Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 return page;
73 }
74
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77 switch (type) {
78 case META_NAT:
79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80 case META_SIT:
81 return SIT_BLK_CNT(sbi);
82 case META_SSA:
83 case META_CP:
84 return 0;
85 default:
86 BUG();
87 }
88 }
89
90 /*
91 * Readahead CP/NAT/SIT/SSA pages
92 */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95 block_t prev_blk_addr = 0;
96 struct page *page;
97 int blkno = start;
98 int max_blks = get_max_meta_blks(sbi, type);
99
100 struct f2fs_io_info fio = {
101 .type = META,
102 .rw = READ_SYNC | REQ_META | REQ_PRIO
103 };
104
105 for (; nrpages-- > 0; blkno++) {
106 block_t blk_addr;
107
108 switch (type) {
109 case META_NAT:
110 /* get nat block addr */
111 if (unlikely(blkno >= max_blks))
112 blkno = 0;
113 blk_addr = current_nat_addr(sbi,
114 blkno * NAT_ENTRY_PER_BLOCK);
115 break;
116 case META_SIT:
117 /* get sit block addr */
118 if (unlikely(blkno >= max_blks))
119 goto out;
120 blk_addr = current_sit_addr(sbi,
121 blkno * SIT_ENTRY_PER_BLOCK);
122 if (blkno != start && prev_blk_addr + 1 != blk_addr)
123 goto out;
124 prev_blk_addr = blk_addr;
125 break;
126 case META_SSA:
127 case META_CP:
128 /* get ssa/cp block addr */
129 blk_addr = blkno;
130 break;
131 default:
132 BUG();
133 }
134
135 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136 if (!page)
137 continue;
138 if (PageUptodate(page)) {
139 f2fs_put_page(page, 1);
140 continue;
141 }
142
143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144 f2fs_put_page(page, 0);
145 }
146 out:
147 f2fs_submit_merged_bio(sbi, META, READ);
148 return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152 struct writeback_control *wbc)
153 {
154 struct inode *inode = page->mapping->host;
155 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157 trace_f2fs_writepage(page, META);
158
159 if (unlikely(sbi->por_doing))
160 goto redirty_out;
161 if (wbc->for_reclaim)
162 goto redirty_out;
163
164 /* Should not write any meta pages, if any IO error was occurred */
165 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
166 goto no_write;
167
168 f2fs_wait_on_page_writeback(page, META);
169 write_meta_page(sbi, page);
170 no_write:
171 dec_page_count(sbi, F2FS_DIRTY_META);
172 unlock_page(page);
173 return 0;
174
175 redirty_out:
176 redirty_page_for_writepage(wbc, page);
177 return AOP_WRITEPAGE_ACTIVATE;
178 }
179
180 static int f2fs_write_meta_pages(struct address_space *mapping,
181 struct writeback_control *wbc)
182 {
183 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
184 long diff, written;
185
186 trace_f2fs_writepages(mapping->host, wbc, META);
187
188 /* collect a number of dirty meta pages and write together */
189 if (wbc->for_kupdate ||
190 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
191 goto skip_write;
192
193 /* if mounting is failed, skip writing node pages */
194 mutex_lock(&sbi->cp_mutex);
195 diff = nr_pages_to_write(sbi, META, wbc);
196 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
197 mutex_unlock(&sbi->cp_mutex);
198 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
199 return 0;
200
201 skip_write:
202 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
203 return 0;
204 }
205
206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
207 long nr_to_write)
208 {
209 struct address_space *mapping = META_MAPPING(sbi);
210 pgoff_t index = 0, end = LONG_MAX;
211 struct pagevec pvec;
212 long nwritten = 0;
213 struct writeback_control wbc = {
214 .for_reclaim = 0,
215 };
216
217 pagevec_init(&pvec, 0);
218
219 while (index <= end) {
220 int i, nr_pages;
221 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
222 PAGECACHE_TAG_DIRTY,
223 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
224 if (unlikely(nr_pages == 0))
225 break;
226
227 for (i = 0; i < nr_pages; i++) {
228 struct page *page = pvec.pages[i];
229
230 lock_page(page);
231
232 if (unlikely(page->mapping != mapping)) {
233 continue_unlock:
234 unlock_page(page);
235 continue;
236 }
237 if (!PageDirty(page)) {
238 /* someone wrote it for us */
239 goto continue_unlock;
240 }
241
242 if (!clear_page_dirty_for_io(page))
243 goto continue_unlock;
244
245 if (f2fs_write_meta_page(page, &wbc)) {
246 unlock_page(page);
247 break;
248 }
249 nwritten++;
250 if (unlikely(nwritten >= nr_to_write))
251 break;
252 }
253 pagevec_release(&pvec);
254 cond_resched();
255 }
256
257 if (nwritten)
258 f2fs_submit_merged_bio(sbi, type, WRITE);
259
260 return nwritten;
261 }
262
263 static int f2fs_set_meta_page_dirty(struct page *page)
264 {
265 struct address_space *mapping = page->mapping;
266 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
267
268 trace_f2fs_set_page_dirty(page, META);
269
270 SetPageUptodate(page);
271 if (!PageDirty(page)) {
272 __set_page_dirty_nobuffers(page);
273 inc_page_count(sbi, F2FS_DIRTY_META);
274 return 1;
275 }
276 return 0;
277 }
278
279 const struct address_space_operations f2fs_meta_aops = {
280 .writepage = f2fs_write_meta_page,
281 .writepages = f2fs_write_meta_pages,
282 .set_page_dirty = f2fs_set_meta_page_dirty,
283 };
284
285 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
286 {
287 int err = 0;
288
289 spin_lock(&sbi->orphan_inode_lock);
290 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
291 err = -ENOSPC;
292 else
293 sbi->n_orphans++;
294 spin_unlock(&sbi->orphan_inode_lock);
295
296 return err;
297 }
298
299 void release_orphan_inode(struct f2fs_sb_info *sbi)
300 {
301 spin_lock(&sbi->orphan_inode_lock);
302 f2fs_bug_on(sbi->n_orphans == 0);
303 sbi->n_orphans--;
304 spin_unlock(&sbi->orphan_inode_lock);
305 }
306
307 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
308 {
309 struct list_head *head;
310 struct orphan_inode_entry *new, *orphan;
311
312 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
313 new->ino = ino;
314
315 spin_lock(&sbi->orphan_inode_lock);
316 head = &sbi->orphan_inode_list;
317 list_for_each_entry(orphan, head, list) {
318 if (orphan->ino == ino) {
319 spin_unlock(&sbi->orphan_inode_lock);
320 kmem_cache_free(orphan_entry_slab, new);
321 return;
322 }
323
324 if (orphan->ino > ino)
325 break;
326 }
327
328 /* add new orphan entry into list which is sorted by inode number */
329 list_add_tail(&new->list, &orphan->list);
330 spin_unlock(&sbi->orphan_inode_lock);
331 }
332
333 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
334 {
335 struct list_head *head;
336 struct orphan_inode_entry *orphan;
337
338 spin_lock(&sbi->orphan_inode_lock);
339 head = &sbi->orphan_inode_list;
340 list_for_each_entry(orphan, head, list) {
341 if (orphan->ino == ino) {
342 list_del(&orphan->list);
343 f2fs_bug_on(sbi->n_orphans == 0);
344 sbi->n_orphans--;
345 spin_unlock(&sbi->orphan_inode_lock);
346 kmem_cache_free(orphan_entry_slab, orphan);
347 return;
348 }
349 }
350 spin_unlock(&sbi->orphan_inode_lock);
351 }
352
353 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
354 {
355 struct inode *inode = f2fs_iget(sbi->sb, ino);
356 f2fs_bug_on(IS_ERR(inode));
357 clear_nlink(inode);
358
359 /* truncate all the data during iput */
360 iput(inode);
361 }
362
363 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
364 {
365 block_t start_blk, orphan_blkaddr, i, j;
366
367 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
368 return;
369
370 sbi->por_doing = true;
371
372 start_blk = __start_cp_addr(sbi) + 1 +
373 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
374 orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378 for (i = 0; i < orphan_blkaddr; i++) {
379 struct page *page = get_meta_page(sbi, start_blk + i);
380 struct f2fs_orphan_block *orphan_blk;
381
382 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385 recover_orphan_inode(sbi, ino);
386 }
387 f2fs_put_page(page, 1);
388 }
389 /* clear Orphan Flag */
390 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391 sbi->por_doing = false;
392 return;
393 }
394
395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396 {
397 struct list_head *head;
