ext4: fix block bitmap validation when bigalloc, ^flex_bg
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 MODULE_ALIAS_FS("ext2");
97 MODULE_ALIAS("ext2");
98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
99 #else
100 #define IS_EXT2_SB(sb) (0)
101 #endif
102
103
104 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
105 static struct file_system_type ext3_fs_type = {
106 .owner = THIS_MODULE,
107 .name = "ext3",
108 .mount = ext4_mount,
109 .kill_sb = kill_block_super,
110 .fs_flags = FS_REQUIRES_DEV,
111 };
112 MODULE_ALIAS_FS("ext3");
113 MODULE_ALIAS("ext3");
114 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
115 #else
116 #define IS_EXT3_SB(sb) (0)
117 #endif
118
119 static int ext4_verify_csum_type(struct super_block *sb,
120 struct ext4_super_block *es)
121 {
122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
123 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
124 return 1;
125
126 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127 }
128
129 static __le32 ext4_superblock_csum(struct super_block *sb,
130 struct ext4_super_block *es)
131 {
132 struct ext4_sb_info *sbi = EXT4_SB(sb);
133 int offset = offsetof(struct ext4_super_block, s_checksum);
134 __u32 csum;
135
136 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
137
138 return cpu_to_le32(csum);
139 }
140
141 int ext4_superblock_csum_verify(struct super_block *sb,
142 struct ext4_super_block *es)
143 {
144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
145 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
146 return 1;
147
148 return es->s_checksum == ext4_superblock_csum(sb, es);
149 }
150
151 void ext4_superblock_csum_set(struct super_block *sb)
152 {
153 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
154
155 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
156 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
157 return;
158
159 es->s_checksum = ext4_superblock_csum(sb, es);
160 }
161
162 void *ext4_kvmalloc(size_t size, gfp_t flags)
163 {
164 void *ret;
165
166 ret = kmalloc(size, flags | __GFP_NOWARN);
167 if (!ret)
168 ret = __vmalloc(size, flags, PAGE_KERNEL);
169 return ret;
170 }
171
172 void *ext4_kvzalloc(size_t size, gfp_t flags)
173 {
174 void *ret;
175
176 ret = kzalloc(size, flags | __GFP_NOWARN);
177 if (!ret)
178 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
179 return ret;
180 }
181
182 void ext4_kvfree(void *ptr)
183 {
184 if (is_vmalloc_addr(ptr))
185 vfree(ptr);
186 else
187 kfree(ptr);
188
189 }
190
191 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
192 struct ext4_group_desc *bg)
193 {
194 return le32_to_cpu(bg->bg_block_bitmap_lo) |
195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
197 }
198
199 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
205 }
206
207 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_inode_table_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
213 }
214
215 __u32 ext4_free_group_clusters(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
221 }
222
223 __u32 ext4_free_inodes_count(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
229 }
230
231 __u32 ext4_used_dirs_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_itable_unused_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_itable_unused_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
245 }
246
247 void ext4_block_bitmap_set(struct super_block *sb,
248 struct ext4_group_desc *bg, ext4_fsblk_t blk)
249 {
250 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
253 }
254
255 void ext4_inode_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262
263 void ext4_inode_table_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_free_group_clusters_set(struct super_block *sb,
272 struct ext4_group_desc *bg, __u32 count)
273 {
274 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
277 }
278
279 void ext4_free_inodes_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
285 }
286
287 void ext4_used_dirs_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_itable_unused_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
301 }
302
303
304 static void __save_error_info(struct super_block *sb, const char *func,
305 unsigned int line)
306 {
307 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
308
309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
311 es->s_last_error_time = cpu_to_le32(get_seconds());
312 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
313 es->s_last_error_line = cpu_to_le32(line);
314 if (!es->s_first_error_time) {
315 es->s_first_error_time = es->s_last_error_time;
316 strncpy(es->s_first_error_func, func,
317 sizeof(es->s_first_error_func));
318 es->s_first_error_line = cpu_to_le32(line);
319 es->s_first_error_ino = es->s_last_error_ino;
320 es->s_first_error_block = es->s_last_error_block;
321 }
322 /*
323 * Start the daily error reporting function if it hasn't been
324 * started already
325 */
326 if (!es->s_error_count)
327 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
328 le32_add_cpu(&es->s_error_count, 1);
329 }
330
331 static void save_error_info(struct super_block *sb, const char *func,
332 unsigned int line)
333 {
334 __save_error_info(sb, func, line);
335 ext4_commit_super(sb, 1);
336 }
337
338 /*
339 * The del_gendisk() function uninitializes the disk-specific data
340 * structures, including the bdi structure, without telling anyone
341 * else. Once this happens, any attempt to call mark_buffer_dirty()
342 * (for example, by ext4_commit_super), will cause a kernel OOPS.
343 * This is a kludge to prevent these oops until we can put in a proper
344 * hook in del_gendisk() to inform the VFS and file system layers.
345 */
346 static int block_device_ejected(struct super_block *sb)
347 {
348 struct inode *bd_inode = sb->s_bdev->bd_inode;
349 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
350
351 return bdi->dev == NULL;
352 }
353
354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
355 {
356 struct super_block *sb = journal->j_private;
357 struct ext4_sb_info *sbi = EXT4_SB(sb);
358 int error = is_journal_aborted(journal);
359 struct ext4_journal_cb_entry *jce;
360
361 BUG_ON(txn->t_state == T_FINISHED);
362 spin_lock(&sbi->s_md_lock);
363 while (!list_empty(&txn->t_private_list)) {
364 jce = list_entry(txn->t_private_list.next,
365 struct ext4_journal_cb_entry, jce_list);
366 list_del_init(&jce->jce_list);
367 spin_unlock(&sbi->s_md_lock);
368 jce->jce_func(sb, jce, error);
369 spin_lock(&sbi->s_md_lock);
370 }
371 spin_unlock(&sbi->s_md_lock);
372 }
373
374 /* Deal with the reporting of failure conditions on a filesystem such as
375 * inconsistencies detected or read IO failures.
376 *
377 * On ext2, we can store the error state of the filesystem in the
378 * superblock. That is not possible on ext4, because we may have other
379 * write ordering constraints on the superblock which prevent us from
380 * writing it out straight away; and given that the journal is about to
381 * be aborted, we can't rely on the current, or future, transactions to
382 * write out the superblock safely.
383 *
384 * We'll just use the jbd2_journal_abort() error code to record an error in
385 * the journal instead. On recovery, the journal will complain about
386 * that error until we've noted it down and cleared it.
387 */
388
389 static void ext4_handle_error(struct super_block *sb)
390 {
391 if (sb->s_flags & MS_RDONLY)
392 return;
393
394 if (!test_opt(sb, ERRORS_CONT)) {
395 journal_t *journal = EXT4_SB(sb)->s_journal;
396
397 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
398 if (journal)
399 jbd2_journal_abort(journal, -EIO);
400 }
401 if (test_opt(sb, ERRORS_RO)) {
402 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
403 /*
404 * Make sure updated value of ->s_mount_flags will be visible
405 * before ->s_flags update
406 */
407 smp_wmb();
408 sb->s_flags |= MS_RDONLY;
409 }
410 if (test_opt(sb, ERRORS_PANIC))
411 panic("EXT4-fs (device %s): panic forced after error\n",
412 sb->s_id);
413 }
414
415 #define ext4_error_ratelimit(sb) \
416 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
417 "EXT4-fs error")
418
419 void __ext4_error(struct super_block *sb, const char *function,
420 unsigned int line, const char *fmt, ...)
421 {
422 struct va_format vaf;
423 va_list args;
424
425 if (ext4_error_ratelimit(sb)) {
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429 printk(KERN_CRIT
430 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
431 sb->s_id, function, line, current->comm, &vaf);
432 va_end(args);
433 }
434 save_error_info(sb, function, line);
435 ext4_handle_error(sb);
436 }
437
438 void __ext4_error_inode(struct inode *inode, const char *function,
439 unsigned int line, ext4_fsblk_t block,
440 const char *fmt, ...)
441 {
442 va_list args;
443 struct va_format vaf;
444 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
445
446 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
447 es->s_last_error_block = cpu_to_le64(block);
448 if (ext4_error_ratelimit(inode->i_sb)) {
449 va_start(args, fmt);
450 vaf.fmt = fmt;
451 vaf.va = &args;
452 if (block)
453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
454 "inode #%lu: block %llu: comm %s: %pV\n",
455 inode->i_sb->s_id, function, line, inode->i_ino,
456 block, current->comm, &vaf);
457 else
458 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
459 "inode #%lu: comm %s: %pV\n",
460 inode->i_sb->s_id, function, line, inode->i_ino,
461 current->comm, &vaf);
462 va_end(args);
463 }
464 save_error_info(inode->i_sb, function, line);
465 ext4_handle_error(inode->i_sb);
466 }
467
468 void __ext4_error_file(struct file *file, const char *function,
469 unsigned int line, ext4_fsblk_t block,
470 const char *fmt, ...)
471 {
472 va_list args;
473 struct va_format vaf;
474 struct ext4_super_block *es;
475 struct inode *inode = file_inode(file);
476 char pathname[80], *path;
477
478 es = EXT4_SB(inode->i_sb)->s_es;
479 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
480 if (ext4_error_ratelimit(inode->i_sb)) {
481 path = d_path(&(file->f_path), pathname, sizeof(pathname));
482 if (IS_ERR(path))
483 path = "(unknown)";
484 va_start(args, fmt);
485 vaf.fmt = fmt;
486 vaf.va = &args;
487 if (block)
488 printk(KERN_CRIT
489 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
490 "block %llu: comm %s: path %s: %pV\n",
491 inode->i_sb->s_id, function, line, inode->i_ino,
492 block, current->comm, path, &vaf);
493 else
494 printk(KERN_CRIT
495 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
496 "comm %s: path %s: %pV\n",
497 inode->i_sb->s_id, function, line, inode->i_ino,
498 current->comm, path, &vaf);
499 va_end(args);
500 }
501 save_error_info(inode->i_sb, function, line);
502 ext4_handle_error(inode->i_sb);
503 }
504
505 const char *ext4_decode_error(struct super_block *sb, int errno,
506 char nbuf[16])
507 {
508 char *errstr = NULL;
509
510 switch (errno) {
511 case -EIO:
512 errstr = "IO failure";
513 break;
514 case -ENOMEM:
515 errstr = "Out of memory";
516 break;
517 case -EROFS:
518 if (!sb || (EXT4_SB(sb)->s_journal &&
519 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
520 errstr = "Journal has aborted";
521 else
522 errstr = "Readonly filesystem";
523 break;
524 default:
525 /* If the caller passed in an extra buffer for unknown
526 * errors, textualise them now. Else we just return
527 * NULL. */
528 if (nbuf) {
529 /* Check for truncated error codes... */
530 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
531 errstr = nbuf;
532 }
533 break;
534 }
535
536 return errstr;
537 }
538
539 /* __ext4_std_error decodes expected errors from journaling functions
540 * automatically and invokes the appropriate error response. */
541
542 void __ext4_std_error(struct super_block *sb, const char *function,
543 unsigned int line, int errno)
544 {
545 char nbuf[16];
546 const char *errstr;
547
548 /* Special case: if the error is EROFS, and we're not already
549 * inside a transaction, then there's really no point in logging
550 * an error. */
551 if (errno == -EROFS && journal_current_handle() == NULL &&
552 (sb->s_flags & MS_RDONLY))
553 return;
554
555 if (ext4_error_ratelimit(sb)) {
556 errstr = ext4_decode_error(sb, errno, nbuf);
557 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
558 sb->s_id, function, line, errstr);
559 }
560
561 save_error_info(sb, function, line);
562 ext4_handle_error(sb);
563 }
564
565 /*
566 * ext4_abort is a much stronger failure handler than ext4_error. The
567 * abort function may be used to deal with unrecoverable failures such
568 * as journal IO errors or ENOMEM at a critical moment in log management.
569 *
570 * We unconditionally force the filesystem into an ABORT|READONLY state,
571 * unless the error response on the fs has been set to panic in which
572 * case we take the easy way out and panic immediately.
573 */
574
575 void __ext4_abort(struct super_block *sb, const char *function,
576 unsigned int line, const char *fmt, ...)
577 {
578 va_list args;
579
580 save_error_info(sb, function, line);
581 va_start(args, fmt);
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
583 function, line);
584 vprintk(fmt, args);
585 printk("\n");
586 va_end(args);
587
588 if ((sb->s_flags & MS_RDONLY) == 0) {
589 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
590 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
591 /*
592 * Make sure updated value of ->s_mount_flags will be visible
593 * before ->s_flags update
594 */
595 smp_wmb();
596 sb->s_flags |= MS_RDONLY;
597 if (EXT4_SB(sb)->s_journal)
598 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
599 save_error_info(sb, function, line);
600 }
601 if (test_opt(sb, ERRORS_PANIC))
602 panic("EXT4-fs panic from previous error\n");
603 }
604
605 void __ext4_msg(struct super_block *sb,
606 const char *prefix, const char *fmt, ...)
607 {
608 struct va_format vaf;
609 va_list args;
610
611 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
612 return;
613
614 va_start(args, fmt);
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
618 va_end(args);
619 }
620
621 void __ext4_warning(struct super_block *sb, const char *function,
622 unsigned int line, const char *fmt, ...)
623 {
624 struct va_format vaf;
625 va_list args;
626
627 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
628 "EXT4-fs warning"))
629 return;
630
631 va_start(args, fmt);
632 vaf.fmt = fmt;
633 vaf.va = &args;
634 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
635 sb->s_id, function, line, &vaf);
636 va_end(args);
637 }
638
639 void __ext4_grp_locked_error(const char *function, unsigned int line,
640 struct super_block *sb, ext4_group_t grp,
641 unsigned long ino, ext4_fsblk_t block,
642 const char *fmt, ...)
643 __releases(bitlock)
644 __acquires(bitlock)
645 {
646 struct va_format vaf;
647 va_list args;
648 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649
650 es->s_last_error_ino = cpu_to_le32(ino);
651 es->s_last_error_block = cpu_to_le64(block);
652 __save_error_info(sb, function, line);
653
654 if (ext4_error_ratelimit(sb)) {
655 va_start(args, fmt);
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
659 sb->s_id, function, line, grp);
660 if (ino)
661 printk(KERN_CONT "inode %lu: ", ino);
662 if (block)
663 printk(KERN_CONT "block %llu:",
664 (unsigned long long) block);
665 printk(KERN_CONT "%pV\n", &vaf);
666 va_end(args);
667 }
668
669 if (test_opt(sb, ERRORS_CONT)) {
670 ext4_commit_super(sb, 0);
671 return;
672 }
673
674 ext4_unlock_group(sb, grp);
675 ext4_handle_error(sb);
676 /*
677 * We only get here in the ERRORS_RO case; relocking the group
678 * may be dangerous, but nothing bad will happen since the
679 * filesystem will have already been marked read/only and the
680 * journal has been aborted. We return 1 as a hint to callers
681 * who might what to use the return value from
682 * ext4_grp_locked_error() to distinguish between the
683 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
684 * aggressively from the ext4 function in question, with a
685 * more appropriate error code.
686 */
687 ext4_lock_group(sb, grp);
688 return;
689 }
690
691 void ext4_update_dynamic_rev(struct super_block *sb)
692 {
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
696 return;
697
698 ext4_warning(sb,
699 "updating to rev %d because of new feature flag, "
700 "running e2fsck is recommended",
701 EXT4_DYNAMIC_REV);
702
703 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
704 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
705 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
706 /* leave es->s_feature_*compat flags alone */
707 /* es->s_uuid will be set by e2fsck if empty */
708
709 /*
710 * The rest of the superblock fields should be zero, and if not it
711 * means they are likely already in use, so leave them alone. We
712 * can leave it up to e2fsck to clean up any inconsistencies there.
713 */
714 }
715
716 /*
717 * Open the external journal device
718 */
719 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
720 {
721 struct block_device *bdev;
722 char b[BDEVNAME_SIZE];
723
724 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
725 if (IS_ERR(bdev))
726 goto fail;
727 return bdev;
728
729 fail:
730 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
731 __bdevname(dev, b), PTR_ERR(bdev));
732 return NULL;
733 }
734
735 /*
736 * Release the journal device
737 */
738 static void ext4_blkdev_put(struct block_device *bdev)
739 {
740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
741 }
742
743 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
744 {
745 struct block_device *bdev;
746 bdev = sbi->journal_bdev;
747 if (bdev) {
748 ext4_blkdev_put(bdev);
749 sbi->journal_bdev = NULL;
750 }
751 }
752
753 static inline struct inode *orphan_list_entry(struct list_head *l)
754 {
755 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
756 }
757
758 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
759 {
760 struct list_head *l;
761
762 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
763 le32_to_cpu(sbi->s_es->s_last_orphan));
764
765 printk(KERN_ERR "sb_info orphan list:\n");
766 list_for_each(l, &sbi->s_orphan) {
767 struct inode *inode = orphan_list_entry(l);
768 printk(KERN_ERR " "
769 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
770 inode->i_sb->s_id, inode->i_ino, inode,
771 inode->i_mode, inode->i_nlink,
772 NEXT_ORPHAN(inode));
773 }
774 }
775
776 static void ext4_put_super(struct super_block *sb)
777 {
778 struct ext4_sb_info *sbi = EXT4_SB(sb);
779 struct ext4_super_block *es = sbi->s_es;
780 int i, err;
781
782 ext4_unregister_li_request(sb);
783 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
784
785 flush_workqueue(sbi->rsv_conversion_wq);
786 destroy_workqueue(sbi->rsv_conversion_wq);
787
788 if (sbi->s_journal) {
789 err = jbd2_journal_destroy(sbi->s_journal);
790 sbi->s_journal = NULL;
791 if (err < 0)
792 ext4_abort(sb, "Couldn't clean up the journal");
793 }
794
795 ext4_es_unregister_shrinker(sbi);
796 del_timer_sync(&sbi->s_err_report);
797 ext4_release_system_zone(sb);
798 ext4_mb_release(sb);
799 ext4_ext_release(sb);
800 ext4_xattr_put_super(sb);
801
802 if (!(sb->s_flags & MS_RDONLY)) {
803 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
804 es->s_state = cpu_to_le16(sbi->s_mount_state);
805 }
806 if (!(sb->s_flags & MS_RDONLY))
807 ext4_commit_super(sb, 1);
808
809 if (sbi->s_proc) {
810 remove_proc_entry("options", sbi->s_proc);
811 remove_proc_entry(sb->s_id, ext4_proc_root);
812 }
813 kobject_del(&sbi->s_kobj);
814
815 for (i = 0; i < sbi->s_gdb_count; i++)
816 brelse(sbi->s_group_desc[i]);
817 ext4_kvfree(sbi->s_group_desc);
818 ext4_kvfree(sbi->s_flex_groups);
819 percpu_counter_destroy(&sbi->s_freeclusters_counter);
820 percpu_counter_destroy(&sbi->s_freeinodes_counter);
821 percpu_counter_destroy(&sbi->s_dirs_counter);
822 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
823 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
824 brelse(sbi->s_sbh);
825 #ifdef CONFIG_QUOTA
826 for (i = 0; i < MAXQUOTAS; i++)
827 kfree(sbi->s_qf_names[i]);
828 #endif
829
830 /* Debugging code just in case the in-memory inode orphan list
831 * isn't empty. The on-disk one can be non-empty if we've
832 * detected an error and taken the fs readonly, but the
833 * in-memory list had better be clean by this point. */
834 if (!list_empty(&sbi->s_orphan))
835 dump_orphan_list(sb, sbi);
836 J_ASSERT(list_empty(&sbi->s_orphan));
837
838 invalidate_bdev(sb->s_bdev);
839 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
840 /*
841 * Invalidate the journal device's buffers. We don't want them
842 * floating about in memory - the physical journal device may
843 * hotswapped, and it breaks the `ro-after' testing code.
844 */
845 sync_blockdev(sbi->journal_bdev);
846 invalidate_bdev(sbi->journal_bdev);
847 ext4_blkdev_remove(sbi);
848 }
849 if (sbi->s_mb_cache) {
850 ext4_xattr_destroy_cache(sbi->s_mb_cache);
851 sbi->s_mb_cache = NULL;
852 }
853 if (sbi->s_mmp_tsk)
854 kthread_stop(sbi->s_mmp_tsk);
855 sb->s_fs_info = NULL;
856 /*
857 * Now that we are completely done shutting down the
858 * superblock, we need to actually destroy the kobject.
