block: clean up blkdev_get() wrappers and their users
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 .owner = THIS_MODULE,
84 .name = "ext3",
85 .mount = ext4_mount,
86 .kill_sb = kill_block_super,
87 .fs_flags = FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le32_to_cpu(bg->bg_inode_table_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 struct ext4_group_desc *bg)
128 {
129 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 struct ext4_group_desc *bg)
136 {
137 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le16_to_cpu(bg->bg_itable_unused_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149
150 void ext4_block_bitmap_set(struct super_block *sb,
151 struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165
166 void ext4_inode_table_set(struct super_block *sb,
167 struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173
174 void ext4_free_blks_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181
182 void ext4_free_inodes_set(struct super_block *sb,
183 struct ext4_group_desc *bg, __u32 count)
184 {
185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189
190 void ext4_used_dirs_set(struct super_block *sb,
191 struct ext4_group_desc *bg, __u32 count)
192 {
193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197
198 void ext4_itable_unused_set(struct super_block *sb,
199 struct ext4_group_desc *bg, __u32 count)
200 {
201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205
206
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 handle_t *handle = current->journal_info;
211 unsigned long ref_cnt = (unsigned long)handle;
212
213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214
215 ref_cnt++;
216 handle = (handle_t *)ref_cnt;
217
218 current->journal_info = handle;
219 return handle;
220 }
221
222
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 unsigned long ref_cnt = (unsigned long)handle;
227
228 BUG_ON(ref_cnt == 0);
229
230 ref_cnt--;
231 handle = (handle_t *)ref_cnt;
232
233 current->journal_info = handle;
234 }
235
236 /*
237 * Wrappers for jbd2_journal_start/end.
238 *
239 * The only special thing we need to do here is to make sure that all
240 * journal_end calls result in the superblock being marked dirty, so
241 * that sync() will call the filesystem's write_super callback if
242 * appropriate.
243 */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 journal_t *journal;
247
248 if (sb->s_flags & MS_RDONLY)
249 return ERR_PTR(-EROFS);
250
251 vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 /* Special case here: if the journal has aborted behind our
253 * backs (eg. EIO in the commit thread), then we still need to
254 * take the FS itself readonly cleanly. */
255 journal = EXT4_SB(sb)->s_journal;
256 if (journal) {
257 if (is_journal_aborted(journal)) {
258 ext4_abort(sb, "Detected aborted journal");
259 return ERR_PTR(-EROFS);
260 }
261 return jbd2_journal_start(journal, nblocks);
262 }
263 return ext4_get_nojournal();
264 }
265
266 /*
267 * The only special thing we need to do here is to make sure that all
268 * jbd2_journal_stop calls result in the superblock being marked dirty, so
269 * that sync() will call the filesystem's write_super callback if
270 * appropriate.
271 */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 struct super_block *sb;
275 int err;
276 int rc;
277
278 if (!ext4_handle_valid(handle)) {
279 ext4_put_nojournal(handle);
280 return 0;
281 }
282 sb = handle->h_transaction->t_journal->j_private;
283 err = handle->h_err;
284 rc = jbd2_journal_stop(handle);
285
286 if (!err)
287 err = rc;
288 if (err)
289 __ext4_std_error(sb, where, line, err);
290 return err;
291 }
292
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 const char *err_fn, struct buffer_head *bh,
295 handle_t *handle, int err)
296 {
297 char nbuf[16];
298 const char *errstr = ext4_decode_error(NULL, err, nbuf);
299
300 BUG_ON(!ext4_handle_valid(handle));
301
302 if (bh)
303 BUFFER_TRACE(bh, "abort");
304
305 if (!handle->h_err)
306 handle->h_err = err;
307
308 if (is_handle_aborted(handle))
309 return;
310
311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 caller, line, errstr, err_fn);
313
314 jbd2_journal_abort_handle(handle);
315 }
316
317 static void __save_error_info(struct super_block *sb, const char *func,
318 unsigned int line)
319 {
320 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321
322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 es->s_last_error_time = cpu_to_le32(get_seconds());
325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 es->s_last_error_line = cpu_to_le32(line);
327 if (!es->s_first_error_time) {
328 es->s_first_error_time = es->s_last_error_time;
329 strncpy(es->s_first_error_func, func,
330 sizeof(es->s_first_error_func));
331 es->s_first_error_line = cpu_to_le32(line);
332 es->s_first_error_ino = es->s_last_error_ino;
333 es->s_first_error_block = es->s_last_error_block;
334 }
335 /*
336 * Start the daily error reporting function if it hasn't been
337 * started already
338 */
339 if (!es->s_error_count)
340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343
344 static void save_error_info(struct super_block *sb, const char *func,
345 unsigned int line)
346 {
347 __save_error_info(sb, func, line);
348 ext4_commit_super(sb, 1);
349 }
350
351
352 /* Deal with the reporting of failure conditions on a filesystem such as
353 * inconsistencies detected or read IO failures.
354 *
355 * On ext2, we can store the error state of the filesystem in the
356 * superblock. That is not possible on ext4, because we may have other
357 * write ordering constraints on the superblock which prevent us from
358 * writing it out straight away; and given that the journal is about to
359 * be aborted, we can't rely on the current, or future, transactions to
360 * write out the superblock safely.
361 *
362 * We'll just use the jbd2_journal_abort() error code to record an error in
363 * the journal instead. On recovery, the journal will complain about
364 * that error until we've noted it down and cleared it.
365 */
366
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 if (sb->s_flags & MS_RDONLY)
370 return;
371
372 if (!test_opt(sb, ERRORS_CONT)) {
373 journal_t *journal = EXT4_SB(sb)->s_journal;
374
375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 if (journal)
377 jbd2_journal_abort(journal, -EIO);
378 }
379 if (test_opt(sb, ERRORS_RO)) {
380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 sb->s_flags |= MS_RDONLY;
382 }
383 if (test_opt(sb, ERRORS_PANIC))
384 panic("EXT4-fs (device %s): panic forced after error\n",
385 sb->s_id);
386 }
387
388 void __ext4_error(struct super_block *sb, const char *function,
389 unsigned int line, const char *fmt, ...)
390 {
391 va_list args;
392
393 va_start(args, fmt);
394 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ",
395 sb->s_id, function, line, current->comm);
396 vprintk(fmt, args);
397 printk("\n");
398 va_end(args);
399
400 ext4_handle_error(sb);
401 }
402
403 void ext4_error_inode(struct inode *inode, const char *function,
404 unsigned int line, ext4_fsblk_t block,
405 const char *fmt, ...)
406 {
407 va_list args;
408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
409
410 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
411 es->s_last_error_block = cpu_to_le64(block);
412 save_error_info(inode->i_sb, function, line);
413 va_start(args, fmt);
414 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
415 inode->i_sb->s_id, function, line, inode->i_ino);
416 if (block)
417 printk("block %llu: ", block);
418 printk("comm %s: ", current->comm);
419 vprintk(fmt, args);
420 printk("\n");
421 va_end(args);
422
423 ext4_handle_error(inode->i_sb);
424 }
425
426 void ext4_error_file(struct file *file, const char *function,
427 unsigned int line, const char *fmt, ...)
428 {
429 va_list args;
430 struct ext4_super_block *es;
431 struct inode *inode = file->f_dentry->d_inode;
432 char pathname[80], *path;
433
434 es = EXT4_SB(inode->i_sb)->s_es;
435 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436 save_error_info(inode->i_sb, function, line);
437 va_start(args, fmt);
438 path = d_path(&(file->f_path), pathname, sizeof(pathname));
439 if (!path)
440 path = "(unknown)";
441 printk(KERN_CRIT
442 "EXT4-fs error (device %s): %s:%d: inode #%lu "
443 "(comm %s path %s): ",
444 inode->i_sb->s_id, function, line, inode->i_ino,
445 current->comm, path);
446 vprintk(fmt, args);
447 printk("\n");
448 va_end(args);
449
450 ext4_handle_error(inode->i_sb);
451 }
452
453 static const char *ext4_decode_error(struct super_block *sb, int errno,
454 char nbuf[16])
455 {
456 char *errstr = NULL;
457
458 switch (errno) {
459 case -EIO:
460 errstr = "IO failure";
461 break;
462 case -ENOMEM:
463 errstr = "Out of memory";
464 break;
465 case -EROFS:
466 if (!sb || (EXT4_SB(sb)->s_journal &&
467 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
468 errstr = "Journal has aborted";
469 else
470 errstr = "Readonly filesystem";
471 break;
472 default:
473 /* If the caller passed in an extra buffer for unknown
474 * errors, textualise them now. Else we just return
475 * NULL. */
476 if (nbuf) {
477 /* Check for truncated error codes... */
478 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
479 errstr = nbuf;
480 }
481 break;
482 }
483
484 return errstr;
485 }
486
487 /* __ext4_std_error decodes expected errors from journaling functions
488 * automatically and invokes the appropriate error response. */
489
490 void __ext4_std_error(struct super_block *sb, const char *function,
491 unsigned int line, int errno)
492 {
493 char nbuf[16];
494 const char *errstr;
495
496 /* Special case: if the error is EROFS, and we're not already
497 * inside a transaction, then there's really no point in logging
498 * an error. */
499 if (errno == -EROFS && journal_current_handle() == NULL &&
500 (sb->s_flags & MS_RDONLY))
501 return;
502
503 errstr = ext4_decode_error(sb, errno, nbuf);
504 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
505 sb->s_id, function, line, errstr);
506 save_error_info(sb, function, line);
507
508 ext4_handle_error(sb);
509 }
510
511 /*
512 * ext4_abort is a much stronger failure handler than ext4_error. The
513 * abort function may be used to deal with unrecoverable failures such
514 * as journal IO errors or ENOMEM at a critical moment in log management.
515 *
516 * We unconditionally force the filesystem into an ABORT|READONLY state,
517 * unless the error response on the fs has been set to panic in which
518 * case we take the easy way out and panic immediately.
519 */
520
521 void __ext4_abort(struct super_block *sb, const char *function,
522 unsigned int line, const char *fmt, ...)
523 {
524 va_list args;
525
526 save_error_info(sb, function, line);
527 va_start(args, fmt);
528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
529 function, line);
530 vprintk(fmt, args);
531 printk("\n");
532 va_end(args);
533
534 if ((sb->s_flags & MS_RDONLY) == 0) {
535 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
536 sb->s_flags |= MS_RDONLY;
537 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
538 if (EXT4_SB(sb)->s_journal)
539 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
540 save_error_info(sb, function, line);
541 }
542 if (test_opt(sb, ERRORS_PANIC))
543 panic("EXT4-fs panic from previous error\n");
544 }
545
546 void ext4_msg (struct super_block * sb, const char *prefix,
547 const char *fmt, ...)
548 {
549 va_list args;
550
551 va_start(args, fmt);
552 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
553 vprintk(fmt, args);
554 printk("\n");
555 va_end(args);
556 }
557
558 void __ext4_warning(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 va_start(args, fmt);
564 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ",
565 sb->s_id, function, line);
566 vprintk(fmt, args);
567 printk("\n");
568 va_end(args);
569 }
570
571 void __ext4_grp_locked_error(const char *function, unsigned int line,
572 struct super_block *sb, ext4_group_t grp,
573 unsigned long ino, ext4_fsblk_t block,
574 const char *fmt, ...)
575 __releases(bitlock)
576 __acquires(bitlock)
577 {
578 va_list args;
579 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
580
581 es->s_last_error_ino = cpu_to_le32(ino);
582 es->s_last_error_block = cpu_to_le64(block);
583 __save_error_info(sb, function, line);
584 va_start(args, fmt);
585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
586 sb->s_id, function, line, grp);
587 if (ino)
588 printk("inode %lu: ", ino);
589 if (block)
590 printk("block %llu:", (unsigned long long) block);
591 vprintk(fmt, args);
592 printk("\n");
593 va_end(args);
594
595 if (test_opt(sb, ERRORS_CONT)) {
596 ext4_commit_super(sb, 0);
597 return;
598 }
599
600 ext4_unlock_group(sb, grp);
601 ext4_handle_error(sb);
602 /*
603 * We only get here in the ERRORS_RO case; relocking the group
604 * may be dangerous, but nothing bad will happen since the
605 * filesystem will have already been marked read/only and the
606 * journal has been aborted. We return 1 as a hint to callers
607 * who might what to use the return value from
608 * ext4_grp_locked_error() to distinguish beween the
609 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
610 * aggressively from the ext4 function in question, with a
611 * more appropriate error code.
612 */
613 ext4_lock_group(sb, grp);
614 return;
615 }
616
617 void ext4_update_dynamic_rev(struct super_block *sb)
618 {
619 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620
621 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
622 return;
623
624 ext4_warning(sb,
625 "updating to rev %d because of new feature flag, "
626 "running e2fsck is recommended",
627 EXT4_DYNAMIC_REV);
628
629 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
630 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
631 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
632 /* leave es->s_feature_*compat flags alone */
633 /* es->s_uuid will be set by e2fsck if empty */
634
635 /*
636 * The rest of the superblock fields should be zero, and if not it
637 * means they are likely already in use, so leave them alone. We
638 * can leave it up to e2fsck to clean up any inconsistencies there.
639 */
640 }
641
642 /*
643 * Open the external journal device
644 */
645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
646 {
647 struct block_device *bdev;
648 char b[BDEVNAME_SIZE];
649
650 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
651 if (IS_ERR(bdev))
652 goto fail;
653 return bdev;
654
655 fail:
656 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
657 __bdevname(dev, b), PTR_ERR(bdev));
658 return NULL;
659 }
660
661 /*
662 * Release the journal device
663 */
664 static int ext4_blkdev_put(struct block_device *bdev)
665 {
666 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
667 }
668
669 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
670 {
671 struct block_device *bdev;
672 int ret = -ENODEV;
673
674 bdev = sbi->journal_bdev;
675 if (bdev) {
676 ret = ext4_blkdev_put(bdev);
677 sbi->journal_bdev = NULL;
678 }
679 return ret;
680 }
681
682 static inline struct inode *orphan_list_entry(struct list_head *l)
683 {
684 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
685 }
686
687 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
688 {
689 struct list_head *l;
690
691 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
692 le32_to_cpu(sbi->s_es->s_last_orphan));
693
694 printk(KERN_ERR "sb_info orphan list:\n");
695 list_for_each(l, &sbi->s_orphan) {
696 struct inode *inode = orphan_list_entry(l);
697 printk(KERN_ERR " "
698 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
699 inode->i_sb->s_id, inode->i_ino, inode,
700 inode->i_mode, inode->i_nlink,
701 NEXT_ORPHAN(inode));
702 }
703 }
704
705 static void ext4_put_super(struct super_block *sb)
706 {
707 struct ext4_sb_info *sbi = EXT4_SB(sb);
708 struct ext4_super_block *es = sbi->s_es;
709 int i, err;
710
711 ext4_unregister_li_request(sb);
712 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
713
714 flush_workqueue(sbi->dio_unwritten_wq);
715 destroy_workqueue(sbi->dio_unwritten_wq);
716
717 lock_super(sb);
718 if (sb->s_dirt)
719 ext4_commit_super(sb, 1);
720
721 if (sbi->s_journal) {
722 err = jbd2_journal_destroy(sbi->s_journal);
723 sbi->s_journal = NULL;
724 if (err < 0)
725 ext4_abort(sb, "Couldn't clean up the journal");
726 }
727
728 del_timer(&sbi->s_err_report);
729 ext4_release_system_zone(sb);
730 ext4_mb_release(sb);
731 ext4_ext_release(sb);
732 ext4_xattr_put_super(sb);
733
734 if (!(sb->s_flags & MS_RDONLY)) {
735 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
736 es->s_state = cpu_to_le16(sbi->s_mount_state);
737 ext4_commit_super(sb, 1);
738 }
739 if (sbi->s_proc) {
740 remove_proc_entry(sb->s_id, ext4_proc_root);
741 }
742 kobject_del(&sbi->s_kobj);
743
744 for (i = 0; i < sbi->s_gdb_count; i++)
745 brelse(sbi->s_group_desc[i]);
746 kfree(sbi->s_group_desc);
747 if (is_vmalloc_addr(sbi->s_flex_groups))
748 vfree(sbi->s_flex_groups);
749 else
750 kfree(sbi->s_flex_groups);
751 percpu_counter_destroy(&sbi->s_freeblocks_counter);
752 percpu_counter_destroy(&sbi->s_freeinodes_counter);
753 percpu_counter_destroy(&sbi->s_dirs_counter);
754 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
755 brelse(sbi->s_sbh);
756 #ifdef CONFIG_QUOTA
757 for (i = 0; i < MAXQUOTAS; i++)
758 kfree(sbi->s_qf_names[i]);
759 #endif
760
761 /* Debugging code just in case the in-memory inode orphan list
762 * isn't empty. The on-disk one can be non-empty if we've
763 * detected an error and taken the fs readonly, but the
764 * in-memory list had better be clean by this point. */
765 if (!list_empty(&sbi->s_orphan))
766 dump_orphan_list(sb, sbi);
767 J_ASSERT(list_empty(&sbi->s_orphan));
768
769 invalidate_bdev(sb->s_bdev);
770 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
771 /*
772 * Invalidate the journal device's buffers. We don't want them
773 * floating about in memory - the physical journal device may
774 * hotswapped, and it breaks the `ro-after' testing code.
775 */
776 sync_blockdev(sbi->journal_bdev);
777 invalidate_bdev(sbi->journal_bdev);
778 ext4_blkdev_remove(sbi);
779 }
780 sb->s_fs_info = NULL;
781 /*
782 * Now that we are completely done shutting down the
783 * superblock, we need to actually destroy the kobject.
