4_commit_super(struct super_block *sb, int sync)
4410 {
4411 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4412 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4413 int error = 0;
4414
4415 if (!sbh || block_device_ejected(sb))
4416 return error;
4417 if (buffer_write_io_error(sbh)) {
4418 /*
4419 * Oh, dear. A previous attempt to write the
4420 * superblock failed. This could happen because the
4421 * USB device was yanked out. Or it could happen to
4422 * be a transient write error and maybe the block will
4423 * be remapped. Nothing we can do but to retry the
4424 * write and hope for the best.
4425 */
4426 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4427 "superblock detected");
4428 clear_buffer_write_io_error(sbh);
4429 set_buffer_uptodate(sbh);
4430 }
4431 /*
4432 * If the file system is mounted read-only, don't update the
4433 * superblock write time. This avoids updating the superblock
4434 * write time when we are mounting the root file system
4435 * read/only but we need to replay the journal; at that point,
4436 * for people who are east of GMT and who make their clock
4437 * tick in localtime for Windows bug-for-bug compatibility,
4438 * the clock is set in the future, and this will cause e2fsck
4439 * to complain and force a full file system check.
4440 */
4441 if (!(sb->s_flags & MS_RDONLY))
4442 es->s_wtime = cpu_to_le32(get_seconds());
4443 if (sb->s_bdev->bd_part)
4444 es->s_kbytes_written =
4445 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4446 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4447 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4448 else
4449 es->s_kbytes_written =
4450 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4451 ext4_free_blocks_count_set(es,
4452 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4453 &EXT4_SB(sb)->s_freeclusters_counter)));
4454 es->s_free_inodes_count =
4455 cpu_to_le32(percpu_counter_sum_positive(
4456 &EXT4_SB(sb)->s_freeinodes_counter));
4457 BUFFER_TRACE(sbh, "marking dirty");
4458 ext4_superblock_csum_set(sb);
4459 mark_buffer_dirty(sbh);
4460 if (sync) {
4461 error = sync_dirty_buffer(sbh);
4462 if (error)
4463 return error;
4464
4465 error = buffer_write_io_error(sbh);
4466 if (error) {
4467 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4468 "superblock");
4469 clear_buffer_write_io_error(sbh);
4470 set_buffer_uptodate(sbh);
4471 }
4472 }
4473 return error;
4474 }
4475
4476 /*
4477 * Have we just finished recovery? If so, and if we are mounting (or
4478 * remounting) the filesystem readonly, then we will end up with a
4479 * consistent fs on disk. Record that fact.
4480 */
4481 static void ext4_mark_recovery_complete(struct super_block *sb,
4482 struct ext4_super_block *es)
4483 {
4484 journal_t *journal = EXT4_SB(sb)->s_journal;
4485
4486 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4487 BUG_ON(journal != NULL);
4488 return;
4489 }
4490 jbd2_journal_lock_updates(journal);
4491 if (jbd2_journal_flush(journal) < 0)
4492 goto out;
4493
4494 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4495 sb->s_flags & MS_RDONLY) {
4496 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4497 ext4_commit_super(sb, 1);
4498 }
4499
4500 out:
4501 jbd2_journal_unlock_updates(journal);
4502 }
4503
4504 /*
4505 * If we are mounting (or read-write remounting) a filesystem whose journal
4506 * has recorded an error from a previous lifetime, move that error to the
4507 * main filesystem now.
4508 */
4509 static void ext4_clear_journal_err(struct super_block *sb,
4510 struct ext4_super_block *es)
4511 {
4512 journal_t *journal;
4513 int j_errno;
4514 const char *errstr;
4515
4516 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4517
4518 journal = EXT4_SB(sb)->s_journal;
4519
4520 /*
4521 * Now check for any error status which may have been recorded in the
4522 * journal by a prior ext4_error() or ext4_abort()
4523 */
4524
4525 j_errno = jbd2_journal_errno(journal);
4526 if (j_errno) {
4527 char nbuf[16];
4528
4529 errstr = ext4_decode_error(sb, j_errno, nbuf);
4530 ext4_warning(sb, "Filesystem error recorded "
4531 "from previous mount: %s", errstr);
4532 ext4_warning(sb, "Marking fs in need of filesystem check.");
4533
4534 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4535 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4536 ext4_commit_super(sb, 1);
4537
4538 jbd2_journal_clear_err(journal);
4539 jbd2_journal_update_sb_errno(journal);
4540 }
4541 }
4542
4543 /*
4544 * Force the running and committing transactions to commit,
4545 * and wait on the commit.
