ext4: change s_mount_opt to be an unsigned int
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ext4.h>
51
52 static int default_mb_history_length = 1000;
53
54 module_param_named(default_mb_history_length, default_mb_history_length,
55 int, 0644);
56 MODULE_PARM_DESC(default_mb_history_length,
57 "Default number of entries saved for mb_history");
58
59 struct proc_dir_entry *ext4_proc_root;
60 static struct kset *ext4_kset;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77
78
79 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
80 struct ext4_group_desc *bg)
81 {
82 return le32_to_cpu(bg->bg_block_bitmap_lo) |
83 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
84 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
85 }
86
87 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
88 struct ext4_group_desc *bg)
89 {
90 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
91 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
92 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
93 }
94
95 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
96 struct ext4_group_desc *bg)
97 {
98 return le32_to_cpu(bg->bg_inode_table_lo) |
99 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
100 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
101 }
102
103 __u32 ext4_free_blks_count(struct super_block *sb,
104 struct ext4_group_desc *bg)
105 {
106 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
107 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
108 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
109 }
110
111 __u32 ext4_free_inodes_count(struct super_block *sb,
112 struct ext4_group_desc *bg)
113 {
114 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
115 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
116 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
117 }
118
119 __u32 ext4_used_dirs_count(struct super_block *sb,
120 struct ext4_group_desc *bg)
121 {
122 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
123 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
124 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
125 }
126
127 __u32 ext4_itable_unused_count(struct super_block *sb,
128 struct ext4_group_desc *bg)
129 {
130 return le16_to_cpu(bg->bg_itable_unused_lo) |
131 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
132 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
133 }
134
135 void ext4_block_bitmap_set(struct super_block *sb,
136 struct ext4_group_desc *bg, ext4_fsblk_t blk)
137 {
138 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
139 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
140 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
141 }
142
143 void ext4_inode_bitmap_set(struct super_block *sb,
144 struct ext4_group_desc *bg, ext4_fsblk_t blk)
145 {
146 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
147 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
148 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
149 }
150
151 void ext4_inode_table_set(struct super_block *sb,
152 struct ext4_group_desc *bg, ext4_fsblk_t blk)
153 {
154 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
155 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
156 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
157 }
158
159 void ext4_free_blks_set(struct super_block *sb,
160 struct ext4_group_desc *bg, __u32 count)
161 {
162 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
163 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
164 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
165 }
166
167 void ext4_free_inodes_set(struct super_block *sb,
168 struct ext4_group_desc *bg, __u32 count)
169 {
170 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
171 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
172 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
173 }
174
175 void ext4_used_dirs_set(struct super_block *sb,
176 struct ext4_group_desc *bg, __u32 count)
177 {
178 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
179 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
180 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
181 }
182
183 void ext4_itable_unused_set(struct super_block *sb,
184 struct ext4_group_desc *bg, __u32 count)
185 {
186 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
187 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
188 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
189 }
190
191 /*
192 * Wrappers for jbd2_journal_start/end.
193 *
194 * The only special thing we need to do here is to make sure that all
195 * journal_end calls result in the superblock being marked dirty, so
196 * that sync() will call the filesystem's write_super callback if
197 * appropriate.
198 */
199 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
200 {
201 journal_t *journal;
202
203 if (sb->s_flags & MS_RDONLY)
204 return ERR_PTR(-EROFS);
205
206 /* Special case here: if the journal has aborted behind our
207 * backs (eg. EIO in the commit thread), then we still need to
208 * take the FS itself readonly cleanly. */
209 journal = EXT4_SB(sb)->s_journal;
210 if (journal) {
211 if (is_journal_aborted(journal)) {
212 ext4_abort(sb, __func__, "Detected aborted journal");
213 return ERR_PTR(-EROFS);
214 }
215 return jbd2_journal_start(journal, nblocks);
216 }
217 /*
218 * We're not journaling, return the appropriate indication.
219 */
220 current->journal_info = EXT4_NOJOURNAL_HANDLE;
221 return current->journal_info;
222 }
223
224 /*
225 * The only special thing we need to do here is to make sure that all
226 * jbd2_journal_stop calls result in the superblock being marked dirty, so
227 * that sync() will call the filesystem's write_super callback if
228 * appropriate.
229 */
230 int __ext4_journal_stop(const char *where, handle_t *handle)
231 {
232 struct super_block *sb;
233 int err;
234 int rc;
235
236 if (!ext4_handle_valid(handle)) {
237 /*
238 * Do this here since we don't call jbd2_journal_stop() in
239 * no-journal mode.
240 */
241 current->journal_info = NULL;
242 return 0;
243 }
244 sb = handle->h_transaction->t_journal->j_private;
245 err = handle->h_err;
246 rc = jbd2_journal_stop(handle);
247
248 if (!err)
249 err = rc;
250 if (err)
251 __ext4_std_error(sb, where, err);
252 return err;
253 }
254
255 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
256 struct buffer_head *bh, handle_t *handle, int err)
257 {
258 char nbuf[16];
259 const char *errstr = ext4_decode_error(NULL, err, nbuf);
260
261 BUG_ON(!ext4_handle_valid(handle));
262
263 if (bh)
264 BUFFER_TRACE(bh, "abort");
265
266 if (!handle->h_err)
267 handle->h_err = err;
268
269 if (is_handle_aborted(handle))
270 return;
271
272 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
273 caller, errstr, err_fn);
274
275 jbd2_journal_abort_handle(handle);
276 }
277
278 /* Deal with the reporting of failure conditions on a filesystem such as
279 * inconsistencies detected or read IO failures.
280 *
281 * On ext2, we can store the error state of the filesystem in the
282 * superblock. That is not possible on ext4, because we may have other
283 * write ordering constraints on the superblock which prevent us from
284 * writing it out straight away; and given that the journal is about to
285 * be aborted, we can't rely on the current, or future, transactions to
286 * write out the superblock safely.
287 *
288 * We'll just use the jbd2_journal_abort() error code to record an error in
289 * the journal instead. On recovery, the journal will compain about
290 * that error until we've noted it down and cleared it.
291 */
292
293 static void ext4_handle_error(struct super_block *sb)
294 {
295 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296
297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
298 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
299
300 if (sb->s_flags & MS_RDONLY)
301 return;
302
303 if (!test_opt(sb, ERRORS_CONT)) {
304 journal_t *journal = EXT4_SB(sb)->s_journal;
305
306 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
307 if (journal)
308 jbd2_journal_abort(journal, -EIO);
309 }
310 if (test_opt(sb, ERRORS_RO)) {
311 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
312 sb->s_flags |= MS_RDONLY;
313 }
314 ext4_commit_super(sb, 1);
315 if (test_opt(sb, ERRORS_PANIC))
316 panic("EXT4-fs (device %s): panic forced after error\n",
317 sb->s_id);
318 }
319
320 void ext4_error(struct super_block *sb, const char *function,
321 const char *fmt, ...)
322 {
323 va_list args;
324
325 va_start(args, fmt);
326 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
327 vprintk(fmt, args);
328 printk("\n");
329 va_end(args);
330
331 ext4_handle_error(sb);
332 }
333
334 static const char *ext4_decode_error(struct super_block *sb, int errno,
335 char nbuf[16])
336 {
337 char *errstr = NULL;
338
339 switch (errno) {
340 case -EIO:
341 errstr = "IO failure";
342 break;
343 case -ENOMEM:
344 errstr = "Out of memory";
345 break;
346 case -EROFS:
347 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)
348 errstr = "Journal has aborted";
349 else
350 errstr = "Readonly filesystem";
351 break;
352 default:
353 /* If the caller passed in an extra buffer for unknown
354 * errors, textualise them now. Else we just return
355 * NULL. */
356 if (nbuf) {
357 /* Check for truncated error codes... */
358 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
359 errstr = nbuf;
360 }
361 break;
362 }
363
364 return errstr;
365 }
366
367 /* __ext4_std_error decodes expected errors from journaling functions
368 * automatically and invokes the appropriate error response. */
369
370 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
371 {
372 char nbuf[16];
373 const char *errstr;
374
375 /* Special case: if the error is EROFS, and we're not already
376 * inside a transaction, then there's really no point in logging
377 * an error. */
378 if (errno == -EROFS && journal_current_handle() == NULL &&
379 (sb->s_flags & MS_RDONLY))
380 return;
381
382 errstr = ext4_decode_error(sb, errno, nbuf);
383 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
384 sb->s_id, function, errstr);
385
386 ext4_handle_error(sb);
387 }
388
389 /*
390 * ext4_abort is a much stronger failure handler than ext4_error. The
391 * abort function may be used to deal with unrecoverable failures such
392 * as journal IO errors or ENOMEM at a critical moment in log management.
393 *
394 * We unconditionally force the filesystem into an ABORT|READONLY state,
395 * unless the error response on the fs has been set to panic in which
396 * case we take the easy way out and panic immediately.
397 */
398
399 void ext4_abort(struct super_block *sb, const char *function,
400 const char *fmt, ...)
401 {
402 va_list args;
403
404 va_start(args, fmt);
405 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
406 vprintk(fmt, args);
407 printk("\n");
408 va_end(args);
409
410 if (test_opt(sb, ERRORS_PANIC))
411 panic("EXT4-fs panic from previous error\n");
412
413 if (sb->s_flags & MS_RDONLY)
414 return;
415
416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
417 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
418 sb->s_flags |= MS_RDONLY;
419 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
420 if (EXT4_SB(sb)->s_journal)
421 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
422 }
423
424 void ext4_msg (struct super_block * sb, const char *prefix,
425 const char *fmt, ...)
426 {
427 va_list args;
428
429 va_start(args, fmt);
430 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
431 vprintk(fmt, args);
432 printk("\n");
433 va_end(args);
434 }
435
436 void ext4_warning(struct super_block *sb, const char *function,
437 const char *fmt, ...)
438 {
439 va_list args;
440
441 va_start(args, fmt);
442 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
443 sb->s_id, function);
444 vprintk(fmt, args);
445 printk("\n");
446 va_end(args);
447 }
448
449 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
450 const char *function, const char *fmt, ...)
451 __releases(bitlock)
452 __acquires(bitlock)
453 {
454 va_list args;
455 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
456
457 va_start(args, fmt);
458 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
459 vprintk(fmt, args);
460 printk("\n");
461 va_end(args);
462
463 if (test_opt(sb, ERRORS_CONT)) {
464 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
465 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
466 ext4_commit_super(sb, 0);
467 return;
468 }
469 ext4_unlock_group(sb, grp);
470 ext4_handle_error(sb);
471 /*
472 * We only get here in the ERRORS_RO case; relocking the group
473 * may be dangerous, but nothing bad will happen since the
474 * filesystem will have already been marked read/only and the
475 * journal has been aborted. We return 1 as a hint to callers
476 * who might what to use the return value from
477 * ext4_grp_locked_error() to distinguish beween the
478 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
479 * aggressively from the ext4 function in question, with a
480 * more appropriate error code.
481 */
482 ext4_lock_group(sb, grp);
483 return;
484 }
485
486 void ext4_update_dynamic_rev(struct super_block *sb)
487 {
488 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
489
490 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
491 return;
492
493 ext4_warning(sb, __func__,
494 "updating to rev %d because of new feature flag, "
495 "running e2fsck is recommended",
496 EXT4_DYNAMIC_REV);
497
498 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
499 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
500 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
501 /* leave es->s_feature_*compat flags alone */
502 /* es->s_uuid will be set by e2fsck if empty */
503
504 /*
505 * The rest of the superblock fields should be zero, and if not it
506 * means they are likely already in use, so leave them alone. We
507 * can leave it up to e2fsck to clean up any inconsistencies there.
508 */
509 }
510
511 /*
512 * Open the external journal device
513 */
514 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
515 {
516 struct block_device *bdev;
517 char b[BDEVNAME_SIZE];
518
519 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
520 if (IS_ERR(bdev))
521 goto fail;
522 return bdev;
523
524 fail:
525 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
526 __bdevname(dev, b), PTR_ERR(bdev));
527 return NULL;
528 }
529
530 /*
531 * Release the journal device
532 */
533 static int ext4_blkdev_put(struct block_device *bdev)
534 {
535 bd_release(bdev);
536 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
537 }
538
539 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
540 {
541 struct block_device *bdev;
542 int ret = -ENODEV;
543
544 bdev = sbi->journal_bdev;
545 if (bdev) {
546 ret = ext4_blkdev_put(bdev);
547 sbi->journal_bdev = NULL;
548 }
549 return ret;
550 }
551
552 static inline struct inode *orphan_list_entry(struct list_head *l)
553 {
554 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
555 }
556
557 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
558 {
559 struct list_head *l;
560
561 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
562 le32_to_cpu(sbi->s_es->s_last_orphan));
563
564 printk(KERN_ERR "sb_info orphan list:\n");
565 list_for_each(l, &sbi->s_orphan) {
566 struct inode *inode = orphan_list_entry(l);
567 printk(KERN_ERR " "
568 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
569 inode->i_sb->s_id, inode->i_ino, inode,
570 inode->i_mode, inode->i_nlink,
571 NEXT_ORPHAN(inode));
572 }
573 }
574
575 static void ext4_put_super(struct super_block *sb)
576 {
577 struct ext4_sb_info *sbi = EXT4_SB(sb);
578 struct ext4_super_block *es = sbi->s_es;
579 int i, err;
580
581 lock_super(sb);
582 lock_kernel();
583 if (sb->s_dirt)
584 ext4_commit_super(sb, 1);
585
586 ext4_release_system_zone(sb);
587 ext4_mb_release(sb);
588 ext4_ext_release(sb);
589 ext4_xattr_put_super(sb);
590 if (sbi->s_journal) {
591 err = jbd2_journal_destroy(sbi->s_journal);
592 sbi->s_journal = NULL;
593 if (err < 0)
594 ext4_abort(sb, __func__,
595 "Couldn't clean up the journal");
596 }
597 if (!(sb->s_flags & MS_RDONLY)) {
598 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
599 es->s_state = cpu_to_le16(sbi->s_mount_state);
600 ext4_commit_super(sb, 1);
601 }
602 if (sbi->s_proc) {
603 remove_proc_entry(sb->s_id, ext4_proc_root);
604 }
605 kobject_del(&sbi->s_kobj);
606
607 for (i = 0; i < sbi->s_gdb_count; i++)
608 brelse(sbi->s_group_desc[i]);
609 kfree(sbi->s_group_desc);
610 if (is_vmalloc_addr(sbi->s_flex_groups))
611 vfree(sbi->s_flex_groups);
612 else
613 kfree(sbi->s_flex_groups);
614 percpu_counter_destroy(&sbi->s_freeblocks_counter);
615 percpu_counter_destroy(&sbi->s_freeinodes_counter);
616 percpu_counter_destroy(&sbi->s_dirs_counter);
617 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
618 brelse(sbi->s_sbh);
619 #ifdef CONFIG_QUOTA
620 for (i = 0; i < MAXQUOTAS; i++)
621 kfree(sbi->s_qf_names[i]);
622 #endif
623
624 /* Debugging code just in case the in-memory inode orphan list
625 * isn't empty. The on-disk one can be non-empty if we've
626 * detected an error and taken the fs readonly, but the
627 * in-memory list had better be clean by this point. */
628 if (!list_empty(&sbi->s_orphan))
629 dump_orphan_list(sb, sbi);
630 J_ASSERT(list_empty(&sbi->s_orphan));
631
632 invalidate_bdev(sb->s_bdev);
633 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
634 /*
635 * Invalidate the journal device's buffers. We don't want them
636 * floating about in memory - the physical journal device may
637 * hotswapped, and it breaks the `ro-after' testing code.