784 */
785 unlock_super(sb);
786 kobject_put(&sbi->s_kobj);
787 wait_for_completion(&sbi->s_kobj_unregister);
788 kfree(sbi->s_blockgroup_lock);
789 kfree(sbi);
790 }
791
792 static struct kmem_cache *ext4_inode_cachep;
793
794 /*
795 * Called inside transaction, so use GFP_NOFS
796 */
797 static struct inode *ext4_alloc_inode(struct super_block *sb)
798 {
799 struct ext4_inode_info *ei;
800
801 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
802 if (!ei)
803 return NULL;
804
805 ei->vfs_inode.i_version = 1;
806 ei->vfs_inode.i_data.writeback_index = 0;
807 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
808 INIT_LIST_HEAD(&ei->i_prealloc_list);
809 spin_lock_init(&ei->i_prealloc_lock);
810 /*
811 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
812 * therefore it can be null here. Don't check it, just initialize
813 * jinode.
814 */
815 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
816 ei->i_reserved_data_blocks = 0;
817 ei->i_reserved_meta_blocks = 0;
818 ei->i_allocated_meta_blocks = 0;
819 ei->i_da_metadata_calc_len = 0;
820 ei->i_delalloc_reserved_flag = 0;
821 spin_lock_init(&(ei->i_block_reservation_lock));
822 #ifdef CONFIG_QUOTA
823 ei->i_reserved_quota = 0;
824 #endif
825 INIT_LIST_HEAD(&ei->i_completed_io_list);
826 spin_lock_init(&ei->i_completed_io_lock);
827 ei->cur_aio_dio = NULL;
828 ei->i_sync_tid = 0;
829 ei->i_datasync_tid = 0;
830 atomic_set(&ei->i_ioend_count, 0);
831
832 return &ei->vfs_inode;
833 }
834
835 static int ext4_drop_inode(struct inode *inode)
836 {
837 int drop = generic_drop_inode(inode);
838
839 trace_ext4_drop_inode(inode, drop);
840 return drop;
841 }
842
843 static void ext4_destroy_inode(struct inode *inode)
844 {
845 ext4_ioend_wait(inode);
846 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
847 ext4_msg(inode->i_sb, KERN_ERR,
848 "Inode %lu (%p): orphan list check failed!",
849 inode->i_ino, EXT4_I(inode));
850 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
851 EXT4_I(inode), sizeof(struct ext4_inode_info),
852 true);
853 dump_stack();
854 }
855 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
856 }
857
858 static void init_once(void *foo)
859 {
860 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
861
862 INIT_LIST_HEAD(&ei->i_orphan);
863 #ifdef CONFIG_EXT4_FS_XATTR
864 init_rwsem(&ei->xattr_sem);
865 #endif
866 init_rwsem(&ei->i_data_sem);
867 inode_init_once(&ei->vfs_inode);
868 }
869
870 static int init_inodecache(void)
871 {
872 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
873 sizeof(struct ext4_inode_info),
874 0, (SLAB_RECLAIM_ACCOUNT|
875 SLAB_MEM_SPREAD),
876 init_once);
877 if (ext4_inode_cachep == NULL)
878 return -ENOMEM;
879 return 0;
880 }
881
882 static void destroy_inodecache(void)
883 {
884 kmem_cache_destroy(ext4_inode_cachep);
885 }
886
887 void ext4_clear_inode(struct inode *inode)
888 {
889 invalidate_inode_buffers(inode);
890 end_writeback(inode);
891 dquot_drop(inode);
892 ext4_discard_preallocations(inode);
893 if (EXT4_JOURNAL(inode))
894 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
895 &EXT4_I(inode)->jinode);
896 }
897
898 static inline void ext4_show_quota_options(struct seq_file *seq,
899 struct super_block *sb)
900 {
901 #if defined(CONFIG_QUOTA)
902 struct ext4_sb_info *sbi = EXT4_SB(sb);
903
904 if (sbi->s_jquota_fmt) {
905 char *fmtname = "";
906
907 switch (sbi->s_jquota_fmt) {
908 case QFMT_VFS_OLD:
909 fmtname = "vfsold";
910 break;
911 case QFMT_VFS_V0:
912 fmtname = "vfsv0";
913 break;
914 case QFMT_VFS_V1:
915 fmtname = "vfsv1";
916 break;
917 }
918 seq_printf(seq, ",jqfmt=%s", fmtname);
919 }
920
921 if (sbi->s_qf_names[USRQUOTA])
922 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
923
924 if (sbi->s_qf_names[GRPQUOTA])
925 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
926
927 if (test_opt(sb, USRQUOTA))
928 seq_puts(seq, ",usrquota");
929
930 if (test_opt(sb, GRPQUOTA))
931 seq_puts(seq, ",grpquota");
932 #endif
933 }
934
935 /*
936 * Show an option if
937 * - it's set to a non-default value OR
938 * - if the per-sb default is different from the global default
939 */
940 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
941 {
942 int def_errors;
943 unsigned long def_mount_opts;
944 struct super_block *sb = vfs->mnt_sb;
945 struct ext4_sb_info *sbi = EXT4_SB(sb);
946 struct ext4_super_block *es = sbi->s_es;
947
948 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
949 def_errors = le16_to_cpu(es->s_errors);
950
951 if (sbi->s_sb_block != 1)
952 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
953 if (test_opt(sb, MINIX_DF))
954 seq_puts(seq, ",minixdf");
955 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
956 seq_puts(seq, ",grpid");
957 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
958 seq_puts(seq, ",nogrpid");
959 if (sbi->s_resuid != EXT4_DEF_RESUID ||
960 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
961 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
962 }
963 if (sbi->s_resgid != EXT4_DEF_RESGID ||
964 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
965 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
966 }
967 if (test_opt(sb, ERRORS_RO)) {
968 if (def_errors == EXT4_ERRORS_PANIC ||
969 def_errors == EXT4_ERRORS_CONTINUE) {
970 seq_puts(seq, ",errors=remount-ro");
971 }
972 }
973 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
974 seq_puts(seq, ",errors=continue");
975 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
976 seq_puts(seq, ",errors=panic");
977 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
978 seq_puts(seq, ",nouid32");
979 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
980 seq_puts(seq, ",debug");
981 if (test_opt(sb, OLDALLOC))
982 seq_puts(seq, ",oldalloc");
983 #ifdef CONFIG_EXT4_FS_XATTR
984 if (test_opt(sb, XATTR_USER) &&
985 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
986 seq_puts(seq, ",user_xattr");
987 if (!test_opt(sb, XATTR_USER) &&
988 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
989 seq_puts(seq, ",nouser_xattr");
990 }
991 #endif
992 #ifdef CONFIG_EXT4_FS_POSIX_ACL
993 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
994 seq_puts(seq, ",acl");
995 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
996 seq_puts(seq, ",noacl");
997 #endif
998 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
999 seq_printf(seq, ",commit=%u",
1000 (unsigned) (sbi->s_commit_interval / HZ));
1001 }
1002 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1003 seq_printf(seq, ",min_batch_time=%u",
1004 (unsigned) sbi->s_min_batch_time);
1005 }
1006 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1007 seq_printf(seq, ",max_batch_time=%u",
1008 (unsigned) sbi->s_min_batch_time);
1009 }
1010
1011 /*
1012 * We're changing the default of barrier mount option, so
1013 * let's always display its mount state so it's clear what its
1014 * status is.
1015 */
1016 seq_puts(seq, ",barrier=");
1017 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1018 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1019 seq_puts(seq, ",journal_async_commit");
1020 else if (test_opt(sb, JOURNAL_CHECKSUM))
1021 seq_puts(seq, ",journal_checksum");
1022 if (test_opt(sb, I_VERSION))
1023 seq_puts(seq, ",i_version");
1024 if (!test_opt(sb, DELALLOC) &&
1025 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1026 seq_puts(seq, ",nodelalloc");
1027
1028 if (sbi->s_stripe)
1029 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1030 /*
1031 * journal mode get enabled in different ways
1032 * So just print the value even if we didn't specify it
1033 */
1034 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1035 seq_puts(seq, ",data=journal");
1036 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1037 seq_puts(seq, ",data=ordered");
1038 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1039 seq_puts(seq, ",data=writeback");
1040
1041 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1042 seq_printf(seq, ",inode_readahead_blks=%u",
1043 sbi->s_inode_readahead_blks);
1044
1045 if (test_opt(sb, DATA_ERR_ABORT))
1046 seq_puts(seq, ",data_err=abort");
1047
1048 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1049 seq_puts(seq, ",noauto_da_alloc");
1050
1051 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1052 seq_puts(seq, ",discard");
1053
1054 if (test_opt(sb, NOLOAD))
1055 seq_puts(seq, ",norecovery");
1056
1057 if (test_opt(sb, DIOREAD_NOLOCK))
1058 seq_puts(seq, ",dioread_nolock");
1059
1060 if (test_opt(sb, BLOCK_VALIDITY) &&
1061 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1062 seq_puts(seq, ",block_validity");
1063
1064 if (!test_opt(sb, INIT_INODE_TABLE))
1065 seq_puts(seq, ",noinit_inode_table");
1066 else if (sbi->s_li_wait_mult)
1067 seq_printf(seq, ",init_inode_table=%u",
1068 (unsigned) sbi->s_li_wait_mult);
1069
1070 ext4_show_quota_options(seq, sb);
1071
1072 return 0;
1073 }
1074
1075 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1076 u64 ino, u32 generation)
1077 {
1078 struct inode *inode;
1079
1080 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1081 return ERR_PTR(-ESTALE);
1082 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1083 return ERR_PTR(-ESTALE);
1084
1085 /* iget isn't really right if the inode is currently unallocated!!
1086 *
1087 * ext4_read_inode will return a bad_inode if the inode had been
1088 * deleted, so we should be safe.
1089 *
1090 * Currently we don't know the generation for parent directory, so
1091 * a generation of 0 means "accept any"
1092 */
1093 inode = ext4_iget(sb, ino);
1094 if (IS_ERR(inode))
1095 return ERR_CAST(inode);
1096 if (generation && inode->i_generation != generation) {
1097 iput(inode);
1098 return ERR_PTR(-ESTALE);
1099 }
1100
1101 return inode;
1102 }
1103
1104 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1105 int fh_len, int fh_type)
1106 {
1107 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1108 ext4_nfs_get_inode);
1109 }
1110
1111 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1112 int fh_len, int fh_type)
1113 {
1114 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1115 ext4_nfs_get_inode);
1116 }
1117
1118 /*
1119 * Try to release metadata pages (indirect blocks, directories) which are
1120 * mapped via the block device. Since these pages could have journal heads
1121 * which would prevent try_to_free_buffers() from freeing them, we must use
1122 * jbd2 layer's try_to_free_buffers() function to release them.
1123 */
1124 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1125 gfp_t wait)
1126 {
1127 journal_t *journal = EXT4_SB(sb)->s_journal;
1128
1129 WARN_ON(PageChecked(page));
1130 if (!page_has_buffers(page))
1131 return 0;
1132 if (journal)
1133 return jbd2_journal_try_to_free_buffers(journal, page,
1134 wait & ~__GFP_WAIT);
1135 return try_to_free_buffers(page);
1136 }
1137
1138 #ifdef CONFIG_QUOTA
1139 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1140 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1141
1142 static int ext4_write_dquot(struct dquot *dquot);
1143 static int ext4_acquire_dquot(struct dquot *dquot);
1144 static int ext4_release_dquot(struct dquot *dquot);
1145 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1146 static int ext4_write_info(struct super_block *sb, int type);
1147 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1148 char *path);
1149 static int ext4_quota_off(struct super_block *sb, int type);
1150 static int ext4_quota_on_mount(struct super_block *sb, int type);
1151 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1152 size_t len, loff_t off);
1153 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1154 const char *data, size_t len, loff_t off);
1155
1156 static const struct dquot_operations ext4_quota_operations = {
1157 #ifdef CONFIG_QUOTA
1158 .get_reserved_space = ext4_get_reserved_space,
1159 #endif
1160 .write_dquot = ext4_write_dquot,
1161 .acquire_dquot = ext4_acquire_dquot,
1162 .release_dquot = ext4_release_dquot,
1163 .mark_dirty = ext4_mark_dquot_dirty,
1164 .write_info = ext4_write_info,
1165 .alloc_dquot = dquot_alloc,
1166 .destroy_dquot = dquot_destroy,
1167 };
1168
1169 static const struct quotactl_ops ext4_qctl_operations = {
1170 .quota_on = ext4_quota_on,
1171 .quota_off = ext4_quota_off,
1172 .quota_sync = dquot_quota_sync,
1173 .get_info = dquot_get_dqinfo,
1174 .set_info = dquot_set_dqinfo,
1175 .get_dqblk = dquot_get_dqblk,
1176 .set_dqblk = dquot_set_dqblk
1177 };
1178 #endif
1179
1180 static const struct super_operations ext4_sops = {
1181 .alloc_inode = ext4_alloc_inode,
1182 .destroy_inode = ext4_destroy_inode,
1183 .write_inode = ext4_write_inode,
1184 .dirty_inode = ext4_dirty_inode,
1185 .drop_inode = ext4_drop_inode,
1186 .evict_inode = ext4_evict_inode,
1187 .put_super = ext4_put_super,
1188 .sync_fs = ext4_sync_fs,
1189 .freeze_fs = ext4_freeze,
1190 .unfreeze_fs = ext4_unfreeze,
1191 .statfs = ext4_statfs,
1192 .remount_fs = ext4_remount,
1193 .show_options = ext4_show_options,
1194 #ifdef CONFIG_QUOTA
1195 .quota_read = ext4_quota_read,
1196 .quota_write = ext4_quota_write,
1197 #endif
1198 .bdev_try_to_free_page = bdev_try_to_free_page,
1199 .trim_fs = ext4_trim_fs
1200 };
1201
1202 static const struct super_operations ext4_nojournal_sops = {
1203 .alloc_inode = ext4_alloc_inode,
1204 .destroy_inode = ext4_destroy_inode,
1205 .write_inode = ext4_write_inode,
1206 .dirty_inode = ext4_dirty_inode,
1207 .drop_inode = ext4_drop_inode,
1208 .evict_inode = ext4_evict_inode,
1209 .write_super = ext4_write_super,
1210 .put_super = ext4_put_super,
1211 .statfs = ext4_statfs,
1212 .remount_fs = ext4_remount,
1213 .show_options = ext4_show_options,
1214 #ifdef CONFIG_QUOTA
1215 .quota_read = ext4_quota_read,
1216 .quota_write = ext4_quota_write,
1217 #endif
1218 .bdev_try_to_free_page = bdev_try_to_free_page,
1219 };
1220
1221 static const struct export_operations ext4_export_ops = {
1222 .fh_to_dentry = ext4_fh_to_dentry,
1223 .fh_to_parent = ext4_fh_to_parent,
1224 .get_parent = ext4_get_parent,
1225 };
1226
1227 enum {
1228 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1229 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1230 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1231 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1232 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1233 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1234 Opt_journal_update, Opt_journal_dev,
1235 Opt_journal_checksum, Opt_journal_async_commit,
1236 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1237 Opt_data_err_abort, Opt_data_err_ignore,
1238 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1239 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1240 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1241 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1242 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1243 Opt_block_validity, Opt_noblock_validity,
1244 Opt_inode_readahead_blks, Opt_journal_ioprio,
1245 Opt_dioread_nolock, Opt_dioread_lock,
1246 Opt_discard, Opt_nodiscard,
1247 Opt_init_inode_table, Opt_noinit_inode_table,
1248 };
1249
1250 static const match_table_t tokens = {
1251 {Opt_bsd_df, "bsddf"},
1252 {Opt_minix_df, "minixdf"},
1253 {Opt_grpid, "grpid"},
1254 {Opt_grpid, "bsdgroups"},
1255 {Opt_nogrpid, "nogrpid"},
1256 {Opt_nogrpid, "sysvgroups"},
1257 {Opt_resgid, "resgid=%u"},
1258 {Opt_resuid, "resuid=%u"},
1259 {Opt_sb, "sb=%u"},
1260 {Opt_err_cont, "errors=continue"},
1261 {Opt_err_panic, "errors=panic"},
1262 {Opt_err_ro, "errors=remount-ro"},
1263 {Opt_nouid32, "nouid32"},
1264 {Opt_debug, "debug"},
1265 {Opt_oldalloc, "oldalloc"},
1266 {Opt_orlov, "orlov"},
1267 {Opt_user_xattr, "user_xattr"},
1268 {Opt_nouser_xattr, "nouser_xattr"},
1269 {Opt_acl, "acl"},
1270 {Opt_noacl, "noacl"},
1271 {Opt_noload, "noload"},
1272 {Opt_noload, "norecovery"},
1273 {Opt_nobh, "nobh"},
1274 {Opt_bh, "bh"},
1275 {Opt_commit, "commit=%u"},
1276 {Opt_min_batch_time, "min_batch_time=%u"},
1277 {Opt_max_batch_time, "max_batch_time=%u"},
1278 {Opt_journal_update, "journal=update"},
1279 {Opt_journal_dev, "journal_dev=%u"},
1280 {Opt_journal_checksum, "journal_checksum"},
1281 {Opt_journal_async_commit, "journal_async_commit"},
1282 {Opt_abort, "abort"},
1283 {Opt_data_journal, "data=journal"},
1284 {Opt_data_ordered, "data=ordered"},
1285 {Opt_data_writeback, "data=writeback"},
1286 {Opt_data_err_abort, "data_err=abort"},
1287 {Opt_data_err_ignore, "data_err=ignore"},
1288 {Opt_offusrjquota, "usrjquota="},
1289 {Opt_usrjquota, "usrjquota=%s"},
1290 {Opt_offgrpjquota, "grpjquota="},
1291 {Opt_grpjquota, "grpjquota=%s"},
1292 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1293 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1294 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1295 {Opt_grpquota, "grpquota"},
1296 {Opt_noquota, "noquota"},
1297 {Opt_quota, "quota"},
1298 {Opt_usrquota, "usrquota"},
1299 {Opt_barrier, "barrier=%u"},
1300 {Opt_barrier, "barrier"},
1301 {Opt_nobarrier, "nobarrier"},
1302 {Opt_i_version, "i_version"},
1303 {Opt_stripe, "stripe=%u"},
1304 {Opt_resize, "resize"},
1305 {Opt_delalloc, "delalloc"},
1306 {Opt_nodelalloc, "nodelalloc"},
1307 {Opt_block_validity, "block_validity"},
1308 {Opt_noblock_validity, "noblock_validity"},
1309 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1310 {Opt_journal_ioprio, "journal_ioprio=%u"},
1311 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1312 {Opt_auto_da_alloc, "auto_da_alloc"},
1313 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1314 {Opt_dioread_nolock, "dioread_nolock"},
1315 {Opt_dioread_lock, "dioread_lock"},
1316 {Opt_discard, "discard"},
1317 {Opt_nodiscard, "nodiscard"},
1318 {Opt_init_inode_table, "init_itable=%u"},
1319 {Opt_init_inode_table, "init_itable"},
1320 {Opt_noinit_inode_table, "noinit_itable"},
1321 {Opt_err, NULL},
1322 };
1323
1324 static ext4_fsblk_t get_sb_block(void **data)
1325 {
1326 ext4_fsblk_t sb_block;
1327 char *options = (char *) *data;
1328
1329 if (!options || strncmp(options, "sb=", 3) != 0)
1330 return 1; /* Default location */
1331
1332 options += 3;
1333 /* TODO: use simple_strtoll with >32bit ext4 */
1334 sb_block = simple_strtoul(options, &options, 0);
1335 if (*options && *options != ',') {
1336 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1337 (char *) *data);
1338 return 1;
1339 }
1340 if (*options == ',')
1341 options++;
1342 *data = (void *) options;
1343
1344 return sb_block;
1345 }
1346
1347 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1348 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1349 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1350
1351 #ifdef CONFIG_QUOTA
1352 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1353 {
1354 struct ext4_sb_info *sbi = EXT4_SB(sb);
1355 char *qname;
1356
1357 if (sb_any_quota_loaded(sb) &&
1358 !sbi->s_qf_names[qtype]) {
1359 ext4_msg(sb, KERN_ERR,
1360 "Cannot change journaled "
1361 "quota options when quota turned on");
1362 return 0;
1363 }
1364 qname = match_strdup(args);
1365 if (!qname) {
1366 ext4_msg(sb, KERN_ERR,
1367 "Not enough memory for storing quotafile name");
1368 return 0;
1369 }
1370 if (sbi->s_qf_names[qtype] &&
1371 strcmp(sbi->s_qf_names[qtype], qname)) {
1372 ext4_msg(sb, KERN_ERR,
1373 "%s quota file already specified", QTYPE2NAME(qtype));
1374 kfree(qname);
1375 return 0;
1376 }
1377 sbi->s_qf_names[qtype] = qname;
1378 if (strchr(sbi->s_qf_names[qtype], '/')) {
1379 ext4_msg(sb, KERN_ERR,
1380 "quotafile must be on filesystem root");
1381 kfree(sbi->s_qf_names[qtype]);
1382 sbi->s_qf_names[qtype] = NULL;
1383 return 0;
1384 }
1385 set_opt(sbi->s_mount_opt, QUOTA);
1386 return 1;
1387 }
1388
1389 static int clear_qf_name(struct super_block *sb, int qtype)
1390 {
1391
1392 struct ext4_sb_info *sbi = EXT4_SB(sb);
1393
1394 if (sb_any_quota_loaded(sb) &&
1395 sbi->s_qf_names[qtype]) {
1396 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1397 " when quota turned on");
1398 return 0;
1399 }
1400 /*
1401 * The space will be released later when all options are confirmed
1402 * to be correct
1403 */
1404 sbi->s_qf_names[qtype] = NULL;
1405 return 1;
1406 }
1407 #endif
1408
1409 static int parse_options(char *options, struct super_block *sb,
1410 unsigned long *journal_devnum,
1411 unsigned int *journal_ioprio,
1412 ext4_fsblk_t *n_blocks_count, int is_remount)
1413 {
1414 struct ext4_sb_info *sbi = EXT4_SB(sb);
1415 char *p;
1416 substring_t args[MAX_OPT_ARGS];
1417 int data_opt = 0;
1418 int option;
1419 #ifdef CONFIG_QUOTA
1420 int qfmt;
1421 #endif
1422
1423 if (!options)
1424 return 1;
1425
1426 while ((p = strsep(&options, ",")) != NULL) {
1427 int token;
1428 if (!*p)
1429 continue;
1430
1431 /*
1432 * Initialize args struct so we know whether arg was
1433 * found; some options take optional arguments.