4546 */
4547 int ext4_force_commit(struct super_block *sb)
4548 {
4549 journal_t *journal;
4550
4551 if (sb->s_flags & MS_RDONLY)
4552 return 0;
4553
4554 journal = EXT4_SB(sb)->s_journal;
4555 return ext4_journal_force_commit(journal);
4556 }
4557
4558 static int ext4_sync_fs(struct super_block *sb, int wait)
4559 {
4560 int ret = 0;
4561 tid_t target;
4562 bool needs_barrier = false;
4563 struct ext4_sb_info *sbi = EXT4_SB(sb);
4564
4565 trace_ext4_sync_fs(sb, wait);
4566 flush_workqueue(sbi->rsv_conversion_wq);
4567 flush_workqueue(sbi->unrsv_conversion_wq);
4568 /*
4569 * Writeback quota in non-journalled quota case - journalled quota has
4570 * no dirty dquots
4571 */
4572 dquot_writeback_dquots(sb, -1);
4573 /*
4574 * Data writeback is possible w/o journal transaction, so barrier must
4575 * being sent at the end of the function. But we can skip it if
4576 * transaction_commit will do it for us.
4577 */
4578 target = jbd2_get_latest_transaction(sbi->s_journal);
4579 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4580 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4581 needs_barrier = true;
4582
4583 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4584 if (wait)
4585 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4586 }
4587 if (needs_barrier) {
4588 int err;
4589 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4590 if (!ret)
4591 ret = err;
4592 }
4593
4594 return ret;
4595 }
4596
4597 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4598 {
4599 int ret = 0;
4600
4601 trace_ext4_sync_fs(sb, wait);
4602 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4603 flush_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4604 dquot_writeback_dquots(sb, -1);
4605 if (wait && test_opt(sb, BARRIER))
4606 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4607
4608 return ret;
4609 }
4610
4611 /*
4612 * LVM calls this function before a (read-only) snapshot is created. This
4613 * gives us a chance to flush the journal completely and mark the fs clean.
4614 *
4615 * Note that only this function cannot bring a filesystem to be in a clean
4616 * state independently. It relies on upper layer to stop all data & metadata
4617 * modifications.
4618 */
4619 static int ext4_freeze(struct super_block *sb)
4620 {
4621 int error = 0;
4622 journal_t *journal;
4623
4624 if (sb->s_flags & MS_RDONLY)
4625 return 0;
4626
4627 journal = EXT4_SB(sb)->s_journal;
4628
4629 /* Now we set up the journal barrier. */
4630 jbd2_journal_lock_updates(journal);
4631
4632 /*
4633 * Don't clear the needs_recovery flag if we failed to flush
4634 * the journal.
4635 */
4636 error = jbd2_journal_flush(journal);
4637 if (error < 0)
4638 goto out;
4639
4640 /* Journal blocked and flushed, clear needs_recovery flag. */
4641 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4642 error = ext4_commit_super(sb, 1);
4643 out:
4644 /* we rely on upper layer to stop further updates */
4645 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4646 return error;
4647 }
4648
4649 /*
4650 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4651 * flag here, even though the filesystem is not technically dirty yet.