638 */
639 sync_blockdev(sbi->journal_bdev);
640 invalidate_bdev(sbi->journal_bdev);
641 ext4_blkdev_remove(sbi);
642 }
643 sb->s_fs_info = NULL;
644 /*
645 * Now that we are completely done shutting down the
646 * superblock, we need to actually destroy the kobject.
647 */
648 unlock_kernel();
649 unlock_super(sb);
650 kobject_put(&sbi->s_kobj);
651 wait_for_completion(&sbi->s_kobj_unregister);
652 kfree(sbi->s_blockgroup_lock);
653 kfree(sbi);
654 }
655
656 static struct kmem_cache *ext4_inode_cachep;
657
658 /*
659 * Called inside transaction, so use GFP_NOFS
660 */
661 static struct inode *ext4_alloc_inode(struct super_block *sb)
662 {
663 struct ext4_inode_info *ei;
664
665 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
666 if (!ei)
667 return NULL;
668
669 #ifdef CONFIG_EXT4_FS_POSIX_ACL
670 ei->i_acl = EXT4_ACL_NOT_CACHED;
671 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
672 #endif
673 ei->vfs_inode.i_version = 1;
674 ei->vfs_inode.i_data.writeback_index = 0;
675 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
676 INIT_LIST_HEAD(&ei->i_prealloc_list);
677 spin_lock_init(&ei->i_prealloc_lock);
678 /*
679 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
680 * therefore it can be null here. Don't check it, just initialize
681 * jinode.
682 */
683 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
684 ei->i_reserved_data_blocks = 0;
685 ei->i_reserved_meta_blocks = 0;
686 ei->i_allocated_meta_blocks = 0;
687 ei->i_delalloc_reserved_flag = 0;
688 spin_lock_init(&(ei->i_block_reservation_lock));
689
690 return &ei->vfs_inode;
691 }
692
693 static void ext4_destroy_inode(struct inode *inode)
694 {
695 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
696 ext4_msg(inode->i_sb, KERN_ERR,
697 "Inode %lu (%p): orphan list check failed!",
698 inode->i_ino, EXT4_I(inode));
699 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
700 EXT4_I(inode), sizeof(struct ext4_inode_info),
701 true);
702 dump_stack();
703 }
704 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
705 }
706
707 static void init_once(void *foo)
708 {
709 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
710
711 INIT_LIST_HEAD(&ei->i_orphan);
712 #ifdef CONFIG_EXT4_FS_XATTR
713 init_rwsem(&ei->xattr_sem);
714 #endif
715 init_rwsem(&ei->i_data_sem);
716 inode_init_once(&ei->vfs_inode);
717 }
718
719 static int init_inodecache(void)
720 {
721 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
722 sizeof(struct ext4_inode_info),
723 0, (SLAB_RECLAIM_ACCOUNT|
724 SLAB_MEM_SPREAD),
725 init_once);
726 if (ext4_inode_cachep == NULL)
727 return -ENOMEM;
728 return 0;
729 }
730
731 static void destroy_inodecache(void)
732 {
733 kmem_cache_destroy(ext4_inode_cachep);
734 }
735
736 static void ext4_clear_inode(struct inode *inode)
737 {
738 #ifdef CONFIG_EXT4_FS_POSIX_ACL
739 if (EXT4_I(inode)->i_acl &&
740 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) {
741 posix_acl_release(EXT4_I(inode)->i_acl);
742 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED;
743 }
744 if (EXT4_I(inode)->i_default_acl &&
745 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) {
746 posix_acl_release(EXT4_I(inode)->i_default_acl);
747 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED;
748 }
749 #endif
750 ext4_discard_preallocations(inode);
751 if (EXT4_JOURNAL(inode))
752 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
753 &EXT4_I(inode)->jinode);
754 }
755
756 static inline void ext4_show_quota_options(struct seq_file *seq,
757 struct super_block *sb)
758 {
759 #if defined(CONFIG_QUOTA)
760 struct ext4_sb_info *sbi = EXT4_SB(sb);
761
762 if (sbi->s_jquota_fmt)
763 seq_printf(seq, ",jqfmt=%s",
764 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
765
766 if (sbi->s_qf_names[USRQUOTA])
767 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
768
769 if (sbi->s_qf_names[GRPQUOTA])
770 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
771
772 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
773 seq_puts(seq, ",usrquota");
774
775 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
776 seq_puts(seq, ",grpquota");
777 #endif
778 }
779
780 /*
781 * Show an option if
782 * - it's set to a non-default value OR
783 * - if the per-sb default is different from the global default
784 */
785 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
786 {
787 int def_errors;
788 unsigned long def_mount_opts;
789 struct super_block *sb = vfs->mnt_sb;
790 struct ext4_sb_info *sbi = EXT4_SB(sb);
791 struct ext4_super_block *es = sbi->s_es;
792
793 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
794 def_errors = le16_to_cpu(es->s_errors);
795
796 if (sbi->s_sb_block != 1)
797 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
798 if (test_opt(sb, MINIX_DF))
799 seq_puts(seq, ",minixdf");
800 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
801 seq_puts(seq, ",grpid");
802 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
803 seq_puts(seq, ",nogrpid");
804 if (sbi->s_resuid != EXT4_DEF_RESUID ||
805 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
806 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
807 }
808 if (sbi->s_resgid != EXT4_DEF_RESGID ||
809 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
810 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
811 }
812 if (test_opt(sb, ERRORS_RO)) {
813 if (def_errors == EXT4_ERRORS_PANIC ||
814 def_errors == EXT4_ERRORS_CONTINUE) {
815 seq_puts(seq, ",errors=remount-ro");
816 }
817 }
818 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
819 seq_puts(seq, ",errors=continue");
820 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
821 seq_puts(seq, ",errors=panic");
822 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
823 seq_puts(seq, ",nouid32");
824 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
825 seq_puts(seq, ",debug");
826 if (test_opt(sb, OLDALLOC))
827 seq_puts(seq, ",oldalloc");
828 #ifdef CONFIG_EXT4_FS_XATTR
829 if (test_opt(sb, XATTR_USER) &&
830 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
831 seq_puts(seq, ",user_xattr");
832 if (!test_opt(sb, XATTR_USER) &&
833 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
834 seq_puts(seq, ",nouser_xattr");
835 }
836 #endif
837 #ifdef CONFIG_EXT4_FS_POSIX_ACL
838 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
839 seq_puts(seq, ",acl");
840 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
841 seq_puts(seq, ",noacl");
842 #endif
843 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
844 seq_printf(seq, ",commit=%u",
845 (unsigned) (sbi->s_commit_interval / HZ));
846 }
847 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
848 seq_printf(seq, ",min_batch_time=%u",
849 (unsigned) sbi->s_min_batch_time);
850 }
851 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
852 seq_printf(seq, ",max_batch_time=%u",
853 (unsigned) sbi->s_min_batch_time);
854 }
855
856 /*
857 * We're changing the default of barrier mount option, so
858 * let's always display its mount state so it's clear what its
859 * status is.
860 */
861 seq_puts(seq, ",barrier=");
862 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
863 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
864 seq_puts(seq, ",journal_async_commit");
865 if (test_opt(sb, NOBH))
866 seq_puts(seq, ",nobh");
867 if (test_opt(sb, I_VERSION))
868 seq_puts(seq, ",i_version");
869 if (!test_opt(sb, DELALLOC))
870 seq_puts(seq, ",nodelalloc");
871
872
873 if (sbi->s_stripe)
874 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
875 /*
876 * journal mode get enabled in different ways
877 * So just print the value even if we didn't specify it
878 */
879 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
880 seq_puts(seq, ",data=journal");
881 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
882 seq_puts(seq, ",data=ordered");
883 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
884 seq_puts(seq, ",data=writeback");
885
886 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
887 seq_printf(seq, ",inode_readahead_blks=%u",
888 sbi->s_inode_readahead_blks);
889
890 if (test_opt(sb, DATA_ERR_ABORT))
891 seq_puts(seq, ",data_err=abort");
892
893 if (test_opt(sb, NO_AUTO_DA_ALLOC))
894 seq_puts(seq, ",noauto_da_alloc");
895
896 ext4_show_quota_options(seq, sb);
897
898 return 0;
899 }
900
901 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
902 u64 ino, u32 generation)
903 {
904 struct inode *inode;
905
906 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
907 return ERR_PTR(-ESTALE);
908 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
909 return ERR_PTR(-ESTALE);
910
911 /* iget isn't really right if the inode is currently unallocated!!
912 *
913 * ext4_read_inode will return a bad_inode if the inode had been
914 * deleted, so we should be safe.
915 *
916 * Currently we don't know the generation for parent directory, so
917 * a generation of 0 means "accept any"
918 */
919 inode = ext4_iget(sb, ino);
920 if (IS_ERR(inode))
921 return ERR_CAST(inode);
922 if (generation && inode->i_generation != generation) {
923 iput(inode);
924 return ERR_PTR(-ESTALE);
925 }
926
927 return inode;
928 }
929
930 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
931 int fh_len, int fh_type)
932 {
933 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
934 ext4_nfs_get_inode);
935 }
936
937 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
938 int fh_len, int fh_type)
939 {
940 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
941 ext4_nfs_get_inode);
942 }
943
944 /*
945 * Try to release metadata pages (indirect blocks, directories) which are
946 * mapped via the block device. Since these pages could have journal heads
947 * which would prevent try_to_free_buffers() from freeing them, we must use
948 * jbd2 layer's try_to_free_buffers() function to release them.
949 */
950 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
951 gfp_t wait)
952 {
953 journal_t *journal = EXT4_SB(sb)->s_journal;
954
955 WARN_ON(PageChecked(page));
956 if (!page_has_buffers(page))
957 return 0;
958 if (journal)
959 return jbd2_journal_try_to_free_buffers(journal, page,
960 wait & ~__GFP_WAIT);
961 return try_to_free_buffers(page);
962 }
963
964 #ifdef CONFIG_QUOTA
965 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
966 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
967
968 static int ext4_write_dquot(struct dquot *dquot);
969 static int ext4_acquire_dquot(struct dquot *dquot);
970 static int ext4_release_dquot(struct dquot *dquot);
971 static int ext4_mark_dquot_dirty(struct dquot *dquot);
972 static int ext4_write_info(struct super_block *sb, int type);
973 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
974 char *path, int remount);
975 static int ext4_quota_on_mount(struct super_block *sb, int type);
976 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
977 size_t len, loff_t off);
978 static ssize_t ext4_quota_write(struct super_block *sb, int type,
979 const char *data, size_t len, loff_t off);
980
981 static struct dquot_operations ext4_quota_operations = {
982 .initialize = dquot_initialize,
983 .drop = dquot_drop,
984 .alloc_space = dquot_alloc_space,
985 .reserve_space = dquot_reserve_space,
986 .claim_space = dquot_claim_space,
987 .release_rsv = dquot_release_reserved_space,
988 .get_reserved_space = ext4_get_reserved_space,
989 .alloc_inode = dquot_alloc_inode,
990 .free_space = dquot_free_space,
991 .free_inode = dquot_free_inode,
992 .transfer = dquot_transfer,
993 .write_dquot = ext4_write_dquot,
994 .acquire_dquot = ext4_acquire_dquot,
995 .release_dquot = ext4_release_dquot,
996 .mark_dirty = ext4_mark_dquot_dirty,
997 .write_info = ext4_write_info,
998 .alloc_dquot = dquot_alloc,
999 .destroy_dquot = dquot_destroy,
1000 };
1001
1002 static struct quotactl_ops ext4_qctl_operations = {
1003 .quota_on = ext4_quota_on,
1004 .quota_off = vfs_quota_off,
1005 .quota_sync = vfs_quota_sync,
1006 .get_info = vfs_get_dqinfo,
1007 .set_info = vfs_set_dqinfo,
1008 .get_dqblk = vfs_get_dqblk,
1009 .set_dqblk = vfs_set_dqblk
1010 };
1011 #endif
1012
1013 static const struct super_operations ext4_sops = {
1014 .alloc_inode = ext4_alloc_inode,
1015 .destroy_inode = ext4_destroy_inode,
1016 .write_inode = ext4_write_inode,
1017 .dirty_inode = ext4_dirty_inode,
1018 .delete_inode = ext4_delete_inode,
1019 .put_super = ext4_put_super,
1020 .sync_fs = ext4_sync_fs,
1021 .freeze_fs = ext4_freeze,
1022 .unfreeze_fs = ext4_unfreeze,
1023 .statfs = ext4_statfs,
1024 .remount_fs = ext4_remount,
1025 .clear_inode = ext4_clear_inode,
1026 .show_options = ext4_show_options,
1027 #ifdef CONFIG_QUOTA
1028 .quota_read = ext4_quota_read,
1029 .quota_write = ext4_quota_write,
1030 #endif
1031 .bdev_try_to_free_page = bdev_try_to_free_page,
1032 };
1033
1034 static const struct super_operations ext4_nojournal_sops = {
1035 .alloc_inode = ext4_alloc_inode,
1036 .destroy_inode = ext4_destroy_inode,
1037 .write_inode = ext4_write_inode,
1038 .dirty_inode = ext4_dirty_inode,
1039 .delete_inode = ext4_delete_inode,
1040 .write_super = ext4_write_super,
1041 .put_super = ext4_put_super,
1042 .statfs = ext4_statfs,
1043 .remount_fs = ext4_remount,
1044 .clear_inode = ext4_clear_inode,
1045 .show_options = ext4_show_options,
1046 #ifdef CONFIG_QUOTA
1047 .quota_read = ext4_quota_read,
1048 .quota_write = ext4_quota_write,
1049 #endif
1050 .bdev_try_to_free_page = bdev_try_to_free_page,
1051 };
1052
1053 static const struct export_operations ext4_export_ops = {
1054 .fh_to_dentry = ext4_fh_to_dentry,
1055 .fh_to_parent = ext4_fh_to_parent,
1056 .get_parent = ext4_get_parent,
1057 };
1058
1059 enum {
1060 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1061 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1062 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1063 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1064 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1065 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1066 Opt_journal_update, Opt_journal_dev,
1067 Opt_journal_checksum, Opt_journal_async_commit,
1068 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1069 Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length,
1070 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1071 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
1072 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize,