398 struct f2fs_orphan_block *orphan_blk = NULL;
399 unsigned int nentries = 0;
400 unsigned short index;
401 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403 struct page *page = NULL;
404 struct orphan_inode_entry *orphan = NULL;
405
406 for (index = 0; index < orphan_blocks; index++)
407 grab_meta_page(sbi, start_blk + index);
408
409 index = 1;
410 spin_lock(&sbi->orphan_inode_lock);
411 head = &sbi->orphan_inode_list;
412
413 /* loop for each orphan inode entry and write them in Jornal block */
414 list_for_each_entry(orphan, head, list) {
415 if (!page) {
416 page = find_get_page(META_MAPPING(sbi), start_blk++);
417 f2fs_bug_on(!page);
418 orphan_blk =
419 (struct f2fs_orphan_block *)page_address(page);
420 memset(orphan_blk, 0, sizeof(*orphan_blk));
421 f2fs_put_page(page, 0);
422 }
423
424 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427 /*
428 * an orphan block is full of 1020 entries,
429 * then we need to flush current orphan blocks
430 * and bring another one in memory
431 */
432 orphan_blk->blk_addr = cpu_to_le16(index);
433 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434 orphan_blk->entry_count = cpu_to_le32(nentries);
435 set_page_dirty(page);
436 f2fs_put_page(page, 1);
437 index++;
438 nentries = 0;
439 page = NULL;
440 }
441 }
442
443 if (page) {
444 orphan_blk->blk_addr = cpu_to_le16(index);
445 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446 orphan_blk->entry_count = cpu_to_le32(nentries);
447 set_page_dirty(page);
448 f2fs_put_page(page, 1);
449 }
450
451 spin_unlock(&sbi->orphan_inode_lock);
452 }
453
454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455 block_t cp_addr, unsigned long long *version)
456 {
457 struct page *cp_page_1, *cp_page_2 = NULL;
458 unsigned long blk_size = sbi->blocksize;
459 struct f2fs_checkpoint *cp_block;
460 unsigned long long cur_version = 0, pre_version = 0;
461 size_t crc_offset;
462 __u32 crc = 0;
463
464 /* Read the 1st cp block in this CP pack */
465 cp_page_1 = get_meta_page(sbi, cp_addr);
466
467 /* get the version number */
468 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469 crc_offset = le32_to_cpu(cp_block->checksum_offset);
470 if (crc_offset >= blk_size)
471 goto invalid_cp1;
472
473 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475 goto invalid_cp1;
476
477 pre_version = cur_cp_version(cp_block);
478
479 /* Read the 2nd cp block in this CP pack */
480 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481 cp_page_2 = get_meta_page(sbi, cp_addr);
482
483 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484 crc_offset = le32_to_cpu(cp_block->checksum_offset);
485 if (crc_offset >= blk_size)
486 goto invalid_cp2;
487
488 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490 goto invalid_cp2;
491
492 cur_version = cur_cp_version(cp_block);
493
494 if (cur_version == pre_version) {
495 *version = cur_version;
496 f2fs_put_page(cp_page_2, 1);
497 return cp_page_1;
498 }
499 invalid_cp2:
500 f2fs_put_page(cp_page_2, 1);
501 invalid_cp1:
502 f2fs_put_page(cp_page_1, 1);
503 return NULL;
504 }
505
506 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507 {
508 struct f2fs_checkpoint *cp_block;
509 struct f2fs_super_block *fsb = sbi->raw_super;
510 struct page *cp1, *cp2, *cur_page;
511 unsigned long blk_size = sbi->blocksize;
512 unsigned long long cp1_version = 0, cp2_version = 0;
513 unsigned long long cp_start_blk_no;
514 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
515 block_t cp_blk_no;
516 int i;
517
518 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
519 if (!sbi->ckpt)
520 return -ENOMEM;
521 /*
522 * Finding out valid cp block involves read both
523 * sets( cp pack1 and cp pack 2)
524 */
525 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
526 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
527
528 /* The second checkpoint pack should start at the next segment */
529 cp_start_blk_no += ((unsigned long long)1) <<
530 le32_to_cpu(fsb->log_blocks_per_seg);
531 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