4652 */
4653 static int ext4_unfreeze(struct super_block *sb)
4654 {
4655 if (sb->s_flags & MS_RDONLY)
4656 return 0;
4657
4658 /* Reset the needs_recovery flag before the fs is unlocked. */
4659 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4660 ext4_commit_super(sb, 1);
4661 return 0;
4662 }
4663
4664 /*
4665 * Structure to save mount options for ext4_remount's benefit
4666 */
4667 struct ext4_mount_options {
4668 unsigned long s_mount_opt;
4669 unsigned long s_mount_opt2;
4670 kuid_t s_resuid;
4671 kgid_t s_resgid;
4672 unsigned long s_commit_interval;
4673 u32 s_min_batch_time, s_max_batch_time;
4674 #ifdef CONFIG_QUOTA
4675 int s_jquota_fmt;
4676 char *s_qf_names[MAXQUOTAS];
4677 #endif
4678 };
4679
4680 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4681 {
4682 struct ext4_super_block *es;
4683 struct ext4_sb_info *sbi = EXT4_SB(sb);
4684 unsigned long old_sb_flags;
4685 struct ext4_mount_options old_opts;
4686 int enable_quota = 0;
4687 ext4_group_t g;
4688 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4689 int err = 0;
4690 #ifdef CONFIG_QUOTA
4691 int i, j;
4692 #endif
4693 char *orig_data = kstrdup(data, GFP_KERNEL);
4694
4695 /* Store the original options */
4696 old_sb_flags = sb->s_flags;
4697 old_opts.s_mount_opt = sbi->s_mount_opt;
4698 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4699 old_opts.s_resuid = sbi->s_resuid;
4700 old_opts.s_resgid = sbi->s_resgid;
4701 old_opts.s_commit_interval = sbi->s_commit_interval;
4702 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4703 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4704 #ifdef CONFIG_QUOTA
4705 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4706 for (i = 0; i < MAXQUOTAS; i++)
4707 if (sbi->s_qf_names[i]) {
4708 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4709 GFP_KERNEL);
4710 if (!old_opts.s_qf_names[i]) {
4711 for (j = 0; j < i; j++)
4712 kfree(old_opts.s_qf_names[j]);
4713 kfree(orig_data);
4714 return -ENOMEM;
4715 }
4716 } else
4717 old_opts.s_qf_names[i] = NULL;
4718 #endif
4719 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4720 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4721
4722 /*
4723 * Allow the "check" option to be passed as a remount option.
4724 */
4725 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4726 err = -EINVAL;
4727 goto restore_opts;
4728 }
4729
4730 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4731 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4732 ext4_msg(sb, KERN_ERR, "can't mount with "
4733 "both data=journal and delalloc");
4734 err = -EINVAL;
4735 goto restore_opts;
4736 }
4737 if (test_opt(sb, DIOREAD_NOLOCK)) {
4738 ext4_msg(sb, KERN_ERR, "can't mount with "
4739 "both data=journal and dioread_nolock");
4740 err = -EINVAL;
4741 goto restore_opts;
4742 }
4743 }
4744
4745 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4746 ext4_abort(sb, "Abort forced by user");
4747
4748 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4749 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4750
4751 es = sbi->s_es;
4752
4753 if (sbi->s_journal) {
4754 ext4_init_journal_params(sb, sbi->s_journal);
4755 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4756 }
4757
4758 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4759 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4760 err = -EROFS;
4761 goto restore_opts;
4762 }
4763
4764 if (*flags & MS_RDONLY) {
4765 err = dquot_suspend(sb, -1);
4766 if (err < 0)
4767 goto restore_opts;
4768
4769 /*
4770 * First of all, the unconditional stuff we have to do
4771 * to disable replay of the journal when we next remount
4772 */
4773 sb->s_flags |= MS_RDONLY;
4774
4775 /*
4776 * OK, test if we are remounting a valid rw partition
4777 * readonly, and if so set the rdonly flag and then
4778 * mark the partition as valid again.
4779 */
4780 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4781 (sbi->s_mount_state & EXT4_VALID_FS))
4782 es->s_state = cpu_to_le16(sbi->s_mount_state);
4783
4784 if (sbi->s_journal)
4785 ext4_mark_recovery_complete(sb, es);
4786 } else {
4787 /* Make sure we can mount this feature set readwrite */
4788 if (!ext4_feature_set_ok(sb, 0)) {
4789 err = -EROFS;
4790 goto restore_opts;
4791 }
4792 /*
4793 * Make sure the group descriptor checksums
4794 * are sane. If they aren't, refuse to remount r/w.