859 */
860 kobject_put(&sbi->s_kobj);
861 wait_for_completion(&sbi->s_kobj_unregister);
862 if (sbi->s_chksum_driver)
863 crypto_free_shash(sbi->s_chksum_driver);
864 kfree(sbi->s_blockgroup_lock);
865 kfree(sbi);
866 }
867
868 static struct kmem_cache *ext4_inode_cachep;
869
870 /*
871 * Called inside transaction, so use GFP_NOFS
872 */
873 static struct inode *ext4_alloc_inode(struct super_block *sb)
874 {
875 struct ext4_inode_info *ei;
876
877 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
878 if (!ei)
879 return NULL;
880
881 ei->vfs_inode.i_version = 1;
882 spin_lock_init(&ei->i_raw_lock);
883 INIT_LIST_HEAD(&ei->i_prealloc_list);
884 spin_lock_init(&ei->i_prealloc_lock);
885 ext4_es_init_tree(&ei->i_es_tree);
886 rwlock_init(&ei->i_es_lock);
887 INIT_LIST_HEAD(&ei->i_es_lru);
888 ei->i_es_lru_nr = 0;
889 ei->i_touch_when = 0;
890 ei->i_reserved_data_blocks = 0;
891 ei->i_reserved_meta_blocks = 0;
892 ei->i_allocated_meta_blocks = 0;
893 ei->i_da_metadata_calc_len = 0;
894 ei->i_da_metadata_calc_last_lblock = 0;
895 spin_lock_init(&(ei->i_block_reservation_lock));
896 #ifdef CONFIG_QUOTA
897 ei->i_reserved_quota = 0;
898 #endif
899 ei->jinode = NULL;
900 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
901 spin_lock_init(&ei->i_completed_io_lock);
902 ei->i_sync_tid = 0;
903 ei->i_datasync_tid = 0;
904 atomic_set(&ei->i_ioend_count, 0);
905 atomic_set(&ei->i_unwritten, 0);
906 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
907
908 return &ei->vfs_inode;
909 }
910
911 static int ext4_drop_inode(struct inode *inode)
912 {
913 int drop = generic_drop_inode(inode);
914
915 trace_ext4_drop_inode(inode, drop);
916 return drop;
917 }
918
919 static void ext4_i_callback(struct rcu_head *head)
920 {
921 struct inode *inode = container_of(head, struct inode, i_rcu);
922 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
923 }
924
925 static void ext4_destroy_inode(struct inode *inode)
926 {
927 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
928 ext4_msg(inode->i_sb, KERN_ERR,
929 "Inode %lu (%p): orphan list check failed!",
930 inode->i_ino, EXT4_I(inode));
931 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
932 EXT4_I(inode), sizeof(struct ext4_inode_info),
933 true);
934 dump_stack();
935 }
936 call_rcu(&inode->i_rcu, ext4_i_callback);
937 }
938
939 static void init_once(void *foo)
940 {
941 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
942
943 INIT_LIST_HEAD(&ei->i_orphan);
944 init_rwsem(&ei->xattr_sem);
945 init_rwsem(&ei->i_data_sem);
946 inode_init_once(&ei->vfs_inode);
947 }
948
949 static int __init init_inodecache(void)
950 {
951 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
952 sizeof(struct ext4_inode_info),
953 0, (SLAB_RECLAIM_ACCOUNT|
954 SLAB_MEM_SPREAD),
955 init_once);
956 if (ext4_inode_cachep == NULL)
957 return -ENOMEM;
958 return 0;
959 }
960
961 static void destroy_inodecache(void)
962 {
963 /*
964 * Make sure all delayed rcu free inodes are flushed before we
965 * destroy cache.
966 */
967 rcu_barrier();
968 kmem_cache_destroy(ext4_inode_cachep);
969 }
970
971 void ext4_clear_inode(struct inode *inode)
972 {
973 invalidate_inode_buffers(inode);
974 clear_inode(inode);
975 dquot_drop(inode);
976 ext4_discard_preallocations(inode);
977 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
978 ext4_es_lru_del(inode);
979 if (EXT4_I(inode)->jinode) {
980 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
981 EXT4_I(inode)->jinode);
982 jbd2_free_inode(EXT4_I(inode)->jinode);
983 EXT4_I(inode)->jinode = NULL;
984 }
985 }
986
987 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
988 u64 ino, u32 generation)
989 {
990 struct inode *inode;
991
992 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
993 return ERR_PTR(-ESTALE);
994 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
995 return ERR_PTR(-ESTALE);
996
997 /* iget isn't really right if the inode is currently unallocated!!
998 *
999 * ext4_read_inode will return a bad_inode if the inode had been
1000 * deleted, so we should be safe.
1001 *
1002 * Currently we don't know the generation for parent directory, so
1003 * a generation of 0 means "accept any"
1004 */
1005 inode = ext4_iget(sb, ino);
1006 if (IS_ERR(inode))
1007 return ERR_CAST(inode);
1008 if (generation && inode->i_generation != generation) {
1009 iput(inode);
1010 return ERR_PTR(-ESTALE);
1011 }
1012
1013 return inode;
1014 }
1015
1016 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017 int fh_len, int fh_type)
1018 {
1019 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1020 ext4_nfs_get_inode);
1021 }
1022
1023 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1024 int fh_len, int fh_type)
1025 {
1026 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1027 ext4_nfs_get_inode);
1028 }
1029
1030 /*
1031 * Try to release metadata pages (indirect blocks, directories) which are
1032 * mapped via the block device. Since these pages could have journal heads
1033 * which would prevent try_to_free_buffers() from freeing them, we must use
1034 * jbd2 layer's try_to_free_buffers() function to release them.
1035 */
1036 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1037 gfp_t wait)
1038 {
1039 journal_t *journal = EXT4_SB(sb)->s_journal;
1040
1041 WARN_ON(PageChecked(page));
1042 if (!page_has_buffers(page))
1043 return 0;
1044 if (journal)
1045 return jbd2_journal_try_to_free_buffers(journal, page,
1046 wait & ~__GFP_WAIT);
1047 return try_to_free_buffers(page);
1048 }
1049
1050 #ifdef CONFIG_QUOTA
1051 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1052 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1053
1054 static int ext4_write_dquot(struct dquot *dquot);
1055 static int ext4_acquire_dquot(struct dquot *dquot);
1056 static int ext4_release_dquot(struct dquot *dquot);
1057 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1058 static int ext4_write_info(struct super_block *sb, int type);
1059 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1060 struct path *path);
1061 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1062 int format_id);
1063 static int ext4_quota_off(struct super_block *sb, int type);
1064 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1065 static int ext4_quota_on_mount(struct super_block *sb, int type);
1066 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1067 size_t len, loff_t off);
1068 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1069 const char *data, size_t len, loff_t off);
1070 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1071 unsigned int flags);
1072 static int ext4_enable_quotas(struct super_block *sb);
1073
1074 static const struct dquot_operations ext4_quota_operations = {
1075 .get_reserved_space = ext4_get_reserved_space,
1076 .write_dquot = ext4_write_dquot,
1077 .acquire_dquot = ext4_acquire_dquot,
1078 .release_dquot = ext4_release_dquot,
1079 .mark_dirty = ext4_mark_dquot_dirty,
1080 .write_info = ext4_write_info,
1081 .alloc_dquot = dquot_alloc,
1082 .destroy_dquot = dquot_destroy,
1083 };
1084
1085 static const struct quotactl_ops ext4_qctl_operations = {
1086 .quota_on = ext4_quota_on,
1087 .quota_off = ext4_quota_off,
1088 .quota_sync = dquot_quota_sync,
1089 .get_info = dquot_get_dqinfo,
1090 .set_info = dquot_set_dqinfo,
1091 .get_dqblk = dquot_get_dqblk,
1092 .set_dqblk = dquot_set_dqblk
1093 };
1094
1095 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1096 .quota_on_meta = ext4_quota_on_sysfile,
1097 .quota_off = ext4_quota_off_sysfile,
1098 .quota_sync = dquot_quota_sync,
1099 .get_info = dquot_get_dqinfo,
1100 .set_info = dquot_set_dqinfo,
1101 .get_dqblk = dquot_get_dqblk,
1102 .set_dqblk = dquot_set_dqblk
1103 };
1104 #endif
1105
1106 static const struct super_operations ext4_sops = {
1107 .alloc_inode = ext4_alloc_inode,
1108 .destroy_inode = ext4_destroy_inode,
1109 .write_inode = ext4_write_inode,
1110 .dirty_inode = ext4_dirty_inode,
1111 .drop_inode = ext4_drop_inode,
1112 .evict_inode = ext4_evict_inode,
1113 .put_super = ext4_put_super,
1114 .sync_fs = ext4_sync_fs,
1115 .freeze_fs = ext4_freeze,
1116 .unfreeze_fs = ext4_unfreeze,
1117 .statfs = ext4_statfs,
1118 .remount_fs = ext4_remount,
1119 .show_options = ext4_show_options,
1120 #ifdef CONFIG_QUOTA
1121 .quota_read = ext4_quota_read,
1122 .quota_write = ext4_quota_write,
1123 #endif
1124 .bdev_try_to_free_page = bdev_try_to_free_page,
1125 };
1126
1127 static const struct super_operations ext4_nojournal_sops = {
1128 .alloc_inode = ext4_alloc_inode,
1129 .destroy_inode = ext4_destroy_inode,
1130 .write_inode = ext4_write_inode,
1131 .dirty_inode = ext4_dirty_inode,
1132 .drop_inode = ext4_drop_inode,
1133 .evict_inode = ext4_evict_inode,
1134 .sync_fs = ext4_sync_fs_nojournal,
1135 .put_super = ext4_put_super,
1136 .statfs = ext4_statfs,
1137 .remount_fs = ext4_remount,
1138 .show_options = ext4_show_options,
1139 #ifdef CONFIG_QUOTA
1140 .quota_read = ext4_quota_read,
1141 .quota_write = ext4_quota_write,
1142 #endif
1143 .bdev_try_to_free_page = bdev_try_to_free_page,
1144 };
1145
1146 static const struct export_operations ext4_export_ops = {
1147 .fh_to_dentry = ext4_fh_to_dentry,
1148 .fh_to_parent = ext4_fh_to_parent,
1149 .get_parent = ext4_get_parent,
1150 };
1151
1152 enum {
1153 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1154 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1155 Opt_nouid32, Opt_debug, Opt_removed,
1156 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1157 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1158 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1159 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1160 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1161 Opt_data_err_abort, Opt_data_err_ignore,
1162 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1163 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1164 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1165 Opt_usrquota, Opt_grpquota, Opt_i_version,
1166 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1167 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1168 Opt_inode_readahead_blks, Opt_journal_ioprio,
1169 Opt_dioread_nolock, Opt_dioread_lock,
1170 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1171 Opt_max_dir_size_kb,
1172 };
1173
1174 static const match_table_t tokens = {
1175 {Opt_bsd_df, "bsddf"},
1176 {Opt_minix_df, "minixdf"},
1177 {Opt_grpid, "grpid"},
1178 {Opt_grpid, "bsdgroups"},
1179 {Opt_nogrpid, "nogrpid"},
1180 {Opt_nogrpid, "sysvgroups"},
1181 {Opt_resgid, "resgid=%u"},
1182 {Opt_resuid, "resuid=%u"},
1183 {Opt_sb, "sb=%u"},
1184 {Opt_err_cont, "errors=continue"},
1185 {Opt_err_panic, "errors=panic"},
1186 {Opt_err_ro, "errors=remount-ro"},
1187 {Opt_nouid32, "nouid32"},
1188 {Opt_debug, "debug"},
1189 {Opt_removed, "oldalloc"},
1190 {Opt_removed, "orlov"},
1191 {Opt_user_xattr, "user_xattr"},
1192 {Opt_nouser_xattr, "nouser_xattr"},
1193 {Opt_acl, "acl"},
1194 {Opt_noacl, "noacl"},
1195 {Opt_noload, "norecovery"},
1196 {Opt_noload, "noload"},
1197 {Opt_removed, "nobh"},
1198 {Opt_removed, "bh"},
1199 {Opt_commit, "commit=%u"},
1200 {Opt_min_batch_time, "min_batch_time=%u"},
1201 {Opt_max_batch_time, "max_batch_time=%u"},
1202 {Opt_journal_dev, "journal_dev=%u"},
1203 {Opt_journal_path, "journal_path=%s"},
1204 {Opt_journal_checksum, "journal_checksum"},
1205 {Opt_journal_async_commit, "journal_async_commit"},
1206 {Opt_abort, "abort"},
1207 {Opt_data_journal, "data=journal"},
1208 {Opt_data_ordered, "data=ordered"},
1209 {Opt_data_writeback, "data=writeback"},
1210 {Opt_data_err_abort, "data_err=abort"},
1211 {Opt_data_err_ignore, "data_err=ignore"},
1212 {Opt_offusrjquota, "usrjquota="},
1213 {Opt_usrjquota, "usrjquota=%s"},
1214 {Opt_offgrpjquota, "grpjquota="},
1215 {Opt_grpjquota, "grpjquota=%s"},
1216 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1217 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1218 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1219 {Opt_grpquota, "grpquota"},
1220 {Opt_noquota, "noquota"},
1221 {Opt_quota, "quota"},
1222 {Opt_usrquota, "usrquota"},
1223 {Opt_barrier, "barrier=%u"},
1224 {Opt_barrier, "barrier"},
1225 {Opt_nobarrier, "nobarrier"},
1226 {Opt_i_version, "i_version"},
1227 {Opt_stripe, "stripe=%u"},
1228 {Opt_delalloc, "delalloc"},
1229 {Opt_nodelalloc, "nodelalloc"},
1230 {Opt_removed, "mblk_io_submit"},
1231 {Opt_removed, "nomblk_io_submit"},
1232 {Opt_block_validity, "block_validity"},
1233 {Opt_noblock_validity, "noblock_validity"},
1234 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1235 {Opt_journal_ioprio, "journal_ioprio=%u"},
1236 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1237 {Opt_auto_da_alloc, "auto_da_alloc"},
1238 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1239 {Opt_dioread_nolock, "dioread_nolock"},
1240 {Opt_dioread_lock, "dioread_lock"},
1241 {Opt_discard, "discard"},
1242 {Opt_nodiscard, "nodiscard"},
1243 {Opt_init_itable, "init_itable=%u"},
1244 {Opt_init_itable, "init_itable"},
1245 {Opt_noinit_itable, "noinit_itable"},
1246 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1247 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1248 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1249 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1250 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1251 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1252 {Opt_err, NULL},
1253 };
1254
1255 static ext4_fsblk_t get_sb_block(void **data)
1256 {
1257 ext4_fsblk_t sb_block;
1258 char *options = (char *) *data;
1259
1260 if (!options || strncmp(options, "sb=", 3) != 0)
1261 return 1; /* Default location */
1262
1263 options += 3;
1264 /* TODO: use simple_strtoll with >32bit ext4 */
1265 sb_block = simple_strtoul(options, &options, 0);
1266 if (*options && *options != ',') {
1267 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1268 (char *) *data);
1269 return 1;
1270 }
1271 if (*options == ',')
1272 options++;
1273 *data = (void *) options;
1274
1275 return sb_block;
1276 }
1277
1278 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1279 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1280 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1281
1282 #ifdef CONFIG_QUOTA
1283 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1284 {
1285 struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 char *qname;
1287 int ret = -1;
1288
1289 if (sb_any_quota_loaded(sb) &&
1290 !sbi->s_qf_names[qtype]) {
1291 ext4_msg(sb, KERN_ERR,
1292 "Cannot change journaled "
1293 "quota options when quota turned on");
1294 return -1;
1295 }
1296 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1297 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1298 "when QUOTA feature is enabled");
1299 return -1;
1300 }
1301 qname = match_strdup(args);
1302 if (!qname) {
1303 ext4_msg(sb, KERN_ERR,
1304 "Not enough memory for storing quotafile name");
1305 return -1;
1306 }
1307 if (sbi->s_qf_names[qtype]) {
1308 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1309 ret = 1;
1310 else
1311 ext4_msg(sb, KERN_ERR,
1312 "%s quota file already specified",
1313 QTYPE2NAME(qtype));
1314 goto errout;
1315 }
1316 if (strchr(qname, '/')) {
1317 ext4_msg(sb, KERN_ERR,
1318 "quotafile must be on filesystem root");
1319 goto errout;
1320 }
1321 sbi->s_qf_names[qtype] = qname;
1322 set_opt(sb, QUOTA);
1323 return 1;
1324 errout:
1325 kfree(qname);
1326 return ret;
1327 }
1328
1329 static int clear_qf_name(struct super_block *sb, int qtype)
1330 {
1331
1332 struct ext4_sb_info *sbi = EXT4_SB(sb);
1333
1334 if (sb_any_quota_loaded(sb) &&
1335 sbi->s_qf_names[qtype]) {
1336 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1337 " when quota turned on");
1338 return -1;
1339 }
1340 kfree(sbi->s_qf_names[qtype]);
1341 sbi->s_qf_names[qtype] = NULL;
1342 return 1;
1343 }
1344 #endif
1345
1346 #define MOPT_SET 0x0001
1347 #define MOPT_CLEAR 0x0002
1348 #define MOPT_NOSUPPORT 0x0004
1349 #define MOPT_EXPLICIT 0x0008
1350 #define MOPT_CLEAR_ERR 0x0010
1351 #define MOPT_GTE0 0x0020
1352 #ifdef CONFIG_QUOTA
1353 #define MOPT_Q 0
1354 #define MOPT_QFMT 0x0040
1355 #else
1356 #define MOPT_Q MOPT_NOSUPPORT
1357 #define MOPT_QFMT MOPT_NOSUPPORT
1358 #endif
1359 #define MOPT_DATAJ 0x0080
1360 #define MOPT_NO_EXT2 0x0100
1361 #define MOPT_NO_EXT3 0x0200
1362 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1363 #define MOPT_STRING 0x0400
1364
1365 static const struct mount_opts {
1366 int token;
1367 int mount_opt;
1368 int flags;
1369 } ext4_mount_opts[] = {
1370 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1371 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1372 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1373 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1374 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1375 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1376 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1377 MOPT_EXT4_ONLY | MOPT_SET},
1378 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1379 MOPT_EXT4_ONLY | MOPT_CLEAR},
1380 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1381 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1382 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1383 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1384 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1385 MOPT_EXT4_ONLY | MOPT_CLEAR},
1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1387 MOPT_EXT4_ONLY | MOPT_SET},
1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1389 EXT4_MOUNT_JOURNAL_CHECKSUM),
1390 MOPT_EXT4_ONLY | MOPT_SET},
1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1396 MOPT_NO_EXT2 | MOPT_SET},
1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1398 MOPT_NO_EXT2 | MOPT_CLEAR},
1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1404 {Opt_commit, 0, MOPT_GTE0},
1405 {Opt_max_batch_time, 0, MOPT_GTE0},
1406 {Opt_min_batch_time, 0, MOPT_GTE0},
1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1408 {Opt_init_itable, 0, MOPT_GTE0},
1409 {Opt_stripe, 0, MOPT_GTE0},
1410 {Opt_resuid, 0, MOPT_GTE0},
1411 {Opt_resgid, 0, MOPT_GTE0},
1412 {Opt_journal_dev, 0, MOPT_GTE0},
1413 {Opt_journal_path, 0, MOPT_STRING},
1414 {Opt_journal_ioprio, 0, MOPT_GTE0},
1415 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1416 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1417 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1418 MOPT_NO_EXT2 | MOPT_DATAJ},
1419 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1420 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1421 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1422 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1423 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1424 #else
1425 {Opt_acl, 0, MOPT_NOSUPPORT},
1426 {Opt_noacl, 0, MOPT_NOSUPPORT},
1427 #endif
1428 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1429 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1430 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1431 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1432 MOPT_SET | MOPT_Q},
1433 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1434 MOPT_SET | MOPT_Q},
1435 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1436 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1437 {Opt_usrjquota, 0, MOPT_Q},
1438 {Opt_grpjquota, 0, MOPT_Q},
1439 {Opt_offusrjquota, 0, MOPT_Q},
1440 {Opt_offgrpjquota, 0, MOPT_Q},
1441 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1442 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1443 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1444 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1445 {Opt_err, 0, 0}
1446 };
1447
1448 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1449 substring_t *args, unsigned long *journal_devnum,
1450 unsigned int *journal_ioprio, int is_remount)
1451 {
1452 struct ext4_sb_info *sbi = EXT4_SB(sb);
1453 const struct mount_opts *m;
1454 kuid_t uid;
1455 kgid_t gid;
1456 int arg = 0;
1457
1458 #ifdef CONFIG_QUOTA
1459 if (token == Opt_usrjquota)
1460 return set_qf_name(sb, USRQUOTA, &args[0]);
1461 else if (token == Opt_grpjquota)
1462 return set_qf_name(sb, GRPQUOTA, &args[0]);
1463 else if (token == Opt_offusrjquota)
1464 return clear_qf_name(sb, USRQUOTA);
1465 else if (token == Opt_offgrpjquota)
1466 return clear_qf_name(sb, GRPQUOTA);
1467 #endif
1468 switch (token) {
1469 case Opt_noacl:
1470 case Opt_nouser_xattr:
1471 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1472 break;
1473 case Opt_sb:
1474 return 1; /* handled by get_sb_block() */
1475 case Opt_removed:
1476 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1477 return 1;
1478 case Opt_abort:
1479 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1480 return 1;
1481 case Opt_i_version:
1482 sb->s_flags |= MS_I_VERSION;
1483 return 1;
1484 }
1485
1486 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1487 if (token == m->token)
1488 break;
1489
1490 if (m->token == Opt_err) {
1491 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1492 "or missing value", opt);
1493 return -1;
1494 }
1495