532
533 if (cp1 && cp2) {
534 if (ver_after(cp2_version, cp1_version))
535 cur_page = cp2;
536 else
537 cur_page = cp1;
538 } else if (cp1) {
539 cur_page = cp1;
540 } else if (cp2) {
541 cur_page = cp2;
542 } else {
543 goto fail_no_cp;
544 }
545
546 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
547 memcpy(sbi->ckpt, cp_block, blk_size);
548
549 if (cp_blks <= 1)
550 goto done;
551
552 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
553 if (cur_page == cp2)
554 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
555
556 for (i = 1; i < cp_blks; i++) {
557 void *sit_bitmap_ptr;
558 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
559
560 cur_page = get_meta_page(sbi, cp_blk_no + i);
561 sit_bitmap_ptr = page_address(cur_page);
562 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
563 f2fs_put_page(cur_page, 1);
564 }
565 done:
566 f2fs_put_page(cp1, 1);
567 f2fs_put_page(cp2, 1);
568 return 0;
569
570 fail_no_cp:
571 kfree(sbi->ckpt);
572 return -EINVAL;
573 }
574
575 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
576 {
577 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
578
579 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
580 return -EEXIST;
581
582 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
583 F2FS_I(inode)->dirty_dir = new;
584 list_add_tail(&new->list, &sbi->dir_inode_list);
585 stat_inc_dirty_dir(sbi);
586 return 0;
587 }
588
589 void set_dirty_dir_page(struct inode *inode, struct page *page)
590 {
591 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
592 struct dir_inode_entry *new;
593 int ret = 0;
594
595 if (!S_ISDIR(inode->i_mode))
596 return;
597
598 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
599 new->inode = inode;
600 INIT_LIST_HEAD(&new->list);
601
602 spin_lock(&sbi->dir_inode_lock);
603 ret = __add_dirty_inode(inode, new);
604 inode_inc_dirty_dents(inode);
605 SetPagePrivate(page);
606 spin_unlock(&sbi->dir_inode_lock);
607
608 if (ret)
609 kmem_cache_free(inode_entry_slab, new);
610 }
611
612 void add_dirty_dir_inode(struct inode *inode)
613 {
614 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
615 struct dir_inode_entry *new =
616 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
617 int ret = 0;
618
619 new->inode = inode;
620 INIT_LIST_HEAD(&new->list);
621
622 spin_lock(&sbi->dir_inode_lock);
623 ret = __add_dirty_inode(inode, new);
624 spin_unlock(&sbi->dir_inode_lock);
625
626 if (ret)
627 kmem_cache_free(inode_entry_slab, new);
628 }
629
630 void remove_dirty_dir_inode(struct inode *inode)
631 {
632 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
633 struct dir_inode_entry *entry;
634
635 if (!S_ISDIR(inode->i_mode))
636 return;
637
638 spin_lock(&sbi->dir_inode_lock);
639 if (get_dirty_dents(inode) ||
640 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
641 spin_unlock(&sbi->dir_inode_lock);
642 return;
643 }
644
645 entry = F2FS_I(inode)->dirty_dir;
646 list_del(&entry->list);
647 F2FS_I(inode)->dirty_dir = NULL;
648 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
649 stat_dec_dirty_dir(sbi);
650 spin_unlock(&sbi->dir_inode_lock);
651 kmem_cache_free(inode_entry_slab, entry);
652
653 /* Only from the recovery routine */
654 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
655 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
656 iput(inode);
657 }
658 }
659
660 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
661 {
662 struct list_head *head;
663 struct dir_inode_entry *entry;
664 struct inode *inode;
665 retry:
666 spin_lock(&sbi->dir_inode_lock);
667
668 head = &sbi->dir_inode_list;
669 if (list_empty(head)) {
670 spin_unlock(&sbi->dir_inode_lock);
671 return;
672 }
673 entry = list_entry(head->next, struct dir_inode_entry, list);
674 inode = igrab(entry->inode);
675 spin_unlock(&sbi->dir_inode_lock);
676 if (inode) {
677 filemap_fdatawrite(inode->i_mapping);
678 iput(inode);
679 } else {
680 /*
681 * We should submit bio, since it exists several
682 * wribacking dentry pages in the freeing inode.