1434 */
1435 args[0].to = args[0].from = 0;
1436 token = match_token(p, tokens, args);
1437 switch (token) {
1438 case Opt_bsd_df:
1439 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1440 clear_opt(sbi->s_mount_opt, MINIX_DF);
1441 break;
1442 case Opt_minix_df:
1443 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1444 set_opt(sbi->s_mount_opt, MINIX_DF);
1445
1446 break;
1447 case Opt_grpid:
1448 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1449 set_opt(sbi->s_mount_opt, GRPID);
1450
1451 break;
1452 case Opt_nogrpid:
1453 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1454 clear_opt(sbi->s_mount_opt, GRPID);
1455
1456 break;
1457 case Opt_resuid:
1458 if (match_int(&args[0], &option))
1459 return 0;
1460 sbi->s_resuid = option;
1461 break;
1462 case Opt_resgid:
1463 if (match_int(&args[0], &option))
1464 return 0;
1465 sbi->s_resgid = option;
1466 break;
1467 case Opt_sb:
1468 /* handled by get_sb_block() instead of here */
1469 /* *sb_block = match_int(&args[0]); */
1470 break;
1471 case Opt_err_panic:
1472 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1473 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1474 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1475 break;
1476 case Opt_err_ro:
1477 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1478 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1479 set_opt(sbi->s_mount_opt, ERRORS_RO);
1480 break;
1481 case Opt_err_cont:
1482 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1483 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1484 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1485 break;
1486 case Opt_nouid32:
1487 set_opt(sbi->s_mount_opt, NO_UID32);
1488 break;
1489 case Opt_debug:
1490 set_opt(sbi->s_mount_opt, DEBUG);
1491 break;
1492 case Opt_oldalloc:
1493 set_opt(sbi->s_mount_opt, OLDALLOC);
1494 break;
1495 case Opt_orlov:
1496 clear_opt(sbi->s_mount_opt, OLDALLOC);
1497 break;
1498 #ifdef CONFIG_EXT4_FS_XATTR
1499 case Opt_user_xattr:
1500 set_opt(sbi->s_mount_opt, XATTR_USER);
1501 break;
1502 case Opt_nouser_xattr:
1503 clear_opt(sbi->s_mount_opt, XATTR_USER);
1504 break;
1505 #else
1506 case Opt_user_xattr:
1507 case Opt_nouser_xattr:
1508 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1509 break;
1510 #endif
1511 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1512 case Opt_acl:
1513 set_opt(sbi->s_mount_opt, POSIX_ACL);
1514 break;
1515 case Opt_noacl:
1516 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1517 break;
1518 #else
1519 case Opt_acl:
1520 case Opt_noacl:
1521 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1522 break;
1523 #endif
1524 case Opt_journal_update:
1525 /* @@@ FIXME */
1526 /* Eventually we will want to be able to create
1527 a journal file here. For now, only allow the
1528 user to specify an existing inode to be the
1529 journal file. */
1530 if (is_remount) {
1531 ext4_msg(sb, KERN_ERR,
1532 "Cannot specify journal on remount");
1533 return 0;
1534 }
1535 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1536 break;
1537 case Opt_journal_dev:
1538 if (is_remount) {
1539 ext4_msg(sb, KERN_ERR,
1540 "Cannot specify journal on remount");
1541 return 0;
1542 }
1543 if (match_int(&args[0], &option))
1544 return 0;
1545 *journal_devnum = option;
1546 break;
1547 case Opt_journal_checksum:
1548 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1549 break;
1550 case Opt_journal_async_commit:
1551 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1552 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1553 break;
1554 case Opt_noload:
1555 set_opt(sbi->s_mount_opt, NOLOAD);
1556 break;
1557 case Opt_commit:
1558 if (match_int(&args[0], &option))
1559 return 0;
1560 if (option < 0)
1561 return 0;
1562 if (option == 0)
1563 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1564 sbi->s_commit_interval = HZ * option;
1565 break;
1566 case Opt_max_batch_time:
1567 if (match_int(&args[0], &option))
1568 return 0;
1569 if (option < 0)
1570 return 0;
1571 if (option == 0)
1572 option = EXT4_DEF_MAX_BATCH_TIME;
1573 sbi->s_max_batch_time = option;
1574 break;
1575 case Opt_min_batch_time:
1576 if (match_int(&args[0], &option))
1577 return 0;
1578 if (option < 0)
1579 return 0;
1580 sbi->s_min_batch_time = option;
1581 break;
1582 case Opt_data_journal:
1583 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1584 goto datacheck;
1585 case Opt_data_ordered:
1586 data_opt = EXT4_MOUNT_ORDERED_DATA;
1587 goto datacheck;
1588 case Opt_data_writeback:
1589 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1590 datacheck:
1591 if (is_remount) {
1592 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1593 ext4_msg(sb, KERN_ERR,
1594 "Cannot change data mode on remount");
1595 return 0;
1596 }
1597 } else {
1598 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1599 sbi->s_mount_opt |= data_opt;
1600 }
1601 break;
1602 case Opt_data_err_abort:
1603 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1604 break;
1605 case Opt_data_err_ignore:
1606 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1607 break;
1608 #ifdef CONFIG_QUOTA
1609 case Opt_usrjquota:
1610 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1611 return 0;
1612 break;
1613 case Opt_grpjquota:
1614 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1615 return 0;
1616 break;
1617 case Opt_offusrjquota:
1618 if (!clear_qf_name(sb, USRQUOTA))
1619 return 0;
1620 break;
1621 case Opt_offgrpjquota:
1622 if (!clear_qf_name(sb, GRPQUOTA))
1623 return 0;
1624 break;
1625
1626 case Opt_jqfmt_vfsold:
1627 qfmt = QFMT_VFS_OLD;
1628 goto set_qf_format;
1629 case Opt_jqfmt_vfsv0:
1630 qfmt = QFMT_VFS_V0;
1631 goto set_qf_format;
1632 case Opt_jqfmt_vfsv1:
1633 qfmt = QFMT_VFS_V1;
1634 set_qf_format:
1635 if (sb_any_quota_loaded(sb) &&
1636 sbi->s_jquota_fmt != qfmt) {
1637 ext4_msg(sb, KERN_ERR, "Cannot change "
1638 "journaled quota options when "
1639 "quota turned on");
1640 return 0;
1641 }
1642 sbi->s_jquota_fmt = qfmt;
1643 break;
1644 case Opt_quota:
1645 case Opt_usrquota:
1646 set_opt(sbi->s_mount_opt, QUOTA);
1647 set_opt(sbi->s_mount_opt, USRQUOTA);
1648 break;
1649 case Opt_grpquota:
1650 set_opt(sbi->s_mount_opt, QUOTA);
1651 set_opt(sbi->s_mount_opt, GRPQUOTA);
1652 break;
1653 case Opt_noquota:
1654 if (sb_any_quota_loaded(sb)) {
1655 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1656 "options when quota turned on");
1657 return 0;
1658 }
1659 clear_opt(sbi->s_mount_opt, QUOTA);
1660 clear_opt(sbi->s_mount_opt, USRQUOTA);
1661 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1662 break;
1663 #else
1664 case Opt_quota:
1665 case Opt_usrquota:
1666 case Opt_grpquota:
1667 ext4_msg(sb, KERN_ERR,
1668 "quota options not supported");
1669 break;
1670 case Opt_usrjquota:
1671 case Opt_grpjquota:
1672 case Opt_offusrjquota:
1673 case Opt_offgrpjquota:
1674 case Opt_jqfmt_vfsold:
1675 case Opt_jqfmt_vfsv0:
1676 case Opt_jqfmt_vfsv1:
1677 ext4_msg(sb, KERN_ERR,
1678 "journaled quota options not supported");
1679 break;
1680 case Opt_noquota:
1681 break;
1682 #endif
1683 case Opt_abort:
1684 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1685 break;
1686 case Opt_nobarrier:
1687 clear_opt(sbi->s_mount_opt, BARRIER);
1688 break;
1689 case Opt_barrier:
1690 if (args[0].from) {
1691 if (match_int(&args[0], &option))
1692 return 0;
1693 } else
1694 option = 1; /* No argument, default to 1 */
1695 if (option)
1696 set_opt(sbi->s_mount_opt, BARRIER);
1697 else
1698 clear_opt(sbi->s_mount_opt, BARRIER);
1699 break;
1700 case Opt_ignore:
1701 break;
1702 case Opt_resize:
1703 if (!is_remount) {
1704 ext4_msg(sb, KERN_ERR,
1705 "resize option only available "
1706 "for remount");
1707 return 0;
1708 }
1709 if (match_int(&args[0], &option) != 0)
1710 return 0;
1711 *n_blocks_count = option;
1712 break;
1713 case Opt_nobh:
1714 ext4_msg(sb, KERN_WARNING,
1715 "Ignoring deprecated nobh option");
1716 break;
1717 case Opt_bh:
1718 ext4_msg(sb, KERN_WARNING,
1719 "Ignoring deprecated bh option");
1720 break;
1721 case Opt_i_version:
1722 set_opt(sbi->s_mount_opt, I_VERSION);
1723 sb->s_flags |= MS_I_VERSION;
1724 break;
1725 case Opt_nodelalloc:
1726 clear_opt(sbi->s_mount_opt, DELALLOC);
1727 break;
1728 case Opt_stripe:
1729 if (match_int(&args[0], &option))
1730 return 0;
1731 if (option < 0)
1732 return 0;
1733 sbi->s_stripe = option;
1734 break;
1735 case Opt_delalloc:
1736 set_opt(sbi->s_mount_opt, DELALLOC);
1737 break;
1738 case Opt_block_validity:
1739 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1740 break;
1741 case Opt_noblock_validity:
1742 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1743 break;
1744 case Opt_inode_readahead_blks:
1745 if (match_int(&args[0], &option))
1746 return 0;
1747 if (option < 0 || option > (1 << 30))
1748 return 0;
1749 if (!is_power_of_2(option)) {
1750 ext4_msg(sb, KERN_ERR,
1751 "EXT4-fs: inode_readahead_blks"
1752 " must be a power of 2");
1753 return 0;
1754 }
1755 sbi->s_inode_readahead_blks = option;
1756 break;
1757 case Opt_journal_ioprio:
1758 if (match_int(&args[0], &option))
1759 return 0;
1760 if (option < 0 || option > 7)
1761 break;
1762 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1763 option);
1764 break;
1765 case Opt_noauto_da_alloc:
1766 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1767 break;
1768 case Opt_auto_da_alloc:
1769 if (args[0].from) {
1770 if (match_int(&args[0], &option))
1771 return 0;
1772 } else
1773 option = 1; /* No argument, default to 1 */
1774 if (option)
1775 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1776 else
1777 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1778 break;
1779 case Opt_discard:
1780 set_opt(sbi->s_mount_opt, DISCARD);
1781 break;
1782 case Opt_nodiscard:
1783 clear_opt(sbi->s_mount_opt, DISCARD);
1784 break;
1785 case Opt_dioread_nolock:
1786 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1787 break;
1788 case Opt_dioread_lock:
1789 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1790 break;
1791 case Opt_init_inode_table:
1792 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1793 if (args[0].from) {
1794 if (match_int(&args[0], &option))
1795 return 0;
1796 } else
1797 option = EXT4_DEF_LI_WAIT_MULT;
1798 if (option < 0)
1799 return 0;
1800 sbi->s_li_wait_mult = option;
1801 break;
1802 case Opt_noinit_inode_table:
1803 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1804 break;
1805 default:
1806 ext4_msg(sb, KERN_ERR,
1807 "Unrecognized mount option \"%s\" "
1808 "or missing value", p);
1809 return 0;
1810 }
1811 }
1812 #ifdef CONFIG_QUOTA
1813 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1814 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1815 clear_opt(sbi->s_mount_opt, USRQUOTA);
1816
1817 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1818 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1819
1820 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1821 ext4_msg(sb, KERN_ERR, "old and new quota "
1822 "format mixing");
1823 return 0;
1824 }
1825
1826 if (!sbi->s_jquota_fmt) {
1827 ext4_msg(sb, KERN_ERR, "journaled quota format "
1828 "not specified");
1829 return 0;
1830 }
1831 } else {
1832 if (sbi->s_jquota_fmt) {
1833 ext4_msg(sb, KERN_ERR, "journaled quota format "
1834 "specified with no journaling "
1835 "enabled");
1836 return 0;
1837 }
1838 }
1839 #endif
1840 return 1;
1841 }
1842
1843 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1844 int read_only)
1845 {
1846 struct ext4_sb_info *sbi = EXT4_SB(sb);
1847 int res = 0;
1848
1849 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1850 ext4_msg(sb, KERN_ERR, "revision level too high, "
1851 "forcing read-only mode");
1852 res = MS_RDONLY;
1853 }
1854 if (read_only)
1855 return res;
1856 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1857 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1858 "running e2fsck is recommended");
1859 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1860 ext4_msg(sb, KERN_WARNING,
1861 "warning: mounting fs with errors, "
1862 "running e2fsck is recommended");
1863 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1864 le16_to_cpu(es->s_mnt_count) >=
1865 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1866 ext4_msg(sb, KERN_WARNING,
1867 "warning: maximal mount count reached, "
1868 "running e2fsck is recommended");
1869 else if (le32_to_cpu(es->s_checkinterval) &&
1870 (le32_to_cpu(es->s_lastcheck) +
1871 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1872 ext4_msg(sb, KERN_WARNING,
1873 "warning: checktime reached, "
1874 "running e2fsck is recommended");
1875 if (!sbi->s_journal)
1876 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1877 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1878 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1879 le16_add_cpu(&es->s_mnt_count, 1);
1880 es->s_mtime = cpu_to_le32(get_seconds());
1881 ext4_update_dynamic_rev(sb);
1882 if (sbi->s_journal)
1883 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1884
1885 ext4_commit_super(sb, 1);
1886 if (test_opt(sb, DEBUG))
1887 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1888 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1889 sb->s_blocksize,
1890 sbi->s_groups_count,
1891 EXT4_BLOCKS_PER_GROUP(sb),
1892 EXT4_INODES_PER_GROUP(sb),
1893 sbi->s_mount_opt);
1894
1895 return res;
1896 }
1897
1898 static int ext4_fill_flex_info(struct super_block *sb)
1899 {
1900 struct ext4_sb_info *sbi = EXT4_SB(sb);
1901 struct ext4_group_desc *gdp = NULL;
1902 ext4_group_t flex_group_count;
1903 ext4_group_t flex_group;
1904 int groups_per_flex = 0;
1905 size_t size;
1906 int i;
1907
1908 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1909 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1910
1911 if (groups_per_flex < 2) {
1912 sbi->s_log_groups_per_flex = 0;
1913 return 1;
1914 }
1915
1916 /* We allocate both existing and potentially added groups */
1917 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1918 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1919 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1920 size = flex_group_count * sizeof(struct flex_groups);
1921 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1922 if (sbi->s_flex_groups == NULL) {
1923 sbi->s_flex_groups = vmalloc(size);
1924 if (sbi->s_flex_groups)
1925 memset(sbi->s_flex_groups, 0, size);
1926 }
1927 if (sbi->s_flex_groups == NULL) {
1928 ext4_msg(sb, KERN_ERR, "not enough memory for "
1929 "%u flex groups", flex_group_count);
1930 goto failed;
1931 }
1932
1933 for (i = 0; i < sbi->s_groups_count; i++) {
1934 gdp = ext4_get_group_desc(sb, i, NULL);
1935
1936 flex_group = ext4_flex_group(sbi, i);
1937 atomic_add(ext4_free_inodes_count(sb, gdp),
1938 &sbi->s_flex_groups[flex_group].free_inodes);
1939 atomic_add(ext4_free_blks_count(sb, gdp),
1940 &sbi->s_flex_groups[flex_group].free_blocks);
1941 atomic_add(ext4_used_dirs_count(sb, gdp),
1942 &sbi->s_flex_groups[flex_group].used_dirs);
1943 }
1944
1945 return 1;
1946 failed:
1947 return 0;
1948 }
1949
1950 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1951 struct ext4_group_desc *gdp)
1952 {
1953 __u16 crc = 0;
1954
1955 if (sbi->s_es->s_feature_ro_compat &
1956 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1957 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1958 __le32 le_group = cpu_to_le32(block_group);
1959
1960 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1961 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1962 crc = crc16(crc, (__u8 *)gdp, offset);
1963 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1964 /* for checksum of struct ext4_group_desc do the rest...*/
1965 if ((sbi->s_es->s_feature_incompat &
1966 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1967 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1968 crc = crc16(crc, (__u8 *)gdp + offset,
1969 le16_to_cpu(sbi->s_es->s_desc_size) -
1970 offset);
1971 }
1972
1973 return cpu_to_le16(crc);
1974 }
1975
1976 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1977 struct ext4_group_desc *gdp)
1978 {
1979 if ((sbi->s_es->s_feature_ro_compat &
1980 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1981 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1982 return 0;
1983
1984 return 1;
1985 }
1986
1987 /* Called at mount-time, super-block is locked */
1988 static int ext4_check_descriptors(struct super_block *sb,
1989 ext4_group_t *first_not_zeroed)
1990 {
1991 struct ext4_sb_info *sbi = EXT4_SB(sb);
1992 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1993 ext4_fsblk_t last_block;
1994 ext4_fsblk_t block_bitmap;
1995 ext4_fsblk_t inode_bitmap;
1996 ext4_fsblk_t inode_table;
1997 int flexbg_flag = 0;
1998 ext4_group_t i, grp = sbi->s_groups_count;
1999
2000 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2001 flexbg_flag = 1;