4795 */
4796 for (g = 0; g < sbi->s_groups_count; g++) {
4797 struct ext4_group_desc *gdp =
4798 ext4_get_group_desc(sb, g, NULL);
4799
4800 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4801 ext4_msg(sb, KERN_ERR,
4802 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4803 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4804 le16_to_cpu(gdp->bg_checksum));
4805 err = -EINVAL;
4806 goto restore_opts;
4807 }
4808 }
4809
4810 /*
4811 * If we have an unprocessed orphan list hanging
4812 * around from a previously readonly bdev mount,
4813 * require a full umount/remount for now.
4814 */
4815 if (es->s_last_orphan) {
4816 ext4_msg(sb, KERN_WARNING, "Couldn't "
4817 "remount RDWR because of unprocessed "
4818 "orphan inode list. Please "
4819 "umount/remount instead");
4820 err = -EINVAL;
4821 goto restore_opts;
4822 }
4823
4824 /*
4825 * Mounting a RDONLY partition read-write, so reread
4826 * and store the current valid flag. (It may have
4827 * been changed by e2fsck since we originally mounted
4828 * the partition.)
4829 */
4830 if (sbi->s_journal)
4831 ext4_clear_journal_err(sb, es);
4832 sbi->s_mount_state = le16_to_cpu(es->s_state);
4833 if (!ext4_setup_super(sb, es, 0))
4834 sb->s_flags &= ~MS_RDONLY;
4835 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4836 EXT4_FEATURE_INCOMPAT_MMP))
4837 if (ext4_multi_mount_protect(sb,
4838 le64_to_cpu(es->s_mmp_block))) {
4839 err = -EROFS;
4840 goto restore_opts;
4841 }
4842 enable_quota = 1;
4843 }
4844 }
4845
4846 /*
4847 * Reinitialize lazy itable initialization thread based on
4848 * current settings
4849 */
4850 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4851 ext4_unregister_li_request(sb);
4852 else {
4853 ext4_group_t first_not_zeroed;
4854 first_not_zeroed = ext4_has_uninit_itable(sb);
4855 ext4_register_li_request(sb, first_not_zeroed);
4856 }
4857
4858 ext4_setup_system_zone(sb);
4859 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4860 ext4_commit_super(sb, 1);
4861
4862 #ifdef CONFIG_QUOTA
4863 /* Release old quota file names */
4864 for (i = 0; i < MAXQUOTAS; i++)
4865 kfree(old_opts.s_qf_names[i]);
4866 if (enable_quota) {
4867 if (sb_any_quota_suspended(sb))
4868 dquot_resume(sb, -1);
4869 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4870 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4871 err = ext4_enable_quotas(sb);
4872 if (err)
4873 goto restore_opts;
4874 }
4875 }
4876 #endif
4877
4878 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4879 kfree(orig_data);
4880 return 0;
4881
4882 restore_opts:
4883 sb->s_flags = old_sb_flags;
4884 sbi->s_mount_opt = old_opts.s_mount_opt;
4885 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4886 sbi->s_resuid = old_opts.s_resuid;
4887 sbi->s_resgid = old_opts.s_resgid;
4888 sbi->s_commit_interval = old_opts.s_commit_interval;
4889 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4890 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4891 #ifdef CONFIG_QUOTA
4892 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4893 for (i = 0; i < MAXQUOTAS; i++) {
4894 kfree(sbi->s_qf_names[i]);
4895 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4896 }
4897 #endif
4898 kfree(orig_data);
4899 return err;
4900 }
4901
4902 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4903 {
4904 struct super_block *sb = dentry->d_sb;
4905 struct ext4_sb_info *sbi = EXT4_SB(sb);
4906 struct ext4_super_block *es = sbi->s_es;
4907 ext4_fsblk_t overhead = 0, resv_blocks;
4908 u64 fsid;
4909 s64 bfree;
4910 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4911
4912 if (!test_opt(sb, MINIX_DF))
4913 overhead = sbi->s_overhead;
4914
4915 buf->f_type = EXT4_SUPER_MAGIC;
4916 buf->f_bsize = sb->s_blocksize;
4917 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4918 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4919 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4920 /* prevent underflow in case that few free space is available */
4921 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4922 buf->f_bavail = buf->f_bfree -
4923 (ext4_r_blocks_count(es) + resv_blocks);
4924 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4925 buf->f_bavail = 0;