1073 Opt_usrquota, Opt_grpquota, Opt_i_version,
1074 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1075 Opt_block_validity, Opt_noblock_validity,
1076 Opt_inode_readahead_blks, Opt_journal_ioprio
1077 };
1078
1079 static const match_table_t tokens = {
1080 {Opt_bsd_df, "bsddf"},
1081 {Opt_minix_df, "minixdf"},
1082 {Opt_grpid, "grpid"},
1083 {Opt_grpid, "bsdgroups"},
1084 {Opt_nogrpid, "nogrpid"},
1085 {Opt_nogrpid, "sysvgroups"},
1086 {Opt_resgid, "resgid=%u"},
1087 {Opt_resuid, "resuid=%u"},
1088 {Opt_sb, "sb=%u"},
1089 {Opt_err_cont, "errors=continue"},
1090 {Opt_err_panic, "errors=panic"},
1091 {Opt_err_ro, "errors=remount-ro"},
1092 {Opt_nouid32, "nouid32"},
1093 {Opt_debug, "debug"},
1094 {Opt_oldalloc, "oldalloc"},
1095 {Opt_orlov, "orlov"},
1096 {Opt_user_xattr, "user_xattr"},
1097 {Opt_nouser_xattr, "nouser_xattr"},
1098 {Opt_acl, "acl"},
1099 {Opt_noacl, "noacl"},
1100 {Opt_noload, "noload"},
1101 {Opt_nobh, "nobh"},
1102 {Opt_bh, "bh"},
1103 {Opt_commit, "commit=%u"},
1104 {Opt_min_batch_time, "min_batch_time=%u"},
1105 {Opt_max_batch_time, "max_batch_time=%u"},
1106 {Opt_journal_update, "journal=update"},
1107 {Opt_journal_dev, "journal_dev=%u"},
1108 {Opt_journal_checksum, "journal_checksum"},
1109 {Opt_journal_async_commit, "journal_async_commit"},
1110 {Opt_abort, "abort"},
1111 {Opt_data_journal, "data=journal"},
1112 {Opt_data_ordered, "data=ordered"},
1113 {Opt_data_writeback, "data=writeback"},
1114 {Opt_data_err_abort, "data_err=abort"},
1115 {Opt_data_err_ignore, "data_err=ignore"},
1116 {Opt_mb_history_length, "mb_history_length=%u"},
1117 {Opt_offusrjquota, "usrjquota="},
1118 {Opt_usrjquota, "usrjquota=%s"},
1119 {Opt_offgrpjquota, "grpjquota="},
1120 {Opt_grpjquota, "grpjquota=%s"},
1121 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1122 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1123 {Opt_grpquota, "grpquota"},
1124 {Opt_noquota, "noquota"},
1125 {Opt_quota, "quota"},
1126 {Opt_usrquota, "usrquota"},
1127 {Opt_barrier, "barrier=%u"},
1128 {Opt_barrier, "barrier"},
1129 {Opt_nobarrier, "nobarrier"},
1130 {Opt_i_version, "i_version"},
1131 {Opt_stripe, "stripe=%u"},
1132 {Opt_resize, "resize"},
1133 {Opt_delalloc, "delalloc"},
1134 {Opt_nodelalloc, "nodelalloc"},
1135 {Opt_block_validity, "block_validity"},
1136 {Opt_noblock_validity, "noblock_validity"},
1137 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1138 {Opt_journal_ioprio, "journal_ioprio=%u"},
1139 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1140 {Opt_auto_da_alloc, "auto_da_alloc"},
1141 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1142 {Opt_err, NULL},
1143 };
1144
1145 static ext4_fsblk_t get_sb_block(void **data)
1146 {
1147 ext4_fsblk_t sb_block;
1148 char *options = (char *) *data;
1149
1150 if (!options || strncmp(options, "sb=", 3) != 0)
1151 return 1; /* Default location */
1152
1153 options += 3;
1154 /* TODO: use simple_strtoll with >32bit ext4 */
1155 sb_block = simple_strtoul(options, &options, 0);
1156 if (*options && *options != ',') {
1157 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1158 (char *) *data);
1159 return 1;
1160 }
1161 if (*options == ',')
1162 options++;
1163 *data = (void *) options;
1164
1165 return sb_block;
1166 }
1167
1168 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1169
1170 static int parse_options(char *options, struct super_block *sb,
1171 unsigned long *journal_devnum,
1172 unsigned int *journal_ioprio,
1173 ext4_fsblk_t *n_blocks_count, int is_remount)
1174 {
1175 struct ext4_sb_info *sbi = EXT4_SB(sb);
1176 char *p;
1177 substring_t args[MAX_OPT_ARGS];
1178 int data_opt = 0;
1179 int option;
1180 #ifdef CONFIG_QUOTA
1181 int qtype, qfmt;
1182 char *qname;
1183 #endif
1184
1185 if (!options)
1186 return 1;
1187
1188 while ((p = strsep(&options, ",")) != NULL) {
1189 int token;
1190 if (!*p)
1191 continue;
1192
1193 token = match_token(p, tokens, args);
1194 switch (token) {
1195 case Opt_bsd_df:
1196 clear_opt(sbi->s_mount_opt, MINIX_DF);
1197 break;
1198 case Opt_minix_df:
1199 set_opt(sbi->s_mount_opt, MINIX_DF);
1200 break;
1201 case Opt_grpid:
1202 set_opt(sbi->s_mount_opt, GRPID);
1203 break;
1204 case Opt_nogrpid:
1205 clear_opt(sbi->s_mount_opt, GRPID);
1206 break;
1207 case Opt_resuid:
1208 if (match_int(&args[0], &option))
1209 return 0;
1210 sbi->s_resuid = option;
1211 break;
1212 case Opt_resgid:
1213 if (match_int(&args[0], &option))
1214 return 0;
1215 sbi->s_resgid = option;
1216 break;
1217 case Opt_sb:
1218 /* handled by get_sb_block() instead of here */
1219 /* *sb_block = match_int(&args[0]); */
1220 break;
1221 case Opt_err_panic:
1222 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1223 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1224 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1225 break;
1226 case Opt_err_ro:
1227 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1228 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1229 set_opt(sbi->s_mount_opt, ERRORS_RO);
1230 break;
1231 case Opt_err_cont:
1232 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1233 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1234 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1235 break;
1236 case Opt_nouid32:
1237 set_opt(sbi->s_mount_opt, NO_UID32);
1238 break;
1239 case Opt_debug:
1240 set_opt(sbi->s_mount_opt, DEBUG);
1241 break;
1242 case Opt_oldalloc:
1243 set_opt(sbi->s_mount_opt, OLDALLOC);
1244 break;
1245 case Opt_orlov:
1246 clear_opt(sbi->s_mount_opt, OLDALLOC);
1247 break;
1248 #ifdef CONFIG_EXT4_FS_XATTR
1249 case Opt_user_xattr:
1250 set_opt(sbi->s_mount_opt, XATTR_USER);
1251 break;
1252 case Opt_nouser_xattr:
1253 clear_opt(sbi->s_mount_opt, XATTR_USER);
1254 break;
1255 #else
1256 case Opt_user_xattr:
1257 case Opt_nouser_xattr:
1258 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1259 break;
1260 #endif
1261 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1262 case Opt_acl:
1263 set_opt(sbi->s_mount_opt, POSIX_ACL);
1264 break;
1265 case Opt_noacl:
1266 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1267 break;
1268 #else
1269 case Opt_acl:
1270 case Opt_noacl:
1271 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1272 break;
1273 #endif
1274 case Opt_journal_update:
1275 /* @@@ FIXME */
1276 /* Eventually we will want to be able to create
1277 a journal file here. For now, only allow the
1278 user to specify an existing inode to be the
1279 journal file. */
1280 if (is_remount) {
1281 ext4_msg(sb, KERN_ERR,
1282 "Cannot specify journal on remount");
1283 return 0;
1284 }
1285 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1286 break;
1287 case Opt_journal_dev:
1288 if (is_remount) {
1289 ext4_msg(sb, KERN_ERR,
1290 "Cannot specify journal on remount");
1291 return 0;
1292 }
1293 if (match_int(&args[0], &option))
1294 return 0;
1295 *journal_devnum = option;
1296 break;
1297 case Opt_journal_checksum:
1298 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1299 break;
1300 case Opt_journal_async_commit:
1301 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1302 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1303 break;
1304 case Opt_noload:
1305 set_opt(sbi->s_mount_opt, NOLOAD);
1306 break;
1307 case Opt_commit:
1308 if (match_int(&args[0], &option))
1309 return 0;
1310 if (option < 0)
1311 return 0;
1312 if (option == 0)
1313 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1314 sbi->s_commit_interval = HZ * option;
1315 break;
1316 case Opt_max_batch_time:
1317 if (match_int(&args[0], &option))
1318 return 0;
1319 if (option < 0)
1320 return 0;
1321 if (option == 0)
1322 option = EXT4_DEF_MAX_BATCH_TIME;
1323 sbi->s_max_batch_time = option;
1324 break;
1325 case Opt_min_batch_time:
1326 if (match_int(&args[0], &option))
1327 return 0;
1328 if (option < 0)
1329 return 0;
1330 sbi->s_min_batch_time = option;
1331 break;
1332 case Opt_data_journal:
1333 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1334 goto datacheck;
1335 case Opt_data_ordered:
1336 data_opt = EXT4_MOUNT_ORDERED_DATA;
1337 goto datacheck;
1338 case Opt_data_writeback:
1339 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1340 datacheck:
1341 if (is_remount) {
1342 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1343 != data_opt) {
1344 ext4_msg(sb, KERN_ERR,
1345 "Cannot change data mode on remount");
1346 return 0;
1347 }
1348 } else {
1349 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1350 sbi->s_mount_opt |= data_opt;
1351 }
1352 break;
1353 case Opt_data_err_abort:
1354 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1355 break;
1356 case Opt_data_err_ignore:
1357 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1358 break;
1359 case Opt_mb_history_length:
1360 if (match_int(&args[0], &option))
1361 return 0;
1362 if (option < 0)
1363 return 0;
1364 sbi->s_mb_history_max = option;
1365 break;
1366 #ifdef CONFIG_QUOTA
1367 case Opt_usrjquota:
1368 qtype = USRQUOTA;
1369 goto set_qf_name;
1370 case Opt_grpjquota:
1371 qtype = GRPQUOTA;
1372 set_qf_name:
1373 if (sb_any_quota_loaded(sb) &&
1374 !sbi->s_qf_names[qtype]) {
1375 ext4_msg(sb, KERN_ERR,
1376 "Cannot change journaled "
1377 "quota options when quota turned on");
1378 return 0;
1379 }
1380 qname = match_strdup(&args[0]);
1381 if (!qname) {
1382 ext4_msg(sb, KERN_ERR,
1383 "Not enough memory for "
1384 "storing quotafile name");
1385 return 0;
1386 }
1387 if (sbi->s_qf_names[qtype] &&
1388 strcmp(sbi->s_qf_names[qtype], qname)) {
1389 ext4_msg(sb, KERN_ERR,
1390 "%s quota file already "
1391 "specified", QTYPE2NAME(qtype));
1392 kfree(qname);
1393 return 0;
1394 }
1395 sbi->s_qf_names[qtype] = qname;
1396 if (strchr(sbi->s_qf_names[qtype], '/')) {
1397 ext4_msg(sb, KERN_ERR,
1398 "quotafile must be on "
1399 "filesystem root");
1400 kfree(sbi->s_qf_names[qtype]);
1401 sbi->s_qf_names[qtype] = NULL;
1402 return 0;
1403 }
1404 set_opt(sbi->s_mount_opt, QUOTA);
1405 break;
1406 case Opt_offusrjquota:
1407 qtype = USRQUOTA;
1408 goto clear_qf_name;
1409 case Opt_offgrpjquota:
1410 qtype = GRPQUOTA;
1411 clear_qf_name:
1412 if (sb_any_quota_loaded(sb) &&
1413 sbi->s_qf_names[qtype]) {
1414 ext4_msg(sb, KERN_ERR, "Cannot change "
1415 "journaled quota options when "
1416 "quota turned on");
1417 return 0;
1418 }
1419 /*
1420 * The space will be released later when all options
1421 * are confirmed to be correct
1422 */
1423 sbi->s_qf_names[qtype] = NULL;
1424 break;
1425 case Opt_jqfmt_vfsold:
1426 qfmt = QFMT_VFS_OLD;
1427 goto set_qf_format;
1428 case Opt_jqfmt_vfsv0:
1429 qfmt = QFMT_VFS_V0;
1430 set_qf_format:
1431 if (sb_any_quota_loaded(sb) &&
1432 sbi->s_jquota_fmt != qfmt) {
1433 ext4_msg(sb, KERN_ERR, "Cannot change "
1434 "journaled quota options when "
1435 "quota turned on");
1436 return 0;
1437 }
1438 sbi->s_jquota_fmt = qfmt;
1439 break;
1440 case Opt_quota:
1441 case Opt_usrquota:
1442 set_opt(sbi->s_mount_opt, QUOTA);
1443 set_opt(sbi->s_mount_opt, USRQUOTA);
1444 break;
1445 case Opt_grpquota:
1446 set_opt(sbi->s_mount_opt, QUOTA);
1447 set_opt(sbi->s_mount_opt, GRPQUOTA);
1448 break;
1449 case Opt_noquota:
1450 if (sb_any_quota_loaded(sb)) {
1451 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1452 "options when quota turned on");
1453 return 0;
1454 }
1455 clear_opt(sbi->s_mount_opt, QUOTA);
1456 clear_opt(sbi->s_mount_opt, USRQUOTA);
1457 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1458 break;
1459 #else
1460 case Opt_quota:
1461 case Opt_usrquota:
1462 case Opt_grpquota:
1463 ext4_msg(sb, KERN_ERR,
1464 "quota options not supported");
1465 break;
1466 case Opt_usrjquota:
1467 case Opt_grpjquota:
1468 case Opt_offusrjquota:
1469 case Opt_offgrpjquota:
1470 case Opt_jqfmt_vfsold:
1471 case Opt_jqfmt_vfsv0:
1472 ext4_msg(sb, KERN_ERR,
1473 "journaled quota options not supported");
1474 break;
1475 case Opt_noquota:
1476 break;
1477 #endif
1478 case Opt_abort:
1479 set_opt(sbi->s_mount_opt, ABORT);
1480 break;
1481 case Opt_nobarrier:
1482 clear_opt(sbi->s_mount_opt, BARRIER);
1483 break;
1484 case Opt_barrier:
1485 if (match_int(&args[0], &option)) {
1486 set_opt(sbi->s_mount_opt, BARRIER);
1487 break;
1488 }
1489 if (option)
1490 set_opt(sbi->s_mount_opt, BARRIER);
1491 else
1492 clear_opt(sbi->s_mount_opt, BARRIER);
1493 break;
1494 case Opt_ignore:
1495 break;
1496 case Opt_resize:
1497 if (!is_remount) {
1498 ext4_msg(sb, KERN_ERR,
1499 "resize option only available "
1500 "for remount");
1501 return 0;
1502 }
1503 if (match_int(&args[0], &option) != 0)
1504 return 0;
1505 *n_blocks_count = option;
1506 break;
1507 case Opt_nobh:
1508 set_opt(sbi->s_mount_opt, NOBH);
1509 break;
1510 case Opt_bh:
1511 clear_opt(sbi->s_mount_opt, NOBH);
1512 break;
1513 case Opt_i_version:
1514 set_opt(sbi->s_mount_opt, I_VERSION);
1515 sb->s_flags |= MS_I_VERSION;
1516 break;
1517 case Opt_nodelalloc:
1518 clear_opt(sbi->s_mount_opt, DELALLOC);
1519 break;
1520 case Opt_stripe:
1521 if (match_int(&args[0], &option))
1522 return 0;
1523 if (option < 0)
1524 return 0;
1525 sbi->s_stripe = option;
1526 break;
1527 case Opt_delalloc:
1528 set_opt(sbi->s_mount_opt, DELALLOC);
1529 break;
1530 case Opt_block_validity:
1531 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1532 break;
1533 case Opt_noblock_validity:
1534 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1535 break;
1536 case Opt_inode_readahead_blks:
1537 if (match_int(&args[0], &option))
1538 return 0;
1539 if (option < 0 || option > (1 << 30))
1540 return 0;
1541 if (!is_power_of_2(option)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "EXT4-fs: inode_readahead_blks"
1544 " must be a power of 2");
1545 return 0;
1546 }
1547 sbi->s_inode_readahead_blks = option;
1548 break;
1549 case Opt_journal_ioprio:
1550 if (match_int(&args[0], &option))
1551 return 0;
1552 if (option < 0 || option > 7)
1553 break;
1554 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1555 option);
1556 break;
1557 case Opt_noauto_da_alloc:
1558 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1559 break;
1560 case Opt_auto_da_alloc:
1561 if (match_int(&args[0], &option)) {
1562 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1563 break;
1564 }
1565 if (option)
1566 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1567 else
1568 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1569 break;
1570 default:
1571 ext4_msg(sb, KERN_ERR,