2002
2003 ext4_debug("Checking group descriptors");
2004
2005 for (i = 0; i < sbi->s_groups_count; i++) {
2006 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2007
2008 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2009 last_block = ext4_blocks_count(sbi->s_es) - 1;
2010 else
2011 last_block = first_block +
2012 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2013
2014 if ((grp == sbi->s_groups_count) &&
2015 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2016 grp = i;
2017
2018 block_bitmap = ext4_block_bitmap(sb, gdp);
2019 if (block_bitmap < first_block || block_bitmap > last_block) {
2020 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2021 "Block bitmap for group %u not in group "
2022 "(block %llu)!", i, block_bitmap);
2023 return 0;
2024 }
2025 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2026 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2027 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2028 "Inode bitmap for group %u not in group "
2029 "(block %llu)!", i, inode_bitmap);
2030 return 0;
2031 }
2032 inode_table = ext4_inode_table(sb, gdp);
2033 if (inode_table < first_block ||
2034 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2035 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2036 "Inode table for group %u not in group "
2037 "(block %llu)!", i, inode_table);
2038 return 0;
2039 }
2040 ext4_lock_group(sb, i);
2041 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2042 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2043 "Checksum for group %u failed (%u!=%u)",
2044 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2045 gdp)), le16_to_cpu(gdp->bg_checksum));
2046 if (!(sb->s_flags & MS_RDONLY)) {
2047 ext4_unlock_group(sb, i);
2048 return 0;
2049 }
2050 }
2051 ext4_unlock_group(sb, i);
2052 if (!flexbg_flag)
2053 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2054 }
2055 if (NULL != first_not_zeroed)
2056 *first_not_zeroed = grp;
2057
2058 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2059 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2060 return 1;
2061 }
2062
2063 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2064 * the superblock) which were deleted from all directories, but held open by
2065 * a process at the time of a crash. We walk the list and try to delete these
2066 * inodes at recovery time (only with a read-write filesystem).
2067 *
2068 * In order to keep the orphan inode chain consistent during traversal (in
2069 * case of crash during recovery), we link each inode into the superblock
2070 * orphan list_head and handle it the same way as an inode deletion during
2071 * normal operation (which journals the operations for us).
2072 *
2073 * We only do an iget() and an iput() on each inode, which is very safe if we
2074 * accidentally point at an in-use or already deleted inode. The worst that
2075 * can happen in this case is that we get a "bit already cleared" message from
2076 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2077 * e2fsck was run on this filesystem, and it must have already done the orphan
2078 * inode cleanup for us, so we can safely abort without any further action.
2079 */
2080 static void ext4_orphan_cleanup(struct super_block *sb,
2081 struct ext4_super_block *es)
2082 {
2083 unsigned int s_flags = sb->s_flags;
2084 int nr_orphans = 0, nr_truncates = 0;
2085 #ifdef CONFIG_QUOTA
2086 int i;
2087 #endif
2088 if (!es->s_last_orphan) {
2089 jbd_debug(4, "no orphan inodes to clean up\n");
2090 return;
2091 }
2092
2093 if (bdev_read_only(sb->s_bdev)) {
2094 ext4_msg(sb, KERN_ERR, "write access "
2095 "unavailable, skipping orphan cleanup");
2096 return;
2097 }
2098
2099 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2100 if (es->s_last_orphan)
2101 jbd_debug(1, "Errors on filesystem, "
2102 "clearing orphan list.\n");
2103 es->s_last_orphan = 0;
2104 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2105 return;
2106 }
2107
2108 if (s_flags & MS_RDONLY) {
2109 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2110 sb->s_flags &= ~MS_RDONLY;
2111 }
2112 #ifdef CONFIG_QUOTA
2113 /* Needed for iput() to work correctly and not trash data */
2114 sb->s_flags |= MS_ACTIVE;
2115 /* Turn on quotas so that they are updated correctly */
2116 for (i = 0; i < MAXQUOTAS; i++) {
2117 if (EXT4_SB(sb)->s_qf_names[i]) {
2118 int ret = ext4_quota_on_mount(sb, i);
2119 if (ret < 0)
2120 ext4_msg(sb, KERN_ERR,
2121 "Cannot turn on journaled "
2122 "quota: error %d", ret);
2123 }
2124 }
2125 #endif
2126
2127 while (es->s_last_orphan) {
2128 struct inode *inode;
2129
2130 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2131 if (IS_ERR(inode)) {
2132 es->s_last_orphan = 0;
2133 break;
2134 }
2135
2136 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2137 dquot_initialize(inode);
2138 if (inode->i_nlink) {
2139 ext4_msg(sb, KERN_DEBUG,
2140 "%s: truncating inode %lu to %lld bytes",
2141 __func__, inode->i_ino, inode->i_size);
2142 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2143 inode->i_ino, inode->i_size);
2144 ext4_truncate(inode);
2145 nr_truncates++;
2146 } else {
2147 ext4_msg(sb, KERN_DEBUG,
2148 "%s: deleting unreferenced inode %lu",
2149 __func__, inode->i_ino);
2150 jbd_debug(2, "deleting unreferenced inode %lu\n",
2151 inode->i_ino);
2152 nr_orphans++;
2153 }
2154 iput(inode); /* The delete magic happens here! */
2155 }
2156
2157 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2158
2159 if (nr_orphans)
2160 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2161 PLURAL(nr_orphans));
2162 if (nr_truncates)
2163 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2164 PLURAL(nr_truncates));
2165 #ifdef CONFIG_QUOTA
2166 /* Turn quotas off */
2167 for (i = 0; i < MAXQUOTAS; i++) {
2168 if (sb_dqopt(sb)->files[i])
2169 dquot_quota_off(sb, i);
2170 }
2171 #endif
2172 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2173 }
2174
2175 /*
2176 * Maximal extent format file size.
2177 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2178 * extent format containers, within a sector_t, and within i_blocks
2179 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2180 * so that won't be a limiting factor.
2181 *
2182 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2183 */
2184 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2185 {
2186 loff_t res;
2187 loff_t upper_limit = MAX_LFS_FILESIZE;
2188
2189 /* small i_blocks in vfs inode? */
2190 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2191 /*
2192 * CONFIG_LBDAF is not enabled implies the inode
2193 * i_block represent total blocks in 512 bytes
2194 * 32 == size of vfs inode i_blocks * 8
2195 */
2196 upper_limit = (1LL << 32) - 1;
2197
2198 /* total blocks in file system block size */
2199 upper_limit >>= (blkbits - 9);
2200 upper_limit <<= blkbits;
2201 }
2202
2203 /* 32-bit extent-start container, ee_block */
2204 res = 1LL << 32;
2205 res <<= blkbits;
2206 res -= 1;
2207
2208 /* Sanity check against vm- & vfs- imposed limits */
2209 if (res > upper_limit)
2210 res = upper_limit;
2211
2212 return res;
2213 }
2214
2215 /*
2216 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2217 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2218 * We need to be 1 filesystem block less than the 2^48 sector limit.
2219 */
2220 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2221 {
2222 loff_t res = EXT4_NDIR_BLOCKS;
2223 int meta_blocks;
2224 loff_t upper_limit;
2225 /* This is calculated to be the largest file size for a dense, block
2226 * mapped file such that the file's total number of 512-byte sectors,
2227 * including data and all indirect blocks, does not exceed (2^48 - 1).
2228 *
2229 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2230 * number of 512-byte sectors of the file.
2231 */
2232
2233 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2234 /*
2235 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2236 * the inode i_block field represents total file blocks in
2237 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2238 */
2239 upper_limit = (1LL << 32) - 1;
2240
2241 /* total blocks in file system block size */
2242 upper_limit >>= (bits - 9);
2243
2244 } else {
2245 /*
2246 * We use 48 bit ext4_inode i_blocks
2247 * With EXT4_HUGE_FILE_FL set the i_blocks
2248 * represent total number of blocks in
2249 * file system block size
2250 */
2251 upper_limit = (1LL << 48) - 1;
2252
2253 }
2254
2255 /* indirect blocks */
2256 meta_blocks = 1;
2257 /* double indirect blocks */
2258 meta_blocks += 1 + (1LL << (bits-2));
2259 /* tripple indirect blocks */
2260 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2261
2262 upper_limit -= meta_blocks;
2263 upper_limit <<= bits;
2264
2265 res += 1LL << (bits-2);
2266 res += 1LL << (2*(bits-2));
2267 res += 1LL << (3*(bits-2));
2268 res <<= bits;
2269 if (res > upper_limit)
2270 res = upper_limit;
2271
2272 if (res > MAX_LFS_FILESIZE)
2273 res = MAX_LFS_FILESIZE;
2274
2275 return res;
2276 }
2277
2278 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2279 ext4_fsblk_t logical_sb_block, int nr)
2280 {
2281 struct ext4_sb_info *sbi = EXT4_SB(sb);
2282 ext4_group_t bg, first_meta_bg;
2283 int has_super = 0;
2284
2285 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2286
2287 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2288 nr < first_meta_bg)
2289 return logical_sb_block + nr + 1;
2290 bg = sbi->s_desc_per_block * nr;
2291 if (ext4_bg_has_super(sb, bg))
2292 has_super = 1;
2293
2294 return (has_super + ext4_group_first_block_no(sb, bg));
2295 }
2296
2297 /**
2298 * ext4_get_stripe_size: Get the stripe size.
2299 * @sbi: In memory super block info
2300 *
2301 * If we have specified it via mount option, then
2302 * use the mount option value. If the value specified at mount time is
2303 * greater than the blocks per group use the super block value.
2304 * If the super block value is greater than blocks per group return 0.
2305 * Allocator needs it be less than blocks per group.
2306 *
2307 */
2308 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2309 {
2310 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2311 unsigned long stripe_width =
2312 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2313
2314 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2315 return sbi->s_stripe;
2316
2317 if (stripe_width <= sbi->s_blocks_per_group)
2318 return stripe_width;
2319
2320 if (stride <= sbi->s_blocks_per_group)
2321 return stride;
2322
2323 return 0;
2324 }
2325
2326 /* sysfs supprt */
2327
2328 struct ext4_attr {
2329 struct attribute attr;
2330 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2331 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2332 const char *, size_t);
2333 int offset;
2334 };
2335
2336 static int parse_strtoul(const char *buf,
2337 unsigned long max, unsigned long *value)
2338 {
2339 char *endp;
2340
2341 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2342 endp = skip_spaces(endp);
2343 if (*endp || *value > max)
2344 return -EINVAL;
2345
2346 return 0;
2347 }
2348
2349 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2350 struct ext4_sb_info *sbi,
2351 char *buf)
2352 {
2353 return snprintf(buf, PAGE_SIZE, "%llu\n",
2354 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2355 }
2356
2357 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2358 struct ext4_sb_info *sbi, char *buf)
2359 {
2360 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2361
2362 if (!sb->s_bdev->bd_part)
2363 return snprintf(buf, PAGE_SIZE, "0\n");
2364 return snprintf(buf, PAGE_SIZE, "%lu\n",
2365 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2366 sbi->s_sectors_written_start) >> 1);
2367 }
2368
2369 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2370 struct ext4_sb_info *sbi, char *buf)
2371 {
2372 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2373
2374 if (!sb->s_bdev->bd_part)
2375 return snprintf(buf, PAGE_SIZE, "0\n");
2376 return snprintf(buf, PAGE_SIZE, "%llu\n",
2377 (unsigned long long)(sbi->s_kbytes_written +
2378 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2379 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2380 }
2381
2382 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2383 struct ext4_sb_info *sbi,
2384 const char *buf, size_t count)
2385 {
2386 unsigned long t;
2387
2388 if (parse_strtoul(buf, 0x40000000, &t))
2389 return -EINVAL;
2390
2391 if (!is_power_of_2(t))
2392 return -EINVAL;
2393
2394 sbi->s_inode_readahead_blks = t;
2395 return count;
2396 }
2397
2398 static ssize_t sbi_ui_show(struct ext4_attr *a,
2399 struct ext4_sb_info *sbi, char *buf)
2400 {
2401 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2402
2403 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2404 }
2405
2406 static ssize_t sbi_ui_store(struct ext4_attr *a,
2407 struct ext4_sb_info *sbi,
2408 const char *buf, size_t count)
2409 {
2410 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2411 unsigned long t;
2412
2413 if (parse_strtoul(buf, 0xffffffff, &t))
2414 return -EINVAL;
2415 *ui = t;
2416 return count;
2417 }
2418
2419 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2420 static struct ext4_attr ext4_attr_##_name = { \
2421 .attr = {.name = __stringify(_name), .mode = _mode }, \
2422 .show = _show, \
2423 .store = _store, \
2424 .offset = offsetof(struct ext4_sb_info, _elname), \
2425 }
2426 #define EXT4_ATTR(name, mode, show, store) \
2427 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2428
2429 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2430 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2431 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2432 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2433 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2434 #define ATTR_LIST(name) &ext4_attr_##name.attr
2435
2436 EXT4_RO_ATTR(delayed_allocation_blocks);
2437 EXT4_RO_ATTR(session_write_kbytes);
2438 EXT4_RO_ATTR(lifetime_write_kbytes);
2439 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2440 inode_readahead_blks_store, s_inode_readahead_blks);
2441 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2442 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2443 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2444 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2445 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2446 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2447 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2448 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2449
2450 static struct attribute *ext4_attrs[] = {
2451 ATTR_LIST(delayed_allocation_blocks),
2452 ATTR_LIST(session_write_kbytes),
2453 ATTR_LIST(lifetime_write_kbytes),
2454 ATTR_LIST(inode_readahead_blks),
2455 ATTR_LIST(inode_goal),
2456 ATTR_LIST(mb_stats),
2457 ATTR_LIST(mb_max_to_scan),
2458 ATTR_LIST(mb_min_to_scan),
2459 ATTR_LIST(mb_order2_req),
2460 ATTR_LIST(mb_stream_req),
2461 ATTR_LIST(mb_group_prealloc),
2462 ATTR_LIST(max_writeback_mb_bump),
2463 NULL,
2464 };
2465
2466 /* Features this copy of ext4 supports */
2467 EXT4_INFO_ATTR(lazy_itable_init);
2468 EXT4_INFO_ATTR(batched_discard);
2469
2470 static struct attribute *ext4_feat_attrs[] = {
2471 ATTR_LIST(lazy_itable_init),
2472 ATTR_LIST(batched_discard),
2473 NULL,
2474 };
2475
2476 static ssize_t ext4_attr_show(struct kobject *kobj,
2477 struct attribute *attr, char *buf)
2478 {
2479 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2480 s_kobj);
2481 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2482
2483 return a->show ? a->show(a, sbi, buf) : 0;
2484 }
2485
2486 static ssize_t ext4_attr_store(struct kobject *kobj,
2487 struct attribute *attr,
2488 const char *buf, size_t len)
2489 {
2490 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2491 s_kobj);
2492 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2493
2494 return a->store ? a->store(a, sbi, buf, len) : 0;
2495 }
2496
2497 static void ext4_sb_release(struct kobject *kobj)
2498 {
2499 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2500 s_kobj);
2501 complete(&sbi->s_kobj_unregister);
2502 }
2503
2504 static const struct sysfs_ops ext4_attr_ops = {
2505 .show = ext4_attr_show,
2506 .store = ext4_attr_store,
2507 };
2508
2509 static struct kobj_type ext4_ktype = {
2510 .default_attrs = ext4_attrs,
2511 .sysfs_ops = &ext4_attr_ops,
2512 .release = ext4_sb_release,
2513 };
2514
2515 static void ext4_feat_release(struct kobject *kobj)
2516 {
2517 complete(&ext4_feat->f_kobj_unregister);
2518 }
2519
2520 static struct kobj_type ext4_feat_ktype = {
2521 .default_attrs = ext4_feat_attrs,
2522 .sysfs_ops = &ext4_attr_ops,
2523 .release = ext4_feat_release,
2524 };
2525
2526 /*
2527 * Check whether this filesystem can be mounted based on
2528 * the features present and the RDONLY/RDWR mount requested.