4926 buf->f_files = le32_to_cpu(es->s_inodes_count);
4927 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4928 buf->f_namelen = EXT4_NAME_LEN;
4929 fsid = le64_to_cpup((void *)es->s_uuid) ^
4930 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4931 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4932 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4933
4934 return 0;
4935 }
4936
4937 /* Helper function for writing quotas on sync - we need to start transaction
4938 * before quota file is locked for write. Otherwise the are possible deadlocks:
4939 * Process 1 Process 2
4940 * ext4_create() quota_sync()
4941 * jbd2_journal_start() write_dquot()
4942 * dquot_initialize() down(dqio_mutex)
4943 * down(dqio_mutex) jbd2_journal_start()
4944 *
4945 */
4946
4947 #ifdef CONFIG_QUOTA
4948
4949 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4950 {
4951 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4952 }
4953
4954 static int ext4_write_dquot(struct dquot *dquot)
4955 {
4956 int ret, err;
4957 handle_t *handle;
4958 struct inode *inode;
4959
4960 inode = dquot_to_inode(dquot);
4961 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4962 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_commit(dquot);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970 }
4971
4972 static int ext4_acquire_dquot(struct dquot *dquot)
4973 {
4974 int ret, err;
4975 handle_t *handle;
4976
4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4978 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4979 if (IS_ERR(handle))
4980 return PTR_ERR(handle);
4981 ret = dquot_acquire(dquot);
4982 err = ext4_journal_stop(handle);
4983 if (!ret)
4984 ret = err;
4985 return ret;
4986 }
4987
4988 static int ext4_release_dquot(struct dquot *dquot)
4989 {
4990 int ret, err;
4991 handle_t *handle;
4992
4993 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4994 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4995 if (IS_ERR(handle)) {
4996 /* Release dquot anyway to avoid endless cycle in dqput() */
4997 dquot_release(dquot);
4998 return PTR_ERR(handle);
4999 }
5000 ret = dquot_release(dquot);
5001 err = ext4_journal_stop(handle);
5002 if (!ret)
5003 ret = err;
5004 return ret;
5005 }
5006
5007 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5008 {
5009 struct super_block *sb = dquot->dq_sb;
5010 struct ext4_sb_info *sbi = EXT4_SB(sb);
5011
5012 /* Are we journaling quotas? */
5013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5014 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5015 dquot_mark_dquot_dirty(dquot);
5016 return ext4_write_dquot(dquot);
5017 } else {
5018 return dquot_mark_dquot_dirty(dquot);
5019 }
5020 }
5021
5022 static int ext4_write_info(struct super_block *sb, int type)
5023 {
5024 int ret, err;
5025 handle_t *handle;
5026
5027 /* Data block + inode block */
5028 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5029 if (IS_ERR(handle))
5030 return PTR_ERR(handle);
5031 ret = dquot_commit_info(sb, type);
5032 err = ext4_journal_stop(handle);
5033 if (!ret)
5034 ret = err;
5035 return ret;
5036 }
5037
5038 /*
5039 * Turn on quotas during mount time - we need to find
5040 * the quota file and such...
5041 */
5042 static int ext4_quota_on_mount(struct super_block *sb, int type)
5043 {
5044 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5045 EXT4_SB(sb)->s_jquota_fmt, type);
5046 }
5047
5048 /*
5049 * Standard function to be called on quota_on
5050 */
5051 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5052 struct path *path)
5053 {
5054 int err;
5055
5056 if (!test_opt(sb, QUOTA))
5057 return -EINVAL;
5058
5059 /* Quotafile not on the same filesystem? */
5060 if (path->dentry->d_sb != sb)
5061 return -EXDEV;
5062 /* Journaling quota? */
5063 if (EXT4_SB(sb)->s_qf_names[type]) {
5064 /* Quotafile not in fs root? */
5065 if (path->dentry->d_parent != sb->s_root)
5066 ext4_msg(sb, KERN_WARNING,
5067 "Quota file not on filesystem root. "
5068 "Journaled quota will not work");
5069 }
5070
5071 /*
5072 * When we journal data on quota file, we have to flush journal to see
5073 * all updates to the file when we bypass pagecache...