1496 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1497 ext4_msg(sb, KERN_ERR,
1498 "Mount option \"%s\" incompatible with ext2", opt);
1499 return -1;
1500 }
1501 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1502 ext4_msg(sb, KERN_ERR,
1503 "Mount option \"%s\" incompatible with ext3", opt);
1504 return -1;
1505 }
1506
1507 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1508 return -1;
1509 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1510 return -1;
1511 if (m->flags & MOPT_EXPLICIT)
1512 set_opt2(sb, EXPLICIT_DELALLOC);
1513 if (m->flags & MOPT_CLEAR_ERR)
1514 clear_opt(sb, ERRORS_MASK);
1515 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1516 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1517 "options when quota turned on");
1518 return -1;
1519 }
1520
1521 if (m->flags & MOPT_NOSUPPORT) {
1522 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1523 } else if (token == Opt_commit) {
1524 if (arg == 0)
1525 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1526 sbi->s_commit_interval = HZ * arg;
1527 } else if (token == Opt_max_batch_time) {
1528 if (arg == 0)
1529 arg = EXT4_DEF_MAX_BATCH_TIME;
1530 sbi->s_max_batch_time = arg;
1531 } else if (token == Opt_min_batch_time) {
1532 sbi->s_min_batch_time = arg;
1533 } else if (token == Opt_inode_readahead_blks) {
1534 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1535 ext4_msg(sb, KERN_ERR,
1536 "EXT4-fs: inode_readahead_blks must be "
1537 "0 or a power of 2 smaller than 2^31");
1538 return -1;
1539 }
1540 sbi->s_inode_readahead_blks = arg;
1541 } else if (token == Opt_init_itable) {
1542 set_opt(sb, INIT_INODE_TABLE);
1543 if (!args->from)
1544 arg = EXT4_DEF_LI_WAIT_MULT;
1545 sbi->s_li_wait_mult = arg;
1546 } else if (token == Opt_max_dir_size_kb) {
1547 sbi->s_max_dir_size_kb = arg;
1548 } else if (token == Opt_stripe) {
1549 sbi->s_stripe = arg;
1550 } else if (token == Opt_resuid) {
1551 uid = make_kuid(current_user_ns(), arg);
1552 if (!uid_valid(uid)) {
1553 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1554 return -1;
1555 }
1556 sbi->s_resuid = uid;
1557 } else if (token == Opt_resgid) {
1558 gid = make_kgid(current_user_ns(), arg);
1559 if (!gid_valid(gid)) {
1560 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1561 return -1;
1562 }
1563 sbi->s_resgid = gid;
1564 } else if (token == Opt_journal_dev) {
1565 if (is_remount) {
1566 ext4_msg(sb, KERN_ERR,
1567 "Cannot specify journal on remount");
1568 return -1;
1569 }
1570 *journal_devnum = arg;
1571 } else if (token == Opt_journal_path) {
1572 char *journal_path;
1573 struct inode *journal_inode;
1574 struct path path;
1575 int error;
1576
1577 if (is_remount) {
1578 ext4_msg(sb, KERN_ERR,
1579 "Cannot specify journal on remount");
1580 return -1;
1581 }
1582 journal_path = match_strdup(&args[0]);
1583 if (!journal_path) {
1584 ext4_msg(sb, KERN_ERR, "error: could not dup "
1585 "journal device string");
1586 return -1;
1587 }
1588
1589 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1590 if (error) {
1591 ext4_msg(sb, KERN_ERR, "error: could not find "
1592 "journal device path: error %d", error);
1593 kfree(journal_path);
1594 return -1;
1595 }
1596
1597 journal_inode = path.dentry->d_inode;
1598 if (!S_ISBLK(journal_inode->i_mode)) {
1599 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1600 "is not a block device", journal_path);
1601 path_put(&path);
1602 kfree(journal_path);
1603 return -1;
1604 }
1605
1606 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1607 path_put(&path);
1608 kfree(journal_path);
1609 } else if (token == Opt_journal_ioprio) {
1610 if (arg > 7) {
1611 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1612 " (must be 0-7)");
1613 return -1;
1614 }
1615 *journal_ioprio =
1616 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1617 } else if (m->flags & MOPT_DATAJ) {
1618 if (is_remount) {
1619 if (!sbi->s_journal)
1620 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1621 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot change data mode on remount");
1624 return -1;
1625 }
1626 } else {
1627 clear_opt(sb, DATA_FLAGS);
1628 sbi->s_mount_opt |= m->mount_opt;
1629 }
1630 #ifdef CONFIG_QUOTA
1631 } else if (m->flags & MOPT_QFMT) {
1632 if (sb_any_quota_loaded(sb) &&
1633 sbi->s_jquota_fmt != m->mount_opt) {
1634 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1635 "quota options when quota turned on");
1636 return -1;
1637 }
1638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1639 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1640 ext4_msg(sb, KERN_ERR,
1641 "Cannot set journaled quota options "
1642 "when QUOTA feature is enabled");
1643 return -1;
1644 }
1645 sbi->s_jquota_fmt = m->mount_opt;
1646 #endif
1647 } else {
1648 if (!args->from)
1649 arg = 1;
1650 if (m->flags & MOPT_CLEAR)
1651 arg = !arg;
1652 else if (unlikely(!(m->flags & MOPT_SET))) {
1653 ext4_msg(sb, KERN_WARNING,
1654 "buggy handling of option %s", opt);
1655 WARN_ON(1);
1656 return -1;
1657 }
1658 if (arg != 0)
1659 sbi->s_mount_opt |= m->mount_opt;
1660 else
1661 sbi->s_mount_opt &= ~m->mount_opt;
1662 }
1663 return 1;
1664 }
1665
1666 static int parse_options(char *options, struct super_block *sb,
1667 unsigned long *journal_devnum,
1668 unsigned int *journal_ioprio,
1669 int is_remount)
1670 {
1671 struct ext4_sb_info *sbi = EXT4_SB(sb);
1672 char *p;
1673 substring_t args[MAX_OPT_ARGS];
1674 int token;
1675
1676 if (!options)
1677 return 1;
1678
1679 while ((p = strsep(&options, ",")) != NULL) {
1680 if (!*p)
1681 continue;
1682 /*
1683 * Initialize args struct so we know whether arg was
1684 * found; some options take optional arguments.
1685 */
1686 args[0].to = args[0].from = NULL;
1687 token = match_token(p, tokens, args);
1688 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1689 journal_ioprio, is_remount) < 0)
1690 return 0;
1691 }
1692 #ifdef CONFIG_QUOTA
1693 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1694 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1695 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1696 "feature is enabled");
1697 return 0;
1698 }
1699 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1700 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1701 clear_opt(sb, USRQUOTA);
1702
1703 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1704 clear_opt(sb, GRPQUOTA);
1705
1706 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1707 ext4_msg(sb, KERN_ERR, "old and new quota "
1708 "format mixing");
1709 return 0;
1710 }
1711
1712 if (!sbi->s_jquota_fmt) {
1713 ext4_msg(sb, KERN_ERR, "journaled quota format "
1714 "not specified");
1715 return 0;
1716 }
1717 } else {
1718 if (sbi->s_jquota_fmt) {
1719 ext4_msg(sb, KERN_ERR, "journaled quota format "
1720 "specified with no journaling "
1721 "enabled");
1722 return 0;
1723 }
1724 }
1725 #endif
1726 if (test_opt(sb, DIOREAD_NOLOCK)) {
1727 int blocksize =
1728 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1729
1730 if (blocksize < PAGE_CACHE_SIZE) {
1731 ext4_msg(sb, KERN_ERR, "can't mount with "
1732 "dioread_nolock if block size != PAGE_SIZE");
1733 return 0;
1734 }
1735 }
1736 return 1;
1737 }
1738
1739 static inline void ext4_show_quota_options(struct seq_file *seq,
1740 struct super_block *sb)
1741 {
1742 #if defined(CONFIG_QUOTA)
1743 struct ext4_sb_info *sbi = EXT4_SB(sb);
1744
1745 if (sbi->s_jquota_fmt) {
1746 char *fmtname = "";
1747
1748 switch (sbi->s_jquota_fmt) {
1749 case QFMT_VFS_OLD:
1750 fmtname = "vfsold";
1751 break;
1752 case QFMT_VFS_V0:
1753 fmtname = "vfsv0";
1754 break;
1755 case QFMT_VFS_V1:
1756 fmtname = "vfsv1";
1757 break;
1758 }
1759 seq_printf(seq, ",jqfmt=%s", fmtname);
1760 }
1761
1762 if (sbi->s_qf_names[USRQUOTA])
1763 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1764
1765 if (sbi->s_qf_names[GRPQUOTA])
1766 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1767 #endif
1768 }
1769
1770 static const char *token2str(int token)
1771 {
1772 const struct match_token *t;
1773
1774 for (t = tokens; t->token != Opt_err; t++)
1775 if (t->token == token && !strchr(t->pattern, '='))
1776 break;
1777 return t->pattern;
1778 }
1779
1780 /*
1781 * Show an option if
1782 * - it's set to a non-default value OR
1783 * - if the per-sb default is different from the global default
1784 */
1785 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1786 int nodefs)
1787 {
1788 struct ext4_sb_info *sbi = EXT4_SB(sb);
1789 struct ext4_super_block *es = sbi->s_es;
1790 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1791 const struct mount_opts *m;
1792 char sep = nodefs ? '\n' : ',';
1793
1794 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1795 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1796
1797 if (sbi->s_sb_block != 1)
1798 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1799
1800 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1801 int want_set = m->flags & MOPT_SET;
1802 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1803 (m->flags & MOPT_CLEAR_ERR))
1804 continue;
1805 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1806 continue; /* skip if same as the default */
1807 if ((want_set &&
1808 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1809 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1810 continue; /* select Opt_noFoo vs Opt_Foo */
1811 SEQ_OPTS_PRINT("%s", token2str(m->token));
1812 }
1813
1814 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1815 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1816 SEQ_OPTS_PRINT("resuid=%u",
1817 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1818 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1819 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1820 SEQ_OPTS_PRINT("resgid=%u",
1821 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1822 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1823 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1824 SEQ_OPTS_PUTS("errors=remount-ro");
1825 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1826 SEQ_OPTS_PUTS("errors=continue");
1827 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1828 SEQ_OPTS_PUTS("errors=panic");
1829 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1830 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1831 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1832 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1833 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1834 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1835 if (sb->s_flags & MS_I_VERSION)
1836 SEQ_OPTS_PUTS("i_version");
1837 if (nodefs || sbi->s_stripe)
1838 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1839 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1840 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1841 SEQ_OPTS_PUTS("data=journal");
1842 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1843 SEQ_OPTS_PUTS("data=ordered");
1844 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1845 SEQ_OPTS_PUTS("data=writeback");
1846 }
1847 if (nodefs ||
1848 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1849 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1850 sbi->s_inode_readahead_blks);
1851
1852 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1853 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1854 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1855 if (nodefs || sbi->s_max_dir_size_kb)
1856 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1857
1858 ext4_show_quota_options(seq, sb);
1859 return 0;
1860 }
1861
1862 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1863 {
1864 return _ext4_show_options(seq, root->d_sb, 0);
1865 }
1866
1867 static int options_seq_show(struct seq_file *seq, void *offset)
1868 {
1869 struct super_block *sb = seq->private;
1870 int rc;
1871
1872 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1873 rc = _ext4_show_options(seq, sb, 1);
1874 seq_puts(seq, "\n");
1875 return rc;
1876 }
1877
1878 static int options_open_fs(struct inode *inode, struct file *file)
1879 {
1880 return single_open(file, options_seq_show, PDE_DATA(inode));
1881 }
1882
1883 static const struct file_operations ext4_seq_options_fops = {
1884 .owner = THIS_MODULE,
1885 .open = options_open_fs,
1886 .read = seq_read,
1887 .llseek = seq_lseek,
1888 .release = single_release,
1889 };
1890
1891 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1892 int read_only)
1893 {
1894 struct ext4_sb_info *sbi = EXT4_SB(sb);
1895 int res = 0;
1896
1897 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1898 ext4_msg(sb, KERN_ERR, "revision level too high, "
1899 "forcing read-only mode");
1900 res = MS_RDONLY;
1901 }
1902 if (read_only)
1903 goto done;
1904 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1905 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1906 "running e2fsck is recommended");
1907 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1908 ext4_msg(sb, KERN_WARNING,
1909 "warning: mounting fs with errors, "
1910 "running e2fsck is recommended");
1911 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1912 le16_to_cpu(es->s_mnt_count) >=
1913 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1914 ext4_msg(sb, KERN_WARNING,
1915 "warning: maximal mount count reached, "
1916 "running e2fsck is recommended");
1917 else if (le32_to_cpu(es->s_checkinterval) &&
1918 (le32_to_cpu(es->s_lastcheck) +
1919 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1920 ext4_msg(sb, KERN_WARNING,
1921 "warning: checktime reached, "
1922 "running e2fsck is recommended");
1923 if (!sbi->s_journal)
1924 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1925 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1926 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1927 le16_add_cpu(&es->s_mnt_count, 1);
1928 es->s_mtime = cpu_to_le32(get_seconds());
1929 ext4_update_dynamic_rev(sb);
1930 if (sbi->s_journal)
1931 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1932
1933 ext4_commit_super(sb, 1);
1934 done:
1935 if (test_opt(sb, DEBUG))
1936 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1937 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1938 sb->s_blocksize,
1939 sbi->s_groups_count,
1940 EXT4_BLOCKS_PER_GROUP(sb),
1941 EXT4_INODES_PER_GROUP(sb),
1942 sbi->s_mount_opt, sbi->s_mount_opt2);
1943
1944 cleancache_init_fs(sb);
1945 return res;
1946 }
1947
1948 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1949 {
1950 struct ext4_sb_info *sbi = EXT4_SB(sb);
1951 struct flex_groups *new_groups;
1952 int size;
1953
1954 if (!sbi->s_log_groups_per_flex)
1955 return 0;
1956
1957 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1958 if (size <= sbi->s_flex_groups_allocated)
1959 return 0;
1960
1961 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1962 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1963 if (!new_groups) {
1964 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1965 size / (int) sizeof(struct flex_groups));
1966 return -ENOMEM;
1967 }
1968
1969 if (sbi->s_flex_groups) {
1970 memcpy(new_groups, sbi->s_flex_groups,
1971 (sbi->s_flex_groups_allocated *
1972 sizeof(struct flex_groups)));
1973 ext4_kvfree(sbi->s_flex_groups);
1974 }
1975 sbi->s_flex_groups = new_groups;
1976 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1977 return 0;
1978 }
1979
1980 static int ext4_fill_flex_info(struct super_block *sb)
1981 {
1982 struct ext4_sb_info *sbi = EXT4_SB(sb);
1983 struct ext4_group_desc *gdp = NULL;
1984 ext4_group_t flex_group;
1985 int i, err;
1986
1987 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1988 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1989 sbi->s_log_groups_per_flex = 0;
1990 return 1;
1991 }
1992
1993 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1994 if (err)
1995 goto failed;
1996
1997 for (i = 0; i < sbi->s_groups_count; i++) {
1998 gdp = ext4_get_group_desc(sb, i, NULL);
1999
2000 flex_group = ext4_flex_group(sbi, i);
2001 atomic_add(ext4_free_inodes_count(sb, gdp),
2002 &sbi->s_flex_groups[flex_group].free_inodes);
2003 atomic64_add(ext4_free_group_clusters(sb, gdp),
2004 &sbi->s_flex_groups[flex_group].free_clusters);
2005 atomic_add(ext4_used_dirs_count(sb, gdp),
2006 &sbi->s_flex_groups[flex_group].used_dirs);
2007 }
2008
2009 return 1;
2010 failed:
2011 return 0;
2012 }
2013
2014 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2015 struct ext4_group_desc *gdp)
2016 {
2017 int offset;
2018 __u16 crc = 0;
2019 __le32 le_group = cpu_to_le32(block_group);
2020
2021 if ((sbi->s_es->s_feature_ro_compat &
2022 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
2023 /* Use new metadata_csum algorithm */
2024 __le16 save_csum;
2025 __u32 csum32;
2026
2027 save_csum = gdp->bg_checksum;
2028 gdp->bg_checksum = 0;
2029 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2030 sizeof(le_group));
2031 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2032 sbi->s_desc_size);
2033 gdp->bg_checksum = save_csum;
2034
2035 crc = csum32 & 0xFFFF;
2036 goto out;
2037 }
2038
2039 /* old crc16 code */
2040 offset = offsetof(struct ext4_group_desc, bg_checksum);
2041
2042 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2043 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2044 crc = crc16(crc, (__u8 *)gdp, offset);
2045 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2046 /* for checksum of struct ext4_group_desc do the rest...*/
2047 if ((sbi->s_es->s_feature_incompat &
2048 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2049 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2050 crc = crc16(crc, (__u8 *)gdp + offset,
2051 le16_to_cpu(sbi->s_es->s_desc_size) -
2052 offset);
2053
2054 out:
2055 return cpu_to_le16(crc);
2056 }
2057
2058 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2059 struct ext4_group_desc *gdp)
2060 {
2061 if (ext4_has_group_desc_csum(sb) &&
2062 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2063 block_group, gdp)))
2064 return 0;
2065
2066 return 1;
2067 }
2068
2069 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2070 struct ext4_group_desc *gdp)
2071 {
2072 if (!ext4_has_group_desc_csum(sb))
2073 return;
2074 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2075 }
2076
2077 /* Called at mount-time, super-block is locked */
2078 static int ext4_check_descriptors(struct super_block *sb,
2079 ext4_group_t *first_not_zeroed)
2080 {
2081 struct ext4_sb_info *sbi = EXT4_SB(sb);
2082 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2083 ext4_fsblk_t last_block;
2084 ext4_fsblk_t block_bitmap;
2085 ext4_fsblk_t inode_bitmap;
2086 ext4_fsblk_t inode_table;
2087 int flexbg_flag = 0;
2088 ext4_group_t i, grp = sbi->s_groups_count;
2089
2090 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2091 flexbg_flag = 1;
2092
2093 ext4_debug("Checking group descriptors");
2094
2095 for (i = 0; i < sbi->s_groups_count; i++) {
2096 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2097
2098 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2099 last_block = ext4_blocks_count(sbi->s_es) - 1;
2100 else
2101 last_block = first_block +
2102 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2103
2104 if ((grp == sbi->s_groups_count) &&
2105 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2106 grp = i;
2107
2108 block_bitmap = ext4_block_bitmap(sb, gdp);
2109 if (block_bitmap < first_block || block_bitmap > last_block) {
2110 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2111 "Block bitmap for group %u not in group "
2112 "(block %llu)!", i, block_bitmap);
2113 return 0;
2114 }
2115 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2116 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2117 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2118 "Inode bitmap for group %u not in group "
2119 "(block %llu)!", i, inode_bitmap);
2120 return 0;
2121 }
2122 inode_table = ext4_inode_table(sb, gdp);
2123 if (inode_table < first_block ||
2124 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2125 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2126 "Inode table for group %u not in group "
2127 "(block %llu)!", i, inode_table);
2128 return 0;
2129 }
2130 ext4_lock_group(sb, i);
2131 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2132 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2133 "Checksum for group %u failed (%u!=%u)",
2134 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2135 gdp)), le16_to_cpu(gdp->bg_checksum));
2136 if (!(sb->s_flags & MS_RDONLY)) {
2137 ext4_unlock_group(sb, i);
2138 return 0;
2139 }
2140 }
2141 ext4_unlock_group(sb, i);
2142 if (!flexbg_flag)
2143 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2144 }
2145 if (NULL != first_not_zeroed)
2146 *first_not_zeroed = grp;
2147
2148 ext4_free_blocks_count_set(sbi->s_es,
2149 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2150 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2151 return 1;
2152 }
2153
2154 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2155 * the superblock) which were deleted from all directories, but held open by
2156 * a process at the time of a crash. We walk the list and try to delete these
2157 * inodes at recovery time (only with a read-write filesystem).