2529 * Returns 1 if this filesystem can be mounted as requested,
2530 * 0 if it cannot be.
2531 */
2532 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2533 {
2534 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2535 ext4_msg(sb, KERN_ERR,
2536 "Couldn't mount because of "
2537 "unsupported optional features (%x)",
2538 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2539 ~EXT4_FEATURE_INCOMPAT_SUPP));
2540 return 0;
2541 }
2542
2543 if (readonly)
2544 return 1;
2545
2546 /* Check that feature set is OK for a read-write mount */
2547 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2548 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2549 "unsupported optional features (%x)",
2550 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2551 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2552 return 0;
2553 }
2554 /*
2555 * Large file size enabled file system can only be mounted
2556 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2557 */
2558 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2559 if (sizeof(blkcnt_t) < sizeof(u64)) {
2560 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2561 "cannot be mounted RDWR without "
2562 "CONFIG_LBDAF");
2563 return 0;
2564 }
2565 }
2566 return 1;
2567 }
2568
2569 /*
2570 * This function is called once a day if we have errors logged
2571 * on the file system
2572 */
2573 static void print_daily_error_info(unsigned long arg)
2574 {
2575 struct super_block *sb = (struct super_block *) arg;
2576 struct ext4_sb_info *sbi;
2577 struct ext4_super_block *es;
2578
2579 sbi = EXT4_SB(sb);
2580 es = sbi->s_es;
2581
2582 if (es->s_error_count)
2583 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2584 le32_to_cpu(es->s_error_count));
2585 if (es->s_first_error_time) {
2586 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2587 sb->s_id, le32_to_cpu(es->s_first_error_time),
2588 (int) sizeof(es->s_first_error_func),
2589 es->s_first_error_func,
2590 le32_to_cpu(es->s_first_error_line));
2591 if (es->s_first_error_ino)
2592 printk(": inode %u",
2593 le32_to_cpu(es->s_first_error_ino));
2594 if (es->s_first_error_block)
2595 printk(": block %llu", (unsigned long long)
2596 le64_to_cpu(es->s_first_error_block));
2597 printk("\n");
2598 }
2599 if (es->s_last_error_time) {
2600 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2601 sb->s_id, le32_to_cpu(es->s_last_error_time),
2602 (int) sizeof(es->s_last_error_func),
2603 es->s_last_error_func,
2604 le32_to_cpu(es->s_last_error_line));
2605 if (es->s_last_error_ino)
2606 printk(": inode %u",
2607 le32_to_cpu(es->s_last_error_ino));
2608 if (es->s_last_error_block)
2609 printk(": block %llu", (unsigned long long)
2610 le64_to_cpu(es->s_last_error_block));
2611 printk("\n");
2612 }
2613 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2614 }
2615
2616 static void ext4_lazyinode_timeout(unsigned long data)
2617 {
2618 struct task_struct *p = (struct task_struct *)data;
2619 wake_up_process(p);
2620 }
2621
2622 /* Find next suitable group and run ext4_init_inode_table */
2623 static int ext4_run_li_request(struct ext4_li_request *elr)
2624 {
2625 struct ext4_group_desc *gdp = NULL;
2626 ext4_group_t group, ngroups;
2627 struct super_block *sb;
2628 unsigned long timeout = 0;
2629 int ret = 0;
2630
2631 sb = elr->lr_super;
2632 ngroups = EXT4_SB(sb)->s_groups_count;
2633
2634 for (group = elr->lr_next_group; group < ngroups; group++) {
2635 gdp = ext4_get_group_desc(sb, group, NULL);
2636 if (!gdp) {
2637 ret = 1;
2638 break;
2639 }
2640
2641 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2642 break;
2643 }
2644
2645 if (group == ngroups)
2646 ret = 1;
2647
2648 if (!ret) {
2649 timeout = jiffies;
2650 ret = ext4_init_inode_table(sb, group,
2651 elr->lr_timeout ? 0 : 1);
2652 if (elr->lr_timeout == 0) {
2653 timeout = jiffies - timeout;
2654 if (elr->lr_sbi->s_li_wait_mult)
2655 timeout *= elr->lr_sbi->s_li_wait_mult;
2656 else
2657 timeout *= 20;
2658 elr->lr_timeout = timeout;
2659 }
2660 elr->lr_next_sched = jiffies + elr->lr_timeout;
2661 elr->lr_next_group = group + 1;
2662 }
2663
2664 return ret;
2665 }
2666
2667 /*
2668 * Remove lr_request from the list_request and free the
2669 * request tructure. Should be called with li_list_mtx held
2670 */
2671 static void ext4_remove_li_request(struct ext4_li_request *elr)
2672 {
2673 struct ext4_sb_info *sbi;
2674
2675 if (!elr)
2676 return;
2677
2678 sbi = elr->lr_sbi;
2679
2680 list_del(&elr->lr_request);
2681 sbi->s_li_request = NULL;
2682 kfree(elr);
2683 }
2684
2685 static void ext4_unregister_li_request(struct super_block *sb)
2686 {
2687 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2688
2689 if (!ext4_li_info)
2690 return;
2691
2692 mutex_lock(&ext4_li_info->li_list_mtx);
2693 ext4_remove_li_request(elr);
2694 mutex_unlock(&ext4_li_info->li_list_mtx);
2695 }
2696
2697 /*
2698 * This is the function where ext4lazyinit thread lives. It walks
2699 * through the request list searching for next scheduled filesystem.
2700 * When such a fs is found, run the lazy initialization request
2701 * (ext4_rn_li_request) and keep track of the time spend in this
2702 * function. Based on that time we compute next schedule time of
2703 * the request. When walking through the list is complete, compute
2704 * next waking time and put itself into sleep.
2705 */
2706 static int ext4_lazyinit_thread(void *arg)
2707 {
2708 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2709 struct list_head *pos, *n;
2710 struct ext4_li_request *elr;
2711 unsigned long next_wakeup;
2712 DEFINE_WAIT(wait);
2713
2714 BUG_ON(NULL == eli);
2715
2716 eli->li_timer.data = (unsigned long)current;
2717 eli->li_timer.function = ext4_lazyinode_timeout;
2718
2719 eli->li_task = current;
2720 wake_up(&eli->li_wait_task);
2721
2722 cont_thread:
2723 while (true) {
2724 next_wakeup = MAX_JIFFY_OFFSET;
2725
2726 mutex_lock(&eli->li_list_mtx);
2727 if (list_empty(&eli->li_request_list)) {
2728 mutex_unlock(&eli->li_list_mtx);
2729 goto exit_thread;
2730 }
2731
2732 list_for_each_safe(pos, n, &eli->li_request_list) {
2733 elr = list_entry(pos, struct ext4_li_request,
2734 lr_request);
2735
2736 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2737 if (ext4_run_li_request(elr) != 0) {
2738 /* error, remove the lazy_init job */
2739 ext4_remove_li_request(elr);
2740 continue;
2741 }
2742 }
2743
2744 if (time_before(elr->lr_next_sched, next_wakeup))
2745 next_wakeup = elr->lr_next_sched;
2746 }
2747 mutex_unlock(&eli->li_list_mtx);
2748
2749 if (freezing(current))
2750 refrigerator();
2751
2752 if ((time_after_eq(jiffies, next_wakeup)) ||
2753 (MAX_JIFFY_OFFSET == next_wakeup)) {
2754 cond_resched();
2755 continue;
2756 }
2757
2758 eli->li_timer.expires = next_wakeup;
2759 add_timer(&eli->li_timer);
2760 prepare_to_wait(&eli->li_wait_daemon, &wait,
2761 TASK_INTERRUPTIBLE);
2762 if (time_before(jiffies, next_wakeup))
2763 schedule();
2764 finish_wait(&eli->li_wait_daemon, &wait);
2765 }
2766
2767 exit_thread:
2768 /*
2769 * It looks like the request list is empty, but we need
2770 * to check it under the li_list_mtx lock, to prevent any
2771 * additions into it, and of course we should lock ext4_li_mtx
2772 * to atomically free the list and ext4_li_info, because at
2773 * this point another ext4 filesystem could be registering
2774 * new one.
2775 */
2776 mutex_lock(&ext4_li_mtx);
2777 mutex_lock(&eli->li_list_mtx);
2778 if (!list_empty(&eli->li_request_list)) {
2779 mutex_unlock(&eli->li_list_mtx);
2780 mutex_unlock(&ext4_li_mtx);
2781 goto cont_thread;
2782 }
2783 mutex_unlock(&eli->li_list_mtx);
2784 del_timer_sync(&ext4_li_info->li_timer);
2785 eli->li_task = NULL;
2786 wake_up(&eli->li_wait_task);
2787
2788 kfree(ext4_li_info);
2789 ext4_li_info = NULL;
2790 mutex_unlock(&ext4_li_mtx);
2791
2792 return 0;
2793 }
2794
2795 static void ext4_clear_request_list(void)
2796 {
2797 struct list_head *pos, *n;
2798 struct ext4_li_request *elr;
2799
2800 mutex_lock(&ext4_li_info->li_list_mtx);
2801 if (list_empty(&ext4_li_info->li_request_list))
2802 return;
2803
2804 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2805 elr = list_entry(pos, struct ext4_li_request,
2806 lr_request);
2807 ext4_remove_li_request(elr);
2808 }
2809 mutex_unlock(&ext4_li_info->li_list_mtx);
2810 }
2811
2812 static int ext4_run_lazyinit_thread(void)
2813 {
2814 struct task_struct *t;
2815
2816 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2817 if (IS_ERR(t)) {
2818 int err = PTR_ERR(t);
2819 ext4_clear_request_list();
2820 del_timer_sync(&ext4_li_info->li_timer);
2821 kfree(ext4_li_info);
2822 ext4_li_info = NULL;
2823 printk(KERN_CRIT "EXT4: error %d creating inode table "
2824 "initialization thread\n",
2825 err);
2826 return err;
2827 }
2828 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2829
2830 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2831 return 0;
2832 }
2833
2834 /*
2835 * Check whether it make sense to run itable init. thread or not.
2836 * If there is at least one uninitialized inode table, return
2837 * corresponding group number, else the loop goes through all
2838 * groups and return total number of groups.
2839 */
2840 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2841 {
2842 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2843 struct ext4_group_desc *gdp = NULL;
2844
2845 for (group = 0; group < ngroups; group++) {
2846 gdp = ext4_get_group_desc(sb, group, NULL);
2847 if (!gdp)
2848 continue;
2849
2850 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2851 break;
2852 }
2853
2854 return group;
2855 }
2856
2857 static int ext4_li_info_new(void)
2858 {
2859 struct ext4_lazy_init *eli = NULL;
2860
2861 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2862 if (!eli)
2863 return -ENOMEM;
2864
2865 eli->li_task = NULL;
2866 INIT_LIST_HEAD(&eli->li_request_list);
2867 mutex_init(&eli->li_list_mtx);
2868
2869 init_waitqueue_head(&eli->li_wait_daemon);
2870 init_waitqueue_head(&eli->li_wait_task);
2871 init_timer(&eli->li_timer);
2872 eli->li_state |= EXT4_LAZYINIT_QUIT;
2873
2874 ext4_li_info = eli;
2875
2876 return 0;
2877 }
2878
2879 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2880 ext4_group_t start)
2881 {
2882 struct ext4_sb_info *sbi = EXT4_SB(sb);
2883 struct ext4_li_request *elr;
2884 unsigned long rnd;
2885
2886 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2887 if (!elr)
2888 return NULL;
2889
2890 elr->lr_super = sb;
2891 elr->lr_sbi = sbi;
2892 elr->lr_next_group = start;
2893
2894 /*
2895 * Randomize first schedule time of the request to
2896 * spread the inode table initialization requests
2897 * better.
2898 */
2899 get_random_bytes(&rnd, sizeof(rnd));
2900 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2901 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2902
2903 return elr;
2904 }
2905
2906 static int ext4_register_li_request(struct super_block *sb,
2907 ext4_group_t first_not_zeroed)
2908 {
2909 struct ext4_sb_info *sbi = EXT4_SB(sb);
2910 struct ext4_li_request *elr;
2911 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2912 int ret;
2913
2914 if (sbi->s_li_request != NULL)
2915 return 0;
2916
2917 if (first_not_zeroed == ngroups ||
2918 (sb->s_flags & MS_RDONLY) ||
2919 !test_opt(sb, INIT_INODE_TABLE)) {
2920 sbi->s_li_request = NULL;
2921 return 0;
2922 }
2923
2924 if (first_not_zeroed == ngroups) {
2925 sbi->s_li_request = NULL;
2926 return 0;
2927 }
2928
2929 elr = ext4_li_request_new(sb, first_not_zeroed);
2930 if (!elr)
2931 return -ENOMEM;
2932
2933 mutex_lock(&ext4_li_mtx);
2934
2935 if (NULL == ext4_li_info) {
2936 ret = ext4_li_info_new();
2937 if (ret)
2938 goto out;
2939 }
2940
2941 mutex_lock(&ext4_li_info->li_list_mtx);
2942 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2943 mutex_unlock(&ext4_li_info->li_list_mtx);
2944
2945 sbi->s_li_request = elr;
2946
2947 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2948 ret = ext4_run_lazyinit_thread();
2949 if (ret)
2950 goto out;
2951 }
2952 out:
2953 mutex_unlock(&ext4_li_mtx);
2954 if (ret)
2955 kfree(elr);
2956 return ret;
2957 }
2958
2959 /*
2960 * We do not need to lock anything since this is called on
2961 * module unload.
2962 */
2963 static void ext4_destroy_lazyinit_thread(void)
2964 {
2965 /*
2966 * If thread exited earlier
2967 * there's nothing to be done.
2968 */
2969 if (!ext4_li_info)
2970 return;
2971
2972 ext4_clear_request_list();
2973
2974 while (ext4_li_info->li_task) {
2975 wake_up(&ext4_li_info->li_wait_daemon);
2976 wait_event(ext4_li_info->li_wait_task,
2977 ext4_li_info->li_task == NULL);
2978 }
2979 }
2980
2981 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2982 __releases(kernel_lock)
2983 __acquires(kernel_lock)
2984 {
2985 char *orig_data = kstrdup(data, GFP_KERNEL);
2986 struct buffer_head *bh;
2987 struct ext4_super_block *es = NULL;
2988 struct ext4_sb_info *sbi;
2989 ext4_fsblk_t block;
2990 ext4_fsblk_t sb_block = get_sb_block(&data);
2991 ext4_fsblk_t logical_sb_block;
2992 unsigned long offset = 0;
2993 unsigned long journal_devnum = 0;
2994 unsigned long def_mount_opts;
2995 struct inode *root;
2996 char *cp;
2997 const char *descr;
2998 int ret = -ENOMEM;
2999 int blocksize;
3000 unsigned int db_count;
3001 unsigned int i;
3002 int needs_recovery, has_huge_files;
3003 __u64 blocks_count;
3004 int err;
3005 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3006 ext4_group_t first_not_zeroed;
3007
3008 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3009 if (!sbi)
3010 goto out_free_orig;
3011
3012 sbi->s_blockgroup_lock =
3013 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3014 if (!sbi->s_blockgroup_lock) {
3015 kfree(sbi);
3016 goto out_free_orig;
3017 }
3018 sb->s_fs_info = sbi;
3019 sbi->s_mount_opt = 0;
3020 sbi->s_resuid = EXT4_DEF_RESUID;
3021 sbi->s_resgid = EXT4_DEF_RESGID;
3022 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3023 sbi->s_sb_block = sb_block;
3024 if (sb->s_bdev->bd_part)
3025 sbi->s_sectors_written_start =
3026 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3027
3028 /* Cleanup superblock name */
3029 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3030 *cp = '!';
3031
3032 ret = -EINVAL;
3033 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3034 if (!blocksize) {
3035 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3036 goto out_fail;
3037 }
3038
3039 /*
3040 * The ext4 superblock will not be buffer aligned for other than 1kB
3041 * block sizes. We need to calculate the offset from buffer start.
