f2fs: use bool for booleans
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
46 }
47
48 /*
49 * We guarantee no failure on the returned page.
50 */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
60 }
61 if (PageUptodate(page))
62 goto out;
63
64 if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 goto repeat;
66
67 lock_page(page);
68 if (page->mapping != mapping) {
69 f2fs_put_page(page, 1);
70 goto repeat;
71 }
72 out:
73 mark_page_accessed(page);
74 return page;
75 }
76
77 static int f2fs_write_meta_page(struct page *page,
78 struct writeback_control *wbc)
79 {
80 struct inode *inode = page->mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc->for_reclaim || sbi->por_doing ||
85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 dec_page_count(sbi, F2FS_DIRTY_META);
87 wbc->pages_skipped++;
88 set_page_dirty(page);
89 return AOP_WRITEPAGE_ACTIVATE;
90 }
91
92 wait_on_page_writeback(page);
93
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
98 }
99
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 struct writeback_control *wbc)
102 {
103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 struct block_device *bdev = sbi->sb->s_bdev;
105 long written;
106
107 if (wbc->for_kupdate)
108 return 0;
109
110 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 return 0;
112
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi->cp_mutex);
115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 mutex_unlock(&sbi->cp_mutex);
117 wbc->nr_to_write -= written;
118 return 0;
119 }
120
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 long nr_to_write)
123 {
124 struct address_space *mapping = sbi->meta_inode->i_mapping;
125 pgoff_t index = 0, end = LONG_MAX;
126 struct pagevec pvec;
127 long nwritten = 0;
128 struct writeback_control wbc = {
129 .for_reclaim = 0,
130 };
131
132 pagevec_init(&pvec, 0);
133
134 while (index <= end) {
135 int i, nr_pages;
136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 PAGECACHE_TAG_DIRTY,
138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 if (nr_pages == 0)
140 break;
141
142 for (i = 0; i < nr_pages; i++) {
143 struct page *page = pvec.pages[i];
144 lock_page(page);
145 BUG_ON(page->mapping != mapping);
146 BUG_ON(!PageDirty(page));
147 clear_page_dirty_for_io(page);
148 if (f2fs_write_meta_page(page, &wbc)) {
149 unlock_page(page);
150 break;
151 }
152 if (nwritten++ >= nr_to_write)
153 break;
154 }
155 pagevec_release(&pvec);
156 cond_resched();
157 }
158
159 if (nwritten)
160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162 return nwritten;
163 }
164
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167 struct address_space *mapping = page->mapping;
168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
170 SetPageUptodate(page);
171 if (!PageDirty(page)) {
172 __set_page_dirty_nobuffers(page);
173 inc_page_count(sbi, F2FS_DIRTY_META);
174 return 1;
175 }
176 return 0;
177 }
178
179 const struct address_space_operations f2fs_meta_aops = {
180 .writepage = f2fs_write_meta_page,
181 .writepages = f2fs_write_meta_pages,
182 .set_page_dirty = f2fs_set_meta_page_dirty,
183 };
184
185 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
186 {
187 unsigned int max_orphans;
188 int err = 0;
189
190 /*
191 * considering 512 blocks in a segment 5 blocks are needed for cp
192 * and log segment summaries. Remaining blocks are used to keep
193 * orphan entries with the limitation one reserved segment
194 * for cp pack we can have max 1020*507 orphan entries
195 */
196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197 mutex_lock(&sbi->orphan_inode_mutex);
198 if (sbi->n_orphans >= max_orphans)
199 err = -ENOSPC;
200 else
201 sbi->n_orphans++;
202 mutex_unlock(&sbi->orphan_inode_mutex);
203 return err;
204 }
205
206 void release_orphan_inode(struct f2fs_sb_info *sbi)
207 {
208 mutex_lock(&sbi->orphan_inode_mutex);
209 BUG_ON(sbi->n_orphans == 0);
210 sbi->n_orphans--;
211 mutex_unlock(&sbi->orphan_inode_mutex);
212 }
213
214 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
215 {
216 struct list_head *head, *this;
217 struct orphan_inode_entry *new = NULL, *orphan = NULL;
218
219 mutex_lock(&sbi->orphan_inode_mutex);
220 head = &sbi->orphan_inode_list;
221 list_for_each(this, head) {
222 orphan = list_entry(this, struct orphan_inode_entry, list);
223 if (orphan->ino == ino)
224 goto out;
225 if (orphan->ino > ino)
226 break;
227 orphan = NULL;
228 }
229