2158 *
2159 * In order to keep the orphan inode chain consistent during traversal (in
2160 * case of crash during recovery), we link each inode into the superblock
2161 * orphan list_head and handle it the same way as an inode deletion during
2162 * normal operation (which journals the operations for us).
2163 *
2164 * We only do an iget() and an iput() on each inode, which is very safe if we
2165 * accidentally point at an in-use or already deleted inode. The worst that
2166 * can happen in this case is that we get a "bit already cleared" message from
2167 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2168 * e2fsck was run on this filesystem, and it must have already done the orphan
2169 * inode cleanup for us, so we can safely abort without any further action.
2170 */
2171 static void ext4_orphan_cleanup(struct super_block *sb,
2172 struct ext4_super_block *es)
2173 {
2174 unsigned int s_flags = sb->s_flags;
2175 int nr_orphans = 0, nr_truncates = 0;
2176 #ifdef CONFIG_QUOTA
2177 int i;
2178 #endif
2179 if (!es->s_last_orphan) {
2180 jbd_debug(4, "no orphan inodes to clean up\n");
2181 return;
2182 }
2183
2184 if (bdev_read_only(sb->s_bdev)) {
2185 ext4_msg(sb, KERN_ERR, "write access "
2186 "unavailable, skipping orphan cleanup");
2187 return;
2188 }
2189
2190 /* Check if feature set would not allow a r/w mount */
2191 if (!ext4_feature_set_ok(sb, 0)) {
2192 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2193 "unknown ROCOMPAT features");
2194 return;
2195 }
2196
2197 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2198 /* don't clear list on RO mount w/ errors */
2199 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2200 jbd_debug(1, "Errors on filesystem, "
2201 "clearing orphan list.\n");
2202 es->s_last_orphan = 0;
2203 }
2204 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2205 return;
2206 }
2207
2208 if (s_flags & MS_RDONLY) {
2209 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2210 sb->s_flags &= ~MS_RDONLY;
2211 }
2212 #ifdef CONFIG_QUOTA
2213 /* Needed for iput() to work correctly and not trash data */
2214 sb->s_flags |= MS_ACTIVE;
2215 /* Turn on quotas so that they are updated correctly */
2216 for (i = 0; i < MAXQUOTAS; i++) {
2217 if (EXT4_SB(sb)->s_qf_names[i]) {
2218 int ret = ext4_quota_on_mount(sb, i);
2219 if (ret < 0)
2220 ext4_msg(sb, KERN_ERR,
2221 "Cannot turn on journaled "
2222 "quota: error %d", ret);
2223 }
2224 }
2225 #endif
2226
2227 while (es->s_last_orphan) {
2228 struct inode *inode;
2229
2230 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2231 if (IS_ERR(inode)) {
2232 es->s_last_orphan = 0;
2233 break;
2234 }
2235
2236 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2237 dquot_initialize(inode);
2238 if (inode->i_nlink) {
2239 if (test_opt(sb, DEBUG))
2240 ext4_msg(sb, KERN_DEBUG,
2241 "%s: truncating inode %lu to %lld bytes",
2242 __func__, inode->i_ino, inode->i_size);
2243 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2244 inode->i_ino, inode->i_size);
2245 mutex_lock(&inode->i_mutex);
2246 truncate_inode_pages(inode->i_mapping, inode->i_size);
2247 ext4_truncate(inode);
2248 mutex_unlock(&inode->i_mutex);
2249 nr_truncates++;
2250 } else {
2251 if (test_opt(sb, DEBUG))
2252 ext4_msg(sb, KERN_DEBUG,
2253 "%s: deleting unreferenced inode %lu",
2254 __func__, inode->i_ino);
2255 jbd_debug(2, "deleting unreferenced inode %lu\n",
2256 inode->i_ino);
2257 nr_orphans++;
2258 }
2259 iput(inode); /* The delete magic happens here! */
2260 }
2261
2262 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2263
2264 if (nr_orphans)
2265 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2266 PLURAL(nr_orphans));
2267 if (nr_truncates)
2268 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2269 PLURAL(nr_truncates));
2270 #ifdef CONFIG_QUOTA
2271 /* Turn quotas off */
2272 for (i = 0; i < MAXQUOTAS; i++) {
2273 if (sb_dqopt(sb)->files[i])
2274 dquot_quota_off(sb, i);
2275 }
2276 #endif
2277 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2278 }
2279
2280 /*
2281 * Maximal extent format file size.
2282 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2283 * extent format containers, within a sector_t, and within i_blocks
2284 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2285 * so that won't be a limiting factor.
2286 *
2287 * However there is other limiting factor. We do store extents in the form
2288 * of starting block and length, hence the resulting length of the extent
2289 * covering maximum file size must fit into on-disk format containers as
2290 * well. Given that length is always by 1 unit bigger than max unit (because
2291 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2292 *
2293 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2294 */
2295 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2296 {
2297 loff_t res;
2298 loff_t upper_limit = MAX_LFS_FILESIZE;
2299
2300 /* small i_blocks in vfs inode? */
2301 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2302 /*
2303 * CONFIG_LBDAF is not enabled implies the inode
2304 * i_block represent total blocks in 512 bytes
2305 * 32 == size of vfs inode i_blocks * 8
2306 */
2307 upper_limit = (1LL << 32) - 1;
2308
2309 /* total blocks in file system block size */
2310 upper_limit >>= (blkbits - 9);
2311 upper_limit <<= blkbits;
2312 }
2313
2314 /*
2315 * 32-bit extent-start container, ee_block. We lower the maxbytes
2316 * by one fs block, so ee_len can cover the extent of maximum file
2317 * size
2318 */
2319 res = (1LL << 32) - 1;
2320 res <<= blkbits;
2321
2322 /* Sanity check against vm- & vfs- imposed limits */
2323 if (res > upper_limit)
2324 res = upper_limit;
2325
2326 return res;
2327 }
2328
2329 /*
2330 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2331 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2332 * We need to be 1 filesystem block less than the 2^48 sector limit.
2333 */
2334 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2335 {
2336 loff_t res = EXT4_NDIR_BLOCKS;
2337 int meta_blocks;
2338 loff_t upper_limit;
2339 /* This is calculated to be the largest file size for a dense, block
2340 * mapped file such that the file's total number of 512-byte sectors,
2341 * including data and all indirect blocks, does not exceed (2^48 - 1).
2342 *
2343 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2344 * number of 512-byte sectors of the file.
2345 */
2346
2347 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2348 /*
2349 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2350 * the inode i_block field represents total file blocks in
2351 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2352 */
2353 upper_limit = (1LL << 32) - 1;
2354
2355 /* total blocks in file system block size */
2356 upper_limit >>= (bits - 9);
2357
2358 } else {
2359 /*
2360 * We use 48 bit ext4_inode i_blocks
2361 * With EXT4_HUGE_FILE_FL set the i_blocks
2362 * represent total number of blocks in
2363 * file system block size
2364 */
2365 upper_limit = (1LL << 48) - 1;
2366
2367 }
2368
2369 /* indirect blocks */
2370 meta_blocks = 1;
2371 /* double indirect blocks */
2372 meta_blocks += 1 + (1LL << (bits-2));
2373 /* tripple indirect blocks */
2374 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2375
2376 upper_limit -= meta_blocks;
2377 upper_limit <<= bits;
2378
2379 res += 1LL << (bits-2);
2380 res += 1LL << (2*(bits-2));
2381 res += 1LL << (3*(bits-2));
2382 res <<= bits;
2383 if (res > upper_limit)
2384 res = upper_limit;
2385
2386 if (res > MAX_LFS_FILESIZE)
2387 res = MAX_LFS_FILESIZE;
2388
2389 return res;
2390 }
2391
2392 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2393 ext4_fsblk_t logical_sb_block, int nr)
2394 {
2395 struct ext4_sb_info *sbi = EXT4_SB(sb);
2396 ext4_group_t bg, first_meta_bg;
2397 int has_super = 0;
2398
2399 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2400
2401 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2402 nr < first_meta_bg)
2403 return logical_sb_block + nr + 1;
2404 bg = sbi->s_desc_per_block * nr;
2405 if (ext4_bg_has_super(sb, bg))
2406 has_super = 1;
2407
2408 /*
2409 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2410 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2411 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2412 * compensate.
2413 */
2414 if (sb->s_blocksize == 1024 && nr == 0 &&
2415 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2416 has_super++;
2417
2418 return (has_super + ext4_group_first_block_no(sb, bg));
2419 }
2420
2421 /**
2422 * ext4_get_stripe_size: Get the stripe size.
2423 * @sbi: In memory super block info
2424 *
2425 * If we have specified it via mount option, then
2426 * use the mount option value. If the value specified at mount time is
2427 * greater than the blocks per group use the super block value.
2428 * If the super block value is greater than blocks per group return 0.
2429 * Allocator needs it be less than blocks per group.
2430 *
2431 */
2432 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2433 {
2434 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2435 unsigned long stripe_width =
2436 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2437 int ret;
2438
2439 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2440 ret = sbi->s_stripe;
2441 else if (stripe_width <= sbi->s_blocks_per_group)
2442 ret = stripe_width;
2443 else if (stride <= sbi->s_blocks_per_group)
2444 ret = stride;
2445 else
2446 ret = 0;
2447
2448 /*
2449 * If the stripe width is 1, this makes no sense and
2450 * we set it to 0 to turn off stripe handling code.
2451 */
2452 if (ret <= 1)
2453 ret = 0;
2454
2455 return ret;
2456 }
2457
2458 /* sysfs supprt */
2459
2460 struct ext4_attr {
2461 struct attribute attr;
2462 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2463 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2464 const char *, size_t);
2465 union {
2466 int offset;
2467 int deprecated_val;
2468 } u;
2469 };
2470
2471 static int parse_strtoull(const char *buf,
2472 unsigned long long max, unsigned long long *value)
2473 {
2474 int ret;
2475
2476 ret = kstrtoull(skip_spaces(buf), 0, value);
2477 if (!ret && *value > max)
2478 ret = -EINVAL;
2479 return ret;
2480 }
2481
2482 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2483 struct ext4_sb_info *sbi,
2484 char *buf)
2485 {
2486 return snprintf(buf, PAGE_SIZE, "%llu\n",
2487 (s64) EXT4_C2B(sbi,
2488 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2489 }
2490
2491 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi, char *buf)
2493 {
2494 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2495
2496 if (!sb->s_bdev->bd_part)
2497 return snprintf(buf, PAGE_SIZE, "0\n");
2498 return snprintf(buf, PAGE_SIZE, "%lu\n",
2499 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2500 sbi->s_sectors_written_start) >> 1);
2501 }
2502
2503 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2504 struct ext4_sb_info *sbi, char *buf)
2505 {
2506 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2507
2508 if (!sb->s_bdev->bd_part)
2509 return snprintf(buf, PAGE_SIZE, "0\n");
2510 return snprintf(buf, PAGE_SIZE, "%llu\n",
2511 (unsigned long long)(sbi->s_kbytes_written +
2512 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2513 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2514 }
2515
2516 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2517 struct ext4_sb_info *sbi,
2518 const char *buf, size_t count)
2519 {
2520 unsigned long t;
2521 int ret;
2522
2523 ret = kstrtoul(skip_spaces(buf), 0, &t);
2524 if (ret)
2525 return ret;
2526
2527 if (t && (!is_power_of_2(t) || t > 0x40000000))
2528 return -EINVAL;
2529
2530 sbi->s_inode_readahead_blks = t;
2531 return count;
2532 }
2533
2534 static ssize_t sbi_ui_show(struct ext4_attr *a,
2535 struct ext4_sb_info *sbi, char *buf)
2536 {
2537 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2538
2539 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2540 }
2541
2542 static ssize_t sbi_ui_store(struct ext4_attr *a,
2543 struct ext4_sb_info *sbi,
2544 const char *buf, size_t count)
2545 {
2546 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2547 unsigned long t;
2548 int ret;
2549
2550 ret = kstrtoul(skip_spaces(buf), 0, &t);
2551 if (ret)
2552 return ret;
2553 *ui = t;
2554 return count;
2555 }
2556
2557 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2558 struct ext4_sb_info *sbi, char *buf)
2559 {
2560 return snprintf(buf, PAGE_SIZE, "%llu\n",
2561 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2562 }
2563
2564 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2565 struct ext4_sb_info *sbi,
2566 const char *buf, size_t count)
2567 {
2568 unsigned long long val;
2569 int ret;
2570
2571 if (parse_strtoull(buf, -1ULL, &val))
2572 return -EINVAL;
2573 ret = ext4_reserve_clusters(sbi, val);
2574
2575 return ret ? ret : count;
2576 }
2577
2578 static ssize_t trigger_test_error(struct ext4_attr *a,
2579 struct ext4_sb_info *sbi,
2580 const char *buf, size_t count)
2581 {
2582 int len = count;
2583
2584 if (!capable(CAP_SYS_ADMIN))
2585 return -EPERM;
2586
2587 if (len && buf[len-1] == '\n')
2588 len--;
2589
2590 if (len)
2591 ext4_error(sbi->s_sb, "%.*s", len, buf);
2592 return count;
2593 }
2594
2595 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2596 struct ext4_sb_info *sbi, char *buf)
2597 {
2598 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2599 }
2600
2601 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2602 static struct ext4_attr ext4_attr_##_name = { \
2603 .attr = {.name = __stringify(_name), .mode = _mode }, \
2604 .show = _show, \
2605 .store = _store, \
2606 .u = { \
2607 .offset = offsetof(struct ext4_sb_info, _elname),\
2608 }, \
2609 }
2610 #define EXT4_ATTR(name, mode, show, store) \
2611 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2612
2613 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2614 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2615 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2616 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2617 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2618 #define ATTR_LIST(name) &ext4_attr_##name.attr
2619 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2620 static struct ext4_attr ext4_attr_##_name = { \
2621 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2622 .show = sbi_deprecated_show, \
2623 .u = { \
2624 .deprecated_val = _val, \
2625 }, \
2626 }
2627
2628 EXT4_RO_ATTR(delayed_allocation_blocks);
2629 EXT4_RO_ATTR(session_write_kbytes);
2630 EXT4_RO_ATTR(lifetime_write_kbytes);
2631 EXT4_RW_ATTR(reserved_clusters);
2632 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2633 inode_readahead_blks_store, s_inode_readahead_blks);
2634 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2635 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2636 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2637 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2638 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2639 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2640 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2641 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2642 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2643 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2644 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2646 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2648 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2650
2651 static struct attribute *ext4_attrs[] = {
2652 ATTR_LIST(delayed_allocation_blocks),
2653 ATTR_LIST(session_write_kbytes),
2654 ATTR_LIST(lifetime_write_kbytes),
2655 ATTR_LIST(reserved_clusters),
2656 ATTR_LIST(inode_readahead_blks),
2657 ATTR_LIST(inode_goal),
2658 ATTR_LIST(mb_stats),
2659 ATTR_LIST(mb_max_to_scan),
2660 ATTR_LIST(mb_min_to_scan),
2661 ATTR_LIST(mb_order2_req),
2662 ATTR_LIST(mb_stream_req),
2663 ATTR_LIST(mb_group_prealloc),
2664 ATTR_LIST(max_writeback_mb_bump),
2665 ATTR_LIST(extent_max_zeroout_kb),
2666 ATTR_LIST(trigger_fs_error),
2667 ATTR_LIST(err_ratelimit_interval_ms),
2668 ATTR_LIST(err_ratelimit_burst),
2669 ATTR_LIST(warning_ratelimit_interval_ms),
2670 ATTR_LIST(warning_ratelimit_burst),
2671 ATTR_LIST(msg_ratelimit_interval_ms),
2672 ATTR_LIST(msg_ratelimit_burst),
2673 NULL,
2674 };
2675
2676 /* Features this copy of ext4 supports */
2677 EXT4_INFO_ATTR(lazy_itable_init);
2678 EXT4_INFO_ATTR(batched_discard);
2679 EXT4_INFO_ATTR(meta_bg_resize);
2680
2681 static struct attribute *ext4_feat_attrs[] = {
2682 ATTR_LIST(lazy_itable_init),
2683 ATTR_LIST(batched_discard),
2684 ATTR_LIST(meta_bg_resize),
2685 NULL,
2686 };
2687
2688 static ssize_t ext4_attr_show(struct kobject *kobj,
2689 struct attribute *attr, char *buf)
2690 {
2691 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2692 s_kobj);
2693 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2694
2695 return a->show ? a->show(a, sbi, buf) : 0;
2696 }
2697
2698 static ssize_t ext4_attr_store(struct kobject *kobj,
2699 struct attribute *attr,
2700 const char *buf, size_t len)
2701 {
2702 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2703 s_kobj);
2704 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2705
2706 return a->store ? a->store(a, sbi, buf, len) : 0;
2707 }
2708
2709 static void ext4_sb_release(struct kobject *kobj)
2710 {
2711 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2712 s_kobj);
2713 complete(&sbi->s_kobj_unregister);
2714 }
2715
2716 static const struct sysfs_ops ext4_attr_ops = {
2717 .show = ext4_attr_show,
2718 .store = ext4_attr_store,
2719 };
2720
2721 static struct kobj_type ext4_ktype = {
2722 .default_attrs = ext4_attrs,
2723 .sysfs_ops = &ext4_attr_ops,
2724 .release = ext4_sb_release,
2725 };
2726
2727 static void ext4_feat_release(struct kobject *kobj)
2728 {
2729 complete(&ext4_feat->f_kobj_unregister);
2730 }
2731
2732 static struct kobj_type ext4_feat_ktype = {
2733 .default_attrs = ext4_feat_attrs,
2734 .sysfs_ops = &ext4_attr_ops,
2735 .release = ext4_feat_release,
2736 };
2737
2738 /*
2739 * Check whether this filesystem can be mounted based on
2740 * the features present and the RDONLY/RDWR mount requested.
2741 * Returns 1 if this filesystem can be mounted as requested,
2742 * 0 if it cannot be.