1572 "Unrecognized mount option \"%s\" "
1573 "or missing value", p);
1574 return 0;
1575 }
1576 }
1577 #ifdef CONFIG_QUOTA
1578 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1579 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1580 sbi->s_qf_names[USRQUOTA])
1581 clear_opt(sbi->s_mount_opt, USRQUOTA);
1582
1583 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1584 sbi->s_qf_names[GRPQUOTA])
1585 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1586
1587 if ((sbi->s_qf_names[USRQUOTA] &&
1588 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1589 (sbi->s_qf_names[GRPQUOTA] &&
1590 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1591 ext4_msg(sb, KERN_ERR, "old and new quota "
1592 "format mixing");
1593 return 0;
1594 }
1595
1596 if (!sbi->s_jquota_fmt) {
1597 ext4_msg(sb, KERN_ERR, "journaled quota format "
1598 "not specified");
1599 return 0;
1600 }
1601 } else {
1602 if (sbi->s_jquota_fmt) {
1603 ext4_msg(sb, KERN_ERR, "journaled quota format "
1604 "specified with no journaling "
1605 "enabled");
1606 return 0;
1607 }
1608 }
1609 #endif
1610 return 1;
1611 }
1612
1613 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1614 int read_only)
1615 {
1616 struct ext4_sb_info *sbi = EXT4_SB(sb);
1617 int res = 0;
1618
1619 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1620 ext4_msg(sb, KERN_ERR, "revision level too high, "
1621 "forcing read-only mode");
1622 res = MS_RDONLY;
1623 }
1624 if (read_only)
1625 return res;
1626 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1627 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1628 "running e2fsck is recommended");
1629 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1630 ext4_msg(sb, KERN_WARNING,
1631 "warning: mounting fs with errors, "
1632 "running e2fsck is recommended");
1633 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1634 le16_to_cpu(es->s_mnt_count) >=
1635 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1636 ext4_msg(sb, KERN_WARNING,
1637 "warning: maximal mount count reached, "
1638 "running e2fsck is recommended");
1639 else if (le32_to_cpu(es->s_checkinterval) &&
1640 (le32_to_cpu(es->s_lastcheck) +
1641 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1642 ext4_msg(sb, KERN_WARNING,
1643 "warning: checktime reached, "
1644 "running e2fsck is recommended");
1645 if (!sbi->s_journal)
1646 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1647 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1648 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1649 le16_add_cpu(&es->s_mnt_count, 1);
1650 es->s_mtime = cpu_to_le32(get_seconds());
1651 ext4_update_dynamic_rev(sb);
1652 if (sbi->s_journal)
1653 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1654
1655 ext4_commit_super(sb, 1);
1656 if (test_opt(sb, DEBUG))
1657 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1658 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1659 sb->s_blocksize,
1660 sbi->s_groups_count,
1661 EXT4_BLOCKS_PER_GROUP(sb),
1662 EXT4_INODES_PER_GROUP(sb),
1663 sbi->s_mount_opt);
1664
1665 if (EXT4_SB(sb)->s_journal) {
1666 ext4_msg(sb, KERN_INFO, "%s journal on %s",
1667 EXT4_SB(sb)->s_journal->j_inode ? "internal" :
1668 "external", EXT4_SB(sb)->s_journal->j_devname);
1669 } else {
1670 ext4_msg(sb, KERN_INFO, "no journal");
1671 }
1672 return res;
1673 }
1674
1675 static int ext4_fill_flex_info(struct super_block *sb)
1676 {
1677 struct ext4_sb_info *sbi = EXT4_SB(sb);
1678 struct ext4_group_desc *gdp = NULL;
1679 ext4_group_t flex_group_count;
1680 ext4_group_t flex_group;
1681 int groups_per_flex = 0;
1682 size_t size;
1683 int i;
1684
1685 if (!sbi->s_es->s_log_groups_per_flex) {
1686 sbi->s_log_groups_per_flex = 0;
1687 return 1;
1688 }
1689
1690 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1691 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1692
1693 /* We allocate both existing and potentially added groups */
1694 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1695 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1696 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1697 size = flex_group_count * sizeof(struct flex_groups);
1698 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1699 if (sbi->s_flex_groups == NULL) {
1700 sbi->s_flex_groups = vmalloc(size);
1701 if (sbi->s_flex_groups)
1702 memset(sbi->s_flex_groups, 0, size);
1703 }
1704 if (sbi->s_flex_groups == NULL) {
1705 ext4_msg(sb, KERN_ERR, "not enough memory for "
1706 "%u flex groups", flex_group_count);
1707 goto failed;
1708 }
1709
1710 for (i = 0; i < sbi->s_groups_count; i++) {
1711 gdp = ext4_get_group_desc(sb, i, NULL);
1712
1713 flex_group = ext4_flex_group(sbi, i);
1714 atomic_set(&sbi->s_flex_groups[flex_group].free_inodes,
1715 ext4_free_inodes_count(sb, gdp));
1716 atomic_set(&sbi->s_flex_groups[flex_group].free_blocks,
1717 ext4_free_blks_count(sb, gdp));
1718 atomic_set(&sbi->s_flex_groups[flex_group].used_dirs,
1719 ext4_used_dirs_count(sb, gdp));
1720 }
1721
1722 return 1;
1723 failed:
1724 return 0;
1725 }
1726
1727 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1728 struct ext4_group_desc *gdp)
1729 {
1730 __u16 crc = 0;
1731
1732 if (sbi->s_es->s_feature_ro_compat &
1733 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1734 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1735 __le32 le_group = cpu_to_le32(block_group);
1736
1737 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1738 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1739 crc = crc16(crc, (__u8 *)gdp, offset);
1740 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1741 /* for checksum of struct ext4_group_desc do the rest...*/
1742 if ((sbi->s_es->s_feature_incompat &
1743 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1744 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1745 crc = crc16(crc, (__u8 *)gdp + offset,
1746 le16_to_cpu(sbi->s_es->s_desc_size) -
1747 offset);
1748 }
1749
1750 return cpu_to_le16(crc);
1751 }
1752
1753 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1754 struct ext4_group_desc *gdp)
1755 {
1756 if ((sbi->s_es->s_feature_ro_compat &
1757 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1758 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1759 return 0;
1760
1761 return 1;
1762 }
1763
1764 /* Called at mount-time, super-block is locked */
1765 static int ext4_check_descriptors(struct super_block *sb)
1766 {
1767 struct ext4_sb_info *sbi = EXT4_SB(sb);
1768 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1769 ext4_fsblk_t last_block;
1770 ext4_fsblk_t block_bitmap;
1771 ext4_fsblk_t inode_bitmap;
1772 ext4_fsblk_t inode_table;
1773 int flexbg_flag = 0;
1774 ext4_group_t i;
1775
1776 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1777 flexbg_flag = 1;
1778
1779 ext4_debug("Checking group descriptors");
1780
1781 for (i = 0; i < sbi->s_groups_count; i++) {
1782 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1783
1784 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1785 last_block = ext4_blocks_count(sbi->s_es) - 1;
1786 else
1787 last_block = first_block +
1788 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1789
1790 block_bitmap = ext4_block_bitmap(sb, gdp);
1791 if (block_bitmap < first_block || block_bitmap > last_block) {
1792 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1793 "Block bitmap for group %u not in group "
1794 "(block %llu)!", i, block_bitmap);
1795 return 0;
1796 }
1797 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1798 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1799 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1800 "Inode bitmap for group %u not in group "
1801 "(block %llu)!", i, inode_bitmap);
1802 return 0;
1803 }
1804 inode_table = ext4_inode_table(sb, gdp);
1805 if (inode_table < first_block ||
1806 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1807 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1808 "Inode table for group %u not in group "
1809 "(block %llu)!", i, inode_table);
1810 return 0;
1811 }
1812 ext4_lock_group(sb, i);
1813 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1814 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1815 "Checksum for group %u failed (%u!=%u)",
1816 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1817 gdp)), le16_to_cpu(gdp->bg_checksum));
1818 if (!(sb->s_flags & MS_RDONLY)) {
1819 ext4_unlock_group(sb, i);
1820 return 0;
1821 }
1822 }
1823 ext4_unlock_group(sb, i);
1824 if (!flexbg_flag)
1825 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1826 }
1827
1828 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1829 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1830 return 1;
1831 }
1832
1833 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1834 * the superblock) which were deleted from all directories, but held open by
1835 * a process at the time of a crash. We walk the list and try to delete these
1836 * inodes at recovery time (only with a read-write filesystem).
1837 *
1838 * In order to keep the orphan inode chain consistent during traversal (in
1839 * case of crash during recovery), we link each inode into the superblock
1840 * orphan list_head and handle it the same way as an inode deletion during
1841 * normal operation (which journals the operations for us).
1842 *
1843 * We only do an iget() and an iput() on each inode, which is very safe if we
1844 * accidentally point at an in-use or already deleted inode. The worst that
1845 * can happen in this case is that we get a "bit already cleared" message from
1846 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1847 * e2fsck was run on this filesystem, and it must have already done the orphan
1848 * inode cleanup for us, so we can safely abort without any further action.
1849 */
1850 static void ext4_orphan_cleanup(struct super_block *sb,
1851 struct ext4_super_block *es)
1852 {
1853 unsigned int s_flags = sb->s_flags;
1854 int nr_orphans = 0, nr_truncates = 0;
1855 #ifdef CONFIG_QUOTA
1856 int i;
1857 #endif
1858 if (!es->s_last_orphan) {
1859 jbd_debug(4, "no orphan inodes to clean up\n");
1860 return;
1861 }
1862
1863 if (bdev_read_only(sb->s_bdev)) {
1864 ext4_msg(sb, KERN_ERR, "write access "
1865 "unavailable, skipping orphan cleanup");
1866 return;
1867 }
1868
1869 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1870 if (es->s_last_orphan)
1871 jbd_debug(1, "Errors on filesystem, "
1872 "clearing orphan list.\n");
1873 es->s_last_orphan = 0;
1874 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1875 return;
1876 }
1877
1878 if (s_flags & MS_RDONLY) {
1879 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1880 sb->s_flags &= ~MS_RDONLY;
1881 }
1882 #ifdef CONFIG_QUOTA
1883 /* Needed for iput() to work correctly and not trash data */
1884 sb->s_flags |= MS_ACTIVE;
1885 /* Turn on quotas so that they are updated correctly */
1886 for (i = 0; i < MAXQUOTAS; i++) {
1887 if (EXT4_SB(sb)->s_qf_names[i]) {
1888 int ret = ext4_quota_on_mount(sb, i);
1889 if (ret < 0)
1890 ext4_msg(sb, KERN_ERR,
1891 "Cannot turn on journaled "
1892 "quota: error %d", ret);
1893 }
1894 }
1895 #endif
1896
1897 while (es->s_last_orphan) {
1898 struct inode *inode;
1899
1900 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1901 if (IS_ERR(inode)) {
1902 es->s_last_orphan = 0;
1903 break;
1904 }
1905
1906 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1907 vfs_dq_init(inode);
1908 if (inode->i_nlink) {
1909 ext4_msg(sb, KERN_DEBUG,
1910 "%s: truncating inode %lu to %lld bytes",
1911 __func__, inode->i_ino, inode->i_size);
1912 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1913 inode->i_ino, inode->i_size);
1914 ext4_truncate(inode);
1915 nr_truncates++;
1916 } else {
1917 ext4_msg(sb, KERN_DEBUG,
1918 "%s: deleting unreferenced inode %lu",
1919 __func__, inode->i_ino);
1920 jbd_debug(2, "deleting unreferenced inode %lu\n",
1921 inode->i_ino);
1922 nr_orphans++;
1923 }
1924 iput(inode); /* The delete magic happens here! */
1925 }
1926
1927 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1928
1929 if (nr_orphans)
1930 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1931 PLURAL(nr_orphans));
1932 if (nr_truncates)
1933 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1934 PLURAL(nr_truncates));
1935 #ifdef CONFIG_QUOTA
1936 /* Turn quotas off */
1937 for (i = 0; i < MAXQUOTAS; i++) {
1938 if (sb_dqopt(sb)->files[i])
1939 vfs_quota_off(sb, i, 0);
1940 }
1941 #endif
1942 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1943 }
1944
1945 /*
1946 * Maximal extent format file size.
1947 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1948 * extent format containers, within a sector_t, and within i_blocks
1949 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1950 * so that won't be a limiting factor.
1951 *
1952 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1953 */
1954 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1955 {
1956 loff_t res;
1957 loff_t upper_limit = MAX_LFS_FILESIZE;
1958
1959 /* small i_blocks in vfs inode? */
1960 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1961 /*
1962 * CONFIG_LBD is not enabled implies the inode
1963 * i_block represent total blocks in 512 bytes
1964 * 32 == size of vfs inode i_blocks * 8
1965 */
1966 upper_limit = (1LL << 32) - 1;
1967
1968 /* total blocks in file system block size */
1969 upper_limit >>= (blkbits - 9);
1970 upper_limit <<= blkbits;
1971 }
1972
1973 /* 32-bit extent-start container, ee_block */
1974 res = 1LL << 32;
1975 res <<= blkbits;
1976 res -= 1;
1977
1978 /* Sanity check against vm- & vfs- imposed limits */
1979 if (res > upper_limit)
1980 res = upper_limit;
1981
1982 return res;
1983 }
1984
1985 /*
1986 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
1987 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
1988 * We need to be 1 filesystem block less than the 2^48 sector limit.
1989 */
1990 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
1991 {
1992 loff_t res = EXT4_NDIR_BLOCKS;
1993 int meta_blocks;
1994 loff_t upper_limit;
1995 /* This is calculated to be the largest file size for a dense, block
1996 * mapped file such that the file's total number of 512-byte sectors,
1997 * including data and all indirect blocks, does not exceed (2^48 - 1).
1998 *
1999 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2000 * number of 512-byte sectors of the file.