3042 */
3043 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3044 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3045 offset = do_div(logical_sb_block, blocksize);
3046 } else {
3047 logical_sb_block = sb_block;
3048 }
3049
3050 if (!(bh = sb_bread(sb, logical_sb_block))) {
3051 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3052 goto out_fail;
3053 }
3054 /*
3055 * Note: s_es must be initialized as soon as possible because
3056 * some ext4 macro-instructions depend on its value
3057 */
3058 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3059 sbi->s_es = es;
3060 sb->s_magic = le16_to_cpu(es->s_magic);
3061 if (sb->s_magic != EXT4_SUPER_MAGIC)
3062 goto cantfind_ext4;
3063 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3064
3065 /* Set defaults before we parse the mount options */
3066 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3067 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
3068 if (def_mount_opts & EXT4_DEFM_DEBUG)
3069 set_opt(sbi->s_mount_opt, DEBUG);
3070 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3071 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3072 "2.6.38");
3073 set_opt(sbi->s_mount_opt, GRPID);
3074 }
3075 if (def_mount_opts & EXT4_DEFM_UID16)
3076 set_opt(sbi->s_mount_opt, NO_UID32);
3077 #ifdef CONFIG_EXT4_FS_XATTR
3078 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3079 set_opt(sbi->s_mount_opt, XATTR_USER);
3080 #endif
3081 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3082 if (def_mount_opts & EXT4_DEFM_ACL)
3083 set_opt(sbi->s_mount_opt, POSIX_ACL);
3084 #endif
3085 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3086 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3087 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3088 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3089 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3090 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3091
3092 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3093 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
3094 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3095 set_opt(sbi->s_mount_opt, ERRORS_CONT);
3096 else
3097 set_opt(sbi->s_mount_opt, ERRORS_RO);
3098 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3099 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
3100 if (def_mount_opts & EXT4_DEFM_DISCARD)
3101 set_opt(sbi->s_mount_opt, DISCARD);
3102
3103 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3104 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3105 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3106 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3107 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3108
3109 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3110 set_opt(sbi->s_mount_opt, BARRIER);
3111
3112 /*
3113 * enable delayed allocation by default
3114 * Use -o nodelalloc to turn it off
3115 */
3116 if (!IS_EXT3_SB(sb) &&
3117 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3118 set_opt(sbi->s_mount_opt, DELALLOC);
3119
3120 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3121 &journal_devnum, &journal_ioprio, NULL, 0)) {
3122 ext4_msg(sb, KERN_WARNING,
3123 "failed to parse options in superblock: %s",
3124 sbi->s_es->s_mount_opts);
3125 }
3126 if (!parse_options((char *) data, sb, &journal_devnum,
3127 &journal_ioprio, NULL, 0))
3128 goto failed_mount;
3129
3130 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3131 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3132
3133 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3134 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3135 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3136 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3137 ext4_msg(sb, KERN_WARNING,
3138 "feature flags set on rev 0 fs, "
3139 "running e2fsck is recommended");
3140
3141 /*
3142 * Check feature flags regardless of the revision level, since we
3143 * previously didn't change the revision level when setting the flags,
3144 * so there is a chance incompat flags are set on a rev 0 filesystem.
3145 */
3146 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3147 goto failed_mount;
3148
3149 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3150
3151 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3152 blocksize > EXT4_MAX_BLOCK_SIZE) {
3153 ext4_msg(sb, KERN_ERR,
3154 "Unsupported filesystem blocksize %d", blocksize);
3155 goto failed_mount;
3156 }
3157
3158 if (sb->s_blocksize != blocksize) {
3159 /* Validate the filesystem blocksize */
3160 if (!sb_set_blocksize(sb, blocksize)) {
3161 ext4_msg(sb, KERN_ERR, "bad block size %d",
3162 blocksize);
3163 goto failed_mount;
3164 }
3165
3166 brelse(bh);
3167 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3168 offset = do_div(logical_sb_block, blocksize);
3169 bh = sb_bread(sb, logical_sb_block);
3170 if (!bh) {
3171 ext4_msg(sb, KERN_ERR,
3172 "Can't read superblock on 2nd try");
3173 goto failed_mount;
3174 }
3175 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3176 sbi->s_es = es;
3177 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3178 ext4_msg(sb, KERN_ERR,
3179 "Magic mismatch, very weird!");
3180 goto failed_mount;
3181 }
3182 }
3183
3184 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3185 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3186 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3187 has_huge_files);
3188 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3189
3190 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3191 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3192 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3193 } else {
3194 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3195 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3196 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3197 (!is_power_of_2(sbi->s_inode_size)) ||
3198 (sbi->s_inode_size > blocksize)) {
3199 ext4_msg(sb, KERN_ERR,
3200 "unsupported inode size: %d",
3201 sbi->s_inode_size);
3202 goto failed_mount;
3203 }
3204 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3205 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3206 }
3207
3208 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3209 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3210 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3211 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3212 !is_power_of_2(sbi->s_desc_size)) {
3213 ext4_msg(sb, KERN_ERR,
3214 "unsupported descriptor size %lu",
3215 sbi->s_desc_size);
3216 goto failed_mount;
3217 }
3218 } else
3219 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3220
3221 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3222 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3223 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3224 goto cantfind_ext4;
3225
3226 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3227 if (sbi->s_inodes_per_block == 0)
3228 goto cantfind_ext4;
3229 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3230 sbi->s_inodes_per_block;
3231 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3232 sbi->s_sbh = bh;
3233 sbi->s_mount_state = le16_to_cpu(es->s_state);
3234 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3235 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3236
3237 for (i = 0; i < 4; i++)
3238 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3239 sbi->s_def_hash_version = es->s_def_hash_version;
3240 i = le32_to_cpu(es->s_flags);
3241 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3242 sbi->s_hash_unsigned = 3;
3243 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3244 #ifdef __CHAR_UNSIGNED__
3245 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3246 sbi->s_hash_unsigned = 3;
3247 #else
3248 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3249 #endif
3250 sb->s_dirt = 1;
3251 }
3252
3253 if (sbi->s_blocks_per_group > blocksize * 8) {
3254 ext4_msg(sb, KERN_ERR,
3255 "#blocks per group too big: %lu",
3256 sbi->s_blocks_per_group);
3257 goto failed_mount;
3258 }
3259 if (sbi->s_inodes_per_group > blocksize * 8) {
3260 ext4_msg(sb, KERN_ERR,
3261 "#inodes per group too big: %lu",
3262 sbi->s_inodes_per_group);
3263 goto failed_mount;
3264 }
3265
3266 /*
3267 * Test whether we have more sectors than will fit in sector_t,
3268 * and whether the max offset is addressable by the page cache.
3269 */
3270 ret = generic_check_addressable(sb->s_blocksize_bits,
3271 ext4_blocks_count(es));
3272 if (ret) {
3273 ext4_msg(sb, KERN_ERR, "filesystem"
3274 " too large to mount safely on this system");
3275 if (sizeof(sector_t) < 8)
3276 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3277 goto failed_mount;
3278 }
3279
3280 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3281 goto cantfind_ext4;
3282
3283 /* check blocks count against device size */
3284 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3285 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3286 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3287 "exceeds size of device (%llu blocks)",
3288 ext4_blocks_count(es), blocks_count);
3289 goto failed_mount;
3290 }
3291
3292 /*
3293 * It makes no sense for the first data block to be beyond the end
3294 * of the filesystem.
3295 */
3296 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3297 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3298 "block %u is beyond end of filesystem (%llu)",
3299 le32_to_cpu(es->s_first_data_block),
3300 ext4_blocks_count(es));
3301 goto failed_mount;
3302 }
3303 blocks_count = (ext4_blocks_count(es) -
3304 le32_to_cpu(es->s_first_data_block) +
3305 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3306 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3307 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3308 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3309 "(block count %llu, first data block %u, "
3310 "blocks per group %lu)", sbi->s_groups_count,
3311 ext4_blocks_count(es),
3312 le32_to_cpu(es->s_first_data_block),
3313 EXT4_BLOCKS_PER_GROUP(sb));
3314 goto failed_mount;
3315 }
3316 sbi->s_groups_count = blocks_count;
3317 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3318 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3319 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3320 EXT4_DESC_PER_BLOCK(sb);
3321 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3322 GFP_KERNEL);
3323 if (sbi->s_group_desc == NULL) {
3324 ext4_msg(sb, KERN_ERR, "not enough memory");
3325 goto failed_mount;
3326 }
3327
3328 #ifdef CONFIG_PROC_FS
3329 if (ext4_proc_root)
3330 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3331 #endif
3332
3333 bgl_lock_init(sbi->s_blockgroup_lock);
3334
3335 for (i = 0; i < db_count; i++) {
3336 block = descriptor_loc(sb, logical_sb_block, i);
3337 sbi->s_group_desc[i] = sb_bread(sb, block);
3338 if (!sbi->s_group_desc[i]) {
3339 ext4_msg(sb, KERN_ERR,
3340 "can't read group descriptor %d", i);
3341 db_count = i;
3342 goto failed_mount2;
3343 }
3344 }
3345 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3346 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3347 goto failed_mount2;
3348 }
3349 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3350 if (!ext4_fill_flex_info(sb)) {
3351 ext4_msg(sb, KERN_ERR,
3352 "unable to initialize "
3353 "flex_bg meta info!");
3354 goto failed_mount2;
3355 }
3356
3357 sbi->s_gdb_count = db_count;
3358 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3359 spin_lock_init(&sbi->s_next_gen_lock);
3360
3361 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3362 ext4_count_free_blocks(sb));
3363 if (!err) {
3364 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3365 ext4_count_free_inodes(sb));
3366 }
3367 if (!err) {
3368 err = percpu_counter_init(&sbi->s_dirs_counter,
3369 ext4_count_dirs(sb));
3370 }
3371 if (!err) {
3372 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3373 }
3374 if (err) {
3375 ext4_msg(sb, KERN_ERR, "insufficient memory");
3376 goto failed_mount3;
3377 }
3378
3379 sbi->s_stripe = ext4_get_stripe_size(sbi);
3380 sbi->s_max_writeback_mb_bump = 128;
3381
3382 /*
3383 * set up enough so that it can read an inode
3384 */
3385 if (!test_opt(sb, NOLOAD) &&
3386 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3387 sb->s_op = &ext4_sops;
3388 else
3389 sb->s_op = &ext4_nojournal_sops;
3390 sb->s_export_op = &ext4_export_ops;
3391 sb->s_xattr = ext4_xattr_handlers;
3392 #ifdef CONFIG_QUOTA
3393 sb->s_qcop = &ext4_qctl_operations;
3394 sb->dq_op = &ext4_quota_operations;
3395 #endif
3396 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3397 mutex_init(&sbi->s_orphan_lock);
3398 mutex_init(&sbi->s_resize_lock);
3399
3400 sb->s_root = NULL;
3401
3402 needs_recovery = (es->s_last_orphan != 0 ||
3403 EXT4_HAS_INCOMPAT_FEATURE(sb,
3404 EXT4_FEATURE_INCOMPAT_RECOVER));
3405
3406 /*
3407 * The first inode we look at is the journal inode. Don't try
3408 * root first: it may be modified in the journal!
3409 */
3410 if (!test_opt(sb, NOLOAD) &&
3411 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3412 if (ext4_load_journal(sb, es, journal_devnum))
3413 goto failed_mount3;
3414 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3415 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3416 ext4_msg(sb, KERN_ERR, "required journal recovery "
3417 "suppressed and not mounted read-only");
3418 goto failed_mount_wq;
3419 } else {
3420 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
3421 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3422 sbi->s_journal = NULL;
3423 needs_recovery = 0;
3424 goto no_journal;
3425 }
3426
3427 if (ext4_blocks_count(es) > 0xffffffffULL &&
3428 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3429 JBD2_FEATURE_INCOMPAT_64BIT)) {
3430 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3431 goto failed_mount_wq;
3432 }
3433
3434 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3435 jbd2_journal_set_features(sbi->s_journal,
3436 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3437 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3438 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3439 jbd2_journal_set_features(sbi->s_journal,
3440 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3441 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3442 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3443 } else {
3444 jbd2_journal_clear_features(sbi->s_journal,
3445 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3446 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3447 }
3448
3449 /* We have now updated the journal if required, so we can
3450 * validate the data journaling mode. */
3451 switch (test_opt(sb, DATA_FLAGS)) {
3452 case 0:
3453 /* No mode set, assume a default based on the journal
3454 * capabilities: ORDERED_DATA if the journal can
3455 * cope, else JOURNAL_DATA
3456 */
3457 if (jbd2_journal_check_available_features
3458 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3459 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3460 else
3461 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3462 break;
3463
3464 case EXT4_MOUNT_ORDERED_DATA:
3465 case EXT4_MOUNT_WRITEBACK_DATA:
3466 if (!jbd2_journal_check_available_features
3467 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3468 ext4_msg(sb, KERN_ERR, "Journal does not support "
3469 "requested data journaling mode");
3470 goto failed_mount_wq;
3471 }
3472 default:
3473 break;
3474 }
3475 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3476
3477 /*
3478 * The journal may have updated the bg summary counts, so we
3479 * need to update the global counters.
3480 */
3481 percpu_counter_set(&sbi->s_freeblocks_counter,
3482 ext4_count_free_blocks(sb));
3483 percpu_counter_set(&sbi->s_freeinodes_counter,
3484 ext4_count_free_inodes(sb));
3485 percpu_counter_set(&sbi->s_dirs_counter,
3486 ext4_count_dirs(sb));
3487 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3488
3489 no_journal:
3490 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3491 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3492 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3493 goto failed_mount_wq;
3494 }
3495
3496 /*
3497 * The jbd2_journal_load will have done any necessary log recovery,
3498 * so we can safely mount the rest of the filesystem now.
3499 */
3500
3501 root = ext4_iget(sb, EXT4_ROOT_INO);
3502 if (IS_ERR(root)) {
3503 ext4_msg(sb, KERN_ERR, "get root inode failed");
3504 ret = PTR_ERR(root);
3505 goto failed_mount4;
3506 }
3507 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3508 iput(root);
3509 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3510 goto failed_mount4;
3511 }
3512 sb->s_root = d_alloc_root(root);
3513 if (!sb->s_root) {
3514 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3515 iput(root);
3516 ret = -ENOMEM;
3517 goto failed_mount4;
3518 }
3519
3520 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3521
3522 /* determine the minimum size of new large inodes, if present */
3523 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3524 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3525 EXT4_GOOD_OLD_INODE_SIZE;
3526 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3527 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3528 if (sbi->s_want_extra_isize <
3529 le16_to_cpu(es->s_want_extra_isize))
3530 sbi->s_want_extra_isize =
3531 le16_to_cpu(es->s_want_extra_isize);
3532 if (sbi->s_want_extra_isize <
3533 le16_to_cpu(es->s_min_extra_isize))
3534 sbi->s_want_extra_isize =
3535 le16_to_cpu(es->s_min_extra_isize);
3536 }
3537 }
3538 /* Check if enough inode space is available */
3539 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3540 sbi->s_inode_size) {
3541 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3542 EXT4_GOOD_OLD_INODE_SIZE;
3543 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3544 "available");
3545 }
3546
3547 if (test_opt(sb, DELALLOC) &&
3548 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3549 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3550 "requested data journaling mode");
3551 clear_opt(sbi->s_mount_opt, DELALLOC);
3552 }
3553 if (test_opt(sb, DIOREAD_NOLOCK)) {
3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3556 "option - requested data journaling mode");
3557 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3558 }
3559 if (sb->s_blocksize < PAGE_SIZE) {
3560 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3561 "option - block size is too small");
3562 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3563 }
3564 }
3565
3566 err = ext4_setup_system_zone(sb);
3567 if (err) {
3568 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3569 "zone (%d)", err);
3570 goto failed_mount4;
3571 }
3572
3573 ext4_ext_init(sb);
3574 err = ext4_mb_init(sb, needs_recovery);
3575 if (err) {
3576 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3577 err);
3578 goto failed_mount4;
3579 }
3580
3581 err = ext4_register_li_request(sb, first_not_zeroed);
3582 if (err)
3583 goto failed_mount4;
3584
3585 sbi->s_kobj.kset = ext4_kset;
3586 init_completion(&sbi->s_kobj_unregister);
3587 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3588 "%s", sb->s_id);
3589 if (err) {
3590 ext4_mb_release(sb);
3591 ext4_ext_release(sb);
3592 goto failed_mount4;
3593 };
3594
3595 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3596 ext4_orphan_cleanup(sb, es);
3597 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3598 if (needs_recovery) {
3599 ext4_msg(sb, KERN_INFO, "recovery complete");
3600 ext4_mark_recovery_complete(sb, es);
3601 }
3602 if (EXT4_SB(sb)->s_journal) {
3603 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3604 descr = " journalled data mode";
3605 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3606 descr = " ordered data mode";
3607 else
3608 descr = " writeback data mode";
3609 } else
3610 descr = "out journal";
3611
3612 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3613 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3614 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3615
3616 init_timer(&sbi->s_err_report);
3617 sbi->s_err_report.function = print_daily_error_info;
3618 sbi->s_err_report.data = (unsigned long) sb;
3619 if (es->s_error_count)
3620 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3621
3622 kfree(orig_data);
3623 return 0;
3624
3625 cantfind_ext4:
3626 if (!silent)
3627 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3628 goto failed_mount;
3629
3630 failed_mount4:
3631 ext4_msg(sb, KERN_ERR, "mount failed");
3632 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3633 failed_mount_wq:
3634 ext4_release_system_zone(sb);
3635 if (sbi->s_journal) {
3636 jbd2_journal_destroy(sbi->s_journal);
3637 sbi->s_journal = NULL;
3638 }
3639 failed_mount3:
3640 if (sbi->s_flex_groups) {
3641 if (is_vmalloc_addr(sbi->s_flex_groups))
3642 vfree(sbi->s_flex_groups);
3643 else
3644 kfree(sbi->s_flex_groups);
3645 }
3646 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3647 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3648 percpu_counter_destroy(&sbi->s_dirs_counter);
3649 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3650 failed_mount2:
3651 for (i = 0; i < db_count; i++)
3652 brelse(sbi->s_group_desc[i]);
3653 kfree(sbi->s_group_desc);
3654 failed_mount:
3655 if (sbi->s_proc) {
3656 remove_proc_entry(sb->s_id, ext4_proc_root);
3657 }
3658 #ifdef CONFIG_QUOTA
3659 for (i = 0; i < MAXQUOTAS; i++)
3660 kfree(sbi->s_qf_names[i]);
3661 #endif
3662 ext4_blkdev_remove(sbi);
3663 brelse(bh);
3664 out_fail:
3665 sb->s_fs_info = NULL;
3666 kfree(sbi->s_blockgroup_lock);
3667 kfree(sbi);
3668 out_free_orig:
3669 kfree(orig_data);
3670 return ret;
3671 }
3672
3673 /*
3674 * Setup any per-fs journal parameters now. We'll do this both on
3675 * initial mount, once the journal has been initialised but before we've
3676 * done any recovery; and again on any subsequent remount.