2743 */
2744 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2745 {
2746 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2747 ext4_msg(sb, KERN_ERR,
2748 "Couldn't mount because of "
2749 "unsupported optional features (%x)",
2750 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2751 ~EXT4_FEATURE_INCOMPAT_SUPP));
2752 return 0;
2753 }
2754
2755 if (readonly)
2756 return 1;
2757
2758 /* Check that feature set is OK for a read-write mount */
2759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2760 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2761 "unsupported optional features (%x)",
2762 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2763 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2764 return 0;
2765 }
2766 /*
2767 * Large file size enabled file system can only be mounted
2768 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2769 */
2770 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2771 if (sizeof(blkcnt_t) < sizeof(u64)) {
2772 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2773 "cannot be mounted RDWR without "
2774 "CONFIG_LBDAF");
2775 return 0;
2776 }
2777 }
2778 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2779 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2780 ext4_msg(sb, KERN_ERR,
2781 "Can't support bigalloc feature without "
2782 "extents feature\n");
2783 return 0;
2784 }
2785
2786 #ifndef CONFIG_QUOTA
2787 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2788 !readonly) {
2789 ext4_msg(sb, KERN_ERR,
2790 "Filesystem with quota feature cannot be mounted RDWR "
2791 "without CONFIG_QUOTA");
2792 return 0;
2793 }
2794 #endif /* CONFIG_QUOTA */
2795 return 1;
2796 }
2797
2798 /*
2799 * This function is called once a day if we have errors logged
2800 * on the file system
2801 */
2802 static void print_daily_error_info(unsigned long arg)
2803 {
2804 struct super_block *sb = (struct super_block *) arg;
2805 struct ext4_sb_info *sbi;
2806 struct ext4_super_block *es;
2807
2808 sbi = EXT4_SB(sb);
2809 es = sbi->s_es;
2810
2811 if (es->s_error_count)
2812 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2813 le32_to_cpu(es->s_error_count));
2814 if (es->s_first_error_time) {
2815 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2816 sb->s_id, le32_to_cpu(es->s_first_error_time),
2817 (int) sizeof(es->s_first_error_func),
2818 es->s_first_error_func,
2819 le32_to_cpu(es->s_first_error_line));
2820 if (es->s_first_error_ino)
2821 printk(": inode %u",
2822 le32_to_cpu(es->s_first_error_ino));
2823 if (es->s_first_error_block)
2824 printk(": block %llu", (unsigned long long)
2825 le64_to_cpu(es->s_first_error_block));
2826 printk("\n");
2827 }
2828 if (es->s_last_error_time) {
2829 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2830 sb->s_id, le32_to_cpu(es->s_last_error_time),
2831 (int) sizeof(es->s_last_error_func),
2832 es->s_last_error_func,
2833 le32_to_cpu(es->s_last_error_line));
2834 if (es->s_last_error_ino)
2835 printk(": inode %u",
2836 le32_to_cpu(es->s_last_error_ino));
2837 if (es->s_last_error_block)
2838 printk(": block %llu", (unsigned long long)
2839 le64_to_cpu(es->s_last_error_block));
2840 printk("\n");
2841 }
2842 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2843 }
2844
2845 /* Find next suitable group and run ext4_init_inode_table */
2846 static int ext4_run_li_request(struct ext4_li_request *elr)
2847 {
2848 struct ext4_group_desc *gdp = NULL;
2849 ext4_group_t group, ngroups;
2850 struct super_block *sb;
2851 unsigned long timeout = 0;
2852 int ret = 0;
2853
2854 sb = elr->lr_super;
2855 ngroups = EXT4_SB(sb)->s_groups_count;
2856
2857 sb_start_write(sb);
2858 for (group = elr->lr_next_group; group < ngroups; group++) {
2859 gdp = ext4_get_group_desc(sb, group, NULL);
2860 if (!gdp) {
2861 ret = 1;
2862 break;
2863 }
2864
2865 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2866 break;
2867 }
2868
2869 if (group >= ngroups)
2870 ret = 1;
2871
2872 if (!ret) {
2873 timeout = jiffies;
2874 ret = ext4_init_inode_table(sb, group,
2875 elr->lr_timeout ? 0 : 1);
2876 if (elr->lr_timeout == 0) {
2877 timeout = (jiffies - timeout) *
2878 elr->lr_sbi->s_li_wait_mult;
2879 elr->lr_timeout = timeout;
2880 }
2881 elr->lr_next_sched = jiffies + elr->lr_timeout;
2882 elr->lr_next_group = group + 1;
2883 }
2884 sb_end_write(sb);
2885
2886 return ret;
2887 }
2888
2889 /*
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2892 */
2893 static void ext4_remove_li_request(struct ext4_li_request *elr)
2894 {
2895 struct ext4_sb_info *sbi;
2896
2897 if (!elr)
2898 return;
2899
2900 sbi = elr->lr_sbi;
2901
2902 list_del(&elr->lr_request);
2903 sbi->s_li_request = NULL;
2904 kfree(elr);
2905 }
2906
2907 static void ext4_unregister_li_request(struct super_block *sb)
2908 {
2909 mutex_lock(&ext4_li_mtx);
2910 if (!ext4_li_info) {
2911 mutex_unlock(&ext4_li_mtx);
2912 return;
2913 }
2914
2915 mutex_lock(&ext4_li_info->li_list_mtx);
2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917 mutex_unlock(&ext4_li_info->li_list_mtx);
2918 mutex_unlock(&ext4_li_mtx);
2919 }
2920
2921 static struct task_struct *ext4_lazyinit_task;
2922
2923 /*
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2931 */
2932 static int ext4_lazyinit_thread(void *arg)
2933 {
2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935 struct list_head *pos, *n;
2936 struct ext4_li_request *elr;
2937 unsigned long next_wakeup, cur;
2938
2939 BUG_ON(NULL == eli);
2940
2941 cont_thread:
2942 while (true) {
2943 next_wakeup = MAX_JIFFY_OFFSET;
2944
2945 mutex_lock(&eli->li_list_mtx);
2946 if (list_empty(&eli->li_request_list)) {
2947 mutex_unlock(&eli->li_list_mtx);
2948 goto exit_thread;
2949 }
2950
2951 list_for_each_safe(pos, n, &eli->li_request_list) {
2952 elr = list_entry(pos, struct ext4_li_request,
2953 lr_request);
2954
2955 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2956 if (ext4_run_li_request(elr) != 0) {
2957 /* error, remove the lazy_init job */
2958 ext4_remove_li_request(elr);
2959 continue;
2960 }
2961 }
2962
2963 if (time_before(elr->lr_next_sched, next_wakeup))
2964 next_wakeup = elr->lr_next_sched;
2965 }
2966 mutex_unlock(&eli->li_list_mtx);
2967
2968 try_to_freeze();
2969
2970 cur = jiffies;
2971 if ((time_after_eq(cur, next_wakeup)) ||
2972 (MAX_JIFFY_OFFSET == next_wakeup)) {
2973 cond_resched();
2974 continue;
2975 }
2976
2977 schedule_timeout_interruptible(next_wakeup - cur);
2978
2979 if (kthread_should_stop()) {
2980 ext4_clear_request_list();
2981 goto exit_thread;
2982 }
2983 }
2984
2985 exit_thread:
2986 /*
2987 * It looks like the request list is empty, but we need
2988 * to check it under the li_list_mtx lock, to prevent any
2989 * additions into it, and of course we should lock ext4_li_mtx
2990 * to atomically free the list and ext4_li_info, because at
2991 * this point another ext4 filesystem could be registering
2992 * new one.
2993 */
2994 mutex_lock(&ext4_li_mtx);
2995 mutex_lock(&eli->li_list_mtx);
2996 if (!list_empty(&eli->li_request_list)) {
2997 mutex_unlock(&eli->li_list_mtx);
2998 mutex_unlock(&ext4_li_mtx);
2999 goto cont_thread;
3000 }
3001 mutex_unlock(&eli->li_list_mtx);
3002 kfree(ext4_li_info);
3003 ext4_li_info = NULL;
3004 mutex_unlock(&ext4_li_mtx);
3005
3006 return 0;
3007 }
3008
3009 static void ext4_clear_request_list(void)
3010 {
3011 struct list_head *pos, *n;
3012 struct ext4_li_request *elr;
3013
3014 mutex_lock(&ext4_li_info->li_list_mtx);
3015 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3016 elr = list_entry(pos, struct ext4_li_request,
3017 lr_request);
3018 ext4_remove_li_request(elr);
3019 }
3020 mutex_unlock(&ext4_li_info->li_list_mtx);
3021 }
3022
3023 static int ext4_run_lazyinit_thread(void)
3024 {
3025 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3026 ext4_li_info, "ext4lazyinit");
3027 if (IS_ERR(ext4_lazyinit_task)) {
3028 int err = PTR_ERR(ext4_lazyinit_task);
3029 ext4_clear_request_list();
3030 kfree(ext4_li_info);
3031 ext4_li_info = NULL;
3032 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3033 "initialization thread\n",
3034 err);
3035 return err;
3036 }
3037 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3038 return 0;
3039 }
3040
3041 /*
3042 * Check whether it make sense to run itable init. thread or not.
3043 * If there is at least one uninitialized inode table, return
3044 * corresponding group number, else the loop goes through all
3045 * groups and return total number of groups.
3046 */
3047 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3048 {
3049 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3050 struct ext4_group_desc *gdp = NULL;
3051
3052 for (group = 0; group < ngroups; group++) {
3053 gdp = ext4_get_group_desc(sb, group, NULL);
3054 if (!gdp)
3055 continue;
3056
3057 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3058 break;
3059 }
3060
3061 return group;
3062 }
3063
3064 static int ext4_li_info_new(void)
3065 {
3066 struct ext4_lazy_init *eli = NULL;
3067
3068 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3069 if (!eli)
3070 return -ENOMEM;
3071
3072 INIT_LIST_HEAD(&eli->li_request_list);
3073 mutex_init(&eli->li_list_mtx);
3074
3075 eli->li_state |= EXT4_LAZYINIT_QUIT;
3076
3077 ext4_li_info = eli;
3078
3079 return 0;
3080 }
3081
3082 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3083 ext4_group_t start)
3084 {
3085 struct ext4_sb_info *sbi = EXT4_SB(sb);
3086 struct ext4_li_request *elr;
3087
3088 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3089 if (!elr)
3090 return NULL;
3091
3092 elr->lr_super = sb;
3093 elr->lr_sbi = sbi;
3094 elr->lr_next_group = start;
3095
3096 /*
3097 * Randomize first schedule time of the request to
3098 * spread the inode table initialization requests
3099 * better.
3100 */
3101 elr->lr_next_sched = jiffies + (prandom_u32() %
3102 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3103 return elr;
3104 }
3105
3106 int ext4_register_li_request(struct super_block *sb,
3107 ext4_group_t first_not_zeroed)
3108 {
3109 struct ext4_sb_info *sbi = EXT4_SB(sb);
3110 struct ext4_li_request *elr = NULL;
3111 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3112 int ret = 0;
3113
3114 mutex_lock(&ext4_li_mtx);
3115 if (sbi->s_li_request != NULL) {
3116 /*
3117 * Reset timeout so it can be computed again, because
3118 * s_li_wait_mult might have changed.
3119 */
3120 sbi->s_li_request->lr_timeout = 0;
3121 goto out;
3122 }
3123
3124 if (first_not_zeroed == ngroups ||
3125 (sb->s_flags & MS_RDONLY) ||
3126 !test_opt(sb, INIT_INODE_TABLE))
3127 goto out;
3128
3129 elr = ext4_li_request_new(sb, first_not_zeroed);
3130 if (!elr) {
3131 ret = -ENOMEM;
3132 goto out;
3133 }
3134
3135 if (NULL == ext4_li_info) {
3136 ret = ext4_li_info_new();
3137 if (ret)
3138 goto out;
3139 }
3140
3141 mutex_lock(&ext4_li_info->li_list_mtx);
3142 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3143 mutex_unlock(&ext4_li_info->li_list_mtx);
3144
3145 sbi->s_li_request = elr;
3146 /*
3147 * set elr to NULL here since it has been inserted to
3148 * the request_list and the removal and free of it is
3149 * handled by ext4_clear_request_list from now on.
3150 */
3151 elr = NULL;
3152
3153 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3154 ret = ext4_run_lazyinit_thread();
3155 if (ret)
3156 goto out;
3157 }
3158 out:
3159 mutex_unlock(&ext4_li_mtx);
3160 if (ret)
3161 kfree(elr);
3162 return ret;
3163 }
3164
3165 /*
3166 * We do not need to lock anything since this is called on
3167 * module unload.
3168 */
3169 static void ext4_destroy_lazyinit_thread(void)
3170 {
3171 /*
3172 * If thread exited earlier
3173 * there's nothing to be done.
3174 */
3175 if (!ext4_li_info || !ext4_lazyinit_task)
3176 return;
3177
3178 kthread_stop(ext4_lazyinit_task);
3179 }
3180
3181 static int set_journal_csum_feature_set(struct super_block *sb)
3182 {
3183 int ret = 1;
3184 int compat, incompat;
3185 struct ext4_sb_info *sbi = EXT4_SB(sb);
3186
3187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3188 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3189 /* journal checksum v2 */
3190 compat = 0;
3191 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3192 } else {
3193 /* journal checksum v1 */
3194 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3195 incompat = 0;
3196 }
3197
3198 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3199 ret = jbd2_journal_set_features(sbi->s_journal,
3200 compat, 0,
3201 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3202 incompat);
3203 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3204 ret = jbd2_journal_set_features(sbi->s_journal,
3205 compat, 0,
3206 incompat);
3207 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3208 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3209 } else {
3210 jbd2_journal_clear_features(sbi->s_journal,
3211 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3212 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3213 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3214 }
3215
3216 return ret;
3217 }
3218
3219 /*
3220 * Note: calculating the overhead so we can be compatible with
3221 * historical BSD practice is quite difficult in the face of
3222 * clusters/bigalloc. This is because multiple metadata blocks from
3223 * different block group can end up in the same allocation cluster.
3224 * Calculating the exact overhead in the face of clustered allocation
3225 * requires either O(all block bitmaps) in memory or O(number of block
3226 * groups**2) in time. We will still calculate the superblock for
3227 * older file systems --- and if we come across with a bigalloc file
3228 * system with zero in s_overhead_clusters the estimate will be close to
3229 * correct especially for very large cluster sizes --- but for newer
3230 * file systems, it's better to calculate this figure once at mkfs
3231 * time, and store it in the superblock. If the superblock value is
3232 * present (even for non-bigalloc file systems), we will use it.
3233 */
3234 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3235 char *buf)
3236 {
3237 struct ext4_sb_info *sbi = EXT4_SB(sb);
3238 struct ext4_group_desc *gdp;
3239 ext4_fsblk_t first_block, last_block, b;
3240 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3241 int s, j, count = 0;
3242
3243 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3244 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3245 sbi->s_itb_per_group + 2);
3246
3247 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3248 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3249 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3250 for (i = 0; i < ngroups; i++) {
3251 gdp = ext4_get_group_desc(sb, i, NULL);
3252 b = ext4_block_bitmap(sb, gdp);
3253 if (b >= first_block && b <= last_block) {
3254 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3255 count++;
3256 }
3257 b = ext4_inode_bitmap(sb, gdp);
3258 if (b >= first_block && b <= last_block) {
3259 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3260 count++;
3261 }
3262 b = ext4_inode_table(sb, gdp);
3263 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3264 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3265 int c = EXT4_B2C(sbi, b - first_block);
3266 ext4_set_bit(c, buf);
3267 count++;
3268 }
3269 if (i != grp)
3270 continue;
3271 s = 0;
3272 if (ext4_bg_has_super(sb, grp)) {
3273 ext4_set_bit(s++, buf);
3274 count++;
3275 }
3276 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3277 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3278 count++;
3279 }
3280 }
3281 if (!count)
3282 return 0;
3283 return EXT4_CLUSTERS_PER_GROUP(sb) -
3284 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3285 }
3286
3287 /*
3288 * Compute the overhead and stash it in sbi->s_overhead
3289 */
3290 int ext4_calculate_overhead(struct super_block *sb)
3291 {
3292 struct ext4_sb_info *sbi = EXT4_SB(sb);
3293 struct ext4_super_block *es = sbi->s_es;
3294 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3295 ext4_fsblk_t overhead = 0;
3296 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3297
3298 if (!buf)
3299 return -ENOMEM;
3300
3301 /*
3302 * Compute the overhead (FS structures). This is constant
3303 * for a given filesystem unless the number of block groups
3304 * changes so we cache the previous value until it does.
3305 */
3306
3307 /*
3308 * All of the blocks before first_data_block are overhead
3309 */
3310 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3311
3312 /*
3313 * Add the overhead found in each block group
3314 */
3315 for (i = 0; i < ngroups; i++) {
3316 int blks;
3317
3318 blks = count_overhead(sb, i, buf);
3319 overhead += blks;
3320 if (blks)
3321 memset(buf, 0, PAGE_SIZE);
3322 cond_resched();
3323 }
3324 /* Add the journal blocks as well */
3325 if (sbi->s_journal)
3326 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3327
3328 sbi->s_overhead = overhead;
3329 smp_wmb();
3330 free_page((unsigned long) buf);
3331 return 0;
3332 }
3333
3334
3335 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3336 {
3337 ext4_fsblk_t resv_clusters;
3338
3339 /*
3340 * There's no need to reserve anything when we aren't using extents.
3341 * The space estimates are exact, there are no unwritten extents,
3342 * hole punching doesn't need new metadata... This is needed especially
3343 * to keep ext2/3 backward compatibility.
3344 */
3345 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3346 return 0;
3347 /*
3348 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3349 * This should cover the situations where we can not afford to run
3350 * out of space like for example punch hole, or converting
3351 * unwritten extents in delalloc path. In most cases such
3352 * allocation would require 1, or 2 blocks, higher numbers are
3353 * very rare.
3354 */
3355 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3356 EXT4_SB(sb)->s_cluster_bits;
3357
3358 do_div(resv_clusters, 50);
3359 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3360
3361 return resv_clusters;
3362 }
3363
3364
3365 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3366 {
3367 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3368 sbi->s_cluster_bits;
3369
3370 if (count >= clusters)
3371 return -EINVAL;
3372
3373 atomic64_set(&sbi->s_resv_clusters, count);
3374 return 0;
3375 }
3376
3377 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3378 {
3379 char *orig_data = kstrdup(data, GFP_KERNEL);
3380 struct buffer_head *bh;
3381 struct ext4_super_block *es = NULL;
3382 struct ext4_sb_info *sbi;
3383 ext4_fsblk_t block;
3384 ext4_fsblk_t sb_block = get_sb_block(&data);
3385 ext4_fsblk_t logical_sb_block;
3386 unsigned long offset = 0;
3387 unsigned long journal_devnum = 0;
3388 unsigned long def_mount_opts;
3389 struct inode *root;
3390 char *cp;
3391 const char *descr;
3392 int ret = -ENOMEM;
3393 int blocksize, clustersize;
3394 unsigned int db_count;
3395 unsigned int i;
3396 int needs_recovery, has_huge_files, has_bigalloc;
3397 __u64 blocks_count;
3398 int err = 0;
3399 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3400 ext4_group_t first_not_zeroed;
3401
3402 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3403 if (!sbi)
3404 goto out_free_orig;
3405
3406 sbi->s_blockgroup_lock =
3407 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3408 if (!sbi->s_blockgroup_lock) {
3409 kfree(sbi);
3410 goto out_free_orig;
3411 }
3412 sb->s_fs_info = sbi;
3413 sbi->s_sb = sb;
3414 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3415 sbi->s_sb_block = sb_block;
3416 if (sb->s_bdev->bd_part)
3417 sbi->s_sectors_written_start =
3418 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3419
3420 /* Cleanup superblock name */
3421 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3422 *cp = '!';
3423
3424 /* -EINVAL is default */
3425 ret = -EINVAL;
3426 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3427 if (!blocksize) {
3428 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3429 goto out_fail;
3430 }
3431
3432 /*
3433 * The ext4 superblock will not be buffer aligned for other than 1kB
3434 * block sizes. We need to calculate the offset from buffer start.
3435 */
3436 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3437 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3438 offset = do_div(logical_sb_block, blocksize);
3439 } else {
3440 logical_sb_block = sb_block;
3441 }
3442
3443 if (!(bh = sb_bread(sb, logical_sb_block))) {
3444 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3445 goto out_fail;
3446 }
3447 /*
3448 * Note: s_es must be initialized as soon as possible because
3449 * some ext4 macro-instructions depend on its value
3450 */
3451 es = (struct ext4_super_block *) (bh->b_data + offset);
3452 sbi->s_es = es;
3453 sb->s_magic = le16_to_cpu(es->s_magic);
3454 if (sb->s_magic != EXT4_SUPER_MAGIC)
3455 goto cantfind_ext4;
3456 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3457
3458 /* Warn if metadata_csum and gdt_csum are both set. */
3459 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3460 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3461 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3462 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3463 "redundant flags; please run fsck.");
3464
3465 /* Check for a known checksum algorithm */
3466 if (!ext4_verify_csum_type(sb, es)) {
3467 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3468 "unknown checksum algorithm.");
3469 silent = 1;
3470 goto cantfind_ext4;
3471 }
3472
3473 /* Load the checksum driver */
3474 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3475 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3476 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3477 if (IS_ERR(sbi->s_chksum_driver)) {
3478 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3479 ret = PTR_ERR(sbi->s_chksum_driver);
3480 sbi->s_chksum_driver = NULL;
3481 goto failed_mount;
3482 }
3483 }
3484
3485 /* Check superblock checksum */
3486 if (!ext4_superblock_csum_verify(sb, es)) {
3487 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3488 "invalid superblock checksum. Run e2fsck?");
3489 silent = 1;
3490 goto cantfind_ext4;
3491 }
3492
3493 /* Precompute checksum seed for all metadata */
3494 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3495 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3496 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3497 sizeof(es->s_uuid));
3498
3499 /* Set defaults before we parse the mount options */
3500 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3501 set_opt(sb, INIT_INODE_TABLE);
3502 if (def_mount_opts & EXT4_DEFM_DEBUG)
3503 set_opt(sb, DEBUG);
3504 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3505 set_opt(sb, GRPID);
3506 if (def_mount_opts & EXT4_DEFM_UID16)
3507 set_opt(sb, NO_UID32);
3508 /* xattr user namespace & acls are now defaulted on */
3509 set_opt(sb, XATTR_USER);
3510 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3511 set_opt(sb, POSIX_ACL);
3512 #endif
3513 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3514 set_opt(sb, JOURNAL_DATA);
3515 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3516 set_opt(sb, ORDERED_DATA);
3517 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3518 set_opt(sb, WRITEBACK_DATA);
3519
3520 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3521 set_opt(sb, ERRORS_PANIC);
3522 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3523 set_opt(sb, ERRORS_CONT);
3524 else
3525 set_opt(sb, ERRORS_RO);
3526 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3527 set_opt(sb, BLOCK_VALIDITY);
3528 if (def_mount_opts & EXT4_DEFM_DISCARD)
3529 set_opt(sb, DISCARD);
3530
3531 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3532 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3533 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3534 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3535 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3536
3537 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3538 set_opt(sb, BARRIER);
3539
3540 /*
3541 * enable delayed allocation by default
3542 * Use -o nodelalloc to turn it off
3543 */
3544 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3545 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3546 set_opt(sb, DELALLOC);
3547
3548 /*
3549 * set default s_li_wait_mult for lazyinit, for the case there is
3550 * no mount option specified.