230 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
231 new->ino = ino;
232
233 /* add new_oentry into list which is sorted by inode number */
234 if (orphan)
235 list_add(&new->list, this->prev);
236 else
237 list_add_tail(&new->list, head);
238 out:
239 mutex_unlock(&sbi->orphan_inode_mutex);
240 }
241
242 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
243 {
244 struct list_head *head;
245 struct orphan_inode_entry *orphan;
246
247 mutex_lock(&sbi->orphan_inode_mutex);
248 head = &sbi->orphan_inode_list;
249 list_for_each_entry(orphan, head, list) {
250 if (orphan->ino == ino) {
251 list_del(&orphan->list);
252 kmem_cache_free(orphan_entry_slab, orphan);
253 BUG_ON(sbi->n_orphans == 0);
254 sbi->n_orphans--;
255 break;
256 }
257 }
258 mutex_unlock(&sbi->orphan_inode_mutex);
259 }
260
261 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
262 {
263 struct inode *inode = f2fs_iget(sbi->sb, ino);
264 BUG_ON(IS_ERR(inode));
265 clear_nlink(inode);
266
267 /* truncate all the data during iput */
268 iput(inode);
269 }
270
271 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
272 {
273 block_t start_blk, orphan_blkaddr, i, j;
274
275 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
276 return 0;
277
278 sbi->por_doing = true;
279 start_blk = __start_cp_addr(sbi) + 1;
280 orphan_blkaddr = __start_sum_addr(sbi) - 1;
281
282 for (i = 0; i < orphan_blkaddr; i++) {
283 struct page *page = get_meta_page(sbi, start_blk + i);
284 struct f2fs_orphan_block *orphan_blk;
285
286 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
287 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
288 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
289 recover_orphan_inode(sbi, ino);
290 }
291 f2fs_put_page(page, 1);
292 }
293 /* clear Orphan Flag */
294 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
295 sbi->por_doing = false;
296 return 0;
297 }
298
299 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
300 {
301 struct list_head *head, *this, *next;
302 struct f2fs_orphan_block *orphan_blk = NULL;
303 struct page *page = NULL;
304 unsigned int nentries = 0;
305 unsigned short index = 1;
306 unsigned short orphan_blocks;
307
308 orphan_blocks = (unsigned short)((sbi->n_orphans +
309 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
310
311 mutex_lock(&sbi->orphan_inode_mutex);
312 head = &sbi->orphan_inode_list;
313
314 /* loop for each orphan inode entry and write them in Jornal block */
315 list_for_each_safe(this, next, head) {
316 struct orphan_inode_entry *orphan;
317
318 orphan = list_entry(this, struct orphan_inode_entry, list);
319
320 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
321 /*
322 * an orphan block is full of 1020 entries,
323 * then we need to flush current orphan blocks
324 * and bring another one in memory
325 */
326 orphan_blk->blk_addr = cpu_to_le16(index);
327 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
328 orphan_blk->entry_count = cpu_to_le32(nentries);
329 set_page_dirty(page);
330 f2fs_put_page(page, 1);
331 index++;
332 start_blk++;
333 nentries = 0;
334 page = NULL;
335 }
336 if (page)
337 goto page_exist;
338
339 page = grab_meta_page(sbi, start_blk);
340 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
341 memset(orphan_blk, 0, sizeof(*orphan_blk));
342 page_exist:
343 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
344 }
345 if (!page)
346 goto end;
347
348 orphan_blk->blk_addr = cpu_to_le16(index);
349 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
350 orphan_blk->entry_count = cpu_to_le32(nentries);
351 set_page_dirty(page);
352 f2fs_put_page(page, 1);
353 end:
354 mutex_unlock(&sbi->orphan_inode_mutex);
355 }
356
357 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
358 block_t cp_addr, unsigned long long *version)
359 {
360 struct page *cp_page_1, *cp_page_2 = NULL;
361 unsigned long blk_size = sbi->blocksize;
362 struct f2fs_checkpoint *cp_block;
363 unsigned long long cur_version = 0, pre_version = 0;
364 size_t crc_offset;
365 __u32 crc = 0;
366
367 /* Read the 1st cp block in this CP pack */
368 cp_page_1 = get_meta_page(sbi, cp_addr);
369
370 /* get the version number */
371 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
372 crc_offset = le32_to_cpu(cp_block->checksum_offset);
373 if (crc_offset >= blk_size)
374 goto invalid_cp1;
375
376 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
377 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
378 goto invalid_cp1;
379