5074 */
5075 if (EXT4_SB(sb)->s_journal &&
5076 ext4_should_journal_data(path->dentry->d_inode)) {
5077 /*
5078 * We don't need to lock updates but journal_flush() could
5079 * otherwise be livelocked...
5080 */
5081 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5082 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5083 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5084 if (err)
5085 return err;
5086 }
5087
5088 return dquot_quota_on(sb, type, format_id, path);
5089 }
5090
5091 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5092 unsigned int flags)
5093 {
5094 int err;
5095 struct inode *qf_inode;
5096 unsigned long qf_inums[MAXQUOTAS] = {
5097 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5098 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5099 };
5100
5101 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5102
5103 if (!qf_inums[type])
5104 return -EPERM;
5105
5106 qf_inode = ext4_iget(sb, qf_inums[type]);
5107 if (IS_ERR(qf_inode)) {
5108 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5109 return PTR_ERR(qf_inode);
5110 }
5111
5112 /* Don't account quota for quota files to avoid recursion */
5113 qf_inode->i_flags |= S_NOQUOTA;
5114 err = dquot_enable(qf_inode, type, format_id, flags);
5115 iput(qf_inode);
5116
5117 return err;
5118 }
5119
5120 /* Enable usage tracking for all quota types. */
5121 static int ext4_enable_quotas(struct super_block *sb)
5122 {
5123 int type, err = 0;
5124 unsigned long qf_inums[MAXQUOTAS] = {
5125 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5126 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5127 };
5128
5129 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5130 for (type = 0; type < MAXQUOTAS; type++) {
5131 if (qf_inums[type]) {
5132 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5133 DQUOT_USAGE_ENABLED);
5134 if (err) {
5135 ext4_warning(sb,
5136 "Failed to enable quota tracking "
5137 "(type=%d, err=%d). Please run "
5138 "e2fsck to fix.", type, err);
5139 return err;
5140 }
5141 }
5142 }
5143 return 0;
5144 }
5145
5146 /*
5147 * quota_on function that is used when QUOTA feature is set.
5148 */
5149 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5150 int format_id)
5151 {
5152 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5153 return -EINVAL;
5154
5155 /*
5156 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5157 */
5158 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5159 }
5160
5161 static int ext4_quota_off(struct super_block *sb, int type)
5162 {
5163 struct inode *inode = sb_dqopt(sb)->files[type];
5164 handle_t *handle;
5165
5166 /* Force all delayed allocation blocks to be allocated.
5167 * Caller already holds s_umount sem */
5168 if (test_opt(sb, DELALLOC))
5169 sync_filesystem(sb);
5170
5171 if (!inode)
5172 goto out;
5173
5174 /* Update modification times of quota files when userspace can
5175 * start looking at them */
5176 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5177 if (IS_ERR(handle))
5178 goto out;
5179 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5180 ext4_mark_inode_dirty(handle, inode);
5181 ext4_journal_stop(handle);
5182
5183 out:
5184 return dquot_quota_off(sb, type);
5185 }
5186
5187 /*
5188 * quota_off function that is used when QUOTA feature is set.
5189 */
5190 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5191 {
5192 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5193 return -EINVAL;
5194
5195 /* Disable only the limits. */
5196 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5197 }
5198
5199 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5200 * acquiring the locks... As quota files are never truncated and quota code
5201 * itself serializes the operations (and no one else should touch the files)
5202 * we don't have to be afraid of races */
5203 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5204 size_t len, loff_t off)
5205 {
5206 struct inode *inode = sb_dqopt(sb)->files[type];
5207 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5208 int err = 0;
5209 int offset = off & (sb->s_blocksize - 1);
5210 int tocopy;
5211 size_t toread;
5212 struct buffer_head *bh;
5213 loff_t i_size = i_size_read(inode);
5214
5215 if (off > i_size)
5216 return 0;
5217 if (off+len > i_size)
5218 len = i_size-off;
5219 toread = len;
5220 while (toread > 0) {
5221 tocopy = sb->s_blocksize - offset < toread ?