3551 */
3552 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3553
3554 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3555 &journal_devnum, &journal_ioprio, 0)) {
3556 ext4_msg(sb, KERN_WARNING,
3557 "failed to parse options in superblock: %s",
3558 sbi->s_es->s_mount_opts);
3559 }
3560 sbi->s_def_mount_opt = sbi->s_mount_opt;
3561 if (!parse_options((char *) data, sb, &journal_devnum,
3562 &journal_ioprio, 0))
3563 goto failed_mount;
3564
3565 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3566 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3567 "with data=journal disables delayed "
3568 "allocation and O_DIRECT support!\n");
3569 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3570 ext4_msg(sb, KERN_ERR, "can't mount with "
3571 "both data=journal and delalloc");
3572 goto failed_mount;
3573 }
3574 if (test_opt(sb, DIOREAD_NOLOCK)) {
3575 ext4_msg(sb, KERN_ERR, "can't mount with "
3576 "both data=journal and dioread_nolock");
3577 goto failed_mount;
3578 }
3579 if (test_opt(sb, DELALLOC))
3580 clear_opt(sb, DELALLOC);
3581 }
3582
3583 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3584 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3585
3586 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3587 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3588 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3589 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3590 ext4_msg(sb, KERN_WARNING,
3591 "feature flags set on rev 0 fs, "
3592 "running e2fsck is recommended");
3593
3594 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3595 set_opt2(sb, HURD_COMPAT);
3596 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3597 EXT4_FEATURE_INCOMPAT_64BIT)) {
3598 ext4_msg(sb, KERN_ERR,
3599 "The Hurd can't support 64-bit file systems");
3600 goto failed_mount;
3601 }
3602 }
3603
3604 if (IS_EXT2_SB(sb)) {
3605 if (ext2_feature_set_ok(sb))
3606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3607 "using the ext4 subsystem");
3608 else {
3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3610 "to feature incompatibilities");
3611 goto failed_mount;
3612 }
3613 }
3614
3615 if (IS_EXT3_SB(sb)) {
3616 if (ext3_feature_set_ok(sb))
3617 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3618 "using the ext4 subsystem");
3619 else {
3620 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3621 "to feature incompatibilities");
3622 goto failed_mount;
3623 }
3624 }
3625
3626 /*
3627 * Check feature flags regardless of the revision level, since we
3628 * previously didn't change the revision level when setting the flags,
3629 * so there is a chance incompat flags are set on a rev 0 filesystem.
3630 */
3631 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3632 goto failed_mount;
3633
3634 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3635 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3636 blocksize > EXT4_MAX_BLOCK_SIZE) {
3637 ext4_msg(sb, KERN_ERR,
3638 "Unsupported filesystem blocksize %d", blocksize);
3639 goto failed_mount;
3640 }
3641
3642 if (sb->s_blocksize != blocksize) {
3643 /* Validate the filesystem blocksize */
3644 if (!sb_set_blocksize(sb, blocksize)) {
3645 ext4_msg(sb, KERN_ERR, "bad block size %d",
3646 blocksize);
3647 goto failed_mount;
3648 }
3649
3650 brelse(bh);
3651 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3652 offset = do_div(logical_sb_block, blocksize);
3653 bh = sb_bread(sb, logical_sb_block);
3654 if (!bh) {
3655 ext4_msg(sb, KERN_ERR,
3656 "Can't read superblock on 2nd try");
3657 goto failed_mount;
3658 }
3659 es = (struct ext4_super_block *)(bh->b_data + offset);
3660 sbi->s_es = es;
3661 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3662 ext4_msg(sb, KERN_ERR,
3663 "Magic mismatch, very weird!");
3664 goto failed_mount;
3665 }
3666 }
3667
3668 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3669 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3670 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3671 has_huge_files);
3672 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3673
3674 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3675 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3676 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3677 } else {
3678 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3679 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3680 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3681 (!is_power_of_2(sbi->s_inode_size)) ||
3682 (sbi->s_inode_size > blocksize)) {
3683 ext4_msg(sb, KERN_ERR,
3684 "unsupported inode size: %d",
3685 sbi->s_inode_size);
3686 goto failed_mount;
3687 }
3688 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3689 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3690 }
3691
3692 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3693 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3694 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3695 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3696 !is_power_of_2(sbi->s_desc_size)) {
3697 ext4_msg(sb, KERN_ERR,
3698 "unsupported descriptor size %lu",
3699 sbi->s_desc_size);
3700 goto failed_mount;
3701 }
3702 } else
3703 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3704
3705 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3706 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3707 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3708 goto cantfind_ext4;
3709
3710 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3711 if (sbi->s_inodes_per_block == 0)
3712 goto cantfind_ext4;
3713 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3714 sbi->s_inodes_per_block;
3715 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3716 sbi->s_sbh = bh;
3717 sbi->s_mount_state = le16_to_cpu(es->s_state);
3718 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3719 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3720
3721 for (i = 0; i < 4; i++)
3722 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3723 sbi->s_def_hash_version = es->s_def_hash_version;
3724 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3725 i = le32_to_cpu(es->s_flags);
3726 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3727 sbi->s_hash_unsigned = 3;
3728 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3729 #ifdef __CHAR_UNSIGNED__
3730 if (!(sb->s_flags & MS_RDONLY))
3731 es->s_flags |=
3732 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3733 sbi->s_hash_unsigned = 3;
3734 #else
3735 if (!(sb->s_flags & MS_RDONLY))
3736 es->s_flags |=
3737 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3738 #endif
3739 }
3740 }
3741
3742 /* Handle clustersize */
3743 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3744 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3745 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3746 if (has_bigalloc) {
3747 if (clustersize < blocksize) {
3748 ext4_msg(sb, KERN_ERR,
3749 "cluster size (%d) smaller than "
3750 "block size (%d)", clustersize, blocksize);
3751 goto failed_mount;
3752 }
3753 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3754 le32_to_cpu(es->s_log_block_size);
3755 sbi->s_clusters_per_group =
3756 le32_to_cpu(es->s_clusters_per_group);
3757 if (sbi->s_clusters_per_group > blocksize * 8) {
3758 ext4_msg(sb, KERN_ERR,
3759 "#clusters per group too big: %lu",
3760 sbi->s_clusters_per_group);
3761 goto failed_mount;
3762 }
3763 if (sbi->s_blocks_per_group !=
3764 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3765 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3766 "clusters per group (%lu) inconsistent",
3767 sbi->s_blocks_per_group,
3768 sbi->s_clusters_per_group);
3769 goto failed_mount;
3770 }
3771 } else {
3772 if (clustersize != blocksize) {
3773 ext4_warning(sb, "fragment/cluster size (%d) != "
3774 "block size (%d)", clustersize,
3775 blocksize);
3776 clustersize = blocksize;
3777 }
3778 if (sbi->s_blocks_per_group > blocksize * 8) {
3779 ext4_msg(sb, KERN_ERR,
3780 "#blocks per group too big: %lu",
3781 sbi->s_blocks_per_group);
3782 goto failed_mount;
3783 }
3784 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3785 sbi->s_cluster_bits = 0;
3786 }
3787 sbi->s_cluster_ratio = clustersize / blocksize;
3788
3789 if (sbi->s_inodes_per_group > blocksize * 8) {
3790 ext4_msg(sb, KERN_ERR,
3791 "#inodes per group too big: %lu",
3792 sbi->s_inodes_per_group);
3793 goto failed_mount;
3794 }
3795
3796 /* Do we have standard group size of clustersize * 8 blocks ? */
3797 if (sbi->s_blocks_per_group == clustersize << 3)
3798 set_opt2(sb, STD_GROUP_SIZE);
3799
3800 /*
3801 * Test whether we have more sectors than will fit in sector_t,
3802 * and whether the max offset is addressable by the page cache.
3803 */
3804 err = generic_check_addressable(sb->s_blocksize_bits,
3805 ext4_blocks_count(es));
3806 if (err) {
3807 ext4_msg(sb, KERN_ERR, "filesystem"
3808 " too large to mount safely on this system");
3809 if (sizeof(sector_t) < 8)
3810 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3811 goto failed_mount;
3812 }
3813
3814 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3815 goto cantfind_ext4;
3816
3817 /* check blocks count against device size */
3818 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3819 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3820 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3821 "exceeds size of device (%llu blocks)",
3822 ext4_blocks_count(es), blocks_count);
3823 goto failed_mount;
3824 }
3825
3826 /*
3827 * It makes no sense for the first data block to be beyond the end
3828 * of the filesystem.
3829 */
3830 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3831 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3832 "block %u is beyond end of filesystem (%llu)",
3833 le32_to_cpu(es->s_first_data_block),
3834 ext4_blocks_count(es));
3835 goto failed_mount;
3836 }
3837 blocks_count = (ext4_blocks_count(es) -
3838 le32_to_cpu(es->s_first_data_block) +
3839 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3840 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3841 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3842 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3843 "(block count %llu, first data block %u, "
3844 "blocks per group %lu)", sbi->s_groups_count,
3845 ext4_blocks_count(es),
3846 le32_to_cpu(es->s_first_data_block),
3847 EXT4_BLOCKS_PER_GROUP(sb));
3848 goto failed_mount;
3849 }
3850 sbi->s_groups_count = blocks_count;
3851 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3852 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3853 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3854 EXT4_DESC_PER_BLOCK(sb);
3855 sbi->s_group_desc = ext4_kvmalloc(db_count *
3856 sizeof(struct buffer_head *),
3857 GFP_KERNEL);
3858 if (sbi->s_group_desc == NULL) {
3859 ext4_msg(sb, KERN_ERR, "not enough memory");
3860 ret = -ENOMEM;
3861 goto failed_mount;
3862 }
3863
3864 if (ext4_proc_root)
3865 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3866
3867 if (sbi->s_proc)
3868 proc_create_data("options", S_IRUGO, sbi->s_proc,
3869 &ext4_seq_options_fops, sb);
3870
3871 bgl_lock_init(sbi->s_blockgroup_lock);
3872
3873 for (i = 0; i < db_count; i++) {
3874 block = descriptor_loc(sb, logical_sb_block, i);
3875 sbi->s_group_desc[i] = sb_bread(sb, block);
3876 if (!sbi->s_group_desc[i]) {
3877 ext4_msg(sb, KERN_ERR,
3878 "can't read group descriptor %d", i);
3879 db_count = i;
3880 goto failed_mount2;
3881 }
3882 }
3883
3884 /*
3885 * set up enough so that it can read an inode,
3886 * and create new inode for buddy allocator
3887 */
3888 sbi->s_gdb_count = db_count;
3889 if (!test_opt(sb, NOLOAD) &&
3890 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3891 sb->s_op = &ext4_sops;
3892 else
3893 sb->s_op = &ext4_nojournal_sops;
3894
3895 ext4_ext_init(sb);
3896 err = ext4_mb_init(sb);
3897 if (err) {
3898 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3899 err);
3900 goto failed_mount2;
3901 }
3902
3903 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3904 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3905 goto failed_mount2a;
3906 }
3907 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3908 if (!ext4_fill_flex_info(sb)) {
3909 ext4_msg(sb, KERN_ERR,
3910 "unable to initialize "
3911 "flex_bg meta info!");
3912 goto failed_mount2a;
3913 }
3914
3915 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3916 spin_lock_init(&sbi->s_next_gen_lock);
3917
3918 init_timer(&sbi->s_err_report);
3919 sbi->s_err_report.function = print_daily_error_info;
3920 sbi->s_err_report.data = (unsigned long) sb;
3921
3922 /* Register extent status tree shrinker */
3923 ext4_es_register_shrinker(sbi);
3924
3925 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3926 ext4_count_free_clusters(sb));
3927 if (!err) {
3928 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3929 ext4_count_free_inodes(sb));
3930 }
3931 if (!err) {
3932 err = percpu_counter_init(&sbi->s_dirs_counter,
3933 ext4_count_dirs(sb));
3934 }
3935 if (!err) {
3936 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3937 }
3938 if (!err) {
3939 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3940 }
3941 if (err) {
3942 ext4_msg(sb, KERN_ERR, "insufficient memory");
3943 goto failed_mount3;
3944 }
3945
3946 sbi->s_stripe = ext4_get_stripe_size(sbi);
3947 sbi->s_extent_max_zeroout_kb = 32;
3948
3949 sb->s_export_op = &ext4_export_ops;
3950 sb->s_xattr = ext4_xattr_handlers;
3951 #ifdef CONFIG_QUOTA
3952 sb->dq_op = &ext4_quota_operations;
3953 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3954 sb->s_qcop = &ext4_qctl_sysfile_operations;
3955 else
3956 sb->s_qcop = &ext4_qctl_operations;
3957 #endif
3958 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3959
3960 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3961 mutex_init(&sbi->s_orphan_lock);
3962
3963 sb->s_root = NULL;
3964
3965 needs_recovery = (es->s_last_orphan != 0 ||
3966 EXT4_HAS_INCOMPAT_FEATURE(sb,
3967 EXT4_FEATURE_INCOMPAT_RECOVER));
3968
3969 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3970 !(sb->s_flags & MS_RDONLY))
3971 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3972 goto failed_mount3;
3973
3974 /*
3975 * The first inode we look at is the journal inode. Don't try
3976 * root first: it may be modified in the journal!
3977 */
3978 if (!test_opt(sb, NOLOAD) &&
3979 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3980 if (ext4_load_journal(sb, es, journal_devnum))
3981 goto failed_mount3;
3982 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3983 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3984 ext4_msg(sb, KERN_ERR, "required journal recovery "
3985 "suppressed and not mounted read-only");
3986 goto failed_mount_wq;
3987 } else {
3988 clear_opt(sb, DATA_FLAGS);
3989 sbi->s_journal = NULL;
3990 needs_recovery = 0;
3991 goto no_journal;
3992 }
3993
3994 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3995 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3996 JBD2_FEATURE_INCOMPAT_64BIT)) {
3997 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3998 goto failed_mount_wq;
3999 }
4000
4001 if (!set_journal_csum_feature_set(sb)) {
4002 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4003 "feature set");
4004 goto failed_mount_wq;
4005 }
4006
4007 /* We have now updated the journal if required, so we can
4008 * validate the data journaling mode. */
4009 switch (test_opt(sb, DATA_FLAGS)) {
4010 case 0:
4011 /* No mode set, assume a default based on the journal
4012 * capabilities: ORDERED_DATA if the journal can
4013 * cope, else JOURNAL_DATA
4014 */
4015 if (jbd2_journal_check_available_features
4016 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4017 set_opt(sb, ORDERED_DATA);
4018 else
4019 set_opt(sb, JOURNAL_DATA);
4020 break;
4021
4022 case EXT4_MOUNT_ORDERED_DATA:
4023 case EXT4_MOUNT_WRITEBACK_DATA:
4024 if (!jbd2_journal_check_available_features
4025 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4026 ext4_msg(sb, KERN_ERR, "Journal does not support "
4027 "requested data journaling mode");
4028 goto failed_mount_wq;
4029 }
4030 default:
4031 break;
4032 }
4033 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4034
4035 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4036
4037 /*
4038 * The journal may have updated the bg summary counts, so we
4039 * need to update the global counters.
4040 */
4041 percpu_counter_set(&sbi->s_freeclusters_counter,
4042 ext4_count_free_clusters(sb));
4043 percpu_counter_set(&sbi->s_freeinodes_counter,
4044 ext4_count_free_inodes(sb));
4045 percpu_counter_set(&sbi->s_dirs_counter,
4046 ext4_count_dirs(sb));
4047 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
4048
4049 no_journal:
4050 if (ext4_mballoc_ready) {
4051 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4052 if (!sbi->s_mb_cache) {
4053 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4054 goto failed_mount_wq;
4055 }
4056 }
4057
4058 /*
4059 * Get the # of file system overhead blocks from the
4060 * superblock if present.
4061 */
4062 if (es->s_overhead_clusters)
4063 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4064 else {
4065 err = ext4_calculate_overhead(sb);
4066 if (err)
4067 goto failed_mount_wq;
4068 }
4069
4070 /*
4071 * The maximum number of concurrent works can be high and
4072 * concurrency isn't really necessary. Limit it to 1.
4073 */
4074 EXT4_SB(sb)->rsv_conversion_wq =
4075 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4076 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4077 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4078 ret = -ENOMEM;
4079 goto failed_mount4;
4080 }
4081
4082 /*
4083 * The jbd2_journal_load will have done any necessary log recovery,
4084 * so we can safely mount the rest of the filesystem now.
4085 */
4086
4087 root = ext4_iget(sb, EXT4_ROOT_INO);
4088 if (IS_ERR(root)) {
4089 ext4_msg(sb, KERN_ERR, "get root inode failed");
4090 ret = PTR_ERR(root);
4091 root = NULL;
4092 goto failed_mount4;
4093 }
4094 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4095 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4096 iput(root);
4097 goto failed_mount4;
4098 }
4099 sb->s_root = d_make_root(root);
4100 if (!sb->s_root) {
4101 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4102 ret = -ENOMEM;
4103 goto failed_mount4;
4104 }
4105
4106 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4107 sb->s_flags |= MS_RDONLY;
4108
4109 /* determine the minimum size of new large inodes, if present */
4110 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4111 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4112 EXT4_GOOD_OLD_INODE_SIZE;
4113 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4114 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4115 if (sbi->s_want_extra_isize <
4116 le16_to_cpu(es->s_want_extra_isize))
4117 sbi->s_want_extra_isize =
4118 le16_to_cpu(es->s_want_extra_isize);
4119 if (sbi->s_want_extra_isize <
4120 le16_to_cpu(es->s_min_extra_isize))
4121 sbi->s_want_extra_isize =
4122 le16_to_cpu(es->s_min_extra_isize);
4123 }
4124 }
4125 /* Check if enough inode space is available */
4126 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4127 sbi->s_inode_size) {
4128 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 EXT4_GOOD_OLD_INODE_SIZE;
4130 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4131 "available");
4132 }
4133
4134 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4135 if (err) {
4136 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4137 "reserved pool", ext4_calculate_resv_clusters(sb));
4138 goto failed_mount5;
4139 }
4140
4141 err = ext4_setup_system_zone(sb);
4142 if (err) {
4143 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4144 "zone (%d)", err);
4145 goto failed_mount5;
4146 }
4147
4148 err = ext4_register_li_request(sb, first_not_zeroed);
4149 if (err)
4150 goto failed_mount6;
4151
4152 sbi->s_kobj.kset = ext4_kset;
4153 init_completion(&sbi->s_kobj_unregister);
4154 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4155 "%s", sb->s_id);
4156 if (err)
4157 goto failed_mount7;
4158
4159 #ifdef CONFIG_QUOTA
4160 /* Enable quota usage during mount. */
4161 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4162 !(sb->s_flags & MS_RDONLY)) {
4163 err = ext4_enable_quotas(sb);
4164 if (err)
4165 goto failed_mount8;
4166 }
4167 #endif /* CONFIG_QUOTA */
4168
4169 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4170 ext4_orphan_cleanup(sb, es);
4171 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4172 if (needs_recovery) {
4173 ext4_msg(sb, KERN_INFO, "recovery complete");
4174 ext4_mark_recovery_complete(sb, es);
4175 }
4176 if (EXT4_SB(sb)->s_journal) {
4177 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4178 descr = " journalled data mode";
4179 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4180 descr = " ordered data mode";
4181 else
4182 descr = " writeback data mode";
4183 } else
4184 descr = "out journal";
4185
4186 if (test_opt(sb, DISCARD)) {
4187 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4188 if (!blk_queue_discard(q))
4189 ext4_msg(sb, KERN_WARNING,
4190 "mounting with \"discard\" option, but "
4191 "the device does not support discard");
4192 }
4193
4194 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4195 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4196 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4197
4198 if (es->s_error_count)
4199 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4200
4201 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4202 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4203 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4204 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4205
4206 kfree(orig_data);
4207 return 0;
4208
4209 cantfind_ext4:
4210 if (!silent)
4211 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4212 goto failed_mount;
4213
4214 #ifdef CONFIG_QUOTA
4215 failed_mount8:
4216 kobject_del(&sbi->s_kobj);
4217 #endif
4218 failed_mount7:
4219 ext4_unregister_li_request(sb);
4220 failed_mount6:
4221 ext4_release_system_zone(sb);
4222 failed_mount5:
4223 dput(sb->s_root);
4224 sb->s_root = NULL;
4225 failed_mount4:
4226 ext4_msg(sb, KERN_ERR, "mount failed");
4227 if (EXT4_SB(sb)->rsv_conversion_wq)
4228 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4229 failed_mount_wq:
4230 if (sbi->s_journal) {
4231 jbd2_journal_destroy(sbi->s_journal);
4232 sbi->s_journal = NULL;
4233 }
4234 failed_mount3:
4235 ext4_es_unregister_shrinker(sbi);
4236 del_timer_sync(&sbi->s_err_report);
4237 if (sbi->s_flex_groups)
4238 ext4_kvfree(sbi->s_flex_groups);
4239 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4240 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4241 percpu_counter_destroy(&sbi->s_dirs_counter);
4242 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4243 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4244 if (sbi->s_mmp_tsk)
4245 kthread_stop(sbi->s_mmp_tsk);
4246 failed_mount2a:
4247 ext4_mb_release(sb);
4248 failed_mount2:
4249 for (i = 0; i < db_count; i++)
4250 brelse(sbi->s_group_desc[i]);
4251 ext4_kvfree(sbi->s_group_desc);
4252 failed_mount:
4253 ext4_ext_release(sb);
4254 if (sbi->s_chksum_driver)
4255 crypto_free_shash(sbi->s_chksum_driver);
4256 if (sbi->s_proc) {
4257 remove_proc_entry("options", sbi->s_proc);
4258 remove_proc_entry(sb->s_id, ext4_proc_root);
4259 }
4260 #ifdef CONFIG_QUOTA
4261 for (i = 0; i < MAXQUOTAS; i++)
4262 kfree(sbi->s_qf_names[i]);
4263 #endif
4264 ext4_blkdev_remove(sbi);
4265 brelse(bh);
4266 out_fail:
4267 sb->s_fs_info = NULL;
4268 kfree(sbi->s_blockgroup_lock);
4269 kfree(sbi);
4270 out_free_orig:
4271 kfree(orig_data);
4272 return err ? err : ret;
4273 }
4274
4275 /*
4276 * Setup any per-fs journal parameters now. We'll do this both on
4277 * initial mount, once the journal has been initialised but before we've
4278 * done any recovery; and again on any subsequent remount.