2001 */
2002
2003 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2004 /*
2005 * !has_huge_files or CONFIG_LBD not enabled implies that
2006 * the inode i_block field represents total file blocks in
2007 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2008 */
2009 upper_limit = (1LL << 32) - 1;
2010
2011 /* total blocks in file system block size */
2012 upper_limit >>= (bits - 9);
2013
2014 } else {
2015 /*
2016 * We use 48 bit ext4_inode i_blocks
2017 * With EXT4_HUGE_FILE_FL set the i_blocks
2018 * represent total number of blocks in
2019 * file system block size
2020 */
2021 upper_limit = (1LL << 48) - 1;
2022
2023 }
2024
2025 /* indirect blocks */
2026 meta_blocks = 1;
2027 /* double indirect blocks */
2028 meta_blocks += 1 + (1LL << (bits-2));
2029 /* tripple indirect blocks */
2030 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2031
2032 upper_limit -= meta_blocks;
2033 upper_limit <<= bits;
2034
2035 res += 1LL << (bits-2);
2036 res += 1LL << (2*(bits-2));
2037 res += 1LL << (3*(bits-2));
2038 res <<= bits;
2039 if (res > upper_limit)
2040 res = upper_limit;
2041
2042 if (res > MAX_LFS_FILESIZE)
2043 res = MAX_LFS_FILESIZE;
2044
2045 return res;
2046 }
2047
2048 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2049 ext4_fsblk_t logical_sb_block, int nr)
2050 {
2051 struct ext4_sb_info *sbi = EXT4_SB(sb);
2052 ext4_group_t bg, first_meta_bg;
2053 int has_super = 0;
2054
2055 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2056
2057 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2058 nr < first_meta_bg)
2059 return logical_sb_block + nr + 1;
2060 bg = sbi->s_desc_per_block * nr;
2061 if (ext4_bg_has_super(sb, bg))
2062 has_super = 1;
2063
2064 return (has_super + ext4_group_first_block_no(sb, bg));
2065 }
2066
2067 /**
2068 * ext4_get_stripe_size: Get the stripe size.
2069 * @sbi: In memory super block info
2070 *
2071 * If we have specified it via mount option, then
2072 * use the mount option value. If the value specified at mount time is
2073 * greater than the blocks per group use the super block value.
2074 * If the super block value is greater than blocks per group return 0.
2075 * Allocator needs it be less than blocks per group.
2076 *
2077 */
2078 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2079 {
2080 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2081 unsigned long stripe_width =
2082 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2083
2084 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2085 return sbi->s_stripe;
2086
2087 if (stripe_width <= sbi->s_blocks_per_group)
2088 return stripe_width;
2089
2090 if (stride <= sbi->s_blocks_per_group)
2091 return stride;
2092
2093 return 0;
2094 }
2095
2096 /* sysfs supprt */
2097
2098 struct ext4_attr {
2099 struct attribute attr;
2100 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2101 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2102 const char *, size_t);
2103 int offset;
2104 };
2105
2106 static int parse_strtoul(const char *buf,
2107 unsigned long max, unsigned long *value)
2108 {
2109 char *endp;
2110
2111 while (*buf && isspace(*buf))
2112 buf++;
2113 *value = simple_strtoul(buf, &endp, 0);
2114 while (*endp && isspace(*endp))
2115 endp++;
2116 if (*endp || *value > max)
2117 return -EINVAL;
2118
2119 return 0;
2120 }
2121
2122 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2123 struct ext4_sb_info *sbi,
2124 char *buf)
2125 {
2126 return snprintf(buf, PAGE_SIZE, "%llu\n",
2127 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2128 }
2129
2130 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2131 struct ext4_sb_info *sbi, char *buf)
2132 {
2133 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2134
2135 return snprintf(buf, PAGE_SIZE, "%lu\n",
2136 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2137 sbi->s_sectors_written_start) >> 1);
2138 }
2139
2140 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2141 struct ext4_sb_info *sbi, char *buf)
2142 {
2143 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2144
2145 return snprintf(buf, PAGE_SIZE, "%llu\n",
2146 sbi->s_kbytes_written +
2147 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2148 EXT4_SB(sb)->s_sectors_written_start) >> 1));
2149 }
2150
2151 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2152 struct ext4_sb_info *sbi,
2153 const char *buf, size_t count)
2154 {
2155 unsigned long t;
2156
2157 if (parse_strtoul(buf, 0x40000000, &t))
2158 return -EINVAL;
2159
2160 if (!is_power_of_2(t))
2161 return -EINVAL;
2162
2163 sbi->s_inode_readahead_blks = t;
2164 return count;
2165 }
2166
2167 static ssize_t sbi_ui_show(struct ext4_attr *a,
2168 struct ext4_sb_info *sbi, char *buf)
2169 {
2170 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2171
2172 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2173 }
2174
2175 static ssize_t sbi_ui_store(struct ext4_attr *a,
2176 struct ext4_sb_info *sbi,
2177 const char *buf, size_t count)
2178 {
2179 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2180 unsigned long t;
2181
2182 if (parse_strtoul(buf, 0xffffffff, &t))
2183 return -EINVAL;
2184 *ui = t;
2185 return count;
2186 }
2187
2188 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2189 static struct ext4_attr ext4_attr_##_name = { \
2190 .attr = {.name = __stringify(_name), .mode = _mode }, \
2191 .show = _show, \
2192 .store = _store, \
2193 .offset = offsetof(struct ext4_sb_info, _elname), \
2194 }
2195 #define EXT4_ATTR(name, mode, show, store) \
2196 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2197
2198 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2199 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2200 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2201 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2202 #define ATTR_LIST(name) &ext4_attr_##name.attr
2203
2204 EXT4_RO_ATTR(delayed_allocation_blocks);
2205 EXT4_RO_ATTR(session_write_kbytes);
2206 EXT4_RO_ATTR(lifetime_write_kbytes);
2207 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2208 inode_readahead_blks_store, s_inode_readahead_blks);
2209 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2210 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2211 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2212 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2213 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2214 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2215
2216 static struct attribute *ext4_attrs[] = {
2217 ATTR_LIST(delayed_allocation_blocks),
2218 ATTR_LIST(session_write_kbytes),
2219 ATTR_LIST(lifetime_write_kbytes),
2220 ATTR_LIST(inode_readahead_blks),
2221 ATTR_LIST(mb_stats),
2222 ATTR_LIST(mb_max_to_scan),
2223 ATTR_LIST(mb_min_to_scan),
2224 ATTR_LIST(mb_order2_req),
2225 ATTR_LIST(mb_stream_req),
2226 ATTR_LIST(mb_group_prealloc),
2227 NULL,
2228 };
2229
2230 static ssize_t ext4_attr_show(struct kobject *kobj,
2231 struct attribute *attr, char *buf)
2232 {
2233 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2234 s_kobj);
2235 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2236
2237 return a->show ? a->show(a, sbi, buf) : 0;
2238 }
2239
2240 static ssize_t ext4_attr_store(struct kobject *kobj,
2241 struct attribute *attr,
2242 const char *buf, size_t len)
2243 {
2244 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2245 s_kobj);
2246 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2247
2248 return a->store ? a->store(a, sbi, buf, len) : 0;
2249 }
2250
2251 static void ext4_sb_release(struct kobject *kobj)
2252 {
2253 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2254 s_kobj);
2255 complete(&sbi->s_kobj_unregister);
2256 }
2257
2258
2259 static struct sysfs_ops ext4_attr_ops = {
2260 .show = ext4_attr_show,
2261 .store = ext4_attr_store,
2262 };
2263
2264 static struct kobj_type ext4_ktype = {
2265 .default_attrs = ext4_attrs,
2266 .sysfs_ops = &ext4_attr_ops,
2267 .release = ext4_sb_release,
2268 };
2269
2270 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2271 __releases(kernel_lock)
2272 __acquires(kernel_lock)
2273 {
2274 struct buffer_head *bh;
2275 struct ext4_super_block *es = NULL;
2276 struct ext4_sb_info *sbi;
2277 ext4_fsblk_t block;
2278 ext4_fsblk_t sb_block = get_sb_block(&data);
2279 ext4_fsblk_t logical_sb_block;
2280 unsigned long offset = 0;
2281 unsigned long journal_devnum = 0;
2282 unsigned long def_mount_opts;
2283 struct inode *root;
2284 char *cp;
2285 const char *descr;
2286 int ret = -EINVAL;
2287 int blocksize;
2288 unsigned int db_count;
2289 unsigned int i;
2290 int needs_recovery, has_huge_files;
2291 int features;
2292 __u64 blocks_count;
2293 int err;
2294 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2295
2296 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2297 if (!sbi)
2298 return -ENOMEM;
2299
2300 sbi->s_blockgroup_lock =
2301 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2302 if (!sbi->s_blockgroup_lock) {
2303 kfree(sbi);
2304 return -ENOMEM;
2305 }
2306 sb->s_fs_info = sbi;
2307 sbi->s_mount_opt = 0;
2308 sbi->s_resuid = EXT4_DEF_RESUID;
2309 sbi->s_resgid = EXT4_DEF_RESGID;
2310 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2311 sbi->s_sb_block = sb_block;
2312 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2313 sectors[1]);
2314
2315 unlock_kernel();
2316
2317 /* Cleanup superblock name */
2318 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2319 *cp = '!';
2320
2321 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2322 if (!blocksize) {
2323 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2324 goto out_fail;
2325 }
2326
2327 /*
2328 * The ext4 superblock will not be buffer aligned for other than 1kB
2329 * block sizes. We need to calculate the offset from buffer start.
2330 */
2331 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2332 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2333 offset = do_div(logical_sb_block, blocksize);
2334 } else {
2335 logical_sb_block = sb_block;
2336 }
2337
2338 if (!(bh = sb_bread(sb, logical_sb_block))) {
2339 ext4_msg(sb, KERN_ERR, "unable to read superblock");
2340 goto out_fail;
2341 }
2342 /*
2343 * Note: s_es must be initialized as soon as possible because
2344 * some ext4 macro-instructions depend on its value
2345 */
2346 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2347 sbi->s_es = es;
2348 sb->s_magic = le16_to_cpu(es->s_magic);
2349 if (sb->s_magic != EXT4_SUPER_MAGIC)
2350 goto cantfind_ext4;
2351 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2352
2353 /* Set defaults before we parse the mount options */
2354 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2355 if (def_mount_opts & EXT4_DEFM_DEBUG)
2356 set_opt(sbi->s_mount_opt, DEBUG);
2357 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2358 set_opt(sbi->s_mount_opt, GRPID);
2359 if (def_mount_opts & EXT4_DEFM_UID16)
2360 set_opt(sbi->s_mount_opt, NO_UID32);
2361 #ifdef CONFIG_EXT4_FS_XATTR
2362 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2363 set_opt(sbi->s_mount_opt, XATTR_USER);
2364 #endif
2365 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2366 if (def_mount_opts & EXT4_DEFM_ACL)
2367 set_opt(sbi->s_mount_opt, POSIX_ACL);
2368 #endif
2369 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2370 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2371 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2372 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2373 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2374 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2375
2376 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2377 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2378 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2379 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2380 else
2381 set_opt(sbi->s_mount_opt, ERRORS_RO);
2382
2383 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2384 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2385 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2386 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2387 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2388 sbi->s_mb_history_max = default_mb_history_length;
2389
2390 set_opt(sbi->s_mount_opt, BARRIER);
2391
2392 /*
2393 * enable delayed allocation by default
2394 * Use -o nodelalloc to turn it off
2395 */
2396 set_opt(sbi->s_mount_opt, DELALLOC);
2397
2398 if (!parse_options((char *) data, sb, &journal_devnum,
2399 &journal_ioprio, NULL, 0))
2400 goto failed_mount;
2401
2402 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2403 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2404
2405 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2406 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2407 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2408 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2409 ext4_msg(sb, KERN_WARNING,
2410 "feature flags set on rev 0 fs, "
2411 "running e2fsck is recommended");
2412
2413 /*
2414 * Check feature flags regardless of the revision level, since we
2415 * previously didn't change the revision level when setting the flags,
2416 * so there is a chance incompat flags are set on a rev 0 filesystem.
2417 */
2418 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP);
2419 if (features) {
2420 ext4_msg(sb, KERN_ERR,
2421 "Couldn't mount because of "
2422 "unsupported optional features (%x)",
2423 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2424 ~EXT4_FEATURE_INCOMPAT_SUPP));
2425 goto failed_mount;
2426 }
2427 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP);
2428 if (!(sb->s_flags & MS_RDONLY) && features) {
2429 ext4_msg(sb, KERN_ERR,
2430 "Couldn't mount RDWR because of "
2431 "unsupported optional features (%x)",
2432 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2433 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2434 goto failed_mount;
2435 }
2436 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2437 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2438 if (has_huge_files) {
2439 /*
2440 * Large file size enabled file system can only be
2441 * mount if kernel is build with CONFIG_LBD
2442 */
2443 if (sizeof(root->i_blocks) < sizeof(u64) &&
2444 !(sb->s_flags & MS_RDONLY)) {
2445 ext4_msg(sb, KERN_ERR, "Filesystem with huge "
2446 "files cannot be mounted read-write "
2447 "without CONFIG_LBD");
2448 goto failed_mount;
2449 }
2450 }
2451 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2452
2453 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2454 blocksize > EXT4_MAX_BLOCK_SIZE) {
2455 ext4_msg(sb, KERN_ERR,
2456 "Unsupported filesystem blocksize %d", blocksize);
2457 goto failed_mount;
2458 }
2459
2460 if (sb->s_blocksize != blocksize) {
2461 /* Validate the filesystem blocksize */
2462 if (!sb_set_blocksize(sb, blocksize)) {
2463 ext4_msg(sb, KERN_ERR, "bad block size %d",
2464 blocksize);
2465 goto failed_mount;
2466 }
2467
2468 brelse(bh);
2469 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2470 offset = do_div(logical_sb_block, blocksize);
2471 bh = sb_bread(sb, logical_sb_block);
2472 if (!bh) {
2473 ext4_msg(sb, KERN_ERR,
2474 "Can't read superblock on 2nd try");
2475 goto failed_mount;
2476 }
2477 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2478 sbi->s_es = es;
2479 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2480 ext4_msg(sb, KERN_ERR,
2481 "Magic mismatch, very weird!");
2482 goto failed_mount;
2483 }
2484 }
2485
2486 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2487 has_huge_files);
2488 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2489
2490 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2491 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2492 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2493 } else {
2494 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2495 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2496 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2497 (!is_power_of_2(sbi->s_inode_size)) ||
2498 (sbi->s_inode_size > blocksize)) {
2499 ext4_msg(sb, KERN_ERR,
2500 "unsupported inode size: %d",
2501 sbi->s_inode_size);
2502 goto failed_mount;
2503 }
2504 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2505 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2506 }
2507
2508 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2509 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2510 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2511 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2512 !is_power_of_2(sbi->s_desc_size)) {
2513 ext4_msg(sb, KERN_ERR,
2514 "unsupported descriptor size %lu",
2515 sbi->s_desc_size);
2516 goto failed_mount;
2517 }
2518 } else
2519 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2520
2521 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2522 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2523 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2524 goto cantfind_ext4;
2525
2526 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2527 if (sbi->s_inodes_per_block == 0)
2528 goto cantfind_ext4;
2529 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2530 sbi->s_inodes_per_block;
2531 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2532 sbi->s_sbh = bh;
2533 sbi->s_mount_state = le16_to_cpu(es->s_state);
2534 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2535 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2536
2537 for (i = 0; i < 4; i++)
2538 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2539 sbi->s_def_hash_version = es->s_def_hash_version;
2540 i = le32_to_cpu(es->s_flags);
2541 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2542 sbi->s_hash_unsigned = 3;
2543 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2544 #ifdef __CHAR_UNSIGNED__
2545 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2546 sbi->s_hash_unsigned = 3;
2547 #else
2548 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2549 #endif
2550 sb->s_dirt = 1;
2551 }
2552
2553 if (sbi->s_blocks_per_group > blocksize * 8) {
2554 ext4_msg(sb, KERN_ERR,
2555 "#blocks per group too big: %lu",
2556 sbi->s_blocks_per_group);
2557 goto failed_mount;
2558 }
2559 if (sbi->s_inodes_per_group > blocksize * 8) {
2560 ext4_msg(sb, KERN_ERR,
2561 "#inodes per group too big: %lu",
2562 sbi->s_inodes_per_group);
2563 goto failed_mount;
2564 }
2565
2566 if (ext4_blocks_count(es) >
2567 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) {
2568 ext4_msg(sb, KERN_ERR, "filesystem"
2569 " too large to mount safely");
2570 if (sizeof(sector_t) < 8)
2571 ext4_msg(sb, KERN_WARNING, "CONFIG_LBD not enabled");
2572 goto failed_mount;
2573 }
2574
2575 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2576 goto cantfind_ext4;
2577
2578 /* check blocks count against device size */
2579 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2580 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2581 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2582 "exceeds size of device (%llu blocks)",
2583 ext4_blocks_count(es), blocks_count);
2584 goto failed_mount;
2585 }
2586
2587 /*
2588 * It makes no sense for the first data block to be beyond the end
2589 * of the filesystem.