5222 sb->s_blocksize - offset : toread;
5223 bh = ext4_bread(NULL, inode, blk, 0, &err);
5224 if (err)
5225 return err;
5226 if (!bh) /* A hole? */
5227 memset(data, 0, tocopy);
5228 else
5229 memcpy(data, bh->b_data+offset, tocopy);
5230 brelse(bh);
5231 offset = 0;
5232 toread -= tocopy;
5233 data += tocopy;
5234 blk++;
5235 }
5236 return len;
5237 }
5238
5239 /* Write to quotafile (we know the transaction is already started and has
5240 * enough credits) */
5241 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5242 const char *data, size_t len, loff_t off)
5243 {
5244 struct inode *inode = sb_dqopt(sb)->files[type];
5245 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5246 int err = 0;
5247 int offset = off & (sb->s_blocksize - 1);
5248 struct buffer_head *bh;
5249 handle_t *handle = journal_current_handle();
5250
5251 if (EXT4_SB(sb)->s_journal && !handle) {
5252 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5253 " cancelled because transaction is not started",
5254 (unsigned long long)off, (unsigned long long)len);
5255 return -EIO;
5256 }
5257 /*
5258 * Since we account only one data block in transaction credits,
5259 * then it is impossible to cross a block boundary.
5260 */
5261 if (sb->s_blocksize - offset < len) {
5262 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5263 " cancelled because not block aligned",
5264 (unsigned long long)off, (unsigned long long)len);
5265 return -EIO;
5266 }
5267
5268 bh = ext4_bread(handle, inode, blk, 1, &err);
5269 if (!bh)
5270 goto out;
5271 err = ext4_journal_get_write_access(handle, bh);
5272 if (err) {
5273 brelse(bh);
5274 goto out;
5275 }
5276 lock_buffer(bh);
5277 memcpy(bh->b_data+offset, data, len);
5278 flush_dcache_page(bh->b_page);
5279 unlock_buffer(bh);
5280 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5281 brelse(bh);
5282 out:
5283 if (err)
5284 return err;
5285 if (inode->i_size < off + len) {
5286 i_size_write(inode, off + len);
5287 EXT4_I(inode)->i_disksize = inode->i_size;
5288 ext4_mark_inode_dirty(handle, inode);
5289 }
5290 return len;
5291 }
5292
5293 #endif
5294
5295 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5296 const char *dev_name, void *data)
5297 {
5298 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5299 }
5300
5301 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5302 static inline void register_as_ext2(void)
5303 {
5304 int err = register_filesystem(&ext2_fs_type);
5305 if (err)
5306 printk(KERN_WARNING
5307 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5308 }
5309
5310 static inline void unregister_as_ext2(void)
5311 {
5312 unregister_filesystem(&ext2_fs_type);
5313 }
5314
5315 static inline int ext2_feature_set_ok(struct super_block *sb)
5316 {
5317 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5318 return 0;
5319 if (sb->s_flags & MS_RDONLY)
5320 return 1;
5321 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5322 return 0;
5323 return 1;
5324 }
5325 #else
5326 static inline void register_as_ext2(void) { }
5327 static inline void unregister_as_ext2(void) { }
5328 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5329 #endif
5330
5331 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5332 static inline void register_as_ext3(void)
5333 {
5334 int err = register_filesystem(&ext3_fs_type);
5335 if (err)
5336 printk(KERN_WARNING
5337 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5338 }
5339
5340 static inline void unregister_as_ext3(void)
5341 {
5342 unregister_filesystem(&ext3_fs_type);
5343 }
5344
5345 static inline int ext3_feature_set_ok(struct super_block *sb)
5346 {
5347 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5348 return 0;
5349 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5350 return 0;