4279 */
4280 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4281 {
4282 struct ext4_sb_info *sbi = EXT4_SB(sb);
4283
4284 journal->j_commit_interval = sbi->s_commit_interval;
4285 journal->j_min_batch_time = sbi->s_min_batch_time;
4286 journal->j_max_batch_time = sbi->s_max_batch_time;
4287
4288 write_lock(&journal->j_state_lock);
4289 if (test_opt(sb, BARRIER))
4290 journal->j_flags |= JBD2_BARRIER;
4291 else
4292 journal->j_flags &= ~JBD2_BARRIER;
4293 if (test_opt(sb, DATA_ERR_ABORT))
4294 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4295 else
4296 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4297 write_unlock(&journal->j_state_lock);
4298 }
4299
4300 static journal_t *ext4_get_journal(struct super_block *sb,
4301 unsigned int journal_inum)
4302 {
4303 struct inode *journal_inode;
4304 journal_t *journal;
4305
4306 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4307
4308 /* First, test for the existence of a valid inode on disk. Bad
4309 * things happen if we iget() an unused inode, as the subsequent
4310 * iput() will try to delete it. */
4311
4312 journal_inode = ext4_iget(sb, journal_inum);
4313 if (IS_ERR(journal_inode)) {
4314 ext4_msg(sb, KERN_ERR, "no journal found");
4315 return NULL;
4316 }
4317 if (!journal_inode->i_nlink) {
4318 make_bad_inode(journal_inode);
4319 iput(journal_inode);
4320 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4321 return NULL;
4322 }
4323
4324 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4325 journal_inode, journal_inode->i_size);
4326 if (!S_ISREG(journal_inode->i_mode)) {
4327 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4328 iput(journal_inode);
4329 return NULL;
4330 }
4331
4332 journal = jbd2_journal_init_inode(journal_inode);
4333 if (!journal) {
4334 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4335 iput(journal_inode);
4336 return NULL;
4337 }
4338 journal->j_private = sb;
4339 ext4_init_journal_params(sb, journal);
4340 return journal;
4341 }
4342
4343 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4344 dev_t j_dev)
4345 {
4346 struct buffer_head *bh;
4347 journal_t *journal;
4348 ext4_fsblk_t start;
4349 ext4_fsblk_t len;
4350 int hblock, blocksize;
4351 ext4_fsblk_t sb_block;
4352 unsigned long offset;
4353 struct ext4_super_block *es;
4354 struct block_device *bdev;
4355
4356 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4357
4358 bdev = ext4_blkdev_get(j_dev, sb);
4359 if (bdev == NULL)
4360 return NULL;
4361
4362 blocksize = sb->s_blocksize;
4363 hblock = bdev_logical_block_size(bdev);
4364 if (blocksize < hblock) {
4365 ext4_msg(sb, KERN_ERR,
4366 "blocksize too small for journal device");
4367 goto out_bdev;
4368 }
4369
4370 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4371 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4372 set_blocksize(bdev, blocksize);
4373 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4374 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4375 "external journal");
4376 goto out_bdev;
4377 }
4378
4379 es = (struct ext4_super_block *) (bh->b_data + offset);
4380 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4381 !(le32_to_cpu(es->s_feature_incompat) &
4382 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4383 ext4_msg(sb, KERN_ERR, "external journal has "
4384 "bad superblock");
4385 brelse(bh);
4386 goto out_bdev;
4387 }
4388
4389 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4390 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4391 brelse(bh);
4392 goto out_bdev;
4393 }
4394
4395 len = ext4_blocks_count(es);
4396 start = sb_block + 1;
4397 brelse(bh); /* we're done with the superblock */
4398
4399 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4400 start, len, blocksize);
4401 if (!journal) {
4402 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4403 goto out_bdev;
4404 }
4405 journal->j_private = sb;
4406 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4407 wait_on_buffer(journal->j_sb_buffer);
4408 if (!buffer_uptodate(journal->j_sb_buffer)) {
4409 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4410 goto out_journal;
4411 }
4412 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4413 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4414 "user (unsupported) - %d",
4415 be32_to_cpu(journal->j_superblock->s_nr_users));
4416 goto out_journal;
4417 }
4418 EXT4_SB(sb)->journal_bdev = bdev;
4419 ext4_init_journal_params(sb, journal);
4420 return journal;
4421
4422 out_journal:
4423 jbd2_journal_destroy(journal);
4424 out_bdev:
4425 ext4_blkdev_put(bdev);
4426 return NULL;
4427 }
4428
4429 static int ext4_load_journal(struct super_block *sb,
4430 struct ext4_super_block *es,
4431 unsigned long journal_devnum)
4432 {
4433 journal_t *journal;
4434 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4435 dev_t journal_dev;
4436 int err = 0;
4437 int really_read_only;
4438
4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4440
4441 if (journal_devnum &&
4442 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4443 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4444 "numbers have changed");
4445 journal_dev = new_decode_dev(journal_devnum);
4446 } else
4447 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4448
4449 really_read_only = bdev_read_only(sb->s_bdev);
4450
4451 /*
4452 * Are we loading a blank journal or performing recovery after a
4453 * crash? For recovery, we need to check in advance whether we
4454 * can get read-write access to the device.
4455 */
4456 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4457 if (sb->s_flags & MS_RDONLY) {
4458 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4459 "required on readonly filesystem");
4460 if (really_read_only) {
4461 ext4_msg(sb, KERN_ERR, "write access "
4462 "unavailable, cannot proceed");
4463 return -EROFS;
4464 }
4465 ext4_msg(sb, KERN_INFO, "write access will "
4466 "be enabled during recovery");
4467 }
4468 }
4469
4470 if (journal_inum && journal_dev) {
4471 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4472 "and inode journals!");
4473 return -EINVAL;
4474 }
4475
4476 if (journal_inum) {
4477 if (!(journal = ext4_get_journal(sb, journal_inum)))
4478 return -EINVAL;
4479 } else {
4480 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4481 return -EINVAL;
4482 }
4483
4484 if (!(journal->j_flags & JBD2_BARRIER))
4485 ext4_msg(sb, KERN_INFO, "barriers disabled");
4486
4487 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4488 err = jbd2_journal_wipe(journal, !really_read_only);
4489 if (!err) {
4490 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4491 if (save)
4492 memcpy(save, ((char *) es) +
4493 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4494 err = jbd2_journal_load(journal);
4495 if (save)
4496 memcpy(((char *) es) + EXT4_S_ERR_START,
4497 save, EXT4_S_ERR_LEN);
4498 kfree(save);
4499 }
4500
4501 if (err) {
4502 ext4_msg(sb, KERN_ERR, "error loading journal");
4503 jbd2_journal_destroy(journal);
4504 return err;
4505 }
4506
4507 EXT4_SB(sb)->s_journal = journal;
4508 ext4_clear_journal_err(sb, es);
4509
4510 if (!really_read_only && journal_devnum &&
4511 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4512 es->s_journal_dev = cpu_to_le32(journal_devnum);
4513
4514 /* Make sure we flush the recovery flag to disk. */
4515 ext4_commit_super(sb, 1);
4516 }
4517
4518 return 0;
4519 }
4520
4521 static int ext4_commit_super(struct super_block *sb, int sync)
4522 {
4523 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4524 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4525 int error = 0;
4526
4527 if (!sbh || block_device_ejected(sb))
4528 return error;
4529 if (buffer_write_io_error(sbh)) {
4530 /*
4531 * Oh, dear. A previous attempt to write the
4532 * superblock failed. This could happen because the
4533 * USB device was yanked out. Or it could happen to
4534 * be a transient write error and maybe the block will
4535 * be remapped. Nothing we can do but to retry the
4536 * write and hope for the best.
4537 */
4538 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4539 "superblock detected");
4540 clear_buffer_write_io_error(sbh);
4541 set_buffer_uptodate(sbh);
4542 }
4543 /*
4544 * If the file system is mounted read-only, don't update the
4545 * superblock write time. This avoids updating the superblock
4546 * write time when we are mounting the root file system
4547 * read/only but we need to replay the journal; at that point,
4548 * for people who are east of GMT and who make their clock
4549 * tick in localtime for Windows bug-for-bug compatibility,
4550 * the clock is set in the future, and this will cause e2fsck
4551 * to complain and force a full file system check.
4552 */
4553 if (!(sb->s_flags & MS_RDONLY))
4554 es->s_wtime = cpu_to_le32(get_seconds());
4555 if (sb->s_bdev->bd_part)
4556 es->s_kbytes_written =
4557 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4558 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4559 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4560 else
4561 es->s_kbytes_written =
4562 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4563 ext4_free_blocks_count_set(es,
4564 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4565 &EXT4_SB(sb)->s_freeclusters_counter)));
4566 es->s_free_inodes_count =
4567 cpu_to_le32(percpu_counter_sum_positive(
4568 &EXT4_SB(sb)->s_freeinodes_counter));
4569 BUFFER_TRACE(sbh, "marking dirty");
4570 ext4_superblock_csum_set(sb);
4571 mark_buffer_dirty(sbh);
4572 if (sync) {
4573 error = sync_dirty_buffer(sbh);
4574 if (error)
4575 return error;
4576
4577 error = buffer_write_io_error(sbh);
4578 if (error) {
4579 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4580 "superblock");
4581 clear_buffer_write_io_error(sbh);
4582 set_buffer_uptodate(sbh);
4583 }
4584 }
4585 return error;
4586 }
4587
4588 /*
4589 * Have we just finished recovery? If so, and if we are mounting (or
4590 * remounting) the filesystem readonly, then we will end up with a
4591 * consistent fs on disk. Record that fact.
4592 */
4593 static void ext4_mark_recovery_complete(struct super_block *sb,
4594 struct ext4_super_block *es)
4595 {
4596 journal_t *journal = EXT4_SB(sb)->s_journal;
4597
4598 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4599 BUG_ON(journal != NULL);
4600 return;
4601 }
4602 jbd2_journal_lock_updates(journal);
4603 if (jbd2_journal_flush(journal) < 0)
4604 goto out;
4605
4606 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4607 sb->s_flags & MS_RDONLY) {
4608 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4609 ext4_commit_super(sb, 1);
4610 }
4611
4612 out:
4613 jbd2_journal_unlock_updates(journal);
4614 }
4615
4616 /*
4617 * If we are mounting (or read-write remounting) a filesystem whose journal
4618 * has recorded an error from a previous lifetime, move that error to the
4619 * main filesystem now.
4620 */
4621 static void ext4_clear_journal_err(struct super_block *sb,
4622 struct ext4_super_block *es)
4623 {
4624 journal_t *journal;
4625 int j_errno;
4626 const char *errstr;
4627
4628 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4629
4630 journal = EXT4_SB(sb)->s_journal;
4631
4632 /*
4633 * Now check for any error status which may have been recorded in the
4634 * journal by a prior ext4_error() or ext4_abort()
4635 */
4636
4637 j_errno = jbd2_journal_errno(journal);
4638 if (j_errno) {
4639 char nbuf[16];
4640
4641 errstr = ext4_decode_error(sb, j_errno, nbuf);
4642 ext4_warning(sb, "Filesystem error recorded "
4643 "from previous mount: %s", errstr);
4644 ext4_warning(sb, "Marking fs in need of filesystem check.");
4645
4646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4647 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4648 ext4_commit_super(sb, 1);
4649
4650 jbd2_journal_clear_err(journal);
4651 jbd2_journal_update_sb_errno(journal);
4652 }
4653 }
4654
4655 /*
4656 * Force the running and committing transactions to commit,
4657 * and wait on the commit.
4658 */
4659 int ext4_force_commit(struct super_block *sb)
4660 {
4661 journal_t *journal;
4662
4663 if (sb->s_flags & MS_RDONLY)
4664 return 0;
4665
4666 journal = EXT4_SB(sb)->s_journal;
4667 return ext4_journal_force_commit(journal);
4668 }
4669
4670 static int ext4_sync_fs(struct super_block *sb, int wait)
4671 {
4672 int ret = 0;
4673 tid_t target;
4674 bool needs_barrier = false;
4675 struct ext4_sb_info *sbi = EXT4_SB(sb);
4676
4677 trace_ext4_sync_fs(sb, wait);
4678 flush_workqueue(sbi->rsv_conversion_wq);
4679 /*
4680 * Writeback quota in non-journalled quota case - journalled quota has
4681 * no dirty dquots
4682 */
4683 dquot_writeback_dquots(sb, -1);
4684 /*
4685 * Data writeback is possible w/o journal transaction, so barrier must
4686 * being sent at the end of the function. But we can skip it if
4687 * transaction_commit will do it for us.
4688 */
4689 target = jbd2_get_latest_transaction(sbi->s_journal);
4690 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4691 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4692 needs_barrier = true;
4693
4694 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4695 if (wait)
4696 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4697 }
4698 if (needs_barrier) {
4699 int err;
4700 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4701 if (!ret)
4702 ret = err;
4703 }
4704
4705 return ret;
4706 }
4707
4708 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4709 {
4710 int ret = 0;
4711
4712 trace_ext4_sync_fs(sb, wait);
4713 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4714 dquot_writeback_dquots(sb, -1);
4715 if (wait && test_opt(sb, BARRIER))
4716 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4717
4718 return ret;
4719 }
4720
4721 /*
4722 * LVM calls this function before a (read-only) snapshot is created. This
4723 * gives us a chance to flush the journal completely and mark the fs clean.
4724 *
4725 * Note that only this function cannot bring a filesystem to be in a clean
4726 * state independently. It relies on upper layer to stop all data & metadata
4727 * modifications.
4728 */
4729 static int ext4_freeze(struct super_block *sb)
4730 {
4731 int error = 0;
4732 journal_t *journal;
4733
4734 if (sb->s_flags & MS_RDONLY)
4735 return 0;
4736
4737 journal = EXT4_SB(sb)->s_journal;
4738
4739 /* Now we set up the journal barrier. */
4740 jbd2_journal_lock_updates(journal);
4741
4742 /*
4743 * Don't clear the needs_recovery flag if we failed to flush
4744 * the journal.
4745 */
4746 error = jbd2_journal_flush(journal);
4747 if (error < 0)
4748 goto out;
4749
4750 /* Journal blocked and flushed, clear needs_recovery flag. */
4751 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4752 error = ext4_commit_super(sb, 1);
4753 out:
4754 /* we rely on upper layer to stop further updates */
4755 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4756 return error;
4757 }
4758
4759 /*
4760 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4761 * flag here, even though the filesystem is not technically dirty yet.
4762 */
4763 static int ext4_unfreeze(struct super_block *sb)
4764 {
4765 if (sb->s_flags & MS_RDONLY)
4766 return 0;
4767
4768 /* Reset the needs_recovery flag before the fs is unlocked. */
4769 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4770 ext4_commit_super(sb, 1);
4771 return 0;
4772 }
4773
4774 /*
4775 * Structure to save mount options for ext4_remount's benefit
4776 */
4777 struct ext4_mount_options {
4778 unsigned long s_mount_opt;
4779 unsigned long s_mount_opt2;
4780 kuid_t s_resuid;
4781 kgid_t s_resgid;
4782 unsigned long s_commit_interval;
4783 u32 s_min_batch_time, s_max_batch_time;
4784 #ifdef CONFIG_QUOTA
4785 int s_jquota_fmt;
4786 char *s_qf_names[MAXQUOTAS];
4787 #endif
4788 };
4789
4790 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4791 {
4792 struct ext4_super_block *es;
4793 struct ext4_sb_info *sbi = EXT4_SB(sb);
4794 unsigned long old_sb_flags;
4795 struct ext4_mount_options old_opts;
4796 int enable_quota = 0;
4797 ext4_group_t g;
4798 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4799 int err = 0;
4800 #ifdef CONFIG_QUOTA
4801 int i, j;
4802 #endif
4803 char *orig_data = kstrdup(data, GFP_KERNEL);
4804
4805 /* Store the original options */
4806 old_sb_flags = sb->s_flags;
4807 old_opts.s_mount_opt = sbi->s_mount_opt;
4808 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4809 old_opts.s_resuid = sbi->s_resuid;
4810 old_opts.s_resgid = sbi->s_resgid;
4811 old_opts.s_commit_interval = sbi->s_commit_interval;
4812 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4813 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4814 #ifdef CONFIG_QUOTA
4815 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4816 for (i = 0; i < MAXQUOTAS; i++)
4817 if (sbi->s_qf_names[i]) {
4818 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4819 GFP_KERNEL);
4820 if (!old_opts.s_qf_names[i]) {
4821 for (j = 0; j < i; j++)
4822 kfree(old_opts.s_qf_names[j]);
4823 kfree(orig_data);
4824 return -ENOMEM;
4825 }
4826 } else
4827 old_opts.s_qf_names[i] = NULL;
4828 #endif
4829 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4830 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4831
4832 /*
4833 * Allow the "check" option to be passed as a remount option.
4834 */
4835 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4836 err = -EINVAL;
4837 goto restore_opts;
4838 }
4839
4840 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4841 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4842 ext4_msg(sb, KERN_ERR, "can't mount with "
4843 "both data=journal and delalloc");
4844 err = -EINVAL;
4845 goto restore_opts;
4846 }
4847 if (test_opt(sb, DIOREAD_NOLOCK)) {
4848 ext4_msg(sb, KERN_ERR, "can't mount with "
4849 "both data=journal and dioread_nolock");
4850 err = -EINVAL;
4851 goto restore_opts;
4852 }
4853 }
4854
4855 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4856 ext4_abort(sb, "Abort forced by user");
4857
4858 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4859 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4860
4861 es = sbi->s_es;
4862
4863 if (sbi->s_journal) {
4864 ext4_init_journal_params(sb, sbi->s_journal);
4865 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4866 }
4867
4868 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4869 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4870 err = -EROFS;
4871 goto restore_opts;
4872 }
4873
4874 if (*flags & MS_RDONLY) {
4875 err = sync_filesystem(sb);
4876 if (err < 0)
4877 goto restore_opts;
4878 err = dquot_suspend(sb, -1);
4879 if (err < 0)
4880 goto restore_opts;
4881
4882 /*
4883 * First of all, the unconditional stuff we have to do
4884 * to disable replay of the journal when we next remount
4885 */
4886 sb->s_flags |= MS_RDONLY;
4887
4888 /*
4889 * OK, test if we are remounting a valid rw partition
4890 * readonly, and if so set the rdonly flag and then
4891 * mark the partition as valid again.