2590 */
2591 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2592 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2593 "block %u is beyond end of filesystem (%llu)",
2594 le32_to_cpu(es->s_first_data_block),
2595 ext4_blocks_count(es));
2596 goto failed_mount;
2597 }
2598 blocks_count = (ext4_blocks_count(es) -
2599 le32_to_cpu(es->s_first_data_block) +
2600 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2601 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2602 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2603 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2604 "(block count %llu, first data block %u, "
2605 "blocks per group %lu)", sbi->s_groups_count,
2606 ext4_blocks_count(es),
2607 le32_to_cpu(es->s_first_data_block),
2608 EXT4_BLOCKS_PER_GROUP(sb));
2609 goto failed_mount;
2610 }
2611 sbi->s_groups_count = blocks_count;
2612 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2613 EXT4_DESC_PER_BLOCK(sb);
2614 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2615 GFP_KERNEL);
2616 if (sbi->s_group_desc == NULL) {
2617 ext4_msg(sb, KERN_ERR, "not enough memory");
2618 goto failed_mount;
2619 }
2620
2621 #ifdef CONFIG_PROC_FS
2622 if (ext4_proc_root)
2623 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2624 #endif
2625
2626 bgl_lock_init(sbi->s_blockgroup_lock);
2627
2628 for (i = 0; i < db_count; i++) {
2629 block = descriptor_loc(sb, logical_sb_block, i);
2630 sbi->s_group_desc[i] = sb_bread(sb, block);
2631 if (!sbi->s_group_desc[i]) {
2632 ext4_msg(sb, KERN_ERR,
2633 "can't read group descriptor %d", i);
2634 db_count = i;
2635 goto failed_mount2;
2636 }
2637 }
2638 if (!ext4_check_descriptors(sb)) {
2639 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2640 goto failed_mount2;
2641 }
2642 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2643 if (!ext4_fill_flex_info(sb)) {
2644 ext4_msg(sb, KERN_ERR,
2645 "unable to initialize "
2646 "flex_bg meta info!");
2647 goto failed_mount2;
2648 }
2649
2650 sbi->s_gdb_count = db_count;
2651 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2652 spin_lock_init(&sbi->s_next_gen_lock);
2653
2654 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2655 ext4_count_free_blocks(sb));
2656 if (!err) {
2657 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2658 ext4_count_free_inodes(sb));
2659 }
2660 if (!err) {
2661 err = percpu_counter_init(&sbi->s_dirs_counter,
2662 ext4_count_dirs(sb));
2663 }
2664 if (!err) {
2665 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2666 }
2667 if (err) {
2668 ext4_msg(sb, KERN_ERR, "insufficient memory");
2669 goto failed_mount3;
2670 }
2671
2672 sbi->s_stripe = ext4_get_stripe_size(sbi);
2673
2674 /*
2675 * set up enough so that it can read an inode
2676 */
2677 if (!test_opt(sb, NOLOAD) &&
2678 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2679 sb->s_op = &ext4_sops;
2680 else
2681 sb->s_op = &ext4_nojournal_sops;
2682 sb->s_export_op = &ext4_export_ops;
2683 sb->s_xattr = ext4_xattr_handlers;
2684 #ifdef CONFIG_QUOTA
2685 sb->s_qcop = &ext4_qctl_operations;
2686 sb->dq_op = &ext4_quota_operations;
2687 #endif
2688 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2689 mutex_init(&sbi->s_orphan_lock);
2690 mutex_init(&sbi->s_resize_lock);
2691
2692 sb->s_root = NULL;
2693
2694 needs_recovery = (es->s_last_orphan != 0 ||
2695 EXT4_HAS_INCOMPAT_FEATURE(sb,
2696 EXT4_FEATURE_INCOMPAT_RECOVER));
2697
2698 /*
2699 * The first inode we look at is the journal inode. Don't try
2700 * root first: it may be modified in the journal!
2701 */
2702 if (!test_opt(sb, NOLOAD) &&
2703 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2704 if (ext4_load_journal(sb, es, journal_devnum))
2705 goto failed_mount3;
2706 if (!(sb->s_flags & MS_RDONLY) &&
2707 EXT4_SB(sb)->s_journal->j_failed_commit) {
2708 ext4_msg(sb, KERN_CRIT, "error: "
2709 "ext4_fill_super: Journal transaction "
2710 "%u is corrupt",
2711 EXT4_SB(sb)->s_journal->j_failed_commit);
2712 if (test_opt(sb, ERRORS_RO)) {
2713 ext4_msg(sb, KERN_CRIT,
2714 "Mounting filesystem read-only");
2715 sb->s_flags |= MS_RDONLY;
2716 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2717 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2718 }
2719 if (test_opt(sb, ERRORS_PANIC)) {
2720 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2721 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2722 ext4_commit_super(sb, 1);
2723 goto failed_mount4;
2724 }
2725 }
2726 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2727 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2728 ext4_msg(sb, KERN_ERR, "required journal recovery "
2729 "suppressed and not mounted read-only");
2730 goto failed_mount4;
2731 } else {
2732 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2733 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2734 sbi->s_journal = NULL;
2735 needs_recovery = 0;
2736 goto no_journal;
2737 }
2738
2739 if (ext4_blocks_count(es) > 0xffffffffULL &&
2740 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2741 JBD2_FEATURE_INCOMPAT_64BIT)) {
2742 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2743 goto failed_mount4;
2744 }
2745
2746 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2747 jbd2_journal_set_features(sbi->s_journal,
2748 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2749 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2750 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2751 jbd2_journal_set_features(sbi->s_journal,
2752 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2753 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2754 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2755 } else {
2756 jbd2_journal_clear_features(sbi->s_journal,
2757 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2758 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2759 }
2760
2761 /* We have now updated the journal if required, so we can
2762 * validate the data journaling mode. */
2763 switch (test_opt(sb, DATA_FLAGS)) {
2764 case 0:
2765 /* No mode set, assume a default based on the journal
2766 * capabilities: ORDERED_DATA if the journal can
2767 * cope, else JOURNAL_DATA
2768 */
2769 if (jbd2_journal_check_available_features
2770 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2771 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2772 else
2773 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2774 break;
2775
2776 case EXT4_MOUNT_ORDERED_DATA:
2777 case EXT4_MOUNT_WRITEBACK_DATA:
2778 if (!jbd2_journal_check_available_features
2779 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2780 ext4_msg(sb, KERN_ERR, "Journal does not support "
2781 "requested data journaling mode");
2782 goto failed_mount4;
2783 }
2784 default:
2785 break;
2786 }
2787 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2788
2789 no_journal:
2790
2791 if (test_opt(sb, NOBH)) {
2792 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2793 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2794 "its supported only with writeback mode");
2795 clear_opt(sbi->s_mount_opt, NOBH);
2796 }
2797 }
2798 /*
2799 * The jbd2_journal_load will have done any necessary log recovery,
2800 * so we can safely mount the rest of the filesystem now.
2801 */
2802
2803 root = ext4_iget(sb, EXT4_ROOT_INO);
2804 if (IS_ERR(root)) {
2805 ext4_msg(sb, KERN_ERR, "get root inode failed");
2806 ret = PTR_ERR(root);
2807 goto failed_mount4;
2808 }
2809 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2810 iput(root);
2811 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2812 goto failed_mount4;
2813 }
2814 sb->s_root = d_alloc_root(root);
2815 if (!sb->s_root) {
2816 ext4_msg(sb, KERN_ERR, "get root dentry failed");
2817 iput(root);
2818 ret = -ENOMEM;
2819 goto failed_mount4;
2820 }
2821
2822 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2823
2824 /* determine the minimum size of new large inodes, if present */
2825 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2826 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2827 EXT4_GOOD_OLD_INODE_SIZE;
2828 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2829 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2830 if (sbi->s_want_extra_isize <
2831 le16_to_cpu(es->s_want_extra_isize))
2832 sbi->s_want_extra_isize =
2833 le16_to_cpu(es->s_want_extra_isize);
2834 if (sbi->s_want_extra_isize <
2835 le16_to_cpu(es->s_min_extra_isize))
2836 sbi->s_want_extra_isize =
2837 le16_to_cpu(es->s_min_extra_isize);
2838 }
2839 }
2840 /* Check if enough inode space is available */
2841 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2842 sbi->s_inode_size) {
2843 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2844 EXT4_GOOD_OLD_INODE_SIZE;
2845 ext4_msg(sb, KERN_INFO, "required extra inode space not"
2846 "available");
2847 }
2848
2849 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
2850 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2851 "requested data journaling mode");
2852 clear_opt(sbi->s_mount_opt, DELALLOC);
2853 } else if (test_opt(sb, DELALLOC))
2854 ext4_msg(sb, KERN_INFO, "delayed allocation enabled");
2855
2856 err = ext4_setup_system_zone(sb);
2857 if (err) {
2858 ext4_msg(sb, KERN_ERR, "failed to initialize system "
2859 "zone (%d)\n", err);
2860 goto failed_mount4;
2861 }
2862
2863 ext4_ext_init(sb);
2864 err = ext4_mb_init(sb, needs_recovery);
2865 if (err) {
2866 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2867 err);
2868 goto failed_mount4;
2869 }
2870
2871 sbi->s_kobj.kset = ext4_kset;
2872 init_completion(&sbi->s_kobj_unregister);
2873 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2874 "%s", sb->s_id);
2875 if (err) {
2876 ext4_mb_release(sb);
2877 ext4_ext_release(sb);
2878 goto failed_mount4;
2879 };
2880
2881 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2882 ext4_orphan_cleanup(sb, es);
2883 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2884 if (needs_recovery) {
2885 ext4_msg(sb, KERN_INFO, "recovery complete");
2886 ext4_mark_recovery_complete(sb, es);
2887 }
2888 if (EXT4_SB(sb)->s_journal) {
2889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2890 descr = " journalled data mode";
2891 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2892 descr = " ordered data mode";
2893 else
2894 descr = " writeback data mode";
2895 } else
2896 descr = "out journal";
2897
2898 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2899
2900 lock_kernel();
2901 return 0;
2902
2903 cantfind_ext4:
2904 if (!silent)
2905 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2906 goto failed_mount;
2907
2908 failed_mount4:
2909 ext4_msg(sb, KERN_ERR, "mount failed");
2910 ext4_release_system_zone(sb);
2911 if (sbi->s_journal) {
2912 jbd2_journal_destroy(sbi->s_journal);
2913 sbi->s_journal = NULL;
2914 }
2915 failed_mount3:
2916 if (sbi->s_flex_groups) {
2917 if (is_vmalloc_addr(sbi->s_flex_groups))
2918 vfree(sbi->s_flex_groups);
2919 else
2920 kfree(sbi->s_flex_groups);
2921 }
2922 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2923 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2924 percpu_counter_destroy(&sbi->s_dirs_counter);
2925 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2926 failed_mount2:
2927 for (i = 0; i < db_count; i++)
2928 brelse(sbi->s_group_desc[i]);
2929 kfree(sbi->s_group_desc);
2930 failed_mount:
2931 if (sbi->s_proc) {
2932 remove_proc_entry(sb->s_id, ext4_proc_root);
2933 }
2934 #ifdef CONFIG_QUOTA
2935 for (i = 0; i < MAXQUOTAS; i++)
2936 kfree(sbi->s_qf_names[i]);
2937 #endif
2938 ext4_blkdev_remove(sbi);
2939 brelse(bh);
2940 out_fail:
2941 sb->s_fs_info = NULL;
2942 kfree(sbi->s_blockgroup_lock);
2943 kfree(sbi);
2944 lock_kernel();
2945 return ret;
2946 }
2947
2948 /*
2949 * Setup any per-fs journal parameters now. We'll do this both on
2950 * initial mount, once the journal has been initialised but before we've
2951 * done any recovery; and again on any subsequent remount.