683 */
684 f2fs_submit_merged_bio(sbi, DATA, WRITE);
685 }
686 goto retry;
687 }
688
689 /*
690 * Freeze all the FS-operations for checkpoint.
691 */
692 static void block_operations(struct f2fs_sb_info *sbi)
693 {
694 struct writeback_control wbc = {
695 .sync_mode = WB_SYNC_ALL,
696 .nr_to_write = LONG_MAX,
697 .for_reclaim = 0,
698 };
699 struct blk_plug plug;
700
701 blk_start_plug(&plug);
702
703 retry_flush_dents:
704 f2fs_lock_all(sbi);
705 /* write all the dirty dentry pages */
706 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
707 f2fs_unlock_all(sbi);
708 sync_dirty_dir_inodes(sbi);
709 goto retry_flush_dents;
710 }
711
712 /*
713 * POR: we should ensure that there is no dirty node pages
714 * until finishing nat/sit flush.
715 */
716 retry_flush_nodes:
717 mutex_lock(&sbi->node_write);
718
719 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
720 mutex_unlock(&sbi->node_write);
721 sync_node_pages(sbi, 0, &wbc);
722 goto retry_flush_nodes;
723 }
724 blk_finish_plug(&plug);
725 }
726
727 static void unblock_operations(struct f2fs_sb_info *sbi)
728 {
729 mutex_unlock(&sbi->node_write);
730 f2fs_unlock_all(sbi);
731 }
732
733 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
734 {
735 DEFINE_WAIT(wait);
736
737 for (;;) {
738 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
739
740 if (!get_pages(sbi, F2FS_WRITEBACK))
741 break;
742
743 io_schedule();
744 }
745 finish_wait(&sbi->cp_wait, &wait);
746 }
747
748 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
749 {
750 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
751 nid_t last_nid = 0;
752 block_t start_blk;
753 struct page *cp_page;
754 unsigned int data_sum_blocks, orphan_blocks;
755 __u32 crc32 = 0;
756 void *kaddr;
757 int i;
758 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
759
760 /*
761 * This avoids to conduct wrong roll-forward operations and uses
762 * metapages, so should be called prior to sync_meta_pages below.
763 */
764 discard_next_dnode(sbi);
765
766 /* Flush all the NAT/SIT pages */
767 while (get_pages(sbi, F2FS_DIRTY_META))
768 sync_meta_pages(sbi, META, LONG_MAX);
769
770 next_free_nid(sbi, &last_nid);
771
772 /*
773 * modify checkpoint
774 * version number is already updated
775 */
776 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
777 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
778 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
779 for (i = 0; i < 3; i++) {
780 ckpt->cur_node_segno[i] =
781 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
782 ckpt->cur_node_blkoff[i] =
783 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
784 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
785 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
786 }
787 for (i = 0; i < 3; i++) {
788 ckpt->cur_data_segno[i] =
789 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
790 ckpt->cur_data_blkoff[i] =
791 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
792 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
793 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
794 }
795
796 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
797 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
798 ckpt->next_free_nid = cpu_to_le32(last_nid);
799
800 /* 2 cp + n data seg summary + orphan inode blocks */
801 data_sum_blocks = npages_for_summary_flush(sbi);
802 if (data_sum_blocks < 3)
803 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
804 else
805 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
806
807 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
808 / F2FS_ORPHANS_PER_BLOCK;
809 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
810 orphan_blocks);
811
812 if (is_umount) {
813 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
814 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
815 cp_payload_blks + data_sum_blocks +
816 orphan_blocks + NR_CURSEG_NODE_TYPE);
817 } else {
818 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
819 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
820 cp_payload_blks + data_sum_blocks +
821 orphan_blocks);
822 }
823
824 if (sbi->n_orphans)
825 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
826 else
827 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
828
829 /* update SIT/NAT bitmap */
830 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