4892 */
4893 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4894 (sbi->s_mount_state & EXT4_VALID_FS))
4895 es->s_state = cpu_to_le16(sbi->s_mount_state);
4896
4897 if (sbi->s_journal)
4898 ext4_mark_recovery_complete(sb, es);
4899 } else {
4900 /* Make sure we can mount this feature set readwrite */
4901 if (!ext4_feature_set_ok(sb, 0)) {
4902 err = -EROFS;
4903 goto restore_opts;
4904 }
4905 /*
4906 * Make sure the group descriptor checksums
4907 * are sane. If they aren't, refuse to remount r/w.
4908 */
4909 for (g = 0; g < sbi->s_groups_count; g++) {
4910 struct ext4_group_desc *gdp =
4911 ext4_get_group_desc(sb, g, NULL);
4912
4913 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4914 ext4_msg(sb, KERN_ERR,
4915 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4916 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4917 le16_to_cpu(gdp->bg_checksum));
4918 err = -EINVAL;
4919 goto restore_opts;
4920 }
4921 }
4922
4923 /*
4924 * If we have an unprocessed orphan list hanging
4925 * around from a previously readonly bdev mount,
4926 * require a full umount/remount for now.
4927 */
4928 if (es->s_last_orphan) {
4929 ext4_msg(sb, KERN_WARNING, "Couldn't "
4930 "remount RDWR because of unprocessed "
4931 "orphan inode list. Please "
4932 "umount/remount instead");
4933 err = -EINVAL;
4934 goto restore_opts;
4935 }
4936
4937 /*
4938 * Mounting a RDONLY partition read-write, so reread
4939 * and store the current valid flag. (It may have
4940 * been changed by e2fsck since we originally mounted
4941 * the partition.)
4942 */
4943 if (sbi->s_journal)
4944 ext4_clear_journal_err(sb, es);
4945 sbi->s_mount_state = le16_to_cpu(es->s_state);
4946 if (!ext4_setup_super(sb, es, 0))
4947 sb->s_flags &= ~MS_RDONLY;
4948 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4949 EXT4_FEATURE_INCOMPAT_MMP))
4950 if (ext4_multi_mount_protect(sb,
4951 le64_to_cpu(es->s_mmp_block))) {
4952 err = -EROFS;
4953 goto restore_opts;
4954 }
4955 enable_quota = 1;
4956 }
4957 }
4958
4959 /*
4960 * Reinitialize lazy itable initialization thread based on
4961 * current settings
4962 */
4963 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4964 ext4_unregister_li_request(sb);
4965 else {
4966 ext4_group_t first_not_zeroed;
4967 first_not_zeroed = ext4_has_uninit_itable(sb);
4968 ext4_register_li_request(sb, first_not_zeroed);
4969 }
4970
4971 ext4_setup_system_zone(sb);
4972 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4973 ext4_commit_super(sb, 1);
4974
4975 #ifdef CONFIG_QUOTA
4976 /* Release old quota file names */
4977 for (i = 0; i < MAXQUOTAS; i++)
4978 kfree(old_opts.s_qf_names[i]);
4979 if (enable_quota) {
4980 if (sb_any_quota_suspended(sb))
4981 dquot_resume(sb, -1);
4982 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4983 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4984 err = ext4_enable_quotas(sb);
4985 if (err)
4986 goto restore_opts;
4987 }
4988 }
4989 #endif
4990
4991 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4992 kfree(orig_data);
4993 return 0;
4994
4995 restore_opts:
4996 sb->s_flags = old_sb_flags;
4997 sbi->s_mount_opt = old_opts.s_mount_opt;
4998 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4999 sbi->s_resuid = old_opts.s_resuid;
5000 sbi->s_resgid = old_opts.s_resgid;
5001 sbi->s_commit_interval = old_opts.s_commit_interval;
5002 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5003 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5004 #ifdef CONFIG_QUOTA
5005 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5006 for (i = 0; i < MAXQUOTAS; i++) {
5007 kfree(sbi->s_qf_names[i]);
5008 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5009 }
5010 #endif
5011 kfree(orig_data);
5012 return err;
5013 }
5014
5015 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5016 {
5017 struct super_block *sb = dentry->d_sb;
5018 struct ext4_sb_info *sbi = EXT4_SB(sb);
5019 struct ext4_super_block *es = sbi->s_es;
5020 ext4_fsblk_t overhead = 0, resv_blocks;
5021 u64 fsid;
5022 s64 bfree;
5023 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5024
5025 if (!test_opt(sb, MINIX_DF))
5026 overhead = sbi->s_overhead;
5027
5028 buf->f_type = EXT4_SUPER_MAGIC;
5029 buf->f_bsize = sb->s_blocksize;
5030 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5031 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5032 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5033 /* prevent underflow in case that few free space is available */
5034 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5035 buf->f_bavail = buf->f_bfree -
5036 (ext4_r_blocks_count(es) + resv_blocks);
5037 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5038 buf->f_bavail = 0;
5039 buf->f_files = le32_to_cpu(es->s_inodes_count);
5040 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5041 buf->f_namelen = EXT4_NAME_LEN;
5042 fsid = le64_to_cpup((void *)es->s_uuid) ^
5043 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5044 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5045 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5046
5047 return 0;
5048 }
5049
5050 /* Helper function for writing quotas on sync - we need to start transaction
5051 * before quota file is locked for write. Otherwise the are possible deadlocks:
5052 * Process 1 Process 2
5053 * ext4_create() quota_sync()
5054 * jbd2_journal_start() write_dquot()
5055 * dquot_initialize() down(dqio_mutex)
5056 * down(dqio_mutex) jbd2_journal_start()
5057 *
5058 */
5059
5060 #ifdef CONFIG_QUOTA
5061
5062 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5063 {
5064 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5065 }
5066
5067 static int ext4_write_dquot(struct dquot *dquot)
5068 {
5069 int ret, err;
5070 handle_t *handle;
5071 struct inode *inode;
5072
5073 inode = dquot_to_inode(dquot);
5074 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5075 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5076 if (IS_ERR(handle))
5077 return PTR_ERR(handle);
5078 ret = dquot_commit(dquot);
5079 err = ext4_journal_stop(handle);
5080 if (!ret)
5081 ret = err;
5082 return ret;
5083 }
5084
5085 static int ext4_acquire_dquot(struct dquot *dquot)
5086 {
5087 int ret, err;
5088 handle_t *handle;
5089
5090 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5091 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5092 if (IS_ERR(handle))
5093 return PTR_ERR(handle);
5094 ret = dquot_acquire(dquot);
5095 err = ext4_journal_stop(handle);
5096 if (!ret)
5097 ret = err;
5098 return ret;
5099 }
5100
5101 static int ext4_release_dquot(struct dquot *dquot)
5102 {
5103 int ret, err;
5104 handle_t *handle;
5105
5106 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5107 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5108 if (IS_ERR(handle)) {
5109 /* Release dquot anyway to avoid endless cycle in dqput() */
5110 dquot_release(dquot);
5111 return PTR_ERR(handle);
5112 }
5113 ret = dquot_release(dquot);
5114 err = ext4_journal_stop(handle);
5115 if (!ret)
5116 ret = err;
5117 return ret;
5118 }
5119
5120 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5121 {
5122 struct super_block *sb = dquot->dq_sb;
5123 struct ext4_sb_info *sbi = EXT4_SB(sb);
5124
5125 /* Are we journaling quotas? */
5126 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5127 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5128 dquot_mark_dquot_dirty(dquot);
5129 return ext4_write_dquot(dquot);
5130 } else {
5131 return dquot_mark_dquot_dirty(dquot);
5132 }
5133 }
5134
5135 static int ext4_write_info(struct super_block *sb, int type)
5136 {
5137 int ret, err;
5138 handle_t *handle;
5139
5140 /* Data block + inode block */
5141 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5142 if (IS_ERR(handle))
5143 return PTR_ERR(handle);
5144 ret = dquot_commit_info(sb, type);
5145 err = ext4_journal_stop(handle);
5146 if (!ret)
5147 ret = err;
5148 return ret;
5149 }
5150
5151 /*
5152 * Turn on quotas during mount time - we need to find
5153 * the quota file and such...
5154 */
5155 static int ext4_quota_on_mount(struct super_block *sb, int type)
5156 {
5157 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5158 EXT4_SB(sb)->s_jquota_fmt, type);
5159 }
5160
5161 /*
5162 * Standard function to be called on quota_on
5163 */
5164 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5165 struct path *path)
5166 {
5167 int err;
5168
5169 if (!test_opt(sb, QUOTA))
5170 return -EINVAL;
5171
5172 /* Quotafile not on the same filesystem? */
5173 if (path->dentry->d_sb != sb)
5174 return -EXDEV;
5175 /* Journaling quota? */
5176 if (EXT4_SB(sb)->s_qf_names[type]) {
5177 /* Quotafile not in fs root? */
5178 if (path->dentry->d_parent != sb->s_root)
5179 ext4_msg(sb, KERN_WARNING,
5180 "Quota file not on filesystem root. "
5181 "Journaled quota will not work");
5182 }
5183
5184 /*
5185 * When we journal data on quota file, we have to flush journal to see
5186 * all updates to the file when we bypass pagecache...
5187 */
5188 if (EXT4_SB(sb)->s_journal &&
5189 ext4_should_journal_data(path->dentry->d_inode)) {
5190 /*
5191 * We don't need to lock updates but journal_flush() could
5192 * otherwise be livelocked...
5193 */
5194 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5195 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5196 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5197 if (err)
5198 return err;
5199 }
5200
5201 return dquot_quota_on(sb, type, format_id, path);
5202 }
5203
5204 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5205 unsigned int flags)
5206 {
5207 int err;
5208 struct inode *qf_inode;
5209 unsigned long qf_inums[MAXQUOTAS] = {
5210 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5211 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5212 };
5213
5214 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5215
5216 if (!qf_inums[type])
5217 return -EPERM;
5218
5219 qf_inode = ext4_iget(sb, qf_inums[type]);
5220 if (IS_ERR(qf_inode)) {
5221 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5222 return PTR_ERR(qf_inode);
5223 }
5224
5225 /* Don't account quota for quota files to avoid recursion */
5226 qf_inode->i_flags |= S_NOQUOTA;
5227 err = dquot_enable(qf_inode, type, format_id, flags);
5228 iput(qf_inode);
5229
5230 return err;
5231 }
5232
5233 /* Enable usage tracking for all quota types. */
5234 static int ext4_enable_quotas(struct super_block *sb)
5235 {
5236 int type, err = 0;
5237 unsigned long qf_inums[MAXQUOTAS] = {
5238 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5239 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5240 };
5241
5242 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5243 for (type = 0; type < MAXQUOTAS; type++) {
5244 if (qf_inums[type]) {
5245 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5246 DQUOT_USAGE_ENABLED);
5247 if (err) {
5248 ext4_warning(sb,
5249 "Failed to enable quota tracking "
5250 "(type=%d, err=%d). Please run "
5251 "e2fsck to fix.", type, err);
5252 return err;
5253 }
5254 }
5255 }
5256 return 0;
5257 }
5258
5259 /*
5260 * quota_on function that is used when QUOTA feature is set.
5261 */
5262 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5263 int format_id)
5264 {
5265 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5266 return -EINVAL;
5267
5268 /*
5269 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5270 */
5271 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5272 }
5273
5274 static int ext4_quota_off(struct super_block *sb, int type)
5275 {
5276 struct inode *inode = sb_dqopt(sb)->files[type];
5277 handle_t *handle;
5278
5279 /* Force all delayed allocation blocks to be allocated.
5280 * Caller already holds s_umount sem */
5281 if (test_opt(sb, DELALLOC))
5282 sync_filesystem(sb);
5283
5284 if (!inode)
5285 goto out;
5286
5287 /* Update modification times of quota files when userspace can
5288 * start looking at them */
5289 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5290 if (IS_ERR(handle))
5291 goto out;
5292 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5293 ext4_mark_inode_dirty(handle, inode);
5294 ext4_journal_stop(handle);
5295
5296 out:
5297 return dquot_quota_off(sb, type);
5298 }
5299
5300 /*
5301 * quota_off function that is used when QUOTA feature is set.
5302 */
5303 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5304 {
5305 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5306 return -EINVAL;
5307
5308 /* Disable only the limits. */
5309 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5310 }
5311
5312 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5313 * acquiring the locks... As quota files are never truncated and quota code
5314 * itself serializes the operations (and no one else should touch the files)
5315 * we don't have to be afraid of races */
5316 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5317 size_t len, loff_t off)
5318 {
5319 struct inode *inode = sb_dqopt(sb)->files[type];
5320 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5321 int err = 0;
5322 int offset = off & (sb->s_blocksize - 1);
5323 int tocopy;
5324 size_t toread;
5325 struct buffer_head *bh;
5326 loff_t i_size = i_size_read(inode);
5327
5328 if (off > i_size)
5329 return 0;
5330 if (off+len > i_size)
5331 len = i_size-off;
5332 toread = len;
5333 while (toread > 0) {
5334 tocopy = sb->s_blocksize - offset < toread ?
5335 sb->s_blocksize - offset : toread;
5336 bh = ext4_bread(NULL, inode, blk, 0, &err);
5337 if (err)
5338 return err;
5339 if (!bh) /* A hole? */
5340 memset(data, 0, tocopy);
5341 else
5342 memcpy(data, bh->b_data+offset, tocopy);
5343 brelse(bh);
5344 offset = 0;
5345 toread -= tocopy;
5346 data += tocopy;
5347 blk++;
5348 }
5349 return len;
5350 }
5351
5352 /* Write to quotafile (we know the transaction is already started and has
5353 * enough credits) */
5354 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5355 const char *data, size_t len, loff_t off)
5356 {
5357 struct inode *inode = sb_dqopt(sb)->files[type];
5358 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5359 int err = 0;
5360 int offset = off & (sb->s_blocksize - 1);
5361 struct buffer_head *bh;
5362 handle_t *handle = journal_current_handle();
5363
5364 if (EXT4_SB(sb)->s_journal && !handle) {
5365 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5366 " cancelled because transaction is not started",
5367 (unsigned long long)off, (unsigned long long)len);
5368 return -EIO;
5369 }
5370 /*
5371 * Since we account only one data block in transaction credits,
5372 * then it is impossible to cross a block boundary.
5373 */
5374 if (sb->s_blocksize - offset < len) {
5375 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5376 " cancelled because not block aligned",
5377 (unsigned long long)off, (unsigned long long)len);
5378 return -EIO;
5379 }
5380
5381 bh = ext4_bread(handle, inode, blk, 1, &err);
5382 if (!bh)
5383 goto out;
5384 err = ext4_journal_get_write_access(handle, bh);
5385 if (err) {
5386 brelse(bh);
5387 goto out;
5388 }
5389 lock_buffer(bh);
5390 memcpy(bh->b_data+offset, data, len);
5391 flush_dcache_page(bh->b_page);
5392 unlock_buffer(bh);
5393 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5394 brelse(bh);
5395 out:
5396 if (err)
5397 return err;
5398 if (inode->i_size < off + len) {
5399 i_size_write(inode, off + len);
5400 EXT4_I(inode)->i_disksize = inode->i_size;
5401 ext4_mark_inode_dirty(handle, inode);
5402 }
5403 return len;
5404 }
5405
5406 #endif
5407
5408 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5409 const char *dev_name, void *data)
5410 {
5411 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5412 }
5413
5414 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5415 static inline void register_as_ext2(void)
5416 {
5417 int err = register_filesystem(&ext2_fs_type);
5418 if (err)
5419 printk(KERN_WARNING
5420 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5421 }
5422
5423 static inline void unregister_as_ext2(void)
5424 {
5425 unregister_filesystem(&ext2_fs_type);
5426 }
5427
5428 static inline int ext2_feature_set_ok(struct super_block *sb)
5429 {
5430 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5431 return 0;
5432 if (sb->s_flags & MS_RDONLY)
5433 return 1;
5434 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5435 return 0;
5436 return 1;
5437 }
5438 #else
5439 static inline void register_as_ext2(void) { }
5440 static inline void unregister_as_ext2(void) { }
5441 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5442 #endif
5443
5444 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5445 static inline void register_as_ext3(void)
5446 {
5447 int err = register_filesystem(&ext3_fs_type);
5448 if (err)
5449 printk(KERN_WARNING
5450 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5451 }
5452
5453 static inline void unregister_as_ext3(void)
5454 {
5455 unregister_filesystem(&ext3_fs_type);
5456 }
5457
5458 static inline int ext3_feature_set_ok(struct super_block *sb)
5459 {
5460 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5461 return 0;
5462 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5463 return 0;
5464 if (sb->s_flags & MS_RDONLY)
5465 return 1;
5466 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5467 return 0;
5468 return 1;
5469 }
5470 #else
5471 static inline void register_as_ext3(void) { }
5472 static inline void unregister_as_ext3(void) { }
5473 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5474 #endif
5475
5476 static struct file_system_type ext4_fs_type = {
5477 .owner = THIS_MODULE,
5478 .name = "ext4",
5479 .mount = ext4_mount,
5480 .kill_sb = kill_block_super,
5481 .fs_flags = FS_REQUIRES_DEV,
5482 };
5483 MODULE_ALIAS_FS("ext4");
5484
5485 static int __init ext4_init_feat_adverts(void)
5486 {
5487 struct ext4_features *ef;
5488 int ret = -ENOMEM;
5489
5490 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5491 if (!ef)
5492 goto out;
5493
5494 ef->f_kobj.kset = ext4_kset;
5495 init_completion(&ef->f_kobj_unregister);
5496 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5497 "features");
5498 if (ret) {
5499 kfree(ef);
5500 goto out;
5501 }
5502
5503 ext4_feat = ef;
5504 ret = 0;
5505 out:
5506 return ret;
5507 }
5508
5509 static void ext4_exit_feat_adverts(void)
5510 {
5511 kobject_put(&ext4_feat->f_kobj);
5512 wait_for_completion(&ext4_feat->f_kobj_unregister);
5513 kfree(ext4_feat);
5514 }
5515
5516 /* Shared across all ext4 file systems */
5517 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5518 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5519
5520 static int __init ext4_init_fs(void)
5521 {
5522 int i, err;
5523
5524 ext4_li_info = NULL;
5525 mutex_init(&ext4_li_mtx);
5526
5527 /* Build-time check for flags consistency */
5528 ext4_check_flag_values();
5529
5530 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5531 mutex_init(&ext4__aio_mutex[i]);
5532 init_waitqueue_head(&ext4__ioend_wq[i]);
5533 }
5534
5535 err = ext4_init_es();
5536 if (err)
5537 return err;
5538
5539 err = ext4_init_pageio();
5540 if (err)
5541 goto out7;
5542
5543 err = ext4_init_system_zone();
5544 if (err)
5545 goto out6;
5546 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5547 if (!ext4_kset) {
5548 err = -ENOMEM;
5549 goto out5;
5550 }
5551 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5552
5553 err = ext4_init_feat_adverts();
5554 if (err)
5555 goto out4;
5556
5557 err = ext4_init_mballoc();
5558 if (err)
5559 goto out2;
5560 else
5561 ext4_mballoc_ready = 1;
5562 err = init_inodecache();
5563 if (err)
5564 goto out1;
5565 register_as_ext3();
5566 register_as_ext2();
5567 err = register_filesystem(&ext4_fs_type);
5568 if (err)
5569 goto out;
5570
5571 return 0;
5572 out:
5573 unregister_as_ext2();
5574 unregister_as_ext3();
5575 destroy_inodecache();
5576 out1:
5577 ext4_mballoc_ready = 0;
5578 ext4_exit_mballoc();
5579 out2:
5580 ext4_exit_feat_adverts();
5581 out4:
5582 if (ext4_proc_root)
5583 remove_proc_entry("fs/ext4", NULL);
5584 kset_unregister(ext4_kset);
5585 out5:
5586 ext4_exit_system_zone();
5587 out6:
5588 ext4_exit_pageio();
5589 out7:
5590 ext4_exit_es();
5591
5592 return err;
5593 }
5594
5595 static void __exit ext4_exit_fs(void)
5596 {
5597 ext4_destroy_lazyinit_thread();
5598 unregister_as_ext2();
5599 unregister_as_ext3();
5600 unregister_filesystem(&ext4_fs_type);
5601 destroy_inodecache();
5602 ext4_exit_mballoc();
5603 ext4_exit_feat_adverts();
5604 remove_proc_entry("fs/ext4", NULL);
5605 kset_unregister(ext4_kset);
5606 ext4_exit_system_zone();
5607 ext4_exit_pageio();
5608 ext4_exit_es();
5609 }
5610
5611 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5612 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5613 MODULE_LICENSE("GPL");
5614 module_init(ext4_init_fs)
5615 module_exit(ext4_exit_fs)
This page took 0.168541 seconds and 5 git commands to generate.