2952 */
2953 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2954 {
2955 struct ext4_sb_info *sbi = EXT4_SB(sb);
2956
2957 journal->j_commit_interval = sbi->s_commit_interval;
2958 journal->j_min_batch_time = sbi->s_min_batch_time;
2959 journal->j_max_batch_time = sbi->s_max_batch_time;
2960
2961 spin_lock(&journal->j_state_lock);
2962 if (test_opt(sb, BARRIER))
2963 journal->j_flags |= JBD2_BARRIER;
2964 else
2965 journal->j_flags &= ~JBD2_BARRIER;
2966 if (test_opt(sb, DATA_ERR_ABORT))
2967 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
2968 else
2969 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
2970 spin_unlock(&journal->j_state_lock);
2971 }
2972
2973 static journal_t *ext4_get_journal(struct super_block *sb,
2974 unsigned int journal_inum)
2975 {
2976 struct inode *journal_inode;
2977 journal_t *journal;
2978
2979 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2980
2981 /* First, test for the existence of a valid inode on disk. Bad
2982 * things happen if we iget() an unused inode, as the subsequent
2983 * iput() will try to delete it. */
2984
2985 journal_inode = ext4_iget(sb, journal_inum);
2986 if (IS_ERR(journal_inode)) {
2987 ext4_msg(sb, KERN_ERR, "no journal found");
2988 return NULL;
2989 }
2990 if (!journal_inode->i_nlink) {
2991 make_bad_inode(journal_inode);
2992 iput(journal_inode);
2993 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
2994 return NULL;
2995 }
2996
2997 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
2998 journal_inode, journal_inode->i_size);
2999 if (!S_ISREG(journal_inode->i_mode)) {
3000 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3001 iput(journal_inode);
3002 return NULL;
3003 }
3004
3005 journal = jbd2_journal_init_inode(journal_inode);
3006 if (!journal) {
3007 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3008 iput(journal_inode);
3009 return NULL;
3010 }
3011 journal->j_private = sb;
3012 ext4_init_journal_params(sb, journal);
3013 return journal;
3014 }
3015
3016 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3017 dev_t j_dev)
3018 {
3019 struct buffer_head *bh;
3020 journal_t *journal;
3021 ext4_fsblk_t start;
3022 ext4_fsblk_t len;
3023 int hblock, blocksize;
3024 ext4_fsblk_t sb_block;
3025 unsigned long offset;
3026 struct ext4_super_block *es;
3027 struct block_device *bdev;
3028
3029 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3030
3031 bdev = ext4_blkdev_get(j_dev, sb);
3032 if (bdev == NULL)
3033 return NULL;
3034
3035 if (bd_claim(bdev, sb)) {
3036 ext4_msg(sb, KERN_ERR,
3037 "failed to claim external journal device");
3038 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3039 return NULL;
3040 }
3041
3042 blocksize = sb->s_blocksize;
3043 hblock = bdev_logical_block_size(bdev);
3044 if (blocksize < hblock) {
3045 ext4_msg(sb, KERN_ERR,
3046 "blocksize too small for journal device");
3047 goto out_bdev;
3048 }
3049
3050 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3051 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3052 set_blocksize(bdev, blocksize);
3053 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3054 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3055 "external journal");
3056 goto out_bdev;
3057 }
3058
3059 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3060 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3061 !(le32_to_cpu(es->s_feature_incompat) &
3062 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3063 ext4_msg(sb, KERN_ERR, "external journal has "
3064 "bad superblock");
3065 brelse(bh);
3066 goto out_bdev;
3067 }
3068
3069 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3070 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3071 brelse(bh);
3072 goto out_bdev;
3073 }
3074
3075 len = ext4_blocks_count(es);
3076 start = sb_block + 1;
3077 brelse(bh); /* we're done with the superblock */
3078
3079 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3080 start, len, blocksize);
3081 if (!journal) {
3082 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3083 goto out_bdev;
3084 }
3085 journal->j_private = sb;
3086 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3087 wait_on_buffer(journal->j_sb_buffer);
3088 if (!buffer_uptodate(journal->j_sb_buffer)) {
3089 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3090 goto out_journal;
3091 }
3092 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3093 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3094 "user (unsupported) - %d",
3095 be32_to_cpu(journal->j_superblock->s_nr_users));
3096 goto out_journal;
3097 }
3098 EXT4_SB(sb)->journal_bdev = bdev;
3099 ext4_init_journal_params(sb, journal);
3100 return journal;
3101
3102 out_journal:
3103 jbd2_journal_destroy(journal);
3104 out_bdev:
3105 ext4_blkdev_put(bdev);
3106 return NULL;
3107 }
3108
3109 static int ext4_load_journal(struct super_block *sb,
3110 struct ext4_super_block *es,
3111 unsigned long journal_devnum)
3112 {
3113 journal_t *journal;
3114 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3115 dev_t journal_dev;
3116 int err = 0;
3117 int really_read_only;
3118
3119 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3120
3121 if (journal_devnum &&
3122 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3123 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3124 "numbers have changed");
3125 journal_dev = new_decode_dev(journal_devnum);
3126 } else
3127 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3128
3129 really_read_only = bdev_read_only(sb->s_bdev);
3130
3131 /*
3132 * Are we loading a blank journal or performing recovery after a
3133 * crash? For recovery, we need to check in advance whether we
3134 * can get read-write access to the device.
3135 */
3136 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3137 if (sb->s_flags & MS_RDONLY) {
3138 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3139 "required on readonly filesystem");
3140 if (really_read_only) {
3141 ext4_msg(sb, KERN_ERR, "write access "
3142 "unavailable, cannot proceed");
3143 return -EROFS;
3144 }
3145 ext4_msg(sb, KERN_INFO, "write access will "
3146 "be enabled during recovery");
3147 }
3148 }
3149
3150 if (journal_inum && journal_dev) {
3151 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3152 "and inode journals!");
3153 return -EINVAL;
3154 }
3155
3156 if (journal_inum) {
3157 if (!(journal = ext4_get_journal(sb, journal_inum)))
3158 return -EINVAL;
3159 } else {
3160 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3161 return -EINVAL;
3162 }
3163
3164 if (journal->j_flags & JBD2_BARRIER)
3165 ext4_msg(sb, KERN_INFO, "barriers enabled");
3166 else
3167 ext4_msg(sb, KERN_INFO, "barriers disabled");
3168
3169 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3170 err = jbd2_journal_update_format(journal);
3171 if (err) {
3172 ext4_msg(sb, KERN_ERR, "error updating journal");
3173 jbd2_journal_destroy(journal);
3174 return err;
3175 }
3176 }
3177
3178 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3179 err = jbd2_journal_wipe(journal, !really_read_only);
3180 if (!err)
3181 err = jbd2_journal_load(journal);
3182
3183 if (err) {
3184 ext4_msg(sb, KERN_ERR, "error loading journal");
3185 jbd2_journal_destroy(journal);
3186 return err;
3187 }
3188
3189 EXT4_SB(sb)->s_journal = journal;
3190 ext4_clear_journal_err(sb, es);
3191
3192 if (journal_devnum &&
3193 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3194 es->s_journal_dev = cpu_to_le32(journal_devnum);
3195
3196 /* Make sure we flush the recovery flag to disk. */
3197 ext4_commit_super(sb, 1);
3198 }
3199
3200 return 0;
3201 }
3202
3203 static int ext4_commit_super(struct super_block *sb, int sync)
3204 {
3205 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3206 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3207 int error = 0;
3208
3209 if (!sbh)
3210 return error;
3211 if (buffer_write_io_error(sbh)) {
3212 /*
3213 * Oh, dear. A previous attempt to write the
3214 * superblock failed. This could happen because the
3215 * USB device was yanked out. Or it could happen to
3216 * be a transient write error and maybe the block will
3217 * be remapped. Nothing we can do but to retry the
3218 * write and hope for the best.
3219 */
3220 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3221 "superblock detected");
3222 clear_buffer_write_io_error(sbh);
3223 set_buffer_uptodate(sbh);
3224 }
3225 es->s_wtime = cpu_to_le32(get_seconds());
3226 es->s_kbytes_written =
3227 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3228 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3229 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3230 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3231 &EXT4_SB(sb)->s_freeblocks_counter));
3232 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3233 &EXT4_SB(sb)->s_freeinodes_counter));
3234 sb->s_dirt = 0;
3235 BUFFER_TRACE(sbh, "marking dirty");
3236 mark_buffer_dirty(sbh);
3237 if (sync) {
3238 error = sync_dirty_buffer(sbh);
3239 if (error)
3240 return error;
3241
3242 error = buffer_write_io_error(sbh);
3243 if (error) {
3244 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3245 "superblock");
3246 clear_buffer_write_io_error(sbh);
3247 set_buffer_uptodate(sbh);
3248 }
3249 }
3250 return error;
3251 }
3252
3253 /*
3254 * Have we just finished recovery? If so, and if we are mounting (or
3255 * remounting) the filesystem readonly, then we will end up with a
3256 * consistent fs on disk. Record that fact.
3257 */
3258 static void ext4_mark_recovery_complete(struct super_block *sb,
3259 struct ext4_super_block *es)
3260 {
3261 journal_t *journal = EXT4_SB(sb)->s_journal;
3262
3263 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3264 BUG_ON(journal != NULL);
3265 return;
3266 }
3267 jbd2_journal_lock_updates(journal);
3268 if (jbd2_journal_flush(journal) < 0)
3269 goto out;
3270
3271 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3272 sb->s_flags & MS_RDONLY) {
3273 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3274 ext4_commit_super(sb, 1);
3275 }
3276
3277 out:
3278 jbd2_journal_unlock_updates(journal);
3279 }
3280
3281 /*
3282 * If we are mounting (or read-write remounting) a filesystem whose journal
3283 * has recorded an error from a previous lifetime, move that error to the
3284 * main filesystem now.
3285 */
3286 static void ext4_clear_journal_err(struct super_block *sb,
3287 struct ext4_super_block *es)
3288 {
3289 journal_t *journal;
3290 int j_errno;
3291 const char *errstr;
3292
3293 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3294
3295 journal = EXT4_SB(sb)->s_journal;
3296
3297 /*
3298 * Now check for any error status which may have been recorded in the
3299 * journal by a prior ext4_error() or ext4_abort()
3300 */
3301
3302 j_errno = jbd2_journal_errno(journal);
3303 if (j_errno) {
3304 char nbuf[16];
3305
3306 errstr = ext4_decode_error(sb, j_errno, nbuf);
3307 ext4_warning(sb, __func__, "Filesystem error recorded "
3308 "from previous mount: %s", errstr);
3309 ext4_warning(sb, __func__, "Marking fs in need of "
3310 "filesystem check.");
3311
3312 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3313 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3314 ext4_commit_super(sb, 1);
3315
3316 jbd2_journal_clear_err(journal);
3317 }
3318 }
3319
3320 /*
3321 * Force the running and committing transactions to commit,
3322 * and wait on the commit.
3323 */
3324 int ext4_force_commit(struct super_block *sb)
3325 {
3326 journal_t *journal;
3327 int ret = 0;
3328
3329 if (sb->s_flags & MS_RDONLY)
3330 return 0;
3331
3332 journal = EXT4_SB(sb)->s_journal;
3333 if (journal)
3334 ret = ext4_journal_force_commit(journal);
3335
3336 return ret;
3337 }
3338
3339 static void ext4_write_super(struct super_block *sb)
3340 {
3341 lock_super(sb);
3342 ext4_commit_super(sb, 1);
3343 unlock_super(sb);
3344 }
3345
3346 static int ext4_sync_fs(struct super_block *sb, int wait)
3347 {
3348 int ret = 0;
3349 tid_t target;
3350
3351 trace_ext4_sync_fs(sb, wait);
3352 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) {
3353 if (wait)
3354 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target);
3355 }
3356 return ret;
3357 }
3358
3359 /*
3360 * LVM calls this function before a (read-only) snapshot is created. This
3361 * gives us a chance to flush the journal completely and mark the fs clean.
3362 */
3363 static int ext4_freeze(struct super_block *sb)
3364 {
3365 int error = 0;
3366 journal_t *journal;
3367
3368 if (sb->s_flags & MS_RDONLY)
3369 return 0;
3370
3371 journal = EXT4_SB(sb)->s_journal;
3372
3373 /* Now we set up the journal barrier. */
3374 jbd2_journal_lock_updates(journal);
3375
3376 /*
3377 * Don't clear the needs_recovery flag if we failed to flush
3378 * the journal.
3379 */
3380 error = jbd2_journal_flush(journal);
3381 if (error < 0) {
3382 out:
3383 jbd2_journal_unlock_updates(journal);
3384 return error;
3385 }
3386
3387 /* Journal blocked and flushed, clear needs_recovery flag. */
3388 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3389 error = ext4_commit_super(sb, 1);
3390 if (error)
3391 goto out;
3392 return 0;
3393 }
3394
3395 /*
3396 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3397 * flag here, even though the filesystem is not technically dirty yet.
3398 */
3399 static int ext4_unfreeze(struct super_block *sb)
3400 {
3401 if (sb->s_flags & MS_RDONLY)
3402 return 0;
3403
3404 lock_super(sb);
3405 /* Reset the needs_recovery flag before the fs is unlocked. */
3406 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3407 ext4_commit_super(sb, 1);
3408 unlock_super(sb);
3409 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3410 return 0;
3411 }
3412
3413 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3414 {
3415 struct ext4_super_block *es;
3416 struct ext4_sb_info *sbi = EXT4_SB(sb);
3417 ext4_fsblk_t n_blocks_count = 0;
3418 unsigned long old_sb_flags;
3419 struct ext4_mount_options old_opts;
3420 ext4_group_t g;
3421 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3422 int err;
3423 #ifdef CONFIG_QUOTA
3424 int i;
3425 #endif
3426
3427 lock_kernel();
3428
3429 /* Store the original options */
3430 lock_super(sb);
3431 old_sb_flags = sb->s_flags;
3432 old_opts.s_mount_opt = sbi->s_mount_opt;
3433 old_opts.s_resuid = sbi->s_resuid;
3434 old_opts.s_resgid = sbi->s_resgid;
3435 old_opts.s_commit_interval = sbi->s_commit_interval;
3436 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3437 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3438 #ifdef CONFIG_QUOTA
3439 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3440 for (i = 0; i < MAXQUOTAS; i++)
3441 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3442 #endif
3443 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3444 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3445
3446 /*
3447 * Allow the "check" option to be passed as a remount option.
3448 */
3449 if (!parse_options(data, sb, NULL, &journal_ioprio,
3450 &n_blocks_count, 1)) {
3451 err = -EINVAL;
3452 goto restore_opts;
3453 }
3454
3455 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT)
3456 ext4_abort(sb, __func__, "Abort forced by user");
3457
3458 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3459 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3460
3461 es = sbi->s_es;
3462
3463 if (sbi->s_journal) {
3464 ext4_init_journal_params(sb, sbi->s_journal);
3465 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3466 }
3467
3468 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3469 n_blocks_count > ext4_blocks_count(es)) {
3470 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) {
3471 err = -EROFS;
3472 goto restore_opts;
3473 }
3474
3475 if (*flags & MS_RDONLY) {
3476 /*
3477 * First of all, the unconditional stuff we have to do
3478 * to disable replay of the journal when we next remount
3479 */
3480 sb->s_flags |= MS_RDONLY;
3481
3482 /*
3483 * OK, test if we are remounting a valid rw partition
3484 * readonly, and if so set the rdonly flag and then
3485 * mark the partition as valid again.
3486 */
3487 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3488 (sbi->s_mount_state & EXT4_VALID_FS))
3489 es->s_state = cpu_to_le16(sbi->s_mount_state);
3490
3491 if (sbi->s_journal)
3492 ext4_mark_recovery_complete(sb, es);
3493 } else {
3494 int ret;
3495 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3496 ~EXT4_FEATURE_RO_COMPAT_SUPP))) {
3497 ext4_msg(sb, KERN_WARNING, "couldn't "
3498 "remount RDWR because of unsupported "
3499 "optional features (%x)",
3500 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) &
3501 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3502 err = -EROFS;
3503 goto restore_opts;
3504 }
3505
3506 /*
3507 * Make sure the group descriptor checksums
3508 * are sane. If they aren't, refuse to remount r/w.
3509 */
3510 for (g = 0; g < sbi->s_groups_count; g++) {
3511 struct ext4_group_desc *gdp =
3512 ext4_get_group_desc(sb, g, NULL);
3513
3514 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3515 ext4_msg(sb, KERN_ERR,
3516 "ext4_remount: Checksum for group %u failed (%u!=%u)",
3517 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3518 le16_to_cpu(gdp->bg_checksum));
3519 err = -EINVAL;
3520 goto restore_opts;
3521 }
3522 }
3523
3524 /*
3525 * If we have an unprocessed orphan list hanging
3526 * around from a previously readonly bdev mount,
3527 * require a full umount/remount for now.
3528 */
3529 if (es->s_last_orphan) {
3530 ext4_msg(sb, KERN_WARNING, "Couldn't "
3531 "remount RDWR because of unprocessed "
3532 "orphan inode list. Please "
3533 "umount/remount instead");
3534 err = -EINVAL;
3535 goto restore_opts;
3536 }
3537
3538 /*
3539 * Mounting a RDONLY partition read-write, so reread
3540 * and store the current valid flag. (It may have
3541 * been changed by e2fsck since we originally mounted
3542 * the partition.)