380 pre_version = cur_cp_version(cp_block);
381
382 /* Read the 2nd cp block in this CP pack */
383 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
384 cp_page_2 = get_meta_page(sbi, cp_addr);
385
386 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
387 crc_offset = le32_to_cpu(cp_block->checksum_offset);
388 if (crc_offset >= blk_size)
389 goto invalid_cp2;
390
391 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
392 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
393 goto invalid_cp2;
394
395 cur_version = cur_cp_version(cp_block);
396
397 if (cur_version == pre_version) {
398 *version = cur_version;
399 f2fs_put_page(cp_page_2, 1);
400 return cp_page_1;
401 }
402 invalid_cp2:
403 f2fs_put_page(cp_page_2, 1);
404 invalid_cp1:
405 f2fs_put_page(cp_page_1, 1);
406 return NULL;
407 }
408
409 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
410 {
411 struct f2fs_checkpoint *cp_block;
412 struct f2fs_super_block *fsb = sbi->raw_super;
413 struct page *cp1, *cp2, *cur_page;
414 unsigned long blk_size = sbi->blocksize;
415 unsigned long long cp1_version = 0, cp2_version = 0;
416 unsigned long long cp_start_blk_no;
417
418 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
419 if (!sbi->ckpt)
420 return -ENOMEM;
421 /*
422 * Finding out valid cp block involves read both
423 * sets( cp pack1 and cp pack 2)
424 */
425 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
426 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
427
428 /* The second checkpoint pack should start at the next segment */
429 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
430 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
431
432 if (cp1 && cp2) {
433 if (ver_after(cp2_version, cp1_version))
434 cur_page = cp2;
435 else
436 cur_page = cp1;
437 } else if (cp1) {
438 cur_page = cp1;
439 } else if (cp2) {
440 cur_page = cp2;
441 } else {
442 goto fail_no_cp;
443 }
444
445 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
446 memcpy(sbi->ckpt, cp_block, blk_size);
447
448 f2fs_put_page(cp1, 1);
449 f2fs_put_page(cp2, 1);
450 return 0;
451
452 fail_no_cp:
453 kfree(sbi->ckpt);
454 return -EINVAL;
455 }
456
457 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
458 {
459 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
460 struct list_head *head = &sbi->dir_inode_list;
461 struct list_head *this;
462
463 list_for_each(this, head) {
464 struct dir_inode_entry *entry;
465 entry = list_entry(this, struct dir_inode_entry, list);
466 if (entry->inode == inode)
467 return -EEXIST;
468 }
469 list_add_tail(&new->list, head);
470 stat_inc_dirty_dir(sbi);
471 return 0;
472 }
473
474 void set_dirty_dir_page(struct inode *inode, struct page *page)
475 {
476 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
477 struct dir_inode_entry *new;
478
479 if (!S_ISDIR(inode->i_mode))
480 return;
481
482 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
483 new->inode = inode;
484 INIT_LIST_HEAD(&new->list);
485
486 spin_lock(&sbi->dir_inode_lock);
487 if (__add_dirty_inode(inode, new))
488 kmem_cache_free(inode_entry_slab, new);
489
490 inc_page_count(sbi, F2FS_DIRTY_DENTS);
491 inode_inc_dirty_dents(inode);
492 SetPagePrivate(page);
493 spin_unlock(&sbi->dir_inode_lock);
494 }
495
496 void add_dirty_dir_inode(struct inode *inode)
497 {
498 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
499 struct dir_inode_entry *new =
500 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
501
502 new->inode = inode;
503 INIT_LIST_HEAD(&new->list);
504
505 spin_lock(&sbi->dir_inode_lock);
506 if (__add_dirty_inode(inode, new))
507 kmem_cache_free(inode_entry_slab, new);
508 spin_unlock(&sbi->dir_inode_lock);
509 }
510
511 void remove_dirty_dir_inode(struct inode *inode)
512 {
513 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
514 struct list_head *head = &sbi->dir_inode_list;
515 struct list_head *this;
516
517 if (!S_ISDIR(inode->i_mode))
518 return;
519
520 spin_lock(&sbi->dir_inode_lock);
521 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
522 spin_unlock(&sbi->dir_inode_lock);
523 return;
524 }
525
526 list_for_each(this, head) {
527 struct dir_inode_entry *entry;
528 entry = list_entry(this, struct dir_inode_entry, list);
529 if (entry->inode == inode) {
530 list_del(&entry->list);
531 kmem_cache_free(inode_entry_slab, entry);
532 stat_dec_dirty_dir(sbi);
533 break;
534 }
535 }
536 spin_unlock(&sbi->dir_inode_lock);
537
538 /* Only from the recovery routine */