3677 */
3678 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3679 {
3680 struct ext4_sb_info *sbi = EXT4_SB(sb);
3681
3682 journal->j_commit_interval = sbi->s_commit_interval;
3683 journal->j_min_batch_time = sbi->s_min_batch_time;
3684 journal->j_max_batch_time = sbi->s_max_batch_time;
3685
3686 write_lock(&journal->j_state_lock);
3687 if (test_opt(sb, BARRIER))
3688 journal->j_flags |= JBD2_BARRIER;
3689 else
3690 journal->j_flags &= ~JBD2_BARRIER;
3691 if (test_opt(sb, DATA_ERR_ABORT))
3692 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3693 else
3694 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3695 write_unlock(&journal->j_state_lock);
3696 }
3697
3698 static journal_t *ext4_get_journal(struct super_block *sb,
3699 unsigned int journal_inum)
3700 {
3701 struct inode *journal_inode;
3702 journal_t *journal;
3703
3704 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3705
3706 /* First, test for the existence of a valid inode on disk. Bad
3707 * things happen if we iget() an unused inode, as the subsequent
3708 * iput() will try to delete it. */
3709
3710 journal_inode = ext4_iget(sb, journal_inum);
3711 if (IS_ERR(journal_inode)) {
3712 ext4_msg(sb, KERN_ERR, "no journal found");
3713 return NULL;
3714 }
3715 if (!journal_inode->i_nlink) {
3716 make_bad_inode(journal_inode);
3717 iput(journal_inode);
3718 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3719 return NULL;
3720 }
3721
3722 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3723 journal_inode, journal_inode->i_size);
3724 if (!S_ISREG(journal_inode->i_mode)) {
3725 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3726 iput(journal_inode);
3727 return NULL;
3728 }
3729
3730 journal = jbd2_journal_init_inode(journal_inode);
3731 if (!journal) {
3732 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3733 iput(journal_inode);
3734 return NULL;
3735 }
3736 journal->j_private = sb;
3737 ext4_init_journal_params(sb, journal);
3738 return journal;
3739 }
3740
3741 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3742 dev_t j_dev)
3743 {
3744 struct buffer_head *bh;
3745 journal_t *journal;
3746 ext4_fsblk_t start;
3747 ext4_fsblk_t len;
3748 int hblock, blocksize;
3749 ext4_fsblk_t sb_block;
3750 unsigned long offset;
3751 struct ext4_super_block *es;
3752 struct block_device *bdev;
3753
3754 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3755
3756 bdev = ext4_blkdev_get(j_dev, sb);
3757 if (bdev == NULL)
3758 return NULL;
3759
3760 blocksize = sb->s_blocksize;
3761 hblock = bdev_logical_block_size(bdev);
3762 if (blocksize < hblock) {
3763 ext4_msg(sb, KERN_ERR,
3764 "blocksize too small for journal device");
3765 goto out_bdev;
3766 }
3767
3768 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3769 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3770 set_blocksize(bdev, blocksize);
3771 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3772 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3773 "external journal");
3774 goto out_bdev;
3775 }
3776
3777 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3778 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3779 !(le32_to_cpu(es->s_feature_incompat) &
3780 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3781 ext4_msg(sb, KERN_ERR, "external journal has "
3782 "bad superblock");
3783 brelse(bh);
3784 goto out_bdev;
3785 }
3786
3787 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3788 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3789 brelse(bh);
3790 goto out_bdev;
3791 }
3792
3793 len = ext4_blocks_count(es);
3794 start = sb_block + 1;
3795 brelse(bh); /* we're done with the superblock */
3796
3797 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3798 start, len, blocksize);
3799 if (!journal) {
3800 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3801 goto out_bdev;
3802 }
3803 journal->j_private = sb;
3804 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3805 wait_on_buffer(journal->j_sb_buffer);
3806 if (!buffer_uptodate(journal->j_sb_buffer)) {
3807 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3808 goto out_journal;
3809 }
3810 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3811 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3812 "user (unsupported) - %d",
3813 be32_to_cpu(journal->j_superblock->s_nr_users));
3814 goto out_journal;
3815 }
3816 EXT4_SB(sb)->journal_bdev = bdev;
3817 ext4_init_journal_params(sb, journal);
3818 return journal;
3819
3820 out_journal:
3821 jbd2_journal_destroy(journal);
3822 out_bdev:
3823 ext4_blkdev_put(bdev);
3824 return NULL;
3825 }
3826
3827 static int ext4_load_journal(struct super_block *sb,
3828 struct ext4_super_block *es,
3829 unsigned long journal_devnum)
3830 {
3831 journal_t *journal;
3832 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3833 dev_t journal_dev;
3834 int err = 0;
3835 int really_read_only;
3836
3837 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3838
3839 if (journal_devnum &&
3840 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3841 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3842 "numbers have changed");
3843 journal_dev = new_decode_dev(journal_devnum);
3844 } else
3845 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3846
3847 really_read_only = bdev_read_only(sb->s_bdev);
3848
3849 /*
3850 * Are we loading a blank journal or performing recovery after a
3851 * crash? For recovery, we need to check in advance whether we
3852 * can get read-write access to the device.
3853 */
3854 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3855 if (sb->s_flags & MS_RDONLY) {
3856 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3857 "required on readonly filesystem");
3858 if (really_read_only) {
3859 ext4_msg(sb, KERN_ERR, "write access "
3860 "unavailable, cannot proceed");
3861 return -EROFS;
3862 }
3863 ext4_msg(sb, KERN_INFO, "write access will "
3864 "be enabled during recovery");
3865 }
3866 }
3867
3868 if (journal_inum && journal_dev) {
3869 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3870 "and inode journals!");
3871 return -EINVAL;
3872 }
3873
3874 if (journal_inum) {
3875 if (!(journal = ext4_get_journal(sb, journal_inum)))
3876 return -EINVAL;
3877 } else {
3878 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3879 return -EINVAL;
3880 }
3881
3882 if (!(journal->j_flags & JBD2_BARRIER))
3883 ext4_msg(sb, KERN_INFO, "barriers disabled");
3884
3885 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3886 err = jbd2_journal_update_format(journal);
3887 if (err) {
3888 ext4_msg(sb, KERN_ERR, "error updating journal");
3889 jbd2_journal_destroy(journal);
3890 return err;
3891 }
3892 }
3893
3894 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3895 err = jbd2_journal_wipe(journal, !really_read_only);
3896 if (!err) {
3897 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3898 if (save)
3899 memcpy(save, ((char *) es) +
3900 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3901 err = jbd2_journal_load(journal);
3902 if (save)
3903 memcpy(((char *) es) + EXT4_S_ERR_START,
3904 save, EXT4_S_ERR_LEN);
3905 kfree(save);
3906 }
3907
3908 if (err) {
3909 ext4_msg(sb, KERN_ERR, "error loading journal");
3910 jbd2_journal_destroy(journal);
3911 return err;
3912 }
3913
3914 EXT4_SB(sb)->s_journal = journal;
3915 ext4_clear_journal_err(sb, es);
3916
3917 if (!really_read_only && journal_devnum &&
3918 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3919 es->s_journal_dev = cpu_to_le32(journal_devnum);
3920
3921 /* Make sure we flush the recovery flag to disk. */
3922 ext4_commit_super(sb, 1);
3923 }
3924
3925 return 0;
3926 }
3927
3928 static int ext4_commit_super(struct super_block *sb, int sync)
3929 {
3930 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3931 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3932 int error = 0;
3933
3934 if (!sbh)
3935 return error;
3936 if (buffer_write_io_error(sbh)) {
3937 /*
3938 * Oh, dear. A previous attempt to write the
3939 * superblock failed. This could happen because the
3940 * USB device was yanked out. Or it could happen to
3941 * be a transient write error and maybe the block will
3942 * be remapped. Nothing we can do but to retry the
3943 * write and hope for the best.
3944 */
3945 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3946 "superblock detected");
3947 clear_buffer_write_io_error(sbh);
3948 set_buffer_uptodate(sbh);
3949 }
3950 /*
3951 * If the file system is mounted read-only, don't update the
3952 * superblock write time. This avoids updating the superblock
3953 * write time when we are mounting the root file system
3954 * read/only but we need to replay the journal; at that point,
3955 * for people who are east of GMT and who make their clock
3956 * tick in localtime for Windows bug-for-bug compatibility,
3957 * the clock is set in the future, and this will cause e2fsck
3958 * to complain and force a full file system check.
3959 */
3960 if (!(sb->s_flags & MS_RDONLY))
3961 es->s_wtime = cpu_to_le32(get_seconds());
3962 if (sb->s_bdev->bd_part)
3963 es->s_kbytes_written =
3964 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3965 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3966 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3967 else
3968 es->s_kbytes_written =
3969 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3970 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3971 &EXT4_SB(sb)->s_freeblocks_counter));
3972 es->s_free_inodes_count =
3973 cpu_to_le32(percpu_counter_sum_positive(
3974 &EXT4_SB(sb)->s_freeinodes_counter));
3975 sb->s_dirt = 0;
3976 BUFFER_TRACE(sbh, "marking dirty");
3977 mark_buffer_dirty(sbh);
3978 if (sync) {
3979 error = sync_dirty_buffer(sbh);
3980 if (error)
3981 return error;
3982
3983 error = buffer_write_io_error(sbh);
3984 if (error) {
3985 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3986 "superblock");
3987 clear_buffer_write_io_error(sbh);
3988 set_buffer_uptodate(sbh);
3989 }
3990 }
3991 return error;
3992 }
3993
3994 /*
3995 * Have we just finished recovery? If so, and if we are mounting (or
3996 * remounting) the filesystem readonly, then we will end up with a
3997 * consistent fs on disk. Record that fact.
3998 */
3999 static void ext4_mark_recovery_complete(struct super_block *sb,
4000 struct ext4_super_block *es)
4001 {
4002 journal_t *journal = EXT4_SB(sb)->s_journal;
4003
4004 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4005 BUG_ON(journal != NULL);
4006 return;
4007 }
4008 jbd2_journal_lock_updates(journal);
4009 if (jbd2_journal_flush(journal) < 0)
4010 goto out;
4011
4012 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4013 sb->s_flags & MS_RDONLY) {
4014 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4015 ext4_commit_super(sb, 1);
4016 }
4017
4018 out:
4019 jbd2_journal_unlock_updates(journal);
4020 }
4021
4022 /*
4023 * If we are mounting (or read-write remounting) a filesystem whose journal
4024 * has recorded an error from a previous lifetime, move that error to the
4025 * main filesystem now.
4026 */
4027 static void ext4_clear_journal_err(struct super_block *sb,
4028 struct ext4_super_block *es)
4029 {
4030 journal_t *journal;
4031 int j_errno;
4032 const char *errstr;
4033
4034 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4035
4036 journal = EXT4_SB(sb)->s_journal;
4037
4038 /*
4039 * Now check for any error status which may have been recorded in the
4040 * journal by a prior ext4_error() or ext4_abort()
4041 */
4042
4043 j_errno = jbd2_journal_errno(journal);
4044 if (j_errno) {
4045 char nbuf[16];
4046
4047 errstr = ext4_decode_error(sb, j_errno, nbuf);
4048 ext4_warning(sb, "Filesystem error recorded "
4049 "from previous mount: %s", errstr);
4050 ext4_warning(sb, "Marking fs in need of filesystem check.");
4051
4052 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4053 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4054 ext4_commit_super(sb, 1);
4055
4056 jbd2_journal_clear_err(journal);
4057 }
4058 }
4059
4060 /*
4061 * Force the running and committing transactions to commit,
4062 * and wait on the commit.
4063 */
4064 int ext4_force_commit(struct super_block *sb)
4065 {
4066 journal_t *journal;
4067 int ret = 0;
4068
4069 if (sb->s_flags & MS_RDONLY)
4070 return 0;
4071
4072 journal = EXT4_SB(sb)->s_journal;
4073 if (journal) {
4074 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4075 ret = ext4_journal_force_commit(journal);
4076 }
4077
4078 return ret;
4079 }
4080
4081 static void ext4_write_super(struct super_block *sb)
4082 {
4083 lock_super(sb);
4084 ext4_commit_super(sb, 1);
4085 unlock_super(sb);
4086 }
4087
4088 static int ext4_sync_fs(struct super_block *sb, int wait)
4089 {
4090 int ret = 0;
4091 tid_t target;
4092 struct ext4_sb_info *sbi = EXT4_SB(sb);
4093
4094 trace_ext4_sync_fs(sb, wait);
4095 flush_workqueue(sbi->dio_unwritten_wq);
4096 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4097 if (wait)
4098 jbd2_log_wait_commit(sbi->s_journal, target);
4099 }
4100 return ret;
4101 }
4102
4103 /*
4104 * LVM calls this function before a (read-only) snapshot is created. This
4105 * gives us a chance to flush the journal completely and mark the fs clean.
4106 */
4107 static int ext4_freeze(struct super_block *sb)
4108 {
4109 int error = 0;
4110 journal_t *journal;
4111
4112 if (sb->s_flags & MS_RDONLY)
4113 return 0;
4114
4115 journal = EXT4_SB(sb)->s_journal;
4116
4117 /* Now we set up the journal barrier. */
4118 jbd2_journal_lock_updates(journal);
4119
4120 /*
4121 * Don't clear the needs_recovery flag if we failed to flush
4122 * the journal.
4123 */
4124 error = jbd2_journal_flush(journal);
4125 if (error < 0)
4126 goto out;
4127
4128 /* Journal blocked and flushed, clear needs_recovery flag. */
4129 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4130 error = ext4_commit_super(sb, 1);
4131 out:
4132 /* we rely on s_frozen to stop further updates */
4133 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4134 return error;
4135 }
4136
4137 /*
4138 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4139 * flag here, even though the filesystem is not technically dirty yet.
4140 */
4141 static int ext4_unfreeze(struct super_block *sb)
4142 {
4143 if (sb->s_flags & MS_RDONLY)
4144 return 0;
4145
4146 lock_super(sb);
4147 /* Reset the needs_recovery flag before the fs is unlocked. */
4148 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4149 ext4_commit_super(sb, 1);
4150 unlock_super(sb);
4151 return 0;
4152 }
4153
4154 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4155 {
4156 struct ext4_super_block *es;
4157 struct ext4_sb_info *sbi = EXT4_SB(sb);
4158 ext4_fsblk_t n_blocks_count = 0;
4159 unsigned long old_sb_flags;
4160 struct ext4_mount_options old_opts;
4161 int enable_quota = 0;
4162 ext4_group_t g;
4163 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4164 int err;
4165 #ifdef CONFIG_QUOTA
4166 int i;
4167 #endif
4168 char *orig_data = kstrdup(data, GFP_KERNEL);
4169
4170 /* Store the original options */
4171 lock_super(sb);
4172 old_sb_flags = sb->s_flags;
4173 old_opts.s_mount_opt = sbi->s_mount_opt;
4174 old_opts.s_resuid = sbi->s_resuid;
4175 old_opts.s_resgid = sbi->s_resgid;
4176 old_opts.s_commit_interval = sbi->s_commit_interval;
4177 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4178 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4179 #ifdef CONFIG_QUOTA
4180 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4181 for (i = 0; i < MAXQUOTAS; i++)
4182 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4183 #endif
4184 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4185 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4186
4187 /*
4188 * Allow the "check" option to be passed as a remount option.
4189 */
4190 if (!parse_options(data, sb, NULL, &journal_ioprio,
4191 &n_blocks_count, 1)) {
4192 err = -EINVAL;
4193 goto restore_opts;
4194 }
4195
4196 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4197 ext4_abort(sb, "Abort forced by user");
4198
4199 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4200 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4201
4202 es = sbi->s_es;
4203
4204 if (sbi->s_journal) {
4205 ext4_init_journal_params(sb, sbi->s_journal);
4206 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4207 }
4208
4209 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4210 n_blocks_count > ext4_blocks_count(es)) {
4211 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4212 err = -EROFS;
4213 goto restore_opts;
4214 }
4215
4216 if (*flags & MS_RDONLY) {
4217 err = dquot_suspend(sb, -1);
4218 if (err < 0)
4219 goto restore_opts;
4220
4221 /*
4222 * First of all, the unconditional stuff we have to do
4223 * to disable replay of the journal when we next remount
4224 */
4225 sb->s_flags |= MS_RDONLY;
4226
4227 /*
4228 * OK, test if we are remounting a valid rw partition
4229 * readonly, and if so set the rdonly flag and then
4230 * mark the partition as valid again.
4231 */
4232 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4233 (sbi->s_mount_state & EXT4_VALID_FS))
4234 es->s_state = cpu_to_le16(sbi->s_mount_state);
4235
4236 if (sbi->s_journal)
4237 ext4_mark_recovery_complete(sb, es);
4238 } else {
4239 /* Make sure we can mount this feature set readwrite */
4240 if (!ext4_feature_set_ok(sb, 0)) {
4241 err = -EROFS;
4242 goto restore_opts;
4243 }
4244 /*
4245 * Make sure the group descriptor checksums
4246 * are sane. If they aren't, refuse to remount r/w.