3543 */
3544 if (sbi->s_journal)
3545 ext4_clear_journal_err(sb, es);
3546 sbi->s_mount_state = le16_to_cpu(es->s_state);
3547 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3548 goto restore_opts;
3549 if (!ext4_setup_super(sb, es, 0))
3550 sb->s_flags &= ~MS_RDONLY;
3551 }
3552 }
3553 ext4_setup_system_zone(sb);
3554 if (sbi->s_journal == NULL)
3555 ext4_commit_super(sb, 1);
3556
3557 #ifdef CONFIG_QUOTA
3558 /* Release old quota file names */
3559 for (i = 0; i < MAXQUOTAS; i++)
3560 if (old_opts.s_qf_names[i] &&
3561 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3562 kfree(old_opts.s_qf_names[i]);
3563 #endif
3564 unlock_super(sb);
3565 unlock_kernel();
3566 return 0;
3567
3568 restore_opts:
3569 sb->s_flags = old_sb_flags;
3570 sbi->s_mount_opt = old_opts.s_mount_opt;
3571 sbi->s_resuid = old_opts.s_resuid;
3572 sbi->s_resgid = old_opts.s_resgid;
3573 sbi->s_commit_interval = old_opts.s_commit_interval;
3574 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3575 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3576 #ifdef CONFIG_QUOTA
3577 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3578 for (i = 0; i < MAXQUOTAS; i++) {
3579 if (sbi->s_qf_names[i] &&
3580 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3581 kfree(sbi->s_qf_names[i]);
3582 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3583 }
3584 #endif
3585 unlock_super(sb);
3586 unlock_kernel();
3587 return err;
3588 }
3589
3590 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3591 {
3592 struct super_block *sb = dentry->d_sb;
3593 struct ext4_sb_info *sbi = EXT4_SB(sb);
3594 struct ext4_super_block *es = sbi->s_es;
3595 u64 fsid;
3596
3597 if (test_opt(sb, MINIX_DF)) {
3598 sbi->s_overhead_last = 0;
3599 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3600 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3601 ext4_fsblk_t overhead = 0;
3602
3603 /*
3604 * Compute the overhead (FS structures). This is constant
3605 * for a given filesystem unless the number of block groups
3606 * changes so we cache the previous value until it does.
3607 */
3608
3609 /*
3610 * All of the blocks before first_data_block are
3611 * overhead
3612 */
3613 overhead = le32_to_cpu(es->s_first_data_block);
3614
3615 /*
3616 * Add the overhead attributed to the superblock and
3617 * block group descriptors. If the sparse superblocks
3618 * feature is turned on, then not all groups have this.
3619 */
3620 for (i = 0; i < ngroups; i++) {
3621 overhead += ext4_bg_has_super(sb, i) +
3622 ext4_bg_num_gdb(sb, i);
3623 cond_resched();
3624 }
3625
3626 /*
3627 * Every block group has an inode bitmap, a block
3628 * bitmap, and an inode table.
3629 */
3630 overhead += ngroups * (2 + sbi->s_itb_per_group);
3631 sbi->s_overhead_last = overhead;
3632 smp_wmb();
3633 sbi->s_blocks_last = ext4_blocks_count(es);
3634 }
3635
3636 buf->f_type = EXT4_SUPER_MAGIC;
3637 buf->f_bsize = sb->s_blocksize;
3638 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3639 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3640 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3641 ext4_free_blocks_count_set(es, buf->f_bfree);
3642 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3643 if (buf->f_bfree < ext4_r_blocks_count(es))
3644 buf->f_bavail = 0;
3645 buf->f_files = le32_to_cpu(es->s_inodes_count);
3646 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3647 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
3648 buf->f_namelen = EXT4_NAME_LEN;
3649 fsid = le64_to_cpup((void *)es->s_uuid) ^
3650 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3651 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3652 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3653
3654 return 0;
3655 }
3656
3657 /* Helper function for writing quotas on sync - we need to start transaction
3658 * before quota file is locked for write. Otherwise the are possible deadlocks:
3659 * Process 1 Process 2
3660 * ext4_create() quota_sync()
3661 * jbd2_journal_start() write_dquot()
3662 * vfs_dq_init() down(dqio_mutex)
3663 * down(dqio_mutex) jbd2_journal_start()
3664 *
3665 */
3666
3667 #ifdef CONFIG_QUOTA
3668
3669 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3670 {
3671 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3672 }
3673
3674 static int ext4_write_dquot(struct dquot *dquot)
3675 {
3676 int ret, err;
3677 handle_t *handle;
3678 struct inode *inode;
3679
3680 inode = dquot_to_inode(dquot);
3681 handle = ext4_journal_start(inode,
3682 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3683 if (IS_ERR(handle))
3684 return PTR_ERR(handle);
3685 ret = dquot_commit(dquot);
3686 err = ext4_journal_stop(handle);
3687 if (!ret)
3688 ret = err;
3689 return ret;
3690 }
3691
3692 static int ext4_acquire_dquot(struct dquot *dquot)
3693 {
3694 int ret, err;
3695 handle_t *handle;
3696
3697 handle = ext4_journal_start(dquot_to_inode(dquot),
3698 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3699 if (IS_ERR(handle))
3700 return PTR_ERR(handle);
3701 ret = dquot_acquire(dquot);
3702 err = ext4_journal_stop(handle);
3703 if (!ret)
3704 ret = err;
3705 return ret;
3706 }
3707
3708 static int ext4_release_dquot(struct dquot *dquot)
3709 {
3710 int ret, err;
3711 handle_t *handle;
3712
3713 handle = ext4_journal_start(dquot_to_inode(dquot),
3714 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3715 if (IS_ERR(handle)) {
3716 /* Release dquot anyway to avoid endless cycle in dqput() */
3717 dquot_release(dquot);
3718 return PTR_ERR(handle);
3719 }
3720 ret = dquot_release(dquot);
3721 err = ext4_journal_stop(handle);
3722 if (!ret)
3723 ret = err;
3724 return ret;
3725 }
3726
3727 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3728 {
3729 /* Are we journaling quotas? */
3730 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3731 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3732 dquot_mark_dquot_dirty(dquot);
3733 return ext4_write_dquot(dquot);
3734 } else {
3735 return dquot_mark_dquot_dirty(dquot);
3736 }
3737 }
3738
3739 static int ext4_write_info(struct super_block *sb, int type)
3740 {
3741 int ret, err;
3742 handle_t *handle;
3743
3744 /* Data block + inode block */
3745 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3746 if (IS_ERR(handle))
3747 return PTR_ERR(handle);
3748 ret = dquot_commit_info(sb, type);
3749 err = ext4_journal_stop(handle);
3750 if (!ret)
3751 ret = err;
3752 return ret;
3753 }
3754
3755 /*
3756 * Turn on quotas during mount time - we need to find
3757 * the quota file and such...
3758 */
3759 static int ext4_quota_on_mount(struct super_block *sb, int type)
3760 {
3761 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3762 EXT4_SB(sb)->s_jquota_fmt, type);
3763 }
3764
3765 /*
3766 * Standard function to be called on quota_on
3767 */
3768 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3769 char *name, int remount)
3770 {
3771 int err;
3772 struct path path;
3773
3774 if (!test_opt(sb, QUOTA))
3775 return -EINVAL;
3776 /* When remounting, no checks are needed and in fact, name is NULL */
3777 if (remount)
3778 return vfs_quota_on(sb, type, format_id, name, remount);
3779
3780 err = kern_path(name, LOOKUP_FOLLOW, &path);
3781 if (err)
3782 return err;
3783
3784 /* Quotafile not on the same filesystem? */
3785 if (path.mnt->mnt_sb != sb) {
3786 path_put(&path);
3787 return -EXDEV;
3788 }
3789 /* Journaling quota? */
3790 if (EXT4_SB(sb)->s_qf_names[type]) {
3791 /* Quotafile not in fs root? */
3792 if (path.dentry->d_parent != sb->s_root)
3793 ext4_msg(sb, KERN_WARNING,
3794 "Quota file not on filesystem root. "
3795 "Journaled quota will not work");
3796 }
3797
3798 /*
3799 * When we journal data on quota file, we have to flush journal to see
3800 * all updates to the file when we bypass pagecache...
3801 */
3802 if (EXT4_SB(sb)->s_journal &&
3803 ext4_should_journal_data(path.dentry->d_inode)) {
3804 /*
3805 * We don't need to lock updates but journal_flush() could
3806 * otherwise be livelocked...
3807 */
3808 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3809 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3810 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3811 if (err) {
3812 path_put(&path);
3813 return err;
3814 }
3815 }
3816
3817 err = vfs_quota_on_path(sb, type, format_id, &path);
3818 path_put(&path);
3819 return err;
3820 }
3821
3822 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3823 * acquiring the locks... As quota files are never truncated and quota code
3824 * itself serializes the operations (and noone else should touch the files)
3825 * we don't have to be afraid of races */
3826 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3827 size_t len, loff_t off)
3828 {
3829 struct inode *inode = sb_dqopt(sb)->files[type];
3830 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3831 int err = 0;
3832 int offset = off & (sb->s_blocksize - 1);
3833 int tocopy;
3834 size_t toread;
3835 struct buffer_head *bh;
3836 loff_t i_size = i_size_read(inode);
3837
3838 if (off > i_size)
3839 return 0;
3840 if (off+len > i_size)
3841 len = i_size-off;
3842 toread = len;
3843 while (toread > 0) {
3844 tocopy = sb->s_blocksize - offset < toread ?
3845 sb->s_blocksize - offset : toread;
3846 bh = ext4_bread(NULL, inode, blk, 0, &err);
3847 if (err)
3848 return err;
3849 if (!bh) /* A hole? */
3850 memset(data, 0, tocopy);
3851 else
3852 memcpy(data, bh->b_data+offset, tocopy);
3853 brelse(bh);
3854 offset = 0;
3855 toread -= tocopy;
3856 data += tocopy;
3857 blk++;
3858 }
3859 return len;
3860 }
3861
3862 /* Write to quotafile (we know the transaction is already started and has
3863 * enough credits) */
3864 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3865 const char *data, size_t len, loff_t off)
3866 {
3867 struct inode *inode = sb_dqopt(sb)->files[type];
3868 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3869 int err = 0;
3870 int offset = off & (sb->s_blocksize - 1);
3871 int tocopy;
3872 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3873 size_t towrite = len;
3874 struct buffer_head *bh;
3875 handle_t *handle = journal_current_handle();
3876
3877 if (EXT4_SB(sb)->s_journal && !handle) {
3878 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3879 " cancelled because transaction is not started",
3880 (unsigned long long)off, (unsigned long long)len);
3881 return -EIO;
3882 }
3883 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3884 while (towrite > 0) {
3885 tocopy = sb->s_blocksize - offset < towrite ?
3886 sb->s_blocksize - offset : towrite;
3887 bh = ext4_bread(handle, inode, blk, 1, &err);
3888 if (!bh)
3889 goto out;
3890 if (journal_quota) {
3891 err = ext4_journal_get_write_access(handle, bh);
3892 if (err) {
3893 brelse(bh);
3894 goto out;
3895 }
3896 }
3897 lock_buffer(bh);
3898 memcpy(bh->b_data+offset, data, tocopy);
3899 flush_dcache_page(bh->b_page);
3900 unlock_buffer(bh);
3901 if (journal_quota)
3902 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3903 else {
3904 /* Always do at least ordered writes for quotas */
3905 err = ext4_jbd2_file_inode(handle, inode);
3906 mark_buffer_dirty(bh);
3907 }
3908 brelse(bh);
3909 if (err)
3910 goto out;
3911 offset = 0;
3912 towrite -= tocopy;
3913 data += tocopy;
3914 blk++;
3915 }
3916 out:
3917 if (len == towrite) {
3918 mutex_unlock(&inode->i_mutex);
3919 return err;
3920 }
3921 if (inode->i_size < off+len-towrite) {
3922 i_size_write(inode, off+len-towrite);
3923 EXT4_I(inode)->i_disksize = inode->i_size;
3924 }
3925 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3926 ext4_mark_inode_dirty(handle, inode);
3927 mutex_unlock(&inode->i_mutex);
3928 return len - towrite;
3929 }
3930
3931 #endif
3932
3933 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3934 const char *dev_name, void *data, struct vfsmount *mnt)
3935 {
3936 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3937 }
3938
3939 static struct file_system_type ext4_fs_type = {
3940 .owner = THIS_MODULE,
3941 .name = "ext4",
3942 .get_sb = ext4_get_sb,
3943 .kill_sb = kill_block_super,
3944 .fs_flags = FS_REQUIRES_DEV,
3945 };
3946
3947 #ifdef CONFIG_EXT4DEV_COMPAT
3948 static int ext4dev_get_sb(struct file_system_type *fs_type, int flags,
3949 const char *dev_name, void *data,struct vfsmount *mnt)
3950 {
3951 printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs "
3952 "to mount using ext4\n", dev_name);
3953 printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility "
3954 "will go away by 2.6.31\n", dev_name);
3955 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3956 }
3957
3958 static struct file_system_type ext4dev_fs_type = {
3959 .owner = THIS_MODULE,
3960 .name = "ext4dev",
3961 .get_sb = ext4dev_get_sb,
3962 .kill_sb = kill_block_super,
3963 .fs_flags = FS_REQUIRES_DEV,
3964 };
3965 MODULE_ALIAS("ext4dev");
3966 #endif
3967
3968 static int __init init_ext4_fs(void)
3969 {
3970 int err;
3971
3972 err = init_ext4_system_zone();
3973 if (err)
3974 return err;
3975 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
3976 if (!ext4_kset)
3977 goto out4;
3978 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
3979 err = init_ext4_mballoc();
3980 if (err)
3981 goto out3;
3982
3983 err = init_ext4_xattr();
3984 if (err)
3985 goto out2;
3986 err = init_inodecache();
3987 if (err)
3988 goto out1;
3989 err = register_filesystem(&ext4_fs_type);
3990 if (err)
3991 goto out;
3992 #ifdef CONFIG_EXT4DEV_COMPAT
3993 err = register_filesystem(&ext4dev_fs_type);
3994 if (err) {
3995 unregister_filesystem(&ext4_fs_type);
3996 goto out;
3997 }
3998 #endif
3999 return 0;
4000 out:
4001 destroy_inodecache();
4002 out1:
4003 exit_ext4_xattr();
4004 out2:
4005 exit_ext4_mballoc();
4006 out3:
4007 remove_proc_entry("fs/ext4", NULL);
4008 kset_unregister(ext4_kset);
4009 out4:
4010 exit_ext4_system_zone();
4011 return err;
4012 }
4013
4014 static void __exit exit_ext4_fs(void)
4015 {
4016 unregister_filesystem(&ext4_fs_type);
4017 #ifdef CONFIG_EXT4DEV_COMPAT
4018 unregister_filesystem(&ext4dev_fs_type);
4019 #endif
4020 destroy_inodecache();
4021 exit_ext4_xattr();
4022 exit_ext4_mballoc();
4023 remove_proc_entry("fs/ext4", NULL);
4024 kset_unregister(ext4_kset);
4025 exit_ext4_system_zone();
4026 }
4027
4028 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4029 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4030 MODULE_LICENSE("GPL");
4031 module_init(init_ext4_fs)
4032 module_exit(exit_ext4_fs)
This page took 0.114698 seconds and 6 git commands to generate.