539 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
540 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
541 iput(inode);
542 }
543 }
544
545 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
546 {
547 struct list_head *head = &sbi->dir_inode_list;
548 struct list_head *this;
549 struct inode *inode = NULL;
550
551 spin_lock(&sbi->dir_inode_lock);
552 list_for_each(this, head) {
553 struct dir_inode_entry *entry;
554 entry = list_entry(this, struct dir_inode_entry, list);
555 if (entry->inode->i_ino == ino) {
556 inode = entry->inode;
557 break;
558 }
559 }
560 spin_unlock(&sbi->dir_inode_lock);
561 return inode;
562 }
563
564 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
565 {
566 struct list_head *head = &sbi->dir_inode_list;
567 struct dir_inode_entry *entry;
568 struct inode *inode;
569 retry:
570 spin_lock(&sbi->dir_inode_lock);
571 if (list_empty(head)) {
572 spin_unlock(&sbi->dir_inode_lock);
573 return;
574 }
575 entry = list_entry(head->next, struct dir_inode_entry, list);
576 inode = igrab(entry->inode);
577 spin_unlock(&sbi->dir_inode_lock);
578 if (inode) {
579 filemap_flush(inode->i_mapping);
580 iput(inode);
581 } else {
582 /*
583 * We should submit bio, since it exists several
584 * wribacking dentry pages in the freeing inode.
585 */
586 f2fs_submit_bio(sbi, DATA, true);
587 }
588 goto retry;
589 }
590
591 /*
592 * Freeze all the FS-operations for checkpoint.
593 */
594 static void block_operations(struct f2fs_sb_info *sbi)
595 {
596 struct writeback_control wbc = {
597 .sync_mode = WB_SYNC_ALL,
598 .nr_to_write = LONG_MAX,
599 .for_reclaim = 0,
600 };
601 struct blk_plug plug;
602
603 blk_start_plug(&plug);
604
605 retry_flush_dents:
606 f2fs_lock_all(sbi);
607 /* write all the dirty dentry pages */
608 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
609 f2fs_unlock_all(sbi);
610 sync_dirty_dir_inodes(sbi);
611 goto retry_flush_dents;
612 }
613
614 /*
615 * POR: we should ensure that there is no dirty node pages
616 * until finishing nat/sit flush.
617 */
618 retry_flush_nodes:
619 mutex_lock(&sbi->node_write);
620
621 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
622 mutex_unlock(&sbi->node_write);
623 sync_node_pages(sbi, 0, &wbc);
624 goto retry_flush_nodes;
625 }
626 blk_finish_plug(&plug);
627 }
628
629 static void unblock_operations(struct f2fs_sb_info *sbi)
630 {
631 mutex_unlock(&sbi->node_write);
632 f2fs_unlock_all(sbi);
633 }
634
635 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
636 {
637 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
638 nid_t last_nid = 0;
639 block_t start_blk;
640 struct page *cp_page;
641 unsigned int data_sum_blocks, orphan_blocks;
642 __u32 crc32 = 0;
643 void *kaddr;
644 int i;
645
646 /* Flush all the NAT/SIT pages */
647 while (get_pages(sbi, F2FS_DIRTY_META))
648 sync_meta_pages(sbi, META, LONG_MAX);
649
650 next_free_nid(sbi, &last_nid);
651
652 /*
653 * modify checkpoint
654 * version number is already updated
655 */
656 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
657 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
658 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
659 for (i = 0; i < 3; i++) {
660 ckpt->cur_node_segno[i] =
661 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
662 ckpt->cur_node_blkoff[i] =
663 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
664 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
665 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
666 }
667 for (i = 0; i < 3; i++) {
668 ckpt->cur_data_segno[i] =
669 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
670 ckpt->cur_data_blkoff[i] =
671 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
672 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
673 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
674 }
675
676 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
677 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
678 ckpt->next_free_nid = cpu_to_le32(last_nid);
679
680 /* 2 cp + n data seg summary + orphan inode blocks */
681 data_sum_blocks = npages_for_summary_flush(sbi);
682 if (data_sum_blocks < 3)
683 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
684 else
685 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
686
687 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
688 / F2FS_ORPHANS_PER_BLOCK;
689 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
690
691 if (is_umount) {