4247 */
4248 for (g = 0; g < sbi->s_groups_count; g++) {
4249 struct ext4_group_desc *gdp =
4250 ext4_get_group_desc(sb, g, NULL);
4251
4252 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4253 ext4_msg(sb, KERN_ERR,
4254 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4255 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4256 le16_to_cpu(gdp->bg_checksum));
4257 err = -EINVAL;
4258 goto restore_opts;
4259 }
4260 }
4261
4262 /*
4263 * If we have an unprocessed orphan list hanging
4264 * around from a previously readonly bdev mount,
4265 * require a full umount/remount for now.
4266 */
4267 if (es->s_last_orphan) {
4268 ext4_msg(sb, KERN_WARNING, "Couldn't "
4269 "remount RDWR because of unprocessed "
4270 "orphan inode list. Please "
4271 "umount/remount instead");
4272 err = -EINVAL;
4273 goto restore_opts;
4274 }
4275
4276 /*
4277 * Mounting a RDONLY partition read-write, so reread
4278 * and store the current valid flag. (It may have
4279 * been changed by e2fsck since we originally mounted
4280 * the partition.)
4281 */
4282 if (sbi->s_journal)
4283 ext4_clear_journal_err(sb, es);
4284 sbi->s_mount_state = le16_to_cpu(es->s_state);
4285 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4286 goto restore_opts;
4287 if (!ext4_setup_super(sb, es, 0))
4288 sb->s_flags &= ~MS_RDONLY;
4289 enable_quota = 1;
4290 }
4291 }
4292
4293 /*
4294 * Reinitialize lazy itable initialization thread based on
4295 * current settings
4296 */
4297 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4298 ext4_unregister_li_request(sb);
4299 else {
4300 ext4_group_t first_not_zeroed;
4301 first_not_zeroed = ext4_has_uninit_itable(sb);
4302 ext4_register_li_request(sb, first_not_zeroed);
4303 }
4304
4305 ext4_setup_system_zone(sb);
4306 if (sbi->s_journal == NULL)
4307 ext4_commit_super(sb, 1);
4308
4309 #ifdef CONFIG_QUOTA
4310 /* Release old quota file names */
4311 for (i = 0; i < MAXQUOTAS; i++)
4312 if (old_opts.s_qf_names[i] &&
4313 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4314 kfree(old_opts.s_qf_names[i]);
4315 #endif
4316 unlock_super(sb);
4317 if (enable_quota)
4318 dquot_resume(sb, -1);
4319
4320 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4321 kfree(orig_data);
4322 return 0;
4323
4324 restore_opts:
4325 sb->s_flags = old_sb_flags;
4326 sbi->s_mount_opt = old_opts.s_mount_opt;
4327 sbi->s_resuid = old_opts.s_resuid;
4328 sbi->s_resgid = old_opts.s_resgid;
4329 sbi->s_commit_interval = old_opts.s_commit_interval;
4330 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4331 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4332 #ifdef CONFIG_QUOTA
4333 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4334 for (i = 0; i < MAXQUOTAS; i++) {
4335 if (sbi->s_qf_names[i] &&
4336 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4337 kfree(sbi->s_qf_names[i]);
4338 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4339 }
4340 #endif
4341 unlock_super(sb);
4342 kfree(orig_data);
4343 return err;
4344 }
4345
4346 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4347 {
4348 struct super_block *sb = dentry->d_sb;
4349 struct ext4_sb_info *sbi = EXT4_SB(sb);
4350 struct ext4_super_block *es = sbi->s_es;
4351 u64 fsid;
4352
4353 if (test_opt(sb, MINIX_DF)) {
4354 sbi->s_overhead_last = 0;
4355 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4356 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4357 ext4_fsblk_t overhead = 0;
4358
4359 /*
4360 * Compute the overhead (FS structures). This is constant
4361 * for a given filesystem unless the number of block groups
4362 * changes so we cache the previous value until it does.
4363 */
4364
4365 /*
4366 * All of the blocks before first_data_block are
4367 * overhead
4368 */
4369 overhead = le32_to_cpu(es->s_first_data_block);
4370
4371 /*
4372 * Add the overhead attributed to the superblock and
4373 * block group descriptors. If the sparse superblocks
4374 * feature is turned on, then not all groups have this.
4375 */
4376 for (i = 0; i < ngroups; i++) {
4377 overhead += ext4_bg_has_super(sb, i) +
4378 ext4_bg_num_gdb(sb, i);
4379 cond_resched();
4380 }
4381
4382 /*
4383 * Every block group has an inode bitmap, a block
4384 * bitmap, and an inode table.
4385 */
4386 overhead += ngroups * (2 + sbi->s_itb_per_group);
4387 sbi->s_overhead_last = overhead;
4388 smp_wmb();
4389 sbi->s_blocks_last = ext4_blocks_count(es);
4390 }
4391
4392 buf->f_type = EXT4_SUPER_MAGIC;
4393 buf->f_bsize = sb->s_blocksize;
4394 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4395 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4396 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4397 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4398 if (buf->f_bfree < ext4_r_blocks_count(es))
4399 buf->f_bavail = 0;
4400 buf->f_files = le32_to_cpu(es->s_inodes_count);
4401 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4402 buf->f_namelen = EXT4_NAME_LEN;
4403 fsid = le64_to_cpup((void *)es->s_uuid) ^
4404 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4405 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4406 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4407
4408 return 0;
4409 }
4410
4411 /* Helper function for writing quotas on sync - we need to start transaction
4412 * before quota file is locked for write. Otherwise the are possible deadlocks:
4413 * Process 1 Process 2
4414 * ext4_create() quota_sync()
4415 * jbd2_journal_start() write_dquot()
4416 * dquot_initialize() down(dqio_mutex)
4417 * down(dqio_mutex) jbd2_journal_start()
4418 *
4419 */
4420
4421 #ifdef CONFIG_QUOTA
4422
4423 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4424 {
4425 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4426 }
4427
4428 static int ext4_write_dquot(struct dquot *dquot)
4429 {
4430 int ret, err;
4431 handle_t *handle;
4432 struct inode *inode;
4433
4434 inode = dquot_to_inode(dquot);
4435 handle = ext4_journal_start(inode,
4436 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4437 if (IS_ERR(handle))
4438 return PTR_ERR(handle);
4439 ret = dquot_commit(dquot);
4440 err = ext4_journal_stop(handle);
4441 if (!ret)
4442 ret = err;
4443 return ret;
4444 }
4445
4446 static int ext4_acquire_dquot(struct dquot *dquot)
4447 {
4448 int ret, err;
4449 handle_t *handle;
4450
4451 handle = ext4_journal_start(dquot_to_inode(dquot),
4452 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4453 if (IS_ERR(handle))
4454 return PTR_ERR(handle);
4455 ret = dquot_acquire(dquot);
4456 err = ext4_journal_stop(handle);
4457 if (!ret)
4458 ret = err;
4459 return ret;
4460 }
4461
4462 static int ext4_release_dquot(struct dquot *dquot)
4463 {
4464 int ret, err;
4465 handle_t *handle;
4466
4467 handle = ext4_journal_start(dquot_to_inode(dquot),
4468 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4469 if (IS_ERR(handle)) {
4470 /* Release dquot anyway to avoid endless cycle in dqput() */
4471 dquot_release(dquot);
4472 return PTR_ERR(handle);
4473 }
4474 ret = dquot_release(dquot);
4475 err = ext4_journal_stop(handle);
4476 if (!ret)
4477 ret = err;
4478 return ret;
4479 }
4480
4481 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4482 {
4483 /* Are we journaling quotas? */
4484 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4485 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4486 dquot_mark_dquot_dirty(dquot);
4487 return ext4_write_dquot(dquot);
4488 } else {
4489 return dquot_mark_dquot_dirty(dquot);
4490 }
4491 }
4492
4493 static int ext4_write_info(struct super_block *sb, int type)
4494 {
4495 int ret, err;
4496 handle_t *handle;
4497
4498 /* Data block + inode block */
4499 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4500 if (IS_ERR(handle))
4501 return PTR_ERR(handle);
4502 ret = dquot_commit_info(sb, type);
4503 err = ext4_journal_stop(handle);
4504 if (!ret)
4505 ret = err;
4506 return ret;
4507 }
4508
4509 /*
4510 * Turn on quotas during mount time - we need to find
4511 * the quota file and such...
4512 */
4513 static int ext4_quota_on_mount(struct super_block *sb, int type)
4514 {
4515 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4516 EXT4_SB(sb)->s_jquota_fmt, type);
4517 }
4518
4519 /*
4520 * Standard function to be called on quota_on
4521 */
4522 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4523 char *name)
4524 {
4525 int err;
4526 struct path path;
4527
4528 if (!test_opt(sb, QUOTA))
4529 return -EINVAL;
4530
4531 err = kern_path(name, LOOKUP_FOLLOW, &path);
4532 if (err)
4533 return err;
4534
4535 /* Quotafile not on the same filesystem? */
4536 if (path.mnt->mnt_sb != sb) {
4537 path_put(&path);
4538 return -EXDEV;
4539 }
4540 /* Journaling quota? */
4541 if (EXT4_SB(sb)->s_qf_names[type]) {
4542 /* Quotafile not in fs root? */
4543 if (path.dentry->d_parent != sb->s_root)
4544 ext4_msg(sb, KERN_WARNING,
4545 "Quota file not on filesystem root. "
4546 "Journaled quota will not work");
4547 }
4548
4549 /*
4550 * When we journal data on quota file, we have to flush journal to see
4551 * all updates to the file when we bypass pagecache...
4552 */
4553 if (EXT4_SB(sb)->s_journal &&
4554 ext4_should_journal_data(path.dentry->d_inode)) {
4555 /*
4556 * We don't need to lock updates but journal_flush() could
4557 * otherwise be livelocked...
4558 */
4559 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4560 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4561 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4562 if (err) {
4563 path_put(&path);
4564 return err;
4565 }
4566 }
4567
4568 err = dquot_quota_on_path(sb, type, format_id, &path);
4569 path_put(&path);
4570 return err;
4571 }
4572
4573 static int ext4_quota_off(struct super_block *sb, int type)
4574 {
4575 /* Force all delayed allocation blocks to be allocated.
4576 * Caller already holds s_umount sem */
4577 if (test_opt(sb, DELALLOC))
4578 sync_filesystem(sb);
4579
4580 return dquot_quota_off(sb, type);
4581 }
4582
4583 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4584 * acquiring the locks... As quota files are never truncated and quota code
4585 * itself serializes the operations (and noone else should touch the files)
4586 * we don't have to be afraid of races */
4587 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4588 size_t len, loff_t off)
4589 {
4590 struct inode *inode = sb_dqopt(sb)->files[type];
4591 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4592 int err = 0;
4593 int offset = off & (sb->s_blocksize - 1);
4594 int tocopy;
4595 size_t toread;
4596 struct buffer_head *bh;
4597 loff_t i_size = i_size_read(inode);
4598
4599 if (off > i_size)
4600 return 0;
4601 if (off+len > i_size)
4602 len = i_size-off;
4603 toread = len;
4604 while (toread > 0) {
4605 tocopy = sb->s_blocksize - offset < toread ?
4606 sb->s_blocksize - offset : toread;
4607 bh = ext4_bread(NULL, inode, blk, 0, &err);
4608 if (err)
4609 return err;
4610 if (!bh) /* A hole? */
4611 memset(data, 0, tocopy);
4612 else
4613 memcpy(data, bh->b_data+offset, tocopy);
4614 brelse(bh);
4615 offset = 0;
4616 toread -= tocopy;
4617 data += tocopy;
4618 blk++;
4619 }
4620 return len;
4621 }
4622
4623 /* Write to quotafile (we know the transaction is already started and has
4624 * enough credits) */
4625 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4626 const char *data, size_t len, loff_t off)
4627 {
4628 struct inode *inode = sb_dqopt(sb)->files[type];
4629 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4630 int err = 0;
4631 int offset = off & (sb->s_blocksize - 1);
4632 struct buffer_head *bh;
4633 handle_t *handle = journal_current_handle();
4634
4635 if (EXT4_SB(sb)->s_journal && !handle) {
4636 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4637 " cancelled because transaction is not started",
4638 (unsigned long long)off, (unsigned long long)len);
4639 return -EIO;
4640 }
4641 /*
4642 * Since we account only one data block in transaction credits,
4643 * then it is impossible to cross a block boundary.
4644 */
4645 if (sb->s_blocksize - offset < len) {
4646 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4647 " cancelled because not block aligned",
4648 (unsigned long long)off, (unsigned long long)len);
4649 return -EIO;
4650 }
4651
4652 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4653 bh = ext4_bread(handle, inode, blk, 1, &err);
4654 if (!bh)
4655 goto out;
4656 err = ext4_journal_get_write_access(handle, bh);
4657 if (err) {
4658 brelse(bh);
4659 goto out;
4660 }
4661 lock_buffer(bh);
4662 memcpy(bh->b_data+offset, data, len);
4663 flush_dcache_page(bh->b_page);
4664 unlock_buffer(bh);
4665 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4666 brelse(bh);
4667 out:
4668 if (err) {
4669 mutex_unlock(&inode->i_mutex);
4670 return err;
4671 }
4672 if (inode->i_size < off + len) {
4673 i_size_write(inode, off + len);
4674 EXT4_I(inode)->i_disksize = inode->i_size;
4675 }
4676 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4677 ext4_mark_inode_dirty(handle, inode);
4678 mutex_unlock(&inode->i_mutex);
4679 return len;
4680 }
4681
4682 #endif
4683
4684 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4685 const char *dev_name, void *data)
4686 {
4687 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4688 }
4689
4690 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4691 static struct file_system_type ext2_fs_type = {
4692 .owner = THIS_MODULE,
4693 .name = "ext2",
4694 .mount = ext4_mount,
4695 .kill_sb = kill_block_super,
4696 .fs_flags = FS_REQUIRES_DEV,
4697 };
4698
4699 static inline void register_as_ext2(void)
4700 {
4701 int err = register_filesystem(&ext2_fs_type);
4702 if (err)
4703 printk(KERN_WARNING
4704 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4705 }
4706
4707 static inline void unregister_as_ext2(void)
4708 {
4709 unregister_filesystem(&ext2_fs_type);
4710 }
4711 MODULE_ALIAS("ext2");
4712 #else
4713 static inline void register_as_ext2(void) { }
4714 static inline void unregister_as_ext2(void) { }
4715 #endif
4716
4717 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4718 static inline void register_as_ext3(void)
4719 {
4720 int err = register_filesystem(&ext3_fs_type);
4721 if (err)
4722 printk(KERN_WARNING
4723 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4724 }
4725
4726 static inline void unregister_as_ext3(void)
4727 {
4728 unregister_filesystem(&ext3_fs_type);
4729 }
4730 MODULE_ALIAS("ext3");
4731 #else
4732 static inline void register_as_ext3(void) { }
4733 static inline void unregister_as_ext3(void) { }
4734 #endif
4735
4736 static struct file_system_type ext4_fs_type = {
4737 .owner = THIS_MODULE,
4738 .name = "ext4",
4739 .mount = ext4_mount,
4740 .kill_sb = kill_block_super,
4741 .fs_flags = FS_REQUIRES_DEV,
4742 };
4743
4744 int __init ext4_init_feat_adverts(void)
4745 {
4746 struct ext4_features *ef;
4747 int ret = -ENOMEM;
4748
4749 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4750 if (!ef)
4751 goto out;
4752
4753 ef->f_kobj.kset = ext4_kset;
4754 init_completion(&ef->f_kobj_unregister);
4755 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4756 "features");
4757 if (ret) {
4758 kfree(ef);
4759 goto out;
4760 }
4761
4762 ext4_feat = ef;
4763 ret = 0;
4764 out:
4765 return ret;
4766 }
4767
4768 static int __init ext4_init_fs(void)
4769 {
4770 int err;
4771
4772 ext4_check_flag_values();
4773 err = ext4_init_pageio();
4774 if (err)
4775 return err;
4776 err = ext4_init_system_zone();
4777 if (err)
4778 goto out5;
4779 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4780 if (!ext4_kset)
4781 goto out4;
4782 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4783
4784 err = ext4_init_feat_adverts();
4785
4786 err = ext4_init_mballoc();
4787 if (err)
4788 goto out3;
4789
4790 err = ext4_init_xattr();
4791 if (err)
4792 goto out2;
4793 err = init_inodecache();
4794 if (err)
4795 goto out1;
4796 register_as_ext2();
4797 register_as_ext3();
4798 err = register_filesystem(&ext4_fs_type);
4799 if (err)
4800 goto out;
4801
4802 ext4_li_info = NULL;
4803 mutex_init(&ext4_li_mtx);
4804 return 0;
4805 out:
4806 unregister_as_ext2();
4807 unregister_as_ext3();
4808 destroy_inodecache();
4809 out1:
4810 ext4_exit_xattr();
4811 out2:
4812 ext4_exit_mballoc();
4813 out3:
4814 kfree(ext4_feat);
4815 remove_proc_entry("fs/ext4", NULL);
4816 kset_unregister(ext4_kset);
4817 out4:
4818 ext4_exit_system_zone();
4819 out5:
4820 ext4_exit_pageio();
4821 return err;
4822 }
4823
4824 static void __exit ext4_exit_fs(void)
4825 {
4826 ext4_destroy_lazyinit_thread();
4827 unregister_as_ext2();
4828 unregister_as_ext3();
4829 unregister_filesystem(&ext4_fs_type);
4830 destroy_inodecache();
4831 ext4_exit_xattr();
4832 ext4_exit_mballoc();
4833 remove_proc_entry("fs/ext4", NULL);
4834 kset_unregister(ext4_kset);
4835 ext4_exit_system_zone();
4836 ext4_exit_pageio();
4837 }
4838
4839 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4840 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4841 MODULE_LICENSE("GPL");
4842 module_init(ext4_init_fs)
4843 module_exit(ext4_exit_fs)
This page took 0.196878 seconds and 5 git commands to generate.