5351 if (sb->s_flags & MS_RDONLY)
5352 return 1;
5353 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5354 return 0;
5355 return 1;
5356 }
5357 #else
5358 static inline void register_as_ext3(void) { }
5359 static inline void unregister_as_ext3(void) { }
5360 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5361 #endif
5362
5363 static struct file_system_type ext4_fs_type = {
5364 .owner = THIS_MODULE,
5365 .name = "ext4",
5366 .mount = ext4_mount,
5367 .kill_sb = kill_block_super,
5368 .fs_flags = FS_REQUIRES_DEV,
5369 };
5370 MODULE_ALIAS_FS("ext4");
5371
5372 static int __init ext4_init_feat_adverts(void)
5373 {
5374 struct ext4_features *ef;
5375 int ret = -ENOMEM;
5376
5377 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5378 if (!ef)
5379 goto out;
5380
5381 ef->f_kobj.kset = ext4_kset;
5382 init_completion(&ef->f_kobj_unregister);
5383 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5384 "features");
5385 if (ret) {
5386 kfree(ef);
5387 goto out;
5388 }
5389
5390 ext4_feat = ef;
5391 ret = 0;
5392 out:
5393 return ret;
5394 }
5395
5396 static void ext4_exit_feat_adverts(void)
5397 {
5398 kobject_put(&ext4_feat->f_kobj);
5399 wait_for_completion(&ext4_feat->f_kobj_unregister);
5400 kfree(ext4_feat);
5401 }
5402
5403 /* Shared across all ext4 file systems */
5404 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5405 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5406
5407 static int __init ext4_init_fs(void)
5408 {
5409 int i, err;
5410
5411 ext4_li_info = NULL;
5412 mutex_init(&ext4_li_mtx);
5413
5414 /* Build-time check for flags consistency */
5415 ext4_check_flag_values();
5416
5417 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5418 mutex_init(&ext4__aio_mutex[i]);
5419 init_waitqueue_head(&ext4__ioend_wq[i]);
5420 }
5421
5422 err = ext4_init_es();
5423 if (err)
5424 return err;
5425
5426 err = ext4_init_pageio();
5427 if (err)
5428 goto out7;
5429
5430 err = ext4_init_system_zone();
5431 if (err)
5432 goto out6;
5433 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5434 if (!ext4_kset) {
5435 err = -ENOMEM;
5436 goto out5;
5437 }
5438 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5439
5440 err = ext4_init_feat_adverts();
5441 if (err)
5442 goto out4;
5443
5444 err = ext4_init_mballoc();
5445 if (err)
5446 goto out3;
5447
5448 err = ext4_init_xattr();
5449 if (err)
5450 goto out2;
5451 err = init_inodecache();
5452 if (err)
5453 goto out1;
5454 register_as_ext3();
5455 register_as_ext2();
5456 err = register_filesystem(&ext4_fs_type);
5457 if (err)
5458 goto out;
5459
5460 return 0;
5461 out:
5462 unregister_as_ext2();
5463 unregister_as_ext3();
5464 destroy_inodecache();
5465 out1:
5466 ext4_exit_xattr();
5467 out2:
5468 ext4_exit_mballoc();
5469 out3:
5470 ext4_exit_feat_adverts();
5471 out4:
5472 if (ext4_proc_root)
5473 remove_proc_entry("fs/ext4", NULL);
5474 kset_unregister(ext4_kset);
5475 out5:
5476 ext4_exit_system_zone();
5477 out6:
5478 ext4_exit_pageio();
5479 out7:
5480 ext4_exit_es();
5481
5482 return err;
5483 }
5484
5485 static void __exit ext4_exit_fs(void)
5486 {
5487 ext4_destroy_lazyinit_thread();
5488 unregister_as_ext2();
5489 unregister_as_ext3();
5490 unregister_filesystem(&ext4_fs_type);
5491 destroy_inodecache();
5492 ext4_exit_xattr();
5493 ext4_exit_mballoc();
5494 ext4_exit_feat_adverts();
5495 remove_proc_entry("fs/ext4", NULL);
5496 kset_unregister(ext4_kset);
5497 ext4_exit_system_zone();
5498 ext4_exit_pageio();
5499 ext4_exit_es();
5500 }
5501
5502 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5503 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5504 MODULE_LICENSE("GPL");
5505 module_init(ext4_init_fs)
5506 module_exit(ext4_exit_fs)
This page took 0.156372 seconds and 4 git commands to generate.