692 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
693 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
694 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
695 } else {
696 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
697 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
698 data_sum_blocks + orphan_blocks);
699 }
700
701 if (sbi->n_orphans)
702 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
703 else
704 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
705
706 /* update SIT/NAT bitmap */
707 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
708 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
709
710 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
711 *((__le32 *)((unsigned char *)ckpt +
712 le32_to_cpu(ckpt->checksum_offset)))
713 = cpu_to_le32(crc32);
714
715 start_blk = __start_cp_addr(sbi);
716
717 /* write out checkpoint buffer at block 0 */
718 cp_page = grab_meta_page(sbi, start_blk++);
719 kaddr = page_address(cp_page);
720 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
721 set_page_dirty(cp_page);
722 f2fs_put_page(cp_page, 1);
723
724 if (sbi->n_orphans) {
725 write_orphan_inodes(sbi, start_blk);
726 start_blk += orphan_blocks;
727 }
728
729 write_data_summaries(sbi, start_blk);
730 start_blk += data_sum_blocks;
731 if (is_umount) {
732 write_node_summaries(sbi, start_blk);
733 start_blk += NR_CURSEG_NODE_TYPE;
734 }
735
736 /* writeout checkpoint block */
737 cp_page = grab_meta_page(sbi, start_blk);
738 kaddr = page_address(cp_page);
739 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
740 set_page_dirty(cp_page);
741 f2fs_put_page(cp_page, 1);
742
743 /* wait for previous submitted node/meta pages writeback */
744 sbi->cp_task = current;
745 while (get_pages(sbi, F2FS_WRITEBACK)) {
746 set_current_state(TASK_UNINTERRUPTIBLE);
747 if (!get_pages(sbi, F2FS_WRITEBACK))
748 break;
749 io_schedule();
750 }
751 __set_current_state(TASK_RUNNING);
752 sbi->cp_task = NULL;
753
754 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
755 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
756
757 /* update user_block_counts */
758 sbi->last_valid_block_count = sbi->total_valid_block_count;
759 sbi->alloc_valid_block_count = 0;
760
761 /* Here, we only have one bio having CP pack */
762 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
763
764 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
765 clear_prefree_segments(sbi);
766 F2FS_RESET_SB_DIRT(sbi);
767 }
768 }
769
770 /*
771 * We guarantee that this checkpoint procedure should not fail.
772 */
773 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
774 {
775 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
776 unsigned long long ckpt_ver;
777
778 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
779
780 mutex_lock(&sbi->cp_mutex);
781 block_operations(sbi);
782
783 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
784
785 f2fs_submit_bio(sbi, DATA, true);
786 f2fs_submit_bio(sbi, NODE, true);
787 f2fs_submit_bio(sbi, META, true);
788
789 /*
790 * update checkpoint pack index
791 * Increase the version number so that
792 * SIT entries and seg summaries are written at correct place
793 */
794 ckpt_ver = cur_cp_version(ckpt);
795 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
796
797 /* write cached NAT/SIT entries to NAT/SIT area */
798 flush_nat_entries(sbi);
799 flush_sit_entries(sbi);
800
801 /* unlock all the fs_lock[] in do_checkpoint() */
802 do_checkpoint(sbi, is_umount);
803
804 unblock_operations(sbi);
805 mutex_unlock(&sbi->cp_mutex);
806
807 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
808 }
809
810 void init_orphan_info(struct f2fs_sb_info *sbi)
811 {
812 mutex_init(&sbi->orphan_inode_mutex);
813 INIT_LIST_HEAD(&sbi->orphan_inode_list);
814 sbi->n_orphans = 0;
815 }
816
817 int __init create_checkpoint_caches(void)
818 {
819 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
820 sizeof(struct orphan_inode_entry), NULL);
821 if (unlikely(!orphan_entry_slab))
822 return -ENOMEM;
823 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
824 sizeof(struct dir_inode_entry), NULL);
825 if (unlikely(!inode_entry_slab)) {
826 kmem_cache_destroy(orphan_entry_slab);
827 return -ENOMEM;
828 }
829 return 0;
830 }
831
832 void destroy_checkpoint_caches(void)
833 {
834 kmem_cache_destroy(orphan_entry_slab);
835 kmem_cache_destroy(inode_entry_slab);
836 }
This page took 0.047529 seconds and 5 git commands to generate.