831 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
832
833 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
834 *((__le32 *)((unsigned char *)ckpt +
835 le32_to_cpu(ckpt->checksum_offset)))
836 = cpu_to_le32(crc32);
837
838 start_blk = __start_cp_addr(sbi);
839
840 /* write out checkpoint buffer at block 0 */
841 cp_page = grab_meta_page(sbi, start_blk++);
842 kaddr = page_address(cp_page);
843 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
844 set_page_dirty(cp_page);
845 f2fs_put_page(cp_page, 1);
846
847 for (i = 1; i < 1 + cp_payload_blks; i++) {
848 cp_page = grab_meta_page(sbi, start_blk++);
849 kaddr = page_address(cp_page);
850 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
851 (1 << sbi->log_blocksize));
852 set_page_dirty(cp_page);
853 f2fs_put_page(cp_page, 1);
854 }
855
856 if (sbi->n_orphans) {
857 write_orphan_inodes(sbi, start_blk);
858 start_blk += orphan_blocks;
859 }
860
861 write_data_summaries(sbi, start_blk);
862 start_blk += data_sum_blocks;
863 if (is_umount) {
864 write_node_summaries(sbi, start_blk);
865 start_blk += NR_CURSEG_NODE_TYPE;
866 }
867
868 /* writeout checkpoint block */
869 cp_page = grab_meta_page(sbi, start_blk);
870 kaddr = page_address(cp_page);
871 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
872 set_page_dirty(cp_page);
873 f2fs_put_page(cp_page, 1);
874
875 /* wait for previous submitted node/meta pages writeback */
876 wait_on_all_pages_writeback(sbi);
877
878 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
879 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
880
881 /* update user_block_counts */
882 sbi->last_valid_block_count = sbi->total_valid_block_count;
883 sbi->alloc_valid_block_count = 0;
884
885 /* Here, we only have one bio having CP pack */
886 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
887
888 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
889 clear_prefree_segments(sbi);
890 F2FS_RESET_SB_DIRT(sbi);
891 }
892 }
893
894 /*
895 * We guarantee that this checkpoint procedure should not fail.
896 */
897 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
898 {
899 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
900 unsigned long long ckpt_ver;
901
902 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
903
904 mutex_lock(&sbi->cp_mutex);
905 block_operations(sbi);
906
907 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
908
909 f2fs_submit_merged_bio(sbi, DATA, WRITE);
910 f2fs_submit_merged_bio(sbi, NODE, WRITE);
911 f2fs_submit_merged_bio(sbi, META, WRITE);
912
913 /*
914 * update checkpoint pack index
915 * Increase the version number so that
916 * SIT entries and seg summaries are written at correct place
917 */
918 ckpt_ver = cur_cp_version(ckpt);
919 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
920
921 /* write cached NAT/SIT entries to NAT/SIT area */
922 flush_nat_entries(sbi);
923 flush_sit_entries(sbi);
924
925 /* unlock all the fs_lock[] in do_checkpoint() */
926 do_checkpoint(sbi, is_umount);
927
928 unblock_operations(sbi);
929 mutex_unlock(&sbi->cp_mutex);
930
931 stat_inc_cp_count(sbi->stat_info);
932 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
933 }
934
935 void init_orphan_info(struct f2fs_sb_info *sbi)
936 {
937 spin_lock_init(&sbi->orphan_inode_lock);
938 INIT_LIST_HEAD(&sbi->orphan_inode_list);
939 sbi->n_orphans = 0;
940 /*
941 * considering 512 blocks in a segment 8 blocks are needed for cp
942 * and log segment summaries. Remaining blocks are used to keep
943 * orphan entries with the limitation one reserved segment
944 * for cp pack we can have max 1020*504 orphan entries
945 */
946 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
947 * F2FS_ORPHANS_PER_BLOCK;
948 }
949
950 int __init create_checkpoint_caches(void)
951 {
952 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
953 sizeof(struct orphan_inode_entry));
954 if (!orphan_entry_slab)
955 return -ENOMEM;
956 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
957 sizeof(struct dir_inode_entry));
958 if (!inode_entry_slab) {
959 kmem_cache_destroy(orphan_entry_slab);
960 return -ENOMEM;
961 }
962 return 0;
963 }
964
965 void destroy_checkpoint_caches(void)
966 {
967 kmem_cache_destroy(orphan_entry_slab);
968 kmem_cache_destroy(inode_entry_slab);
969 }
This page took 0.053251 seconds and 5 git commands to generate.